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Preface and
Dedication

The favorable reception of Portfolio Management Formulas excesded
even the grestest expectation | ever had for the book. | had written it to
promote the concept of optima f and begin to immerse readers in portfolio
theory and its missing relaionship with optima .

Besdes finding friends out there, Portfolio Management Formulas was
surprisingly met by quite an appetite for the mah concerning money man-
agement. Hence this book. | am indebted to Karl Weber, Wendy Grau, and
others a John Wiley & Sons who dlowed me the necessary latitude this
book  required.

There are many others with whom | have corresponded in one sort or
ancther, or who in one way or ancther have contributed to, helped me with,
or influenced the materid in this book. Among them are Florence Bobeck,
Hugo Rourdssa, Joe Brigtor, Smon Davis, Richard Frestone, Fred Gehm
(whom I had the good fortune of working with for awhile), Monique Mason,
Gordon Nichals, and Mike Pascaul. | aso wish to thank Fran Bartlett of G
& H Soho, whose madeful work has once again transformed my little
mountain of chaos, my little truckload of kindling, into the finished product
that you now hold in your hands.

This list is nowhere near complete as there are many others who, to vary-
ing degrees, influenced this book in one form or another.

This book has left me uttery drained, and | intend it to be my las.
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vi PREFACE AND DEDICATION

Conddering this, I'd like to dedicate it to the three people who have influ-
enced me the mos. To Rgeanne, my mother, for teaching me to appreciate
a vivid imagination; to Larry, my father, for showing me a an early age how
to squeeze numbers to make them jump; to Arlene, my wife, partner, and
best friend. This book is for dl three of you. Your influences resonate
throughout it.

Chagrin Falls, Ohio R. V.
March 1992
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Introduction

SCOPE OF THIS BOOK

I wrote in the firg sentence of the Preface of Portfolio Management
Formulas, the forerunner to this book, that it was a book about mathemati-
cd tools

This is a book about machines.

Here, we will take tools and build bigger, more daborate, more powerful
toolsmachines, where the whole is greater than the sum of the parts
We will try to dissect machines that would otherwise be black boxes in such
away that we can underdand them completdy without having to cover al
of the rdated subjects (which would have made this book impossible). For
instance, a discourse on how to build a jet engine can be very detailed with-
out having to teach you chemistry so that you know how jet fue works.
Likewise with this book, which rdies quite heavily on many aress particu-
larly datistics, and touches on cdculus. | am not trying to teach mathemat-
ics here, asde from that necessary to undersand the text. However, | have
tried to write this book so that if you understand caculus (or statistics) it will
make sense, and if you do not there will be little, it any, loss of continuity,
and you will 4ill be able to utilize and undersand (for the most part) the
materid covered without feding logt.

Certain mahemdticad functions are cdled upon from time to time in
statistics. These functions-which include the gamma and incomplete
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gamma functions, as wel as the beta and incomplete beta functions-are
often cdled functions of mathematical physics and reside just beyond the
perimeter of the materiad in this text. To cover them in the depth necessary
to do the reader judtice is beyond the scope, and away from the direction of,
this book. This is a book about account management for traders, not mathe-
maica physics remember? For those truly interested in knowing the
“chemigry of the jet fud” | suggest Numerical Recipes, which is referred to
in the Bibliography.

I have tried to cover my materid as deeply as possble consdering that
you do not have to know calculus or functions of mathematical physics to be
a good trader or money manager. It is my opinion that there isn't much cor-
relaion between intdligence and meking money in the markets By this |
do not mean that the dumber you are the better | think your chances of suc-
cess in the markets are. | mean that intdligence done is but a very smdl
input to the equation of what makes a good trader. In terms of what input
makes a good trader, | think that mental toughness and discipline far out-
weigh inteligence Every successful trader | have ever met or heard about
hes had & lesst one experience of a cataclyamic loss. The common denomi-
nator, it seems, the characteristic that separates a good trader from the oth-
es, is tha the good trader picks up the phone and puts in the order when
things are a their bleskest. This requires a lot more from an individud than
cdculus or detigics can teach a person.

In short, | have written this as a book to be utilized by traders in the real-
world marketplace. | am not an academic. My interest is in red-world utility
before academic  pureness.

Furthermore, | have tried to supply the reader with more basic informa
tion than the text requires in hopes that the reader will pursue concepts far-
ther than | have here

One thing | have dways been intrigued by is the architecture of music—
music theory. | enjoy reading and learning about it. Yet | am not a musician.
To be a mudcian requires a certain discipline tha ssmply understanding the
rudiments of music theory cannot bestow. Likewise with trading. Money
management may be the core of a sound trading program, but sSmply
understanding money management will not make you a successful trader.

This is a book about music theory, not a how-to book about playing an
ingrument. Likewise, this is not a book about beating the markets, and you
won't find a single price chart in this book. Rather it is a book about mathe-
matical concepts, taking that important step from theory to agpplication, that
you can employ. It will not bestow on you the ahility to tolerate the emo-
tiond pain that trading inevitably has in store for you, win or lose.

This book is not a sequel to Portfolio Management Formulas. Rather,
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Portfolio Management Formulas laid the foundetions for what will be cov-
eed hee

Readers will find this book to be more abstruse than its forerunner.
Hence, this is not a book for beginners. Many readers of this text will have
read Portfolio Management Formulas. For those who have not, Chapter 1 of
this book summarizes, in broad strokes, the basc concepts from Portfolio
Management Formulas. Including these basc concepts dlows this book to
“gand doneg’ from Portfolio Management Formulas.

Many of the ideas covered in this book are adready in practice by profes
sond money managers. However, the idess that are widespreed among
professond money manegers are not usudly readily available to the invest-
ing public. Because money is involved, everyone seems to be very secretive
about portfolio techniques. Finding out information in this regard is like try-
ing to find out information about atom bombs | am indebted to numerous
librarians who helped me through many mazes of professond journds to
fill in many of the gaps in putting this book together.

This book does not require that you utilize a mechanicd, objective trad-
ing system in order to employ the tools to be described herein. In other
words, someone who uses Elliott Wave for making trading decisons, for
example, can now employ optimal f.

However, the techniques described in this book, like those in Portfolio
Management Formulas, require that the sum of your bets be a positive
result. In other words, these techniques will do a lot for you, but they will
not peform miracles. Shuffling money cannot turn losses into profits. You
must have a winning approach to start with.

Most of the techniques advocated in this text are techniques that are
advantageous to you in the long run. Throughout the text you will encounter
the term “an asymptotic sense’ to mean the eventud outcome of something
peformed an infinite number of times, whose probability approaches cer-
tanty as the number of trids continues. In other words, something we can
be nearly certain of in the long run. The root of this expresson is the mahe-
matical term “asymptote,” which is a straight line consdered as a limit to a
curved line in the sense tha the disance between a moving point on the
curved line and the straight line approaches zero as the point moves an infi-
nite distance from the origin.

Trading is never an essy game. When people study these concepts, they
often get a fdse feding of power. | say fdse because people tend to get the
impression that something very difficult to do is essy when they understand
the mechanics of what they must do. As you go through this text, bear in
mind thet there is nothing in this text that will make you a better trader,
nothing that will improve your timing of entry and exit from a given market,
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nothing that will improve your trade sdection. These difficult exercises will
dill be difficult exercises even dfter you have finished and comprehended
this book.

Since the publication of Portfolio Management Formulas | have been
asked by some people why | chose to write a book in the first place. The
argument usudly has something to do with the marketplace being a com-
petitive arena, and writing a book, in their view, is andogous to educating
your adversaries.

The markets are vast. Very few people seem to redize how huge today’s
markets are. True, the markets are a zero sum game (a best), but as a result
of their enormity you, the reader, are not my adversary.

Like mogt traders, | mysdf am most often my own biggest enemy. This is
not only true in my endeavors in and around the markets, but in life in gen-
erd. Other traders do not pose anywhere near the threat to me that | mysdf
do. | do not think that | am aone in this. | think most traders, like mysdlf,
are their own worst enemies.

In the mid 1980s, as the microcomputer was fast becoming the primary
tool for traders, there was an abundance of trading programs tha entered a
position on a stop order, and the placement of these entry stops was often a
function of the current volaility in a given market. These systems worked
beautifully for a time. Then, near the end of the decade, these types of sys
tems seemed to collapse. At best, they were able to carve out only a smal
fraction of the profits that these systems had just a few years earlier. Most
traders of such sysems would later abandon them, claiming that if “every-
one was trading them, how could they work anymore?’

Most of these systems traded the Treasury Bond futures market.
Consder now the size of the cash market underlying this futures market.
Arbitrageurs in these markets will come in when the prices of the cash and
futures diverge by an appropriate amount (usudly not more than a few
ticks), buying the less expensive of the two instruments and sdling the more
expendve. As a reault, the divergence between the price of cash and futures
will disspate in short order. The only time that the reationship between
cash and futures can redly get out of line is when an exogenous shock, such
as some sort of news event, drives prices to diverge farther than the arbi-
trage process ordinaily would adlow for. Such disruptions are usudly very
short-lived and rather rare. An arbitrageur capitdizes on price discrepan-
cies, one type of which is the relationship of a futures contract to its under-
lying cash instrument. As a result of this process, the Treasury Bond futures
market is intringcaly tied to the enormous cash Treasury market. The
futures market reflects, a least to within a few ticks, what's going on in the
gigatic cash maket. The cash maket is not, and never has been, domi-
nated by systems traders. Quite the contrary.
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Returning now to our argument, it is rather inconceivable that the
traders in the cash maket all started trading the same types of systems as
those who were making money in the futures market & tha time! Nor is it
any more conceivable that these cash participants decided to dl gang up on
those who were profiteering in the futures market, There is no vaid reason
why these systems should have stopped working, or stopped working as well
as they had, smply because many futures traders were trading them. That
argument would adso suggest that a large paticipat in a very thin market
be doomed to the same falure as traders of these systems in the bonds
were. Likewise, it is slly to bdieve that al of the fat will be cut out of the
markets just because | write a book on account management concepts.

Cutting the fat out of the market requires more than an understanding of
money management concepts. It requires discipline to tolerate and endure
emotiond pain to a levd that 19 out of 20 people cannot bear. This you will
not learn in this book or any other. Anyone who cams to be intrigued by
the “intellectud chalenge of the markets” is not a trader. The markets are
as intdlectudly chdlenging as a fidfight. In that light, the best advice |
know of is to aways cover your chin and jab on the run. Whether you win or
lose, there are dgnificant beatings dong the way. But there is redly very lit-
tle to the markets in the way of an intdlectuad chdlenge. Ultimately, trading
is an execie in Hf-mastery and endurance. This book attempts to detail
the strategy of the fistfight. As such, this book is of use only to someone who

dready possesses the necessary mental toughness.

SOME PREVALENT MISCONCEPTIONS

You will come face to face with many prevaent misconceptions in this text.
Among thexe ae

. Potential gain to potentia risk is a draight-line function. That is, the
more you risk, the more you stand to gain.

« Where you are on the spectrum of risk depends on the type of vehicle
you are tradingin.

« Diverdfication reduces drawdowns (it can do this, but only to a very
minor extent-much less than mogt traders redize).

« Price behaves in a rationd manner.

The last of these misconceptions, that price behaves in a rationd man-
ner, is probably the least understood of dl, consdering how devedtating its



Xvi INTRODUCTION

effects can be. By “raiona manner” is meant that when a trade occurs a a
certain price, you can be certain that pricewill proceed in an ordely fash-
ion to the next tick, whether up or downtha is if a price is making a
move from one point to the next, it will trade & every point in between.

Most people are vaguely aware that price does not behave this way, yet most
people develop trading methodologies that assume that price does act in
this orderly fashion.

But price is a synthetic perceived vadue, and therefore does not act in
such a rationd manner. Price can make very large legps a times when pro-
ceeding from one price to the next, completdy bypassng dl prices in
between. Price is cgpable of making gigantic legps, and far more frequently
than most traders believe. To be on the wrong sde of such a move can be a
devadating experience, completdly wiping out a trader.

Why bring up this point here? Because the foundation of any effective
gaming srategy (and money management is, in the find andyss a gaming
strategy) is to hope for the best but prepare for the worst.

WORST-CASE SCENARIOS AND STRATEGY

The “hope for the best” part is pretty easy to handle. Preparing for the worst
is quite difficult and something most treders never do. Preparing for the
worst, whether in trading or anything dse, is something most of us put off
indefinitely. This is particularly easy to do when we consider that worst-case
scenaios  usudly have rather remote probabiliies of occurrence. Yet
preparing for the worst-case scenario is something we must do now. If we
are to be prepared for the worst, we must do it as the starting point in our
money management  Strategy.

You will see as you proceed through this text that we aways build a strat-
egy from a worgt-case scenario. We aways dart with a worst case and incor-
porate it into a mathematica technique to teke advantage of Stuations that
include the redization of the worst case

Findly, you must consder this next axiom. If you play a game with
unlimited liability, you will go broke with a probability that approaches cer-
tainty as the length of the game approaches infinity. Not a very pleasant
prospect. The dtuation can be better understood by saying that if you can
only die by being struck by lightning, eventualy you will die by being struck
by lightning. Smple. If you trade a vehicle with unlimited liability (such as
futures), you will eventudly experience a loss of such magnitude as to lose
everything you have.

Granted, the probabilities of being druck by lightning ae extremely
sndl for you today, and extremely smdl for you for the next fifty years.
However, the probability exigts, and if you were to live long enough, eventu-
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dly this microscopic probability would see redization. Likewise, the proba
bility of experiencing a cataclysmic loss on a podtion today may be
extremdy smdl (but far greater than being struck by lightning today). Yet if
you trade long enough, eventudly this probability, too, would be redized.

There are three possible courses of action you can take. One is to trade
only vehicles where the lighility is limited (such as long options). The sec-
ond is not to trade for an infinitely long period of time. Most traders will die
before they see the cataclysmic loss manifest itsdf (or before they get hit by
lightning). The probability of an enormous winning trade exists, too, and
one of the nice things about winning in trading is tha you don't have to
have the gigantic winning trade. Many smdler wins will suffice Therefore,
if you aren’'t going to trade in limited liakility vehicles and you aren’'t going
to die, make up your mind that you are going to quit trading unlimited lia
bility vehicles atogether if and when your account equity reaches some pre-
specified god. If and when you achieve that goa, get out and don't ever
come back.

Weve been discussng word-case scenarios and how to avoid, or a least
reduce the probabilities of, their occurrence. However, this has not truly
prepared us for ther occurrence, and we must prepare for the worst. For
now, condder that today you had that cataclysmic loss. Your account has
been tapped out. The brokerage firm wants to know what you're going to do
about that big fat debit in your account. You weren't expecting this to hap-
pen today. No one who ever experiences this ever does expect it.

Take some time and try to imagine how you ae going to fed in such a
Stuation. Next, try to determine what you will do in such an instance. Now
write down on a sheet of paper exactly what you will do, who you can cdl
for legd help, and so on. Make it as definitive as possible. Do it now so that
if it happens you'll know what to do without having to think about these
matters. Are there arangements you can make now to protect yoursdf
before this possble cataclysmic loss? Are you sure you wouldn't rather be
trading a vehicle with limited liability? If you're going to trade a vehicle with
unlimited ligbility, a what point on the upside will you stop? Write down
what that level of profit is. Don't just read this and then keep plowing
through the book. Close the book and think about these things for awhile.
This is the point from which we will build.

The point here has not been to get you thinking in a fadigic way. That
would be counterproductive, because to trade the markets effectively will
require a great ded of optimism on your pat to meke it through the
inevitable prolonged losing stresks. The point here has been to get you to
think about the word-case scenario and to make contingency plans in case
such a worst-case scenario occurs. Now, take that sheet of paper with your
contingency plans (and with the amount a which point you will quit trading
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unlimited liability vehicles dtogether written on it) and put it in the top
drawer of your desk. Now, if the word-case scenario should develop you
know you won't be jumping out of the window.

Hope for the best but prepare for the worst. If you haven't done these
exercises, then close this book now and keep it closed. Nothing can help you
if you do not have this foundation to build upon.

MATHEMATICS NOTATION

Since this book is infected with mathematica equations, | have tried to
make the mathemdticad notation as easy to understand, and as easy to take
from the text to the computer keyboard, as possble. Multiplication will
dways be denoted with an asterisk (+), and exponentition will dways be
denoted with a raised caret (*). Therefore, the square root of a number will
be denoted as 7(1/2). You will never have to encounter the radicd s€ign.
Division is expressed with a dash (/) in most cases. Since the radicd sign
and the means of expressing divison with a horizontd line are dso used as a
grouping operator instead of parentheses, that confusion will be avoided by
usng these conventions for divison and exponentiation. Parentheses will be
the only grouping operator used, and they may be usad to aid in the claity
of an expresson even if they are not mathemdticaly necessary. At ceatain
specia times, brackets (( }) may dso be used as a grouping operator.

Mogt of the mahematicd functions used are quite straightforward (eg.,
the absolute vadue function and the naturad log function). One function that
may not be familiar to al readers, however, is the exponentid function,
denoted in this text as EXP(). This is more commonly expressed mathemati-
cdly as the condant e, equa to 27182818285, raised to the power of the
function. Thus:

EXP(X) = e A X = 27182818285 A X
The main reason | have opted to use the function notation EXP(X) is
that most computer languages have this function in one form or another.
Since much of the math in this book will end up transcribed into computer
code, | find this notation more straightforward.

SYNTHETIC CONSTRUCTS IN THIS TEXT

As you proceed through the text, you will see that there is a certain geome-
try to this materid. However, in order to get to this geometry we will have
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to create certain synthetic congtructs. For one, we will convert trade profits
and losses over to what will be referred to as holding period returns or
HPRs for short. An HPR is smply 1 plus what you made or lost on the trade
& a percentage. Therefore, a trade that made a 10% profit would be con-
verted to an HPR of 1 + .10 = 1.10. Similaly, a trade tha lost 10% would
have an HPR of 1 + (-.10) = 90, Mogt texts, when referring to a holding
period return, do not add 1 to the percentage gain or loss. However,
throughout this text, whenever we refer to an HPR, it will dways be 1 plus
the gain or loss as a percentage.

Ancther synthetic construct we must use is that of a market system. A
market system is any given trading approach on any given maket (the
goproach need not be a mechanicd trading system, but often is). For exam-
ple, say we are usng two separate approaches to trading two separate mar-
kets and say that one of our gpproaches is a smple moving average
crossover system. The other agpproach takes trades based upon our Elliott
Wave interpretation. Further, say we are trading two separate markets, say
Treasury Bonds and heeting cil. We therefore have a totd of four different
market systems. We have the moving average system on bonds, the Elliott
Wave trades on bonds, the moving average sysem on hedting ail, and the
Elliott Wave trades on heating oil.

A make system can be further differentiated by other factors, one of
which is dependency. For example, say that in our moving average system
we discern (through methods discussed in this text) that winning trades
beget losng trades and vice versa We would, therefore, bresk our moving
average sysem on any given market into two disinct market sysems. One
of the market systems would take trades only after a loss (because of the
nature of this dependency, this is a more advantageous system), the other
market system only after a profit. Referring back to our example of trading
this moving average sysem in conjunction with Tressury Bonds and hegting
oil and using the Elliott Wave trades adso, we now have Sx market sysems
the moving average system &fter a loss on bonds, the moving average system
after a win on bonds, the Elliott Wave trades on bonds, the moving average
system dfter a win on hesting oil, the moving average system dfter a loss on
hegting oil, and the Elliott Wave trades on heating oil.

Pyramiding (adding on contracts throughout the course of a trade) is
viewed in a money management sense as Separate, diginct market systems
rather than as the origind entry. For example if you are usng a trading
technique that pyramids, you should trest the initid entry as one market
sysem. Each add-on, each time you pyramid further, congitutes another
market system. Suppose your trading technique cdls for you to add on each
time you have a $1,000 prdfit in a trade. If you caich a redly big trade, you
will be adding on more and more contracts as the trade progresses through
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these $1,000 leves of profit. Each separate add-on should be treated as a
separate market system. There is a big benefit in doing this. The bendfit is
that the techniques discussed in this book will yield the optima quantities
to have on for a given maket system as a function of the levd of equity in
your account. By treating each add-on as a separate market system, you will
be able to use the techniques discussed in this book to know the optima
amount to add on for your current level of equity.

Ancther very important synthetic construct we will use is the concept of
a unit. The HPRs that you will be cdculating for the separate market sys
tems must be cdculated on a “1 unit” bass In other words, if they ae
futures or options contracts, each trade should be for 1 contract. If it is
stocks you are trading, you must decide how big 1 unit is. It can be 100
shares or it can be 1 shae If you ae trading cash makets or foreign
exchange (forex), you must decide how big 1 unit is By usng results based
upon trading 1 unit as input to the methods in this book, you will be able to
get output results based upon 1 unit. That is, you will know how many units
you should have on for a given trade. It doesn't matter what Size you decide
1 unit to be, because it's just an hypothetica construct necessary in order to
make the caculatiions. For each market sysem you must figure how big 1
unit is going to be. For example, if you are a forex trader, you may decide
that 1 unit will be one million U.S. dollars. If you are a stock trader, you
may opt for a size of 100 shares.

Findly, you must determine whether you can trade fractiond units or
not. For instance, if you are trading commodities and you define 1 unit as
being 1 contract, then you cannot trede fractiond units (i.e., a unit Sze less
than 1), because the smdlest denomination in which you can trade futures
contracts in is 1 unit (you can posshly trade quasifractiona units if you aso
trade minicontracts). If you are a stock trader and you define 1 unit as 1
share, then you cannot trade the fractiond unit. However, if you define 1
unit as 100 shares, then you can trade the fractiona unit, if you're willing to
trade the odd lot.

If you are trading futures you may decide to have 1 unit be 1 minicon-
tract, and not alow the fractiona unit. Now, assuming that 2 minicontracts
equa 1 regular contrect, if you get an answer from the techniques in this
book to trade 9 units, that would mean you should trade 9 minicontracts.
Since 9 divided by 2 equas 45, you would optimdly trade 4 regular con-
tracts and 1 minicontract here.

Generdly, it is very advantageous from a money management perspec-
tive to be able to trade the fractiond unit, but this isn't dways true.
Congder two stock traders. One defines 1 unit as 1 share and cannot trade
the fractiond unit; the other defines 1 unit as 100 shares and can trade the
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fractiond unit. Suppose the optima quantity to trade in today for the first
trader is to trade 61 units (i.e,, 61 shares) and for the second trader for the
same day it is to trade 0.61 units (again 61 shares).

| have been told by others that, in order to be a better teacher, | must
bring the maerid to a levd which the reader can understand. Often these
other peopl€s suggestions have to do with cregting anadogies between the
concept | am trying to convey and something they dreedy are familiar with.
Therefore, for the sake of indruction you will find numerous andogies in
this text. But | abhor andogies Wheress andogies may be an effective tool
for ingruction as well as arguments, | don't like them because they take
something foreign to people and (often quite deceptively) force fit it to a
template of logic of something people dready know is true. Here is an
example

The sguare root of 6 is 3 because the square root of 4is2and 2 + 2 = 4.
Therefore, Snce 3 + 3= 6, then the square root of 6 must be 3.

Andogies explain, but they do not solve. Rather, an andogy makes the a
priori assumption that something is true, and this “explanation” then mas
querades as the proof. You have my gpologies in advance for the use of the
andogies in this text. | have opted for them only for the purpose of instruc-
tion.

OPTIMAL TRADING QUANTITIES
AND OPTIMAL f

Modem portfolio theory, perhgps the pinnacle of money management con-
cepts from the stock trading arena, has not been embraced by the rest of
the trading world. Futures traders, whose technica trading idess are usudly
adopted by their stock trading cousins, have been reluctant to accept idess
from the sock trading world. As a consequence, modem portfolio theory
has never redly been embraced by futures traders.

Whereas modem portfolio theory will determine optima weightings of
the components within a portfolio (so as to give the least variance to a pre-
specified return or vice versa), it does not address the notion of optima
quantities. That is, for a given market system, there is an optima amount to
trade in for a given levd of account equity SO as to maximize geometric
growth. This we will refer to as the optimal f. This book proposes that mod-
em portfolio theory can and should be used by traders in any markets, not
just the stock markets. However, we must mary modem portfolio theory
(which gives us optima weights) with the notion of optima quantity (opti-
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mal f) to arrive a a truly optimal portfolio. It is this truly optimal portfolio
that can and should be used by traders imany markets, including the stock
markets.

In a nonleveraged stuation, such as a portfolio of stocks that are not on
margin, weighting and quantity are synonymous, but in a leveraged Stua
tion, such as a portfolio of futures market systems, weighting and quantity
are different indeed. In this book you will see an idea first roughly intro-
duced in Portfolio Management Formulas, that optima quantities are what
we seek to know, and that this is a function of optima weightings.

Once we amend modern portfolio theory to separate the notions of
weight and quantity, we can return to the stock trading arena with this now
reworked tool. We will see how amost any nonleveraged portfolio of stocks
can be improved dramaticdly by meking it a leveraged portfolio, and marry-
ing the portfolio with the risk-free asset. This will become intuitively obvi-
ous to you. The degree of risk (or consarvativeness) is then dictated by the
trader as a function of how much or how little leverage the trader wishes to
apply to this portfolio. This implies that where a trader is on the spectrum
of risk averson is a function of the leverage used and not a function of the
type of trading vehicle used.

In short, this book will teach you about risk management. Very few
traders have an inkling as to what conditutes risk management. It is not
smply a matter of diminating risk dtogether. To do 0 is to diminae
return dtogether. It isn't Smply a matter of maximizing potentia reward to
potential risk either. Rather, risk management is about decision-making
strategies that seek to maximize the ratio of potential reward to potential
risk within a given acceptable level of risk.

To learn this, we must first learn about optimd f, the optima quantity
component of the equation. Then we must learn about combining optima f
with the optima portfolio weighting. Such a portfolio will maximize poten-
tid reward to potentid risk. We will first cover these concepts from an
empirical standpoint (as was introduced in Portfolio Management
Formulas), then study them from a more powerful standpoint, the paramet-
ric standpoint. In contrast to an empirical approach, which utilizes past data
to come up with answers directly, a parametric approach utilizes past data
to come up with parameters. These are certain measurements about some-
thing. These parameters are then used in a model to come up with essen-
tidly the same answers that were derived from an empirical gpproach. The
strong point about the parametric agpproach is that you can dter the vaues
of the parameters to see the effect on the outcome from the modd. This is
something you cannot do with an empirica technique. However, empirica
techniques have their srong points, too. The empiricd techniques are gen-
gdly more draghtforward and less math intensive. Therefore they are ess
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ier to use and comprehend. For this reason, the empirica techniques are
covered firg.

Findly, we will see how to implement the concepts within a user-speci-
fied acceptable level of risk, and learn drategies to maximize this Stuation
further.

There is a lot of material to be covered here. | have tried to make this
text as concise as possble Some of the materid may not St well with you,
the reader, and perhgps may raise more questions than it answers. If that is
the case, than | have succeeded in one facet of what | have attempted to do.

Most books have a single “heart,” a central concept that the entire text
flows toward. This book is a little different in that it has many hearts. Thus,
some people may find this book difficult when they go to read it if they are
subconscioudy seerching for a single heart. | make no gpologies for this, this
does not wesken the logic of the text; rather, it enriches it. This book may
take you more than one reading to discover many of its hearts, or just to be
comfortable with it.

One of the many hearts of this book is the broader concept of decision
making in environments characterized by geometric consequences. An envi-
ronment of geometric consequence is an environment where a quantity that
you have to work with today is a function of prior outcomes. | think this cov-
es mogt environments we live inl Optima f is the regulator of growth in
such environments, and the by-products of optimd f tell us a great ded of
information about the growth rate of a given environment. In this text you
will learn how to determine the optimd f and its by-products for any distri-
butiond form. This is a datistical tool that is directly gpplicable to many
red-world environments in business and science. | hope that you will seek
to apply the tools for finding the optima f parametricaly in other fields
where there are such environments, for numerous different distributions,
not just for trading the markets.

For years the trading community has discussed the broad concept of
“money  managemet.” Ye by and large money management has been
characterized by a loose collection of rules of thumb, many of which were
incorrect. Ultimately, | hope that this book will have provided traders with
exactitude under the heading of money management.
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The Empirical Technigues

This chapter is a condensation of Portfolio Management Formulas.
The purpose here is to bring those readers unfamiliar with these
empirical techniques up to the same level of understanding as those
who are.

DECIDING ON QUANTITY

Whenever you enter a trade, you have made two decisons Not only have
you decided whether to enter long or short, you have dso decided upon the
quantity to trade in. This decison regarding quantity is always a function of
your account equity. If you have a $10,000 account, don't you think you
would be leaning into the trade a little if you put on 100 gold contracts?
Likewise, if you have a $10 million account, don't you think you'd be a little
light if you only put on one gold contract ? Whether we acknowledge it or
not, the decison of what quantity to have on for a given trade is inseparable
from the level of equity in our account.

It is a very fortunate fact for us though that an account will grow the
fastest when we trade a fraction of the account on each and every trade-in
other words, when we trade a quantity relative t0 the size of our Stake.

However, the quantity decison is not smply a function of the equity in
our account, it is dso a function of a few other things. It is a function of our
perceived “word-casg” 10ss on the next trade. It is a function of the speed
with which we wish to make the account grow. It is a function of depen-
dency to past trades. More varidbles than these just mentioned may be asso-
ciated with the quantity decision, yet we try to agglomerate dl of these vari-
ables, including the account's levd of equity, into a subjective decison
regarding quantity: How many contracts or shares should we put on?
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In this discussion, you will learn how to make the mathematicaly correct
decison regarding quantity. You will no longer have to meke this decison
subjectively (and quite possibly erroneoudy). You will see that there is a
steep price to be paid by not having on the correct quantity, and this price
increases as time goes by.

Mog traders gloss over this decison about quantity. They fed that it is
somewhat arbitrary in that it doesn't much matter what quantity they have
on. What matters is that they be right about the direction of the trade
Furthermore, they have the migtaken impresson that there is a Sraight-line
relationship between how many contrects they have on and how much they
stand to make or lose in the long run.

This is not correct. As we shdl see in a moment, the reationship
between potentid gain and quantity risked is not a graight line. It is curved.
There is a pesk to this curve, and it is a this pesk that we maximize poten-
tid gan per quantity a risk. Furthermore, @ you will see throughout this
discussion, the decison regarding quarttity for a given trade is as important
as the decison to enter long or short in the first place. Contrary to most
traders misconception, whether you are right or wrong on the direction of
the market when you enter a trade does not dominate whether or not you
have the right quantity on. Ultimately, we have no control over whether the
next trade will be profitable or not. Yet we do have control over the quantity
we have on. Since one does not dominate the other, our resources are better
spent concentrating on putting on the tight quantity.

On any given trade, you have a perceived worst-case loss. You may not
even be conscious of this but whenever you enter a trade you have some
idea in your mind, even if only subconscioudy, of what can hgppen to this
trade in the worst-case. This worst-case perception, aong with the level of
equity in your account, shapes your decison about how many contracts to
trade.

Thus, we can now date that there is a divisor of this biggest perceived
loss, @ number between 0 and 1 that you will use in determining how many
contrects to trade. For ingtance, if you have a $50,000 account, if you
expect, in the worst case, to lose $5,000 per contract, and if you have on 5
contracts, your divisor is .3, since

50,000/(5,000/.5) = 5

In other WOI’dS, you have on 5 contracts for a $50,000 account, so you
have 1 contract for every $10,000 in equity. You expect in the worst case to
lose $5,000 per contract, thus your divisor here is .5. If you had on only 1
contract, your divisor in this case would be .1 since

50,000/(5,000/.1) = 1
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This divisor we will call by its variable name {. Thus, whether conscioudy
or subconsciously, on any given trade you are selecting a value for f when
you decide how many contracts or shares to put on.

Refer now to Fgure I-. This represents a game where you have a 50%
chance of wimning $2 versus a 50% chance of losing $1 on every play.
Natice that here the optima f is .25 when the TWR is 1055 after 40 bets
(20 sequences of +2, -1). TWR gands for Termind Wedth Reative. It rep-
resents the return On your dake as a multiple. A TWR of 10.55 means you
would have made 10.55 times your original Stake, or 955% profit. Now look
a what happens it you bet only 15% away from the optima .25 f. At an f of
1 or .4 your TWR is 4.66. This is not even half of what it is at .25, yet you
are only 15% away from the optima and only 40 bets have eapsed!

How much are we taking about in terms of dollars? At f = .1, you would
be making 1 bet for every $10 in your stake. At f = .4, you would be making
| bet for every $250 in your stake. Both meke the same amount with a
TWR of 4.66. At f = .25, you are making 1 bet for every $4 in your stake.
Notice that if you make 1 bet for every $4 in your stake, you will meke more
than twice as much after 40 bets as you would if you were making 1 bet for
every $2.50 in your stake! Clearly it does not pay to overbet. At 1 bet per
every $250 in your steke you make the same amount as if you had bet a
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quarter of that amount, 1 bet for every $10 in your stake! Notice that in a
50/50 game where you win twice the amount that you lose, & an f of .5 you
ae only bresking evenl That means you are only bresking even if you made
1 bet for every $2 in your stake. At an f grester than .5 you are losing in this
game, and it is Smply a matter of time until you are completely tapped out!
In other words, if your fin this 50/50, 2:1 game is .25 beyond what is opti-
mal, you will go broke with a probability that approaches certainty as you
continue to play. Our god, then, is to objectively find the pesk of the f curve
for a given trading system.

In this discusson certan concepts will be illuminated in terms of gam-
bling illustrations. The man difference between gambling and speculation
is that gambling creates risk (and hence many people are opposed to it)
wheress speculdion is a transference of an dready existing risk (supposedly)
from one paty to another. The gambling illustrations are used to illustrate
the concepts as clearly and smply as possble. The mahematics of money
management and the principles involved in trading and gambling are quite
smilar. The man difference is that in the math of gambling we are usudly
deding with Bernoulli outcomes (only two possble outcomes), wheress in
trading we are deding with the entire probability distribution that the trade
may take.

BASIC CONCEPTS

A probability statement is a number between 0 and 1 that specifies how
probable an outcome is, with O being no probability whatsoever of the event
in question occurring and 1 being that the event in question is certain to
occur. An independent trials process (sampling with replacement) is a
sequence of outcomes where the probability statement is congtant from one
event to the next. A coin toss is an example of just such a process. Each toss
has a 50/50 probability regardiess of the outcome of the prior toss. Even if
the lagt 5 flips of a coin were heeds, the probability of this flip being heads is
unaffected and remains .3.

Naturally, the other type of random process is one in which the outcome
of prior events does dffect the probability statement, and naturaly, the
probability statement is not constant from one event to the next. These
types of events are cdled dependent trials processes (sampling without
replacement). Blackjack is an example of just such a process. Once a card is
played, the composition of the deck changes. Suppose a new deck is shuf-
fled and a card removed-say, the ace of diamonds. Prior to removing this
card the probability of drawing an ace was 4/52 or .07692307692. Now that
an ace has been drawn from the deck, and not replaced, the probability of
drawing an ace on the next draw is 3/51 or .05882352941.
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Try to think of the difference between independent and dependent trids
processes as smply whether the probability statement isﬁxed (independent
trials) or variable (dependent trials) from one event to the next based on
prior outcomes. This is in fact the only difference.

THE RUNS TEST

When we do sampling without replacement from a deck of cads we can
determine by ingpection that there is dependency. For certain events (such
as the profit and loss stream of a system'’s trades) where dependency cannot
be determined upon ingpection, we have the runs test. The runs test will tell
us if our sysem has more (or fewer) stresks of consecutive wins and losses
than a random digtribution.

The runs tegt is essentidly a matter of obtaining the Z scores for the win
and loss streaks of a system’s trades. A Z score is how many standard devia-
tions you are away from the mean of a distribution. Thus, a Z score of 2.00
is 200 standard deviations away from the mean (the expectation of a ran-
dom digtribution of stresks of wins and losses).

The Z score is smply the number of standard deviations the data is from
the mean of the Norrnd Probability Didribution. For example, a Z score of
1.00 would mean that the data you arc testing is within 1 standard deviation
from the mean. Incidentdly, this is perfectly normal.

The Z score is then converted into a confidence limit, sometimes dso
cdled a degree of certainty. The aea under the curve of the Normd
Probability Function a 1 standard deviation on ether sde of the mean
equals 68% of the totd area under the curve. So we take our Z score and
convert it to a confidence limit, the relationship being that the Z score is a
number of dandard deviations from the mesn and the confidence limit is
the percentage of aea under the curve occupied a so many sandard
deviations.

Confidence Limit Z Score

(%)

99.73 3.00
99 2.58
98 2.33
97 2.17
96 2.05
95.45 2.00
95 1.96
920 1.64
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with a minimum of 30 dosed trades we can now compute our Z scores.

What We are trying to answer is how many streaks of wins (losses) can we

expect from a given sysem.? Are the win (loss) stresks of the system we are

teging in line with what we could expect? If not, is there a high enough

confidence limit that we can assume dependency exists between trades—

i.e, is the outcome of a trade dependent on the outcome of previous trades?
Here then is the equation for the runs tedt, the system’s Z score:

(101) Z = (N % (R-.5) = X)X #* (X-N))/(N-1)) A (1/2)
where N = The tota number of trades in the sequence.

R = The totd number of runs in the sequence.

X = 2xW=xL

W - The totd number of winning trades in the sequence
L = The totd number of losing trades in the sequence.

Here is how to perform this computation:

1. Compile the following data from your run of trades:

A. The totad number of trades heresfter caled N.

B. The totd number of winning trades and the totad number of losing
trades. Now compute what we will cal X. X = 2 * Totd Number of
Wins * Totad Number of Losses.

C. The total number of runs in asequence. we'll call this R.

2. Let's condruct an example to follow dong with. Assume the following
trades:

-3, 42, +7, -4, +1, -1, +1, +6, -1, 0, -2, +

The net profit is +7. The total number of trades is 12, 0 N = 12, to keep
the example smple We are not now concerned with how big the wins and
losses are, but rather how many wins and losses there ae and how many
streaks. Therefore, we can reduce our run of trades to a smple sequence of
pluses and minuses. Note that a trade with a P&L of O is regarded as a loss.
We now have:

-+ + = + = 4+ 4+ = = = %

As can be seen, there are 6 profits and 6 losses; therefore, X =2* 6 * 6
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= 72. As can d0 be seen, there are 8 runs in this sequence; therefore, R
= 8. We define a run gs anytime you encounter a sign change when reading
the sequence as just shown from left to right (.e., chronologically). Assume
also that you start at 1.

1. You would thus count this Sequence as follows:

2. Solve the expression:
N * (R-.5)-X
For our example this would be:
12* (8 =.5)-T72
1247572
90 - 72
18
3. Solve the expression:
X* (X=-N))/(N-12)
For our example this would be:
(72* (72 -12))/( 12 - 1)
(72 + 60)/11
4320/11
392.727272

4. Take the sguare root of the answer in number 3. For our example this
would be

392727272 A (1/2) = 19.81734777

5 Divide the answer in number 2 by the answer in pumber 4. This is
your Z score. For our example this would be:

18/19.81734777 = .9082951063

6. Now convert your Z score to a confidence limit. The digtribution of
runs is binomidly digributed. However, when there are 30 or more

trades involved, we can use the Norma Didribution to very closdy
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goproximate the binomia probabilities. Thus, if you are usng 30 or
more trades, you can smply convert your Z score to a confidence limit
based upon Equaion (3.22) for 2-taled probabilities in the Normal
Digtribution.

The runs test will tdl you if your sequence of wins and losses contains
more or fewer stresks (of wins or losses) than would ordinarily be expected
in a truly random sequence, one that has no dependence between trids.
Snce we ae & such a rdaively low confidence limit in our example we
can asume that there is no dependence between trids in this particular
Ssequence.

If your Z score is negative, Smply convert it to pogtive (take the absolute
vaue) when finding your confidence limit. A negative Z score implies pos-
tive dependency, meaning fewer streaks than the Normal Probability
Function would imply and hence that wins beget wins and losses beget
losses. A podtive Z score implies negative  dependency, meaning more
stresks than the Norma Probability Function would imply and hence that
wins beget losses and losses beget wins.

What would an acceptable confidence limit be? Satidicians generdly
recommend sdecting a confidence limit a leest in the high ningties Some
detisticians recommend a confidence limit in excess of 99% in order to
assume dependency, some recommend a less stringent minimum of 95.45%
(2 dandard deviations).

Rarely, if ever, will you find a sysem that shows confidence limits in
excess of 9545%. Most frequently the confidence limits encountered are
less than 90%. Even if you find a sysem with a confidence limit behveen 90
and 95.45%, this is not exactly a nugget of gold. To assume that there is
dependency involved that can be capitdized upon to make a subgtantid dif-
ference, you redly need to exceed 95.45% as a bare minimum.

As long as the dependency is a an acceptable confidence limit, you can
dter your behavior accordingly to make better trading decisons, even
though you do not understand the underlying cause of the dependency. If
you could know the cause, you could then better etimate when the depen-
dency was in effect and when it was not, as wel as when a change in the
degree of dependency could be expected.

So fa, we have only looked a dependency from the point of view of
whether the lagt trade was a winner or a loser. We are trying to determine if
the sequence of wins and losses exhibits dependency or not. The runs test
for dependency automaicdly tekes the percentage of wins and losses into
account. However, in peaforming the runs test on runs of wins and losses,
we have accounted for the sequence of wins and losses but not their size. In
order to have true independence, not only must the sequence of the wins
and losses be independent, the szes of the wins and losses within the
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sequence must adso be independent. It is possible for the wins and losses to
be independent, yet their Szes to be dependent (or vice verss). One poss-
ble solution is to run the runs test on only the winning trades, segregating
the runs in some way (such as those that are greater than the median win
and those that are less), and then look for dependency among the sze of the
winning trades. Then do this for the lodng trades.

SERIAL CORRELATION

There is a different, perhaps better, way to quantify this possible depen-
dency behveen the sze of the wins and losses The technique to be dis
cussed next looks a the dzes of wins and losses from an entirdy different
perspective mathematically than the does runs test, and hence, when used
in conjunction with the runs test, measures the relationship of trades with
more depth than the runs test done could provide. This technique utilizes
the linear corrdation coefficient, r, sometimes cdled Pearson’s r, to quan-
tify the dependency/independency relationship.

Now look a Figure I-2. It depicts two sequences that are perfectly cor-
related with each other. We call this effect positive correlation.

VAV
A

Figure 1-2  Postive corrdation (r = +1,00).
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Figure 1-3  Negative correlation (r = -1 .00).

Now look a Figure I-3. It shows two sequences that are pefectly nega
tively correlated with each other. When one line is zigging the other is zag-
gng. We cdl this effect negative corrdation.

The formula for finding the linear corrdation coefficient, r, between two
sequences, X and Y, is as follows (a bar over a varidble means the arithmetic
mean of the variable):

102) B= (DX -K)* (%~ DUEEK-K) 22~ (12)

a

* (2 ( Y)A ) (1/2))
Here is how to peform the caculation:

1. Average the X's and the Y’s (shown as X and Y).

2. For each period find the difference behveen each X and the average
X and eech Y and the average Y.

3. Now cdculate the numerator. To do this, for each period multiply the
answers from step 2-in other words, for each period multiply
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together the differences between that period's X and the average X
amd between that period's Y and the average .

4. Totd up dl of the answers to step 3 for al of the periods. This is the
numerator.

5. Now find the denominator. To do this, take the answers to step 2 for
exch period, for both the X differences and the Y differences, and
sguare them (they will now al be postive numbers).

6. Sum up the squared X differences for al periods into one find totd.
Do the same with the squared Y differences.

7. Take the square root to the sum of the squared X differences you just
found in step 6. Now do the same with the Y's by taking the square
root of the sum of the squared Y differences.

8. Multiply together the two answers you just found in step i-that is,
multiply together the square root of the sum of the squared X differ-
ences by the square root of the sum of the squared Y differences. This
product is your denominator.

9. Divide the numerator you found in step 4 by the denominator you
found in step 8. This is your linear corrdation coefficient, r.

The vaue for r will dways be between +1.00 and -1.00. A vdue of 0 indi-
cates no correlation whatsoever.

Now look a Figure I-4. It represents the following sequence of 21
trades:

1,21 -1,3 2 -1 -2 -3 1 -2 31123 3 -1 2 -1, 3

We can use the linear corrdaion coefficient in the following manner to
see if there is any corrdation between the previous trade and the current
trade. The idea here is to trest the trade P&L’s as the X values in the for-
mula for r. Superimposed over that we duplicate the same trade P&L’S
only this time we skew them by 1 trade and use these as the Y vdues in the
formula for r. In other words, the Y vaue is the previous X vaue (See
Fgure 1-5)
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A B c_D_ E F G
X M X XY-Y) (C*D) (C~2) D*2)
l 4
) 1 1.2 0.3 0.36 1.44 0.09
1 2 0.2 1.3 0.26 0.04 1.69
-1 1 -1.8 0.3 -0.54 3.24 0.09
3 -1 2.2 -1.7 -3.74 4.84 2.89
) 3 1.2 2.3 2.76 1.44 5.29
-1 2 -1.8 1.3 -2.34 3.24 1.69
-2 -1 2.8 -1.7 4.76 7.84 2.89
-3 2 3.8 2.7 10.26 14.44 7.29
1 -3 0.2 -3.7 -0.74 0.04 13.69
-2 1 2.8 0.3 -0.84 7.84 0.09
3 -2 22 2.7 -5.94 4.84 7.29
1 3 0.2 2.3 0.46 0.04 5.29
| 1 0.2 0.3 0.06 0.04 0.09
2 1 1.2 0.3 0.36 1.44 0.09
3 2 2.2 1.3 2.86 4.84 1.69
3 3 2.2 2.3 5.06 4.84 5.29
-1 3 -1.8 2.3 ~4.14 3.24 5.29
2 -1 1.2 -1.7 -2.04 1.44 2.89
-1 2 1.8 1.3 -2.34 3.24 1.69
3 -1 20 1.7 -3.74 4.84 2.89

3
X= 8 Y= 7 Totds 0.8 73.2 68.2

The averages differ because you only average those X's and Y's tha have
a corresponding X or Y vaue (i.e, you average only those values that over-
lap), S0 the last Y vaue (3) is not figured in the Y average nor is the first X
value (1) figured in the X average.

The numerator is the total of all entries in column E (0.8). To find the
denominator, we take the sguare root of the total in column F, which is
8555699, and we teke the sguare root to the total in column G, which is
8258329, and multiply them together to obtain a denominator of 70.65578.
We now divide our numerator of 0.8 by our denominator of 70.65578 to
obtain (011322, This is our linear corrdation coefficient, r.

The linear corrdation coefficient of 011322 in this case is hardly indica-
tive of anything, but it is pretty much in the range you can expect for most
trading systems. High positive correlation (at least .25) generally suggests
that big wins are sddom followed by big losses and vice versa. Negdive cor-
relation readings (bdow -25 to -.30) imply that big losses tend to be fol-
lowed by big wins and vice versa. The correlation coefficients can be trans-

N MW

Figure 1-4 Individual outcomes of 21 trades.

PN

Figure I-5 Individual outcomes of 21 trades skewed by 1 trade.

13
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lated, by a technique known as Fisher’s Z transformation, into a confidence
level for a given number of trades. This topic is treated in Appendix C.

Negative corrdation is just as hepful as posdtive corrdation. For exam-
ple if there appears to be negative correlation and the system has just suf-
fered a large loss we can expect a large win and would therefore have more
contracts on than we ordinarily would. If this trade proves to be a loss, it will
mogt likdy not be a large loss (due to the negetive corrdation).

Findly, in determining dependency you should dso condder out-of-sam-
ple tesds. That is, bresk your data segment into two or more parts. If you see
dependency in the firg part, then see if that dependency dso exists in the
second pat, and so on. This will hep eiminate cases where there appears
to be dependency when in fact no dependency exidts.

Using these two tools (the runs test and the linear correation coefficient)
can hdp answer many of these questions. However, they can only answer
them if you have a high enough confidence limit andlor a high enough cor-
relation coefficient. Most of the time these tools are of little help, because
dl too often the universe of futures system trades is dominated by indepen-
dency. If you get readings indicating dependency, and you want to teke
advantage of it in your trading, you must go back and incorporate a rule in
your trading logic to exploit the dependency. In other words, you must go
back and change the trading system logic to account for this dependency
(i.e, by passng certain trades or bresking up the system into two different
systems, such as one for trades after wins and one for trades after losses).
Thus, we can date that if dependency shows up in your trades, you haven't
maximized your system. In other words, dependency, if found, should be
exploited (by changing the rules of the sysem to take advantage of the
dependency) until it no longer appears to exist. The firg stage in money
management is therefore to exploit, and hence remove, any dependency in
trades.

For more on dependency than was covered in Portfolio Management
Formulas and reterated here, see Appendix C, “Further on Dependency:
The Turning Points and Phase Length Tests”

We have been discusing dependency in the stream of trade profits and
losses. You can aso look for dependency between an indicator and the sub-
sequent trade, or between any two vaiables. For more on these concepts,
the reader is referred to the section on detidtica vdidation of a trading sys
tem under “The Binomid Digribution” in Appendix B.

COMMON DEPENDENCY ERRORS

As traders we must generdly assume that dependency does not exist in the
marketplace for the magjority of market systems. That is, when trading a
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given maket sysem, we will usudly be operating in an environment where
the outcome of the next trade is not predicated upon the outcome(s) of
prior trade(s). That is not to say that there is never dependency between
trades for some market sysems (because for some market systems depen-
dency does exist), only that we should act as though dependency does not
exis unless there is very strong evidence to the contrary. Such would be the
cae if the Z score and the linear corrdation coefficient indicated depen-
dency, and the dependency held up across markets and across optimizable
paraneter vaues. If we act as though there is dependency when the evi-
dence is not overwhdming, we may wel just be fooling oursdves and caus
ing more sdf-inflicted harm than good as a result. Even if a system showed
dependency to a 95% confidence limit for al vadues of a parameter, it ill is
hardly a high enough confidence limit to assume that dependency does in
fact exist between the trades of a given market or system.

A type | error is committed when we rgect an hypothesis that should be
accepted. If, however, we accept an hypothesis when it should be rejected,
we have committed a type Il eror. Absent knowledge of whether an
hypothesis is correct or not, wc must decide on the pendties associated with
a type | and type Il error. Sometimes one type of error is more serious than
the other, and in such cases we mugt decide whether to accept or rgect an
unproven hypothesis based on the lesser pendty.

Suppose you are conddering using a certan trading sysem, yet you're
not extremely sure that it will hold up when you go to trade it red-time.
Here, the hypothesis is that the trading system will hold up red-time. You
decide to accept the hypothesis and trade the system. If it does not hold up,
you will have committed a type Il eror, and you will pay the pendty in
terms of the losses you have incurred trading the system red-time. On the
other hand, if you choose to not trade the system, and it is profitable, you
will have committed a type | error. In this ingance, the pendty you pay is in
forgone profits.

Which is the lesser pendty to pay? Clearly it is the latter, the forgone
profits of not trading the system. Although from this example you can con-
clude that if you're going to trade a system red-time it had better be prof-
itable, there is an ulterior motive for using this example. If we assume there
is dependency, when in fact there isn't, we will have committed a type ‘Il
error. Again, the pendty we pay will not be in forgone profits, but in actua
losses. However, if we assume there is not dependency when in fact there
is, we will have committed a type | error and our pendty will be in forgone
profits. Clearly, we are better off paying the pendty of forgone profits than
undergoing actud losses. Therefore, unless there is absolutely overwhelm-
ing evidence of dependency, you ae much better off assuming tha the
profits and losses in trading (whether with a mechanicd system or not) are
independent of prior outcomes.
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There seems to be a paradox presented here. Firg, if there is depen-
dency in the trades, then the system is ‘suboptimal. Yet dependency can
never be proven beyond a doubt. Now, if we assume and act as though
there is dependency (when in fact there isn't), we have committed a more
expendve earor than if we assume and act as though dependency does not
exist (when in fact it does). For instance, suppose we have a system with a
history of 60 trades, and suppose we see dependency to a confidence leve
of 95% based on the runs test. We want our system to be optima, so we
adjust its rules accordingly to exploit this apparent dependency. After we
have done s0, say we are left with 40 trades, and dependency no longer is
goparent. We ae therefore satisfied that the system rules are optimd.
These 40 trades will now have a higher optima f than the entire 60 (more
on optima f later in this chapter).

If you go and trade this system with the new rules to exploit the depen-
dency, and the higher concomitant optimal f, and if the dependency is not
present, your performance will be closer to that of the 60 trades, rather than
the superior 40 trades. Thus, the f you have chosen will be too far to the
right, resulting in a big price to pay on your part for assuming dependency.
If dependency is there, then you will be closer to the pesk of the f curve by
assuming that the dependency is there Had you decided not to assume it
when in fact there was dependency, you would tend to be to the left of the
pesk of the f curve, and hence your performance would be suboptimal (but
a lesser price to pay than being to the right of the peek).

In a nutshel, look for dependency. If it shows to a high enough degree
across parameter values and markets for that system, then ater the system
rues to cepitdize on the dependency. Otherwise, in the absence of over-
whelming datistical evidence of dependency, assume tha it does not exig,
(thus opting to pay the lesser pendty if in fact dependency does exist).

MATHEMATICAL EXPECTATION

By the same token, you are better off not to trade unless there is absolutely
overwhedming evidence tha the maket system you ae contemplating trad-
ing will be profitabletha is, unless you fully expect the market system in
guestion to have a postive mathematica expectation when you trade it red-
time.

Mathematical expectetion is the amount you expect to make or lose, on
average, eech bet. In gambling parlance this is sometimes known as the
player's edge (if positive to the player) or the house’s advantage (if negative
to the player):
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(1.03) Mathematica Expectetion = i(lP] * A

whee P = Probability of winning or losing.
A = Amount won or lost.

N = Number of possble outcomes.

The mathematica expectation is computed by multiplying each posshble
gan or loss by the probability of that gain or loss and then summing these
products together.

Let's look a the mahematicd expectation for a game where you have a

50% chance of winning $2 and a 50% chance of losing $1 under this
formula

Mathematicd  Expectation = (.5* 2) + (5% (-1))

In such an indance, of course, your mathematica expectation is to win 50
cents per toss on average.

Consder betting on one number in roulette, where your mathematica
expectation is:

ME = ((1/38) * 35) + ((37/38) * (-1))

= (02631578947 * 35) + (9736842105 * (-1))
(9210526315) + (-.9736842105)
—.05263157903

Here if you bet $1 on one number in roulette (American double-zero) you
would expect to lose, on average, 5.26 cents per roll. If you bet $5, you
would expect to lose, on average, 26.3 cents per roll. Notice that different

amounts bet have different mathematical expectations in terms of amounts,

but the expectation as a percentage of the amount bet is always the same.

The player’s expectation for a series of bets is the total of the expectations for
the individual bets. So if you go play $1 on a number in roulette, then $10
on a number, then $5 on a number, your totd expectation is
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ME = (~.0526 * 1) + (-.0526 * 10) + (-.0526 * 5)
= -.0526 - 526 .263
= - 8416

You would therefore expect to lose, on average, 84.16 cents.

This principle explains why systems that try to change the sizes of their
bets relative to how many wins or losses have been seen (assuming an inde-
pendent trids process) are doomed to fal. The summation of negaive
expectation bets is dways a negative expectation!

The most fundamenta point that you must understand in terms of
money management is thet in a negative expectation game, there is no
money-management scheme that will make you a winner. [f you continue to
bet, regardless of how you manage your money, it is almost certain that you
will be a loser, losing your entire stake no matter how large it was to
start.

This axiom is not only true of a negative expectation game, it is true of an
evenrmongy game as wel. Therefore, the only game you have a chance a
winning in the long run is a pogtive arithmetic expectation game. Then, you
can only win if you either aways bet the same constant bet size or bet with
an f vaue less than the f vaue corresponding to the point where the geo-
metric mean HPR is less than or equa to 1. (We will cover the second part
of this regarding the geometric mean HPR, later on in the text)

This axiom is true only in the absence of an upper absorbing barrier. For
exanple, le's assume a gambler who darts out with a $100 sake who will
quit playing if his stake grows to $101. This upper target of $101 is caled an
absorbing barrier. Let’s suppose our gambler is dways betting $1 per play
on red in roulette Thus, he has a dight negative mathematicd expectation.
The gambler is far more likdy to see his stake grow to $101 and quit than
he is to see his sake go to zero and be forced to quit. If, however, he
repeats this process over and over, he will find himsdf in a negative mathe-
matical expectation. If he intends on playing this game like this only once,
then the axiom of going broke with certainty, eventually, does not apply.

The difference between a negdive expectation and a pogtive one is the
difference between life and deeth. It doesn't matter so much how postive
or how negative your expectation is, what matters is whether it is postive or
negative. So before money management can even be conddered, you must
have a postive expectancy game. If you don't, dl the money management in
the world cannot save you'. On the other hand, if you have a posdtive expec-

‘This rule is applicable to trading one market system only. When you begin trading more than
one market system, you step into a strange environment where it is possible to include a mar-
ket system with a negative mathematical expectation as one of the markets being traded and
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tation, you can, through proper money management, turn it into an expo-
nential growth function. It doesn't even matter how marginadly postive the
expectation id

In other words, it doesn't so much metter how profitable your trading
sysem is on a 1 contract basis, so long as it is profitable, even if only
marginaly so. If you have a system tha makes $10 per contract per trade
(once commissons and dippage have been deducted), you can use money
management to make it be far more profitable than a sysem that shows a
$1,000 average trade (once commissions and dippage have been deducted).
What matters, then, is not how profitable your system has been, but rather
how certain is it that the sysem will show at least a margind profit in the
future. Therefore, the most important preparation a trader can do is to
meke as cetan as possble that he has a postive mathematica expectation
in the future.

The key to ensuring that you have a postive mathematical expectation in
the future is to not redtrict your system’s degrees of freedom. You want to
keep your system's degrees of freedom as high as possble to ensure the
postive mathematical expectation in the future. This is accomplished not
only by diminating, or a& least minimizing, the number of optimizable
paameers, but dso by diminating, or a leest minimizing, as many of the
system rules as possible. Every parameter you add, every rule you add,
evey little adjusment and qudification you add to your system diminishes
its degrees of freedom. Idedly, you will have a system that is very primitive
and smple, and tha continualy grinds out margind profits over time in
almost dl the different markets. Again, it is important that you redize that it
redly doesn’t matter how profitable the system is, s0 long as it is profitable.
The money you will make trading will be made by how effective the money
management you employ is. The trading system is smply a vehicle to give
you a podtive mathematical expectaion on which to use money manage
ment. Systems that work (show at least a margina profit) on only one or a
faw makets, or have different rules or parameters for different markets,
probably won't work red-time for very long. The problem with most techni-
cdly oriented traders is that they spend too much time and effort hating the
computer crank out run after run of different rules and parameter values for
trading systems. This is the ultimate “woulda, shoulda, coulda” game. It is

actualy have a higher net mathematical expectation than the net mathematical expectation of
the group before the inclusion of the negative expectation system! Further, it is possible that

the net mathematical expectation for the group with the inclusion of the negative mathematical
expectation market system can be higher than the mathematical expectation of any of the indi-
vidual market systems! For the time being we will consider only one market system at a time,
so we most have a positive mathematical expectation in order for the money-management
techniques to work.
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completely counterproductive. Rather than concentrating your efforts and
computer time toward maximizing your trading system profits, direct the
enargy toward maximizing the certainty level of a margina profit.

TO REINVEST TRADING PROFITS OR NOT

Let's cdl the following system “Sysem A.” In it we have 2 trades: the first
making SO%, the second losing 40%. If we do not reinvest our returns, we
make 10%. If we do reinved, the same sequence of trades loses 10%.

System A
No  Reinvestment With Reinvestment
Trade No. P&L Cumulative P&L Cumulative
100 100
1 50 150 50 150
2 -40 110 - 60 90

Now let's look a System B, a gain of 15% and a loss of 5%, which aso nets
out 10% over 2 trades on a nonreinvesment basis, just like Sysem A. But
look at the results of System B with reinvesment: Unlike sysem A, it makes
money.

System B
No  Reinvestment With Reinvestment
Trade No. P&L Cumulative P&L Cumulative
100 100
1 15 115 15 115
2 -5 110 - 575 109.25

An important characterigic of trading with reinvestment tha must be
redized is that reinvesting trading profits can turn a winning system into a
losing system but not vice versa! A winning system is turned into a losing
system in trading with reinvestment if the returns ae not consstent
enough.

Changing the order or sequence of trades does not affect the final out-
come. This is not only true on a nonreinvestment bads, but dso true on a
renvestment basis (contrary to most people€'s misconception).
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System A
No  Reinvestment With Reinvestment
Trade No. P&L Cumulative P&L Cumulative
100 100
1 40 60 40 60
50 110 30 90
System B
No  Reinvestment With Reinvestment
Trade No. P&L Cumulative P&L Cumulative
100 100
1 -5 95 -5 95
2 15 110 14.25 109.25

As can obvioudy be seen, the sequence of trades has no bearing on the find
outcome, whether viewed on a reinvetment or a nonreinvesment basis.
(One sde benefit to trading on a reinvestment basis is that the drawdowns
tend to be buffered. As a system goes into and through a drawdown period,
eech losng trade is followed by a trade with fewer and fewer contracts)

By ingpection it would seem you are better off trading on a nonreinvest-
ment basis than you are reinvesting because your probability of winning is
grester. However, this is not a vaid assumption, because in the red world
we do not withdraw al of our profits and make up al of our losses by
depositing new cash into an account. Further, the naure of invesment or
trading is predicated upon the effects of compounding. If we do away with
compounding (as in the nonreinvestment basis), we can plan on doing little
better in the future than we can today, no matter how successful our trading
is between now and then. It is compounding that takes the linear function
of account growth and makes it a geometric function.

If a system is good enough, the profits generated on a reinvesment besis
will be far grester than those generated on a nonreinvesment basis, and
that gap will widen as time goes by. If you have a sysem that can beat the
market, it doesn't make any sense to trade it in any other way than to
increase your amount wagered as your stake increases.

MEASURING A GOOD SYSTEM FOR
REINVESTMENT: THE GEOMETRIC MEAN

So far we have seen how a sysem can be sabotaged by not being consistent
enough from trade to trade. Does this mean we should close up and put our
money in the bank?
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Let's go back to System A, with its first 2 trades. For the sake of illustra-
tion we are going to add two winners of 1 point each.

System A
No  Reinvestment With Reinvestment
Trade No. P&L Cumulative P&L Cumulative
100 100
1 50 150 50 150
2 -40 110 - 60 90
3 1 111 0.9 90.9
4 1 112 0.909 91.809
Percentage of Wins 75% 75%
Avg. Trade 3 - 2.04775
Risk/Rew. 1.3 0.86
Std. Dev. 31.88 39.00
Avg. Trade/Std. Dev. 0.09 -0.05

Now let's take System B and add 2 more losars of 1 point each.

System B
No  Reinvestment With Reinvestment
Trade No. P&L Cumulative P&L Cumulative
100 100
1 15 115 15 115
2 -5 110 - 575 109.25
3 -1 109 - 1.0925 108.1575
4 -1 108 - 1.08157 107.0759
Percentage of Wins 25% 25%
Avg. Trade 2 1.768981
Risk/Rew. 2.14 1.89
Std. Dev. 7.68 7.87
Avg. Trade/Std. Dev. 0.26 0.22

Now, if consistency is what we're redlly after, let’s look a a bank account,
the perfectly condgtent vehicle (relative to trading), paying 1 point per
period. WEl cal this series System C.
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System C
No  Reinvestment With Reinvestment
Trade NO. P&L Cumulative P&L Cumulative
100 100
1 1 101 1 101
2 1 102 1.01 102.01
3 1 103 1.0201 103.0301
4 1 104 1.030301 104.0604
Percentage of Wins 1.00 1.00
Avg. Trade 1 1.015100
Risk/Rew. Infinite Infinite
Std. Dev. 0.00 0.01
Avg. Trade/Std. Dev. Infinite 89.89

Our am is to maximize our profits under reinvesment trading. With that
as the god, we can see that our best reinvesment sequence comes from
Sysem B. How could we have known that, given only information regarding
nonreinvestment trading? By percentage of winning trades? By tota dol-
las? By average trade? The answer to these questions is “no,” because
answering “yes’ would have us trading Sysem A (but this is the solution
most futures traders opt for). What if we opted for most consigtency (i.e,
highes retio average trade/sandard deviaion or lowest sandard deviation)?
How about highest risk/reward or lowest drawdown? These are not the
answers ether. If they were, we should put our money in the bank and for-
get about trading.

System B has the tight mix of profitability and consstency. Systems A
and C do not. That is why Sysem B performs the best under reinvestment
trading. What is the best way to measure this “right mix”? It turns out there
is a formula that will do just that-the geometric mean. This is smply the
Nth root of the Termind Wedth Reative (TWR), where N is the number
of periods (trades). The TWR is smply what we've been computing when
we figure what the find cumulaive amount is under reinvestment, In other
words, the TWRs for the three systems we just saw are:

System TWR
System A 91809
System B 1.070759
System C 1.040604

Snce thae ae 4 trades in each of these, we teke the TWRs to the 4th
root to obtain the geometric mean:
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System Geometric Mean
System A 0.978861
Sysem B 1.017238
System C 1.009999

N
104  TWR= _I_IHPRi

(L05) Geometric Mean = TWR * (1/N)
where N = Tota number of trades.

HPR = Holding period returns (equa to 1 plus the rate of return—
eg. an HPR of 1.10 means a 10% return over a given
period, bet, or trade).

TWR = The number of dollars of vadue at the end of a run of peri-
odsbets/trades per dollar of initid investment, assuming
gans and losses are dlowed to compound.

Here is another way of expressing these varigbles:

(1.06) TWR = Find StekeStating Stake

The geometric mean (G) equas your growth factor per play, or:

(1.07) G = (Find Stake/Sating Stake) A (I/Number of Plays)

Think of the geometric mean as the “growth factor per play” of your
deke. The sysem or market with the highet geometric mean is the system
or market that makes the mogt profit trading on a reinvestment of returns
bass. A geometric mean less than one means that the system would have
lost money if you were trading it on a reinvesment basis.

Investment performance is often measured with respect to the disperson
of returns. Messures such as the Sharpe ratio, Treynor measure, Jensen
measure, Vami, and so on, atempt to relae investment performance to dis-
person. The geometric mean here can be consdered another of these types
of messures However, unlike the other messures, the geometric mean mea
aures investment performance relaive to disperson in the same mathemati-
cd form as that in which the equity in your account is affected.

Equation (1.04) bears out another point. If you suffer an HPR of 0, you
will be completdly wiped out, because anything multiplied by zero equds
zero. Any big losing trade will have a very adverse effect on the TWR, since
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it is amultiplicative rather than additive function. Thus we can dtate that in
trading you are only as smart as your dumbest mistake.

HOW BEST TO REINVEST

Thus far we have discussed reinvestment of returns in trading whereby we
reinvest 100% of our stake on al occasons. Although we know thet in order
to maximize a potentiadly profitable Stuation we must use renvesment, a
100% reinvestment is rarely the wisest thing to do.

Take the case of a fair bet (50/50) on a coin toss. Someone is willing to
pay you $2 if you win the toss but will charge you $1 if you lose. Our mathe-
maticd expectaion is .5. In other words, you would expect to make 50 cents
per toss, on average. This is true of the first toss and al subsequent tosses,
provided you do not step up the amount you are wagering. But in an inde-
pendent tridls process this is exactly what you should do. As you win you
should commit more and more to esch toss

Suppose you begin with an initid stake of one dollar. Now suppose you
win the firg toss and are paid two dollars. Since you had your entire stake
($1) riding on the last bet, you bet your entire stake (now $3) on the next
toss as wel. However, this next toss is a losr and your entire $3 stake is
gone. You have logt your origind $1 plus the $2 you had won. If you had
won the lagt toss, it would have paid you $6 since you had three $1 bets on
it. The point is that if you are betting 100% of your stake, you'll be wiped
out as soon as you encounter a losng wager, an ineviteble event. If we were
to replay the previous scenario and you had bet on a nonrenvestment basis
(i.e, congtent bet size) you would have made $2 on the first bet and lost $1
on the second. You would now be net ahead $1 and have a totd steke of $2.

Somewhere between these two scenarios lies the optimal betting
gpproach for a podtive expectation. However, we should first discuss the
optimal betting strategy for a negdtive expectation game. When you know
that the game you ae playing has a negaive mahematica expectation, the
best bet is no bet. Remember, there is no money-management drategy thet
can turn a losing game into a winner. ‘However, if you must bet on a nega
tive expectaion game, the next best drategy is the maximum boldness strat-
egy. In other words, you want to bet on as few trids as possible (as opposed
to a postive expectation game, where you want to bet on as many trids as
possble). The more trids, the greater the likelihood that the postive expec-
tation will be redized, and hence the greater the likeihood that betting on
the negative expectation side will lose. Therefore, the negative expectaion
dde has a lesser and lessr chance of losing as the length of the game is
shortened-i.e, as the number of trids gpproaches 1. If you play a game
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whereby you have a 49% chance of winning $1 and a 51% of losing $1, you
are best off betting on only 1 trid. The more trids you bet on, the grester
the likdihood you will lose, with the probability of losing agpproaching cer-
tainty as the length of the game approaches infinity. That isn't to say that
you ae in a pogtive expectation for the 1 trid, but you have a least mini-

mized the probabilities of being a loser by only playing 1 trid.

Return now to a postive expectation game. We determined a the outsst
of this discusson that on any given trade, the quantity that a trader puts on
can be expressed as a factor, f, between 0 and 1, that represents the trader’s
quantity with respect to both the perceived loss on the next trade and the
trader’s total equity. If you know you have an edge over N bets but you do
not know which of those N bets will be winners (and for how much), and
which will be losers (and for how much), you are best off (in the long run)
tregting each bet exactly the same in terms of what percentage of your totd
steke is a risk. This method of aways trading a fixed fraction of your steke
has shown time and again to be the best staking system. If there is depen-
dency in your trades, where winners beget winners and losers beget losers,
or vice versa, you are dill best off betting a fraction of your tota stake on
eech bet, but that fraction is no longer fixed. In such a case, the fraction
must reflect the effect of this dependency (that is, if you have not yet
“flushed” the dependency out of your system by creating system rules to
exploit it).

“Wait,” you say. “Aren’'t staking systems foolish to begin with? Haven't
we seen tha they don’t overcome the house advantage, they only increase
our totd action?’ This is absolutely true for a stuation with a negative math-
ematical expectation. For a podtive mathematica expectation, it is a differ-
ent dory dtogether. In a postive expectancy Stuation the trader/gambler is
faced with the question of how best to exploit the positive expectation.

OPTIMAL FIXED FRACTIONAL TRADING

We have spent the course of this discussion laying the groundwork for this
section. We have seen that in order to condder betting or trading a given
Stuation or system you must first determine if a postive mathematical
expectation exists. We have seen that what is seemingly a “good bet” on a
mathematicd  expectation basis (i.e, the mathematicdl expectation is posi-
tive) may in fact not be such a good bet when you consder reinvestment of
returns, if you are reinvesting too high a percentage of your winnings rda
tive to the disperson of outcomes of the sysem. Reinvesting returns never
rases the mathematicad expectation (as a percentage-dthough it can rase
the mathematica expectation in terms of dollars, which it does geometri-
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cally, which is why we want to reinvest). If there is in fact a positive mathe-
matica expectation, however smdl, the next step is to exploit this podtive
expectation to its fullest potentia. For an independent trids process, this is
achieved by reinvesting a fixed fraction of your total stake’

And how do we find this optima f? Much work has been done in recent
decades on this topic in the gambling community, the most famous and
accurate of which is known as the Kely Betting System. This is actudly an
goplication of a mathematicd idea developed in early 1956 by John L. Kely,
Jr?® The Kelly criterion dtates that we should bet that fixed fraction of our
sake (f) which maximizes the growth function G(f):

(L08) GH=P*In(1+B* )+ (1-P)*In(l~9
where f = The optima fixed fraction.
P = The probability of a winning bet or trade.

B = The raio of amount won on a winning bet to amount lost on
a losing bet.

In( ) = The natura logarithm function.

As it turns out, for an event with two possible outcomes, this optimal f*
can be found quite easily with the Kdly formulas.

KELLY FORMULAS

Beginning around the late 1940s, Bel System engineers were working on
the problem of data transmisson over long-distance lines. The problem fac-
ing them was that the lines were subject to seemingly random, unavoidable
“noisg’ that would interfere with the transmisson. Some rather ingenious
solutions were proposed by engineers a Bel Labs. Oddly enough, there are

‘For a dependent trials process, just as for an independent trials process, the idea of betting a
proportion of your total stake also yields the greatest exploitation of a positive mathematical
expectation. However, in a dependent trials process you optimally bet a variable fraction of
your total stake, the exact fraction for each individual bet being determined by the pmbabilities
and payoﬂ's involved for each individual bet. This is analogous to trading a dependent trias
process 3§ two separate market systems.

Kelly, ]. L., Jr., A New Interpretation of Information Rate, Bell System Technical Journal, pp.
917-926, July, 1956,

*As used throughout the text, [ is always lowercase and in roman type. It is not to be confused
with the universal constant, F, equal to 4.669201609. . ., pertaining to bifurcations in chaotic
Systems.
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great Smilarities between this data communications problem and the prob-
len of geomeric growth as pertans to gambling money management (as
both problems are the product of an environment of favorable uncertainty).
One of the outgrowths of these solutions is the first Kdly formula

The first equation here is

(1.09a) f=2+pP-1
or

(1.09b) f=P-Q
where f=  The optima fixed fraction.
P = The probability of a winning bet or trade.
Q = The probability faloss, (or the complement of P, equd to
1-P).

Both forms of Equation (1.09) are equivaent.
Equation (1.09a) or (1.09b) will yield the correct answer for optimal f

provided the quantities are the same for both wins and losses As an exam-
ple, condder the following stream of bets:

-1, 41, +1,-1,-1, 41, 41, 41, +1,-1
There are 10 bets, 6 winners, hence:

f=(6+2)-1
= 1.2-1
=2

If the winners and losars were not dl the same dze, then this formula
would not yield the correct answer. Such a case would be our two-to-one

cointoss example, where dl of the winners were for 2 units and al of the
losers for | unit. For this situation the Kdly formula is:
(1.10a) f=(@B+1*P1)/B
where f= The optima fixed fraction.
P = The probability of a winning bet or trade.

It

B

1

The ratio of amount won on a winning bet to amount lost on
a losing bet.
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In our two-to-one coin-toss example:

f=((2+1) 5-1)02

=3*5=-172
=15 -1)2

= .02

=.25

This formula will yied the correct answer for optimal f provided dl wins are
adways for the same amount and dl losses are dways for the same amount.
If this IS not so, then this formula will not yield the correct answer.

The Kelly formulas are applicable only to outcomes that have a Bernoulli
distribution. A Benoulli digtribution is a digtribution with two possible, dis-
crete outcomes. Gambling games vey often have a Bernoulli digtribution.
The two outcomes are how much you meke when you win, and how much
you lose when you lose. Trading, unfortunately, is not this smple. To apply
the Kdly formulas to a non-Bernoulli didtribution of outcomes (such as
trading) is a mistake. The result will not be the true optima f For more on
the Bernoulli distribution, consult Appendix B.

Consder the following sequence of bets/trades:

+9, +18, 47, +1, +10, -5, -3, -17, -7

Since this is not a Bernoulli digtribution (the wins and losses are of different
amounts), the Kelly formula is not applicable. However, let's try it anyway
and see what we get.

Snce 5 of the 9 events are profitable, then P = .555. Now let's take aver-
ages of the wins and losses to cdculate B (here is where s many traders go
wrong). The average win is 9, and the average loss is 8. Therefore we say
that B = 1.125. Plugging in the vaues we aobtain:

f=((1125 + 1) 555 - 1)/1.125
= (2125 * 555 - 1)/1.125
= (1179375 - 1)/1.125

179375/1.125
159444444

Sowe say f = .16. You will see later in this chapter that this is not the opti-
mal f. The optima f for this sequence of trades is .24. Applying the Kely
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formula when al wins are not for the same amount and/or dl losses are not
for the same amount is a mistake, for it will not yield the optimal f.

Notice that the numerator in this formula equds the mathematica
expectation for an event with two possble outcomes as defined earlier.
Therefore, we can say that as long as dl wins are for the same amount and
all lossss are for the same amount (whether or not the amount that can be
won equas the amount that can be lost), the optima f is:

(1.10b) f = Mathematica Expectation/B
where f= The optimd fixed fraction.

B = The ratio of amount won on a winning bet to amount lost on
a losing bet.

The mathematical expectation is defined in Equation (1.03). but since we
must have a Bernoulli digribution of outcomes we must meke certain in
using Equation (1.10b) that we only have two possible outcomes.

Equation (1.10a) is the most commonly seen of the forms of Equation
(1.10) (which are all equivadent). However, the formula can be reduced to

the falowing smpler form:
(1.10¢) f=P-Q/B
where f= The optima fixed fraction.
P

Q

The probability of a winning bet or trade.

The probabilityof ajoss (or the complement of P, equa to
1-P).

FINDING THE OPTIMAL f BY THE
GEOMETRIC MEAN

In trading we can count on our wins being for varying amounts and our
losses being for vaying amounts, 1herefore the Kelly formules could not
give us the correct optima f. How then can we find our optima f to know
how many contracts to have on and have it be mathematically correct?

Here is the solution. To begin with, we must amend our formula for
finding HPRs to incorporate f:

(111 HPR = 1 +f % ( -Trade/Biggest Loss)
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where f = The value we are using for f.

-Trade = The profit or loss on a trade (with the sign reversed
0 that losses are positive numbers and profits are
negaive).

Biggest Loss = The P&L tha resulted in the biggest loss. (This should
adways be a negative number.)

And again, TWR is smply the geometric product of the HPRs and geomet-
ric mean (G) is smply the Nth root of the TWR.

N
(1.12) TWR=[J1+f* (-Trade;/Biggest Loss))
i=1

N
(113) G=(]]( +f* (-Trade;/Biggest Loss))] A (I/N)
i=l

where f = The value we are using for f,

~Trade; = The profit or loss on the ith trade (with the sign
reversed so that losses are postive numbers and profits
ae negdive).

Biggest Loss = The P&L that resulted in the biggest loss. (This should
dways be a negative number.)

N = The totd number of trades.
G = The geomeric mean of the HPRs.

By looping through all values for f between .01and 1, we can find that
value for f which results in the highest TWR. This is thevaue for f that
would provide us with the maximum return on our money using fixed frac-
tion. We can also state that the optimal f is the f that Yields the highest geo-
metric mean. It matters not whether we 100k for highest TWR or geometric
mean, & both are maximized a the same vaue for f.

Doing this with a computer is easy, since both the TWR curve and the
geometric mean curve are smocth with only one pesk. You smply loop
fromf = .0ltof = 1.0 by .01. As soon as you get a TWR that is less than the
previous TWR, you know that the f corresponding to the previous TWR is
the optimal f. You can employ many other search algorithms to facilitate this
process of finding the optima f in the range of O to 1. One of the fastest
ways is with the parabolic interpolation search procedure detailed in
portfolio Management Formulas.
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TO SUMMARIZE THUS FAR

You have seen tha a good sysem is the one with the highest geometric
mean. Yet to find the geometric mean you must know f. You may find this
confusng. Here now is a summary and clarification of the process

1. Take the trade liging of a given market system.

2. Find the optima f, either by testing various f vaues from O to 1 or
through iteration. The optimal f is that which yidds the highest TWR.

3. Once you have found f, you can take the Nth root of the TWR that
corresponds to your f, where N is the totd number of trades. This is
your geometric mean for this market system. You can now USe this
geometric mean to make applesto-gpples compaisons with other
market systems, as well as use the f to know how many contracts to
trade for that particular market system.

Once the highest f is found, it can readily be turned into a dollar amount
by dividing the biggest loss by the negative optimal f. For example if our
biggest loss is $100 and our optima f is .25, then —$100/-.25 = $400. In
other words, we should bet 1 unit for every $400 we have in our stake.

If you're having trouble with some of these concepts, try thinking in
terms of betting in units, not dollars (eg., one $5 chip or one futures con-
tract or one 100-share unit of stock). The number of dollars you dlocate to
each unit is cdculated by figuring your largest loss divided by the negeive
optimal f.

The optima f is a result of the baance between a system'’s profit-making
ability (on a congtant I-unit basis) and its risk (on a congtant I-unit basis).

Most people think that the optimal fixed fraction is that percentage of
your totd dake to bet, This is absolutely fase. There is an interim Step
involved. Optimal f is not in itself the percentage of your total stake to bet, it
is the divisor of your biggest loss. The quotient of this divison is what you
divide your tota stake by to know how many bets to make or contracts to
have on.

You will dso notice that margin has nothing whatsoever to do with what
is the mathematically optimal number of contracts to have on. Margin
doesn't matter because the sizes of individud profits and losses are not the
product of the amount of money put up as margin (they would be the same
whatever the sze of the margin). Rether, the profits and losses are the prod-
uct of the cxposure of 1 unit (1 futures contrect). The amount put up as
margin is further made meaningless in a money-management sense,
because the size of the loss is not limited to the margin.

TO SUMMARIZE THUS FAR 11

Most people incorrectly believe that f is a straight-line function risng up
and to the right. They bdieve this because they think it would mean that
the more you are willing to risk the more you stand to make. People reason
this way because they think that a podtive mahematica expectancy is just
the mirror image of a negaive expectancy. They midakenly bdieve that if
increesing your tota action in a negaive expectancy game results in losing
faster, then increasing your totd action in a podtive expectancy game will
result in winning faster. This is not true. At some point in a podtive
expectancy dtuation, further increesing your totd action works agangt you.
That point is a function of both the system’s profitability and its consistency
(i.e, its geomelric mean), Snce you are renveding the returns back into the
system.

It is a mathematicad fact that when two people face the same sequence of
favorable betting or trading opportunities, if one uses the optima f and the
other uses any different money-management system, then the ratio of the
optimal f bettor's stake to the other person’s stake will incresse as time goes
on, with higher and higher probability. In the long run, the optima f bettor
will have infinitdly grester wedth than any other money-management sys
tem bettor with a probability approaching 1. Furthermore, if a bettor has
the god of reeching a specified fortune and is facing a series of favorable
betting or trading opportunities, the expected time to reach the fortune will
be lower (faster) with optimal f than with any other betting system.

Let's go back and recondder the following sequence of bets (trades):

+9, +18, +7, +1, +10, -5, -3, -17, -7

Recdl that we determined earlier in this chepter thet the Kely formula
was not gpplicable to this sequence, because the wins were not dl for the
same amount and neither were the losses. We dso decided to average the
wins and average the losses and teke these averages as our vaues into the
Kelly formula (as many traders mistakenly do). Doing this we arived a an f
vaue of .16. It was Stated that this is an incorrect application of Kelly, that it
would not yidd the optima f. The Kdly formula must be specific to a sngle
bet. You cannot average your wins and losses from trading and obtain the
true optima fusng the Kdly formula

Our highet TWR on this sequence of bets (trades) is obtained at .24, or
betting $1 for every $71 in our stake. That is the optima geometric growth
you can squeeze out of this sequence of bets (trades) trading fixed fraction.
Let's look a the TWRs a different points aong 100 loops through this
sequence of bets. At 1 loop through (9 bets or trades), the TWR for f = 16
is 1.085, and for f = .24 it is 1.096. This means that for 1 pass through this
sequence of bets an f = .16 made 99% of wha an f = .24 would have made.
To continue:
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Passes Total TWR for TWR for Percentage
Throuah Bets or Trades f=.24 f=.16 Difference

! 9 1.096 1.085 1
10 90 2.494 2.261 9.4
40 360 38.694 26.132 325
100 900 9313.312 3490.761 62.5

As can be seen, usng an f vaue that we migakenly figured from Kely
only made 37.5% as much as did our optima f of .24 after 900 bets or trades
(200 cycles through the series of 9 outcomes). In other words, our optima f
of .24, which is only .08 different from .16 (50% beyond the optimd) made
amost 267% the profit that f = .16 did after 900 bets!

Let's go another 11 cycles through this sequence of trades, so tha we
now have a total of 999 trades. Now our TWR for f = 16 is 8563.302 (not
even wha it was for f = .24 a 900 trades) and our TWR for f = .24 is
25,451.045. At 999 trades f = .16 is only 33.6% off = .24, or f = .24 is 297%
off = .16!

As you see, using the optimal f does not appear to offer much adtiantage
over the short run, but over the long run it becomes more and more impor-
tant. The point is, you must give the program time when trading at the opti-
mal f and not expect miracles in the short run. The more time (i.e., bets or
trades) that elapses, the greater the difference between using the optimal f
and any other money-management strategy.

GEOMETRIC AVERAGE TRADE

At this point the trader may be interesed in figuring his or her geometric
average trade-that is, what is the average ganered per contract per trade

assuming profits are dways reinvested and fractional contracts can be pur-
chased. This is the mathematicd expectation when you are trading on a
fixed fractiond basis This figure shows you what effect there is by losers
occurring when you have many contracts on and winners occurring when

you have fewer contracts on. In effect, this approximates how a system
would have fared per contract per trade doing fixed fraction. (Actualy the
geometric average trade is your mathematicd expectation in dollars per
contract per trade. The geometric mean minus 1 is your mahemaicd
expectdion per tradea geometric mean of 1025 represents a mahemdi-
cad expectation of 25% per trade, irrespective of sze) Many traders look
only a the average trade of a market system to see if it is high enough to
judtify trading the system. However, they should be looking a the geomet-
ric average trade (GAT) in making their decision.

~—
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(1.14) CAT = G * (Biggest Loss-f)
where G = Geometric mean - ].

f = Optima fixed fraction.

(and, of course, our biggest loss is dways a negetive number).

For example, suppose a system has a geometric mean of 1.017238, the
biggest loss is $8,000, and the optima f is .31. Our geometric average trade
would be:

GAT = (1017238 - 1) * (~$8,000/ —.31)

017238 * $25,806.45
$444.85

WHY YOU MUST KNOW YOUR OPTIMAL f

The graph in Figure |-6 further demondrates the importance of using opti-
md fin fixed fractiond trading. Recall our fcurve for a 2:1 cointoss game,
which was illugrated in Figure I-I.

Let's increase the winning payout from 2 units to 5 units as is demon-
strated in Figure 1-6. Here your optimal f is 4, or to bet $1 for every $250
in you steke. After 20 sequences of +3-1 (40 bets), your $250 stake hes
grown to $127,482, thanks to optima f. Now look what happens in this
extremely favorable situation if you miss the optima f by 20%. At f vaues of
6 and .2 you don't make a tenth as much as you do a .4. This particular sit-
uation, a 50/50 bet paying 5 to 1, has a mathematical expectation of (5 * .5)
+(1* (-5)) =2 yet if you bet usng an f vaue greater than § you lose
money.

Two points must be illuminated here. The firg is that whenever we djs-
cuss a TWR, we assume that in ariving & tha TWR we dlowed fractiona
contracts along the way. In other words, the TWR assumes that you are able
to trade 5.4789 contracts if that is caled for a some point. It is because the
TWR caculation alows for fractiona contracts that the TWR will adways be
the same for a given set of trade outcomes regardless of their sequence. You
may argue that in red life this is not the case. In red life you cannot trade
fractiond contracts. Your argument is correct. However, I am dlowing the
TWR to be cdculated this way because in so doing we represent the aver-
age TWR for al possble starting stekes. If you require that al bets be for
integer amounts, then the amount of the darting stake becomes important.
However, if you were tg average the TWRs from al possble sarting stake
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values using integer bets only, you would arive a the same TWR vdue that
we calculate by dlowing the fractiond bet. Therefore, the TWR vaue as
cdculaed is more redidic than if we were to condrain it to integer bets
only, in that it is representative of the universe of outcomes of different
darting stakes.

Furthermore, the greater the equity in the account, the more trading on
an integer contract basis will be the same as trading on a fractiona contract
basis. The limit here is an account with an infinite amount of capitad where
the integer bet and fractiond bet are for the same amounts exactly.

This is interesting in that generaly the closer you can stick to OPtima £
the better. That is to say tha the greater the capitdization of an account,
the greater will be the effect of optimd f. Since optima f will make an
account grow a the fastest possble rate, WE CaN date that optima f will
make itsdf work better and better for you at the fastest possible rate.

The graphs (Figures |-l and |-6) bear out a few more interesting
points. The first is that a no other fixed fraction will you make more money
than you will at optimal f. In other words, 't does not pay to bet $1 for every
$2 in your dsteke in the earlier example of a 5:1 game In such a cae you
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would make more money if you bet $1 for every $2.50 in your stake. It dopes
not pay to risk more than the optimal f-in fact, you pay a price to do so!

Obvioudy, the grester the capitdization of an account the more accu-
rately you can gick to optima f, as the dollars per single contract required
ae a smdler percentage of the tota equity. For example, suppose optima f
for a given market sysem dictates you trade 1 contract for every $5,000 in
an account. If an account starts out with $10,000 in equity, it will need to
gain (or lose) 50% before a quantity adjustment is necessary. Contrast this to
a $500,000 account, where there would be a contract adjustment for every
1% change in equity. Clearly the larger account can better take advantage of
the benefits provided by optimal f than can the smaller account.
Theoreticadly, optima f assumes you can trade in infinitdy divisble quanti-
ties, which is not the case in red life, where the smalest quantity you can
trade in is a sngle contrect. In the asymptotic sense this does not matter.
But in the red-life integer-bet scenario, a good case could be presented for
trading a market sysem that requires as smdl a percentege of the account
equity as possble, especidly for smaler accounts. But there is a tradeoff
here as wdl. Since we are driving to trade in markets that would reguire us
to trade in grester multiples than other markets, we will be paying grester
commissions, execution costs, and dippage. Bear in mind that the amount
réquired per contract in red life is the greater of the initid margin reguire-
ment and the dollar amount per contract dictated by the optimda f,

The finer you can cut it (i.e, the more frequently you can adjust the size
of the podtions you are trading so as to dign yoursdf with what the optimal
f dictates), the better off you are. Most accounts would therefore be better
off trading the smaler markets. Corn may not seem like a very excting mar-
ket to you compared to the S&P’s. Yet for most people the corn market can
get awfully exciting if they have a few hundred contracts on.

Those who trade docks or forwards (such as forex traders) have a
tremendous advantage here. Since you must calculae your optima f based
on the outcomes (the P&Ls) on a I-contract (1 unit) basis, you must first
decide what 1 unit is in stocks or forex. As a stock trader, say you decide that
I unit will be 100 shares. You will use the P&L sream generated by trading
100 shares on each and every trade to determine your optima f. When you
go to trade this particular stock (and let's say your system cdls for trading
2.39 contracts or units), you will be able to trade the fractional part (the 39
part) by putting on 239 shares. Thus, by being able to trade the fractiona
part of 1 unit, you are able to take more advantage of optimd f. Likewise for
forex traders, who must first decide what 1 contract or unit is. For the forex
trader, 1 unit may be one million U.S. dollars or one million Swiss francs.
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THE SEVERITY OF DRAWDOWN

It is important to note at this point that the drawdown you can expect with
fixed fractiond trading, as a percentage retracement of your account equity,
historicaly would have been at least as much as f percent. In other words if

f is .55, then your drawdown would have been a least 55% of your equity

(lesving you with 45% a one point). This is so because if you are trading at
the optimal f, as soon as your biggest loss was hit, you would experience the
drawdown equivdent to f. Again, assuming that f for a sysem is .55 and

assuming that trandates into trading 1 contract for every $10,000, this

means that your biggest loss was $5500. As should by now be obvious,
when the biggest loss was encountered (sgain we're spesking historicaly
what would have happened), you would have lost $5500 for each contract
you hed on, and would have had 1 contract on for every $10,000 in the
account. At that point, your drawdown is 55% of equity. Moreover, the
drawdown might continue The next trede or series of trades might draw
your account down even more. Therefore, the better a system, the higher
the f. The higher the f generdly the higher the drawdown, since the draw-

down (in terms of a percentage) can never be any less than the f as a per-
centage. There is a paradox involved here in that if a sysem is good enough

to generate an optima f that is a high percentage, then the drawdown for

such a good system will dso be quite high. Whereas optima fdlows you to
experience the greatest geometric growth, it dso gives you enough rope to
hang yoursdf with.

Mogt traders harbor great illusons about the severity of drawdowns.
Further, most people have falacious idess regarding the ratio of potentia
gains to disperson of those gains.

We know that if we are usng the optima f when we are fixed fractiond
trading, we can expect subgtantiad drawdowns in terms of percentage equity
retracements. Optima  f is like plutonium. It gives you a tremendous
amount of power, yet it is dreadfully dangerous. These subgtantiad draw-
downs are truly a problem, particularly for notices, in that trading a the
optima f leve gives them the chance to expeience a catadysmic loss
sooner than they ordinarily might have Diversification can greatly buffer
the drawdowns. This it does, but the reader is warned not to expect to dim-
inate drawdown. In fact, the real benefit of diversification is that it lets you
get off many more trials, many more plays, in the same time period, thus
increasing your total profit. Diversfication, dthough usuadly the best means
by which to buffer drawdowns, does not necessarily reduce drawdowns, and
in some ingtances, may actudly increese them!

Many people have the mistaken impression that drawdown can be com-
pletdy diminated if they diversfy effectivdly enough. To an extent this is
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true, in that drawdowns can be buffered through effective diversfication,
but they can never be completdy eiminated. Do not be deluded. No matter
how good the systems employed are, no matter how effectively you diversfy,
you will Hill encounter subgtantid drawdowns. The reason is that no matter
of how uncorrefated your market sysems are, there comes a period when
mogt or dl of the market systems in your portfolio zig in unison againgt you
when they should be zagging. You will have enormous difficulty finding a
portfolio with at leest 5 years of historica data to it and al market systems

employing the optimal f that has had any less than a 30% drawdown in terms
of equity retracement! This is regardless of how many market systems you

employ. If you want to be in this and do it mathematically correctly, you bet-

ter expect to be nailed for 30% to 95% equity retracements. This takes enor-

mous discipline, and very few people can emotiondly handle this.

When you dilute f; although you reduce the drawdowns arithmetically,
you also reduce the returns geometrically. Why commit funds to futures
trading that aren't necessary smply to flatten out the equity curve at the
expense of your bottom-line profits? You can dioersify cheaply somewhere
de

Any time a trader deviaes from aways trading the same congtant con-
tract Sze, he or she encounters the problem of wha quantities to trade in.
This is so whether the trader recognizes this problem or not. Congtant con-
tract trading is not the solution, as you can never experience geometric
growth trading congtant contract. So, like it or not, the question of what
quantity to take on the next trade is inevitable for everyone. To smply
select an arbitrary quentity is a costly mistake. Optima f is factud; it is
mathematicaly  correct.

MODERN PORTFOLIO THEORY

Recdl the paradox of the optimad f and a market sysem’s drawdown. The
better a market system is, the higher the vaue for f, Yet the drawdown (his-
toricadly) if you ae trading the optimad f can never be lower than f.
Generdly spesking, then, the better the market sysem is the grester the
drawdown will be as a percentage of account equity if you are trading opti-
md f. Tha is if you want to have the grestest geometric growth in an
account, then you can count on severe drawdowns along the way.

Effective diverdfication among other market sysems is the most effec-
tive way in which this drawdown can be buffered and conquered While il
staying close to the peak of the f curve (i.e, without hating to triin back to,
say, £/2), When one market system goes into a drawdown, another one that
is being traded in the account will come on drong, thus canceling the draw-
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down of the other. This aso provides for a catalytic €effect on the entire
account. The market system that just experienced the drawdown (and now
is getting back to peforming well) will have no less funds to start with than
it did when the drawdown began (thanks to the other market system cancel-
ing out the drawdown). Diverdfication won't hinder the upside of a system
(quite the reversethe upside is far greater, since after a drawdown you
aen't dating back with fewer contracts), yet it will buffer the downside
(but only to a very limited extent).

There exids a quantifiable, optima portfolio mix given a group of market
systems and their respective optima fs. Although we cannot be certain that
the optimal portfolio mix in the past will be optima in the future, such is
more likely than that the optimal system parameters of the past will be opti-
mad or near optimd in the future Whereas optima sysem parameters
change quite quickly from one time period to another, optima portfolio
mixes change very dowly (as do optimd f vaues). Generdly, the corrda
tions between market systems tend to remain condtant. This is good news to
atrader who has found the optima portfolio mix, the optima diversfication
among market systems.

THE MARKOWITZ MODEL

The basc concepts of modem portfolio theory emanate from a monograph
written by Dr. Harry Markowitz’ Essentialy, Markowitz proposed that
portfolio management is one of compostion, ot individual stock sdlection
as is more commonly precticed. Markowitz argued that diversficetion is
effective only to the extent that the correation coefficient between the mar-
kets involved is negaive. If we have a portfolio composed of one stock, our
best diversfication is obtained if we choose another stock such that the cor-
relation between the two stock prices is as low as possble. The net result
would be that the portfolio, as a whole (composed of these two stocks with
negative corrdation), would have less variation in price than ether one of
the stocks aone.

Markowitz proposed that investors act in a rationd manner and, given
the choice, would opt for a smilar portfolio with the same return as the one
they have, but with less risk, or opt for a portfolio with a higher return than
the one they have but with the same risk. Further, for a given leve of risk
there is an optimad portfolio with the highest yield, and likewise for a given
yidd there is an optima portfolio with the lowest risk. An investor with a

s Markowitz, H., Portfolio Selection—Efficient Diversification of Investments. Yale University
Press, New Haven, Conn., 1959.
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Figure 1-7 Modern portfolio theory.

portfolio whose yidd could be increased with no resultant increase in risk,
or an investor with a portfolio whose risk could be lowered with no resultant
decresse in yidd, are sad to have inefficient portfolios.

Figure I-7 shows g]] of the avalable portfolios under a given sudy. If
you hold portfolio C, you would be better off with portfolio A, where you
would have the same return with less risk, or portfolio B, where you would
have more return with the same risk.

In describing this, Markowitz described what is called the efficient fron-
tier. This is the set of portfolios that lie on the upper and left sides of the
graph. Thee are portfolios whose yield can no longer be incressed without
increesing the risk and whose risk cannot be lowered without lowering the
yield. Portfolios lying on the efficient frontier are said to be efficient portfo-
lios. (See Fgure I-8)

Those portfolios lying high and off to the right and low and to the Ieft are
generally not very well diversfied among very many issues. Those portfolios
'ying in the middle of the efficient frontier are usudly very wel diversfied.
Which portfolio a particular investor chooses is a function of the investor's
risk averson-his or her willingness to assume risk. In the Markowitz model
any portfolio thet lies upon the efficient frontier is said to be a good portfo-
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lio choice, but where on the efficient frontier is a matter of persona prefer-
ence (later on well see that there is an exact optima spot on the efficient
frontier for dl investors).

The Markowitz moddl was origindly introduced as gpplying to a portfalio
of stocks that the investor would hold long. Therefore, the basic inputs were
the expected returns on the stocks (defined as the expected gppreciation in
share price plus any dividends), the expected variaion in those returns, and
the corrdations of the different returns among the different stocks. If we
were to transport this concept to futures it would stand to resson (since
futures don't pay any dividends) tha we messure the expected price gans,
variances, and corrdations of the different futures.

The quegtion aises, “If we are measuring the correlation of prices, what
if we have two sysems on the same market that are negativdy correlated?’
In other words, suppose we have sysems A and B. There is a perfect nega-
tive corrdation between the two. When A is in a drawdown, B is in a
drawup and vice versa. ISn't this redly an ided diversfication? What we
realy want to measure then is not the corrdations of prices of the markets
we're using. Rather, we want to measure the correlations of daily equity
changes between the different market system.

Yet this is ill an gpples-and-oranges comparison. Say that two of the
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market sysems we are going to examine the corrdations on are both trading
the same market, yet one of the systems has an optimal f corresponding to |
contract per every $2,000 in account equity and the other system has an
optima f corresponding to 1 contract per every $10,000 in account equity.
To overcome this and incorporate the optima fs of the various market sys
tems under condderation, as well as to account for fixed fractiond trading,
we convert the daly equity changes for a given maket sysem into daly
HPRs. The HPR in this context is how much a paticular market made or
logt for a given day on a Il-contract basis relative to what the optima f for
that system is. Here is how this can be solved. Say the market system with
an optimd f of $2,000 made $100 on a given day. The HPR then for that
market system for that day is 1.05. To find the daly HPR, then:

(1.15) Daily HPR = (A/B}+1
whae A
B

Dollars made or logt that day.

Optimd fin dadllars.

We begin by converting the daly dollar gains and losses for the market
systems we are looking at into daly HPRs relative to the optimd fin dollars
for a given market system. In so doing, we make quantity irrdevant. In the
example just cited, where your daily HPR is 1.05, you made 5% that day on
that money. This is 5% regardiess of whether you had on 1 contract or 1,000
contracts.

Now you ae ready to begin comparing different portfolios. The trick
here is to compare every possible portfolio combination, from portfolios of 1
market system (for every market system under consideration) to portfolios
of N market systems.

As an example, suppose you are looking a market systems A, B, and C.
Every combination would be:

A

B

C
AB
AC
BC
ABC

But you do not stop there. For each combination you must figure each
Percentage dlocation as wel. To do s0 you will need to have a minimum
Percentage increment. The following example, continued from the portfalio

?, B, C example, illustrates this with a minimum portfolio alocation of 10%
10):
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A 100%
B 100%
C 100%
AB 90% 10%
80% 20%
70% 30%
60% 40%
50% 50%
40% 60%
30% 70%
20% 80%
10% 90%
AC 90% 10%
80% 20%
70% 30%
60% 40%
50% 50%
40% 60%
30% 70%
20% 80%
10% 90%
BC 90% 10%
80% 20%
70% 30%
60% 40%
50% 50%
40% 60%
30% 70%
20% 80%
10% 90%
ABC 80% 10% 10%
70% 20% 10%
70% 10% 20%
10% 30% 60%
10% 20% 70%
10% 10% 80%

Now for esch CPA we go through esch day and compute a net HPR for
each day. The net HPR for a given day is the sum of each market system's
HPR for that day times its percentage dlocation. For example, suppose for
systems A, B, and C we are looking a percentage allocations of 10%, 50%,

-_—
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40% respectively. Further, suppose that the individua HPRs for those mar-

ket systems for that day are .9, 1.4, and 1.05 respectively. Then the net HPR
for thisday is:

Net HPR = (9% .1) + (L4 * .5) + (LO5 * 4)
=.09+.7+ .42
=121

We must perform now two necessary tebulations. The firgt is that of the
average daly net HPR for each CPA. This comprises the reward or Y axis of
the Markowitz model. The second necessary tabulation is that of the dan-
dard deviation of the daily net HPRs for a given CPA-spedificdly, the pop-
ulation standard deviaion. This measure corresponds to the risk or X axis of
the Markowitz modd.

Modern portfolio theory is often cdled E-V Theory, corresponding to
the other names given the two axes. The verticd axis is often cdled E, for
expected return, and the horizontd axis V, for variance in expected returns.

From these first two tabulations we can find our efficient frontier. We
have effectively incorporated various markets, systems, and f factors, and we
can now see quantitatively what our best CPAs are (i.e, which CPAs lie
dong the efficient frontier).

THE GEOMETRIC MEAN PORTFOLIO STRATEGY

Which particular point on the efficient frontier you decide to be on (i.e,
which particular efficient CPA) is a function of your own risk-averson pref-
eence, a least according to the Makowitz model. However, there is an
optima point to be a on the efficient frontier, and finding this point is
mathemdticdly solvable.

If you choose thet CPA which shows the highest geometric mean of the
HPRs, you will arive a the optima CPA! We can edimate the geometric
meen from the aithmetic mean HPR and the population standard deviation
of the HPRs (both of which are caculations we dready have, as they are the
X ad Y axes for the Markowitz model!). Equations (1.16a) and (1_16b) give
Us the formula for the edimated geometric mean (EcM). This edimate is
very cdose (usudly within four or five decima places) to the actud geomet-
NIC meen, and it is acceptable to use the estimated geometric mean and the
actud geomeric mean interchangesbly.
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(1.16a) EGM = (AHPR A2 - SD A 2) A (1/2)

or
(1.16b)  EGM = (AHPR A 2-V) A (1/2)
where EGM = The edimaed geometric mean.

AHPR = The aithmetic average HPR, or the return coordinate
of the portfolio.

SD = The standard deviation in HPRs, or the risk coordinate
of the portfalio.

V = The vaiance in HPRs, equd to SD 4 2

Both forms of Equation (1.16) are equivaent.

The CPA with the highest geometric mean is the CPA that will maximize
the growth of the portfolio value over the long run; furthermore it will mini-
mize the time required to reach a specified level of equity.

DAILY PROCEDURES FOR USING OPTIMAL
PORTFOLIOS

At this point, there may be some question as to how you implement this
portfolio approach on a day-to-day basis. Again an example will be used to
illugtrate. Suppose your optimal CPA cdls for you to be in three different
market systems. In this cass, SUPPOse the percentage dlocations ae 10%,
50%, and 40%. If you were looking a a $50,000 account, your account
would be “subdivided” into three accounts of $5,000, $25,000, and $20,000
for each market system (A, B, and C) respectively. For each market system's
subaccount baance you then figure how many contracts you could trade.
Say the f factors dictated the following:

Market system A, 1 contract per $5,000 in account equity.
Market system B, 1 contract per $2,500 in account equity.
Market system C,| contract per $2,000 in account equity.
You would then be trading 1 contract for market system A ($5,000/$5,000),

10 contracts for market sysem B ($25,000/$2,500), and 10 contracts for
market system C ($20,000/$2,000).
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Each day, as the totd equity in the account changes, dl subaccounts are
recapitaized. What is meant here is, suppose this $50,000 account dropped
to $45,000 the next day. Since we recapitdize the subaccounts each day, we
then have $4,500 for market sysem subaccount A, $22500 for maket sys
tem subaccount B, and $18,000 for market system subaccount C, from
which we would trede zero contracts the next day on market sysem A
($4,500 / $5,000 = .9, or, snce we dways floor to the integer, 0), 9 contracts
for market system B ($22,500/$2,500), and 9 contracts for market system C
($18,000/82,000). You aways recapitdize the subaccounts each day regard-
less of whether there was a profit or a loss. Do not be confused.
Subaccount, as used here, is a mental construct.

Another way of doing this that will give us the same answers and that is
perhaps easier to understand is to divide a market system’'s optima f
amount by its percentage dlocation. This gives us a dollar amount that we
then divide the entire account equity by to know how many contracts to
trade. Since the account equity changes daly, we recapitdize this daly to
the new tota account equity. In the example we have cited, market system
A, a an f vaue of 1 contract per $5,000 in account equity and a percentage
dlocation of 10%, yiedds 1 contract per $50,000 in total account equity
($5,000/.10). Market system B, a an f value of 1 contract per $2,500 in
account equity and a percentage dlocetion of 50%, yidds 1 contract per
$5,000 in total account equity ($2,500/.50). Market sysem C, a an f vaue
of 1 contract per $2,000 in account equity and a percentage dlocation of
40%, yields 1 contract per $5,000 in total account equity ($2,000/.40). Thus,
if we had $50,000 in total account equity, we would trade 1 contract for
market sysem A, 10 contracts for market sysem B, and 10 contracts for
market system C.

Tomorrow we would do the same thing. Say our tota account equity got
up to $59,000. In this casg, dividing $59,000 into $50,000 yields 1.18, which
floored to the integer is 1, so we would trade 1 contract for market system A
tomorrow. For market system B, we would trade 11 contracts
($59,000/$5,000 = 11.8, which floored to the integer = 11). For market sys-
tem C we would aso trade 11 contracts, since market sysem C aso trades 1
contract for every $5,000 in total account equity.

Suppose we have a trade on from market sysem C yesterday and we are
long 10 contracts. We do not need to 0o in and add another today to bring
us up to 11 contracts. Rather the amounts we are cdculating using the
equity as of the most recent close mark-to-market is for new positions only.
So for tomorrow, since we have 10 contracts on, if we get stopped out of
this trade (or exit it on a profit target), we will be going 11 contracts on a
new trade if one should occur. Determining our optima portfolio usng the
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daily HPRs means that we should go in and dter our positions on a day-by-
day rather than a trade-by-trade basis, but this redlly isn't necessary unless
you ae trading a longer-term system, and then it may not be beneficid to
adjust your postion size on a day-by-day basis due to incressed transaction
cods. In a pure sense, you should adjust your postions on a day-by-day
besis. In red life, you are usudly dmost as well off to dter them on a trade-

by-trade basis, with little loss of accuracy.

This matter of implementing the correct daly postions is not such a
problem. Recdl that in finding the optima portfolio we used the daily
HPRs as input, We should therefore adjust our pogtion sze daly (if we
could adjust each podtion at the price it closed at yesterday). In redl life this
becomes impracticdl, however, & transaction costs begin to outweigh the
benefits of adjusting our positions dailly and may actualy cost us more than
the benefit of adjugting daly. We are usudly better off adjusting only at the
end of each trade. The fact that the portfolio is temporarily out of baance
after day 1 of a trade is a lesser price to pay than the cost of adjugting the
portfolio daily.

On the other hand, if we take a postion that we are going to hold for a
year, we may want to adjust such a postion daily rather than adjust it more
than a year from now when we teke ancther trade. Generdly, though, on
longer-term systems such as this we are better off adjusting the postion
eech week, say, rather than each day. The reasoning here again is that the
loss in efficiency by having the portfolio temporarily out of baance is less of
a price to pay than the added transaction costs of a daly adjustment. You
have to st down and determine which is the lesser pendty for you to pay,
based upon your trading strategy (i.e, how long you are typicaly in a trade)
as wdl as the transaction cogts involved.

How long a time period should you look & when cdculating the optimal
portfolios? Just like the question, “How long a time period should you look
a to determine the optima f for a given market sysem?’ there is no defini-
tive answer here. Generdly, the more back data you use, the better should
be your result (i.e, that the near optima portfolios in the future will resem-
ble what your study concluded were the near optima portfolios). However,
correlations do change, abeit dowly. One of the problems with usng too
long a time period is that there will be a tendency to use what were yester-
day’s hot markets. For ingtance, if you ran this program in 1983 over 5 years
of back data you would most likely have one of the precious metds show
very clearly as being a pat of the optima portfolio. However, the precious
metals did very poorly for most trading systems for quite a few years after
the 1980-1981 markets So you see there is a tradeoff between using too
much past history and too little in the determination of the optima portfolio
of the future
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Findly, the question arises as to how often you should rerun this entire
procedure of finding the optimd portfolio. Idedly you should run this on a
continuous bass. However, rardly will the portfolio composition change.
Redidticaly you should probably run this about every 3 months. Even by
running this program every 3 months there is il a high likelihood that you
will arive a the same optima portfolio composition, or one very smilar to
it, that you arived a before

ALLOCATIONS GREATER THAN 100%

Thus far, we have been redricting the sum of the percentage dlocations to
100%. It is quite possible that the sum of the percentage alocations for the
portfolio that would result in the grestest geometric growth would exceed
100%. Condder, for ingtance, two market systems, A and B, that are identi-
cal in every respect, except that there is a negative corrdation (R < 0)
between them. Assume that the optima f, in dollars, for each of these mar-
ket sysems is $5,000. Suppose the optima portfolio (based on highest
geomean) proves to be that portfolio that alocates 50% to each of the two
market systems. This would mean that you should trade 1 contract for every
$10,000 in equity for market sysem A and likewise for B. When there is
negative corrdation, however, it can be shown that the optima account
growth is actualy obtained by trading 1 contract for an amount less than
$10,000 in equity for market sysem A and/or market system B. In other
words, when there is negative corrdation, you can have the sum of percent-
age dlocations exceed 100%. Further, it is possible, athough not too likely,
that the individua percentage dlocaions to the market syssems may exceed
100% individualy.

It is interesting to consider what happens when the correaion between
two maket systems gpproaches -1.00. When such an event occurs, the
amount to finance trades by for the market sysems tends to become
infinitesmal. This is so because the portfalio, the net result of the market
systems, tends to never suffer a losing day (since an amount lost by a market
system on a given day is offset by the same amount being won by a different
market system in the portfolio that day). Therefore, with diverdfication it is
possible to have the optima portfolio dlocate a smaler f factor in dollars to
a given market sysem than trading that market sysem aone would.

To accommodate this, you can divide the optima f in dollars for each
market sysem by the number of market sysems you are running. In our
example, rather than inputting $5,000 as the optima f for market system A,
we would input $2,500 (dividing $3,000, the optimal f, by 2, the number of
market sysdems we are going to run), and likewise for market sysem B.
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Now when we use this procedure to determine the optima geomean port-
folio as being the one that dlocates 50% to A and 50% to B, it means that
we should trade 1 contract for every $5,000 in equity for market sysem A
($2,500/.5) and likewise for B.

You must dso meke sure to use cash as another market system. This is
non-interest-bearing cash, and it has an HPR of 1.00 for every day. Suppose
in our previous example that the optima growth is obtained a 50% in mar-
ket sysem A and 40% in market sysem B. In other words, to trade 1 con-
tract for every $5,000 in equity for market sysem A and 1 contract for every
$6,250 for B ($2,500/.4). If we were usng cash as another market system,
this would be a posshble combination (showing the optima portfolio as hav-
ing the remaining 10% in cash). If we were not usng cash as another mar-
ket system, this combination wouldn't be possible.

If your answer obtained by using this procedure does not include the
non-interest-bearing cash as one of the output components, then you must
rase the factor you are usng to divide the optima fs in dollas you are
usng as input. Returning to our example, SUppose we used non-interest-
bearing cash with the two maket sysems A and B. Further suppose that
our resultant optimal portfolio did not include at least some percentage dlo-
cation to non-interest bearing cash. Instead, suppose that the optima port-
folio turned out to be 60% in market syssem A and 40% in market system B
(or any other percentage combination, so long as they added up to 100% as
a sum for the percentage dlocations for the two market systems) and 0%
dlocated to nonrinterest-bearing cash. This would mean that even though
we divided our optima fs in dollars by two, that was not enough, We must
indeed divide them by a number higher than 2. So we will go back and
divide our optima fs in dollars by 3 or 4 until we get an optima portfolio
which incdudes a cetan percentage dlocation to non-interest-bearing cash.
This will be the optima portfolio. Of course, in red life this does not mean
that we must actualy alocate any of our trading capitd to non-interest-
bearing cash, Raher, the non-interest-bearing cash was used to derive the
optimal amount of funds to alocate for 1 contract to each market system,
when viewed in light of each maket sysem’s rdationship to each other
market system.

Be awvare that the percentage dlocations of the portfolio that would have
resulted in the grestest geometric growth in the past can be in excess of
100% and usudly are. This is accommodated for in this technique by divid-
ing the optima f in dollars for eech maket system by a specific integer
(which usudly is the number of market systems) and including non-interest-
beaing cash (i.e, @ maket sysem with an HPR of 100 every day) as
another market system. The corrdations of the different market systems
can have a profound effect on a portfolio. It is important that you redlize
that a portfolio can be greater than the sum of its parts (if the corrdations of

R
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its component parts are low enough). It is dso possble that a portfolio may
be less than the sum of its parts (if the corrdations are too high).

Condder again a cointoss game, a game where you win $2 on heads and
lose $1 on tals Such a game has a mathematicd expectaion (arithmetic) of
fifty cents. The optimd f is .25, or bet $1 for every $4 in your steke, and
results in a geometric mean of 1.0607. Now consider a second game, one
where the amount you can win on a coin toss is $.90 and the amount you
can loxe is $1.10. Such a game has a negaive mahematicd expectation of
-$.10, thus, there is no optima f, and therefore no geometric meen dther.

Consder what happens when we play both games smultaneoudy. If the
second game had a corrdaion coefficient of 1.0 to the firs-that is, if we
won on both games on heads or both coins dways came up dther both
heads or both tails, then the two possble net outcomes would be that we
win $2.90 on heads or lose $2.10 on tals Such a game would have a mathe-
maticd expectation then of $.40, an optimd f of .14, and a geometric mean
of 1.013. Obvioudy, this is an inferior approach to just trading the positive
mathematical  expectdion game.

Now assume that the games are negatively corrdated. Thet is, when the
coin on the game with the posdtive mathematical expectation comes up
heads, we lose the $1.10 of the negaive expectaion game and vice versa
Thus, the net of the two games is a win of $.90 if the coins come up heads
and a loss of -$.10 if the coins come up tals. The mathematical expectation
is il $.40, yet the optimal f is .44, which yields a geometric mean of 1.67.
Recdl that the geometric mean is the growth factor on your stake on aver-
age per play. This means that on average in this game we would expect to
make more than 10 times as much per play as in the outright positive math-
ematical expectaion game. Yet this result is obtained by teking that postive
mahematicd expectation game and combining it with a negdive expecta
tion game. The reason for the dramatic difference in results is due to the
negdive corrdaion between the two market sysems. Here is an example
where the portfolio is greater than the sum of its parts.

Yet it is dso important to bear in mind that your drawdown, historicaly,
would have been a least as high as f percent in terms of percentage of
equity retraced. In red life, you should expect that in the future it will be
higher than this. This means that the combination of the two market sys
tems, even though they are negaively corrdaed, would have resulted in at
leest a 44% equity retracement. This is higher than the outright positive
mathematical expectation which resulted in an optimd f of .25, and there-
fore a minimum higoricad drawdown of a least 25% equity retracement.
The mordl is dear. Diversification, 1T done properly, is a technique that
increases returns. It does not necessarily reduce worst-case drawdowns.
This is absolutely contrary to the popular notion.

Diversficaion will buffer many of the little pullbacks from equity highs,
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but it does not reduce worst-case drawdowns. Further, as we have seen with
optima f, drawdowns are fa grester than most people imagine. Therefore,
even if you are very wdl diversfied, you must <ill expect substantia equity
retracements.

However, le's go back and look a the results if the corrdation coeffi-
cient between the two games were 0. In such a game, whatever the results
of one toss were would have no bearing on the results of the other toss.
Thus, there are four possible outcomes:

Game 1 Game 2 Net
Outcome Amount Outcome Amount Outcome Amount
Win $2.00 Win $.90 Win $2.90
Win $2.00 Lose -$1.10 Win $.90
Lose -$1.00 Win $.90 Lose -$.10
Lose -$1 .00 Lose -$1.10 Lose  -$2.10

The mathematicd expectation is thus:

ME=29%.25+9% .25« 1% 25=-21%25
725+ .225 - 025 - .525
=4

Once again, the mathematica expectation is $.40. The optimal f on this
sequence is .26, or 1 bet for every $8.08 in account equity (since the biggest
loss here is ~$2.10). Thus, the least the historicdl drawdown may have been
was 26% (about the same as with the outright postive expectation game).
However, here is an example where there is buffering of the equity retrace-
ments. If we were smply playing the outright postive expectation game,
the third sequence would have hit us for the maximum drawdown. Since we
are combining the two systems, the third sequence is buffered. But that is
the only bendfit. The resultant geometric mean is 1.025, less than hdf the
rae of growth of playing just the outright postive expectation game. We
placed 4 bets in the same time as we would have placed 2 bets in the out-
right positive expectation game, but as you can see dill didn't meke as
much money:

1.0607 A 2 = 1.12508449
1025 A 4= 1103812891
Clearly, when you diversfy you must use market sysems that have as low

a corrddion in returns to each other as possble and preferably a negative
one. You must redize that your worst-case equity retracement will hardly be

N
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helped out by the diversification, adthough you may be able to buffer many
of the other lesser equity retracements. The most important thing to realize
about diversification is that its greatest benefit is in what it can do to

improve your geometric mean. The technique for finding the optima port-
folio by looking at the net daily HPRs diminates having to look a how many

trades each maket system accomplished in determining optima portfolios.
Using the technique dlows you to look a the geometric mean aone, with-

out regad to the frequency of trading. Thus, the geometric mean becomes
the sngle satistic of how beneficid a portfolio is. There is no benefit to be

obtained by diversfying into more market systems than that which results in
the highest geometric mean. This may mean no diversficaion a dl if a
portfolio of one maket system results in the highet geometric mean. It
may aso mean combining market systems that you would never want to
trade by themsdlves.

HOW THE DISPERSION OF OUTCOMES
AFFECTS GEOMETRIC GROWTH

Once we acknowledge the fact that whether we want to or not, whether
conscioudy or not, we determine our quantities to trade in as a function of
the levd of equity in an account, we can look a FPRs instead of dollar
amounts for trades. In so doing, we can give money management specificity
and exattitude We can examine our money-manegement drategies, draw
rues, and make concdusions. One of the big conclusons one tha will no
doubt spavn many others for us, regards the reationship of geometric
growth and the dispersion of outcomes (HPRs).

This discussion will use a gambling illugtration for the ske of smplicity.
Consider two systems, System A, which wins 10% of the time and has a 28
to 1 win/loss raio, and System B, which wins 70% of the time and has a 1 to
1 win/loss ratio. Our mathematical expectation, per unit bet, for A is 1.9 and
for B is .4. We can therefore say that for every unit bet System A will return,
on average, 4.75 times as much as System B. But let's examine this under
fixed fractiona trading. We can find our optima fs here by dividing the
mathematical expectations by the win/loss ratios. This gives us an optima f
of .0678 for A and .4 for B. The geomelric means for each sysem a their
optimal f levds are then:

A = 1044176755
B = 10857629
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System % Wins Win:Loss ME f Geomean
A 10 28:1 1.9 0678 1.0441768
B 70 1:1 4 A4 1.0857629

As you can see, System B, dthough less than one quarter the mathemati-
ca expectation of A, mekes dmod twice as much per bet (returning
857629% of your entire stake per bet on average when you reinvest a the
optima f levels) as does A (which returns 4.4176755% of your entire steke
per bet on average when you reinvest at the optima f levels).

Now assuming a 50% drawdown on equity will require a 100% gain to
recoup, then 1.044177 to the power of X is equa to 2.0 at approximately X
equals 16,5, or more than 16 trades to recoup from a 50% drawdown for
Sysem A. Contragt this to System B, where 1.0857629 to the power of X is
equa to 2.0 a approximately X equas 9, or 9 trades for System B to recoup
from a 50% drawdown.

What's going on here? Is this because System B has a higher percertage
of winning trades? The reason B is outperforming A has to do with the dis-
person of outcomes and its effect on the growth function. Most people
have the mistaken impression that the growth function, the TWR, is.

(117 TWR=(1+R) AN
where R = The interest rate per period (eg., 7% = .07).
N = The number of periods.

Since 1 + R is the same thing as an HPR, we can say that most people
have the Mmistaken impression that the growth function,® the TWR, is:

(118  TWR=HPRAN

This function is only true when the return (i.e., the 1IPR) is constant, which
is not the case in trading.

The red growth function in trading (or any event where the HPR is not
constant) is the multiplicative product of the HPRs. Assume we are trading

*Many people mistakenly use the arithmetic average HI'R in the equation for HPH AN. As is
demonstrated here, this will not give the true TWR after N plays. What you must use is the
geometric, rather than the arithmetic, average HPR A N. This will give you the true TWR. If
the standard deviation in HPRs is 0, then the arithmetic average HPR and the geometric aver-
age HPR are equivalent, and it matters not which you use.
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coffee, our optima f is 1 contract for every $21,000 in equity, and we have 2
trades, a loss of $210 and a gain of $210, for HPRs of .99 and 1.01 respec-
tively. In this example our TWR would be

TWR =101 * .99
=.9999

An indght can be gained by using the esimated geometric mean (EGM)
for Equation (1.16a):

(1.16a2) EGM = (AHPR A2 - SD A 2) A (1/2)
or
(1.16b)  EGM = (AHPR A2 = V) A (1/2)

Now we take Equation (1.16a) or (1.16b) to the power of N to estimate
the TWR. This will very closdy gpproximate the “multiplicative’ growth
function. the actual TWR:

(1.19a) Edimated TWR = (AHPR A2 SD A2) A (1/2)) AN
or

(1.19b)  Edtimated TWR = (AHPR A 2 -V) A (1/2)) A N

where N = The number of periods.

AHPR = The aithmetic mean HPR.
SD = The populaion standard deviation in HPRs.
V = The populaion variance in HPRs.

The two equations in (1.19) are equivaent.

The indght gained is that we can see here, mahemdicaly, the tradeoff
between an increese in the aithmetic average trade (the HPR) and the vari-

ance in the HPRs, and hence the reason that the 70% 1:1 system did better
than the 10% 28:1 sysem!

Our god should be to maximize the coefficient of this function, to maxi-
mize:

(1.16b)  EGM = (AHPR 4 2 = V) A(1/2)
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Expressed literdly, our goal is “To maximize the square root of the quantity
HPR squared minus the population variance in HPRs.”

The exponent of the estimated TWR, N, will teke care of itsdf. That is to
sy that increesing N is not a problem, as we can increese the number of
markets we are following, can trade more short-term types of systems, and
S0 on.

However, thee ddtidticd meesures of disperson, variance, and standard
devigion (V and SD respectively), are difficult for most nongatisticians to
envison. What many people therefore use in lieu of these measures is
known as the mean absolute deviation (which well cal M). Essentidly, to
find M you smply teke the average absolute vaue of the difference of each
data point to an average of the data points.

(1.20) M = 3, ABS(X; - XN
In a bell-shaped didribution (as is dmost dways the case with the distribu-
tion of P&L’s from a trading system) the mean absolute devidtion equas
about 8 of the standard deviation (in a Norma Didribution, it is .7979).
Therefore, we can say:
(121 M=.8x+5D
and
(1.22) SD=125*M

We will denote the arithmetic average HPR with the variable A, and the
geomelric average HPR with the variable G. Using Ecuation (1.16b), we
can express the edimated geometric mean as
(1.16b) G=(Ar2-V)r(1/2)
From this equation, we can obtain:

(1.23) Gr2=(Ar2-V)

Now subdgtituting the standard deviation squared for the variance [as in
(1.16a)]:

(1.24) G r2=AN2-SD"2
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From this equation we can isolate each varidble, as well as isolding zero
to obtan the fundamenta redationships between the aithmetic mean, geo-
metric mean, and digperdon, expressad as SD A 2 hae

(125  AM2-GA2-SDA2=0
(1.26) Gr2=A"2-SD"2
127)  SDA2=AN2-GA2
(128) A72=GA24SDA2

In these eguations, the value SD * 2 can dso be written as V or as (1.25
*M) “ 2.

This brings us to the point now where we can envison exactly what the
relationships are. Notice that the last of these equations is the familiar
Pythagorean Theorem: The hypotenuse of a right angle triangle squared
equds the sum of the squares of its sides! But here the hypotenuse is A, and
we want to maximize one of the legs, G.

In maximizing G, any increase in D (the disperson leg, equa to SD or V
A (1/2) or 1.25 * M) will reguire an incresse in A to offsst. When D eguds
zero, then A equas G, thus conforming to the misconstrued growth func-
tion TWR = (1 + R) A N. Actudly when D equds zero, then A equas G per
Equation (1.26).

So, in terms of their rlative effect on G, we can Sate that an increese in
A * 2isequa to a decrease of the same amount in (1.25 * M) A 2.

(1.29) AAA2= = A((125* M) A 2)

To see this, consider when A goes from 1.1 to 1.2

A SD M G A" 2 SD"2=(1.25sM) "2
11 A .08 1.095445 1.21 01
1.2 4899 39192 1005445  1.44 24

.23 = .23

When A = 11, we are given an SD of .1. When A = 1.2, to get an equiva
lent G, SD must equa 4899 per Equation (1.27). Since M = .8 * SD, then
M = .3919. If we sguare the vaues and take the difference, they are both
equa to .23, as predicted by Equation (1.29).

Consder the fallowing:
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A SD M G A"2 SD"2=(125xM)"2
1.1 25 2 1.071214 1.21 .0625
1.2 5408 4327 1.071214 1.44 2925

.23 = .23

Notice that in the previous example, where we Started with lower disper-
son vaues (SD or M), how much proportiondly grester an increase was
required to yied the same G. Thus we can dae that the more you reduce
your dispersion, the better, with each reduction providing greater and
greater benefit. It is an exponentid function, With a limit a the dispersion
equd to zero, where G is then equd to A.

A trader who is trading on a fixed fractiond bads wants to maximize G,
not necessaily A. In maximizing G, the trader should redize that the stan-
dard deviation, SD, dfects G in the same proportion as does A, per the
Pythagorean Theorem! Thus, when the trader reduces the sandard devia-
tion (SD) of his or her trades, it is equivdent to an equd increase in the
aithmetic average HPR (A), and vice versal

THE FUNDAMENTAL EQUATION OF TRADING

We can gleen a lot more here than just how trimming the Sze of our losses
improves our bottom line. We return now to equation (1.19a):

(1.192)  Estimated TWR = ((AIIPR A2 = SD A 2) A (1/2)) A N

We agan replace AHPR with A, representing the arithmetic average
HPR. Also, since (X ® vY) » z = x * (Y % Z), we can further simplify the
exponents in the equation, thus obtaining:

(1.19¢)  Estimated TWR = (A A2 -~ SD A 2) A (N/2)

This last equation, the simplification for the estimated TWR, we cdl the
fundamental equation for trading, since it describes how the different fac-
tors, A, SD, and N affect our bottom line in trading.

A few things are readily gpparent. The first of these is that if A is less
than or equa to 1, then regardiess of the other two variables, SD and N, our
result can be no greater than 1. If A is less than 1, then as N approaches
infinity, A approaches zero. This means that if A is less than or equa to 1
(methematical  expectation less than or egua to zero, snce mathematica
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expectation = A = 1), we do not sand a chance a making profits. In fact, if
A isless than 1, it is Smply a matter of time (i.e, as N increases) until we go
broke.

Provided that A is greater than 1, we can see that increesing N increases
our totd profits. For each increase of 1 trade, the coefficient is further mul-
tiplied by its square root. For instance, suppose your system showed an
arithmetic meen of 1.1, and a sandard devidtion of .25. Thus

Esimated TWR = (L1 42 - 25A2) A(N /2)
= (1.21 - .0625) A (N/2)
= 11475 * (N/2)

Each time we can increese N by 1, we increese our TWR by a factor
equivdent to the sguare root of the coefficient. In the case of our example
where we have a coefficient of 1.1475, then 1.1475 A (1/2) = 1.071214264.
Thus every trade increese, every |-point increese in N, is the equivaent to
multiplying our final stake by 1.071214264. Notice that this figure is the
geometric mean. Each time a trade occurs, each time N is increesed by 1,
the coefficient is multiplied by the geometric mean. Herein is the red bene-
fit of diverdficaion expressed mathemdticadly in the fundamenta equation
of trading. Diversification lets you get more N Off in a given period of time.

The other important point to note about the fundamentd trading equa
tion is that it shows tha if you reduce your standard deviation more than
you reduce your arithmetic average HPR, you are better off. It stands to
reason, therefore, that cutting your losses short, if possible, benefits you.
But the equation demongtrates that a some point you no longer benefit by
cutting your losses short. That point is the point where you would be getting
stopped out of too many trades with a smal loss that later would have
turned profitable, thus reducing your A to a greater extent than your SD.

Along these same lines, reducing big winning trades can help your pro-
gram if it reduces your SD more than it reduces your A. In many cases, this
can be accomplished by incorporating options into your trading program.
Having an option position that goes against your position in the underlying
(either by buying long an option or writing an option) can possibly help. For
ingance, if you are long a given stock (or commodity), buying a put option
(or writing a call option) may reduce your SD on this net position more than
it reduces your A. If you are profitable on the underlying, you will be
unprofitable on the option, but profitable overdl, only to a lesser extent
than had you not had the option postion. Hence, you have reduced both
your SD and your A. If you are unprofitable on the underlying, you will
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have increased your A and decressed your SD. All told, you will tend to
have reduced your SD to a gregter extent than you have reduced your A. Of
course, transaction costs are a large condderation in such a drategy, and
they must dways be taken into account. Your program may be too short-
term oriented to teke advantage of such a drategy, but it does point out the
fact that different drategies, dong with different trading rules, should be
looked at relative to the fundamenta trading equation. In doing so, we gan
an indght into how these factors will affect the bottom line, and what specif-
icdly we can work on to improve our method.

Suppose, for ingance, that our trading program was long-term enough
that the aforementioned strategy of buying a put in conjunction with a long
postion in the underlying was feesble and resulted in a grester estimaed
TWR. Such a postion, a long postion in the underlying and a long put, is
the equivdent to smply being outright long the cal. Hence, we are better
off amply to be long the cal, as it will result in considerably lower transac-
tion costs than being both long the underlying and long the put option.

To demondrae this well use the extreme example of the stock indexes
in 1987. Let's assume that we can actudly buy the underlying OEX index.
The sysem we will use is a smple 20-day channel breskout. Each day we
cdculate the highest high and lowest low of the last 20 days. Then, through-
out the day if the market comes up and touches the high point, we enter
long on a stop. If the system comes down and touches the low point, we go
short on a stop. If the daily opens are through the entry points, we enter on
the open. The system is dways in the market:

Date Position Entry P&L  Cumuldive Volatility

870106 L 24107 0 0 1516987
870414 S 27654 35.47 35.47 .2082573
870507 L 29228 -15.74 19.73 2182117
870904 S 31347 21.19 40.92 .1793583
871001 L 32067 -7.2 33.72 .1 848783
871012 S 30281 -17.86 15.86 .2076074
871221 L 24294 59.87 75.73 3492674

"There is another benefit here that is not readily apparent hut has enormous merit. That is that
we know, in advance, what our worst-case loss is in advance. Considering how sensitive the
optimd { equation is to what the biggest loss in the future is, such a strategy can have us be
much closer to the pesk of the { curve in the future by alowing us to predetermine what our
largest loss can he with certainty. Second, the problem of a loss of 3 standard deviations or
more having a much higher probability of occurrence than the Normal Distribution implies is

eliminated. It is the gargantuan losses in excess of 3 standard _deviations that kill most traders.
An options strategy such gas this can totally eliminate such terminal losses.

-
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If we were to determine the optimal f on this sream of trades, we would
find its corresponding geometric mean, the growth factor on our stake per
play, to be 1.12445.

Now we will take the exact same trades, only, usng the Black-Scholes
stock option pricing modd from Chapter 5, we will convert the entry prices
to theoretical option prices. The inputs into the pricing mode are the his
torical volatility determined on a 20-day bass (the caculation for historical
volatility is also given in Chapter 5), a risk-free rate of 6%, and a 260.8875-
day year (this is the average number of weekdays in a year). Further, we will
assume that we are buying options with exactly .5 of a year left till expiration
(6 months) and that they are a-the-money. In other words, that there is a
strike price corresponding to the exact entry price Buying long a cal when
the system goes long the underlying, and buying long a put when the system
goes short the underlying, using the parameters of the option pricing modd
mentioned, would have resulted in a trade stream as follows

Date Position Entry P&L Cumulative  Underlying Action

870106 L 9.623 0 0 24107 LONG CALL
870414 F 35.47 25.846  25.846 27654

870414 L 15.428 0 25.846 27654 LONG PUT

870507 F 8.792 -6.637 1921 29228

870507 L 17.116 0 1921 29228 LONG CALL
870904 F 21.242 4126  23.336 31347

870904 L 14.957 0 23.336 31347 LONG PUT

871001 F 10.844 -4.113 19.223 32067

871001 L 15.797 0 19.223 32067 LONG CALL
871012 F 9.374 -6.423 12.8 30281

871012 L 16.839 0 12.8 30281 LONG PUT

871221 F 61.013 44173  56.974 24294

871221 L 23 0 56.974 24294 LONG CALL

If we were to determine the optima f on this stream of trades, we would
find its corresponding geometric mean, the growth factor on our steke per
play, to be 1.2166, which compares to the geometric mean a the optima f
for the undcrlying of 1.12445. This is an enormous difference. Since there
are a tota of 6 trades, we can raise each geometric mean to the power of 6
to determine the TWR on our stake at the end of the 6 trades. This returns
a TWR on the underlying of 2.02 versus a TWR on the options of 3.24.
Subtracting 1 from each TWR trandates these results to percentage gains
on our gating steke, or a 102% gain trading the underlying and a 224%
gan making the same trades in the options. The options are clearly superior
in this case, as the fundamental equation of trading tetifies.
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Trading long the options outright as in this example may not dways be
superior to being long the underlying insrument. This example is an
extireme case, yet it does illuminate the fact that trading strategies (as well as
what option series to buy) should be looked a in light of the fundamental
equation for trading in order to be judged properly.

As you can see, the fundamentd trading eguation can be utilized to dic-
tate many changes in our trading. These changes may be in the way of tight-
ening (or loosening) our stops, setting targets, and so on. These changes are
the results of inefficencies in the way we are carying out our trading as
well as inefficiencies in our trading program or methodology.

I hope you will now begin to see that the computer has been terribly
misused by most traders. Optimizing and searching for the systems
and parameter values that made the most money over past data is, by
and large a futile process. You only need something that will be
marginally profitable in the future. By correct money management
you can get an awful lot out of a system that is only marginally prof-
itable. In general, then, the degree of profitability is determined by
the money management you apply to the system more than by the
system itself

Therefore, you should build your systems (or trading tech-
niques, for those opposed to mechanical systems) around how certain
you can be that they will be profitable (even if only marginally so) in
the future. This is accomplished primarily by not restricting a system
or technique’s degrees of freedom. The second thing you should do
regarding building your system or technique is to bear the fundamen-
tal equation of trading in mind. It will guide you in the right direc-
tion regarding inefficiencies in your system or technique, and when it
is used in conjunction with the principle of not restricting the degrees
of freedom, you will have obtained a technique or system on which
you can now employ the money-management techniques. Using these
money-management  techniques, whether empirical, as detailed in this
chapter, or parametric (which we will delve into starting in Chapter
3), will determine the degree of profitability of your technique or
system.

2

Characteristics of Fixed
Fractional Trading and
Salutary Techniques

We have seen that the optimal growth of an account is achieved
through optimal f This is true regardless of the underlying vehicle.
Whether we are trading futures, stocks, or options, or managing a
group of traders, we achieve optimal growth at the optimal f and we
reach a specified goal in the shortest time.

We have also seen how to combine various market systems at their
optimal f levels into an optimal portfolio from an empirical standpoint.
That is, we have seen how to combine optimal f and portfolio theory,
not from a mathematical model standpoint, but from the standpoint of
using the past data directly to determine the optimal quantities to
trade in for the components of the optimal portfolio.

Certain important characteristics about fixed fractional trading still
need to be mentioned. We now cover these characteristics.

OPTIMAL f FOR SMALL TRADERS JUST STARTING OUT

How does a very smdl account, an account that is going to start out trading
I contract, use the optima f approach? One suggestion is that such an
account start out by trading 1 contract not for every optima f amount in
dollars (biggest losg/-f), but rather that the drawdown and margin mus be

63
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conddered in the initid phase. The amount of funds dlocaied towards the
first contract should be the grester of the optima f amount in dollars or the
margin plus the maximum historic drawdown (on a I-unit badis):

(2.01) A = MAX {(Biggest Loss-f), (Margin + ABS(Drawdown))}
where A= The dollar amount to alocate to the first contract.
f= The optima f (0 to 1).

Margin = The initid speculdive margin for the given con-
tract.

Drawdown = The historic maximum drawdown.

MAX{} = The maximum vdue of the bracketed vaues
ABY( ) = The absolute vaue function.

With this procedure an account can experience the maximum drawdown
agan and dill have enough funds to cover the initid margin on ancther
trade. Although we cannot expect the worst-case drawdown in the future
not to cxceed the worst-case drawdown historicaly, it is rather unlikely that
we will sart trading right a the beginning of a new historic drawdown.

A trader utilizing this idea will then subtract the amount in Equation
(2.01) from his or her equity each day. With the remainder, he or she will
then divide by (Bigget Losy-f). The answer obtaned will be rounded
down to the integer, and 1 will be added. The result is how many contracts
to trade.

An example may help clarify. Suppose we have a sysem where the opti-
ma f is 4, the biggest historica loss is —$3,000, the maximum drawdown
was —$6,000, and the margin is $2,500. Employing Equation (2.01) then:

A = MAX{( -$3,000/-.4), ($2,500 + ABS( -$6,000))}
MAX{($7,500), ($2,500 + $6,000))
MAX($7,500, $8500)

$8,500

We would thus dlocate $8,500 for the first contract. Now suppose we are
dedling with $22,500 in account equity. We therefore subtract this first con-
tract dlocation from the equity:

$22500 - $8500 = $14,000

We then divide this amount by the optima fin dollars.
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$14,000/$7,500 = 1.867
Then wc take this result down to the integer:
INT(1.867) = 1

and add 1 to the result (the 1 contract represented by the $8,500 we have
subtracted from our equity):

1+1=2

We therefore would trade 2 contracts. If we were just trading at the opti-
md f level of 1 contract for every $7,500 in account equity, we would have
traded 3 contracts ($22,500/$7,500). As you can seg, this technique can be
utilized no matter of how large an account’s equity is (yet the larger the
equity the closer the two answers will be). Further, the larger the equity,
the less likdy it is that we will eventualy experience a drawdown that will
have us eventudly trading only 1 contract. For smdler accounts, or for
accounts just starting out, this is a good idea to employ.

THRESHOLD TO GEOMETRIC

Here is another good idea for accounts just starting out, one that may not be
possble if you are employing the technique just mentioned. This technique
makes use of another by-product caculation of optimd f cdled the thresh-
old to geometric. The by-products of the optima f caculation include cacu-
laions, such as the TWR, the geometric mean, and so on, that were derived
in obtaining the optima f, and that tell us something about the system. The
threshold to the geometric is another of these by-product caculations.
Essentiadly, the threshold to geometric tells us at what point we should
switch gver to fixed fractional trading, assuming we are starting out con-
stant-contract trading.

Refer back to the example of a coin toss where we win $2 if the toss
comes up heads and we lose $1 if the toss comes up tals. We know that our
optimal f is .25, or to make 1 bet for every $4 we have in account equity. If
we ae dating out trading on a condant-contract bass, we know we will
average $.50 per unit per play. However, if we start trading on a fixed frac-
tiond bads we can expect to make the geometric average trade of $.2428
per unit per play.

Assume we sat out with an initid stake of $4, and therefore we are
making 1 bet per play. Eventudly, when we get to $8, the optima f would
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have us step up to making 2 bets per play. However, 2 bets times the geo-
metric average trade of $.2428 is $.4856. Wouldn't we be better off sticking
with ] bet a the equity levd of $8, whereby our expectaion per play would
dill be $.50? The answer is, “Yes” The reason that the optima f is figured
on the bass of contracts that are infinitely divisble, which may not be the
caz in red life

We can find tha point where we should move up to trading two con-
tracts by the formula for the threshold to the geometric, T:

(2.02) T = AAT/GAT #* Biggest Loss-f
where T = The threshold to the geometric.
AAT = The aithmelic average trade.

i

CAT = The geomelric average trade
f =Theoptima f (0 to 1).

In our example of the 2-to-1 coin toss:

T

50/.2428 * -1/-25

= 8.24

Therefore, we are better off switching up to trading 2 contracts when our
equity gets to $8.24 rather than $8.00. Figure 2| shows the threshold to
the geometric for a game with a 50% chance of winning $2 and a 50%
chance of losng $L

Notice that the trough of the threshold to the geometric curve occurs at
the optima f. This means that since the threshold to the geometric is the
optimd level of equity to go to trading 2 units, you go to 2 units a the low-
e levd of equity, optimaly, when incorporating the threshold to the geo-
metric a the optima f.

Now the quegtion is, “Can we use a Smilar gpproach to know when to go
from 2 cars to 3 cas?’ Also, ‘Why can't the unit size be 100 cars starting
out, assuming you are darting out with a large account, rether than simply a
smal account sarting out with 1 ca”” To answer the second question fird,
it is vdid to use this technique when gsarting out with a unit sSze greater
than 1. However, it is valid only if you do not trim back units on the down-
side before switching into the geometric mode. The reason is that before
you switch into the geometric mode you are assumed to be trading in a con-
gant-unit size.

Assume you start out with a stake of 400 units in our 2-to-1 coin-toss
game. Your optima fin dollars is to trade 1 contract (make 1 bet) for every
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Figure 2-1 Threshold to the geometric for 2:1 coin toss.

$4 in equity. Therefore, you will gart out trading 100 contracts (making 100
bets) on the firg trade. Your threshold to the geometric is a $8.24, and
therefore you would dart trading 101 contracts at an equity leve of
$404.24. You can convert your threshold to the geometric, which is com-
puted on the bass of advancing from 1 contract to 2, as

(2.03) Conveted T = EQ + T - (Biggest Loss-f)
where  EQ = The dating account equity level.
T = The threshold to the geometric for going from | car to 2.
f = The optimd f (0 to 1).
Therefore, since your starting account equity is $400, your T is $8.24,
your biggestloss -$1, and your f is .25:
Converted T = 400 + 824 - { -1/ -.25)
=400 + 8.24 - 4

= 404.24

Thus, you would progress to trading 101 contracts (meking 101 bets) if
and when your account equity reeched $404.24. We will assume you are
trading in a condant-contract mode until your account equity reaches
$404.24, a which point you will begin the geometric mode. Therefore, until
Your account equity reeches $404.24, you will trade 100 contracts on the
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next trade regardless of the remaining equity in your account. If, after you
cross the geometric threshold (that is, after your account equity hits
$404.24), you suffer a loss and your equity drops below $404.24, you will go
back to trading on a constant 100-contract basis if and until you cross the
geometric  threshold  again.

This inability to trim back contracts on the downside when you are below
the geomeric threshold is the drawback to using this procedure when you
are a an equity leve of trading more than 2 contacts. If you are only trading
1 contract, the geometric threshold is a very vaid technique for determin-
ing & what equity level to dtart trading 2 contracts (Snce you cannot trim
back any further than 1 contract should you experience an equity decline).
However, it is not a vdid technique for advancing from 2 contracts to 3,
because the technique is predicated upon the fact that you ae currently
trajing on a constant-contract bads. That |S, if you ae trw”']g 2 contracts,
unless you are willing not to trim back to 1 contract if you suffer an equity
deding, the technique is not vaid, and likewise if you start out trading 100
contracts. You could do just that (not trim back the number of contracts you
are presently trading if you experience an equity decling), in which case the
threshold to the geometric, or its converted verson in Equation (2.03),
would be the valid equity point to add the next contract. The problem with
doing this (not trimming back on the downsde) is that you will make less
(your TWR will be less) in an asymptotic sense. You will not make as much
as if you smply traded the full optima f. Further, your drawdowns will be
grester and your risk of ruin higher. Therefore, the threshold to the geo-
metric is only beneficid if you are gtarting out in the lowest denomination of
bet sze (1 contract) and advancing to 2, and it is only a benefit if the arith-
metic average trade is more than twice the sze of the geomeric average
trade. Furthermore, it is beneficid to use only when you cannot trade frac-
tiond units.

ONE COMBINED BANKROLL VERSUS SEPARATE
BANKROLLS

Some very important points regarding fixed fractiond trading must be cov-
cred before we discuss the parametric techniques. First, when trading more
than one market sysem smultaneoudy, you will generdly do better in an
asymptotic sense usng only one combined bankroll from which to figure
your contract Szes, rather than separate bankrolls for each.

It is for this reason that we “recapitdize’ the subaccounts on a daily bass
as the equity in an account fluctuates Whet follows is a run of two similar
sysems, Sysem A and Sysem B. Both have a 50% chance of winning, and
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both have a payoff ratio of 2:1. Therefore, the optimal f dictates that we bet
$1 for every $4 units in equity. The first run we see shows these two systems
with podtive corrdation to each other. We dart out with $100, splitting it
into 2 subaccount units of $50 eech. After a trade is regigtered, it only
affects the cumulative column for that system, as each system has its own
separate bankroll. The size of each sysem's separate bankroll is used to
determine bet size on the subsequent play:

System A System B

Trade P&L Cumulative Trade P&L Cumulative
50.00 50.00
2 25.00 75.00 2 25.00 75.00
-1 -18.75 56.25 -1 -18.75 56.25
2 28.13 84.38 2 28.13 84.38
-1 -21.09 63.28 -1 -21.09 63.28
31.64 94.92 2 31.64 94.92
-1 -23.73 71.19 -1 -23.73 71.19
=50.00 -50.00

Net Profit 21.19140 21.19140
Total net profit of the two banks = $42.38

Now we will see the same thing, only this time we will operate from a
combined bank sarting at 100 units. Rether than betting $1 for every $4 in
the combined stake for each system, we will bet $1 for every $8 in the com-
bined bank. Each trade for ether sysem affects the combined bank, and it
is the combined bank that is used to determine bet Sze on the subsequent
play:

System A System B

Trade P&L Trade P&L Combined Bank

100.00

2 25.00 2 25.00 150.00

-1 -18.75 -1 -18.75 112.50

2 28.13 2 28.13 168.75

-1 -21.09 -1 -21.09 126.56

2 31.64 2 31.64 189.84

-1 -23.73 -1 -23.73 142.38

-100.00

Total net profit of the combined bank = $42.38

Notice that usng ether a combined bank or a separate bank in the preced-
ing example shows a profit on the $100 of $42.38. Yet what was shown is the




70 CHARACTERISTICS OF FIXED FRACTIONAL TRADING

cae where there is postive correlation between the two systems. Now we
will look a negative corrdation between the same two systems, firs with
both systems operating from their own separate bankrolls:

System A System B _
Trade P&L Cumulative Trade P&L Cumulative

50.00 50.00
2 25.00 75.00 -1 -12.50 37.50
-1 -18.75 56.25 2 18.75 56.25
2 28.13 84.38 -1 -14.06 42.19
-1 -21.09 63.28 2 21.09 63.28
2 31.64 94.92 -1 -15.82 47.46
-1 -23.73 71.19 2 23.73 71.19

Net Profit 21.19140 21.19140
Total net profit of the two banks = 42.38

As you can see, when operdting from separate bankrolls, both systems net
out making the same amount regardless of correation. However, with the
combined  bank:

System B

TradseyStem PA&L Trad)e( P&L Combined Bank
100.00
2 25.00 -1 -12.50 112.50
-1 -14.06 2 28.12 126.56
2 31.64 -1 -15.82 142.38
-1 -17.80 2 35.59 160.18
2 40.05 -1 -20.02 180.20
-1 -22.53 2 45.00 202.73
=100.00
Total net profit of the combined bank = $102.73

With the combined bank, the results are dramaticadly improved. When
using fixed fractional trading you are best off operating from a single com-
bined bank.
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TREAT EACH PLAY AS IF INFINITELY REPEATED

The next axiom of fixed fractiond trading regards maximizing the current
event as though it were to be performed an infinite number of times in the
future. We have determined that for an independent trids process, you
should always bet that f which is optimal (and constant) and likewise when
there is dependency involved, only with dependency f is not constant.
Suppose we have a system where there is dependency in like begetting

like, and suppose that this is one of those rare gems where the confidence
limit is a& an acceptable levd for us that we fed we can safely assume that
there really is dependency here. For the sake of simplicity we will use a pay-
off ratio of 2:1. Our sysem has shown that, historically, if the last play was a
win, then the next play has a 55% chance of being a tin. If the last play was
a loss, our system has a 45% chance of the next play being a loss. Thus, if
the last play was a win, then from the Kely formula, Equation (1.10), for
finding the optima f (since the payoff ratio is Bernoulli distributed):
(110 f=(2+)*55=1)2

= (3*.55-1)2

= .65/2

=.325

After alosing play, our optimd f is:

f=(2+1)* 45-1)2
=(B*45-1)72
35/2

175

Now dividing our biggest losses ( -1) by these negative optima f's dic-
tates tha we make 1 bet for every 3.076923077 units in our stake after a
win, and make 1 bet for every 5.714285714 units in our stake dter a loss. In
0 doing we wi]] maximize the growth over the long run. Notice that we
treet each individua play as though it were to be peformed an infinite
number of times

Notice in this example that betting after both the wins and the losses still
has a postive mathematica expectation individudly. What if, after a loss,
the probability of a win was .37 In such a case, the mathematicad expectation
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is negaive hence there is no optimal f and as a result you shouldn’t take
this play:

(1.03) ME=(3*2)+(T%-1)
=6-.7
= =1

In such circumstances, you would bet the optimal amount only after a win,
and you would not bet after a loss. If there is dependency present, you must
segregate the trades of the market sysem based upon the dependency and
treat the sSegregated trades as separate market systems

The same principle, namely that asymptotic growth is maximized if each
play is considered to be performed an infinite number of times into the
future, also applies to smultaneous wagering (or trading a portfolio).
Consider two betting sysems, A and B. Both have a 2:1 payoff ratio, and
both win 50% of the time We will assume that the correlation coefficient
between the two systems is O, but that is not relevant to the point being illu-
minated here. The optimd fs for both systems (if they were beng traded
done, rather than smultaneoudy) are 25, or to make 1 bet for every 4 units
in equity. The optima fs for trading both systems simultaneoudy are .23, or
1 bet for every 4.347826087 units in account equity. System B only trades
two-thirds of the time, s0 some trades will be done when the two systems
are not trading smultaneoudy. This fird sequence is demondraied with a
starting combined bank of 1,000 units, axd each bet for each system is per-
formed with an optimal f of 1 bet per every 4.347826087 units:

A B Combined Bank

1 ,000.00

1~ 230.00 770.00
2 354.20 -1 -177.10 947.10

-1 - 217.83 2 435, 67 1,164.93
2 535. 87 1,700.80

1 -391.18 -1 -391.18 918.43

2 422.48 2 422.48 1,763.39

1The method we are using here to arrive at these optimal bet sizes is descrubed in Chapters 6
and 7. We are, in effect, using 3 market systems, Systems A and B as described here, both with
an arithmetic HPR of 1.125 and a standard deviation in HPRs of .375, and null cash, with an
HPR of 1.0 and a standard deviation of (), The geometric average is thus maximized at approxi-
mately F, =.23, where the weightings {or A and B both are 92. Thus, the optimal I's for both A
and B are transformed to 4.347826. Using such factors will maximize growth in this game.
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Next we see the same exact thing, the only difference being that when A
is betting alone (i.e., when B does not have a bet at the same time as A), we
meke 1 bet for every 4 units in the combined bank for System A, since that
is the optima f on the single, individua play. On the plays where the bets
are smultaneous, we are ill betting 1 unit for every 4.347826087 units in
account equity for both A and B. Notice that in so doing we are taiq'ng eech
bet, whether it is individua or sSmultaneous, and applying that optimal f
which would maximize the play as though it were to be peformed an infi-
nite number of times in the future.

A B Combined Bank

1,000.00

1 -250. 00 750.00
2 345.00 -1 -172.50 922.50
-1 -212.17 2 424.35 1,134.67
2 567. 34 1,702.01
1 -391.46 -1 -391.46 919.09
2 422.78 2 422.78 1,764.65

As can be seen, there is a slight gain to be obtained by doing this, and the
more trades that eapse, the greater the gain. The same principle applies to
trading a portfolio where not all components of the portfolio are in the mar-
ket dl the time. You should trade a the optimd levels for the combination
of components (or single component) that results in the optimd growth as
though that combination of components (or single component) were to be
traded an infinite number of times in the future

EFFICIENCY LOSS IN SIMULTANEOUS
WAGERING OR PORTFOLIO TRADING

Let's again return to our 2:1 cointoss game. Let's again assume thet we are
going to play twop of these games, which we’ll call System A and System B,
smultaneoudy and tha there is zero correlation between the outcomes of
the two games. We can determine our optima fs for such a case as betting
I unit for every 4.347826 in account equity when the games are played
smultaneoudy. When garting with a bank of 100 units, notice that we finish
with a bank of 156.86 units



74 CHARACTERISTICS OF FIXED FRACTIONAL TRADING
System A System B
Trade “P&L Trade P&L Bank
Optimd f is1 unjt for every
4.347826 in equity: 100.00
-1 -23.00 -1 -23.00 54.00
2 24.84 -1 -12.42 66.42
-1 -15.28 2 30.55 81.70
2 37.58 2 37.58 156.66

Now let's condder System C. This would be the same as Sysems A and
B, only we're going to play this game done, without ancther game going
smultaneoudy. We're dso going to play it for 8 playsas opposed to the
previous endeavor, where we played 2 games for 4 smultaneous plays. Now
our optima f is to bet 1 unit for every 4 units in equity. What we have is the
same 8 outcomes as before, but a different, better end result:

System C

Trade P&L Bank

Optimal f is 1 unit for 100.00
every 4.00 in equity: o 25 00 7500
2 37.50 112.50

-1 -28.13 84.38

2 42.19 126.56

2 63.28 189.84

2 94.92 284.71

-1 -71.19 213.57

-1 -53.39 160.18

The end result here is better not because the optimad fs differ dightly
(both are a their respective optimd levels), but because there is a smdl
efficdiency loss involved with smultaneous wagering. This inefficiency is the
result of not being able to recapitalize your account after every single wager
as you could betting only ] market system. In the simultaneous 2-bet case
you can only recapitdize 3 times, Wherees in the single B-bet case you
recapitdize 7 times. Hence the efficiency loss in simultaneous wagering (or
in trading a portfolio of market systems).

We just witnessed the case where the smultaneous bets were not corre-
lated. Let's look a what happens when we ded with positive ( +1.00)
correlation:

wr
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System A System B
Trade P&L Trade P&L Bank
Optimal f is 1 unit for every
8.00 in equity:
100.00
-1 -12.50 -1 -12.50 75.00
2 18.75 2 18.75 112.50
-1 -14.06 -1 -14.06 84.38
2 21.09 2 21.09 126.56

Notice that after 4 Smultaneous plays where the corrdation between the
market systems employed is + 1.00, the result is a gain of 126.56 on a dart-
ing steke of 100 units. This equates to a TWR of 12656, or a geometric
mean, a growth factor per play (even though these are combined plays) of
1.2656 A (1/4) = 1.06066.

Now refer back to the single-bet case. Notice here that after 4 plays, the
outcome is 126.56, again on a dating sake of 100 units. Thus, the geomet-
ric meen of 1.06066. This demondrates that the rate of growth is the same
when trading at the optima fractions for perfectly correlated markets. As
soon as the corrdation coefficient comes down bedow + 1.00, the rate of
growth increases. Thus, we can date that when combining market systems,
your rate of growth will never be any less than with the single-bet case, no
matter of how high the correlations are, provided that the market system
being added has a positive arithmetic mathematical expectation.

Recall the firg example in this section, where there were 2 market sys-
tems that had a zero corrdation coefficient between them. This market sys
tem made 15686 on 100 units ater 4 plays, for a geometric meen of
(156.86/100) A (1/4) = 1.119. Let's now look a a case where the correlation
coefficients ae -1.00. Since there is never a losing play under the following
scenario, the optima amount to bet is an infinitdly high amount (in other
words, bet 1 unit for every infinitely smal amount of account equity). But,
rather than getting that greedy, we'll just make 1 bet for every 4 units in our
stake <o that we can make the illustration here:
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Systam A System B
Trade P&L Trade P&L Bank

Optimal f is 1 unit for every
0.00 in equity (shown is
1 for every 4): 100.00

-1 -12.50 2 25.00 112.50
2 28.13 -1 -14.06 126.56
-1 -15.82 2 31.64 142.38
2 35.60 -1 -17.80 160.18

There are two main points to glean from this section. The firg is that
there is a small efficiency loss with smultaneous betting or portfolio trading,
a loss caused by the inability to recapitdize after every individuad play. The
second point is that combining market systems, provided they have a pos-
tive mathemdatical expectation, and even if they have perfect postive corre-
lation, never decreases your tota growth per time period. However, as you
continue to add more and more maket systems, the efficiency loss becomes
considerably greater. If you have, say, 10 market systems and they al suffer
a loss simultaneoudy, that loss could be termina to the account, since you
have not been able to trim back size for each loss as you would have had the
trades occurred sequentidly.

Therefore, we can say that there is a gain from adding each new market
system to the portfolio provided that the market system has a correaion
coefficient less than 1 and a positive mathematical expectation, or a negaive
expectation but a low enough corrdaion to the other components in the
portfolio to more than compensate for the negaive expectation. There is a
margindly decreasing bendfit to the geometric mean for each make sys
tem added. That is, eech new maket sysem benefits the geometric mean
to a lessy and lesser degree. Further, as you add each new market system,
there is a greater and greater efficiency loss caused as a result of smultane-

ous rather than sequentid outcomes. At some point, to add another market
system will do more harm then good.

TIME REQUIRED TO REACH A SPECIFIED GOAL
AND THE TROUBLE WITH FRACTIONAL f

Suppose We ae given the aithmetic average HPR and the geometric aver-
age HPR for a given system. We can determine the dandard deviaion in
HPRs from the formula for edimated geometric mean:

(1.19a) EGM = (AHPR A2 = SD *2) A (1/2)
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where AHPR

The aithmetic mean HPR.
sD

The population standard deviation in  HPRs.

Therefore, we can esimate the standard deviation, SD, as
(2.04) SD A2=AHPRA2-EGM A 2

Returning to our 2:1 cointoss game, we have a mathematica expectation
of $.50, and an optimd f of betting $1 for every $4 in equity, which yidds a
geometric mean of 1.06066. We can use Equation (2.05) to determine our
arithmetic  average HPR:

(2.05) AHPR
where  AHPR

1+ (ME/f$)
The aithmetic average HPR.

ME = The aithmetic mathematicd expectation in units.
f$ = The biggest loss/f.
f = The optimal f (O to 1).

Thus, we would have an aithmetic average HPR of:
AHPR =1+ (.5/( -1/ -.25))

=1+(.5/4)

=1+.125

= 1125

Now, snce we have our AHPR and our ECM, we can employ equation
(2.04) to determine the etimated standard deviation in the HPRs:

(2.04) SD A2 = AHPR A 2-EGM # 2

1125 A 2- 106066 ~ 2
= 1.265625 - 1.124999636
=.140625364
Thus SD A 2, which is the vaiance in HPRs, is .140625364. Taking the

Square root of this yields a standard deviation in these HPRs of .140625364
A (1/2) = 3750004853. You should note that this is the estimated standard
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deviation because it uses the edtimated geometric mean as input. It is prob-
ably not completdly exact, but it is close enough for our purposes.

However, suppose we want to convert these vaues for the standard devi-
dion (or variance), aithmetic, and geometric mean HPRs to reflect trading
a the fractiond f. These conversons are now given:

(2.06) FAHPR = (AHPR~1) * FRAC + 1
(207) FSD = D * FRAC
(2.08) FGHPR = (FAHPR A2 - FSD A2) A (1/2)

where FRAC = The fraction of optimal f we are solving for.

AHPR = The aithmetic average HPR & the optimal f.
D = The sandard deviation in HPRs a the optimal f.
FAHPR = The aithmetic average HPR at the fractiond f.
FSD = The standard deviation in HPRs at the fractiona f
FGHPR

The geometric average HPR at the fractiond f.

13

For example, suppose we want to see what values we would have for

FAHPR, FGHPR, and FSD a half the optimal f (FRAC =.5) in our 21
coin-toss game. Here, we know our AHPR is 1.125 and our SD is

3750004853, Thus:

206)  FAHPR = (AHPR - 1) * FRAC + |
(1125-1) * 5+ |

=125* 5+ 1
= 0625 + 1
= 1.0625
(207)  FSD = SD * FRAC
= 3750004853 * .5
= 1875002427

(2.08) FGHPR - (FAIIPR A 2- FSD A 2) A (172)
= (1.0625 A 2- 1875002427 * 2) A (1/2)
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(112890625 - .03515634101) » (1/2)
1093749909 A (1/2)
1.04582499

Thus, for an optimal f of .25, or meking 1 bet for every $4 in equity, we
have vaues of 1.125, 1.06066, and 3750004853 for the aithmetic average,
geometric average, and standard deviation of HPRs respectively. Now we
have solved for a fractiond (.5) f of .125 or making 1 bet for every $8 in
our stake, yidding vaues of 1.0625, 1.04582499, and .1875002427 for the
arithmetic average, geomelric average, and dandard  devidgion of HPRs
respectively.

We can now take a look a wha happens when we practice a fractiona f
sraegy. We have dready determined that under fractiond f we will make
geometrically less money then under optima f Further, we have deter-
mined that the drawdowns and variance in retuns will be less with frac-
tiond f What about time required to reach a specific god?

We can quantify the expected number of trades required to reach a e
dfic god. This is not the same thing as the expected time required to reach
a spedific god, but snce our measurement is in trades we will use the two
notions of time and trades dapsed interchangesbly here:

(2.09) N = In(Goal)/In(Geometric Mean)

where N = The expected number of trades to reach a specific god.

Goal = The god in terms of a multiple on our starting stake, a
TWR.

In( ) = The naturd logarithm function.

Returning to our 2:1 cointoss example. At optima f we have a geometric
mean of 1.06066, and a haf f this is 1.04582499. Now let's cdculate the
expected number of trades required to double our stake (god = 2). At full f :

N =1In(2)/In( 1.06066)

=.6931471/.05889134
11.76993

Thus, a the full f amount in this 21 cointoss game, we anticipate it will
take ys 11.76993 plays (trades) to double our stake.
Now, at the haf f amount:
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=
"

In{ 2)/ In( 1.04582499)
.6931471/.04480602
15.46996

Thus, a the haf f amount, we anticipate it will take us 15.46996 trades to
double our stake. In other words, trading haf f in this case will take us
31.44% longer to reach our god.

Well, tha doesn’t sound too bad. By being more patient, dlowing
31.44% longer to reach our god, we diminae our drawdown by haf and
our variance in the trades by hdf. Haf f is a seemingly ttractive way to go.
The smdler the fraction of optima f that you use, the smoother the equity
curve, and hence the less time you can expect to be in the wors-case draw-
down.

Now, let's look a it in another light. Suppose you open two accounts,
one to trade the full f and one to trade the haf f After 12 plays, your full f
account will have more than doubled to 202728259 (1.06066 * 12) times
your gsarting stake. After 12 trades your hdf f account will have grown to
1712017427 (104582499 * 12) times your darting stake. This haf f
account will double a 16 trades to a multiple of 2048067384 (1.04582499
A 16) times your stating stake. So, by waiting about one-third longer, you
have achieved the same god as with full optima f, only with haf the com-
motion. However, by trade 16 the full f account is now a a multiple of
2565777865 (1.06066 * 16) times your starting stake. Full f will continue to
pull out and away. By trade 100, your half f account should be a a multiple
of 88.28796546 times your starting stake, but the full f will be a a multiple
of 361.093016!

So anyone who daims that the only thing you sacrifice with trading a a
fractiond versus full f is time required to reach a specific goa is completdy
correct. Yet time is what it's al aout. We can put our money in Treasury
Bills and they will reach a specific god in a cetan time with an dsolute
minimum of drawdown and vaiancel Time truly is of the essence.

COMPARING TRADING SYSTEMS

We have seen that two trading sysems can be compared on the basis of
thelir geometric means a ther respective optimd fs. Further, we can com-
pae systems based on how high their optima fs themsdves are, with the
higher optima f being the riskier system. This is because the least the draw-
down may have been is a least an f percent equity retracement. So, there
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ae two basc measures for comparing systems, the geometric means a the
optima fs with the higher geometric mean being the superior sysem, and
the optima fs themsdves, with the lower optima f being the superior sys
tem. Thus, rather than having a single, one-dimensional messure of system
performance, we see that performance must be measured on a two-dimen-
sond plane one axis being the geometric mean, the cther being the vaue
for f itself. The higher the geometric mean at the optimal f, the better the
system, Also, the lower the optimal f, the better the system.

Geometric mean does not imply anything regarding drawdown. That is, a
higher geometric mean does not mean a higher (or lower) drawvdown. The
geometric mean only pertains to return. The optima f is the measure of
minimum expected higtoricd drawdown as a percentage of equity retrace-
ment. A higher optima f does not mean a higher (or lower) return. We can
adso use thee benchmarks to compare a given sysem a a fractiond f vaue
and another given system at its full optima f vaue.

Therefore, when looking a systems, you should look a them in terms of
how high their geometric means are and what their optimal fs are. For
example, suppose we have Sysem A, which has a 1.05 geometric mean and
an optimal f of .8. Also, we have Sysem B, which has a geometric mean of
1025 and an optima f of .4. System A a the haf f level will have the same
minimum historicd worst-case equity retracement (drawdown) of 40%, just
as Sysem B's at full f but Sysem A’s geometric mean a haf f will ill be
higher than System B’s at the full f amount. Therefore, System A is superior
to System B.

“Wait a minute,” you say, “I thought the only thing that mattered was
that we had a geometric mean gredter than 1, that the system need be only
margindly profitable, that we can make dl the money we want through
money management!” That's ill true. However, the rate a which you will
make the money is dill a function of the geometric mean a the f levd you
are employing. The expected varigbility will be a function of how high the f
you are using is. So, dthough it's true that you must have a system with a
geometric mean a the optimd f that is greater than 1 (i.e, a postive mathe-
matical expectation) and that you can 4ill make virtudly an unlimited
amount with such a system &fter enough trades, the rate of growth (the
number of trades required to reach a specific god) is dependent upon the
geometric mean a the f vaue employed. The variability en route to that
god is dso a function of the f vaue employed.

Ye thexe conddeaions the degree of the geometric mean and the f
employed, are secondary to the fact that you must have a postive mathe-
matica expectation, dthough they are useful in comparing two systems or
techniques that have postive mathematica expectations and an equa confi-
dence of their working in the future.
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TOO MUCH SENSITIVITY TO THE BIGGEST LOSS

A recurring criticism with the entire gpproach of optima) f is that it is too
dependent on the biggest losng trade. This seems to be rather disturbing to
many traders. They argue that the amount of contracts you put on today
should not be so much a function of a single bad trade in the past.

Numerous different agorithms have been worked up by people to dlevi-
ate this apparent oversengtivity to the largest loss. Many of these agorithms
work by adjuging the largest loss upward or downward to make the largest
loss be a function of the current volatlity in the market. The reationship
seams to be a quadratic one. That is, the absolute value of the largest loss
seems to get bigger a a fagter rae than the volatility. (Volatility is usudly
defined by these practitioners as the average daly range of the last few
weeks, or average absolute vaue of the dally net change of the lagt few
weeks, or any of the other conventiond measures of voldility.) However,
this is not a determinigtic relationship. That is, just because the volatility is X
today does not mean that our largest loss will be X A Y. It smply means that
it usualy is somewhere near X A Y.

If we could determine in advance what the largest possible loss would be
going into today, we could then have a much better handle on our money
management* Here again is a case where we mugt consder the wordt-case
scenario and build from there. The problem is that we do not know exactly
what our largest loss can be going into today. An dgorithm that can predict
this is redly not very useful to us because of the one time that it fails.

Condder for ingtance the possibility of an exogenous shock occurring in a
market overnight. Suppose the voldility were quite low prior to this
overnight shock, and the market then went locked-limit againgt you for the
next few days. Or suppose tha there were no price limits, and the market
just opened an enormous amount against you the next day. These types of
events ae as old as commodity and stock trading itsdlf. They can and do
happen, and they are not always telegraphed in advance by increased
volatility.

Generdly then you are better off not to “shrink” your largest historica

“This is where using options in a trading strategy is so useful. Either buying a put or call out-
right in opposition to the underlying position to limit the loss to the strike price of the options,
or simply buying options outright in lieu of the underlying, gives you a floor, an absolute maxi-
mum loss. Knowing this is extremely handy from a money-management, particularly an opti-
mal {, standpoint, Further, i you know what your maximum possible loss is in advance (e.g., a
day trade), then you can always determine what the [ is in dollars perfectly for any trade by the
relation dollars at risk per unit/optimal [, For example, suppose a day trader knew her optimal f
was 4. Her stop today, on a I-unit basis, is going to be $800. She will therefore optimally trade
1 unit for every $2,250 ($900/.4) in account equity.

A
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loss to reflect a current low-volatility marketplace. Furthermore, there is the
concrete possibility of experiencing a loss larger in the future than what was
the historically largest loss There is no mandate that the largest loss seen in
the past is the largest loss you can experience today.3 This is true regardless
of the current volatility coming into today.

The problem is that, empiricaly, the f that has been optimal in the past is
a function of the largest loss of the past. Theré's no getting around this.
However, as you shdl see when we get into the parametric techniques, you
can budget for a grester loss in the future. In so doing, you will be prepared
if the ahnogt inevitable larger loss comes dong. Rather than trying to adjust
the largest loss to the current climate of a given market so that your empiri-
cal optima f reflects the current dimate, you will be much better off lean-
ing the parametric techniques.

The technique that follows is a possble solution to this problem, and it
can be applied whether we are deriving our optima f empiricaly or, as we
shdl learn later, parametricaly.

EQUALIZING OPTIMAL f

Optima f will yidd the grestest geometric growth on a sream of outcomes.
This is a mathematical fact. Consder the hypothetical stream of outcomes:

+2,-3, + 10, -5

This is a sream from which we can determine our optima f as .17, or to
bet 1 unit for every $29.41 in equity. Doing so on such a streem will yield
the greastest growth on our equity.

Congder for a moment that this stream represents the trade profits and
losses on one share of stock. Optimaly we should buy one share of stock for
every $2941 that we have in account equity, regardless of what the current
stock price is. But suppose the current stock price is $100 per share
Further, suppose the stock was $20 per share when the first two trades
occurred and was $50 per share when the last two trades occurred.

Recdl that with optima f we are using the stream of past trade P&L’s as
a proxy for the digribution of expected trade P&L’'s currently. Therefore,

3Prudence requires that we usc a largest loss at least as big as the largest loss seen in the past.

As the [uture unfolds and we obtain more and more data, we will derive longer runs of losses.
For instance, if | flip a coin ]()) times | might see it come up tails 12 times in a row at the
longest ryp of tails. If | g0 and flip it 1000 times, | most lkely wil see a longer run of tais. This

same pl’inciple is at work when we trade. Not only should we expect longer streaks of losing
tades in the future, we should also expect a bigger largest losing trade.
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we can preprocess the trade P&L data to reflect this by converting the past
trade P&L daa to reflect a commensurae percentage gain or loss based
upon the current price.

For our first two trades, which occurred a a stock price of $20 per share,
the $2 gain corresponds to a 10% gain and the $3 loss corresponds to a 15%
loss. For the last two trades, taken at a stock price of $50 per share, the $10
gain corresponds to a 20% gain and the $5 loss corresponds to a 10% loss.

The formulas to convert raw trade P&L’s to percentage gains and losses
for longs and shorts are as follows:

(2.10a) P&L% = Exit Price/Entry Price = 1 (for longs)

2.10b) P&L% = Entry Price/Exit Price - 1 (for shorts)

or we can use the following formula to convert both longs and shorts
(2.10¢) P&L% = P&L in PointgEntry Price

Thus, for our 4 hypotheticd tredes, we now have the following stream of
percentage gans and losses (essuming dl trades are long trades):

+.1,-15,+.2,~1

We cdl this new stream of trandated P&L’s the equalized data, because
it is equdized to the price of the underlying instrument when the trade
occurred.

To account for commissions and dippage, you must adjust the exit price
downward in Equation (2.10a) for an amount commensurate with the
amount of the commissons and dippage. Likewise, you should adjust the
exit price upward in (2.10b). If you are using (2.10¢), you must deduct the
amount of the commissions and dippage (in points again) from the numera-
tor P&L in Points.

Next wc determine our optima f on these percentage gains and losses.
The f that is optimd is .09. We must now convert this optimd f of .09 into a
dollar amount based upon the current stock price. This is accomplished by
the following formula

(211) f$ = Biggest % Loss * Current Price * § per Point/-f
Thus, since our biggest percentage loss was -.15, the current price is

$100 per share, and the number of dollars per full point is 1 (Snce we are
only deding with buying 1 share), we can determine our f$ as
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f$=-15* 100 * 1/ -.09
= -15/-.09
= 166.67

Thus, we would optimdly buy 1 share for every $166.67 in account
equity. If we used 100 shares as our unit sze, the only variable affected
would have been the number of dollars per full point, which would have
been 100. The resulting f$ would have been $16,666.67 in equity for every
100 shares.

Suppose now that the stock went down to $3 per share. Our f$ equation
would be exactly the same except for the current price variable which would
now be 3. Thus, the amount to finance 1 share by becomes:

f$=-15%x3* 1/ -.09
= -45/ -09
=5

We optimally would buy 1 share for every $5 we had in account equity.

Notice that the optima f does not change with the current price of the
stock. It remains a .09. However, the f$ changes continuoudy as the price
of the stock changes. This doesn't mean that you must dter a postion you
are dready in on a daly bads, but it does make it more likely to be benefi-
cid that you do so. As an example, if you are long a given stock and it
declines, the dollars that you should dlocate to 1 unit (100 shares in this
caxd) of this stock will decline as wdll, with the optima f determined off of
equdized data If your optima f is determined off of the raw trade P&L
data, it will not decline. In both cases, your daily equity is declining. Using
the equalized optima f makes it more likdy that adjusting your position size
daily will be beneficid.

Equdizing the data for your optima f necesstates changes in the by-
products4 We have aready seen that both the optima f and the geometric
mean (and hence the TWR) change The aithmetic average trade chenges

“Risk-of-ruin equations, although not directly addressed in this text, must also be adjusted to

reflect equalized data when being used. Generaly, risk-of-ruin equations use the raw trade

P&L daa as input. However, when you use equalized data, the new stream of percentage gains
and losses must be multipled by the current price of the underlying instrument and the result-
ing stream used. Thus, a stream of percentage gains and losses such as .1, —.15, .2, -1 trans-

lates into a stream of ](}, -15.20, -10 for an underlying a a current price of $100. This new

stream should then be used as the data for the risk-of-ruin equations.
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because now it, too, must be based on the idea that al trades in the past
must be adjusted as if they had occurred from the current price. Thus in
our hypotheticd example of outcomes on 1 share of +2, -3, + 10, and -5, we
have an average trade of $1. When we take our percentage gans and losses
of +.1,-15 +.2 ad -1, we have an average trade (in percent) of +.5. At
$100 per share, this trandates into an average trade of 100 * .05 or $5 per
trade. At $3 per share, the average trade becomes $.15 (3 * .05).

The geometric average trade changes as wel. Recdl Equation (1.14) for
the geometric average trade:

(1.14) GAT = G * (Biggest Loss-f)
where G = Geomeric mean 1
f = Optimd fixed fraction.

(and, of course, our biggest loss is dways a negative number).
This equation is the equivdent of:

GAT = (geomelric meen = 1) * f8

We have dready obtained a new geomeric mean by equdizing the past
data The f$ variable, which is congtant when we do not egudize the past
data, now changes continuoudy, as it is a function of the current underlying
price. Hence our geometric average trade changes cortinuoudy as the price
of the underlying instrument changes.

Our threshold to the geometric dso must be changed to reflect the
equdized data Recal Equation (2.02) for the threshold to the geometric:

(2.02) T = AAT/GAT # Biggest Loss-f
where T = The threshold to the geometric.
AAT
GAT = The geomdric average trade
f = The optima f (0 to 1).

The aithmetic average trade.

This equation can dso be rewritten as.
T =AAT/GAT * f$

Now, not only do the AAT and GAT variables change continuoudy as the
price of the underlying changes, so too does the f$ vaiable
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Findly, when putting together a portfolio of market systems we must fig-
ure dailly HPRs. These too are a function of f$:
(212 Daly HPR = D$/f$ + 1

whee D$ = The dollar gain or loss on 1 unit from the previous day.
This is equa to (Tonight's Close « Last Night's Close)
+ Dollars per Point.

f$ = The current optimal fin dollars, cadculaed from Equation
(211). Here, however, the current price variddle is last
night's close

For example, suppose a stock tonight closed a $99 per share. Last night
it was $102 per share. Our higgest percentage loss is -15. If our f is .09 then
our f§is

f$=-15* 102 * 1/-.09
=-15.3/-.09
=170

Since we are deding with only 1 share, our dollars per point vaue is $1. We
can now determine our daly HPR for today by Equation (2.12) as.

212)  Daly HPR =z (99 - 102) * /170 + 1
= S3/170 +1

_ 01764705882 + 1

9823529412

Return now to what was said a the outset of this discusson. Given a
sream of trade P&L's, the optimd f will make the grestest geometric
growth on that stream (provided it has a postive aithmetic mathematical
expectation). We use the stream of trade P&L’s as a proxy for the distribu-
tion of possble outcomes on the next trade. Along this line of reasoning, it
may be advantageous for us to equdize the stream of past trade profits and
losses to be what they would be if they were performed at the current mar-
ket price. In so doing, we may obtain a more redistic proxy of the distribu-
tion of potentid trade profits and losses on the next trade. Therefore, we
should figure our optima f from this adjusted digtribution of trade profits
and losses.
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This does not mean that we would have made more by usng the optima
f off of the equelized data We would not have, as the following demonstra:
tion shows:

P&L Percentage Underlying f$  Number of Cumulative

Price Shares
At f = .09,
trading the
equdized
method: $10,000
+2 A 20 $33.33 300 $10,600
-3 -15 20 $33.33 318 $9,646
+10 2 50 $83.33 115.752 $10,803.52
-5 =1 50 $83.33 129.642 $10,155.31
P&L Percentage Underlying f§ Number of Cumulative
Price Shares
Atf= 17,
trading the
nonequaized
method: $10,000
+2 1 20 $29.41 340.02 $10,680.04
-3 15 20 $29.41 363.14 $9,590.61
+10 2 50 $29.41 326.1 $12,851.61
-5 -1 50 $29.41 436.98 $10,666.71

However, if all of the trades were figured off of the current price (say
$100 per share), the equdized optima f would have made more than the
raw optima f.

Which then is the better t0 use? Should we equdize our data and deter-
mine our optima f (and its by-products), or should we just run everything as
it is? This is more a matter of your beliefs than it is mathematica fact. It is a
matter of what is more petinent in the item you are trading, percentage
changes or absolute changes. Is a $2 move in a $20 stock the same as a $10
move in a $100 gock? Wha if we are discusing dollars and deutsche
marks? |s a .30-point move a 4500 the same as a .40-point move at .6000?

My persona opinion is that you are probably better off with the equd-
ized data. Often the matter is moot, in that if a sock has moved from $20
per share to $100 per share and we want to determine the optima f, we
want to use current data. The trades that occurred at $20 per share may not
be representative of the way the stock is presently trading, regardless of
whether they are equalized or not.
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Generdly, then, you are better off not usng deta where the underlying
was a a dramaticaly different price than it presently is, as the characteris
tics of the way the item trades may have changed as well. In that sense, the
optimal f off of the raw data and the optima f off of the equdized data will
be identicd if dl trades occurred & the same underlying price

So we can date that if it does matter a great ded whether you equdize
your data or not, then you're probably using too much data anyway. You've
gone so far into the past that the trades generated back then probably are
not very representative of the next trade. In short, we can say that it doesn't
much meatter whether you use equalized data or not, and if it does, there's
probably a problem. If there isn't a problem, and there is a difference
between using the equdized data and the raw data, you should opt for the
equdized data This does not mean that the optimd f figured off of the
equdized data would have been optima in the past. It would not have been.
The optimd f figured off of the raw data would have been the optima in
the past. However, in teems of determining the asyet-unknown answer to
the question of what will be the optima f (or closer to it tomorrow), the
optima f figured off of the equalized data mekes better sense, as the equa-
ized data is a farer representation of the distribution of possble outcomes
on the next trade

Equations (2.10a) through (2.10c) will give different answers depending
upon whether the trade was initited as a long or a short. For example, if a
stock is bought a 80 and sold a 100, the percentage gain is 25. However, if
a stock is sold short & 100 and covered at 80, the gain is only 20%. In both
cases, the stock was bought a 80 and sold a 100, but the sequencethe
chronology of these transactionsmust be accounted for. As the chronal-
ogy of transactions affects the distribution of percentage gains and losses,
we assume that the chronology of transactions in the future will be more
like the chronology in the past than not. Thus, Equations (2.10a) through
(2.10c) will give different answers for longs and shorts.

Of course, we could ignore the chronology of the trades (using 2.10c for
longs and using the exit price in the denominator of 2.10c for shorts), but to
do so would be to reduce the information content of the trade's history.
Further, the risk involved with a trade is a function of the chronology of the
trade, a fact we would be forced to ignore.

DOLLAR AVERAGING AND SHARE
AVERAGING IDEAS

Here is an old, underused money-management technique that is an ided
tool for deding with Stuations where you are absent knowledge.
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Consider a hypothetical motorist, Joe Putzivakian, case number
286952343. Every week, he puts $20 of gasoline into his auto, regardless of
the price of gasoline that week. He dways gets $20 worth, and every week
he uses the $20 worth no matter how much or how little that buys him.
When the price for gasoline is higher, it forces him to be more augtere in his
driving.

As a reault, Joe Putzivekian will have gone through life buying more
gasoline when it is chegper, and buying less when it was more expensive.
He will have therefore gone through life paying a beow average cost per
gdlon of gesoline. In other words, if you averaged the cost of a gdlon of
gasoline for dl of the weeks of which Joe was a motorigt, the average would
have been higher than the average that Joe paid.

Now condder his hypothetical cousin, Cecil Putzivakian, case number
286952344. Whenever he needs gasoling, he just fills up his pickup and
complains about the high price of gasoline. As a result, Cecil has used a con-
sgent amount of gas each week, and has therefore pad the average price
for it throughout his motoring lifetime.

Now let's suppose you are looking a a long-term investment program.
You decide that you want to put money into a mutua fund to be used for
your retirement many years down the road. You beieve tha when you
retire the mutua fund will be a a much higher vadue then it is today. That
is, you believe tha in an asymptotic sense the mutua fund will be an invest-
ment thet makes money (of course, in an asymptotic sense, lightning does
strike twice). However, you do not know if it is going to go up or down over
the next month, or the next year. You are absent knowledge about the
nearer-term performance of the mutud fund.

To cope with this, you can dollar average into the mutua fund. Say you
want to space your entry into the mutua fund over the course of hvo years.
Further, say you have $36,000 to invest. Therefore, every month for the
next 24 months you will invest $1,500 of this $36,000 into the fund, until
after 24 months you will be completely invested. By so doing, you have
obtained a bedow average cod into the fund. “Average’ as it is used here
refers to the average price of the fund over the 24-month period during
which you are invedting. It doesn't necessarily mean that you will get a price
that is chegper than if you put the full $36,000 into it today, nor does it
guarantee that at the end of these 24 months of entering the fund you will
show a profit on your $36,000. The amount you have in the fund at that
time may be less than the $36,000. What it does mean is that if you smply
entered arbitrarily at some point dong the next 24 months with your full
$36,000 in one shot, you would probably have ended up buying fewer
mutual fund shares, and hence have paid a higher price than if you dollar
averaged in.

The same is true when you go to exit a mutud fund, only the exit sSde
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works with share averaging rather than dollar averaging. Say it is now time
for you to retire and you have a tota of 1,000 shares in this mutua fund,
you don't know if this is a good time for you to be getting out or not, so you
decide to take 2 years (24 months), to average out of the fund. Heré's how
you do it. You take the total number of shares you have (1,000) and divide it
by the number of periods you want to get out over (24 months). Therefore,
snce 1,000/24 = 41.67, you will sell 41.67 shares every month for the next
24 months. In so doing, you will have ended up sdling your shares a a
higher price than the average price over the next 24 months. Of course, this
is no guarantee that you will have sold them for a higher price than you
could have received for them today, nor does it guarantee that you will have
sold your shares a a higher price than what you might get if you were to sl
al of your shares 24 months from now. What you will get is a higher price
than the average over the time period that you are averaging out over. That
is guaranteed.

These same principles can be gpplied to a trading account. By dollar
averaging money into a trading account as opposed to smply “teking the
plunge’ & some point during the time period you are averaging over, you
will have gotten into the account at a better “average price” Absent knowl-
edge of wha the near-term equity changes in the account will be you ae
better off, on average, to dollar average into a trading program. Don't just
rely on your gut and your nose, use the messures of dependency discussed
in Chapter 1 on the monthly equity changes of a trading program. Try to
see if there is dependency in the monthly equity changes. If there is depen-
dency to a high enough confidence level so you can plunge in a a favorable
point, then do s0. However, if there isn't a high enough confidence in the
dependency of the monthly equity changes, then dollar average into (and
share average out of) a trading program. In so doing, you will be ahead in an
asymptotic sense.

The same is true for withdrawing money from an account. The way to
share average out of a trading program (when there aren't any shares, like a
commodity account) is to decide upon a date to dart averaging out, as well
as how long a period of time to average out for. On the date when you are
going to dat averaging out, divide the equity in the account by 100. This
gives you the vaue of “1 share” Now, divide 100 by the number of periods
that you want to average out over. Say you want to average out of the
account weekly over the next 20 weeks. That makes 20 periods. Dividing
100 by 20 gives 5. Therefore, you are going to average out of your account
by 5 “shares’ per week. Multiply the value you had figured for 1 share by 5,
and that will tdl you how much money to withdraw from your trading
account this week. Now, going into next week, you must keep track of how
many shares you have left. Since you got out of 5 shares last week, you are
left with 95. When the time comes dong for withdravad number 2, divide
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the equity in your account by 95 and multiply by 5. This will give you the
vaue of the 5 shares you are “cashing in” this week. You will keep on doing
this until you have zero shares left, a which point no equity will be left in
your account. By doing this, you have probably obtained a better average
price for getting out of your account than you would have received had you
gotten out of the account a some arbitrary point dong this 20-week with-
drawa period.

This principle of averaging in and out of a trading account is so Smple,
you have to wonder why no one ever does it. | dways ask the accounts that |
manage to do this Yet | have never had anyone, to date, take me up on it.
The reason is smple. The concept, dthough completely valid, requires dis
cipline and time in order to work-exactly the same ingredients as those
required to make the concept of optima f work.

Just ask Joe Putzivekian. It's one thing to understand the concepts and
believe in them. It's another thing to do it.

THE ARC SINE LAWS AND RANDOM WALKS

Now we turn the discusson toward drawdowns. First, however, we need to
study a little bit of theory in the way of the first and second arc sine laws.
These are principles that pertain to random walks. The stream of trade
P&L’s that you are deding with may not be truly random. The degree to
which the stream of P&L’s you are using differs from being purely random
is the degree to which this discussion will not pertain to your stream of prof-
its and losses. Generdly though, most streams of trade profits and losses are
nealy random as determined by the runs test and the linear corrdation
coefficient (serid corrdation).

Furthermore, not only do the arc sne laws assume that you know in
advance what the amount that you can win or lose is, they dso assume that
the amount you can win is equa to the amount you can lose, and that this is
dways a constant amount. In our discussion, we will assume that the
amount that you can win or lose is $1 on each play. The arc sne laws dso
assume that you have a 50% chance of winning and a 50% chance of losing.
Thus, the arc sine laws assume a game where the mathematica expectation
is 0.

These cavedts make for a game tha is condderably different, and consid-
erably more smple, than trading is. However, the first and second arc sine
laws are exact for the game just described. To the degree that trading differs
from the game just described, the arc sine laws do not apply. For the sake of
learning the theory, however, we will not let these differences concern us
for the moment.
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Imagine a truly random sequence such as coin tosSngS where we win 1
unit when we win and we lose 1 unit when we lose If we were to plot out
our equity curve over X tosses, we could refer to a specific point (X,Y),
where X represented the Xth toss and Y our cumulative gain or loss as of
that toss.

We define positive territory as anytime the equity curve is above the X
axis or on the X axis when the previous point was above the X axis. Likewise,
we Oefine negative territory as anytime the equity curve is below the X axis
or on the X axis when the previous point was bdlow the X axis. We would
expect the totd number of points in postive territory to be close to the tota
number of points in negdive territory. But this is not the case.

If you were to toss the coin N times, your probability (Prob) of spending
K of the events in positive territory is:

(213 Prob ~ 1/(Pi* K # 5% (N =K) A.5)

where Pi = 3.141592654.

The symbol ~ means that both sides tend to equdity in the limit. In this
cax, as either K or (N - K) approaches infinity, the two sides of the equa
tion will tend toward equality.

Thus, if we were to toss a coin 10 times (N = 10) we would have the fol-
lowing probabilities of being in positive territory for K of the tosses:

Probability6

.14795
.1061
.0796
0695
.065
.0637
.065
.0695
0796
1061
.14795

-
cOWoNouhrwN —oO | x

‘Although empirical tests show that coin tossing is not a truly random sequence due to slight
imperfections in the coin used, we will assume here, and elsewhere in the text when referring
to coin tossing, that we are tossing an ideal coin with exactly a .5 chance of landing heads or
talls.

®Note that since neither K nor N may equal 0 in Equation (2.13) (as you would then be divid-
ing by 0), we can discern the pmbabiliﬁes corresponding to K = 0 and K = N by summing the
Probabilities from K = 1 to K =N = 1 and subtracting this sum from 1. Dividing this difference
by 2 wil give us the probabilities associated with K = 0 and K = N.
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You would expect to be in postive territory for 5 of the 10 tosses, yet that
is the least likey outcome! In fact, the most likely outcomes are that you
will be in positive territory for al ofthe tosses or for none of them!

This principle is formally detailed in the first arc sine low which states:

For aFixed A (0< A < 1) and as N approaches infinity, the probability that
K/N spent on the postive side is < A tends to:

(2.14) Prob{(K/N) < A] = 2/Pi * ARC SIN (A A 5)
where Pi = 3.141592654.

Even with N as amdl as 20, you obtain a very close approximation for the
probability.

Equation (2.14), the firgt arc sine law, tells us that with probability .1, we
can expect to see 994% of the time spent on one side of the origin, and
with probability .2, the equity curve will spend 97.6% of the time on the
same sde of the origint With a probability of .5, we can expect the equity
curve to spend in excess of 83.35% of the time on the same side of the ori-
gin. That is just how perverse the equity curve of a fair coin isl

Now here is the second ar¢ sine law, which aso uses Equation (2.14) and
hence has the same probabilities as the first arc sine law, but gpplies to an
dtogether different incident, the maximum or minimum of the equity
curve. The second ac dne law dates that the maximum (or minimum)
point of an equity curve will most likely occur a the endpoints, and least
likely at the center. The didtribution is exactly the same as the amount of
time spent on one sSde of the origin!

If you were to toss the coin N times, your probability of achieving the
maximum (or minimum) a point K in the equity curve is adso given by
Equetion (2.13):

Prob ~ 1/(Pi* K A 5* (N =K) A.5)
3141592654,

(213)
whee B =

Thus, if you were to toss a coin 10 times (N = 10) you would have the fal-
lowing probabilities of the maximum (or minimum) occurring on the Kth

toss:
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=

Probability

.14795
.1061
.0796
.0695
065
.0637
.065
0695
.0796
1061
14795

O © @ N Ul WN —O

—

In a nutshell, the second arc sine law daes that the maximum or mini-
m.um are most likely to occur near the endpoints of the equity curve and
least likely to occur in the center.

TIME SPENT IN A DRAWDOWN

Recdl the caveats involved with the arc sSne laws That is, the arc sne laws
assume a 50% chance of winning, and a 50% chance of losng. Further, they
assume that you win or lose the exact same amounts and that the generating
sream is purdy random. Trading is condderably more complicated than
this. Thus, the arc sine laws don't apply in a pure sense, but they do apply in
spirit.

Condder that the arc sne laws worked on an aithmetic mathematica
expectation of 0. Thus, with the first law, we can interpret the percentage of
time on ether dde of the zero line as the percentage of time on either sde
of the aithmetic mahematica expectation. Likewise with the second law,
where, raher than looking for an absolute maximum and minimum, we
were looking for a maximum above the meathematical expectetion and a
minimum bdow it. The minimum bdow the mahemeticd expectaion
could be greater than the maximum above it if the minimum happened
later and the aithmetic mahematical expectation was a risng line (as in
trading) rather than a horizontal line a zero.

Thus, we can interpret the spirit of the arc sine laws as applying to trad-
ing in the following ways. (However, rather than imagining the important
line as being a horizontd line a zero, we should imagine a line that dopes
upward & the rate of the aithmetic average trade (if we are constant-con-




96 CHARACTERISTICS OF FIXED FRACTIONAL TRADING

tract trading). If we are Axed fractiond trading, the line will be one that
curves upward, getting ever deeper, ‘a such a rate that the next point
equds the current point times the geometric mean) We can interpret the
firs arc sne law as dating that we should expect to be on one sde of the
mathematica expectation line for far more trades than we spend on the
other dde of the mathematica expectation line Regarding the second arc
sne law, we should expect the maximum deviaions from the mathemati-
cd expectaion ling, ether above or beow it, as being mos likey to occur
near the beginning or the end of the equity curve graph and least likey
near the center of it.

You will notice another characteristic that happens when you are trading
a the optima f levds. This characteritic concerns the length of time you
spend between two equity high points. If you are trading at the optima f
level, whether you are trading just 1 market system or a portfolio of market
systems, the time of the longest drawdown’ (not necessarily the worgt, or
deepest, drawdown) tekes to dapse is usudly 35 to 55% of the totd time
you are looking a. This seems to be true no matter how long or short a time
period you are looking at! (Again, time in this sense is measured in trades.)

This is not a hard-and-fast rule. Rather, it is the effect of the spirit of the
arc sne laws a work. It is perfectly naturd, and should be expected.

This principle appears to hold true no matter how long or short a period
we are looking at. This means that we can expect to be in the largest draw-
down for gpproximatdy 35 to 55% of the trades over the life of a trading
program we ae employing! This is true whether we are trading 1 market
sysem or an entire portfolio. Therefore, we must learn to expect to be
within the maximum drawdown for 35 to 55% of the life of a program that
we wish to trade. Knowing this before the fact dlows us to be mentdly pre-
pared to trade through it.

Whether you are about to manage an account, aout to have one man-
aged by someone ese, or about to trade your own account, you should besr
in mind the spirit of the arc sne laws and how they work on your equity
curve relaive to the mathematica expectation line, dong with the 35% to
55% rule. By s0 doing you will be tuned to redity regarding what to expect
as the future unfolds.

We have now covered the empirical techniques entirely. Further,
we have discussed many characteristics of fixed fractional trading and

"By longest drawdown here is meant the longest time, in terms of the number of elapsed
trades, between one equity pesk and the time (or number of elapsed trades) until that peak is
equaled or exceeded.
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have introduced some salutary techniques, which will be used
throughout the sequel. We have seen that by trading at the optimal
levels of money management, not only can we expect substantial draw-
downs, but the time spent between two equity highs can also be quite
substantial. Now we turn our attention to studying the parametric
techniques, the subject of the next chapter.
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Parametric Optimal f on the
Normal Distribution

Now that we are finished with our discussion of the empirical tech-
nigques as well as the characteristics of fixed fractional trading, we
enter the realm of the parametric techniques. Simply put, these tech-
niques dijferfrom the empirical in that they do not use the past his-
toy itself as the data to be operated on. Rather, we observe the past
history to develop a mathematical description of that distribution of
that data. This mathematical description is based upon what has hap-
pened in the past as well as what we expect to happen in the future. In
the parametric techniques we operate on these mathematical descrip-
tions rather than on the past histo y itself:

The mathematical descriptions used in the parametric tech-
niques are most often what are referred to as probability distributions.
Therefore, if we are to study the parametric techniques, we must study
probability distributions (in general) as a foundation. Wewill then
mote on to studying a certain type of distribution, the Normal
Distribution. Then we will see how to find the optimal f and its by-
products on the Normal Distribution.

THE BASICS OF PROBABILITY DISTRIBUTIONS

Imagine if you will that you are a a racetrack and you want to keep a log of
the postion in which the horses in a race finish. Specifically, you want to
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record whether the horse in the pole postion came in fird, second, and o
on for eech race of the day. You will only record ten places. If the horse
came in worse than in tenth place, you will record it as a tenth-place finish.
If you do this for a number of days, you will have gathered enough data to
seethe distribution of finishing positions for a horse Stating out in the pole
position. Now you teke your data and plot it on a grgph. The horizontal axis
represents where the horse finished, with the far left being the worst finish-
ing pogtion (tenth) and the far right being a win. The verticd axis will
record how many times the pole postion horse finished in the postion
noted on the horizonta axis You would begin to see a bel-shaped curve
develop.

Under this scenario, there are ten possible finishing pogtions for each
race. We say that there are ten bins in this digtribution. What if, rather than
using ten bins, we used five? The firg bin would be for a first- or second-
place finish, the second bin for a third-or fourth-place finish, and so on.
Wha would have been the result?

Using fewer bins on the same sat of data would have resulted in a proba
bility digtribution with the same profile as one determined on the same data
with more bins. That is, they would look pretty much the same graphicaly.
However, usng fewer bins does reduce the information content of a distri-
bution. Likewise, usng more bins increases the informaion content of a
digtribution. If, rather than recording the finishing position of the pole posi-
tion horse in each race, we record the time the horse ran in, rounded to the
nearest second, we will gt more than ten bins and thus the information
content of the distribution obtained will be greeter.

If we recorded the exact finish time, rather than rounding finish times to
use the nearest second, we would be creating what is cdled a continuous
digribution. In a continuous distribution, there are no bins. Think of a con-
tinuous didtribution as a series of infinitely thin bins (see Figure 3). A
continuous didtribution differs from a discrete distribution, the type we dis
cussed firgt in that a discrete distribution is a binned distribution. Although
binning does reduce the information content of a didtribution, in red life it
is often necessary to hin data. Therefore, in red life it is often necessary to
lose some of the information content of a digtribution, while keeping the
profile of the distribution the same, so that you can process the distribution.
Findly, you should know that it is possible to take a continuous distribution
and make it discrete by binning it, but it is not possble to take a discrete
digribution and make it continuous.

When we are discussng the profits and losses of trades, we are essen-
tidly discussng a continuous didtribution. A trade can teke a multitude of
vaues (dthough we could say that the data is binned to the nearest cent). In
order to work with such a distribution, you may find it necessary to bin the
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Figure 3- A continuous distribution is a series of infinitely thin bins

data into, for example, onehundred-dollar-wide bins. Such a distribution
would have a bin for trades tha made nothing to $99.99, the next bin would
be for trades that made $100 to $199.99, and s0 on. There is aloss of infor-
mation content in binning this way, yet the profile of the didtribution of the
trade profits and losses remains rdaively unchanged.

DESCRIPTIVE MEASURES OF DISTRIBUTIONS

Most people are familiar with the average, OF more spedificdly the arith-
metic mean. This is smply the sum of the data points in a distribution
divided by the number of data points:

N
(301) A= (.lei)/N

where A = The arithmetic mean.
X; = The ith data point.
N = The total number of data points in the distribution.

The aithmetic mean is the most common of the types of messures of
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location, or central tendency of a body of data, a distribution. However, you
should be aware that the arithmetic mean is not the only avalable measure
of centrd tendency and often it is not the best. The arithmetic mean tends
to be a poor measure when a distribution has very broad tails. Suppose you
randomly sdect data points from a didribution and cadculate ther meen. If
you continue to do this you will find that the arithmetic means thus
obtained converge poorly, if a dl, when you are deding with a didribution
with very broad tails.

Another important measure of location of a didribution is the median.
The median is described as the middle vdue when data are arranged in an
aray according to sze. The median divides a probability distribution into
two haves such tha the area under the curve of one hdf is equd to the area
under the curve of the other hadf. The median is frequently a better mea
aure of centrd tendency than the aithmetic mean. Unlike the arithmetic
mean, the median is not digtorted by extreme outlier vaues. Further, the
median can be cdculated even for open-ended didributions. An open-
ended digribution is a digribution in which al of the vaues in excess of a
certain bin are thrown into one bin. An example of an open-ended distribu-
tion is the one we were compiling when we recorded the finishing position
in horse racing for the horse gating out in the pole postion. Any finishes
worse than tenth place were recorded as a tenth place finish. Thus, we had
an open digribution. The median is extensvely used by the U.S. Bureau of
the Census.

The third measure of centrd tendency is the modethe most frequent
occurrence. The mode is the pesk of the digtribution curve. In some distri-
butions there is no mode and sometimes there is more than one mode. Like
the median, the mode can often be regarded as a superior measure of cen-
tral tendency. The mode is completdy independent of extreme outlier val-
ues, and it is more readily obtaned than the aithmetic mean or the
median.

We have seen how the median divides the didribution into hvo equa
aess In the same way a distribution can be divided by three quartiles (to
give four areas of equd size or probability), or nine deciles (to give ten aress
of equal size or probability) or 99 percentiles (to give 100 areas of equa size
or probability). The 50th percentile is the median, and dong with the 25th
and 75th percentiles give us the quartiles. Findly, another term you should
become familiar with is that of a quantile. A quantile is any of the N - 1
variate-vaues that divide the tota frequency into N equal parts.

We now return to the mean. We have discussed the arithmetic mean as a
measure of centra tendency of a digribution. You should be aware tha
there are other types of means as wel. These other means are less common,
but tly do have dgnificance in certain gpplications
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Firg isthe geometric mean, which we saw how to cdculate in the first

chapter. The geometric meen is simply the Nth root of al the data points
multiplied  together.

N
@) G=(]x" (UN)
where G = The geomeric meen.

X,= The ith data point.
N = Thetotd number of data points in the distribution.

The geometric mean cannot be used if any of the vaiaevaues is zero or
negative.

We can date tha the aithmetic mathematica expectation is the arith-
metic average outcome of each play (on a congant |-unit basis) minus the
bet dze. Likewise, we can date that the geometric mathematicd expecta
tion is the geometric average outcome of each play (on a congant I-unit
basis) minus the bet size

Another type of mean is the harmonic mean. This is the reciproca of the
meen of the reciprocals of the data points.

N
(303 Im = UN .Ell/xi

whee H = The hamonic mean.

X; = The ith data point.
N = The tota number of data points in the distribution.

The find messure of centrd tendency is the quadratic mean or roof
mean square.

N
RA2=1UNQYX;"2
izl

(3.04)
1
where R = The root mean square
X, = The ith data point.
N = The totad number of data points in the distribution.
You should redize that the aithmetic mean (A) is dways grester than or

equa to the geometric meen (G), and the geometric meen is dways greater
than or equd to the harmonic mean (H):
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(305) H<=G<=A
where  H = The harmonic mean.
G = The geometric mean.

A = The aithmetic mean.
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The centra vaue or locaion of a didribution is often the first thing you
want to know about a group of data, and often the npext thing you want to
know is the datd's variability or “width” around that centrd vadue. We cal
the measures of a distributions central tendency the first moment of a distri-
bution. The variability of the data points around this centrd tendency is
cdled the second moment of a didribution. Hence the second moment
measures a distribution’s dispersion about the first moment.

As with the measure of centra tendency, many measures of dispersion
ae avalable We cover seven of them here, sating with the leest common
measures and ending with the most common.

The range of a digtribution is smply the difference between the largest
and smallest vaues in a digtribution. Likewise, the 10-90 percentile range is
the difference between the 90th and 10th percentile points. These firgt hvo
measures of disperson measure the soread from one extreme to the other.
The remaining five measures of digperson messure the depature from the
centrad tendency (and hence measure the half-spread).

The semi-interquartile range or quartile deciation equas one hdf of the
disance between the firg and third quartiles (the 25th and 75th per-
centiles). This is dmilar to the 10-90 percentile range, except that with this
measure the range is commonly divided by 2.

The half-width is an even more frequently used messure of dispersion.
Here, we take the height of a digtribution a its pesk, the mode. If we find
the point halfway up this verticad measure and run a horizontd line through
it perpendicular to the vertica line the horizontd line will touch the distri-
bution at one point to the left and one point to the right. The distance
between these hvo points is cdled the haf-width.

Next, the mean absolute deviation or mean detiation is the aithmetic
average of the absolute vaue of the difference between the data points and
the arithmetic average of the data points. In other words, as its name
implies, it is the average distance that a data point is from the mean.
Expressed mathematically:
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N
(3.06) M = I/N }"ABS (Xi-A)

where M = The meen abolute devidion.
N = The tota number of data points.
X; = The ith data point.
A = The aithmetic average of the data points.
ABS() = The absolute vaue function.

Equation (3.06) gives us what is known as the population mean absolute
deviation. You should know that the mesn absolute deviation can dso be
cdculated as what is known as the sample mean absolute deviation. To cd-
culate the sample mean absolute deviation, replace the term 1/N in
Equation (3.06) with 1/(N - 1). You use the sample verson when you are
making judgments about the population based on a sample of that
population.

The next two messures of dispersion, Variance and standard deviation,
are the two most commonly used. Both are used extensively, so we cannot
sav that one is more common than the other; suffice to say they are both the
mbst common. Like the mean absolute deviaion, they can be cdculaed
two different ways, for a population as well as a sample. The population ver-
sion is shown, and again it can readily be dtered to the sample version by
replacing the term I/N with 1/(N = 1).

The gariance is the same thing as the meen absolute deviation except
that we Square eech difference between a data point and the average of the
data points. As a result, we do not need to take the absolute vaue of each
difference, since multiplying each difference by itsdf maekes the result pos-
tive whether the difference was postive or negetive. Further, since eech
distance is squared, extreme outliers will have a stronger effect on the vari-
ance than they would on the mean ebsolute deviation. Mathcmatically
expressd:

N
(3.07) Vv =IIN 2 (1(Xi -A) "2

where V = The vaiance
N = The total number of data points.
X

l =
A = The aithmetic average of the data points.

The ith data point.

i
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SKEWNESS
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Figure 3-2 Skewness.

Findly, the standard deviation is rdated to the vaiance (and hence the
mean absolute deviation) in that the standard deviation is simply the square
root of the gariance.

The third moment of a didribution is caled skewness, and it describes
the extent of asymmetry about a distributions mean (Figure 3-2). Whereas
the first two moments of a digribution have vaues that can be consdered
dimensional (i.e, having the same units as the measured quantities), skew-
ness is defined in such away as to make it nondimensional. It is a pure num-
ber that represents nothing more than the shape of the distribution.

A postive vaue for skewness means that the tails are thicker on the posi-
tive sde of the didribution, and vice versa. A pefectly symmetrica distri-
bution has a skewness of 0.

In a symmetrica distribution the mean, median, and mode are dl a the
same vaue. However, when a didtribution has a nonzero value for skewness,
this changes as depicted in Figure 3-3. The reaionship for a skewed distri-
bution (any distribution with a nonzero skewness) is:

(3.08) Mean - Mode = 3 * (Mean - Median)
As with the first two moments of a digtribution, there are numerous mea-

sures for skewness, which most frequently will give different answers. These
messures now  follow:
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Figure 3-3 Skewness alters location.

(3.09) S = (Mesn - Mode)/Standard Deviation
(3.10) §= (3% (Men - Median))/Standard Deviation

These lagt two equations, (3.09) and (3.10), are often refarred to as
Pearson’'s firg and second coefficients of skewness, respectively. Skewness
is ds0 commonly determined as:

(3.11) S =N 2 (X;- A)/D) A 3)

where S = The skewness.
N = The total number of data points.
X; = The ith data point.
A = The aithmetic average of the data points.
D = The population standard devigtion of the data points.
Finally, the fourth moment of a distribution, kurtosis (see Figure 3-4)
meesures the peskedness or flaness of a digtribution (relative to the Normal

Distribution). Like skewness, it is a nondimensiond quantity. A curve less
peaked than the Normd is sad to be platykum'c (kurtosis will be negative),
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KURTOSIS
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Figure 3-4 Kurtosis.

and a curve more pesked than the Norma is cdled leptokurtie (kurtosis will
be positive). When the peak of the curve resembles the Normal
Didribution curve, kurtoss equas zero, and we cal this type of pesk on a
distribution mesokurtic.

Like the preceding moments, kurtosis has more than one messure The
two most common are:

(312) K= QP
whee K = The kurtoss.
Q = The semi-interquartile range.
P = The 10-90 percentile range.

(313 K-_-(l/NEN: (X;-A)D) A 4)))-3

where K = The kurtosis.

N = The tota number of data points.
X; = The ith data point.
A = The aithmetic average of the data points.

D = The population standard deviation of the data points.
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Findly, it should be pointed out there is a lot more “theory” behind the
moments of a distribution than is covered here, For a more in-depth discus-
son you should consult one of the datigtics books mentioned in the
Bibliography. The depth of discusson about the moments of a distribution
presented here will be more than adequate for our purposes throughout
this text.

Thus far, we have covered daa didributions in a generd sense. Now we
will cover the specific digtribution called the Norma Distribution.

THE NORMAL DISTRIBUTION

Frequently the Norma Digtribution is referred to as the Gaussan distribu-
tion, or de Moivre's distribution, after those who ae beieved to have dis-
covered it-Karl Friedrich Gauss (1777-1855) and, about a century earlier
and far more obscurdy, Abraham de Moivre (1667-1754).

The Norma Didribution is conddered to be the most useful distribution
in modding. This is due to the fact that the Norma Didribution accurately
modds many phenomena Generdly spesking, we can messure heights,
weights, intdligence levels, and so on from a population, and these will very
closdy resemble the Normd Didtribution.

Let's consder what is known as Galton’s board (Figure 3-5). This is a
verticaly mounted board in the shape of an isosceles triangle. The boad is
sudded with pegs, one on the top row, two on the second, and so on. Each
row down has one more peg than the previous row. The pegs are aranged
in a triangular fashion such that when a bal is dropped in, it has a 50/50
probability of going right or left with each peg it encounters. At the base of
the board is a series of troughs to record the exit gate of each bdl.

The bdls faling through Galton's board and ariving in the troughs will
begin to form a Norma Didribution. The “deeper” the board is (i.e, the
more rows it has) and the more bals are dropped through, the more closdy
the find result will resemble the Norma Digtribution.

The Normd is ussful in its own right, but adso because it tends to be the
limiting form of many other types of digtributions. For example, if X is dis
tributed binomially, then as N tends toward infinity, X tends to be Normally
digributed. Further, the Normd Didtribution is aso the limiting form of a
number of other useful probability ditributions such as the Poisson, the
Student’s, or the T distribution. In other words, as the data (N) used in
these other didributions increases, these digtributions increasingly resemble
the Normad Didtribution.
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Figure 3-5 Galtons board

THE CENTRAL LIMIT THEOREM

One of the most important applications for satistical purposes involving
the Norma Didribution has to do with the digtribution of averages. The
averages of samples of a given sze taken such that each sampled item is
selected independent of the others, will yield a distribution that is close to
Norma. This is an extremdy powerful fact, for it means tha you can gener-
alize about an actud random process from averages computed using sample
daa

Thus, we can dtate that if N random samples are drawn from a popula-
tion, then the sums (or averages) of the samples will be approximately
Normally distributed, regardless of the distribution of the population from
which the samples are drawn. The closeness to the Normal Distribution
improves as N (the number of samples) increases.

As an example, condder the digtribution of numbers from 1 to 100. This
is what isknown as a uniform distribution: All dements (numbers in this
case) occur only once. The number 82 occurs once and only once, as does
19, and s0 on. Suppose now that we take a sample of five dements and we
take the average of these five sampled dements (we can just as well take
their sums). Now, we replace those five dements back into the population,
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Figure 3-6 The Exponentid Didribution and the Normadl.

and we take another sample and caculate the sample mean. If we keep on
repeating this process, we will see that the sample means are Normaly dis-
tributed, even though the population from which they are drawn is uni-
formly distributed.

Furthermore, this is true regardless of how the population is distributed!
The Centra Limit Theorem dlows us to treat the distribution of sample
means as being Norma without having to know the distribution of the pop-
ulation. This is an enormoudy convenient fact for many areas of study.

If the population itsdf happens to be Normdly distributed, then the dis-
tribution of sample means will be exactly (not approximately) Norma. This
is true because how quickly the distribution of the sample means
approaches the Normal, as N increases, is a function of how close the popu-
lation is to Normd. As a generd rule of thumb, if a populaion has a uni-
modal didribution-any type of distribution where there is a concentration
of frequency around a single mode, and diminishing frequencies on either
dde of the mode (i.e, it is convex)-or is uniformly digtributed, using a
vaue of 20 for N is conddered sufficient, and a vaue of 10 for N is consd-
ered probably sufficient. However, if the population is distributed accord-
ing to the Exponentid Didribution (Figure 3-6), then it may be necessary
to use an N of 100 or so.

!
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The Centrd Limit Theorem, this amazingly sSmple and beautiful fact,
vaidates the importance of the Norma Distribution.

WORKING WITH THE NORMAL DISTRIBUTION

In usng the Norma Digtribution, we mogt frequently want to find the per-
centage of area under the curve & a given point dong the curve. In the par-
lance of cdculus this would be cdled the integrd of the function for the
curve itsdf. Likewise, we could cdl the function for the curve itsdlf the
derivative of the function for the area under the curve. Derivatives are often
noted with a prime after the varisble for the function. Therefore, if we have
a function, N(X), that represents the percentage of area under the curve a a
given point, X, we can say that the derivative of this function, N’(X) (called
N prime of X), is the function for the curve itsdlf at point X.

We will begin with the formula for the curve itsdf, N'(X). This function
is represented as;

(314 N'(X) = 1/(S * (2 * 3.1415926536) A(1/2))
* EXP(=((X =U) A 2/(2* § A 2))
where U = The mean of the data

S = The dgandard deviation of the data
X = The observed daa point.
EXP() = The exponentid function.

This formula will give us the Y axis vaue, or the height of the curve if you
will, & any given X axis vaue

Often it is easier to refer to a point dong the curve with reference to its
X coordinate in terms of how many standard deviations it is away from the
mean. Thus, a data point that was one Standard deviation away from the
mean would be said to be one standard unit from the meen.

Further, it is often easier to subtract the mean from al of the data points,
which has the effect of shifting the distribution so that it is centered over

" Zero rether than over the mean. Therefore, a data point that was one stan-
~ dard deviation to the right of the mean would now have a value of 1 on the
X axis

When we meke these conversons, subtrecting the mean from the data
points, then dividing the difference by the standard deviation of the data
points, we are converting the distribution to what is caled the standardized
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normal, which is the Normd Digtribution with mean = 0 and variance = I.
Now, N'(Z) will give us the Y axis value (the height of the curve) for any
vaue of Z:

(3.153a) N'(2) = 1/((2 * 3.1415926536) A (1/2)) * EXP( - (Z » 2/2))
= .398942 * EXP( = (Z A 2/2))
where (316) Z = (X ~ U)/S
and U = The mean of the data
§ = The sandard devigtion of the data
X = The observed data point.
EXP() = The exponentid function.

Equation (3.16) gives us the number of standard units tha the data point
corresponds  to-in other words, how many sandard deviations away from
the mean the data point is When Equation (3.16) equds 1, it is cdled the
standard normal deviate. A sandard deviation or a standard unit is some-
times referred to as a Sgma. Thus, when someone spesks of an event being

a “five dgma event,” they are referring to an event whose probability of
occurrence is the probability of being beyond five standard deviations.

N'(2)
0.5 T —

) ESURR IR AR R— \ ]

\
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Figure 3-7 The Normal Probability density function.
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Condder Figure 3-7, which shows this equation for the Normd curve
Notice that the height of the standard Normd curve is .39894, From
Equation (3.15a), the height is:

(3.152)  N'(2) =.398942 * EXP(- (Z »2/2))
N’(O) = .398942 * EXP( - (0 * 2/2))
N’(O) =.398942

Notice that the curve is continuous-that is, there are no “bresks’ in the
curve & it runs from minus infinity on the Ieft to positive infinity on the
right. Notice aso that the curve is symmetricd, the side to the right of the
peak being the mirror image of the sde to the left of the peak.

Suppose we had a group of data where the mean of the data was 11 and
the standard deviation of the group of data was 20. To see where a data
point in that sat would be located on the curve, we could firg caculae it as
a dandard unit. Suppose the data point in question had a vaue of -9. To
caculate how many standard units this is we first must subtract the mean
from this data point:

-9-11=-20
Next we need to divide the result by the standard deviation:
-20120=-1

We can therefore say that the number of standard units is -1, when the data

point equals -9, and the mean is 11, and the sandard deviation is 20. In
other words, we are one sandard deviation away from the peek of the
curve, the mean, and snce this vaue is negdive we know that it means we

are one standard deviation to the left of the pesk. To see where this places

us on the curve itself (i.e., how high the curve is a one standard deviaion

left of center, or what the Y axis vaue of the curve is for a corresponding X
axis value of-), we need to now plug this into Equation (3.15a):

(3152)  N'(2) = .398942 * EXP(- (Z A 2/2))

398949 * 27182818285 A ( = (-1 A 2/2))
398942 * 27182818285 * (-1/2)
398942 * 6065307

2419705705
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Thus we can say that the height of the curve at X = -1 is .2419705705.

The function N’'(Z) is aso often expressed as:

(3.15b)  N'(2) = EXP( = (Z A 2/2))/((8 * ATN(l)) * (1/2)
= EXP( = (Z A 2/2))/((8 * .7853983) A (1/2)
= EXP( « (Z * 2/2))/2.506629

where
(3.16) z = (X-U)S
and ATN () = The arctangent function.
U = The mean of the data
S = The standard deviation of the data
X = The observed data point.
EXP( ) = The exponentid function.

Nongatisticians often find the concept of the standard deviaion (or its
square, variance) hard to envision. A remedy for this is to use what is known
asthe mean absolute deviation and convert it to and from the standard devi-
aion in these equations. The mean absolute deviation is exactly what its
name implies. The mean of the data is subtracted from each data point. The
abolute values of each of these differences are then summed, and this sum
is divided by the number of data points. What you end up with is the aver-
age disance each data point is away from the mean. The converson for
mean abolute devidion and dandard deviation are given now:

(317)  Mean Absolute Deviation = §* ((2/3.1415926536) * (1/2))
=S # 7978845609

The mean absolute deviation.

where M

S

The standard deviation.

Thus we can say tha in the Norma Didribution, the mean absolute
deviation equds the standard deviation times .7979. Likewise

(3.18) § = M * 1/.7978845609
= M * 1.253314137
where S = The sandard devidtion.
M = The mean absolute deviation.
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So we can aso say that in the Norma Didtribution the standard deviation
equas the mean abolute devidtion times 1.2533. Since the variance is
adways the standard deviation squared (and standard deviation is dways the
sguare root of variance), we can make the converson between variance and
mean &bsolute deviation.

(319 M=V A(1/2) * ((2/3.1415926536) A (1/2))
=V A (1/2) * 7978845609

whee M = The mean absolute deviation.
V = The vaiace
(3.20) V = (M * 1.253314137) A 2
where V = The vaiance

M = The mean absolute deviation.

Snce the sandard devidtion in the standard norma curve equas 1, we
can dae that the mean absolute deviation in the standard norma curve
equas .7979.

Further, in a bel-sheped curve like the Norma, the semi-interquartile
range equas approximeatdly two-thirds of the standard deviation, and there-
fore the gdandard deviation equals about 1.5 times the semi-interquartile
range. This is true of most bel-shaped digtributions, not just the Normd, as
ae the conversons given for the meen absolute deviation and standard
devigtion.

NORMAL PROBABILITIES

We now know how to convert our raw data to standard units and how to
form the curve N'(2) itsdf (i.e, how to find the height of the curve, or Y
coordinate for a given standard unit) as wel as N'(X) (Equation (3.14), the
curve itsdf without firsg converting to standard units). To redly use the
Normal Probability Distribution though, we want to know what the proba-
bilities of a certan outcome happening ac. This is not given by the height
of the curve. Rather, the probabilitics correspond to the area under the
curve. These areas are given by the integrd of this N'(Z) function which we
have thus far studied. We will now concern oursdves with N(Z), the integrd

. to N'(2), to find the areas under the curve (the probabilities).’

'The actual integral to the Normal probabilitv, density does not exist in closed form, but it can
very closely be approximated by Equation (3.21).
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(321) N@Z) = 1 -N'(2) * (1330274429 * Y A5) w (1821255078
*Y Ad)+ (1781477937 * Y A 3)
~ (356563782 * Y A 2) + (.31938153 * Y))

If Z < 0 then N(Z) = 1 -N(2)

(3.15a) N’(Z) = .398942 * EXP( - (Z * 2/2))
where Y =1/(1 + 2316419 * ABS(Z))
and  ABS( ) = The absolute vaue function.

EXP( ) = The exponentia function.

We will aways convert our data to standard units when finding probabili-
ties under the curve. That is, we will not describe an N(X) function, but
rather we will use the N(2) function where:

(3.16) z=(X-U)S

and U = The mean of the data

S = The standard deviation of the data
X = The observed data point.

Refer now to Equation (3.21). Suppose we want to know what the proba-
bility is of an event not exceeding +2 standard units (Z = +2).

Y = 1/(1 + 2316419 * ABS(+2))

=1/1.4632838
=.68339443311

(3.15a) N'(Z) = .398942 * EXP( - (+2 A 2/2))
= .J98942 * EXP(-2)
=.398942 * .1353353
=.05399093525
Notice that this tells us the height of the curve a +2 standard units.

Plugging these vdues for Y and N'(2) into Equation (3.21) we can obtan
the probability of an event not exceeding +2 standard units:
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N@Z) =1~ N'(2) * ((1.330274429 * Y A 5) - (1821255978 * Y A 4)
+ (1781477937 * Y A 3) - (.356563782* Y A 2)
+(.31938153 * Y))

=1 - .05399093525 * (( 1.330274429 * 68339443311 7 5)
- (1821255978 * 68339443311 A 4 + 1781477937
*,68330443311 A 3) - (.356563782 * .68339443311 A 2)
+(.31938153 * .68339443311))

= 1 - 05399093525 * (( 1.330274429 * .1490587)

- (1821255978 * 2181151 + (1.781477937 * .3191643)
- (-356563782 * 467028 + .31938153 * .68339443311))

=1 -.05399093525 * (. 198288977 - 3972434298
+ 5685841587 - 16652527 + .2182635596)

= 1 - 05399093525 * 4213679955

= 1 +.02275005216

= 9772499478

Thus we can say that we can expect 97.72% of the outcomes in a
Normally distributed random process to fal shy of +2 standard units. This is
depicted in Figure 3-8.

If we wanted to know what the probabilities were for an event equding
or exceeding a prescribed number of gandard units (in this case +2), we
would smply amend Equation (3.21), teking out the }- in the beginning of
the equetion and doing away with the -Z provision (i.e., doing away with “If
Z <0then N(Z2) = 1 » N(2)"). Therefore, the second to last line in the last
computation would be changed from

=1 =.02275005216

tosimply

02275005216

We would therefore say that there is aout a 2.275% chance that an
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Figure 3-8 Equation (3.21) showing probability with Z = 42,

event in a Nonndly digributed random process would equa or exceed +2
dandard units. This is shown in Figure 3-9.

Thus far we have looked a aress under the curve (probabilities) where
we are only dedling with what are known as “I-tailed” probabilities. That is
to say we have thus far looked to solve such quedtions as, “What are the
probabilities of an event being less (more) than such-and-such standard

, N(Z) & N'(2)
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Figure 3-9 Doing away with the 1- and -Z provision in Equation
(3.21).
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Figure 3-10 A two-tailed probability of an event being + or = 2
sigma.

units from the mean?’ Suppose now we were to pose the question as,
‘What are the probabilities of an event being within SO many standard units
of the mean?’ In other words, we wish to find out what the “etailed” proba-
bilities are.

Condder Figure 3-10. This represents the probabilities of being within 2
standard units of the mean. Unlike Fgure 3-8, this probability computation
does not include the extreme Ieft tail area, the area of less than -2 sandard
units. To calculate the probability of being within Z standard units of the
mean, you mus first cdculate the I-tailed probability of the absolute vaue
of Z with Equation (3.21). This will be your input to the next Equation,
(3.22), which gives us the 2-tailed probabilities (i.e, the probabilities of
being within ABS(Z) standard units of the mean):

(822 etailed probability =1 = (1 - N(ABS(2))) * 2

If we are consdering what our probabilities of occurrence within 2 dan-
dard deviations are (Z = 2), then from Equation (3.21) we know that N(2)
= .9772499478, and using this as input to Equation (3.22):
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Figure 3-11 Two-tailed probability of an event being beyond 2
sigma.

2-tailed probability

1-((1-.9772499478) * 2)
1-(.02275005216 * 2)
1-.04550010432
9544998957

Thus we can date from this equation that the probability of an event in a
Normally distributed random process fdling within 2 standard units of the
meen is about 95.45%.

Just as with Equation (3.21), we can diminate the leading ]- in Equation
(322) to obtain (1 = N(ABS(2))) * 2, which represents the probabilities of
an event fdling outsde of ABS(Z) standard units of the mean. This is
depicted in Fgure 3-11. For the example where Z = 2, we can date tha
the probabilities of an event in a Normaly distributed random process
fdling outside of 2 standard unitsiis:

2 tailed probability (outside) = (1 - .9772499478) * 2
02275005216 * 2
04550010432

7
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Findly, we come to the case where we want to find what the probabili-
ties (areas under the N'(Z) curve) are for two different values of Z.

Suppose we want to find the area under the N'(Z2) curve between -1
standard unit and +2 standard units. There are a couple of ways to accom-
plish this. To begin with, we can compute the probability of not exceeding
+8 Sandard units with Equation (3.21), and from this we can subtract the
probability of not exceeding -1 dandard units (see Fgure 3-12). This

would give us

9772499478 - 1586552595 = .8185946883

Another way we could have peformed this is to take the number 1, rep-
resenting the entire area under the curve, and then subtract the sum of the
probability of not exceeding -1 standard unit and the probahility of exceed-
ing 2 sandard units

=1 = (022750052 + .1586552595)

=1 .1814033117

= .8185946883

With the basc mahemaicd tools regading the Norma Distribution

N(2)
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Figue 3-1 2 The area between -1 and +2 standard units.
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thus far covered in this chapter, you can now use your powers of reasoning
to figure any probabilities of occurrence for Normaly distributed random
variables

Further Derivatives of the Normal

Sometimes you may want to know the second derivative of the N(2)
function. Since the N(Z) function gives us the area under the curve a Z,
and the N’'(Z) function gives us the height of the curve itsdf a Z, then the
N”(2) function gives us the instantaneous slope of the curve a a given Z:

(3.23) N"(Z) = -Z/2.506628274 * EXP( - (Z » 2)/2)
where  EXP( ) = The exponentia function.

To determine what the dope of the N'(2) curve is & +2 standard units:

N"(2) = -2/2.506628274 * EXP( - (+2"2)/2)
= -212.506628274 * EXP( -2)
= —2/2.506628274 * .1353353
= -, 1079968336

Therefore, we can dete that the indantaneous rate of change in the
N’(Z) function when Z = +2 is —1079968336. This represents risefrun, o
we can sy that when Z = +2, the N'(Z) curve is rising -.1079968336 for
ever) 1 unit run in Z. This is depicted in Figure 3-13.

For the reader's own reference, further derivatives are now given. These
will not be needed throughout the remainder of this text, but arc provided
for the sske of completeness:

(3.24) N"‘(Z) = (Z A 2 = 1)/2.506628274 * EXP(= (ZA2)/2)
(3.25) N"“(Z) = (3 * Z) = Z A 3)/2.506628274 * EXP( - (Z ~2)/2)

(3.26) N"““(Z) = (Z N4 - (6 * Z A 2) + 3)/2.506628274
* EXP( = (Z A 2)/2)

As a find note regarding the Norma Digribution, you should bc aware
that the didribution is nowhere near as “pesked’* as the graphic examples
presented in this chapter imply. The red shape of the Norma Distribution
is depicted in Figure 3-14.
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Figure 3-13 N"(Z) giving the slope of the line tangent tangent to
N'(Z) at Z = +2.

Natice that here the scaes of the two axes are the same, wheress in the
other graphic examples they differ so as to exaggerate the shape of the dis
tribution.
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Figure 3-14 The real shape of the Normal Distribution.
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THE LOGNORMAL DISTRIBUTION

Many of the red-world applications in trading require a smal but crucid
modification to the Norma Didribution. This modification takes the
Normd, and changes it to what is known as the Lognorma Didribution.

Condder that the price of any fredy traded item has zero as a lower
limit2 Therefore, as the price of an item drops and agpproaches zero, it
should in theory become progressvely mvre difficult for the item to gt
lower. For example, consder the price of a hypotheticad stock a $10 per
share. If the stock were to drop $5, to $5 per share, a 50% loss, then accord-
ing to the Normd Digtribution it could just as easily drop from $5 to $0.
However, under the Lognorma, a Smilar drop of 50% from a price of $5
per share to $2.50 per share would be about as probable as a drop from $10
to $5 per share.

The Lognorma Didribution, Figure 3-15, works exactly like the Norma
Didtribution except that with the Lognormd we are deding with percentage
changes rather than dbsolute changes.

Condder now the upsde According to the Lognormd, a move from $10
per share to $20 per share is about as likdy as a move from $5 to $10 per
share, as both moves represent a 100% gain.

That isn't to say that we won't be usng the Norma Didribution. The
purpose here is to introduce you to the Lognorma, show you its reation-
ship to the Normd (the Lognorma uses percentege price changes rather
than absolute price changes), and point out that it usudly is used when talk-
ing about price moves, or anytime that the Norma would apply but be
bounded on the low end at zero.

Tv use the Lognormd didtribution, you smply convert the data you are
working with to naturd logarithms.®> Now the converted data will be
Normally digtributed if the raw data was Lognormdly digributed.

For ingance, if we are discusing the didribution of price changes as
“This idea that the lowest an item can trade for is zero is not a‘ways entirely trie, For instance,
during the stock market crash ol 1929 and the ensuing bear market, the shareholders of many
failed banks were held liable to the depositors in those banks. Persons who owned stock in such
banks not only lost their full investment, they also realized liability beyond the amount of their
investiment, Thr point here isn’t to say that such an event can or cannot happen again. Rather,

we cannot always say that zero is the absolute low end of what a freely traded item can be
priced at, although it usually is.

3The distinction behveen common and natural logarithms is reiterated here. A common log is a
log base 1Q, while a natural log is a log base e, where e = 2.7182818285. The common log ol X
is referre(] to mathematically as log(X) while the natural log is referred to as In(X). The distinc-
tion gets blurred when we observe BASIC programming code, which often utilizes a function
LOG(X) to return the natural log. This is diametrically opposed to mathematical convention.
BASIC does not have a provision For common logs, but the natural log can be converted to the
common log by multiplying the natural log by .4342917. Likewise, we cm convert common
logs to natural logs hy multiplying the common 'Iog hy 2.3026.
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Hgure 3-15 The Normal and Lognormal distributions.

being Lognormal, we can use the Normal distribution on it. First, we must
divide each cdosing price by the previous closing price. Suppose in this
ingance we are looking a the digribution of monthly closing prices (we
could use any time period-hourly, daily, yearly, or whatever). Suppose we
now see $10, $5, $10, $10, then $20 per share as our firg five months clos-
ing prices. This would then equate to a loss of 50% going into the second
month, a gain of 100% gving into the third month, a gain of 0% going into
the fourth month, and another gain of 100% into the fifth month.
Respectively then, we have quotients of .5, 2, 1, and 2 for the monthly price
changes of months 2 through 5. These are the same a HPRs from one
month to the next in successon. We must now convert to naturd logarithms
in order to study their distribution under the math for the Normal
Didribution. Thus, the natural log of .5 is ~.6931473, of 2 it is .6931471, and
of 1itis0. We are now able to apply the mathematics pertaining to the
Normal digtribution to this converted data

" THE PARAMETRIC OPTIMAL f

Now that we have studied the mathematics of the Normal and
IOgnormal digtributions, we will see how to determine an optima f based
on outcomes that are Normaly distributed.
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The Kelly formula is an example of a parametric optima f in that the
optima f returned is a function of two parameters. In the Kely formula the
input parameters are the percentage of winning bets and the payoff ratio.
However, the Kelly formula only gives you the optima f when the possible
outcomes have a Bernoulli distribution. In other words, the Kely formula
will only give the correct optimal f when there are only two possible out-
comes. When the outcomes do not have a Bernoulli distribution, such as
Normally distributed outcomes (which we arc about to study), the Kelly for-
mula will not give you the correct optimal 4

When they ae gpplicable, parametric techniques are far more powerful
than their empiricd counterparts. Assume we have a dtuation that can be
described completely by the Bernoulli distribution. We can derive our opti-
ma f here by way of dther the Kelly formula or the empiricad technique
detaled in Portfolio Management Formulas. Suppose in this instance we
win 60% of the time. Say we are tossing a coin that is biased, that we know
that in the long run 60% of the tosses will be heads. We are therefore going
to bet that each toss will be heads, and the payoff is 1:1. The Kelly formula
would tell us to bet a fraction of .2 of our stake on the next bet. Further sup-
pose that of the last 20 tosses, 11 were heads and 9 were tails. If we were to
use these last 20 trades as the input into the empirical techniques, the result
would be that we should risk .1 of our stake on the next bet.

Which is correct, the .2 returned by the parametric technique (the Kely
formula in this Bernoulli digtributed case) or the .1 returned empiricdly by
the last 20 tosses? The correct answer is .2, the answer returned from the
parametric technique. The reason is thet the next toss has a 60% probability
of being heads, not a 55% probability as the last 20 tosses would indicate.
Although we are only discussing a 5% probability difference, 1 toss in 20,
the effect on how much we should bet is dramatic. Generdly, the paramet-
ric techniques are inherently more accurate in this regard than ae ther
empirical counterparts (provided we know the digtribution of the out-
comes). This is the firg advantage of the parametric to the empirica. This is
dso a critica provisothat we must know what the digtribution of out-
comes is in the long run in order to use the parametric techniques. This is
the biggest drawback to usng the parametric techniques.

The second advantage is that the empiricd technique requires a past his
tory of outcomes whereas the parametric does not. Further, this past history
needs to be rather extensive. In the example just cited, we can assume that
if we had a history of 50 tosses we would have arrived & an empirica  opti-

1\We are speaking of the Kelly formulas here in a singular sense even though there are, in fact,
two different Kc”y formulas, one for when the payoff ration is 1:1. and the other for when the
pq\'nﬂ' is any ratio. In the examples of Kelly in this discussion we are assuming a payoff of L:L
hence it doesn't matter which of the two Kelly formulas we are using.
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mal f cdoser to 2, With a history of 1,000 tosses, it would be even closer
according to the law of averages.

The fact that the empirica techniques require a rather lengthy stream of

ast data has almost restricted them to mechanical trading systems.

ne trading anything other than a mechanicd trading sysem, be it by
Elliott Wave or fundamentals, has dmost been shut out from using the opti-
ma f technique With the parametric techniques this is no longer true
Someone who wishes to blindly follow some market guru, for instance, now
has a way to employ the power of optima f Therein lies the third advantage
of the parametric technique over the empirica-it can be used by any
trader in any market.

There is a big assumption here, however, for someone not employing a
mechanica trading system. The assumption is that the future distribution of
profits and losses will resemble the digtribution in the pest (which is what
we figure the optima f on). This may be less likdy than with a mechanica
system.

This dso sheds new light on the expected performance of any technique
that is not purdy mechanica. Even the best practitioners of such tech-
niques, be it by fundamentds, Gann, Elliott Wave, and so on, are doomed
to fall if they are too far beyond the pesk of (to the right of) the f curve. If
they are too far to the left of the peek, they are going to end up with geo-
metricaly lower profits than their expertise in ther area should have made
for them. Furthermore, practitioners of techniques that are not purdy
mechanicad mug redize that everything sad about optimad f and the purdy
mechanical  techniques applies This should be consdered when contem-
plating expected drawvdowns of such techniques. Remember tha the draw-
downs will be substantid, and this fact does not mean that the technique
should be abandoned.

The fourth and perhaps the biggest advantage of the parametric over the
empiricd method of determining optimd f, is that the parametric method
allows you to do ‘What if’ types of modding. For example, suppose you are
trading a market system that has been running very hot. You want to be pre-
pared for when that market system stops performing so well, as you know it
Inevitably will. With the parametric techniques, you can vary your input
parameters to reflect this and thereby put yourself at what the optimal f will
be when the market sysem cools down to the state that the parameters you
Input reflect. The parametric techniques are therefore far more powerful
than the empirical ones.

So why use the empirica techniques a al? The empirica techniques are
more intuitively obvious than the parametric ones are. Hence, the empirica
techniques are what one should learn firs before moving on to the para
metric. We have now covered the empirica techniques in detal and are
therefore prepared to study the parametric techniques.
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The Distribution of Trade P&L'S Trade# P&L Trade# P & L Trade# P & L Trade# P & L
Consider the following sequence of 232 trade profits and losses in points. It 166.  1.37  183. 0.24 200.  -0.98 217.  -1.08
d , hat th odi . h od thi 167. -1.93 184. 0.57 201. 0.17 218. 0.25
o&nt_ matter Wi the commodity is or what sysem generaied this 168, > 12 185 0.35 202, 0,96 219. 0.14
streamv-it could be any system on any market. 169. 0.62 186. 1.57 203. 0.35 220. 0.79
170. 0.57 187. -1.73 204. 0.52 221. -0.55
Trade# P& L Trade# P& L Trade# P & L Trade# P& L 171. 0.42 188. -0.83 205. 0.77 222. 0.32
172. 1.58 189. -1.18 206. 1.10 223. -1.30
1 0.18 42. -1.58 83. -4.13 124. -2.63 173. 0.17 190. -0.65 207. -1.88 224 . 0.37
2 -1.11 43. -0.5 84. -1.63 125. -0.73 174. 0.62 191. -0.78 208. 0.35 225. -0.51
3 0.42 44. 0.17 85. -1.23 126. -1.83 175. 0.77 192. -1.28 209. 0.92 226. 0.34
4. -0.83 45. 0.17 86. 1.62 127. 0.32 176. 0.37 193. 0.32 210. 1.55 227. -1.28
5. 1.42 46. -0.65 87. 0.27 128. 1.62 177. -1.33 194. 1.24 211. 1.17 228. 1.80
6 0.42 47. 0.96 88. 1.97 130. 1.02 178. -1.18 195. 2.05 212. 0.67 229. 2.12
7 -0.99 48. -0.88 89. -1.72 131. -0.81 179. 0.97 196. 0.75 213. 0.82 230. 0.77
8. 0.87 49, 0.17 90. 1.47 132. -0.74 180. 0.70 197. 0.17 214. -0.98 231. -1.33
9. 0.92 50. -1.53 91. -1.88 133. 1.09 181. 1.64 198. 0.67 215. -0.85 232. 1.52
0. -0.4 51. 0.15 92. 1.72 134. -1.13 182. 0.57 199. -0.56 216. 0.22
1.  -1.48 5.  -0.93 93. 1.02 135. 0.52 , _ _ .
1. 1.87 53. 0.42 9. 0.67 136. 0.18 If we wanted to determine an equdized parametric optima f we would
13. 1.37 54. 2.77 95. 0.67 137. 0.18 now convert these trade profits and losses to percentage gains and losses
4. -1.48 55. 8.52 %. -1.18 138. 1.47 [based on Equations (2.10a) through (2.10c)]. Next, we would convert these
5. -0.21 96. 2.47 97. 3.22 139. -1.07 percentage profits and losses by multiplying them by the current price of
1? éfg 2573 :igg gg _?;:223 ﬂ(l): —013;3 the underlying instrument. For example, P&L #] is .18. Suppose that the
1. 0.32 59. -1.88 100. -1.58 142. -0.88 entry price to this trade was 100.50. Thus, the percentage gain on this trade
9. -1.18 60. 1.67 101.  -1.88 143. -0.51 would be ,18/100.50 = .001791044776. Now suppose tha the current price
20. -0.43 61. -1.88 102. 1.23 144. 0.57 of this undelying instrument is 112.00. Multiplying .001791044776 by
21. 0.42 62. 3.72 103. 1.72 145. 2.07 112,00 trandates into an equalized P&L of 2005970149, If we were seking
gé ?1572 gi g?; 183: _01 éi ﬂg: %252 to do this procedure_on an equalized basis, we would perform this operation
. 1B 65. 1.37 106.  -1.88 148. 1.42 on al 232 trade profits and losses.
25. 0.15 66. 1.62 107. -1.88 149. 0.97 Whether or not we are going to perform our caculaions on an equalized
26. 0.15 67. 0.17 108. 1.27 150. 0.62 basis (in this chapter we will not operate on an eguaized bass), we must
21. -1.14 68. ggg ﬂg 2122 igé 86372 now cdculate the mean (arithmetic) and population standard deviation of
gg' _11_'35 sg 0:17 11, _0_'99 153_' 0.77 these 232 individud trade profits and lossss as .330129 and 1.743232
30: 0.17 71. 1.52 112. 1.37 154. 0.67 respectively (again, if we were doing things on an equdized basis, we would
31. 0.57 72. -1.78 113. 0.18 155. 0.37 need to determine the mean and standard deviation on the equdized trade
32. 0.47 73. 0.22 114. 0.18 156. 0.87 P&L'’s). With these two numbers we can use Equation (3.16) to trandate
3. -1.88 74. 0.92 115. 2.07 157. 1.32 each individud trade profit and loss into standard units.
34. 0.17 75. 0.32 116. 1.47 158. 0.16
35. -1.93 76. 0.17 117. 4.87 159. 0.18
3. 0.92 7. 057 118.  -1.08 160. 0.52 (3.16) z = (X-U)S
. 1.45 78. 0.17 119. 1.27 161. -2.33 _
W on 79, 1.18 120, 0.62 162. 1.07 where U = The meen of the data
39. 1.87 80. 0.17 121. -1.03 163. 1.32 S = The standard deviation of the data.
40. 0.52 81. 0.72 122. 1.82 164. 1.42
41. 0.67 82.  -3.33 123. 0.42 165. 2.72 X = The observed data point.
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Thus, to trandate trade #], a profit of .18, to standard units:

Z = (.18 - .330129)/1.743232
=-.150129/1.743232
=-.08612106708

Likewise, the next three trades of -1.11, 42, and -.83 trandate into
-.8261258398, .05155423948, and -.6655046488 standard units respectively.

If we are using equdized data, we smply standardize by subtracting the
mean of the data and dividing by the data's standard deviation.

Once we have converted dl of our individua trade profits and losses over
to standard units, we can bin the now sandardized data Recdl that with
binning there is a loss of information content about a particular distribution
(in this case the digtribution of the individua trades) but the character of
the didribution remains unchanged.

Suppose we were to now take these 232 individud trades and place them
into 10 hins. We are choosng abitrarily herewe could have chosen 9 hins
or 50 bins. In fact, one of the big arguments about binning data is that most
frequently there is condderable arbitrariness as to how the bins should be
chosen.

Whenever we bin something, we mugt decide on the ranges of the bins.
We will therefore sdect a range of -2 to +2 sigmas, or standard deviations.
This means we will have 10 equially spaced bins between -2 standard units
to +2 gdandard units. Since there are 4 standard units in tota between -2
and +2 dandard units and we are dividing this space into 10 equd regions,
we have 4/10 = .4 sandard units as the size or “width” of each hin,
Therefore, our first bin, the one “farthest to the left,” will contain those
trades that were within -2 to -1.6 standard units, the next one trades from
-16 to -1.2, then -1.2 to -.8, and s0 on, until our finad bin contains those
trades that were 1.6 to 2 standard units. Those trades that are less than -2
standard units or greater than +2 standard units will not be binned in this
exercise, and we will ignore them. If we so desired, we could have included
them in the extreme bins, placing those data points less than -2 in the -2 to
-16 hin, and likewise for those data points greater than 2. Of course, we
could have chosen a wider range for binning, but since thee trades are
beyond the range of our bins, we have chosen not to include them. In other
words, we are diminaing from this exercise those trades with P&L’s less
than .330129 - (1.743232 * 2) = -3.156335 or greater than ,330129
+ (1743232 * 2) = 3.816593.

What we have crested now is a digribution of this system’s trade P&L's.
Our digtribution contains 10 data points because we chose to work with 10
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/ 232 ACTUAL TRADES
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NORMAL DISTRIBUTION

Figure 3-16 232 individual trades in 10 bins from -2 to 42 sigma
versus the Normal Distribution.

bins. Each data point represents the number of trades that fel into that bin.
Each trade could not fdl into more than 1 bin, and if the trade was beyond
2 gandard units ether side of the mean (P&L’s < -3.156335 or > 3.816393),
then it is not represented in this distribution. Figure 3-16 shows this distri-
bution as we have just caculated it.

“Wait a minute” you say. “Shouldn’t the distribution of a trading sys
tem’'s P&L’s be skewed to the right because we are probably going to have a
few large profits?’

This particular distribution of 232 trade P&L’s happens to be from a sys
tem that very often takes smal profits via a target. Many people have the
mistaken impression that P&L didributions are going to be skewed to the
right for &l trading systems. This is not a dl true, as Figure 3-16 attests.
Different market systems will have different distributions, and you
shouldn’t expect them dl to be the same.

Also in Figure 3-16, superimposed over the didtribution we have just put
together, is the Norma Didribution as it would look for 232 trade P&L’s if
they were Normally distributed. This was done so that you can compare,
graphicdly, the trade P&L’s as we have jugt calculated them to the Normal.
The Norma Didribution here is caculated by firgt taking the boundaries of
each bin. For the leftmost bin in our example this would be Z = -2 and Z
= -1.6. Now we run these Z vaues through Equation (3.21) to convert these
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boundaries to a cumulaive probability. In our example, this corresponds to
02275 for Z = -2 and .05479932 for Z = -1.6. Next, we take the absolute
value of the difference between these two values, which gives us
ABS(.02275 - .05479932) = .03204932 for our example.. Last, we multiply
this answer by the number of data points, which in this case is 232 because
there are 232 totd trades (we 4ill must use 232 even though some have
been eliminated because they were beyond the range of our bins).
Therefore, we can date that if the data were Normdly distributed and
placed into 10 bins of equa width between -2 and +2 sigmas, then the left-
most bin would contain 03204932 * 232 = 7.43544224 eements. If we
were to cdculae this for each of the 10 bins we would cdculate the
Norma curve superimposed in Figure 3-16.

FINDING THE OPTIMAL f ON THE NORMAL
DISTRIBUTION

Now we can condruct a technique for finding the optima f on Normaly
digributed data. Like the Kdly formula this will be a parametric tech-
nique. However, this technique is far more powerful than the Kely for-
mula, because the Kely formula dlows for only two possble outcomes for
an event whereas this technique dlows for the full spectrum of the out-
comes (provided that the outcomes are Normally distributed). The beauty
of Normdly distributed outcomes (aside from the fact that they so fre-
quently occur, since they are the limit of many other didtributions) is that
they can be described by 2 parameters. The Kdly formulas will give you the
optimal f for Bernoulli distributed outcomes by inputting the 2 parameters
of the payoff raio and the probability of winning. The technique about to
be described likewise only needs hvo parameters as input, the average and
the standard deviation of the outcomes, to return the optima f

Recdl that the Norma Distribution is a continuous didtribution, In order
to usc this technique we need to make this distribution be discrete. Further
recdl that the Norma Distribution is unbounded. That is, the distribution
runs from minus infinity on the left to plus infinity on the right.

Therefore, the first two steps that we must take to find the optima f on
Normally didributed data is that we must determine (1) a how many Sg-
mas from the mean of the didribution we truncate the distribution, and (2)
into how many equaly spaced data points will we divide the range between
the hvo extremes determined in ().

For ingance, we know that 99.73% of dl the data points will fall between
plus and minus 3 sgmas of the mean, s0 we might decide to use 3 Sgmes as
our parameter for (1). In other words we are deciding to consder the
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Norma Didribution only between minus 3 sigmas and plus 3 sigmas of the
mean. In 0 doing, we will encompass 99.73% of al of the activity under the
Norma Digribution. Generdly we will want to use a vdue of 3 to 5 sgmes
for this parameter.

Regarding step (2), the number of equaly spaced data points, we will
generdly wat to use a bare minimum of ten times the number of Sgmas
we ae udng in (1). If we sdect 3 sigmas for (1), then we should sdect a
least 30 equaly spaced data points for (2). This means that we are going to
take the horizonta axis of the Norma Didribution, of which we are usng
the area from minus 3 sgmas to plus 3 dgmas from the mean, and divide
that into 30 equaly spaced points. Since there are 6 sigmas between minus
3 sgmas and plus 3 sigmes, and we want to divide this into 30 equially
spaced points, we Inust divide 6 by 30 = 1, or 29. This gives us .2068965517.
So, our firgt data point will be minus 3, and we will add 2068965517 to each
previous point until we reach plus 3, a which point we will have created 30
equaly spaced data points behveen minus 3 and plus 3. Therefore, our sec-
ond data point will be -3 + 2068965517 = -2.793103448, our third data
point 2.79310344 + 2068965517 = -2.586206896, and 0 on. In so doing,
we will have determined the 30 horizonta input coordinates to this system.

The more data points you decide on, the better will be the resolution of
the Normd curve. Usng ten times the number of sgmas is a rough rule for
determining the bare minimum number of data points you should use
Recdl that the Normd distribution is a continous distribution. However, we
inust make it discrete in order to find the optima f on it. The greater the
number of equaly spaced data points we use, the closer our discrete modd
will be to the actud continous digtribution itself, with the limit of the num-
ber of equaly spaced data points approaching infinity where the discrete
model  approaches the continous exactly.

Why not use an extremely large number of data points? The more data
points you use in the Normd curve, the more caculaions will be required
to find the optima f on it. Even though you will usudly be usng a computer
to solve for the optimal f, it will till be dower the more data points you use.
Further, each data point added resolves the curve further to a lesser degree
than the previous data point did. We will refer to these first two input
parameters as the bounding parameters.

Now, the third and fourth seps are to determine the arithmetic average
trade and the population standard deviation for the market sysem we are
working on. If you do not have a mechanicd system, you can get these num-
bers from your brokerage statements or you can estimate them. That is the
one of the red benefits of this techniquethat you don't need to have a
mechanicdl system, you don't even nced brokerage Statements or paper
trading results to use this technique. The technique can be used by smply
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edimating these two inputs, the arithmetic mean average trade (in points or
in dollars) and the population standard deviation of trades (in points or in
dollars, s0 long as it's consstent with what you use for the arithmetic mean
trade). Be forewarned, though, that your results will only be as accurate as
your estimates.

If you are having difficulty edimaing your populaion dtandard devia
tion, then smply try to esdimate by how much, on average, a trade will differ
from the average trade. By edimating the meen absolute devidion in this
way, you can use Equation (3.18) to convert your estimated mean absolute
deviation into an edimated standard deviation:

(318) S =M * 1/,7978845609
=M * 1253314137
where § = The standard deviation.

M = The mean absolute deviation.

We will refer to these two parameters, the aithmetic mean average
trade and the standard deviation of the trades, as the actual input
parameters.

Now we want to take al of the equally spaced data points from step (2)
and find their corresponding price vaues, based on the aithmetic mean
and dandard deviation. Recdl that our equdly spaced data points are
expressed in terms of standard units. Now for each of these equaly spaced!
data points we will find the corresponding price as:

(3.27) D=U+(S*E)
where D = The price vadue corresponding to a standard unit vaue.

E = The sandard unit vaue.
S = The population standard deviation.
U = The aithmetic mean.

Once we have determined dl of the price vaues corresponding to each
data point we have truly accomplished a grest ded. We have now con-
structed the distribution that we expect the future data points to tend to.

However, this technique dlows us to do a lot more than that. We can!
incorporate two more parameters that will dlow us to peform “What if’
types of soenarios about the future. These parameters, which we will calll
the “What if” parameters, dlow us to see the effect of a change in our aver- -
age trade or a change in the disperson (dandard deviation) of our trades.

FINDING THE OPTIMAL f ON THE NORMAL DISTRIBUTION 135

The firs of these paamees, cdled shrink, dfects the average trade
Shrink is smply a multiplier on our average trade. Recall that when we find
the optimal f we aso obtain other caculations, which are useful by-products
of the optima f Such cdculaions indude the geometric mean, TWR, and
geometric average trade. Shrink is the factor by which we will multiply our
average trade before we peform the optima f technique on it. Hence
shrink lets us see what the optimd f would be if our average trade were
affected by shrink as well as how the other by-product caculaions would be
affected.

For example, suppose you are trading a sysem that has been running
very hot lately. You know from past experience that the system is likely to
sop peforming so well in the future. You would like to see wha would
happen if the average trade were cut in hdf. By usng a drink vaue of .5
(snce drink is a multiplier, the average trade times .5 eguds the average
trade cut in hdf) you can peform the optima f technique to determine
what your optima f should be if the average trade were to be cut in half.
Further, you can see how such changes affect your geometric average trade,
and so on.

By using a shrink vaue of 2, you can dso see the affect that a doubling of
your average trade would have. In other words, the dhrink parameter can
aso be used to increase (unshrink?) your average trade. What's more, it lets
you teke an unprofitable system (that is, a system with an average trade less
than zero), and, by using a negative vaue for shrink, see what would happen
if that system became profitable. For example, suppose you have a system
that shows an average trade of -$100. If you use a shrink vaue of -5, this
will give you your optima f for this distribution as if the average trade were
$50, since -100 * -5 = 50. If we used a shrink factor of -2, we would obtain
the distribution centered about an average trade of $200.

You mugt be careful in using these “What if” parameters, for they make
it essy to mismanage performance. Mention was jus made of how you can
tun a sysem with a negative aithmetic average trade into a postive one.
This can lead to problems if, for ingance, in the future, you ill have a neg-
aive expectation.

The other “What if” parameter is one cdled stretch. This is not, as its
name would imply, the opposite of shrink. Rather, dretch is the multiplier
to be used on the standard deviation. You can use this parameter to deter-
-mine the effect on f and its by-products by an increase or decrease in the
disperson. Also, unlike shrink, stretch must aways be a postive number,
whereas shrink can be postive or negative (s0 long as the average trade
times shrink is positive). If you want to see what will happen if your stan-
dard deviation doubles, smply use a vadue of 2 for dretch. To see what

"Would happen if the disperson quieted down, use a vdue less than 1.
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You will notice in usng this technique that lowering the stretch toward
zero will tend to increase the by-product caculaions, resulting in a more
optimistic assessment of the future and vice versa. Shrink works in an oppo-
site fashion, as lowering the shrink towards zero will result in more pes
smigic assessments about the future and vice versa

Once we have determined what vaues we want to use for gretch and
shrink (and for the time being we will use vadues of 1 for both, which means
to leave the actud parameters unaffected) we can amend Equation (3.27)
to:

(3.28) D = (U * Shrink) + (S* E * Stretch)
where D

The price vadue corresponding to a sandard unit vaue.

E = The sandard unit vaue
S = The population standard deviation.
U = The aithmeic mean.

To summarize thus far, the first two steps are to determine the bounding
paameers of the number of sgmes either sde of the mean we are going to
use, as wdl as how many equaly spaced data points we are going to use
within this range. The next two steps are the actud input parameters of the
arithmetic average trade and population standard deviation. We can derive
these parameters empiricadly by looking at the results of a given trading sys-
tem or by using brokerage datements or paper trading results. We can dso
derive thee figures by edimation, but remember that the results obtained
will only be as accurate as your estimates. The fifth and sixth steps are to
determine the factors to use for stretch and shrink if you are going to per-
forrn a “What if’ type of scenario. If you are not, smply use vaues of 1 for
both sretch and shrink. Once you have completed these Sx gteps, you can
now use Equation (3.28) to perform the seventh step. The seventh step is to
convert the equaly spaced data points from sandard vaues to an actud
amount of either points or dollars (depending on whether you used points
or dollars as input for your arithmetic average trade and populaion stan-
dard deviation).

Now the eighth step is to find the associated probability with each of the
equally spaced data points. This probability is determined by using
Equetion (3.21):

(321) N@Z) =1 - N'(2) * (1330274429 * Y A 5) - (1821255978
2Y A4) + (1781477937 * Y A 3) - (356563782 * Y A 2)
+(.31938153 * Y))
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If Z<0then N(Z) =1 - N(2)
where Y = 1/(1+ .2316419 * ABS(Z))
ABS() = The absolute vaue function.
N’(Z) = 398942 * EXP( = (Z * 2/2))
EXP() = The exponentid function.

However, we will use Equation (3.21) without its 1 = as the firg term in the
equation and without the -Z provision (i.e., without the “If Z < O then N(Z)
= 1- N(2)"), since we want to know what the probabilities are for an event
equaling or exceeding a prescribed amount of standard units.

So we go dong through each of our equaly spaced data points Each
point has a dandard vaue, which we will use as the Z paameter in
Equation (3.21), and a dollar or point amount. Now there will be another
variable corresponding to each egualy spaced data point-the associated
probability.

The Mechanics of the Procedure

The procedure will now be demondrated on the trading example intro-
duced earlier in this chapter. Since our 232 trades are currently in points,
we should convert them to their dollar representations. However, since the
market is a not specified, we will assign an arbitrary value of $1,000 per
point. Thus, the average trade of .330129 now becomes .330129 * $1000, or
an average trade of $330.13. Likewise the population standard deviation of
1743232 is dso multiplied by $1,000 per point to give $1,743.23.

Now we condruct the marix. Fird, we must determine the range, in Sg-
mes from the mean, tha we want our caculations to encompass. For our
example we will choose 3 sigmas, S0 our range will go from minus 3 sigmas
to plus 3 sigmas. Note that you should use the same amount to the left of
the mean that you use to the right of the mean. That is, if you go 3 sigmas to
the |t (minus 3 sgmas) then you should not go only 2 or 4 sgmeas to the
right, but rather you should go 3 sigmas to the right as well (i.e, plus 3 sig-
mes from the mean).

Next we must determine how many equaly spaced data points to divide
fhis range into. Choosing 61 as our vaue gives a data point a every tenth of
8 dandard unit-dmple. Thus we can determine our column of standard

values.

Now we must determine the arithmetic mean that we are going to use as

L 'mput, We determine this empiricdly from the 232 trades as $330.13.
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Further, we must determine the population standard deviation, which we
adso determine empiricaly from the 232 trades as $1,743.23.

Now to determine the column of associated P&L’s. Tha is, we must
determine a P&L amount for each dandard vdue. Before we can deer-
mine our associated P&L column, we must decide on vdues for sretch and
shrink. Since we are not going to perform any “What if” types of scenarios a
this time, we will choose a vadue of 1 for both dretch and shrink.

Arithmetic mean = 330.13
Population Standard Deviation = 1743.23
Stretch = 1
Shrink = 1
Using Equation (3.28) we can cdculae our associaged P&L column. We

do this by taking each standard value and using it as E in Equation (3.28) to
get the column of associated P&L’s:

(3.29 D = (U * Srink) + (S* E * Stretch)
where D = The price vadue corresponding to a standard unit vaue.

E = The sandard unit vaue.
§ = The population standard deviation.
U = The aithmetic mean.

For the -3 standard value, the associated P&L is
D = (U * Shrink) + (S* E * Stretch)

= (330129 * 1) + (1743232 * (-3) * 1)

= 330129 + (-5229.696)

= 330129 - 5229.696

= -4899.567

Thus, our asocisted P&L column a a sandard vaue of -3 eguas
4899567. We now want to congruct the associsted P&L for the next stan-
dard vaue, which is -29, so we smply perform the same Equation, (3.29):
agan-only this time we use a vadue of -29 for E.

Now to determine the associated probability column. This is calculated
usng the standard vaue column as the Z input to Equation (3.21) without
the preceding 1 = and without the - Z provision (i.e, the “If Z < 0 then N(2)
= 1 = N(2)"). For the stlandard value of -3 (Z = -J), this is:
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N@Z) = N’

(2) * ((1.330274429 * Y ~5) - (1.821255978 * Y A 4)

+(1.781477937 * Y A 3) = (.356563782* Y A 2+ (.31938153 % Y))

If Z <0then N(Z) = 1 = N(2)

where

Y =1A1 + .2316419 * ABS(Z))

ABS() = The asolute vaue function.

N'(Z) = .398942 * EXP( ~ (Z A 2/2))

EXP( ) = The exponentid function.

Thus:

N'(3) =

398942 * EXP( = (( = 3) A 2/2))

= 398942 * EXP( - (9/2))
= 398942 * EXP( - 45)
=.398942 * 011109
=.004431846678

Y = 1/(1 + 2316419 * ABS(-3))
= 1/(1 + 2316419 * 3)
= 1/1 + 6949257)
= 1/1.6949257
= 5899963639

N3) =

004431846678 * ((1.330274429 * 5899963639 A 5)
= (1.821255978 * 5899963639 A 4) + (1781477937
* 5899963639 # 3) - (.356563782 +.5899963639 A 2)
+(.31938153 * .5899963639))

004431846678 * (( 1.330274429 * .07149022693)
- (1821255978 * .1211706) + (1781477937 * .2053752)
- (356563762 * .3480957094) + (.31938153 * .5899963639))

004431846678 * (.09510162081 - .2206826796
+.3658713876 - 1241183226 + .1884339414)

004431846678 * .3046059476
.001349966857
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Notg that even though Z is negative (Z=-3), we do not adjust N_(Z) here Vi[BE ASSOSngTED ﬁgggﬁéﬂf?\( ﬁﬁgoiﬁ?&
by making N(Z) = 1 =~ N(2). Since we ae not using the - Z provison, we
just let the answer be. 0.3 $853.10 0.382088 1.0006649234
Now for each vadue in the dandard value column there will be a corre- 0.4 $1,027.42 0.344578 1.0007220715
sponding entry in the associated P&L column and in the associated proba 0.5 $1,201.75 0.308537 1.0007561259
bility column. This is shown in the following table Once you have these 0.6 $1,376.07 0.274253 1.0007694689
three columns established you are reedy to begin the search for the optimal 0.7 $1,550.39 0.241963 1.0007647383
f and its by-products. 0.8 $1,724.71 0.211855 1.0007447264
0.9 $1,899.04 0.184060 1.0007122776
STD ASSOCIATED ASSOCIATED ASSOCIATED 1.0 $2,073.36 0.158655 1.0006701921
VALUE P&L PROBABILITY HPR AT f = .01 L1 $2,247.68 0.135666 1.0006211392
1.2 $2,422.01 0.115070 .0005675842
-3.0 ($4,899.57) 0.001350 0.9999864325 1.3 $2,596.33 0.096800 0005117319
-2.9 ($4,725.24) 0.001866 0.9999819179 1.4 $2,770.65 0.080757 .0004554875
-2.8 (84,550.92) 0.002555 0.9999761557 1.5 $2,944.98 0.066807 10004004351
-2.7 ($4,376.60) 0.003467 0.9999688918 1.6 $3,119.30 0.054799 1.0003478328
-2.6 (84,202.27) 0.004661 0.9999598499 1.7 $3,293.62 0.044565 .0002986228
2.5 ($4,027.95) 0.006210 0.9999487404 1.8 $3,467.95 0.035930 .0002534528
2.4 ($3,853.63) 0.008198 0.9999352717 1.9 $3,642.27 0.028716 1.0002127072
-2.3 ($3,679.30) 0.010724 0.9999191675 2.0 $3,816.59 0.022750 1.0001765438
2.2 (53,504.98) 0.013903 0.9999001875 2.1 $3,990.92 0.017864 .000144934
2.1 ($3,330.66) 0.017864 0.9998781535 2.2 $4,165.24 0.013903 0001177033
2.0 ($3,156.33) 0.022750 0.9998529794 2.3 $4,339.56 0.010724 0000945697
-1.9 ($2,982.01) 0.028716 0.9998247051 2.4 $4'51 3.89 0.008198 0000751794
-1.8 ($2,807.69) 0.035930 0.9997935316 2.5 $4,688.21 0.006210 1.0000591373
-1.7 ($2,633.37) 0.044565 0.9997598578 2.6 $4,862.53 0.004661 1.0000460328
-1.6 ($2,459.04) 0.054799 0.9997243139 2.7 $5,036.86 0.003467 1.0000354603
-1.5 (82,284.72) 0.066807 0.9996877915 2.8 $5,211.18 0.002555 1.0000270338
-1.4 ($2,110.40) 0.080757 0.9996514657 2.9 $5,385.50 0.001866 1.0000203976
-1.3 ($1,936.07) 0.096800 0.9996168071 3.0 $5,559.83 0.001350 1.0000152327
-1.2 ($1,761.75) 0.115070 0.9995855817
1.1 ($1,587.43) 0.135666 0.999559835 By-products atf = .0I:
-1.0 ($1,413.10) 0.158655 0.9995418607 TWR = 1.0053555695
-0.9 ($1,238.78) 0.184060 0.9995341524 sun of the probabilities = 7.9791232176
-6.8 ($1,064.46) 0.211855 0.9995393392 Geomean = 1.0006696309
-0.7 ($890.13) 0.241963 0.999560108 GAT = $328.09
-0.6 ($715.81) 0.274253 0.9995991135
-0.5 ($541.49) 0.308537 0.9996588827 Here is how you go about finding the optimal f First, you must deter-
-0.4 ($367.16) 0.344578 09997417168 mine the search method for f. You can smply loop fromOto 1 by a prede—
0.3 ($192.84) 0.382088 0.9998495968 ' termined anount (eg, .01), ue an iterative technique, or use the tech
-0.2 ($18.52) 0.420740 0.9999840984 nique of parabolic interpolation described in Portfolio Management
-0.1 $155.81 0.460172 1.0001463216 Formulas. What you seek to find is what value for f (between 0 and 1) will
0.0 $330.13 0.500000 1.0003368389 result in the highes geometric meen.
0.1 $504.45 0.460172 1.0004736542 Once you have decided upon a search technique, you must determine
0.2 $678.78 0.420740 1.00058265
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what the worst-case associated P&L isin your table. In our example it is the Once we have cdculated an assodated HPR for each standard vaue for a
P&L corresponding to -3 standard units, 4899.57. You will need to use this given test value off (.01in our example table), you are ready to calculate the
pa‘t|w|a’ vaue r%aj]y throughout the caculations. TWR The TWR is Smply the prOdUCt of dl of the HPRs for a glven f vdue
In order to find the geometric meen for a given f vaue for esch vaue of multiplied  together:
f that you are going to process in your search for the optima, you must con- N
vert each asgouated P&L and probability to an HPR. Equation (3.30) shows (331) TRW = (]| HPR,)
the cdculation for the HPR: iz
(3.30) HPR = (1 + (LAW/(=H)) AP where N = The totd number of equaly spaced data points.
where L = The associaed P&L. HPR; = The HPR corresponding to the i'th data point, given by
Equati .30).
W = The worst-case associated P&L in the table (This will quation(3:30)
dways be a negative vaue). So for our test vdue off = .01, the TWR will be
f = The tested value for f.
TWR = 9999864325 * .999981 * .. * 10000152327
P = The associated probability. 5 o179
= 1.0053555695
Working through an example now where we use the value of .01 for the . . _ '
tested vaue for f, we will find the associated HPR a the standard vaue of We can reedily convert a TWR into a geometric meen by taking the TWR
P&L. Therefore, our HPR here is N
HPR = (1 + (—4899.57/(—4899.57/(~.01)))) A 001349966857 (332 G=TRW A (l/ZlPi)
= (1 + (-4899.57/489957)) » .001349966857
- (1+ (—01)) A 001349966857 where N =The numlc.)er of equdl%/.s:)a:ed dat.a points. |
- 99 A 001349966857 P, = The associated probability of the ith data point.
= 9999864325 Note that if we sum the column that lists the 61 associated probabilities
Now we move down to our next standard vaue, of -2.9, where we have it equals 7.979105. Therefore, our geometric meen & f = 01 is:
an associated P&L of -2866.72 and an associated probability of 0.001865.
Our assodiated HPR here will be: G = 1.0053555695  (1/7.979105)
= 1.0053555695 A
HPR = ( 1+ (—4725.24/(—4899.57/-.01)) A 001866 1253273393
— (1+ (_4725.24/489957)) A 001866 = 10000693
= (1 + (—4725.24/489957)) A 001866 “ _ We can do cdoulae the geomeric average trade (CAT). This is the

. -8mount you would have mede, on average per contract per trede, if you

= (1+ (-009644193266)) * 001866 " Were trading this distribution of outcomes a a specified f value

990355807 A .001866
9999819

(3.33) GAT = (G(f) = 1) * (w/(-f))
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where G(f) = The geometric mean for a given f vadue
f = The given f vaue
W = The word-case asociated P&L.

In the case of our example, the f vaue is .01:

CAT = (1.00066963 - 1) * (—4899.57/(-.01))
= 00066963 * 489957
= 32809

Therefore, we would expect to make, on average per contract per trade,
$328.09.

Now we go to our next vaue for f that must be tested according to our
chosen search procedure for the optima £ In the case of our example we
are looping from 0 to 1 by 01 for f, so our next test vaue for f is .02. We will
do the same thing again. We will cdculae a new associated HPRs column,
and cdculae our TWR and geometric mean. The f vdue tha reaults in the
highest geometric mean is that value for f which is the optimad based on the
input parameters we have used.

In our example, if we were to continue with our search for the optima f,
we would find the optimal a f = .744 (I am using a step increment of .001 in
my search for the optima f here) This results in a geometric mean of
1.0265. Therefore, the corresponding geometric average trade is $174.45.

It is important to note that the TWR itsdf doesn't have any red meaning
& a by-product. Rether, when we are cadculaing our geometric mean para
metricdly, as we are here, the TWR is smply an interim step in obtaining
that geometric mean. Now, we can figure what our TWR would be after X
trades by taking the geometric mean to the power of X. Therefore, if we
want to cdculate our TWR for 232 tredes & a geometric mean of 1.0265,
we would raise 1.0265 to the power of 232, obtaining 43L.79. So we can
date that trading at an optima f of ,744, we would expect to make 43,079%
((431.79 - 1) * 100) on our dteke after 232 trades.

Another by-product we will caculate is our threshold to geometric
Equation (2.02):

Threshold to geometric = 330.13/174.45 * -4899.57/-.744
= 12,462.32

Notice thet the arithmetic average trade of $330.13 is not something that
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we have cdculated with this technique, rather it is a given as it is one of the
input parameters.

We can now convert our optima f into how many contracts to trade by
the equations:

(334) K = E/Q
whee K = The number of contracts to trade.
E=

The current account equity.

(335) Q = W/( -f)
whee W = The word-case associated P&L.
f = The optimd f vaue
Note that this varigble, Q, represents a number that you cen divide your
account equity by as your equity changes on a day-by-day basis to know how

many contracts to trade.
Returning now to our example:

Q = -4,899.57/-.744
= $6,585.44
Therefore, we will trade 1 contract for every $6,585.44 in account equity.
For a $25,000 account this means we would trade:
K = 25000/6585.44
= 3.796253553
Snce we cannot trade in fractiond contracts, we must round this figure
0f3796253553 down to the nearest integer. We would therefore trade 3
contracts for a $25,000 account. The reason we aways round down rather
than up is that the price extracted for being dightly below optima is less

than the price for being dightly beyond it.
Notice how sendtive the optima number of contracts to trade is to the

* word loss. This wordt loss is solely a function of how many sigmas you have

decided to go to the Ieft of the mean. This bounding parameter, the range
of sigmas, is very important in this calculation. We have chosen three sigmas
in our caculaion. This means that we are, in effect, budgeted for a three-
Sgma loss However, a loss gregter than three Sgmas can redly hurt us
depending on how far beyond three sigmas it is. Therefore, you should be



146 PARAMETRIC OPTIMAL f ON THE NORMAL DISTRIBUTION

vey caeful wha vadue you choose for this range bounding parameter.
You'll have a lot riding on it.

Notice that for the sake of smplicity in illugration, we have not
deducted commissons and dippage from these figures. If you wanted to
incorporate commissions and dippage, you should deduct X dallars in com-
missions and dippage from each of the 232 trades a the outset of this exer-
cse You would caculae your aithmetic average trade and population
standard deviation from this st of 232 adjusted trades, and then perform
the exercise exactly as described.

We could now go back and peform a “What if” type of scenario here
Suppose we want to see what will happen if the system begins to perform at
only haf the profitability it is now (shrink = .5). Further, assume that the
market that the syssem we are looking at is in gets very volatile, and that as a
consequence the digpersion among the trades increases by 60% (dretch =
1.6). By pumping these parameters through this systlem we can see what the
optima will be so that we can make adjusments to our trading before these
changes become higory. In so doing we find that the optimd f now
becomes 262, or to trade 1 contract for every $31,305.92 in account equity
(dnce the word-case associated P&L is drongly affected by changes in
dretch and ghrink). This is quite a change. This means tha if these changes
in the market sysdem dat to materidize, we are going to have to do some
dtering in our money management regarding that sysem. The geometric
mean will drop to 1.0027, the geometric average trade will be cut to $83.02,
and the TWR over 232 trades will be 1.869. This is not even close to what it
presently would be. All of this is predicated upon a 50% decrease in average
trade and a 60% increase in standard deviation. This quite possibly could
happen. It is aso quite possible that the future could work out more favor-
ably than the past. We can test this out, too. Suppose we want to see what
will happen if our average profit incresses by only 10%. We can check this
by inputting a shrink value of 1.1. These “What if' parameters, stretch and
drink, redly give us a grest ded of power in our money management.

The closer your didtribution of trade P&L’s is to Norma to begin with,
the better the technique will work for you. The problem with amost any
money management technique is that there is a certain amount of “dop”
involved. [lere, we can define dop as the difference between the Norma
Digribution and the digribution we are actudly usng. The difference
between the two is dop, and the more dop there is, the less effective the
technique  becomes.

To illugtrate, recal that using this method we have determined tha to
trade 1 contract for every $6,585.44 in account equity is optimal. However,
if we were to go over these trades and find our optimd f empiricaly, we

FINDING THE OPTIMAL f ON THE NORMAL DISTRIBUTION 147

would find that the optimal is to trade 1 contract for every $7,918.04 in
account equity. As you can see, usng the Norma Didribution technique
here would have us dightly to the right of the f curve, trading dightly more
contracts than the empiricd would suggest.

However, as we shdl see, there is a lot to be said for expecting the future
digribution of prices to be Normadly distributed. When someone buys or
sdls an option, the assumption that the future digtribution of the log of
rice changes in the underlying instrument will be Normd is built into the
price of the option. Along this same line of reesoning, someone who is
entering a trade in a market and is not usng a mechanicad sysem can be
said 10 be looking a the same posshle future distribution.

The technique detailed in this chapter was shown using data that was not
equaized. We can dso use this very same technique on equdized data by

incorporating the following changes

|. Before the data is standardized, it should be equdized by firs con-
veting dl of the trade profits and losses to percentage profits and
losses per Equations (2.10a) through (2.10c¢). Then these percentage
profits and losses should be trandated into percentages of the current
price by smply multiplying them by the current price.

2. When you go to dandardize this data, standardize the now equdized
data by usng the mean and dandard deviation of the egudized daa

3. The rest of the procedure is the same as written in this chapter in
tems of determining the optima f, geometric mean, and TWR. The
geometric  average trade, aithmetic average trade, and threshold to
the geometric are only vdid for the current price of the underlying
ingrument. When the price of the underlying instrument changes,
the procedure must be done again, going back to step 1 and multiply-
ing the percentage profits and losses by the new underlying price.
When you go to redo the procedure with a different underlying price,
you will obtan the same optimd f, geometric mean, and TWR.
However, your aithmetic average trade, geometric average trade, and
threshold to the geometric will differ, depending on the new price of
the underlying instrument.

4. The number of contracts to trade as given in Equation (3.34) must be
changed. The word-case associated P&L, the W vaiable in Equation
(334) [as subequation (3.35)] will be different as a result of the
changes caused in the equdized data by a different current price.
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In this chapter we have learned how to find the optimal f on a ‘ 4
probability distribution. We have used the Normal Distribution

because it shows up so frequently in many naturally occurring pro-
cesses and because it is easier to work with than many other distribu-

tions, since its cumulative density function, Equation (3.21), exists.5 ) Param EU‘I C TeC h ni q ues on
Yet the Normal is often regarded as a poor model for the distribution . . .

of trade profits angtlosses. What then is a good model for our pur- Oth el’ D IStI’I b Utl O nS

poses? In the next chapter we will address this question and build
upon the techniques we have learned in this chapter to work for any
type of probability distribution, whether its cumulative density func-
tion is known or not.

We have seen in the previous chapter how to find the optimal f and its
by-products on the Normal Distribution. The same technique can be
applied to any other distribution where the cumulative density func-
tion is known. Many of these more common distributions and their
cumulative density functions are covered in Appendix B.
Unfortunately, most distributions of trade P&L’s do not fit neatly into
the Normal or other common distribution functions. In this chapter
we first treat this problem of the undefined nature of the distribution
of trade P¢>L’s and later look at the technique of scenario planning, a
natural outgrowth of the notion of optimal f. This {echnique has many
broad applications. This then leads into finding the optimal f on a
binned distribution, which leads us to the next chapter regarding both
options and multiple simultaneous positions.

Before we attempt to model the real distribution of trade P{rL’s, we
must have a method for comparing two distributions.

THE KOLMOGOROV-SMIRNOV (K-S) TEST

The chi-square test j5 no doubt the most popular of al methods of compar-

ing hvo digributions. Since many market-oriented gpplications other than
- the ones we perform in this chapter often use the chi-square tedt, it is dis-
cussed in Appendix A. However, the best test for our purposes may well be
the K-S test. This very efficient test is applicable to unbinned distributions
thet are a function of a single independent varigble (profit per trade in our
case),
All cumulative density functions have a minimum vaue of 0 and a maxi-

SAgain, the cumulative density function to the Normal Distribution does not really exist, but
rather is very closely approximated by Equation (3.21). However, the cumulative density of the

Normal can a least be approximated by an equation, a luxury which not al digtributions possess.

149
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mum vaue of 1. What goes on in between differentiates them. The K-S test
messures a very smple variable, D, which is defined as the maximum abso-
lute value of the difference between two didtributions cumulative density
functions.

To peform the K-S test is rdatively smple N objects (trades in our
cae) are dandardized (by subtracting the meen and dividing by the san-
dard devigtion) and sorted in ascending order. As we go through these
sorted and standardized trades, the cumuletive probability is however many
trades we've gone through divided by N. When we get to our fird trade in
the sorted sequence, the trade with the lowest dtandard vaue, the cumula
tive density function (CDF) is equd to I/N. With each sandard vdue that
we pass dong the way up to our highest standard velue, 1 is added to the
numerator until, at the end of the sequence, our CDF is equa to N/N or 1.

For each standard vdue we can compute the theoretica digtribution that
we wish to compare to. Thus, we can compare our actud cumuldive densty
to any theoreticd cumulative density. The vaiable D, the K-S datidtic, is
equd to the greatest distance between any sandard vaues of our actud
cumulative densty and the vaue of the theoretica digtribution’'s CDF a
that standard vaue. Whichever standard vaue results in the greatest differ-
ence is asdgned to the variable D.

When comparing our actuad CDF & a given dandard vaue to the theo-
reticd CDF a that standard value, we must dso compare the previous stan-
dard vaue's actud CDF to the current standard values actud CDF. The
reason is that the actua CDF bresks upward ingtantaneoudy at the data
points, and, if the actud is below the theoretical, the difference between the
lines is greater the ingtant before the actua jumps up.

To see this, look a Figure 4-1. Notice that a point A the actud line is
above the theoreticd. Therefore, we want to compare the current actud
CDF vdue to the current theoreticdl vaue to find the grestest difference.
Ye a point B, the actud line is below the theoretica. Therefore, we want
to compare the previous actud vaue to the current theoreticd vaue. The
rationde is tha we are measuring the greatest distance between the two
lines. Since we are measuring a the indant the actud jumps up, we can
consider using the previous vaue for the actua as the current vaue for the
actud the ingtant before it jumps.

In summary, then, for each standard value, we want to teke the absolute
vaue of the difference between the current actud CDF vaue and the cur-
rent theoretical CDF vaue. We dso want to take the absolute vaue of the
difference between the previous actud CDF vaue and the current theoreti-
cd CDF vdue By doing this for dl sandard vaues, dl points where the
actud CDF jumps up by I/N, and teking the grestest difference, we will
have detemined the variable D.
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Figure 4-I The K-S test.

The lower the vdue of D, the more the two didributions are dike. We
can reedily convert the D vaue to a sgnificance level by the following for-
mula

(4.01) sezglq%z)w-z* EXP(-2* JA2* (NA(1/2)* D) A 2)

where SIG = The significance level for a given D and N.
D = The K-S datidtic.

N = The number of trades that the K-S datistic is determined
over.

% = The modulus opcrator, the remainder from divison. As it
is used here, J % 2 yields the remainder when J is divided
by 2.

EXP) = The exponentid function.

There iS nO need to kegp summing the vaues until J gets to infinity. The

equation converges (in short order, usually) to a vadue. Once the conver-
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gence is obtained to a close enough user tolerance, there is no need to con-
tinue summing vaues.
To illugrate Equation (4.01) by example Suppose we had 100 trades
that yielded a K-S gatistic of .(4:
]1:(1%2)* 4-2*% EXP(-2* 1A2* (100 A (1/2) %.04) A 2)
= 1*4_2+EXP(-2* 1A2* (10%.04)7 2)
= 2*EXP(-2* 1A2* 4A2)
= 2% EXP(-2* 1* .16)
=2 * EXP(-.32)
=2*.726149
= 1.452298

So our firgt vdue is 1.452298. Now to this we will add the next pass
through the equation, and as such we must increment J by 1 so that J now
equas ]2:

R=(Q2%2)*4-2+EXP(2% 2A2% (100 A (1/2) * .04) A 2)
= 0% 4-2+EXP(2* 27 2% (10* 04) A 2)
z2+«EXP(-2%2A2*% 412
= 2% EXP(-2* 4 * .16)
= 2 * EXP(-129)
= -2 % 2780373
=-.5560746

Adding this vaue of —.5560746 back into our running sum of 1.452208
gives us a new running sum of .8962234. We again increment J by 1, so it
equals 13, and peaform the equaion. We take the resulting sum and add it
to our running total of .8962234. We kegp on doing this unti we converge
to a vaue within a dose enough tolerance. For our example, this point of
convergence will be right around 997, depending upon how many dedmd
places we want to be accurate to. This answer means that for 100 trades
where the grestest vaue between the two digtributions was .04, we can be
99.7% certain that the actua didribution was generated by the theoretica
digribution function. In other words, we can be 99.7% certain that the the-
oretical distribution function represents the actual distribution. Incidentally,
this is a very good sgnificance leve.
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CREATING OUR OWN CHARACTERISTIC

DISTRIBUTION  FUNCTION

We have detemined that the Norma Probability Didtribution is generdly
not a very good modd of the distribution of trade profits and losses.
Further, none of the more common probability digtributions are either.
Therefore, we must creste a function to modd the didtribution of our trade
profits and losses ourselves,

The digribution of the logs of price changes is generdly assumed to be
of the stable Paretian variety (for a discusson of the stable Paretian distri-
bution, refer to Appendix B). The digtribution of trade P&L’s can be
regarded as a fransformation of the distribution of prices. This transforma-
tion occurs as a result of trading techniques such as traders trying to cut
their losses and let their profits run. Hence, the digtribution of trade P&L'’s
can dso be regarded as of the stable Paretian variety. What we are about to
study, however, is not the stable Paretian.

The dable Paetian, like adl other digributiona functions, modds a spe-

- cific probability phenomenon. The dable Paretian modes the distribution

of sums of indcpendent, identicaly digtributed random variables. The distri-
butional function we arc about to sudy does not model a specific probabil-
ity phenomenon. Rather, it models other unimoda digtributiona functions.
As such, it can replicate the shape, and therefore the probability densties,
of the dable Paretian as well as any other unimoda distribution.

Now we will creste this function. To begin with, consder the following

" equetion:

(4.02) Y=1U/X"2+1)

This equation graphs as a general bell-shaped curve, symmetric about
the X axis, asis shown in Figure 4-2,

We will thus build from this generd equation. The variable X can be
thought of as the number of sandard units we are ether sde of the mean,
or Y axis. We can dfect the first moment of this “digtribution,” the location,
by adding a value to represent @ change in location to X. Thus, the equation
becomes:

44.03) Y=IA(X=LOC)A2+1)
" where Y = The ordinate of the characteristic function.
X

The standard value amount.

LOC = A vaiadle representing the location, the firs moment of the
digtribution.
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Figure 4-2 LOC =0 SCALE =1 SKEW =0 KURT =2

Thus, if we wanted to ater location by moving it to the left by 1/2 of a
sandard unit, we would st LOC to -.5. This would give us the graph
depicted in Figure 4-3.

Likewise, if we wanted to shift location to the right, we would use a pos-
tive vaue for the LOC variable. Kegping LOC a zero will result in no shift
in location, as depicted in Figure 4-2.

The exponent in the denominator affects kurtosis. Thus far, we have seen
the digribution with the kurtosis st to a value of 2, but we can control the
kurtosis of the disribution by changing the vaue of the exponent. This
dters our characterigtic function, which now appears as.

(4.04) Y = /(X - LOC) A KURT + 1)
where Y = The ordinate of the characteristic function.

X = The sandard vaue amount.

LOC = A variable representing the location, the first mornent of the
digtribution.

KURT = A variable representing kurtoss, the fourth moment of the
digtribution.

Figures 4-4 and 4-5 demondrate the effect of the kurtoss varigble on
our characteristic function. Note that the higher the exponent the more flat-
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opped and thin-tailed the distribution (platykurtic), and the lower the expo-

Hent, the more pointed the pesk and thicker the tails of the distribution

leptokurtic) .
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So that we do not run into problems with irrationd numbers when
KURT < 1, we will use the absolute vaue of the coefficient in the denomi-
nator. This does not affect the shape of the curve. Thus, we can rewrite
Equation (4.04) as

(4.04) Y = 1/(ABS(X - LOC) » KURT + 1)

We can put a multiplier on the coefficient in the denominator to allow us
to control the scale, the second moment of the distribution. Thus, our char-
ateridic function has now become
(4.05) Y = I/(ABS{(X =~ LOC) * SCALE) A KURT + 1)
where Y = The ordinate of the characterigtic function.

X = The gandard vaue amount.

LOC = A vaiable representing the location, the firsd moment of
the distribution.

SCALE = A vaiable representing the scale, the second moment of
the distribution.

KURT = A vaiable representing kurtoss, the fourth moment of
the distribution.
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Figures 4-6 and 4-7 demondrate the effect Of the scale parameter. The
effect of this parameter can be thought of as moving the horizonta axis up
or down on the didribution. When the axis is moved up (by decreasing
scde), the graph is dso enlarged. This results in what we have in Figure
4-6. This has the effect of moving the horizontd axis up and enlarging the
digribution curve. The result is as though we were looking a the “cap” of
the digtribution. Figure 4-7 does just the opposite. As is borne out in the
figure, the effect is that the horizontd axis has been moved down and the
digribution curve shrunken.

We now have a characteridic function to a digtribution whereby we have
complete control over three of the firs four moments of the distribution.

i Presently, the distribution iS Symmetric about the location. Wha we now

need is to be able to incorporate a varigble for skewness, the third moment
of the digtribution, into this function. To account for skewness, we must
amend our function further. Our characteristic function has now evolved to:

(4.06) Y = (1/(ABS((X = LOC) * SCALE) A KURT + 1)) A C

where C = The exponent for skewness, caculated as.

(407) C = (1 + (ABS(SKEW) A ABS(1/(X - LOC)) * sign(X)
* —sign(SKEW))) A 5
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Figure 4-7 LOC =0 SCALE =2 SKEW=0 KURT =2.

Y = The ordinate of the characteristic function.
X = The standard vaue amount.

LOC = A vaiable representing the location, the firsd moment of the
digtribution.

SCALE = A vaiadle representing the scae, the second moment of the
digtribution.

SKEW = A vaiadle represanting the skewness, the third moment of
the digtribution.

KURT = A varidble representing kurtods, the fourth moment of the
distribution.

sign() = The 9gn function, equal to 1 or -1. The sign of X is calcu-
lated as X’ABS(X) for X not equal to 0. If X is equal to zero,
the sgn should be regarded as postive.

Foures 4-8 and 4-9 demondrate the effect of the skewness variable on

our distribution.

A few important notes on the four parametes LOC, SCALE, SKEW,

and KURT. With the exception of the varidble LOC (which is expressed 4§
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the number of standard values to offsat the distribution by), the other three
vaiables ae nondimensional—that is, their vdues are pure numbers which
have meaning only in a relaive context, characterizing the shape of the dis-
tribution and are rlevant only to this distribution.

Furthermore, the parameter values are not the same values you would
get if you employed any of the standard measuring techniques detalled in
“Descriptive Measures of Didtributions” in Chapter 3. For instance, if you
determined one of Pearson’'s coefficients of skewness on a st of data, it
would not be the same vaue that you would use for the varisble SKEW in
the adjustablc digtributions here. The values for the four varisbles are
unigue to our digtribution and have meaning only in a relative context.

Also of importance is the range that the variddes can take The SCALE
vaiable must dways be postive with no upper bound, and likewise with
KURT. In application, though, you will generdly use vaues between .5 and
3, ad in extreme cases between .05 and 5. However, you cen use vaues
beyond these extremes, so long as they are greater than zero.

The LOC variable can be postive, negdive, or zero. The SKEW paam-
eter must be greater than or equa to -1 and less than or equd to +1. When
SKEW eguas +1, the entire right side of the distribution (right of the pesk)
is egud to the peak, and vice versa when SKEW equdls -1.

The ranges on the varidbles are summarized as

(4.08) -infinity < LOC ¢ +inﬁnity
(4.09) SCALE > 0

(4.10) -1 <= KBEW <= +1

(411) KURT > 0

Figures 4-2 through 4-9 demondrate just how pliable our digtribution is.
We can fit these four parameters such that the resultant digtribution can fit
to just about any other distribution.

FITTING THE PARAMETERS OF THE DISTRIBUTION

Jugt as with the process described in Chapter 3 for finding our optimal f on
the Normd Didtribution, we must convert our raw trades data over to stan-
dard units. We do this by first subtracting the mean from eech trade, then
di\ﬁding by the population standard deviation. From this point forward, weé
will be working with the data in standard units rather than in its raw form.

After we have our trades in standard vaues, we can sort them in ascending
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order. With our trades data arranged this way, we will be able to perform
the K-Stest on it.

Our objective now is to find what vaues for LOC, SCALE, SKEW, and
KURT best fit our actuad trades distribution. To determine this “best fit” we
rely on the K-S test. We edimate the parameter vaues by employing the
~ “twentieth-century brute force technique” We run every combindion for
KURT from 3 to .5 by —.1 (we could just as essily run it from .5to 3 by .1, &
jt doesn't matter whether we ascend or descend through the values). We
adso run every combination for SCALE from 3 to .5 by -1, For the time

being we leave LOC and SKEW a 0. Thus, we are going to run the follow-
ing combinations:
LOC SCALE  SKEW KURT
0 3 0 3
0 3 0 2.9
0 3 0 2.8
0 3 0 2.7
0 3 0 2.6
0 3 0 2.5
0 3 0 2.4
0 3 0 2.3
0 3 0 2.2
0 3 0 2.1
0 3 0 2
0 3 0 1.9
0 2.9 0 3
0 2.9 0 2.9
0 5 0 .6
0 5 0 5

We pefform the K-S test for each combination. The combination that
results in the lowest K-S statistic we assume to bc our optimal best-fitting
Paander vaues for SCALE and KURT (for the time being).

To perform the K-S test for each combination, we need both the actual
distribution and the theoretical distribution (determined from the parame-

ters for the adjustable digtribution that we are testing). We dready have
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seen how to construct the actud cumulative density as X/N, where N is the
totd number of trades and X is the ranking (between 1 and N) of a given
trade. Now we need to cdculate the CDF, (the function for what percent-
age of the area of the characteristic function a certain point constitutes) for
our theoreticd didribution for the given LOC, SCALE, SKEW, and KURT
parameter vaues we are presently looping through.

We have the characteristic function for our adjustable didtribution. This
is Equation (4.06). To obtain a CDF from a didribution’s characteristic
function we must find the integral of the characteristic function. We define
the integral, the percentage of aea under the characteristic function at
point X, as N(X). Thus, since Equation (4.06) gives us the first derivative to
the integral, we define Equetion (4.06) as N’'(X).

Often you may not be able to derive the integrd of a function, even if
you ae proficient in cdculus. Therefore, rather than determining the inte-
grd to Equation (4.06), we are going to rdy on a different technique, one
that, dthough a bit more labor intensve, is hardier than the technique of
finding the integrd.

The respective probabilities can aways be edtimated for any point on the
function's characterigtic line by meking the didribution be a series of many
bars. Then, for any given bar on the digtribution, you can caculate the prob-
ability associated at that bar by taking the sum of the arees of al those bars
to the left of your bar, including your bar, and dividing it by the sum of the
areas of dl the bars in the digribution. The more bars you use, the more
accurate your estimated probabilities will be. If you could use an infinite
number of bars, your esimae would be exact.

We now discuss the procedure for finding the arees under our adjustable
digribution by way of an example. Assume we wish to find probabilities
asociated with every .1 increment in standard vaues from -3 to +3 sgmes
of our adjustable didribution. Notice that our table (p. 163) darts a -5
dandard units and ends a +5 standard units, the reason being that you
should begin and end 2 sigmas beyond the bounding parameters (-3 and +3
sigmas in this case) to get more accurate results. Therefore, we begin our
table & -5 sgmas and end it a +5 Sgmas

Notice that X represents the number of standard units that we are away
from the mean. This is then followed by the four parameter vaues. The
next column is the N'(X) column, the height of the curve & point X given
these parameter vaues. N'(X) is cadculaed as Equation (4.06).

We now work with Equation (4.06). Assume that we want to cdculate
N'(X) for X at -3, with the values for the parameters of .02, 2.76, 0, and 1.78
for LOC, SCALE, SKEW, and KURT respectivdly. Firs, we cdculate the
exponent of skewness, C in Equation (4.06)—given as Equation (4.07)—as:
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X LOC SCALE SKEW KURT N'(X) RUNNING N(X)

Eq. (4.06) SUM

-5.0 0.02 2.76 0 1.78 0.0092026741 0.0092026741 0.000388
490.02 2.76 0 .78 0.0095350519 0.018737726 0.001 178
.-480.02 2.76 0 .78 0.0098865117 0.0286242377 0.001997
"~ .47 0.02 2.76 0 1.78 0.01025857 0.0388828077 0.002847
46 002 276 0 1.78 0.0106528988 0.0495357065 0.003729
4.5 0.02 2.76 0 .78 0.0110713449 0.0606070514 0.004645
¥.4.40.02 2.76 0 .78 0.0115159524 0.0721230038 0.005598
-4.3 0.02 2.76 0 .78 0.0119889887 0.08411 19925 0.006590
42 002 276 0 1.78 0.0124929748 0.0966049673 0.007622
-410.02 2.76 0 1.78 0.0130307203 0. 1096356876 0.008699
-400.02 2.76 0 1.78 0.0136053639 0.1232410515 0.009823
. -3.9 0.02 2.76 0 1.78 0.0142204209 0.1374614724 0.010996
-380.02 2.76 0 1.78 0.0148798398 0.1523413122 0.012224
-3.7 0.02 2.76 0 1.78 0.0155880672 0.1679293795 0.013509
-3.6 0.02 2.76 0 .78 0.0163501266 0.184279506 0.014856
-3.5 0.02 2.76 0 1.78 0.0171717099 0.2014512159 0.016270
_-3.40.022.76 0 1.78 0.0180592883 0.2195105042 0.017756
-3.3 0.02 2.76 0 .78 0.0190202443 0.2385307485 0.019320
-3.2 0.02 2.76 0 1.78 0.0200630301 0.2585937786 0.020969
-3.1 0.02 2.76 0 1.78 0.0211973606 0.2797911392 0.022709
-3.0 0.02 2.76 0 1.78 0.0224344468 0.302225586 0.024550
-2.9 0.02 2.76 0 1.78 0.0237872819 0.3260128679 0.026499
-2.8 0.02 2.76 0 .78 0.0252709932 0.3512838612 0.028569
-2.7 0.02 2.76 0 .78 0.0269032777 0.3781871389 0.030770
26 002 276 0 1.78 0.0287049446 0.4068920835 0.0331 15
-2.5 0.02 2.76 0 1.78 0.0307005967 0.4375926802 0.035621
-2.4 0.02 2.76 0 .78 0.032919491 | 0.4705121713 0.038305
-2.3 0.02 2.76 0 .78 0.0353966362 0.5059088075 0.041186
-2.2 0.02 2.76 0 .78 0.0381742015 0.544083009 0.044290
-2.1 0.02 2.76 0 1.78 0.041303344 0.5853863529 0.047642
-2.0 0.02 2.76 0 1.78 0.0448465999 0.6302329529 0.051276
1.9 0.02 2.76 0 .78 0.0488810452 0.6791139981 0.055229
0.02 2.76 0 .78 0.0535025185 0.7326165166 0.059548
-1.70.02 2.76 0 .78 0.0588313292 0.7914478458 0.064287
.02 2.76 0 1.78 0.0650200649 0.8564679107 0.06951 |
~150.02 2.756 0 1.78 0.0722644105 0.9287323213 0.075302
=140.02 2.76 0 1.78 0.080818341 | .0095506622 0.081759
=1830.02 2.76 0  1.78 0.0910157581  1.10056642030.089007
~120.02 2.756 0 .78 0.1033017455 | .2038681658 0.097204
0.02 276 0 1.78 0.1 182783502  1.322146516 0.106550
=10 0.02 276 0 .78 0.1367725028 1.4589190187 0.117308
08 002 276 0 .78 0.1599377464 1.6188567651 0.129824
-08 0.02 276 0 .78 0.1894070001 1.8082637653 0.144560
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X LOC SCALE SKEW KURT N'(X) RUNNING N(X)
Eq. {4.06) SUM

-0.7 0.02 2.76 0 1.78 0.2275190511 2.0357828164 0.162146
-0.6 0.02 2.76 0 1.78 0.2776382822 2.3134210986 0.183455
-0.5 0.02 2.76 0 1.78 0.3445412618 2.6579623604 0.209699
-0.4 0.02 2.76 0 1.78 0.4346363128 3.0925986732 0.242566
-0.3 0.02 2.76 0 1.78 0.5550465747 3.6476452479 0.284312
-0.2 0.02 2.76 0 1.78 0.7084848615 4.3561301093 0.337609
-0.1 0.02 2.76 0 1.78 0.8772840491 5.2334141584 0.404499
0.0 0.02 2.76 0 1.78 1 6.2334141584 0.483685
0.1 0.02 2.76 0 1.78 0.9363557429 7.1697699013 0.565363
0.2 0.02 2.76 0 1.78 0.776473162 7.9462430634 0.637613
0.3 0.02 2.76 0 1.78 0.6127219404 8.5589650037  0.696211

0.4 0.02 2.76 0 1.78 0.4788099392 9.0377749429 0.742253
0.5 0.02 2.76 0 1.78 0.377388991 9.4151639339 0.778369
0.6 0.02 2.76 0 1.78 0.3020623672 9.7172263011 0.807029
0.7 0.02 2.76 0 1.78 0.2458941852  9.9631204863 0.830142
0.8 0.02 2.76 0 1.78 0.2034532796 10.1665737659 0.849096
0.9 0.02 2.76 0 1.78 0.1708567846 10.3374305505 0.864885
1.0 0.02 2.76 0 1.78 0.1453993995 10.48282995 0.878225
1.1 0.02 2.76 0 1.78 0.1251979811 10.6080279311 0.889639
1.2 0.02 2.76 0 1.78 0.1089291462 10.7169570773 0.899515
1.3 0.02 2.76 0 1.78 0.0956499316 10.8126070089 0.908145
1.4 0.02 2.76 0 1.78 0.0846780659 10.8972850748 0.915751

1.5 0.02 2.76 0 1.78 0.0755122067 10.9727972814 0.922508
1.6 0.02 2.76 0 1.78 0.0677784099 11.0405756913 0.928552
1.7 0.02 2.76 0 1.78 0.0611937787 11.10176947 0.933993
1.8 0.02 2.76 0 1.78 0.0555414402 11.1573109102 0.938917
1.9 0.02 2.76 0 1.78 0.0506530744 11.2079639847 0.943396
2.0 0.02 2.76 0 1.78 0.0463965419 11.2543605266 0.947490
2.1 0.02 2.76 0 1.78 0.0426670018 11.2970275284 0.951246
2.2 0.02 2.76 0 1.78 0.0393804519 11.3364079803 0.954707
2.3 0.02 2.76 0 1.78 0.0364689711 11.3728769515 0.957907
2.4 0.02 2.76 0 1.78 0.0338771754 11.4067541269 0.960874
2.5 0.02 2.76 0 1.78 0.0315595472 11.4383136741 0.963634
2.6 0.02 2.76 0 1.78 0.0294784036 11.4677920777 0.966209
2.7 0.02 2.76 0 1.78 0.0276023341 114953944118 0.968617
2.8 0.02 2.76 0 1.78 0.0259049892 11.5212994011 0.970874
2.9 0.02 2.76 0 1.78 0.0243641331 11.5456635342 0.972994
3.0 0.02 2.76 0 1.78 0.0229608959 11.5686244301 0.974990
3.1 0.02 2.76 0 1.78 0.0216791802 11.5903036102 0.976873
3.2 0.02 2.76 0 1.78 0.0205051855 11.6108087957 0.978653
3.3 0.02 2.76 0 1.78 0.0194270256 11.6302358213 0.980337
3.4 0.02 2.76 0 1.78 0.0184344179 11.6486702392 0.981934
3.5 0.02 2.76 0 1.78 0.0175184304 11.6661886696 0.983451
3.6 0.02 2.76 0 1.78 0.0166712734 11.682859943  0.984893
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x LOC SCALE SKEW KURT N'(X) RUNNING N(X)
Eq. (4.06) SUM

3.7 0.02 2.76 0 1.78 0.0158861285 11.6987460714 0.986266

- 3.8 0.02 2.76 0 1.78 0.0151570063 11.7139030777 0.987576
39 0.02 2.76 0 1.78 0.014478628  11.7283817056 (.988826

4.0 0.02 2.76 0 1.78 0.0138463263 11.742228032  0.990020

41 0.02 2.76 O 1.78 0.0132559621 11 .7554839941 0.991164

i 4.2 0.02 2.76 0 1.78 0.012703854  11.7681878481 0.992259
4.3 0.02 2.76 O 1.78 0.0121867187 11.7803745668 0.993309

4.4 0.02 2.76 0 1.78 0.0117016203 11.7920761871 0.994316

4.5 0.02 2.76 0 1.78 0.0112459269 11.8033221139 0.995284

, 4.6 0.02 2.76 0 1.78 0.0108172734 11.8141393873 0.996215
4.7 0.02 2.76 O 1.78  0.0104135298 11.8245529171 0.997110

4.8 0.02 2.76 0 1.78  0.0100327732 11.8345856903 0.997973

4.9 0.02 2.76 0 1.78 0.0096732643 | 1.8442589547 (.998804

5.0 0.02 2.76 0 1.78 0.0093334265 ! 1.8535923812 0.999606

(4.07) C = (1 + (ABS(SKEW) A ABS(1/(X - LOC)) * sign(X)

* —sign(SKEW))) 2.5
= (1 + (ABS(0) A ABS(1/(-3 = .02)) s -1 x —1)) A 5
=1+0)r5
=1

Thus, subgtituting 1 for C in Equation (4.06):

(4.06) Y

(I/(ABS((X - LOC) * SCALE) A KUKT + 1))A C
(1/(ABS((-3-.02) * 276) A 178+ ]))A 1

= (1/((3.02 * 2.76) A 1.78 +1)) Al

= (/83352 A 178 + 1)) A 1

= (1/(43.57431058 +1)) A1

= (1/44.57431058) A 1
=.02243444681 ~ 1
=.02243444681

Thus, at the point X = -3, the N’'(X)vdue is .02243444681. (Notice that
- We calculate an N'(X) column, which corresponds to every vaue of X).

~ The next step we must perform, the next column, is the running sum of
, tl\c N'(X¥s as we advance up through the X's This is draightforward
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enough. Now we cdculae the N(X) column, the resultant probabilities
associated with esch vaue of X, for the given parameter values. To do this,
we must peform Equation (4.12):

C C-1 M
(412 N(C) = EN'X) + EN'(X)) ZN'(X)
where C = The current X vaue.

M = The totd count of X vaues.

Equation (4.12) says, litedly, to add the running sum a the current
vaue of X to the running sum a the previous vadue of X as we advance up
through the X’s. Now divide this sum by 2. Then take the new quotient and
divide it by the lagt vdue in the column of the running sum of the N'(X)’s
(the total of the N'(X) column). This gives us the resultant probabilitics for a
given vdue of X, for given parameter vaues

Thus, for the value of -3 for X, the running sum of the N'(X)’s a -3 is
302225586, and the previous X, -3.1, has a running sum value of
22797911392, Summing these two running sums together gives us
5820167252. Dividing this by 2 gives us .2910083626. Then dividing this by
the la vdue in the running sum column, the totd of dl of the N'(X)’s,
11.8535923812, gives us a quatient of .02455022522. This is the associated
probability, N(X), a the sandard vdue of X = -3.

Once we have condructed cumulative probahilities for esch trade in the
actud didribution and probabilities for each dandard vaue increment in
our adjugteble didribution, we can peform the K-S test for the parameter
vdues we ae currently using. Before we do, however, we must make
adjugments for a couple of other preiminary considerations.

In the example of the table of cumulative probabilities shown earlier for
our adjustable didribution, we caculated probabilities a every .1 increment
in sandard vaues. This was for the sake of amplicity. In practice, you can
obtain a greater degree of accuracy by usng a smdler step increment. | find
that using .01 standard vaues is a good step increment.

A word on how to determine your bounding parameters in actua prac-
ticethat is, how many sgmas ether sde of the mean you should go in
determining your probabilities for our adjusteble didtribution. In our exam-
ple we were using 3 sgmas either sde of the mean, but in redity you must
use the absolute vaue of the farthest point from the mean. For our 232-
trade example, the extreme left (lowest) dandard vaue is -296 sandard
units and the extreme right (highest) is 6.935321 standard units. Since 6.93
is grester than ABS(-2.96), we must take the 6.935321. Now, we add a
least 2 sigmas to this vaue, for the sake of accuracy, and congtruct probabi]i-
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ties for a distribution from -8.94 to +8.94 sgmas Since We want a good ded

of accurecy, we will use a step increment of .01. Therefore, we will figure
probabilities for standard vaues of:

-84
-893
-892
-891

+8.94

Now, the last thing we must do before we can actudly perform our K-S
datistic is to round the actud standard values of the sorted trades to the
nearest .01 (Since we ae usng .01 as our step vaue on the theoretica  dis-
tribution). For example, the value 6.935321 will not have a corresponding
theoretica probability associated with it, since it is in between the sep val-
ues 6.93 and 6.94. Since 6.94 is cdosx to 6.935321, we round 6.935321 to
6.94. Before we can begin the procedure of optimizing our adjustable dis
tribution parameters to the actua distribution by employing the K-S test,
we must round our actuad sorted Standardized trades to the nearest dep
increment.

In lieu of rounding the standard values of the trades to the nearest Xth
decimd place you can use linear interpolation on your teble of cumuldtive
probabilities to derive probabilities corresponding to the actua standard
vaues of the trades. For more on linear interpolation, consult a good ddis
tics book, such as some of the ones suggested in the bibliography or
Commodity Market Money Management by Fred Gehm.

Thus far, we have been optimizing only for the best-ﬁtting KURT and
SCALE values. Logicaly, it would seem that if we standardized our data, as
we have, then the LOC parameter should be kept a O and the SCALE
. parameter should be kept a 1. This is not necessarily true, as the true loca-

tion of the digtribution may not be the arithmetic mean, and the true opti-
mal vaue for scdle may not be a 1. The KURT and SCALE vaues have a
very drong relaionship to one ancther. Thus, we firgt try to isolate the
-“neighborhood” of best-fitting parameter vaues for KURT and SCALE. For
bur 232 trades this occurs at SCALE cqua] to 2.7 and KURT equa] to 1.9.
Now we progressively try to zero in on the best-fitting paramctrr values.
This is a computer-time-intensve process. We run our next pass through,
ycling the LOC parameter from .1 to —.1 by -.05, the SCALE perameter
from 26 to 2.8 by .05, the SKEW parameter from .1 to —.1 by —05, and the

ES
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KURT parameter from 1.86 to 1.92 by .02. The results of this cycle through
give the optima (lowet K-S datidtic) a8 LOC = 0, SCALE = 28, SKEW
=0, and KURT = 1.86.

Thus we peform a third cycle through. This time we run LOC from .04
to —.04 by —.02, SCALE from 2.76 to 2.82 by .02, SKEW from .04 to —.04 by
-.02, and KURT from 1.8 to 1.9 by .02. The reaults of the third cycle
through show optimal vaues & LOC = .02, SCALE = 276, SKEW = 0, and
KURT = 1.8.

Now we have zeroed right in on the optima neighborhood, the aress
where the parameters make for the best fit of our adjustable characteristic
function to the actud data. For our last cycle through we are going to run
LOC from 0 to .03 by .01, SCALE from 2.76 to 273 by -.01, SKEW from
01to -.01 by -.01, and KURT from 1.8 to 1.75 by -.01. The results of this
fina pass show optima parameters for our 232 tredes a LOC = .02,
SCALE=2. 76, SKEW =0, and KURT =1.78.

USING THE PARAMETERS TO FIND THE OPTIMAL f

Now that we have found the best-fitting parameter vaues, we can find the
optima f on this distribution. We can take the same procedure we used to
find the optima f on the Norma Digtribution discussed in the last chapter.
The only difference now is thet the associsted probabilities for each stan-
dard value (X value) are calculated per the procedure described for
Equations (4.06) and (4.12). With the Norma Didribution, we find our
associated  probabilities  column  (probabilities  corresponding to a  certan
sandard vaue) by usng Equation (3.21). Here, to find our associated prob-
abilities, we mugt follow the procedure detailed previoudy:

1. For a given gandard vdue, X, we figure its corresponding N'(X) by
Equation (4.06).

2. For each gandard vdue, we dso have the interim step of keeping a
running sum of the N’(X) ‘s corresponding to each value of X.

3. Now, to find N(X), the resultant probability for a given X, add
together the running sum corresponding to the X vaue with the run-
ning sum corresponding to the previous X value, Divide this sum by 2.
Then divide this quotient by the sum total of the N'(X)’s, the last entry
in the column of running sums. This new quotient is the associated 1-
talled probability for a given X.

Since we now have a procedure to find the associated probabilities for 2

'
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sven Stendard value, X, for a given s&t of parameter vaues, we can find our
optimal f. The procedure is exactly the same as that detailed for finding the
optima f on the Norma Digribution. The only difference is that we cacu-
late the associated probabilities column differently.

In our 232-trade example, the parameter vaues that result in the lowest

& K-S gatigic ae .02, 276, 0, and 178 for LOC, SCALE, KEW, and

KURT respectively. We arived a these parameter vaues by using the opti-
mization procedure outlined in this chapter. This resulted in a K-S datigtic
of ,0835529 (meaning that at its worst point, the two digtributions were

 apart by 8.35520%), and a significance level of 7.8384%. Figure 4-10 shows

the digtribution function for those parameter values that best fit our 232

. trades.

If we take these parameters and find the optima f on this distribution,
bounding the didribution from +3 to -3 sgmes and usng 100 equaly
spaced data points, we arrive at an optimal f vaue of .206, or 1 contract for

© evary $23,783.17. Compae this to the empiricd method, which showed

that optimal growth is obtained at 1 contract for every $7,918.04 in account
equity.

But that is the result we get if we bound the digtribution & 3 sigmes
either side of the mean. In reality, in the empirical stream of trades, we hed
a worgt-case loss of 2.96 sigmas and a best-case gain of 6.94 sigmas. Now if
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figure 410 Adjusable digribution fit to the 232 trades
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we go back and bound our digribution & 2.96 sigmas on the left (negative
sde) of the mean and 6.94 on the right (and well use 300 equdly spaced
data points this time), we obtain an optima f of .954 or 1 contract for every
$5,062.71 in account equity. Why does this differ from the empirica opti-
md f of $7,918.04?

The difference is in the “roughness’ of the actud distribution. Recal that
the sgnificance levd of our best-fitting parameters was only 7.8384%. Let
us take our 232-trade digribution and bin it into 12 bins from -3 to +3
sgmes.

Bin Number of Trades
-3.0 -2.5 2
-2.5 -2.0 !
-2.0 -1.5 2
-1.5 -1.0 24
-1.0 -0.5 39
-0.5 0.0 43
0.0 0.5 69
0.5 1.0 38
1.0 1.5 7
1.5 2.0 2
2.0 2.5 0
2.5 3.0 2

Notice that out on the tails of the didribution are gaps, aess or hins
where there isn't any empiricd data These aress invarigbly get smoothed
over when we fit our adjustable digtribution to the data, and it is these
smoothed-over aress that cause the difference behvecn the parametric and
the empirical optima fs. Why doesn't our distribution fit the observed bet-
ter, especidly in light of how mallesble it is? The reason has to do with the
observed distribution having too many points of inflection.

A parabola can be cupped upward or downward. Yet over the extent of a
parabola, the direction of the cup, whether it points upward or downward,
is unchanged. We define a point of inflection as any time the direction of
the concavity changes from up to down. Therefore, a parabola has 0 points
of inflection, since the direction of the concavity never changes. An object
shaped like the letter S lying on its sSde has one point of inflection, one
point where the concavity changes from up to down.

Figure 41 1 shows the Norma Distribution. Notice there are two points
of inflection in a bdl-shaped curve such as the Normad Digribution.
Depending on the vdue for SCALE, our adjustable distribution can have
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; Iéigure 4-1 1 Points of inflection on a bell-shaped distribution.

zero points of inflection (if SCALE is very low) or two points of inflection.

The reason our adjustable didtribution does not fit the actud didtribution of

trades any better than it does is that the actual distribution has too many
s Points of inflection.

Does this mean that our fitted adjustable distribution is wrong? Probably
not. If we were %0 inclined, we could creste a digtribution function that
« dlowed for more than two points of inflection, which would better curvefit
to the actual observed didtribution. If we created a distribution function thet
allowed for as many points of inflection as we desired, we could fit to the
_ Observed didtribution perfectly. Our optima f derived therefrom  would
* then be nealy the same as the empiricd. However, the more points of
inflection we were to add to our distribution function, the less robust it
wo uld be (i.e, it would probably be less representative of the tradesin the
future),

However, We are not trying to fit the paramelric f to the observed
exactly. We are trying to determine how the observed data is distributed so
}hat we can deemine with a fair degree of accuracy what the optimd fin
the futuire will be if the data is distributed as it were in the past. When we

k a the adjustable digtribution that has been fit to our actua trades, the
Spuirious points of inflection ae removed.
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An andogy may daify this Suppose we ae using Galton’s board. W
know that asymptoticadly the distribution of the bals fdling through the
boad will be Normd. However, we ae only going to see 4 bdls rolled
through the board. Can we expect the outcomes of the 4 bdls to be per-
fectly conformable to the Norma? How about 5 bals? 50 bals?

In an asymptotic sense, we expect the observed distribution to flesh out
to the expected as the number of trades increases. Fitting our theoretica
digribution to every point of inflection in the actud will not give us any
grester degree of accuracy in the future. As more trades occur, we can
expect the observed digtribution to converge toward the expected, as we can
expect the extraneous points of inflection to be filled in with trades as the
number of trades approaches infinity. If the process generating the trades is
accurately modeled by our parameters, the optima f derived from the theo-
retica will be more accurate over the future sequence of trades than the
optima f derived empiricaly over the past trades.

In other words, if our 232 trades are a proxy of the digtribution of the
trades in the future, then we can expect the trades in the future to arive in
a digribution more like the theoreticd one tha we have fit than like the
observed with its extraneous points of inflection and its roughness due to
not having an infinite number of trades. In so doing, we can expect the opti-
ma fin the future to be more like the optima f obtained from the theoreti-
cd digribution than it is like the optima f obtained empiricdly over the
observed  didtribution.

So, we ae better off in this case to use the parametric optimal f rather
than the empirica. The stuation is analogous to the 20-coin-toss discussion
of the previous chapter. If we expect 60% wins a a 1:1 payoff, the optimal f
is correctly .2, However, if we only had empirical data of the last 20 tosses,
11 of which were wins, our optima f would show as .1, even though .2 is
what we should optimaly bet on the next toss since it has a 60% chance of
winning. We must assume that the parametric optimd f ($5,062.71 in this
cax) is correct because it is the optima f on the generating function. As
with the coin-toss game just mentioned, we must assume that the optima f
for the next trade is determined parametrically by the gencrating function,
even though this may differ from the empirica optima f.

Obvioudy, the bounding parameters have a very important effect on the
optima f. Where should you place the bounding parameters so as to obtain
the best results? Look at what happens as we move the upper bound up-
The following table is compiled by bounding the lower end a 3 sgmes and
using 100 equaly spaced data points and the optima parameters to our 232
trades:
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Upper Bound f $
3 Sgmes 206 $23783.17
4 Sigmas .588 $8,332.51
5 Sgmes .784 $6,249.42
6 Sigmas .887 $5,523.73
7 Sigmas .938 $5,223.41
8 Sigmas .963 $5,087.81
100 Sigmas  .999 $4,904.46

Notice that, keeping the lower bound constant, the higher up we move
the higher bound, the more the optima f approaches 1. Thus, the more we
move the upper bound up, the more the optima f in dollars will approach
the lower bound (wordt-case expected loss) exactly. In this case, where our
lower bound is a -3 sgmas, the more we move the upper bound up, the
more the optimal f in dollars will approach the lower bound as a limit—
$330.13 - (1743.23 « 3) = -$4,899.56.

Now observe what happens when we keep the upper bound congtant (at
3), but move the lower bound lower. Very soon into this process the arith-
metic mahemdtica expectation turns negative. This happens because more
than 509 of the area under the characterigtic function is to the Ieft of the

+ zerp axis Consequently, as we move the lower bounding parameter lower,

the optimal f quickly goes to zero.

Now condgder what hgppens when we move both bounding parameters
out at the same rate Here we are usng the optima parameter st of .02,
276, 0, and 1.78 on our digribution of 232 trades, and 100 equaly spaced

' data points:

Upper and Lower Bound f 13
3 Sigmas .206 $23,783.17
4 Sigmas .158 $42,040.42
5 Sigmas 126 $66,550.75
6 Sigmas .104 $97,387.87

10 Sigmas 053  $322,625.17
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Notice that our optima f agoproaches 0 as wc move both bounding
parameters out to plus and minus infinity. Furthermore, since our worst.
cae loss gets grester and greeter, and gets divided by a smdler and smdler
optima f, our f$, the amount to finance 1 unit by, approaches infinity as
well.

The problem of where the best place is to put the bounding parameters
is best rephrased as, “Where, in the extreme case, do we expect the best and
worst trades in the future (over the course of which wc ae going to trade
this market system) to occur?” The tails of the digtribution itself actualy go
to plus and minus infinity. To account for this we would optimdly finance
each contract by an infinitdly high amount (as in our last example, where we
moved both bounds outward). If we were going to trade for an infinitely
long time into the future, our optimad f in dollars would be infinite But
were not going to trade this market system forever. The optima f in the
future over which we are going to trade this market system is a function of
what the best and worst trades in that future are.

Recdl that if we flip a coin 100 times and record what the longest stresk
of consecutive tals is, then flip the coin another 100 times, the longest
streak of consecutive tails a the end of 200 flips will more than likdy be
greater than it was after only the first 100 flips. Similarly, if the worst-case
loss seen over our 232-trade history was a 2.96-sigma 10ss (let’'s say a 3-sigma
loss) then we should expect a loss of grester than 3 sigmas in the future over
which we ae going to trade this market sysem. Therefore, rather than
bounding our didribution a what the bounds of the past history of trades
were (-296 and +6.94 sgmes), we will bound it a -4 and +6.94 Sgmes We
should perhegps expect the high-end bound to be violaed in the future,
much as we expect the low-end bound to be violated. ITowever, we won't
meke this assumption for a couple of reasons. The first is that trading sys-
tems notorioudy do not trade as wel into the future, in generd, as they
have over higoricd daa, even when there are no optimizesble parameters
involved. It gets back to the principle that mechanica trading sysems seem
to suffer from a continually deteriorating edge. Second, the fact that we [pay
a lesser pendty for erring in optima f if we err to the left of the pesk of the
f curve than if we er to the right of it suggests that we should err on the
consrvative sde in our prognogtications about the future.

Therefore, we will determine our parametric optima f by usng the
bounding parameters of -4 and +6.94 dgmes and use 300 equaly spaced
data points. However, in cdculating the probabilities a each of the 300
equally spaced data points, it is important that we begin our distribution 2
sgmas before and after our sdected bounding parameters. We therefore
determine the associated probabiliies by credting bars from -6 to +8.94
sgmes, even though we are only going to use the bars between -4 and
+6.94 dgmas In 0 doing, we have enhanced the accuracy of our results.
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Using our optima parameters of .02, 2.76, 0, and 1.78 now yields an optima
fof 837, or 1 contract per every $7,936.41.

So long as our sdected bounding parameters are not violated, our model
of redity is accurae in terms of the bounds sdected. That is, so long as we
do not see a loss greater than 4 sigmas-$330.13 - (1743.23 * 4) =
-$6,642.79—or a profit grester than 694 Sigmas$330.13 + (174323
: ¢ 6.94) = $12,428.15—we have accurately modeed the bounds of the distri-

. bution of trades in the future.

: The possible divergence between our modd and redity is our blind spot.

That is, the optima f derived from our modd (with our sdected bounding
parameters) is the optima f for our modd, not necessarily for redity. If our
- sdected bounding parameters are violated in the future, our sdlected opti-
ma f cannot then be the optimd. We would be smat to defend this blind
spot with techniques, such as long options, that limit our lighility to a pre-
scribed  amount.

While we are discusing wesknesses with the method, one find weskness
should be pointed out. Once you have obtained your parametric optima f,
you should be aware that the actua digtribution of trade profits and losses is
one in which the parameters are condantly changing, abeit dowly. You
should frequently run the technique on your trade profits and losses for
» each market sysem you ae trading to monitor these dynamics of the
7z digtributions.

4+ PERFORMING “WHAT IFS”

Once you have obtained your parametric optima f, you can peform “What
If" types of scenarios on your digtribution function by atering the parame-
ters LOC, SCALE, SKEW, and KURT of the didribution function to repli-
cae different expected outcomes in the near future (different distributions
the future might teke) and observe the effects. Just as we can tinker with
gretch and shrink on the Normal distribution, so, too, can we tinker with
the parameters LOC, SCALE, SKEW, and KURT of our adjustable
digtribution.

The “What if’ cgpabilities of the parametric technique are the strengths
that help to offset the wesknesses of the actud distribution of trade P&L's
Mmoving aound. The parametric techniques dlow us to see the effects of
0hanges in the digtribution of actud trade profits and losses before they
Occur, and possibly to budget for them.

When tinkering with the parameters, a suggedion is in order. When
finding the optima f, rather than tinkering with the LOC, the location
Parameter, you ae better off tinkering with the aithmetic average trade in
dollars that you are using as input. The reason is illustrated in Figure 4-12.
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Figure 4-1 2 Altering location parameters.

Notice that in Figure 4-12, changing the location parameter LOC moves
the digtribution right or left in the “window” of the bounding parameters.
But the bounding parameters do not move with the digtribution. Thus, a
change in the LOC parameter dso affects how many equaly spaced data
points will be left of the mode and right of the mode of the distribution. By
changing the actud aithmetic mean (or usng the drink variable in the
Normal Distribution search for f), the window of the bounding parameters
IMOVES also. When you alter the arithmetic average trade as input, or dter
the shrink variable in the Normd Digtribution mechanism, you still have the
same number of equaly spaced data points to the right and left of the mode
of the digtribution that you had before the dteration.

EQUALIZING f

The technique detaled in this chapter was shown using data that was not
equdized. We can dso use this very same technigue on equdized data If
we want to determine an equdized parametric optima f, we would convert
the raw trade profits and losses over to percentage gains and losses, based
on Equations (2.10a) through (2.10c). Next, we would convert these per-
centage profits and losses by multiplying them by the current price of the
underlying instrument. For cxample, P&L number 1 is .18. Suppose the
entry price to this trade was 10050, The percentage gain on tis trade
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would be .18/100.50 = .001791044776. Now suppose that the current price
of this underlying ingrument is 112.00. Multiplying 001791044776 by
112.00 translates into an equalized P&L of .2005970149.

If we were seeking to do this procedure on an equdized basis, we would
perform this operation on dl 232 trade profits and losses. We would then
calculate the arithmetic mean and population standard deviation on the
equdized trades and would use Equaion (3.16) to standardize the trades.
Next, we could find the optima parameter st for LOC, SCALE, SKEW,
and KURT on the equdized data exactly as was shown in this chapter for
nonequdized daa

The rest of the procedure is the same in this chapter in terms of deter-
mining the optima f, geometric mean, and TWR. The by-products of the
geomdlric average trade, arithmetic average trade, and threshold to the geo-
metric are only vaid for the current price of the underlying instrument.
When the price of the underlying indrument changes, the procedure must
be done again, going back to dep one and multiplying the percentage prof-
~ its and losses by the new underlying price. When you go to redo the proce-
dure with a different underlying price, you will obtain the same optima f,
geometric mean, and TWR. However, your aithmetic average trade, geo-
melric average trade, and threshold to the geometric will be different based
upon the new price of the underlying instrument.

The number of contracts to trade as given in Equation (3.34) must be
changed. The word-case associated P&L, the W vaiable Equation (3.35),
will be different in Equation (3.34) as a result of the changes caused in the
equdized data by a different current price

OPTIMAL f ON OTHER DISTRIBUTIONS AND
FITTED CURVES

At this point you should redlize that there are many other ways you can
determine your parametric optima f We have covered a procedure for
- finding the optima f on Normaly distributed data in the previous chapter.
Thus we have a procedure that will give us the optima f for any Normaly
distributed phenomenon. That same procedure can be used to find the opti-
malf on data of any digtribution, o long as the cumulative density function
of the selected distribution is available (these functions arc given for meny
gther common digtributions in Appendix B). When the cumulative density
nction is not available, the optimal T can be found for any other function
by the integration method used in this chapter to approximate the cumula-
tive densties, the areas under the curve
1 have dected in this chepter to modd the actud distribution of trades
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by way of our adjustable distribution. This amounts to little more than find-
ing a function and its appropriate vaues, which mode the actud dendty
function of the trade P&L’s with a maximum of 2 points of inflection. Yoy
could use or creste many other functions and methods to do thissuch as
polynomia interpolation and extrgpolaion, rationa function (quotients of
polynomials) interpolation and extrapolation, or using splines to fit a theo-
retical function to the actuad. Once any theoreticd function is found, the
associated probabilities can be determined by the same method of integral
edimation as was used in finding the associated probabilities of our
adjustable digribution or by using integration techniques of caculus.

There is a problem with fitting any of these other functions. Part of the
thrust of this book has been to dlow users of systems that are not purely
mechanicd to have the same account management power that users of
purely mechanicad sysems have. As such, the adjustable distribution route
that | took only requires estimaes for the parameters. These parameters
pertain to the firg four moments of the digtribution. It is these moments—
location, scde, skewness, and kurtossthat describe the digtribution. Thus,
someone trading on some not purdy mechenicd basseg., Hlliott wave—
could egtimate the parameters and have access to optimd f and its by-prod-
uct calculations. A past history of trades is not a prerequisite for estimating
these paamees. If you were to use any of the other fitting techniques
mentioned, you wouldn't necessarily need a past history of trades either, but
the esimates for the parameters of those fitting techniques do not necessar-
ily pertan to the moments of the distribution. What they pertain to is a
function of the paticular function you ae usng. These other techniques
would not necessarily dlow you to see what would happen if kurtoss
increased or skewness changed or the scde were dtered, and so on. Our
adjustable digtribution is the logicad choice for a theoreticd function to fit to
the actud, since the parameters not only measure the moments of the dis
tribution, they give us control over those moments when prognosticating
about future changes to the didribution. Furthermore, estimating the
parameters of our adjustable digtribution is easier than with fitting any other
function which | am aware of.

SCENARIO PLANNING

People who forecest for a living (economists, stock market forecasters,
westhennen, government agencies, etc.) have a notorious history for incor-
rect forecasts, but most decisons anyone must maeke in life usudly require
meking a forecast about the future.

A couple of pitfals immediately crop up here. To begin with, people
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generdly make assumptions about the future that are more optimigtic than
the actua probabilities. Most people fed that they arc far more likely to win
the lottery this month than they are to die in an auto accident, even though

the probabilities of the latter are greater. This is not only true on the leve of
the individud, it is even more pronounced a the levd of the group. When
people work together, they tend to see a favorable outcome as the most
likely result (everyone ese seems to, otherwise they wouldn't be working
here),otherwise they would quit the project they are a part of (unless, of
course, we have dl become automatons mindlessy slaving away on sinking

ships).

The second and more harmful pitfdl is tha people make draight-line
forecasts into the future. People try to predict the price of a gdlon of gas
two years from now, predict what will happen with their jobs, who will be
the next president, what the next styles will be, and on and on. Whenever
we think of the future, we tend to think in terms of a singte, most likely out-
come. As a result, whenever we must make decisons, whether as an individ-
ud or a group, we tend to make these decisions based on what we think will
be the sngle most likedy outcome in the future. As a consequence, we ae
extremdy vulnerable to unplessant surprises.

Scenario planning is a partid solution to this problem. A scenario is sim-

ply a possible forecast, a story about one way tha the future might unfold.
Scenario planning is a collection of scenarios to cover the spectrum of poss-
bilities. Of course, the complete spectrum can never be covered, but the
scenario planner wants to cover as many possibilities as he or she can. By
. ading in this manner, as opposed to a draight-line forecast of the most
lik ely outcome, the scenario planner can prepare for the future as it unfolds.
Furthermore, scenario planning dlows the planner to be prepared for what
might otherwise be an unexpected event. Scenario planning is tuned to real-
ity in that it recognizes that certainty is an illusion.

Suppose you are involved in long-run planning for your company. Say
you meke a paticular product. Bather than making a single-most-likely-out-
come, draight-line forecast, you decide to exercise scenario planning. You
will need to sit down with the other planners and brainstorm for possible
scenarios. What if you cannot get enough of the raw materids to make your
product? What if one of your competitors fails? What if a new competitor
emerges? What if you have severdy underesimated demand for this prod-
uct? What if a war bresks out on such-and-such a continent? What if it is a
nuclear war? Because esch scenario is only one of severd, each scenario can
be considered serioudy. But what do you do once you have defined these
scenarios?

To begin with, you must determine what god you would like to achieve
for each given scenario. Depending upon the scenario, the goad need not be
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a positive one. For instance, under a blesk scenario your god may smply he
damage control. Once you have defined a god for a given scenario, you then
need to draw up the contingency plans pertaining to that scenario to achieve
the desred god. For ingance, in the rather unlikdy blesk scenario where
your goa is damage control, you need to have plans formulated so that you
can minimize the damage Above dl dse, scenario planning provides the
planner with a course of action to take should a certan scenario deveop. It
forces you to make plans before the fact; it forces you to be prepared for the
unexpected.

Scenario planning can do a lot more, however. There is a hand-in-glove
fit between scenario planning and optima f Optima fdlows us to deter-
mine the optima quantity to alocate to a given s&t of posshle scenarios. We
can exig in only one scenaio @ a time, even though we are planning for
multiple futures (multiple scenarios). Scenario planning puts us in a postion
where we must meke a decison regarding how much of a resource to dlo-
cae today given the possible scenarios of tomorrow. This is the true heart of
scenario  planning-quantifying  it.

We can use another parametric method for optima f to determine how
much of a certan resource to dlocate given a certan st of scenarios This
technique will maximize the utility obtaned in an asymptotic geometric
sne Frd, we mugt define each unique scenario. Second, we must assgn a
number to the probability of that scenario’'s occurrence. Being a probability
means that this number is between O and 1. Scenarios with a probability of
0 we need not condder any further. Note that these probabilities are not
cumulative. In other words, the probability assgned to a given scenario is
unique to that scenario. Suppose we are a decision maker for XYZ
Manufacturing Corporation. Two of the many scenarios we have are as fol-
lows. In one scenario XYZ Manufacturing files for bankruptcy, with a proba
bility of .15; in the other scenario XYZ is being put out of business by
intense foreign competition, with a probability of .07. Now, we must ak if
the first scenario, filing for bankruptcy, includes filing for bankruptcy due to
the second scenario, intense foreign competition. If it does, then the proba
bilities in the fird scenario have not taken the probabilities of the second
scenario into account, and we must amend the probabilities of the first sce-
nario to be .08 (.15 - .07). Note adso that just as important as the uniqueness
of each probability to each scenario is that the sum of the probabilities of all
of the scenarios we are considering must equa 1 exactly, not 1.01 nor .99,
but 1.

For each scenario we now have assgned a probability of just that sce-
nario occurring. We must dso asign an outcome result. This is a numerica
vaue It can be dollars made or logt as a result of a scenario manifesting
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itself, it can be units of utility, medication, or anything. However, our out-
Eut is going to be in the same units that we put in as input. You must hgpe
+ at |€ast one scenariowith a negative outcome in order to use this technique.
" This is mandatory. Since we are trying to answer the question “How much
of this resource should we dlocate today given the possble scenarios of
tomorrow?*, if there is not a negative outcome scenario, then we should
allocate 100% of this resource. Further, without a negative outcome sce-
nario it is questionable how tuned to redlity this set of scenarios redly is.

A lagt prerequiste to usng this technique is that the mathematical
expectation, the sum of dl of the outcome results times ther respective
probabilities, must be gregter than zero.

N
| (1.03) ME:_.?I(P,- * A

where P, = The probability associated with the ith scenario.

A; = The result of the ith scenario.

N = The total numbe of scenarios under consderation.

If the mathemeticd expectation equas zero or is negative, the following
technique cannot be used. That's not to sy tha scenario planning itself
cannot be used. It can and should. [Towever, optima f can only be incorpo-
rated with scenario planning when there is a postive mathematical expectar
tion. When the mahemdticd expectdion is zero or negdive, we ought not
dlocate any of this resource a this time.

Lastly, you must try to cover as much of the spectrum of outcomes as
posshble. In other words, you realy want to account for 99% of the posshle
outcomes. This may sound nearly impossible, but many scenarios can be
mede broader o that you don't need 10,000 scenarios to cover 99% of the
spectrum. In making your scenarios broader, you must avoid the common
pitfal of three scenarios: an optimistic one, a pessimistic ong, and a third
where things remain the same. This is too smple, and the answers derived
therefrom are often too crude to be of any vaue Would you want to find
your optimal f for atrading sysem based on only three trades?

So even though there may be an unknowebly large number of scenarios
covering the entire spectrum, we can cover what we bedieve to be about
9% of the gpectrum of outcomes. If this makes for an unmanageebly large
number of scenarios, we can make the scenarios broader to trim down their
number. However, by trimming down ther number we lose a cetan
amount of information. When we trim down the number of scenarios (by
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broadening them) down to only three, a common pitfal, we have effectivel,
eiminated s0 much information thet this technique is severdy hampered iy
its effectiveness.

What is a good number of scenarios to have then? As many as you can
and dill manage them. Here, a computer is a great asset. Assume again that
we are decison making for XYZ. We are looking a& maketing a new prod-
uct of ours in a primitive, remote little country. Weare looking at five possi-
ble scenarios (in reality you should have many more than this, but we'll use
five for the ske of illugtration). These five scenarios portray what we per-
ceive as possible futures for this primitive remote country, their probabili-
ties of occurrence, and the gain or loss of investing there.

Scenario Probability Result

War A -$500,000

Trouble 2 -$200,000

Stagnation 2 0

Peace A5 $500,000

Prosperity .05 $1,000,000
Sum 1.00

The sum of our probabilities equas 1. We have a& least 1 scenario with a
negative result, and our mathematical expectation is positive

(.1 % -$500,000) + (.2 * ~-$200,000) + . . = $185,000

We can therefore use the technique on this set of scenarios.

Notice fird, however, that if we used the sngle mos likdy outcome
method we would conclude that peace will bc the future of this country,
and we would then act as though pesce was to occur, as though it were a
certainty, only vegudly remaining aware of the other posshilities.

Returning to the technique, we must determine the optima f. The opti-
mal f is that value for f (between O and 1) which maximizes the geometric
mean;

N
(4.13) Geometric mean = TWR A (1/Z P,)

and

N
(4.14) TWR = HIHPRi
i=
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and
(4.15) HPR, = (1 + (A/(W/-0)) A P;

therefore

N

N
(4.16) Geometric meen = ([Il(l + (A/(W/-£))) A Pi) A (1@!11)

Findly then, we can compute the red TWR as

4.17 TWR = Geometric Mean * X
( )

where N = The number of different scenarios.

TWR = Theteemind wealth relative.

HPR; = The holding period return of the ith scenario.
A, = The outcome of the ith scenario.
P, = The probability of the ith scenario.

W = The worst outcome of dl N scenarios.
f = Thevalue for f which we are testing.

X = However many times we want to “expand” this scenario
out. That is, what we would expect to make if we

invested f amount into these possible scenarios X times.

The TWR retuned by Equation (4.14) is just an interim vaue we must
have in grder to obtain the geometric mean. Once we have this geometric
mean, the red TWR can bc obtained by Equation (4.17).

Here is how to pcrform these equations. To begin with, we must decide
on an optimization scheme, 4 way of searching through the f values to find
that f which maximizes our equaion. Again, we can do this with a straight
loop with f from 0] to 1, through iteration, or through parabolicinterp0|a-
tion. Next, we must determine what the worst possble result for a scenario
is of all of the scenarioswe are looking &, regardless of how small the prob-
abilities of thqgt scenario’s occurrence are. In the example of XYZ
Corporation this is ~$500,000, Now for each possible scenario, we must first
divide the worst possble outcome by negative f. In our XYZ Corporation
example, we will assume that we are going to loop through f values from .01

- to 1. Therefore we gtart out with anf value of .01. Now, if we divide the

worst possible outcome of the scenarios under consideration by the negative
value for f:
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-$500,000/-.01 = $50,000,000
Negetive vadues divided by negaive vaues yidd postive results, so our
result in this case is podtive. As we go through each scenario, we divide the

outcome of the scenario by the result just obtained. Since the outcome g
the first scenario is dso the worst scenario, a loss of $500,000, we now have:

-$500,000/$50,000,000 = -.01
The next gtep is to add this value to 1. This gives us:
1+(-.01)=.99

Lastly, we take this answer to the power of the probability of its occur-
rence, which in our example is .I:

99 A 1= 9989954713

Next, we go to the next scenario labded “Trouble” where there is a .2
probability of a loss of $200,000. Our worgt-case result is ill -$500,000.
The f value we are working on is sill 01, so the value we want to divide this
scenario’s result by is ill $50,000,000:

-$200,000/$50,000,000 = -.004
Working through the rest of the steps to obtain our HPR:

1+ (-004) = 996
9964 .2 =.9991987169

If we continue through the scenarios for this test vaue of .01 for f, we
will find the 3 HPRs corresponding to the last 3 scenarios.

Stagnation 10
Peace 1.004467689
Prosperity 1.000990622

Once we have turned each scenario into an HPR for the given f vaue,
we mugt multiply these HPRs together:
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9989954713
+ 9991987169
x1.0
+ 1.004487689
* 1.000990622

1.00366"7853

This gives us the interim TWR, which in this case is 1.003667853. Our
next step is to take this to the power of 1 divided by the sum of the probabil-
ities. Since the sum of the probabilities is 1, we can state that we must raise
the TWR to the power of 1 to give us the geometric mean. Since anything
rased to the power of 1 equds itsdf, we can say tha our geometric mean
equals the TWR in this case We therefore have a geometric meen of
1.003667853. If, however, we relaxed the condraint that each scenario must
have a unique probability, then we could allow the sum of the probabilities
of the scenarios to be grester than 1. In such a case, we would have to raise
our TWR to the power of 1 divided by this sum of the probabilities in order
to deive the geometric mean.

The answer we have just obtained in our example is our geometric mean

. corresponding to an f value of .01. Now we move on to an f vaue of .02, and

repeat the whole process until we have found the geometric mesn corre-

‘sponding to an f vaue of .02. We keep on proceeding until we arive a that

vaue for f which yidds the highest geometric mean.
In our example we find that the highest geometric mean is obtained a

~an f veue of 57, which yidds a geometric meen of 1.1106. Dividing our
- worst possible outcome to a scenario (-$500,000) by the negative optimal f

yields aresult of $877,192.35. In other words, if XYZ Corporation wants to

- commit to marketing this new product in this remote country, they will
. optimally commit this amount to this venture a this time. As time goes by
" and things develop, so do the scenarios, and as their resultant outcomes and
-probabilities change, so does this f amount change. The more XYZ

Corporation keeps areast of these changing scenarios, and the more accu-
ate the scenarios they develop as input are, the more accurate their deci-
ions will be. Note that if XYZ Corporation cannot commit this $877,192.35
to this undertaking at this time, then they are too far beyond the pesk of
he f curve. It is the equivalent to the trader who has too many commodity
Contracts on with respect to what the optimal f says he or she should have
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on. If XYZ Corporation commits more than this amount to this project a
this time, the situation would be analogous to a commodity trader with o
few contracts on.

Furthermore, dthough the quantity discussed here is a quantity of
money, it could be a quantity of anything and the technique would be just
as valid. The gpproach can be used for any quantitative decison in an epyi-
ronment of favorable uncertainty.

If you creste different scenarios for the stock market, the optimal f
derived from this methodology will give you the correct percentage to be
invested in the stock market a any given time. For ingance if the f
returned is .63, then that means that 65% of your equity should be in the
stock market with the remaining 35% in, sy, cash. This gpproach will  pro-
vide you with the greatest geometric growth of your capita in the long run.
Of course, again, the output is only as accurate as the input you have pro-
vided the system with in terms of scenarios, their probabilities of occur-
rence, and resultant payoffs and costs. Furthermore, recdl tha everything
sad about optima f applies here, and that dso means that the expected
drawdowns will approach a 1009% equity retracement. If you exercise this
scenario planning approach to assat dlocation, you can expect close to 100%
of the assets allocated to the endeavor in question to be depleted a any one
time in the future For example, suppose you arc using this technique to
determine what percentage of investable funds should be in the stock mar-
ket and what percentage should bc in a risk-free asst. Assume that the
answer is to have 65% invested in the stock market and the remaining 35%
in the risk-free assat. You can expect the drawdowns in the future to
approach 100% of the amount alocated to the stock market. In other
words, you can expect to see, a some point in the future, ahnost 100% of
your entire 65% dlocated to the stock market to be gone Yet this is how
you will achieve maximum geometric growth.

This same process can be used as an dternative parametric technique for
determining the optima f for a given trade. Suppose you are meking your
trading decisons based on fundamentals. If you wanted to, you could out-
line the different scenarios that the trade may teke. The more scenarios, and
the more accurate the scenarios, the more accurate your results would be.
Say you ae looking to buy a municipd bond for income, but you're not
planning on holding the bond to maturity. You could outline numerous dif-
ferent scenarios of how the future might unfold and use these scenarios to
determine how much to invest in this particular bond issue.

This concept of usng scenario planning to determine the optima f can
be used for everything from military Strategies to deciding the optimal level
to participate in an underwriting to the optima down payment on a house.
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For our purposes, this technique is perhaps the best technique, and cer-
tanly the eases to employ for someone not usng a mechanicad means of
entering and exiting the markets. Those who trade on fundamentals,
weether patterns, Elliott waves, or any other gpproach that requires a
degree of subjective judgment, can eesly discern their optima fs with this
goproach. This approach is easier than determining digtributional parameter
vaues.

The aithmetic average HPR of a group of scenarios can be computed as:

N N
(4189) AHPR = (21(1 + (AJ/(WI- ) * Pi)i.?lPi

whae N = the number of scenarios.

f = the f vdue employed.

A; = the outcome (gain or loss) associated with the ith scenario.
P, = the probability associated with the ith scenario.
W = the most negative outcome of al the scenarios.

The AHPR will be important later in the text when we will need to dis
cern the efficient frontier of numerous market systems. We will need to
determine the expected return (arithmetic) of a given maket system. This
expected return is smply AHPR-1.

The technique need not be applied parametricdly, as detaled here it
can aso be applied empiricdly. In other words, we can take the trade listing
of a given maket sysem and use each of those trades as a scenario that
might occur in the future, the profit or loss amount of the trade being the
outcome result of the given scenario. Each scenario (trade) would have an
equal probability of occurrence-1/N, where N is the total number of
trades (scenarios). This will give us the optima f empiricdly. This technique
bridges the gap between the empiricd and the parametric. There is not a
fine line that ddlineates the two schools. As you can see, there is a gray area
When we are presented with a decision where there is a different st of
scenarios for each facet of the decison, sdecting the scenario whose geo-
_metric mean corresponding to its optima f is greatest will maximize our
decision in an asymptotic sense. Often this flies in the face of conventiona
decision-making rules such as the Hutwicz rule, maximax, minimax, mini-
.Max regret, and grestet mathematicd expectation.

- For example, suppose we must decide between two possible choices We
could have many possble choices, but for the sake of simplicity we choose
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two, which we cdl “white’ and “black.” If we select the decison labded
“white,” we determine that it will present the possible future scenarios to us:

White Decison

Scenario Probakility Result
A 3 -20
B 4 0
C 3 30

Mathematicd expectation = $3.00
Optimal f = .17
Geometric meen = 1 .0123

It doesn't matter what these scenarios are, they can be anything, and to fur-
ther illustrate this they will smply be assigned letters, A, B, C in this discus-
sion. Further, it doesn't matter what the result is, it can be just about any-
thing.

The Black decison will present the following scenarios:

Black Decison
Scenaio Probability Result
A 3 -10
B A4 5
C 15 6
D 15 20

Mathematica expectation = $2.90
Optimal f = .31
Geomeric mean = 1.0453

Many people would opt for the white decision, since it is the decision
with the higher mathematical expectation. With the white decison you can
expect, “on average,” @ $3.00 gain versus black’s $2.90 gan. Yet the black
decison is actudly the correct decison, because it results in a greater geo-
metric mean. With the black decison, you would expect to make 4.53%
(1.0453 - 1) “on averege’ as opposed to white's 1.23% gain. When you Con-
Sder the effects Of reinvestment, the black decison mekes more than three
times as much, on average, as does the white decison!

“Hold on, pal,” you say. “W€re not doing this thing over agan, were
doing it only once. We're not reinvesing back into the same future scenar-
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os here. Won't we come out ahead if we dways sdect the highest arith-
metic mathematical expectation for each st of decisons that present them-
selves this way to us?’

The only time we want to be making decisons based on grestest arith-
metic mathematical expectation is if we ae planning on not reinvesing the
money risked on the decison a hand. Since, in dmost every case, the
money risked on an event today will be risked again on a different event in
he future, and money made or lost in the past affects wha we have avail-

four money. Even though the scenarios that present themselves tomorrow
won't be the same as those of today, by dways deciding based on greatest
geometric mean we are maximizing our decisons It is andogous to a
dependent trids process such as a game of blackjack. Each hand the proba
bilities change, and therefore the optimd fraction to bet changes as wdl. By
dways betting what is optima for that hand, however, we maximize our
ong-run growth. Remember that to maximize longrun growth, we must
look at the current contest as one that expands infinitely into the future. In
other words, we mugt look a each individua event as though we were to
play it an infinite number of times over if we want to maximize growth over
many plays of different contests.

As a generdization, whenever the outcome of an event has an effect on
~ithe outcome(s) of subsequent event(s) we are best off to maximize for
"..Orestes geometric expectation. In the rare cases where the outcome of an
~went has no effect on subsequent events, we are then best off to maximize
for grestest aithmetic expectation. Mathematicd expectation (arithmetic)
. does not take the variance between the outcomes of the different scenarios
nto account, and therefore can lead to incorrect decisons when reinvest-
ment iS conddered, or in any environment of geometric consegquences.
Using this method in scenario planning gets you quantitatively positioned
7 with respect to the possible scenarios, their outcomes, ad the likeihood of
heir occurence. The method is inherently more conservative than posi-
ioning yoursdf per the greates aithmetic mathematical expectation.
equation (3.05) A lowed that the geometric mean is never greaer then the
writhmetic mean. Likewise, this method can never have you position your-
belf (have a greater commitment) than sdecting by the grestes aithmetic
mathematica  expectation would. In the asymptotic sense, the long-run
lense, this is not only a superior method of positioning yoursdf, as it
&hieves Orestest geometric growth, it is dso a more consarvetive one then
§°Siti0ning yoursdf per the greatest aithmetic mathematica expectation,

phich would incariably put you to the right of the peak of the f
Mrce,
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Since reinvesment is dmost dways a fact of life (except on the day
before you retire*)-that is, you reuse the money that you are usng today--
we must make today’s decison under the assumption that the same decison
will present itsdf a thousand tirnes over in order to maximize the results of
our decision. We must make our decisions and position oursdves in order to
maximize geomelric expectation. Further, dnce the outcomes of most
events do in fact have an effect on the outcomes of subsequent events, we
should meke our decisons and postion oursdves based on maximum geo-
metric cxpectation. This tends to lead to decisons and postions that arc not
always apparently obvious.

Now it is Smply a matter of solving for Equation (4.16), where each bin
represents a different  scenario. Thus, for the case of our Shin example
here, we find that our optimd f is a .2, or 1 contract for every $2,750 in
uity (our worst-case lossbeing the midpoint of the first bin, or (-$1000 +
-$100)/2 = -$550).

This technique, though vdid, is dso very rough. To begin with, it
@sumes that the biggest loss is the midpoint of the worst bin. This is not
always the case. Often it is helpful to make a single extra bin to hold the
worst-case l0ss. As applied to our 3-bin example, suppose we had a trade
that was a loss of $1,000. Such a trade would fdl into the -$1,000 to ~-$100

bin, and would be recorded as —$550, the midpoint of the bin. Instead we

bin this same data as follows:
OPTIMAL f ON BINNED DATA can DI this

Now we come to the case of finding the optima f and its by-products on Bin Bin Trades Associated Associated
binned deta This approach is aso something of a hybrid between the para- Probability Result
metric and the empirica techniques. Essentialy, the process is dmost iden- -1,000 -1,000 | 1 -1,000
tica to the process of finding the optima f on different scenarios, only -999 -100 1 A -550
rather than different payoffs for each bin (scenario), we use the midpoint of -100 100 5 5 0
eech bin. Therefore, for each bin we have an associated probability figured 100 1,000 3 3 550

as the totd number of dements (trades) in that bin divided by the total
number of elements (trades) in dl the bins. Further, for each bin we have
an asociaed result of an dement ending up in that bin. The associated
results are caculated as the midpoint of each hin.

For example, suppose we have 3 bins of 10 trades. The first bin we will
define as those trades where the P&L’s were -$1,000 to -$100. Say there
are 2 dements in this bin. The next bin, we say, is for those trades which are
-$100 to $100. This bin has 5 trades in it. Lagly, the third bin has 3 trades
in it and is for those trades that have P&L’s of $100 to $1,000.

Now, the optimal f is .04, or 1 contract for every $25,000 in equity. Are
you beginning to see how rough this technique iS? SO, although this tech-
nique will give us the optimal f for binned data, we can see that the loss of
informetion involved in binning the data to begin with can make our results
$0 inaccurate as t0 be usdess. If we had more data points and more bins to
start with, the technique would not be rough at dl. In fact, if we had infinite
data and an infinite number of bins, the technique would be exact. (Ancther
way in which this method could be exact is if the data in each of the bins

Bin Bin Trades /;Srzg(;';‘itlﬁg Asséggﬁted equeled the midpoints of their respective bins exactly. _
The other problem with this technique is that the average dement in a
-1,000 -100 2 2 -550 bin is not necessarily the midpoint of the bin. In fact, the average of the ele-
-100 100 5 5 0 ments in abin will tend to be closer to the rode of the entire distribution
100 1,000 3 3 550 than the midpoint of the bin is. Hence, the dispersion tends to be greater

with this technique than is the red case. There are ways to correct for this,
¥ but thess corrections themsdves can often be incorrect, depending upon
the shape of the didribution. Again, this problem would be dleviaed and
the resuits would be exact if we had an infinite number of elements (trades)
ind an infinjte nuMber of bins
If you happen to have a large enough number of trades and a large
ough number of bins you can use this technique with a fair degree of
iccuracy it you <o desire. You can do “What if” types of simulations by alter-

IThere are certain times when you will want to maximize for greatest arithmetic mathematica]

expectaion instead of geometic, Such a case is when an entity is Operating in a “constant-con-
tract” kind or way and wants to switch gver to a “fixed fractional” mode of operating at some
favorable point in thr future. This favorable point can be determined as the geometric thresh-
old where the arithmetic average trade that is used as input is calculated as the arithmetl'c
mathematical expectation (the sum of the outcome of each scenario times its probubilily' of
occurrence) divided by the sum of the probabilities of al of the scenarios. Since the SIIM of the

probabilities of all of the scenarios usually equals 1, we can state that the arithmetic average

“trade” is equal to the arithmetic mathematical expectation.
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ing the number of dements in the various bins and get a fair gpproximation
for the effects of such changes.

WHICH IS THE BEST OPTIMAL f’)

We have now seen that we can find our optimd f from an empirica proce
dure as well as from a number of different parametric procedures for both
binned and unbinned data Further, we have seen that we can equdize the
data as a means of preprocessing, to find what our optima f should be if all
trades occurred a the present underlying price. At this point you are proba
bly asking for the real optima f to please stand up. Which optima f is redly
optimal?

For darters, the straight (nonequalized) empirica optima f will give you
the optimal f on past data Using the empiricad optima f technique detailed
in Chapter 1 and in Portfolio Management Formulas will yield the optimal f
that would have redized the greatest geometric growth on a past stream of
outcomes. However, we want to discern what the vaue for this optimal f
will be in the future (specificaly, over the next trade), consdering that we
are absent knowledge regarding the outcome of the next trade. We do not
know whether it will be a profit, in which case the optima f would be 1, or a
loss, in which case the optimal f would be 0. Rather, we can only express the
outcome of the next trade as an estimate of the probability distribution of
outcomes for the next trade. That being said, our best estimate for traders
employing a mechanicd  system, 1S Most likely to be obtained by using the
parametric technique on our adjustable didtribution function as detailed in
this chapter on either equdized or nonequdized data If there is a materid
difference in usng equdized versus nonequaized data, then there is most
likdy too much data, or not enough data a the present price level. For non-
system traders, the scenario planning approach is the easest to employ
accuratdly. In my opinion, these techniques will result in the best estimate
of the probability distribution of outcomes on the next trade.

You note have a good conception ofboth the empirical and parametric
techniques, as well as some hybrid techniques for finding the optimal
f. In the next chapter, we consider finding the optimal j (parametri-
cally) when more than one position is running concurrently.

5

Introduction to Multiple
Simultaneous Positions under
the Parametric Approach

Mention has already been made in this text of the idea of using
options, either by themselves or in conjunction with a position in the
underlying, to improve returns. Buying a long put in conjunction with
a long position in the underlying (or simply buying a call in lieu of
both), or sometimes even writing (selling short) a call in conjunction
with a long position in the underlying can increase asymptotic geo-
metric growth. This happens as the result of incorporating the options

into the position, which then often (but not always) reduces dispersion

to a greater degree than it reduces arithmetic average return. Per the
fundamental equation of trading, this then results in a greater esti-
muted TWR.

Options can be used in a variety of ways, both among themselves
and in conjunction with positions in the underlying, to manage risk.
In the future, as traders concentrate more and more on risk manage-
ment, options will tery likely play an ever greater role.

Portfolio Management Formulas discussed the relationship of opti-
mal jand options.! In this chapter we pick up on that discussion and
carry it further into an introduction of multiple simultaneous posi-

’ tions, especially with regard to options.

This chapter gives us another method for finding the optimal j's for

. POsitions that are not entered and exited by using a mechanical sys-

ere were SOMe minor formulative problems with the options material in Portfolio
nagement Formulas. These have Snce been resolved, and the corrected formulations are
Pesented here, My apologies for whatever confusion this may have caused.
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tern. The parametric techniques discussed thus far could be utilized by
someone not trading by means of a mechanical system, but aside from
the scenario planning approach, they still have some rough edges. For
example, someone not using a mechanical system who was using the
technique described in Chapter 4 would need an estimate of the kurto-
sis of his or her trades. This may not be too easy to come by (at least,
an accurate estimate of this may not be readily available). Therefore,
this chapter is for those who are using purely nonmechanical means of
entering and exiting their trades. Users of these techniques will not
need parameter estimates for the distribution of trades. However, they
will need parameter estimates for both the volatility of the underlying
instrument and the trader’s forecast for the price of the underlying
instrument. For a trader not utilizing a mechanical, objective system,
these parameters are far easier to come by than parameter estimates
for the distribution of trades that have not yet occurred.

This discussion of optimal f and its by-products for those traders
not utilizing a mechanical, objective system comes at a convenient
stage in the book, as it is the perfect entree for multiple simultaneous
positions. Does this mean that someone who is using a mechanical
means to enter and exit trades cannot engage in multiple simultaneous
positions? No. Chapter 6 will show us a method for finding optimal
multiple simultaneous positions for traders whether they are using a
mechanical system or not. This chapter introduces the concept of mul-
tiple simultaneous positions, but the standpoint is that of someone not
using a mechanical system, and possibly using options as well as the
underlying  instruments.

ESTIMATING VOLATILITY

One important parameter a trader wishing to use the following concepts
must input is volatility. We discuss two ways to determine voldtility. The
fird is to use the edimae that has been determined by the marketplace.
This is cdled implied volatility. The option vauation models introduced in
this chapter use volatility as one of their inputs to derive the fair theoretical
price of an option. Implied volatility is determined by assuming that the
market price of an option is equivaent to its fair theoretica price. Solving
for the voldility vaue that yidds a far theoretica price equa to the market
price determines the implied volatility. This value for volatility is arrived &
by iteration.
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The second method of estimating volatility is to use what is known as his-
orical volatility, which is determined by the actud price changes in the
underlying instrument. Although voldility as input to the options pricing
models is an annudized figure, a much shorter period of time, usudly 10 to
20 days is used when determining higtorica voldility and the resulting
ansver is annudized.

Here is how to cdculae a 20-day annualized historica voldtility.

Step 1 Divide tonight's close by the previous market day's close.

Step 2 Take the naturd log of the quotient obtained in step 1. Thus,
for the March 1991 Jgpanese yen on the night of 910225 (this is

known as YYMMDD format for February 25, 1991), we take the dose
of 74.82 and divide it by the 910222 close of 75.52:

74.82/75.52 = 9907309322

We then take the natura log of this answer. Since the naturd log of
9907309322 is -.009312258, our answer to step 2 is —.009312258.

Step 3 After 2] days of back data have eapsed, you will have 20 vaues
for step 2. Now you can sart running a 20-day moving average to the
answers from step 2.

Step 4 You now watt to run a 20-day sample vaiance for the data
from step 2. For a 20-day variance you must first determine the mov-
ing average for the last 20 days. This was done in step 3. Then, for
each day of the last 20 days, you take the difference between today’'s
moving average, and that day’s answer to step 2. In other words, for
each of the last 2() days you will subtract the moving average from that
day’s answer to step 2. Now, you square this difference (multiply it by
itsdlf). In s0 doing, you convert dl negative answers to postives so
that dl answers are now postive. Once that is done, you add up al of
these podtive differences for the last 20 days. Findly, you divide this
sum by 19, and the result is your sample variance for the last 20 days.

The following spreadsheet will show how to find the 20-day sample
vaiance for the March 1991 Jgpanee yen for a dngle day, 901226
(December 26, 1990):
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The following spreadsheet shows how to go through the steps to get to
 this 20-day annualized historical volatility. Youwill notice thet the interim
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A B C D E F G H
Date Close LN 20-Day CotC- Col E Sumof ColG

Change Average (-.0029) Squared Last20 Divided
Values
of Col F

901127 77.96

901128 76.91 -9.0136 -0.0107 0.000113

901129 74.93 -0.0261 -0.0232 0.000537

901130 75.37  0.0059 0.0088 0.000076

901203 74.18 -0.0159 -0.0130 0.000169

901204 74.72 0.0073 0.0102 0.000103

901205 74.57 -0.0020 0.0009 0.000000

901206 75.42 0.0113 0.0142  0.000202

901207 76.44 0.0134 0.0163 0.000266

901210 75.54 -0.0118 -0.0089  0.000079

901211 75.37 -0.0023 0.0006 0.000000

901212 75.9 0.0070 0.0099 0.000098

901213 75.57 -0.0044 -0.0015 0.000002

901214 75.08 -0.0065 -0.0036 0.000012

901217 75.11 0.0004 0.0033 0.000010

901218 74.99 -0.0016 0.0013 0.000001

901219 74.52 -0.0063 -0.0034 0.000011

901220 74.06 -0.0062 -0.0033 0.000010

901221 73.91 -0.0020 0.0009 0.000000

901224 73.49 -0.0057 -0.0028 0.000007

901226 73.5 0.0001 —-.0029 0.0030 0.000009 .001716 .000090

deps in determining variance for a given day, which were detalled on the

revious Soreadshest, are not on this one. This was done in order for you to
- see the whole process. Therefore, bear in mind that the variance column in
this following spreadsheet is determined for each row exactly as in the pre-
vious spreadshest.

As you can see, the 20-day sample variance for 901226 is .00009. You
need to do this for every day so that you will have detennined the 20-
day sample variance for every single day.

Step 5 Once you have determined the 20-day sample variance for
every single day, you must convert this into a 20-day sample standard
deviation. This is easly accomplished by taking the square root of the
variance for each day. Thus, for 901226, teking the squareroot of the
variance (which was shown to be .00009) gives us a 20-day sample
dandard deviation of ,009486832981.

Step 6 Now we must “anudize’ the data Since we are usng daly
data, and we'll suppose that there are 252 trading days in the yen per
year (approximately), we must multiply the answers from step 5 by
the square root of 252, or 15.87450787. Thus, for 901226, the 20-day
sample sandard  deviation is 009486832981, and multiplying by
1587450787 gives us an answer of .1505988048. This answer is the
historical volatility-in this case, 15.06%—and can be usd as the
volatility input to the Black-Scholes option pricing model.
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A B C D E F G
DATE CLOSE LN 20-Day 20-Day 20-Day Annualized
Change Average Variance SD *15.87451
‘901127 77.96

901128 76.91 -0.0136
,901 129 74.93 -0.0261
901130 75.37 0.0059
961203 74.18 -0.0159
901204 74.72 0.0073
901205 74.57 -0.0020
901206 75.42 0.0113
901207 76.44 0.0134
901210 75.54 -0.0118
901211 75.37 -0.0023
961212 75.9 0.0070
961213 75.57 -0.0044
2 901214 75.08 -0.0065
961217 75.11 0.0004
: 74.99  -0.0016
74.52 -0.0063
74.06 -0.0062
73.91 -0.0020
73.49 -0.0057

73.5 0.0001 -0.0029 0.0001 0.0095 0.1508

73.34 -0.0022 -0.0024 0.0001 0.0092 0.1460

74.07 0.0099 -0.0006 0.0001 0.0077 0.1222

73.84 -0.0031 -0.0010 0.0001 0.0076 0.1206

&4l the following axiom from the Introduction to this text: If you play a
Bme with unlimited liability, you will go broke with a probability that
PProaches certainty as the length of the game approaches infinity. What
Onstiutes a game with unlimited ligbility? The answver is a digtribution of
comes Where the left tal (the adverse outcomes) is unbounded and goes
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to minus infinity. Long option podtions dlow us to bound the adverse tail f
the digribution of outcomes.

You may take issue with this axiom. It seems irreconcilable that the rigk
of ruin be less than 1 (i.e, ruin is not certain), yet | contend that in trading
an insrument with unlimited ligbility on any given trade, ruin is certain. In
other words, my contention here is that if you trade anything other than
options and you are looking a trading for an infinite length of time, your
red risk of ruin is 1. Ruin is certan under such conditions. This can be rec-
onciled with risk-of-ruin equetions in that equations used for risk of ruin use
empiricd data as input. Thet is, the input to risk-of-ruin equetions comes
from a finite sample of trades. My contention of certain ruin for playing an
infinitdly long game with unlimited lidbility on any given trade is derived
from a parametric standpoint. The parametric standpoint encompasses the
large losing trades, those trades way out on the left tall of the distribution,
which have not yet occurred and are therefore not a pat of the finite sam-
ple used as input into the risk-of-rum equations.

To picture this, assume for a moment a trading system being performed
under condant-contract trading. Each trade taken is taken with only 1 con-
tract. To plot out where we would expect the equity to be X trades into the
future, we ssimply multiply X by the average trade. Thus, if our system has
an average trade of $250, and we want to know where we can expect our
equity to be, say, 7 trades into the future, we can determine this as $250 * 7
= $1,750. Notice tha this line of aithmetic mathematica expectation is a
draight-line  function.

Now, on any given trade, a certain amount can be logt, thus dropping us
down (temporarily) from this expected line. In this hypothetical stuation we
have alimit to wha we can lose on any given trade. Since our line is dways
higher than the most we can lose on a given trade, we cannot be ruined on
one trade. However, a prolonged losing stresk could drop us far enough
down from this line that we could not continue to trade, hence we would be
“ruined.” The probability of this diminishes as more trades dapse, as the
line of expectation gets higher and higher. A risk-of-ruin equation can tel us
what the probability of ruin is before we start out trading this system.

If we were trading this sysem on a fixed fractiond basis, the line would
curve upward, getting steeper and steeper with each elapsed trade.
However, the amount we could drop off of this line is dways commensuraté
with how high we are on the line. Thet is, the probability of ruin does not
diminish as more and more trades elapse. In theory, though, the risk of ruin
in fixed fractiond trading is zero, because we can trade in infinitely divisible
units. In red life this is not necessarily 0. In red life, the risk of ruin M
fixed fractiona trading is dways a little higher than in the same syste™
under constant-contract  trading.

In redity, there is no limit on how much you can lose on any given trade-

|
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n redity, the equity expectation lines we are taking about can be retraced
mpletely in one trade, regardless of how high they are Thus, the risk of
in, iIf we are to trade for an infinitely long period of time in an instrument
ith unlimited ligbility, regardless of whether we are trading on a constant-
contract or a fixed fractiona baesis is 1. Ruin is certain. The only way to
' defuse this is to be able to put a cg on the maximum loss. This can be
-accomplished by trading options where the podtion is initiated a a dehit.2

_OPTION PRICING MODELS

ilmagine an undelying ingrument (it can be a stock, bond, foregn cur-
“rency, commodity, or anything else) that can trade up or down by 1 tick on
‘the next trade. If, say, we measure where this stock will be 100 ticks down
‘the road, and if we do this over and over, we will find that the distribution of
outcomes is Normd. This, per Galton's boad, is as we would expect it to
be.
" If we then figured the price of the option based on this principle such
that you could not make a profit by buying these options, or by sdling them
short, we would have arived a the Binomial Option Pricing Model
(Binomid Modd or Binomid). This is sometimes aso caled the Cox-Ross-
‘Rubenstein model after those who devised it. Such an option price is based
on its expected vaue (its arithmetic mathematical expectation), since you
“.cannot make a profit by either buying these options repestedly and holding
them to expiration or sdling them repestedly and holding the position till
_expiration, losing on some and winning on others but netting out a profit in
the end. Thus, the option is said to be fairly priced.
We will not cover the specific mahematics of the Binomid Modd.
‘Rather, we till cover the mathematics of the Black-Scholes Stock Option
Model and the Black Futures Option Moddl. You should be aware that,
side from these three models, there are other valid options pricing models
Which will nothe covered here either, athough the concepts discussed in
5 chapter gpply to dl options pricing models. Finaly, the best reference |
Mow of regarding the mathematics of options pricing modes is Option
folatility and Pricing Strategies by Sheldon Naenberg. Naenberg's book
ers the mathematics for many of the options pricing modds (including

e willsee |ater in this chapter that underlying instruments are identicdl to call Options with
mite fine il expiration. Therefore, ifwe ae long the undedying instument, we can gssume
% Ourworst-case loss is the full value of the instrument. In many cases, this can be regarded
] 1'l°ssof such magnitude as to be synonymous with a cataclysmic loss. However, being short
= “"dfrlying instrument is analogous to being short a call option with infinite time remaining
g expiration, and liability is truly unlimited in such a situation.

5
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the Binomid Modd) in great deal. The math for the Black-Scholes Stock
Option Modd and the Black Futures Option Modd, which we are about to
discuss, comes from Naenberg. These topics take an entire text to discuss,
more space than we have here. Those readers who want to pursue the con-
cepts of optima f and options are referred to Natenberg for foundationa
materid  regarding options.

We must cover pricing modes on a levd sufficient to work the optima f
techniques about to be discussed on option prices. Therefore, we will now
discuss the Black-Scholes Stock Option Pricing Modd  (hereafter, Black-
Scholes). This modd is named after those who devised it, Fischer Black a
the University of Chicago and Myron Scholes &t M.I.T., and appeared in the
May-June 1973 Journal of Political Economy. Black-Scholes is considered
the limiting form of the Binomid Modd (heredfter, Binomid). In other
words, with the Binomia, you must determine how many up or down ticks
you are going to use before you record where the price might end up. The
following little diagram shows the idea

/

/\

/IN/

AN/

ININ/

NN/

Initial- /\/\/\/
Price \YAVYAYA
\YAVAY/

AYAVA
A\VYAV,
AYA
\/

\

Here, you start out at an initid price, where price can branch off in 2 direc-
tions for the next period. The period after that, there are 4 directions that
the price might end up. Ultimately, with the Binomia you must determine
in advance how many periods in tota you are going to use to figure the fair
price of the option on.

Black-Scholes is considered the limiting form of the Binomia because it
assumes an infinite number of periods (in theory). That is, Black-Scholes
assumes that this little diagram will keep on branching out and to the right;
infinitely. If you determine an option’s fair price via Black-Scholes, then yoY
will tend toward the same answer with the Binomia as the number of Per™
ods used in the Binomia tends toward infinity. (The fact that Black-Scholes
is the limiting form of the Binomid would imply that the Binomid Modd
appeared firg. Oddly enough, the Black-Scholes model appesred first.)
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The mahematics of Black-Scholes are quite draghtforward. The far

/valueof acdl on a stock option is given as

(5.01) C=U*EXP(-R* T)* N(H) - E* EXP(-R* T)
*NH -V * T A(12)

and for a put:
(5.02) P--U*EXP(-R* T) * N(-H) + E* EXP(-R * T)
* NV * T A(1/2)-H)
where  C = The fair vaue of a cal option.
P = The fair value of a put option.
U = The price of the underlying instrument.
E = The exercise price of the option.
T = Decimd fraction of the year left to expiration.3
V = The annua voldtility in percent.
R = The risk-free rate.
In() = The naura logarithm function.
N( ) = The cumulative Norma dengty function, as given in
Equation (3.21).
(5.03) H = In(UAE* EXP(-R* T))(V* T A(1/2)) + (V * T A(1/2))/2

For stocks that pay dividends, you must adjust the varigble U to reflect

the current price of the underlying minus the present vaue of the expected
dividends:

N
(504  U-=U —‘ngi * EXP(-R * W)

where D, = The ith expected dividend payout.
W, = The time (decimd fraction of a year) to the ith payout.

st often, only market days are used in calculating the fraction of a year in options. The

ber of weekdays in a year (Gregorian) can be determined as 365.2425/7 + 5 = 260.8875
on average per year. Due to holidays, the actual number of trading daysin a year is

ly somewhere between 250 and 252. Therefore, if we are using a 252-trading-day year,

d there are 50 trading days left to expiration, the decimal fraction of the year lgft to expira-

R, 1, would be 50/252 = .1984126984.
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One of the very nice things about the Black-Scholes Modd is the exact
cdculation of the ddta, the first derivative of the price of the option. This is
the option’s ingtantaneous rate of change with respect to a change in U, the
price of the underlying:

(505  Cdl Ddta = N(H)
(5.06) Put Delta = -N(-H)

These detas become quite important in Chapter 7, when we discuss portfo-
lio insurance.

Black went on to make the modd applicable to futures options, which
have a stock-type settlement.4 The Black futures option pricing modd is the
same as the Black-Scholes stock option pricing modd except for the vari-
ale H:

(5.07) H=In(U/EY(V«TA1/2))+(V*TA1/2)/2

The only other difference in the futures modd is the ddtas, which are
(5.08) Cdl Ddta = EXP(-R* T)* N(H)
(5.09) Put Delta = -EXP(-R * T) * N(-H)

For example, suppose we are looking a a futures option that has a strike
price of 600, a current market price of 575 on the undelying, and an annud
volatility of 25%. We will use the commodity options modd, a 252-day year,
and a risk-free rate of O for simplicity. Further, we will assume that the expi-
ration day of the options is September 15, 1991 (910915}, and that the day
on which we are obsarving these options is August 1, 1991 (910801).

To begin with, we will cdculate the variable T, the decimd fraction of
the year left to expiration. First, we must convert both 910801 and 910915
to their Julian day equivdents To do this, we must use the following
agorithm.

1. Set vaiable 1 equd to the year (1991), variable 2 equa to the month
(8) and variable 3 equd to the day (1).

2. If variable 2 is less than 3 (i.e., the month is January or February) then

1Futures-type settlement requires no initial cash payment, although the required margin m‘{St
be posted. Additionally, all profits and losses are realized immediately, even if the position *
not liquidated. These points are in direct contrast to stock-type settlement. In stock-type sett' ®
ment, purchase requires full and immediate payment, and profits (or losses) are not fea"wd
until the position is liquidated.
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=t variable 1 equa to the year minus 1 and st varigble 2 equd to the
month plus 13.

3. If varidble 2 is greater than 2 (i.e, the month is March or after) then
st varigble 2 equd to the month plus 1.

4. Set varigble 4 equd to varigble 3 plus 1720995 plus the integer of the
quantity 36525 times varidble 1 plus the integer of the quantity
30.6001 times varidble 2. Mathematicdly:

V4 = V3 + 1720095 + INT(365.25 * V1) + INT(30.6001 * V2)

5. Set vaidble 5 equd to the integer of the quantity .01 times verigble 1:
Mathematicaly:

V5 = INT(.01 * V1)

6. Now to obtain the Julian date as varidble 4 plus 2 minus variable 5
plus the integer of the quantity .25 times variable 5. Mathematicaly:

JULIAN DATE=V4 + 2 « V5+ INT(.25 * V5)
So to conveat our date of 910801 to Julian:

Stepl V1=1991,Vv2=8V3=1

Step 2 Since it is later in the year than January or February, this step
does not apply.

Step 3 Since it is later in the year than January or February, this step
does apply. Therefore V2=8+ 1= 09,

Step4 Now we set V4 &

V4 =V3 + 1720995 + INT(365.25 * V1) + INT(30.6001 * V2)
=1+ 1720995 + INT(365.25 * 1991) + INT(30.6001 * 9)
= 1 + 1720995 + INT(727212.75) + INT(275.4009)
=1+ 1720995 + 727212 + 275
= 2448483

Step5 Nowwe setV5as

V5=INT(.01 * V1)
= INT(.01 * 1991)
= INT( 19.91)
=19
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Step 6 Now we obtain the Julian date as
JULIAN DATE = V4 +2-V5+ INT(.25 * V5)
= 2448483 + 2~ 19 + INT(25* 19)
= 2448483 + 2~ 19 + INT(4.75)
2448483 + 2~ 19+ 4
= 2448470

H

Thus, we can state that the Julian date for August 1, 1991, is 2448470. Now
if we convert the expiration date of September 15, 1991 to Julian, we would
obtain a Julian date of 2448515.

If we were usng a 365 day year (or 365.2425, the Gregorian Cdendar
length), we could find the time left until expiration by smply taking the dif-
ference between these two Julian dates, subtracting 1 and dividing the sum
by 365 (or 365.2425).

However, we are not using a 365 day year; rather we are using a 252-day
year, as we ae only counting days when the exchange is open (weekdays
less holidays). Here is how we account for this We must examine esch day
between the two Julian dates to see if it is a weekend. We can determine
what day of the week a given Julian date is by adding 1 to the Julian date,
dividng by 7, and taking the remainder (the modulus operdion). The
remainder will be a vaue of O through 6, corresponding to Sunday through
Saturday. Thus, for August 1, 1991, where the Julian dae is 2448470:

Day of wesk = ((2448470 + 1)/7) % 7
= 2448471/ % 7
= ((2448471/7) - INT(2448471/7)) * 7

= (3497815714 - 349781) * 7
=5714* 7
=4

Since 4 corresponds to Thursday, we can State that August 1, 1991 is &
Thursday.

We now proceed through each Julian date up to and indluding the expi-
ration date. We count up dl of the weekdays in between those two dates
and find that there are 32 weekdays in between (and indluding) August 1,
1991 and September 15, 1991. From our find answer we must subtract 1, as
we count day one when August 2, 1991 arives Iherefore, we have 31
weekdays between 910801 and 910915.
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Now we must subtrect holidays, when the exchange is closed. Monday
- September 2, 1991, is Labor Day in the United States. Even though we may
' not live in the United States, the exchange where this particular option is
. traded on, being in the United States, will be cdosed on September 2, and
- therefore we mugt subtract 1 from our count of days. Therefore, we deter-
" mine that we have 30 “tradesble’ days before expiration.
Now we divide the number of tradesble days before expiration by the
_ length of what we have determined the year to be. Since we are usng a 252
day year, we divide 30 by 252 to obtain .119047619. This is the decimd
fraction of the year left to expiration, the varidble T.

Next, we must determine the variable H for the pricing modd. Since we
are usng the futures model, we must cdculate H as in Equation (5.07):

(5.07) H=1In(UEV* TAQ2)+(V*TA1/2)2

= In(575/600)/(.25 * .119047619 A (1/2))
+ (.25 * .119047619 A (1/2))/2

= In(575/600)/(.25 * .119047619 * .5)
+(.25* 119047619 *.5)/2

= In(575/600)/(.25 * .3450327796) + (.25 * .3450327796)/2
= In(575/600)/.0862581949 + .0862581949/2
In(.9583333)/.0862581949 + .0862581949/2
-.04255961442/.0862581949 + .0862581949/2
-.4933979255 + .0862581949/2

-.4933979255 + .04312909745

= -.4502688281

In Equation (5.01) you will notice that we need to use Equetion (3.21)
on two occasions. The fird is where we set the varidble Z in Equation (3.01)
to the variable H as we have just cdculated it; the second is where we st it
10 the expresson H = V * T A (1/2). We know thet V * T A (1/2) is equd to
0862581949 from the last expression, so H =V * T A (1/2) equals
~.4502688281 - .0862581949 = —.536527023. We therefore must use
¢ Equation (3.21) with the input variable Z as -.450268828] and
536527023, From Equation (3.21), this yields .3262583 and .2957971
Spectively (Equation (3.21) hes been demongrated in Chapter 3, so we
d not repeet it here). Notice, however, that we have now obtained the
elta, the ingantaneous rate of change of the price of the option with
ESpect to the price of the underlying. The deta is N(H), or the variable H
ped through as Z in Equation (3.21). Our delta for this option is there-
re .3262583.
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We now have dl of the inputs required to determine the theoreticd
option price. Plugging our vaues into Equetion (5.01):

(5.01) C=U+EXP-R*T)*N(H)-E *« EXP(-R *T) * N(H-V
*T A (1/2))

= 575 * EXP(-0 * .119047619) * N(-.4502688281) - 600
* EXP(-0 % .119047619) + N(-.4502688281 — 25
* 119047619 A (1/2))

= 575 %+ EXP(-0 * .119047619) * 3262583 = 600 * EXP(-0
*119047619) * 2957971

= 575 * EXP(0) * .3262583 = 600 * EXP(0) * .2957971
= 575* 1 %.3262583 « 600 * 1 * .2957971

575 * .3262583 .- 600 * .2957971

1875985225 - 177.47826

= 10.1202625

Thus, the fair price of the 600 cdl option that expires September 15,
1991, with the underlying a 575 on August 1, 1991, with volatility a 25%,
and usng a 252-day year and the Black futures modd with R = 0, is
10.1202625.

It is interesting to note the relationship between options and their under-
lying insruments by using these pricing modds. We know that O is the lim-
iting downside price of an option, but on the upside the limiting price is the
price of the underlying insrument itself. The modds demongrae this in
that the theoretical fair price of an option approaches its upside limiting
vaue of the vaue of the underlying, U, if any or dl three of the varidbles T,
R, or V ae incressed. This would meen, for instance, that if we increased T,
the time till expiration of the option, to an infinitely high amount, then the
price of the option would equd tha of the underlying instrument. In this
regard, we can state that all underlying instruments are really the same as
options, only with infinite T. Thus, what follows in this discussion is not only
true of options, it can likewise be sad to be true of the underlying as though
it were an option with infinite T.

Both the Black&holes stock option modd and the Black futures mode
ae based on cetan assumptions. The developers of these modds were
aware of these assumptions and so should you be. Nonethdess, despite
whatever shortcomings are involved in the assumptions, these modes ae
ill very accurate, and option prices will tend to these models values.

The firs of these assumptions is that the option cannot be exercised
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until the exercise date. This European style options settlement tends to
underprice certain options as compared to the American style, where the
options can be exercised a any time. Some of the other assumptions in this
model are that we actualy know the future volatility of the underlying
indrument and that it will remain congant throughout the life of the
option. Not only will this not happen (i.e, the volatility will change), but
the digtribution of volatility changes is lognorma, an issue that the modes
do not address5 Another issue that the models assume is that the risk-free
interest rate will remain constant throughout the life of an option. This aso
Is unlikedly. Furthermore, short-term rates appear to be lognormdly dis
tributed. Since the higher the short-term rates are the higher the resultant
option prices will be, this assumption regarding short-term rates being con-
stant may further undervalue the fair price of the option (the price
returned by the modes) reative to the expected vdue (its true arithmetic
mathematical  expectation).

Finaly, another point (perhaps the most important point) that might
undervalue the modd-generated fair value of the option reative to the true
expected vaue regards the assumption that the logs of price changes ae
‘Normally didributed. If rather than having a time frame in which they
expired, options had a given number of up and down ticks before they
expired, and could only change by 1 tick a a time, and if each tick was sta
tigicaly independent of the last tick, we could rightly make this assumption
of Normdity. The logs of price changes, however, do not have these clean
characterigtics.

All of these assumptions made by the pricing models aside, the theoreti-
cal far prices returned by the modds are monitored by professionas in the

: maketplace. Even though many ae usng modds that differ from these
detalled here, most modes return Smilar theoreticd fair prices. When

actud prices diverge from the modds to the extent thet an arbitrageur has a
profit opportunity, they will begin to agan converge to what the models
claim is the theoretical fair price. This fact, that we can predict with a far
degree of accuracy whet the price of an option will be given the various
inputs (time to expiration, price of the underlying instrument, etc.) alows us
to perform the exercises regarding optima f and its by-products on options
and mixed postions. The reader should bear in mind thet al of these tech-
niques are based on the assumptions just noted about the options pricing
models themsdves

’The fact that the distribution of volatility changes is lognorma] is not a Very widely considered
fnct. In light of how extremely sensitive option prices are to the volatility of the underlying
Instrument, this cemanly makes the PrOSPECt of buying a long Option (Ut OF cal) more appea].

lhg in terms of mathematical expectation.
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A EUROPEAN OPTIONS PRICING MODEL FOR
ALL  DISTRIBUTIONS

We can creste our own pricing mode devoid of any assumptions regarding
the didribution of price changes.

Firgt, the term “theoreticaly fair” needs to be defined when referring to
an options price. This definition is given as the arithmetic mathematical
expectation of the option at expiration, expressed in terms of-its present
worth, assuming no directional bias in the underlying. This is our options
pricing modd in liteed terms The frame of reference employed here is
‘What is this option worth to me today as an options buyer?’

In mathematicd terms, recdl that the mahemdtica expectation (arith-
metic) is defined as Equation (1.03):

N
(L03) Mathematical expectation = zl(pi * a)
where  p = Probabilityof winning or losing the ith trial.

a = Amount won or lost on the ith trid.

N = Number of possble outcomes (trias).

The mathematicd expectetion is computed by multiplying each possble
gain or loss by the probability of that gain or loss and then summing these
products. When the sum of the probabilities, the pi terms, is greater than 1,
Equation 1.03 must then be divided by the sum of the probabilities, the pi
terms.

In a nutshell, our options pricing modd will take al those discrete price
increments that have a probability greater than or equa to .00l of occurring
a expiraion and detemine an  aithmetic meathematical expectation on
them.

C= E(I)l * a])/z Pi

C = The theoreticadly fair value of an option, or an aithmetic
meathematical  expectation.

(5.10
where

pi = The probability of being a price i on expiration.

a; = The intrinsic vaue associated with the underlying instru-
ment being & price i.

In usng this modd, we first begin a the current price and work up | ti?k
a a time, summing the vaues in both the numerator and denominator until
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the price, i, has a probahility, pi, less than .001 (you can use a vaue less than
this, but | find .001 to be a good vaue to use it implies finding a far vaue
assuming you are going to have 1,000 option trades in your lifetime). Then,
sarting a that value which is 1 tick below the current price, we work down
1 tick & a time, summing vaues for both the numerator and denominator
until the price, i, results in a probability, pi, less than .001. Note that the
probabilities we are usng are |-tailed probabilities, where if a probability is
greater than .5, we are subtracting the probability from 1.

Of interest to note is that the pi terms the probabilities, can be dis
cened by whatever digribution the user feds is gpplicable, not just the
Norma. Thet is the user can derive a theoreticaly fair vdue of an option
for any digributiona form! Thus, this modd frees us to use the stable
Paretian, Student’s t, Poisson, our own adjustable digtribution, or any other
digribution we fed price conforms to in determining fair options values.
We 4ill need to amend the mode to express the arithmetic mathemati-
ca expectation at expiration as a present vaue:

(5.11)

where

C=(X(p;* a)* EXP(-R* T))/ Z p,

C = The theoreticdly fair vaue of an option, or the present
vaue of the arithmetic mathematica expectation a time T.

p; = The probability of being a price i on expiration.

a, = The intrinsic value associated with the underlying instru-
ment being a price i.

The current risk-free rate.

T

Decimd fraction of a year remaining till expiration.

Equation (5.11) is the options pricing model for &l digtributions, return-
ing the present worth of the aithmetic mathematicd  expectation of the
_Option at expiration® Note tha the mode can be used for put vaues as
~well, the only difference being in disceming the intrindc vaues the !
terms, a each price increment, i.

. *Notice that Equation (5.11) does not differentiate stock from commodity options.
: Conventional thinking has it that, embedded in the price of a stock option, is the interest on a
. pure discount bond that matures at expiration with a face value equal to the strike price.
modity options, it is believed, see an interest rate of 0 on this, so it is as if they do not have
. From our frame of reference-that is, “What is this option worth to me today as an options

P —we disregard this. If both a stock and a commodity have exactly the same expected
stribution of outcomes, their arithmetic mathematical expectations are the same, and the
[ Tational investor would opt for buying the less expensive. This situation is analogous to some-
| one Considering buying one of two identical houses where one is priced higher because the
r has paid a higher interest rate on the mortgage.
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When dividends are involved, Equation (5.04) should be employed tq
adjug the current price of the underlying by. Then this adjusted current
price is used in determining the probabilities associated with being a a
given price, i, & expiration.

An example of using Equaion (5.11) is as follows. Suppose we determine
that the Student’s t digtribution is a good model of the digtribution of the
log of price changes for a hypotheticd commodity that we are considering
buying options on. Now we use the K-S test to determine the best-fitting
parameter value for the degr ees  of freedom parameter of the Student's t dis-
tribution. We will assume that 5 degrees of freedom provides for the best fit
to the actua data per the K-S test.

We will assume tha we are discerning the far price for a cdl option on
911104 that expires 911220, where the price of the underlying is 100 and
the drike price is 100. We will assume an annudized volatility of 20%, a
risk-free rate of 5%, and a 260.8875-day year (the average number of week-
days in a year; we therefore ignore holidays that fal on a weekday, for
example Thanksgiving in the United States). Further, we will assume that
the minimum tick that this hypotheticadl commodity can trade in is .10.

If we peform Equations (5.01) and (5.02) usng (5.07) for the vaidble
I, we obtain far vaues of 2.861 for both the 100 cal and 100 put. These
options prices are thus the fair values according to the Black commodity
options modd, which assumes a lognorma didtribution of prices. If, how-
ever, we use Equation (5.11), we must figure the p; terms. These we obtain
from the snippet of BASIC code in Appendix B. Note that the snippet of
code requires a dandard vaue, given the varigble name Z, and the degress
of freedom, given the variable name DEGFDM. Before we cdl this snippet
of code we can convert the price, i, to a standard value by the following
formula

(612 Z = In(i/current underlying price)/(V * T A .5)

i = The price asociated with the current status of the summa
tion process.

V = The annudized voldility as a standard deviation.
Decimd fraction of a year remaining till expiration.
In) = The naturd logarithm function.

“The Student’s t distribution is generally a poor model of the distribution of price changes'
However, since the only other parameter, aside fmm volatility as an annualized standard devia-
tion, which needs to be considered in using the Student’s t distribution, is the degrees of free-
dom, and since the probabilities associated with the Student’s t distribution are easily ascer-
tained by the snippet of Basic code in Appendix B, we will use the Student’s t distribution here
for the sake of simplicity and demonstration.
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Equation (5.12) can be expressed in BASIC as

Z =LOGI/ UY(V* T A.5)

The vaiable U represents the current underlying price (adjusted for divi-

dends, if necessary).

Lagtly, once we have obtained a probability from the Student's t distribu-
tion BASIC code snippet in Appendix B, the probability returned is a 2-
taled one. We need to make it a I-talled probability and express it as a
probability of deviating from the current price (i.e, bound it behveen 0 and
5). These two procedures are performed by the following hvo lines of
BASIC:

CF=1 = ((1- CF)2)
IF CF ».5 then CF=] = CF

Doing this with the option parameters we have specified, and 5 degrees
of freedom, yields a fair cdl option vaue of 3842 and a fair put vaue of
2562. These vdues differ condderably from the more conventionad modeds
for a number of ressons.

Firdt, the fatter tails of the Student’s t distribution with 5 degrees of free-
dom will make for a higher far cdl vdue Gengdly, the thicker the tals of
the digribution used, the grester the cal vaue returned. Had we used 4
degrees of freedom, we would have obtained an even greater far cdl vaue

Second, the put vaue and the cdl vdue differ subgtantially, whereas with
the more conventiond modd the put and cdl vadue were eguivdent. This
difference requires some discussion.

The far vdue of a put can be determined from a cdl option with the
same drike and expiration (or vice versa) by the put-cal parity formula

(5.13) P=C+(E-U)*EXP(-R*T)
where P = The fair put vaue.
C = The far cdl vaue
E = The drike price
U = The current price of the underlying instrument.
R = The risk-free rate.
T = Decimd fraction of a year remaining till expiration.

When Equation (5.13) is not trug, an arbitrage opportunity exists. From

i,;(5'13) we can see that the conventiona modd’s prices being equivaent,

E
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would appear to be correct since the expression E = U is 0, and therefore
P=c

However, let’'s consder the varigble U in Equaion (5.13) as the expected
price of the current underlying instrument a expiration. The expected
velue of the underlying can be discerned by (5.10) except the a; term simply
equds i. For our example with DEGFDM = 5, the expected value for the
underlying ingrument = 101.288467. This happens as a result of the fact
that the leest a commodity can trade for in this modd is 0, wheress there is
no upside limit. A move from a price of 100 to a price of 50 is as likely as a
move from a price of 100 to 200. Hence, cal vaues will be priced greater
than put vaues. It comes as no surprise then that the expected vaue of the
underlying instrument a expiration should be greater than its current vaue.
This seems to be consistent with our experience with inflation. When we
replace the U in Equation (5.13), the current price of the underlying ingtru-
ment, with its expected vaue a expiration, we can derive our far put vaue
from (5.13) as.

P =3.842 + (100 - 101.288467) * EXP(~.05 % 33 / 260.8875)
= 3.842 + -1.288467 * EXP(-.006324565186)

= 3.842 + -1.288467 * 9936954
3842 + -1.280343731

2.561656269

This vadue is condgtent with the put value discerned by usng Equation
(511) for the current value of the arithmetic mathematica expectation of
the put at expiration.

Theré's only one problem. If both the put and cal options for the same
grike and expiration are fairly priced per (5.11), then an arbitrage opportu-
nity exists. In the red world the U in (5.13) is the current price of the
underlying, not the expected vaue of the underlying, a expiraion. In other
words, if the current price is 100 and the December 100 cdl is 3.842 and
the 100 put is 2561656269, then an arbitrage opportunity exists per (5.13).

The disence of put-cdl parity would suggest, given our newly derived
options prices, that rather than buy the cal for 3.842 we instead obtain a*
equivaent postion by buying the put for 2562 and buy the underlying.

The problem is resolved if we firg cdculae the expected vdue on the
underlying, discerned by Equation (5.10) except the a; term sSmply equals i
(for our example with DEGFDM-=5, the expected vaue for the underlying
instrument equas 101.288467) andubtract the current price of the under-
lying from this vaue. This gives us 101.288467 - 100 = 1.288467. Now if we
subtract this value from each a; term, each intrinsic vaue in (5.11) (and s&t-
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ting ay resultant vaues less than O to 0), then Equation (5.11) will yield
theoreticd values tha are consstent with (5.13). This procedure has the
effect of forcing the aithmetic mathematica expectation on the underlying
to equa the current price of the underlying. In the case of our example
usng the Student's t distribution with 5 degrees of freedom, we obtain a
vaue for both the 100 put and cal of 3.218. Thus our answer is congstent
with Equation (5.13), and an arbitrage opportunity no longer exists between
these two options and their underlying instrument.

Whenever we are using a didribution that results in an arithmetic mathe-
metical expectation & expiration on the underlying which differs from the
current vaue of the underlying, we must subtrect the difference (expecta
tion - current value) from the intrindc value a expiration of the options and
floor those resultant intrinsic vaues less than 0 to 0. In so doing, Equation
(5.11) will give us, for any digributiona form we care to use, the present
~worth of the arithmetic mathematical expectation of the option at expiration,
given an arithmetic mathematical expectation on the underlying instrument
equivalent to its current price (i.e, assuming no directiond bias in the
-underlying  instrument).

~ THE SINGLE LONG OPTION AND OPTIMAL f

Let us assume here that we are spesking about the smple outright purchase
of a cdl option. Rather than taking a full history of option trades that a given

market system produced and deriving our optima f therefrom, we are going
to teke a look a al the possble outcomes of what this particular option
might do throughout the term that we hold it. We are going to weight each
outcome by the probability of its occurrence. This probability-weighted out-
come will be derived as an HPR rdative to the purchase price of the option.

Findly, we will look a the full spectrum of outcomes (i.e, the geometric
mean) for each vaue for f until we obtain the optima vaue.

In dmost dl of the good options pricing models the input variables that
have the mogt effect on the theoreticd options price ae (@ the time
. remaining till expiration, (b) the strike price, (c) the underlying price, and
g (d) the volatility. D'fferent moddls have different input, but basicaly these
- four have the grestest bearing on the theoreticd vaue returned.

Of the four basic inputs, two-the time remaining till expiration and the
nderlying priceare cetan to change One volatility, may change vyet
drely to the extent of the underlying price or the time till expiration, and
certainly not as definitely as these two. One, the strike price, is certain not
i 0 change
Therefore, we must look at the theoretical price returned by our model
f for al of these different values of different underlying prices and different
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for dl of these different values of different underlying prices and different
times left till expiration. The HPR for an option is thus a function not gp}
of the price of the underlying, but dso of how much time is left on the
option:

(514 HPR(T,U) = (1 +f* (Z(T,U = Y)/S-1)) A P(T, V)
where HPR(T, U) = The HPR for a given test value for T and U.
f = The tested vaue for f.

S = The current price of the option.

Z(T, U -Y) = The theoreticd option price if the underlying
were at price U -Y with time T remaining till
expirdion. This can be discerned by whatever
pricing modd the user deems appropriate.

P(T, U) = The I-tailed probability of the underlying being at
price U by time T remaining till expiration. This
can discerned by whatever didributiond form the
user deems appropriae.

Y = The difference between the arithmetic mathemat-
icd expectation of the underlying a time T, given
by Equation (5.10), and the current price.

This formula will give us the HPR (which is probability-weighted to the
probability of the outcome) of one possible outcome for this option: that the
underlying instrument will be & price U by time T.

In the preceding equaion the variable T represents the decima part of
the year remaining until option expiration. Therefore, & expiration T = 0. If
1 year is |€ft to expiration, T = 1. The variable Z(T, U = Y) is found via what-
ever option modd you are usng. The only other varigble you need to calcu-
late is the variable P(T, U), the probability of the underlying being at price
U with time T left in the life of the option.

If we are usng the Black-&holes modd or the Black commodity modd,
we can cdaulae P(T, U) as

if U < or = to Q:

(5.152)  P(T, U) = N((In(U/Q))(V * (L A (1/2))))
ifU>Q

(5.15b)  P(T,U) =1 - N((In(U/Q)/(V * (L A (1/2))))
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where U= The price in quegtion.

Q = Current price of the underlying instrument.
V = The annua volatility of the underlying instrument.
L = Decima fraction of the year elapsed since the option was

put on.

N() = The Cumulative Norma Didribution Function. This is
given as Equaion (3.21).

In() = The naturd logarithm function.

Having peformed these eguaions, we can derive a probability-weighted
HPR for a particular outcome in the option. A broad range of outcomes are
possible, but fortunately, these outcomes are not continuous. Take the time
remaning till expiration. This is not a continuous function. Rather, a dis
crete number of days are left till expiration. The same is true for the price of
the underlying. If a stock is a a price of, say, 35 and we want to know how
many possble price outcomes there are between the possble prices of 30
and 40), and if the stock is traded in eighths, then we know that there are 81
possible price outcomes between 30 and 40 inclusve.

What we must now do is calculate @l of the probability- weighted HPRs
on the option for the expiration date or for some other mandaed exit date
prior to the expiration date. Say we know we will be out of the option no
later than a week from today. In such a case we do not need to cdculae
HPRs for the expiration day, since that is immaterid to the question of how
many of these options to buy, given dl of the available information (time to
expiration, time we expect to remain in the trade price of the underlying
instrument, price of the option, and volatility). If we do not have a st time
when we will be out of thetrade, then we must use the expiration day as the
date on which to caculate probability-weighted HPRs.

Once we know how many days to cdculate for (and we will assume here
that we will cdculate up to the expiraion day), we must caculate the proba
bility-weighted HPRs for all possble prices for that market day. Again, this
is not as ovewhdming as you might think. In the Norma Probability
Didribution, 99.73% of dl outcomes will fadl within three standard devia-

. tions of the mean. The meen here is the current price of the underlying
E instrument.  Therefore, we redly only need to caculae the probability-
I weighted HPRs for a paticular market day, for each discrete price between
=3 and +3 standard deviations. This should get us quite accuratdly close to
;f the correct answer. Of course if we wanted to we could go out to 4, 5, 6 or
i more sandard devidtions, but that would not be much more accurate
’ Likewise, if we wanted to, we could contract the price window in by only
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looking a 2 or 1 standard deviations. There is no gain in accuracy by doing
this though. The point is that 3 standard deviations is not set in stone, by
should provide for sufficient accuracy.

If we ae usng the Black-Scholes modd or the Black futures option
model, we can determine how much 1 standard devidtion is above a given
underlying price, U:

(5.16) Std. Dev. = U * EXP(V * (T A(1/2)))
where U = Current price of the underlying instrument.
V = The annud volaility of the underlying instrument.

T = Decimd fraction of the year dlgpsed since the option was
put on.

EXP( ) = The exponentia function.

Notice that the dandard deviation is a function of the time dapsed in the
trade (i.e, you must know how much time has eapsed in order to know
where the three standard deviation points are).

Building upon this eguation, to determine that point that is X standard
deviations above the current underlying price:

(5.17a)  +X Std. Dev. = U * EXP(X * (V * T A(1/2)))

Likewise, X dandard deviaions bdow the current underlying price is found
by:
(5.17b) -X Std. Dev. = U * EXP(-X * (V * T A(1/2)))
where U= Current price of the underlying instrument.
V = The annua voldility of the underlying instrument.

T = Decimd fraction of the year elgpsed since the option was
put on.

EXP( ) = The exponentia function.

X = The number of gandard deviations away from the mean
you are trying to discern probabilities on.

Remember, you must first determine how old the trade is, as a fraction of a
year, before you can determine what price conditutes X sandard deviaions
above or below a given price U.

Here, then, is a summary of the procedure for finding the optima f for a
given option.
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Step | Determine if you will be out of the option by a definite date. If
not, then use the expiration date.

Step 2 Counting the first day as day 1, determine how many days you
will have been in the trade by the date in number 1. Now convert this
number of days into a decimd fraction of a year.

Step 3 For the day in number 1, caculate those points that are within
+3 and -3 standard deviations of the current underlying price.

Step 4 Convert these ranges of vaues of prices in step 3 to discrete
values. In other words, usng increments of 1 tick, determine dl of the
possble prices between and induding those vaues in sep 3 that
bound the range

Step 5 For each of these outcomes now cdculae the Z(T, U = Y)'s and
P(T, U)’s for the probability-weighted HPR equation. In other words,
for each of these outcomes now caculate the resultant theoretica
option price as wdl as the probability of the underlying instrument
being at that price by the dates in question.

Step 6 After you have completed step 5, you now have dl of the input
required to caculate the probability-weighted HPRs for dl of the out-
comes

(514 HPR(T,U)=(1+f* (Z(T,U-Y)/S-1)APT,U)
where f = The tested vdue for f.
S = The current price of the option.

Z(T, U -Y) = The theoretica option price if the underlying
were a price U = Y with time T remaining till
expiration. This can discerned by whatever pricing
model the user deems appropriate.

P(T, U) = The |-tailed probability of the underlying beng &
price U by time T remaining till expiration. This
can be discerned by whatever didtributional from
the user deems appropriate.

Y = The difference between the arithmetic mathemat-
ical expectation of the underlying & time T, given
by (5.10), and the current price.

vou should note that the digtributional form used for the varidble P(T,
U) need not be the same didributiond form used by the pricing
model employed to discern the vaues for Z(T, U - Y). For examnple
suppose you are using the Black-Scholes stock option modd to dis
cern the values for Z(T, U = Y). Th'ts modd assumes a lognormd  dis-
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tribution of price changes. However, you can correctly USC another
digributiona form to determine the corresponding P(T, U). Literdly,
this trandates as follows: You know that if the underlying goes to price
U, the option's price will tend to that value given by Black-Scholes.
Ye the probability of the underlying going to price U from here is
greater than the lognormd digtribution would indicate.

Step 7 Now you can begin the process of finding the optima f. Agan
you can do this by iteration, by looping through al of the possible f
values between 0 and 1, by parabolic interpolation, or by any other
one-dimensond search dgorithm. By plugging the test values for f
into the HPRs (and you have an HPR for each of the possible price
increments between +3 and -3 dandard deviations on the expiraion
date or mandated exit dae€) you can find your geometric mcan for a
given test value of f. The way you now obtain this gcometric meen is
to multiply all of these HPRs together and then teke the resulting
product to the power of 1 divided by the sum of the probabilities

438D +35D
5.184 G, T) =

(5.18a) (£.7) = _{_I}S]IJ{PR(T, )} A l(le/%ggT, u))
Therefore

+3SD +35D
(5.18b) G(f, T)=(TI(1+f*(Z(T,U-Y)/S 1)AP(T,U)}~ (I/ZP(T,U))
U=_35D U =-3SD
where G(f, T) = The geometric mean 1IPR for a given test vaue for f
and a given time remaining till expiration from a man-
dated exit date.
f = The tested vaue for f.
S = The current price of the option.

Z(T. U = Y) = The theoretica option price if the underlying were a
price U -Y with time T remaining till expiration. This
can be discerned by whatever pricing model the user
deems gppropriate.

P(T, U) = The probahility of the underlying being a price U by
time T remaning till expiraion. This can be discerned
by whatever distributiona form the user deems
appropriate.

Y = The difference between the arithmetic mathematical

expectation of the underlying a time T, given by
(5.10), and the current price.
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The velue for f that results in the grestes geometric mean is the vaue
¢ for f that is optimal.

We can optimize for the optima mandated exit date as well. In other
rds, say we want to find what the optima f is for a given option for each

ay behveen now and expiration. That is, we run this procedure over gnd
over, stating with tomorrow as the mandated exit date and finding the opti-
pmd f, then garting the whole process over agan with the next day as the
‘mandated exit date. We kegp moving the mandated exit date forward until
the mandated exit date is the expiration date. We record the optima fs and
geometric means for eech mandated exit date. When we are through with
this entire procedure, we can find the mandated exit deate that results in the
highest geometric mean. Now we know the date by which we must be out
of the option position by in order to have the highest mathematical expecta-

tion (i.e, the highet geometric mean). We adso know how many contracts
to lbuy by using the f vaue that corresponds to the highest- geometric mean.

. We now have a mathematicd technique wheréby we can blindy go out
and buy an option and (as long as we are out of it by the mandated exit date

that has the highest geometric mean-provided that it is grester then 1.0, of
course-and buy the number of contracts indicated by the optima f corre-
sponding to that highest geometric mean) be in a postive mahematica
expectation. Furthermore, these are geometric positive mathematical expec-
tations. In other words, the geometric mean (minus 1.0) is the mathematica
expectation when you are reinvesting returns. (The true aithmetic positive
mathem aticat expectation would of course be higher than the geometric)

+ Once you know the optimal f for a given option, you can readily turn this

imto how many contracts to buy based on the following equation:

0.19) K = INT( E/( S)
where K = The optimal number Of option contracts to buy.
f = The vaue for the optimd f (O to 1).
S = the current price of the option.
E = The totd account equity.
INT() = The integer function.
*1he ansver derived from this eguation must be “floored to the integer.” In
her words, for cxamplc, if the answer is to buy 4.53 contracts, you would
y 4 contracts.
We can determine the TWR for the option trade To do so we must

' "OW how many times we would perform this same trade over and over. In
‘her words, if our geometric mean is 1.001 and we want to find the TWR
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that corresponds to make this same play over and over 100 times, our TWR
would be 1.001 A 100 = 1.105115698. We would therefore expect to make
10.3115698% on our gstake if we were to Meke this same options play 100
times over. The formula to convert from a geometric mean t0 @ TWR sy
given as Equaion (4.18):

(4.18) TWR = Geometric Mean * X
where TWR = The termind wedth rddive

X = However many times we want to “expand” this play out.
That is, what we would expect to make if we invested f
amount into these possible scenarios X times.

Further, we can determine our other by-products, such as the geometric
mathematical expectation, as the geometric mean minus 1. If we take the
biggest loss possible (the cost of the option itsdlf), divide this by the optimal
f and multiply the result by the geometric mathematicad expectation, the
result will yield the geometric average trade As you have seen, when
applied to options positions such as this, the optimal f technique has the
added by-product of discerning what the optimal exit date is.

We have discussed the options postion in its pure form, devoid of any
underlying bias we may have in the direction of the price of the underlying.
For a mandated exit date, the points of 3 standard deviations above and
beow ae cdculated from the current price. This assumes that we know
nothing of the future direction of the underlying. According to the mathe
maticad pricing modds, we should not be ale to find postive arithmetic
mathematical expectations if we were to hold these options to expiration.
However, as we have seen, through the use of this technique it is possible to
find podtive geometric mathemeaticd expectations if we put on a certain
quantity and exit the podtion on a certain date.

If you have a bias toward the direction of the underlying, that can also be
incorporated. Suppose we are looking a options on a particular underlying
instrument, which is currently priced a 100. Further suppose that our bias,
generated by our andysis of this market, suggests a price of 105 by the expi-
ration date, which is 40 market days from now. We expect the price to rise
by 5 pointsin 40 days. If we assume a straight-line basis for this advance, we
can date that the price should rise, on average, 125 points per market day.
Therefore, for the mandated exit day of tomorrow, we will figure a vaue of
U of 100.125. For the next mandated exit date, U will be 100.25. Findly, by
the time that the mandated exit date is the expiration date, U will be 105. If
the underlying is a sock, you should subtract the dividends from this
adjusted U via Equation (5.04). The hias is applied to the process by having
a different value for U each day because of our forecast. Because they affect
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ithe outcomes of Equations (5.17a) and (5.17b), these different values for U
jll dramaticaly affect our optima f and by-product caculaions. Notice
hat because Equetions (5.17a) and (5.17b) are affected by the new vaue
L for U each day, there is an automatic equdization of the data Hence, the
ptimal f's we obtain are based on equdized data

As you work with this optima f idea and options, you will notice that
each day the numbers change. Suppose you buy an option today a a certain
rice that has a given mandated exit date. Suppose the option has a differ-
ent price after tomorrow. If you run the optima f procedure again on this
pew option, it, t00, may have a postive meathematical expectation and a dif-

B ferent Mmandated exit date. What does this mean?

The dtuation is anadogous to a horse race where you can ill place bets
fter the race has begun, until the race is finished. The odds change contin-
uoudly, and you can cash your ticket a any time, you need not wait until the
yace IS over. Say you bet $2 on a horse before the race begins, based on a
postive mathematicad expectation that you have for that horse, and the

horse is running next to last by the first turn. You make time stop (because
you can do that in hypothetical situations) and now you look at the tote
board. Your $2 ticket on this horse is now only worth $1.50. You determine
he mahematical expectation on your horse agan, conddering how much of
he race is dready finished, the current odds on your horse, and where it

resently is in the fidd. You determine that the current price of that $1.50
et on your horse is 10% undervaued. Therefore, since you could cash

our 82 ticket that you bought before the race for $1.50 right now, taking a
ss, and you could aso purchase the $1.50 ticket on the horse right now
vith a postive mathematical expectation, you do nothing. The current situa-

ion is thus that you have a positive mathematical situation, but on the basis

ofa$].50 ticket not a $2 ticket.

This same andogy holds for our option trade, which is now dightly

nderwater but has a postive mathematical expectation on the basis of the
s price. You should usc the new optima f on the new price, adjusting

our current position if necessary, and go with the new optima exit date. In

doing, you will have incorporated the latest price information about the
“dt‘ﬂying indrument. Often, doing this may have you teke the position all
€ way into expiretion. There are many inevitable losses dong the way by
owing this technique of optimal f on options.

Vhy you should be ade to find podtive mathematical expectations in

PPtions that are theoretically fairly priced in the first place may seem like a
Jaradox or smply quackery to you. However, there is a very velid reason

Y this is so: Inefficiencies @€ a function of your frame of reference

P Lets sart by dating that theoretica option prices as returned by the

Bodels do not give a positive mathematicd expectation (arithmetic) to

Eroer the buyer or sdler. In other words, the models are theoreticaly far.
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The missing cavea here is “if hdd till expiration.” It is this missng cavest
that alows an option to be fairly priced per the models, yet have a podtive
expectation if not held till expiration.

Consider that options decay a the rate of the square root of the tipge
remaining till expiration. Thus, the day with the least expected time pre-
mium decay will dways be the first day you are in the option. Now consider
Equations (5.17a) and (5.17b), the price corresponding to a move of X dan-
dard deviations after s0 much time has eapsed. Notice that each day the
window returned by these formulas expands, but by less and less. The day
of the greatest rate of expangon is the first day in the option.

Thus, for the first day in the option, the time premium will shrink the
least, and the window of X standard deviaions will expand the fastest. The
less the time decay, the more likely we are to have a positive expectation in
a long option. Further, the wider the window of X standard deviations, the
more likely we are to have a pogtive expectation, as the downsde is fixed
with an option but the upside is not. There is a congtant tug-of-war going on
between the window of X standard deviations getting wider and wider with
each pasing day (a a dower and dower rate, though) and time decaying
the premium faster and faster with each passing day.

What happens is that the first day sees the mogt positive mathematical
expectation, athough it may not be positive. In other words, the mathemti-
ca expectation (arithmetic and geometric) is grestest after you have been in
the option 1 day (it's actually greatest the first instant you put on the option
and decays gradudly theredfter, but we are looking at this thing at discrete
intervds-each day’'s close). Each day theresfter the expectation gets lower,
but & a dower rae.

The following table depicts this decay of expectaion of a long option.
The table is derived from the option discussed earlier in this chapter. This is
the 100 cdl option where the underlying is a 100, and it expires 911220.
The volatility is 20% and it is now 911104. We are using the Black commod-
ity option formula (H discerned as in Equation (5.07) and R = 5%) and a
260.8875-day year. We are using 8 standard deviations to calculate our opti-
mal f's from, andwe are using a minimum tick increment of .1 (which will
be explained shortly).

Exit Date AHPR GHPR f
Tue. 911105 1.000409 1.000195 .0806
Wed. 911106 1.000001 1 .000000 .0016
Thu. 911107 <1 <1 0

The AIIPR column is the aithmetic average IIPR (the cdculation of

which will be discussed later on in this chapter), axd GHPR is the geomet:
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4c mean HPR. The f column is the optima f from which the AHPR and
THPR columns were derived. The aithmetic mathematica expectation, as
iy percentage, is Smply the AHPR minus 1, and the geometric mathematical
| «pectation, as a percentage, is the GHPR minus 1.

L Notice that the grestest mathematical expectations occur on the day after
iﬁve put the option on (dthough this example has a postive mathematica
gxpectatlon not al options will show a postive mathematical expectation).
% ach day theredfter the expectations themsdves decay. The rate of decay
ilso 0ets slower and Sower each day. After 911106 the mathematicad expec-
tions (HPR - 1) go negative

. Theefore, if we wanted to trade on this information, we could eect to
mter today (911104) and exit on the close tomorrow (911105). The fair
ption price is 2.861. If we assume it is traded at a price of $100 per full
bpoint, the cost of the option is 2.861 * $100 = $286.10. Dividing this price
“7!. the optima f of .0806 tells us to buy one option for every $3,549.63 in
cqu:ty If we wanted to hold the option till the close of 911106, the last day
Fthat il has a positive mathematica expectation, we would have to initiate
'the position today using the f value corresponding to the optimal for an exit
11106 of .0016. We would therefore enter today (911104) with | contract
r every $178,812.50 in account equity ($286.10/ .0016). Notice that to do
has amuch lower expectation than if we entered with 1 contract for every
,5049.63 in account equity and exited on the cdlose tomorrow, 911105.

The rate of change between the two functions, time premium decay and
¢ espanding twindow of X standard deviations, may create a positive math-
atical expectation for being long a given option. This expectation is at its
reatest the ﬁrst instant in the position and declines at a decreasing rate
om there. Thus, an option that is priced fairly to expiration based on the
nodels can be found to have a positive expectation if exited early on in the
remium decay.

The next table looks a this same 100 call option again, only this time we
k a it usng different-sized windows (different amounts of standard
eviations):

Number of Standard Deviations

2 3 5 8 10
1.000102 1.000379 1.000409 1.000409 1.000409
1.000047 1.00018 1.000195 1.000195 1.000195
.043989 .0781 .0806 .0806 .0806
911105 911105 911106 911106 911106

’The AHPR and GHPR pertain to the arithmetic and geometric HPRs a
¢ optimal f vaues if you exit the trade on the close of 911105 (the most
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opportune date to exit, because it has the highes AHPR and GIIPR). The {
corresponds to the optimal f for 911105. The heading Cutoff pertains to the
last date when a postive expectation (i.e, AHPR and GIIPR both greater
than 1) exists.

The interesting point to note is that the four values AIIPR, GIIPR, f, and
Cutoff dl converge to given points as we incresse the number of standard
deviations toward infinity. Beyond 5 dandard deviations the vaues hardly
change a dl. Beyond 8 standard deviations they seem to stop changing. The
tradeoff ip usng more standard devidions is that extra computer time is
required. This seems a smdl price to pay, but as we get into multiple smul-
taneous pogtions in this chapter, you will notice that each additiona leg of a
multiple sSmultaneous position increases the time required exponentidly.
For one leg we can argue that using 8 standard deviations is ided. However,
for more than one leg smultaneously, we may find it necessary to trim back
this number of dtandard deviations. Furthermore, this 8 standard deviation
rule applies only when we asume Normdity in the logs of price changes.

THE SINGLE SHORT OPTION

Everything stated about the single long option holds true for a single short
option pogtion. The only difference is in regard to Equation (5.14):

(5.14) HPR(T, U) = (1 + f * (Z(T, U = Y)/S = 1)) A P(T, U)
HPR(T, U) = The HPR for a given test vdue for T and U.

f = The tested vaue for f.

where

S = The current price of the option.

Z(T,U =Y) = The theoretica option price if the underlying
were a price U with time T remaining till
expiration.

P(T, U) = The probability of the underlying being a price U
by time T remaining till expiration.
Y = The difference behveen the arithmetic mathemat-
icd expectation of the underlying at time T, given
by (5.10), and the current price.

For a single short option position this eguation now becomes:

(5.20) HPR(T, U) = (1 +f * (1 = Z(T, U - Y)/S)) A P(T, U)

ifHE SINGLE POSITION IN THE UNDERLYING INSTRUMENT 225

e

HPR(T, U) = The HPR for a given test vaue for T and U.
f = The teted vdue for f.

here

§ = The current price of the option.

Z(T, U - Y) = The theoreticd option price if the underlying
were at price U with time T remaining till expira
tion.

P(T, U) = The probability of the underlying being a price U
by time T remaining till expiration.

B
b
£

Y = The difference between the aithmetic mahemat-
icd expectation of the underlying a time T, given
by (3.10), and the current price.

You will notice that the only difference behveen Equation (5.14), the
uation for a single long option position, and Equation (5.20), the equation
for a single short option position, is in the expression (Z(T,U = Y)/§ = 1),
which becomes (1 = Z(T, U = Y)/S) for the single short option position. Aside
from this change, everything else detailed about the single long option posi-
. tion holds for the single short option position.

HE SINGLE POSITION IN THE UNDERLYING

In Chapter 3 we detailed the math of finding the optima f parametricaly.
owwe can use the same method as with a single long option, only our cal-
seulation of the HPR is taken from Equation (3.30).

43.30) HPR(U) = (1 + (LAW/=D))) AP
ere HPR(U) = The HPR for a given U.
L = The associated P&L.
W = The word-case associated P&L in the table (this will

always be a negative vaue).
f = The tested vaue for f.
P = The associated probability.
k. The varicble L, the assodated P&L, is discamed by taking the price of

ve underlying @ a given price U, minus the price a which the trade was
ated, S for a long position.
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(5.21a) L for along postion=U ~ S
For a short postion, the associated P&L is figured judt the reverse

(5.21b)
where

L for a short position =S~ U
S = The current price of the underlying instrument.

U = The price of the underlying instrurnent for this given HPR,

We could dso figure the optima f for a sngle postion in the underlying
ingrument usng Equation (5.14). When doing so we mug redize that the

optimal f returned can be grester than 1.
For example, condder an underlying insrument a a price of 100. We

determine that the five following outcomes might occur:

Outcome Probability P&L
110 A5 10
105 .30 5
100 .50 0

95 .25 -5
90 10 -10

Note that per Equation (5.10), our aithmetic mathematica expectation
on the underlying is 1005769230 77. This means that the varidble Y in (5.14)
is equa to 576923077 since 100576923077 - 100 = .576923077.

If we were to figure the optima f using the P&L column and the
Equation (3.30) method, we derive an f of .19, or 1 unit for every $52.63 in
equity.

If ingtead we used Equation (5.14) on the outcome column, whereby
varidble S is therefore equa to 100, and we do not subtract the value of ™
the aithmetic mathematica expectation of the underlying minus its current
value from U in discerning our Z(T, U -Y) variable, we find our optima fa
approximately 1.9. This trandates again into 1 unit for every $52.63 in
equity as 100/1.9 = 52.63.

On the other hand, if we subtract the vaue of Y, the aithmetic mathe-
matic expectation on the underlying per Equation (5.10), in the Z(T, U
-Y) tem of (514) we end up with a mahemdtica expectaion on the
underlying equa to its current value, and therefore we do not have an opti-
ma f. This is what we must do, subtract the vaue of Y in the Z(T, U - V)
term of Equation (5.14) in order to be consigent with the options calcula-
tions as well as the put/cal parity formula )

If we are usng the Equation (330) method ingtead of the Equatiot
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(5.14) method, then each vaue for U in (5.21a) and (5.21b) must have the
. aithmetic mathematical  expectation of the underlying, Y, subtracted from
E it That is we mugt subtract the value of Y from each P&L. Doing s0 again
yields a stuation where there is not a positive mathematical expectation,
E. and therefore there is no value for f that is optimal.

3 Literdly, this means only that if we blindly go out and take a postion in

‘ the underlying instrument, we do not get a positive methematical expecta-
. tion (es we do with some options), and therefore there is no f that iS optimal
in this case. We can have an optimd f only if we have apositive mathemati-
[ cal expectation. We can have this only if we have a hias in the underlying.
£ Now we have a methodology that can be used to give us the optimal f
;(and its by-products) for options, whether long or short, as well as trades in
the underlying ingrument (from a number of different methods).

Note that the methods used in this chapter to discern the optimd fs and
-products for ether options or the underlying insrument are predicated
upon not necessarily using a mechanical system to enter your trades. For
«instance, the empiricd method for finding optima f used an empiricd
stream of trade P&L's generated by a mechanica system. In Chapter 3 we
learned of a parametric technique to find the optima f from daa that was
*Normally distributed. This same tecimique can be used to find the optima f
“from daa of any digtribution, so long as the digtribution in question has a
‘cumulative density function. In Chapter 4 we learned of a method to find
the optimal f parametrically for distributions that do not have a cumulative

ensity function, such as the disribution of trade P&L's (whether a
:mechanical system is used or not) or the scenario planning approach.
' In this chapter we have learned of a method for finding the optima f
hen not using a mechanical system. You will notice that all of the calcula-
“aons thus far assume that you are, in effect, blindly entering a pos'tion a
isome point in time and exiting a some unknown future point. Usualy the
tinethod is shown where there isn’'t @ biasin the price of the underl\p’ngo—
v ﬂlat is, the method is shown devoid of any price forecast in the underlying.
’ have seen, however, that we can incorporate our price forecast into the
rocess smply by changing the value of the underlying used as input into
B the Equations (5.17a and 5.17b) each day as the trade progresses. Even a
Plight bias changes the expectation function dramatically. The optimal exit
I ate may now very well NOt be the market day immediaely after the entry

ey, | fact, the optima exit date may well become the expiration day. In
Puch 2 cese, the option has a positive mathematical expectation even if held

Bl expiration. Not only is the expectation function dtered dramaticaly by
FPVEN o slight bias in the price of the underlying, so, too, are the optima fs,
MIPRs, and GHPRs.

For ingance, the following table is once again derived from the option
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discussed earlier in this chapter. This is the 100 cal optiou where the
underlying is a 100, and it expires 911220. The volatility is 20% and it i
now 911104. We ae using the Black commodity option formula (H s,
cerned as in Equation (5.07) and R = 5%) and a 260.8875-day year. We i)
again use 8 dandard devigtions to cdculate our optimd fs from (to be con-
sgent with the previous tables showing no bias in the underlying, or bias -
0), add we ae usng a minimum tick increment of .1. Ilere, however, we
will assume a bias of .01 points (one tenth of one tick) upward per day in the
price of the underying:

Exit Date AHPR GHPR f
Tue. 911105 1.000744 1.000357 .1081663
Wed. 911106 1.000149 1.000077 .0377557
Thu. 911107 1.000003 1.000003 .0040674
Fri. 911108 <1 <1 0

Notice how smply a tiny .Ol-point upward bias per day changes the
results. Our optima exit date is ill 911105, and our optima f is .1081663,
which trandates into 1 contract for every $2,645.00 in account equity (2.861
* 100/.1081663). Also notice that a positive expectation is obtained in this
option dl the way until the close of 911107. Had we had a sronger bias
than Smply 01 point upward per day, the results would be changed to an
even more pronounced degree

The lagt point that needs to be addressed is the cost of commissions. In
the price of the option obtained with Equation (5.14), the variable Z(T,
U - Y) mus be adjusted downward to reflect the commissions involved in
the transaction (if you are charged commissions on the entry side also, then
you must adjust the varigble § in Equation (5.14) upward by the amount of
the commissions).

We have covered finding the optima f and its by-products when we are
uot usng a mechanicd sysem. We can now begin to combine multiple
positions.

MULTIPLE SIMULTANEOUS POSITIONS WITH A
CAUSAL RELATIONSHIP

As we begin our discusson of multiple smultaneous postions, it is impo™
tant to differentiste between causd reationships and correative relatiog-
ships. In the causd relationship, there is a factud, connective explanation
the correlation between two or more items. That is, a causdl relationship ¥
one where there is corrdation, and the correlaion can be explained °F
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accounted for in some logicd, connective fashion. This is in contrast to a
correlative relationship where there is, of course, correlation, but there js No
Eocausal, connective, explandtion of the correlation.
L As an example of a causd reationship, let's look a put options on IBM
d cdl options on IBM. Cetanly the corrdation between the IBM puts
d the IBM calls is -1 (or very close to it), but there is more to the rda
-;jaltionship than smply corrdaion. We know for a fact that when there s
upwal’d pressure on IBM calls that there will be downward pressure on the
uts (Al dse remaning condant, including volatility). This logica, connec-
ve rdationship means that there is a causd relaionship between IBM cdls
d IBM puits.
When there is corrdlation but no cause, we simply say that there is a cor-
lative relationship (as opposed to a causd rdationship). Usudly, correla-
ve rdationships will not have corrdation coefficients whose absolute val-
es ae coxe to 1. Usudly, the absolute value of the corrdation coefficient
will be doser to 0. For example, corn and soybeans tend to move in tandem.
lthough thelr corrdation coefficients are not exectly equd to |, there is
ill a causd relationship because both markets are affected by things that
ffect the grains. If we look a IBM ¢alls and Digitd Equipment puts (or
alls), we cannot say that the relaionship is completely a causal relaionship.
urely there is somewhat of a causd reationship, as both of the underlying
ocks are members of the computer group, but just because IBM goes up
or down) is not an absolute mandate that Digita Equipment will dso. As
bu can see, there is not a fine line that differentiastes causd and corrdative
elationships.
This “douding™ of causd relationships and those that are sSmply correla-
e will make our work more difficult. For the time being, we will only ded
ith causal relationships, or what we bdieve are causd reationships In the
t chapter we will ded with correlative relationships, which encompass
usal relationships as well. You should be aware right now that the tech-
ques mentioned in the next chapter on correldive relationships ac dso
ipplicable to, or can bc used in licu of, the techniques for causd relation-
#hips about to be discussed. The reverse is not true. That is, it is erroneous
BV apply the following techniques on causd relaionships to  relaionships
are simply correlative.
A causal relationship is one where the corrdlation coefficients between
M€ prices of two items is 1 or -1. To simplify matters, a causal relationship
N0t always consists of any two tradegble items (stock, commodity, option,
Pt.) that have the same underlying instrument, This indudes, but is not
Wite(] to, options spreads, straddles, stranglcs, and combinations, as well as
red writes or any other position where you are using the underlying in
nction with one or more of its options, or one or more options on the
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same underlying instrument, even if YU do not have a position in the
underlying instrument.

In its smplest form, muitiple simultaneous positions consisting of only
options (no position in the underlying), when the position is put on a 4
debit, can be solved for by using Equation (5.14). By solved for | mean that
we can determine the optimal f for the entire position and its by-products
(including the optima exit date). The only differences are that the varidble
S will now represent the net of the legs of the podtion a the trade's incep-
tion. The varidble Z(T, U = Y) will now represent the net of the legs a price
U by time T remaining till expiration.

Likewise, multiple smultaneous positions consisting of only options (no
position in the underlying), when the position is put on a a credit, can be
solved for by usng Equation (5.20). Again, we must alter the varidbles S and
Z(T, U = Y) to reflect the net of the legs of the postion. For example, sup-
pose we are looking to put on a long option sraddle, the purchase of a put
and a cdl on the same underlying indrument with the same drike price and
expiration date. Further suppose that the optima f returned by this tech-
nigue was 1 contract for every $2,000. This would mean that for every
$2,000 in account equity we should buy 1 sraddle; for every $2,000 in
account equity we should buy 1 of the puts and 1 of the calls. The optima f
returned by this technique pertains to financing 1 unit of the entire postion,
no matter how large that position is. This fact will be true for ] the multi-
ple smultaneous techniques discussed throughout this chapter.

We can now devise an eguation for multiple sSmultaneous postions
involving whether a postion in the underlying insrument is included or
not. We can use this generdized form for multiple smultaneous postions
with a causd reationship:

N
(5.22) HPR(T, U) = (1 +§1ci(T, uU)) A P(T, U)

where N = The number of legs in the podtion.
HPR(T, U) = The HPR for a given test vdue for T and U.

Ci(T’ U) = The coefficient of the ith kg at a given value for
U, a a given time T remaining till expiration:

For an option leg put on a a debit or a long position in the underlying:

(5.23a) Cy(T,U) =f* (Z(T,U = Y)/S=1)

ULTIPLE SIMULTANEOUS POSITIONS-CAUSAL RELATIONSHIP
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For an option leg put on a a credit or a short podtion in the underlying:

CiT,U)=f* (1 =Z(T,U = Y)/S)
f = The tested value for f.

4 (5.23b)
; where

S = The current price of the option or underlying
instrument.

Z(T, U = Y) = The theoretical option price if the underlying
were a price U with time T remaining till expira-
tion.

P(T, U) = The probability of the underlying being a price U
by time T remaining till expiration.

Y = The difference between the aithmetic mathemat-
icd expectation of the underlying & time T, given
by (5.10), and the current price.

Equation (5.22) can be usad if you are plaming on putting these legs dl
on a once, one for one, and you only need to iterate for the optima f and
optimd exit date of the entire podtion (that is what is meant by “multiple
dmultaneous positions’).

For each vaue of U you will have an IIPR given by Equaion (5.22). For
eech vadue for f you will have a geometric mean, composed of dl of the
HPRs pia-rijuation (5. 18a):

+8SD +R8D
G(f. T) = {IIHPR(T, U)} A (I_/RiP(T, u))
U = 88D Uu=-8sp

G(f, T) = The geometric mean HPR for a given tet vaue for f
and a given time remaning till expiration from a man-
dated exit date. Those values off and T (the values of
the optima f and mandated exit date) that result in
the highest geometric meens, are the ones that you
should use on the net postion of the legs.

‘To summarize the entire procedure. We want to find the optimal f for
ACh day, using each maket day between now and expiraion as the man-
ed exit dae For eech mandated exit date you will determine those dis-
ete prices behveen plus and minus X standard deviations (ordinarily we
let X equd 8) from the base price of the undelying instrument. The
€ price can be the current price of the underlying instrument or it can be
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dtered to reflect a paticular bias you might have regarding that market’s
direction. You now need to find the value between 0 and 1 for f that results
in the greates geometric mean 1IPR, using an 1IPR for each of the discrete
prices between plus and minus X sandard deviations of the base price for
tha mandated exit date. Therefore, for each mandated exit date you wil]
have an optima f and a corresponding geometric mean. The mandated exit
date that has the grestes geometric mean is the optima exit dae for the
postion, and the f corresponding to that geometric mean is the f that is
optimdl.
The “negting” of the logic of this procedure is as follows:

For each mandated exit date (weekday) between now and expiration
For each vaue off (until the optima is found)
For each market system
For each tick between + and - 8 std. devs.
Determine the HPR

Findly, you should note that in this section we have been attempting,
among cother things, to discern the optima exit date, which we have looked
upon as a single date a& which to close down al of the legs of the position.
You can goply the same procedure to determine the optimal exit dae for
each leg in the postion. This compounds the number of computations geo-
metrically, but it can be accomplished. This would dter the logic to gppear
&

For each market system
For each mandated exit date (weekday) behveen now and expiraion
For each vaue off (until the optima is found)
For each market system
For each tick between +8 and -8 std. devs.
Determine the HPR

We have thus covered multiple smultaneous positions with a causal reli}'
tionship. Now we ¢an move on to a smilar Stuation where the relationship

is random.
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BAULTIPLE SIMULTANEOUS POSITIONS WITH A
eANDOM RELATIONSHIP

ou Should be aware that, as with the causd reationships already discussed,
¥ithe techniques mentioned in the next chapter on correlaive relationships
adso gpplicable to, or can be used in lieu of, the techniques for random
ationships about to be discussed. This is not true the other way around.
at is, it is erroneous to apply the techniques on random relationships that
llow in this chapter to relationships that are correative (unless the corre-
tion coefficients equa 0). A random relationship is one where the correla-
op Coefficients between the prices of two items is O.
A random rdationship exists between any two tradegble items (stock,
tures, options, etc.) whose prices are independent of one another, where
e correlation coefficient between the two prices is zero, or is expected to
e Zero iN an asymptotic sense.
When there is a corrdation coefficent of O between every combinaion
2 legs in a multiple smultaneous  position, the HPR for the net position is
ven as;

N N
) HPR(T.U)= (1+ X (T, 1)~ TT (T, U)

where N = The number of legs in the postion.

HPR(T, U) = The HPR for a given test vaue for T and U.

Ci(T, U) = The codfficient of the ith leg a a given vaue for
U, a a given time remaining till expiration of T:

For an option leg put on a a debit or a long poistion in the underlying
Lt rument:

.23a) C(T, U) = f * (Z(T,U - Y))$ - 1)

® For an option leg put on a a credit or a short position in the underlving
trument: °

7,

3

b)  CyT,U)=f*(1-ZT,U-Y)S)
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where f = The tested vdue for f.

S = The current price of the option.

Z(T, U -Y) = The theoreticd option price if the underlying
were at price U with time T remaining till expira-
tion.

P,(T, U) = The probability of the ith underlying being &
price U by time remaining till expiration of T.

Y = The difference between the arithmetic mathemat-
icd expectation of the underlying & time T, given
by (5.10), and the current price.

We can now figure the geometric mean for random reationship HPRs
as

+88D +8SD
T, U) A HP T, U)}
(5.25) G(f, T) = l{_f}m o Hggl + ZC( W
+8SD +8SD N
MU 2 IT p(T, U))
Ul'--88D°  UN=-8SD
where  G(f, T) = The geometric mean HPR for a given test vaue for f

and a given time remaining till expiraion from a man-
dated exit date. Once again, the f and T that result in
the grestest geometric mean are optimd.

The “nesting’ of the logic of this procedure is exactly the same as with
the causd rdationships:

For each mandated exit date (weekday) between now and expiration
For each vdue off (until the optimd is found)
For each market system
For each tick between +8 and -8 std. devs.
Determine the HPR

The only difference between the procedure for solving for random rela-
tionships and that for causa reationships is that the exponent to each HPR
in the random relationship is caculated by multiplying together the proba-
bilities of al of the legs being & the given price of the particular HER Fla%*;
of these probability sums used as exponents for eech IIPR are themselY
summed so that when all of the HPRs are multiplicd together to obtain
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interim TWR, it can be raised to the power of 1 divided by the sum of the
exponents used in the HPRs. And again, the outer loop of the logic could be
¢ mended to accommodate a search for the optimd exit dae for each leg jp
L the position.
8 Complicated as Equation (5.25) looks, it till does not address the prob-
5 lem of a linear corrdlation coefficient between the prices of any two compo-
1 pents that is not 0. As you can see, olving for the optima mixture of com-
ponents is quite a task! In the next few chapters you wil] see how to find the
ight quantities for each leg in a multiple postion-usng stock, commodi-
, options, or any other tradesble item-regardess of the rdationship
causal, random, or correlative). The inputs you will need for a given option
position in the next chepter are (1) the correlation coefficient of its average
daily HPR on a |-contract basis to each of the other positions in the portfo-
, and (2) its arithmetic average HPR and standard deviation in HPRs.
5 Equations (5.14) and (5.20) detalled how to find the HPR for long
£ options and short options respectively. Equation (5.18) then showed how to
urn this into a geometric mean. Now, we can dso discern the aithmetic

For long options, options put on a a debit:

+8SD

+88D
15.26a) AlIPR = iigg +f* (Z(T,U = Y)/S = 1)) * P(T, U)&}i%ls’gr, U)

For short options, options put on at a credit:

$3.26b)  AHPR = & g +f* (1=Z(T,U ~Y)/S)* P(T,U &*EDPIST V)

where AHPR = The aithmetic average HPR.
f = The optimd f (0 to 1).
S = The current price of the option.
Z(T, U - Y) = The theoretical option price if the underlying

were & price U with time T remaining till

expiration.

The probability of the underlying being at price U

with time T remaining till expiration.

Y = The difference between the arithmetic mathemat-
icd expectation of the underlying at time T, given
by (5.10), and the current price.

P(T, U) =
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Once you have the geometric average HPR and the aithmetic average
HPR, you cen readily discern the dandard deviation in HPRs:

(5.27) SD=(AA2~.GA2) A(172)

where A = The aithmetic average HPR.
G = The geometric average HPR.
D = The gandard deviation in HPRs.

In this chapter we have learned of yet another way to calculate opti-
mal f. The technique shownwas for nonsystem traders and used the
distribution of outcomes on the underlying instrument by a certain
date in the future as input. As a side benefit, this approach allows us
to find the optimal f on both options and for multiple simultaneous
positions. However, one of the drawbacks of this technique is that the
relationships between all of the positions must be random or causal.

Does this mean we cannot use the techniques for finding the opti-
mal f discussed in earlier chapters, on multiple simultaneous positions
or options? No-again, which method you choose is a matter of utility
to you. The methods detailed in this chapter have certain drawbacks
as well as benefits (such as the ability to discern optimal exit times). In
the next chapter, we will begin to delve into optimal portfolio con-
struction, which will later allow us to perform multiple simultaneous
positions using the techniques detailed earlier.

There are many different directions o study we could head off into
at this function. However, the goal in this text is to study portfolios of
different markets, portfolios of different market systems, and different
tradeable items. This being the case, we will part from the trail of the-
oretical option prices and head in the direction of optimal porffolio
construction.

Correlative Relationships
and the Derivation of the
Efficient Frontier

We have now covered finding the optimal quantities to trade for
futures, stocks, and options, trading them either alone or in tandem
with another item, when there is either a random or a causal relation-
ship between the prices of the items. That is, we have defined the opti-
mal set when the linear correlation coefficient between any two ele-
ments in the portfolio equals 1, ~I, or Q. Yet the relationships between
any two elements in a portfolio, whether we look at the correlation of
prices (in a nonmechanical means of trading) or equity changes (in a
mechanical system), are rarely at such convenient values of the linear
correlation  coefficient.

In the last chapter we looked at trading these items from the stand-
point of someone not using a mechanical trading system. Because a
mechanical trading system was not employed, we were looking at the
correlative relationship of the prices of the items.

This chapter provides a method for determining the efficient fron-
tier of portfolios of market systems when the linear correlation coeffi-
cient between any two portfolio components under consideration is

b any value between -1 and 1 inclusive. Herein is the technique
employed by professionals for determining optimal portfolios of
L stocks. In the next chapter we will adapt it for use with any tradeable
i, instrument.

237
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In this chapter, an important assumption is made regarding these
techniques. The assumption is that the generating distributions (the
distribution of returns) have finite variance. These techniques are
effective only to the extent that the input data used has finite
variance.’

DEFINITION OF THE PROBLEM

For the moment we are dropping the entire idea of optima f; it will catch
up with us later. It is eeser to understand the derivaion of the efficient
frontier parametricaly if we begin from the assumption that we ae dis-
cussing a portfolio of stocks. These stocks are in a cash account and are paid
for completely. That is, they are not on margin.

Under such a circumstance, we derive the efficient frontier of portfolios.
That is, for given stocks we want to find those with the lowest level of
expected risk for a given level of expected gain, the given leves being deter-
mined by the particular investor's averson to risk. Hence, this basic theory
of Makowitz (aside from the generd reference to it as Modem Portfolio
Theory) is often referred to as E-V theory (Expected return = Variance of
return). Note that the inputs are based on returns. That is, the inputs to the
derivation of the efficient frontier are the returns we would expect on a
given sock and the variance we would expect of those returns. Generdly,
returns on stocks can be defined as the dividends expected over a given
period of time plus the capitd appreciation (or minus depreciation) over
that period of time, expressed as a percentage gain (or loss).

Consider four potentia investments, three of which are stocks and one a
savings account paying 8%% per year. Notice that we are defining the
length of a holding period, the period we messure returns and their vari-
ances, & 1 year in this example:

1IFor more on this, see Fama, Eugene F., “Portfolio Anﬂ]ysis in a Stable Paretian Mal'ke(,"‘
Management Science 11, pp. 404-419, 1965. Fama has demonsirated techniques for finding '
the efficient frontier parametrically for stably distributed securities possessing the same charac-
teristic exponent, A, when the refumsof the components al depend upon a single underlying'
market index. Headers should be aware that other work has been done on determining the em'

cient frontier when there is infinite variance in the returns of the components in the pOﬁtho'

These techniques are not covered here other than to refer interested readers to pertinent ar'- |
cles. For more on the stable Paretian distribution, see Appendix B. For a discussion of infinite

variance, see ‘The Student’s Distribution” in Appendix B.
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vestment Expected Return Expected Variance of Return

= ToxicO 9.5% 10%
E incubeast Corp. 13% 25%
b LA Gab 21% 40%
6.5% 0%

Expected Standard

vestment Expected Return as an HPR Deviation of Return
oxico 1.095 316227766
ncubeast Corp 1.13 5
LA Garb 1.21 632455532
avings Account 1.085 0

The time horizon involved is irrelevant so long as it is consstent for al
‘components under consideration. That is, when we discuss expected return,
doesn‘t matter if we mean over the next year, quarter, 5 years, or day, as
ong as the expected returns and standard deviations for al of the compo-
ents under consideration dl have the same time frame (Tha is they must
I be for the next year, or they must al be for the next day, and so on.)
Expected return is synonymous with potential gains, while vaiance (or
andard deviation) in those expected returns is synonymous with potential
k. Note that the modd is two-dimensond. In other words, we can say
Fihat t fe mode can be represented on the upper right quadrant of the
g Cartesan plane (sce Figure 6-1) by plading expected retum aong one axis
A8enerdly the verticl or Y axis) and expected variance or standard deviation
Eof retums aong the other axis (generdly the horizontal or X axis).

There are other asgpects to potentia risk, such as potential risk of (proba-
ity of) a catestrophic loss, which E-V theory does not differentiate from
iance of returns in regards to defining potentid risk. While this may very
be true, we will not address this concept any further in this chapter so
™10 discuss E-V theory in its classic sense. However, Markowitz himself
prearly stated that a portfolio derived from E-V theory is optima only if the
Miity, the “satisfaction,” of the investor is a function of expected return and
Miance in expected return only. Markowitz indicated that investor utility
%Y very wel encompass moments of the didribution higher than the firgt
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ften peform a linear regresson on the past returns to determine the
turn (the expected return) in the next holding period. The variance por-
on Of the input would then be determined by caculating the variance of
ach past data point from what would have been predicted for that past data
oint (and not from the regresson line caculaed to predict the next

expected return). Rather than gathering these figures empiricdly, the
‘invedtor can also smply edimate what he or she beieves will be the future
“returns and variances? in those returns. Perhaps the best way to arive at

ee parameters is to use a combination of the two. The investor should
“gather the information empiricelly, then, if need be interject his or her
beliefs about the future of those expected returns and their variances.

The next parameters the investor must gather in order to use this tech-

‘nique are the linear corrdation coefficients of the returns. Again, these fig-
.ures can be arived a empiricaly, by estimation, or by a combination of
: the two.

In determining the correlation coefficients, it is important to use data
-points of the same time frame & was used to determine the expected

‘returns and variance in returns. In other words, if you are using yearly data
:‘;tvo determine the expected returns and variance in retuns (on a yearly
“basis), then you should use yearly data in determining the corrdation coeffi-
clents. If you are usng daly data to determine the expected returns and

‘variance in returns (on a daly bads), then you should use daily data in

“determining the correlation coefficients.

“ It is dso very important to redize that we are determining the corrda

tion coefficients of returns (gains in the stock price plus dividends), not of

fthe underlying price of the stocks in question.

- Consider our example of four alternative investments-Toxico,
‘Incubeast Corp., LA Gab, and a savings account. We designate these with
f‘the symbals T, I, L, and S respectively. Next we congtruct a grid of the lin-
Licar correlation coefficients as follows:

1.4

1.3

LA GARB

*
1.2

INCUBEAST
SAVINGS TOXIG %
AGCOUNT XG0
1.1} &

¥

, L-1--__ ! . 1 L [
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Figure 6-1 The upper-right quadrant of the Cartesian plane.

two (which are what E-V theory addresses), such as skewness and kurtosis
of expected returns.

Potentia risk is dill a far broader and more nebulous thing than what we
have tried to define it as. Whether potentia risk is smply variance on a con-
trived sample, or is represented on a multidimensional hypercube, or incor-
porates further moments of the distribution, we try to define potential risk
to account for our inability to realy put our finger on it. That said, we will
go forward defining potentid risk as the variance in expected returns.
However, we must not delude oursdves into thinking that risk is smply

defined as such. Risk is far broader, and its definition far more dusive. L S

So the first step that an investor wishing to employ E-V theory must T -15 05 0
make is to quantify his or her beiefs regarding the expected returns and ‘ o5 0
vaiance in returns of the securities under congderation for a certan time L 0

horizon (holding period) specified by the investor. These parameters can be,
arived a empiricdly. That is, the investor can examine the past history of
the securities under consideration and celculate the returns and their vari-
ances over the specified holding periods. Again the term returns means notf.
only the dividends in the underlying security, but any gains in the vaue ©
the security as well. This is then specified as a percentage. Variance is th(?d
datigtical variance of the percentage returns. A user of this gpproach wou

From the parameters the investor has input, we can cdculate the covari-
9ice between any two securities as.

Again, estimating variance can be quite tricky. An easier way isto estima?ethe mean absolute
Beviation, then multiply tis by 1. 25 to arive & the Sandard deviaion. Now mutiplying this
ard deviation by itsdlf, squaring it, gives the estimated variance.
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(6.01) COV&b = Ra,b *S5,% S

where COV,}, = The covariance between the ah security and the bth
one

R,p, = The linear correlation coefficient between a and b.
S

Sy, = The standard deviation of the bth security.

The standard deviation of the ath security.

a

The gandard devidtions, S, and S, are obtained by taking the square root
of the variances in expected returns for securities a and b.

Returning to our example, we can determine the covariance between
Toxico (T) and Incubesst (1) as

COVr; = -15* 10A(1/2) * 257 (1/2)
=-15* .316227766 * .5
= -.02371708245
Thus, given a covariance and the comprisng standard devigtions, we can
cdculate the linear corrdation coefficient as:
(6.02) R, p, = COV,p/(S, * §p)
where COV, ), = The covariance between the ath security and the bth
one
R,p = The linear correlation coefficient between a and b.
S, = The standard deviation of the ath security.

Sy, = The standard deviation of the bth security.

Notice that the covariance of a security to itsdf is the variance, since the
linear corrdation coefficient of a security to itsdf is 1

(6.03)  COV,,=1%*5,*5,

=1*8 "2
5, "2
= VK
where COV, , = The covariance of a security to itself.
S, = The standard deviation of a security.

V, = The variance of a security.
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‘ We can now cregte a table of covariances for our example of four invest-
. ment adternatives:

T \ L S
T A -.0237 .01 0
\ -.0237 .25 .079 0
L .01 .079 4 0
0 0 0 0

& We now have compiled the basc parameric information, and we can
Aff begin to date the basic problem formadly. Firgt, the sum of the weights of
. the securities comprising the portfolio must be equa to 1, since this is being
done in a cash account and each security is pad for in full:

N
2X;=1

4

where N =z The number of securities comprising the portfolio.
X; = The percentage weighting of the ith security.

It is important to note that in Equation (6.04) each X; must be nonnegaive.
That is, each X; must be zero or postive.

The next equation defining what we are trying to do regards the
“expected return of the entire portfolio. This is the E in E-V theory.
Essentidly what it says is that the expected return of the portfolio is the sum
of the returns of its components times their respective weightings:

N
.05) 2U. «X. = E

i= 1 1 1

where = The expected return of the portfolio.

The number of securities comprising the portfolio.

E
N
X; = The percentage weighting of the ith security.
U, = The expected return of the ith security.

Finally, we come to the V portion of E-V theory, the variance in
} pected returns. This is the sum of the variances contributed by each

pecurity in the portfolio plus the sum of al the possible covariances in the
portfolic:
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Mz

6.06a) V=Z ZX* X *COV
i=1j=1 )

NN
(6.068b) V=2 XX *X* Rj*S* S

i=lj=1

N N N
(6.06¢) 'VAZXﬂ&*&A%+2*% . X; * X+ COV;
i=1 i= j =1+ *
N N N
(6.06d) V =( 1XiA2*SiA2)+2*-21 lef*xj*Ri,j*si*Sj
1= 1= )= 1
where V = The variance in the expected returns of the portfolio.
N = The number of securities comprisng the portfolio.
X; = The percentage weighting of the ith security.

w

= The standard deviation of expected returns of the ith secu-
rity.

COV;j = The covariance of expected returns between the ith security
and the jth security.

R; j = The linear corrdlation coefficient of expected returns
'" between the ith security and the jth security.

All four forms of Equation (6.06) ae equivdent. The find answer to
Equation (6.06) is dways expressed as a postive number,

We can now condder that our god is to find those vaues of X;, which
when summed equd 1, that result in the lowest vdue of V for a given vaue
of E. When confronted with a problem such as trying to maximize (or mini-
mize) a function, H(X,Y), subject to another condition or congraint, such as
G(X.Y), one approach is to use the method of Lagrange

To do this, we mugt form the Lagrangian function, F(X,Y,L):

(6.07) FXY.L) = HIX,Y) + L * G(X.Y)

Note the form of Equation (6.07). It dates that the new function we have
crested, F(X,Y,L), is equd to the Lagrangian multiplier, L-a dack varigble
whose vaue is as yea undetermined-multiplied by the congtraint function
G(X,Y). This result is added to the origind function H(X)Y), whose extreme
we seek to find.

Now, the sSmultaneous solution to the three equations will yield those
points (X},Y;) of reaive extreme
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FX(X’Y’L) = 0
Fy(X.Y,L)= 0
Fi(XY,L)=0
For example, suppose we seek to maximize the product of two numbers,
. given that their sum is 20. We will let the varigbles X and Y be the two num-
b bers. Therefore, H(X,Y) = X * Y is the function to be maximized given the
i;j constraininAg function G(X,Y) = X + Y « 20 = 0. We mug form the
i Lagrangian function:

F(X,Y,L)=X*Y+L*(X+Y-20)
Fx(X,Y,L)=Y +L
Fy(X,Y,L) =X+L
FiXYL) =X+Y -20

B Now we st Fy(X,Y,L) and Fy(X,Y,L) both equa to zero and solve each
b forL:

Now setting FL(X,Y,L) = Oweobtan X +Y =20 = 0. Laslly, we replace X
E-nd Y by their equivdent expressions in terms of L:

(L)+(-L)-20=0
2%-L= 20
L =-10

nce Y equals -, we can state thet Y equals 10, and likewise with X. The
aximum product is 10 * 10 = 100.

The method of Lagrangian multipliers has been demondraied here for
W0 varigbles and one congraint function. The method can aso be agpplied
Vhen there are more than two vaiables and more than one condraint func-
Btion, For instance, the folowing is the form for finding the extreme when
here are three variables and two congraint functions:
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=

(6.08) F(X,Y,Z,L,Lg) = HXY.Z) + Ly * G(X.Y,Z) + Ly * Go(X,Y,Z)

In this case, you would have to find the smultaneous solution for five equa-
tions in five unknowns in order to solve for the points of relaive extreme
We will cover how to do that a little later on.

We can redate the problem here as one where we must minimize V, the
variance of the entire portfolio, subject to the two congtraints that:

(6.09) Z{(, *U)-E=0

and

N
(610  (2X;)-

where N = The number of securities comprising the portfolio.

E = The expected return of the portfalio.
X; = The percentage weighting of the ith security.

U; = The expected return of the ith security.

The minimizetion of a redricted multivariable function can be handled
by introducing these Lagrangian multipliers and differentiating partialy
with respect to each varigble Therefore, we express our problem in terms
of a Lagrangian function, which we cdl T. Let:

N MZ

X;) = 1)

N
61)  T=V+Li* (X U)-B+Ly* (2

where V = The variance in the expected returns of the portfolio, from
Equetion  (6.06).

= The number of securities comprising the portfolio.
E = The expected return of the portfolio.
X; = The percentage weighting of the ith security.
U, = The expected return of the ith security.
L; = The firs Lagrangian multiplier.

L, = The second Lagrangian multiplier.
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The minimum variance (risk) portfolio is found by sdting the first-order

partial derivatives of T with respect to dl varigbles equa to zero.

Let us agan assume that we ae looking a four possble invesment
alternatives: Toxico, Incubeast Corp.,, LA Garb, and a savings account. If we
teke the fird-order partia derivative of T with respect to X; we obtain:

. (612) OT/8X; =2* X1 * COV; +2* Xp * cov,,, + 2* X3 * cov,,

+2*X4 COV14+L1 U1+L2

: Setting this equation equa to zero and dividing both sdes by 2 yidds

Xl COV11+X2 CO\712+X3 COV13+X4 cov,, + .5 * Ll
*Ul+ 5*L2—0

Likewise
6T/6X2 =XI* COVQ 1 + X2 +COV2 2 + X3 COV2 gt X4 COV2 4t 5
* L * Ug+ 5% Lg=
6T/6X3 = Xl * COV3,1 + X2 * COV3’2 + X3 * COV3’3 + X4 * COV3,4 +.5
#Ll*U3+.5*L2=0

6T/6X4 = Xl COV4 1 + X2 COV4,2 + X3 * COV4,3 + X4 * COV4,4 +.5
*Li#Uy+ 5%Lg= 0

And we dready have 8T/8L; as Equetion (6.09) and 0T/Ly as Equation
(6.10).

Thus, the problem of minimizing V for a given E can be expressed in the
N-component case as N + 2 equations involving N + 2 unknowns. For the

y four-component case, the generdized form is:

*Up  +X%*U,  +X* U3 +X* U, =E
+ Xy +X3 +X4 =1
$COV; | + X, # COV; 5+ X34 COV, 5+ X, # COV, 4+ 5Ly *Uj+ 5Ly =0
o COVy+ X, * COVy g + X3 * COVy g + X4 * COVa g+ 5*LixUp+ 5+l =0

%4 * COV&[ + xZ * COV&Z + XS * COV&S + X4 * COV3_4 +.9% Ll * U3 +.0# L2 =0
B COV, | + X, # COV, g + X3+ GOV 3+ Xy * COVy g+ 5+ L, " U+ 57 Ly =0
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where E = The expected return of the portfolio.

X; = The percentage weighting of the ith security.

U; = The expected return of the ith security.
COVy = The covariance between securities A and B.

L; = The fird Lagrangian multiplier.

Ly = The second Lagrangian multiplier.

This is the generdized form, and you use this basc form for any number of
components. For example, if we were working with the case of three com-
ponents (i.e, N = 3), the generdized form would be

X .U + X * Uy + X3+ Uy =E
X, + Xo + X3 =1
X| * cov,, + X9 * COVy g + X3 COV 3+ S*L;*Uj+.5%Ly =0
X; #COVy ; + X, * COVgg + X3% COVyg+ 5% Ly * Up+ 5% 1= 0
X, * COVyy +Xy* COVyg+ X * COVag+ 5% Li* u3+ 5% Ly=0

You need to decide on a level of expected return (E) to solve for, and your
solution will be that combination of weightings which yields that E with the
least variance. Once you have decided on E, you now have dl of the input
variables needed to condruct the coefficients matrix.

The E on the right-hand dde of the firg equation is the E you have
decided you want to solve for (i.e, it is a given by you). The first line simply
dates that the sum of al of the expected returns times their weightings
must equa the given E. The second line smply states that the sum of the
weights must equa 1. Shown here is the matrix for a three-security case,
but you can use the generd form when solving for N securities. However,
these firg two lines are dways the same. The next N lines then follow the
prescribed  form.

Now, using our expected returns and covaiances (from the covariance
table we congructed earlier), we plug the coefficients into the generdized
form. We thus creste a matrix that represents the coefficients of the gener-
dized form. In our four-component case (N = 4), we thus have 6 rows (N +
2):
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L Xz X3 X4 L Lo Answer
F 095 13 21 085 ' E
E | 1 1 ! ! 1
E -0237 01 0 095 4 ' 0
¢ 0237 .25 079 0 RK] 1 0
¢ 01 079 4 0 21 1 0
L0 0 0 0 085 1 0

: Note that the expected returns are not expressed in the matrix as HPR’s,
k rather they are expressed in their “raw” decima date.

E  Notice that we dso have 6 columns of coefficients. Adding the answer
§ portion of each equation onto the right, and separating it from the coeffi-
/ cients with a creates what is known as an augmented matrix, which is con-
¢ structed by fusng the coefficients marix and the answer column, which is
® o0 known as the right-hand side vector.

f: Notice that the coefficients in the matrix correspond to our generdlized
i form of the problem:

+XQ*U2 +X3*U3 +X4*U4 =E
+X2 + X3 + Xy =1
COV; +Xy*COV g+ x3 4 co",,, +X,* CO",,,+5* L, *U;+5* Ly =0

], COszl + X2 * COV2,2 + X3 * COV2’3 + X4 * COVZ 4+ 5% Ll * U2 + 5+ L2 =0
COVG_I + X2 * COV3_2 + XS * COV3_3 + X4 * C0V3_4 +.0% Ll * U3 +.5%* L2 =0
COV4‘1 + X2 * COV4_2 + XS * COV4.3 + X4 * COV4_4 + .5 * Ll * U4 + 5 * L2 =0

The matrix is smply a representation of these equations. To solve for the
matrix, you must decide upon a leve for E that you want to solve for. Once
the matrix is solved, the resultant answers will be the optima weightings
required to minimize the variance in the portfolio as a whole for our speci-
ed level of E.

Suppose we wish to solve for E = .14, which represents an expected
return of 14%. Pugging .14 into the matrix for E and putting in zeros for
the varizbles L; and Ly in the first two rows to complete the matrix gives us
matrix of:
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x1 x2 X3 x4 L1 L2 Answer
095 13 .21 .085 0 0 14
1 1 1 ! 0 0 1
3 —-.0237 .01 0 .095 1 0
-.0237 25 .079 0 13 1 0
.01 .079 4 0 .21 1 0
0 0 0 0 .085 1 0

By solving the matrix we will solve the N + 2 unknowns in the N + 2 equa-
tions.

SOLUTIONS OF LINEAR SYSTEMS USING
ROW-EQUIVALENT MATRICES

A polynomial is an agebraic expresson that is the sum of one or more
terms. A polynomid with only one term is cdled a monomial; with two
terms a binomial; with three terms a trinomial. Polynomias with more than

three terms are smply caled polynomias. The expresson 4 * A A3+ A A 2

+ A + 2 is a polynomid having four terms. The terms are separated by a
plus (+) sign.

Polynomids come in different degrees. The degree of a polynomid is
the vaue of the highest degree of any of the terms. The degree of a term is
the sum of the exponents on the variables contained in the term. Our
example is a third-degree polynomid since the tem 4 * A A 3 is raised to
the power of 3, and tha is a higher power than any of the other terms in
the polynomia are raised to. If thisteemreed 4 * A A3 * B A2 * C, we
would have a sixth-degree polynomiad since the sum of the exponents of
the varidbles (3 + 2 + 1) equds 6.

A firg-degree polynomid is also cdleda linear equation, and it graphs as
a draght line A second-degree polynomid is cdled a quadratic, and it
graphs as a parabola. Third-, fourth-, and fifth-degree polynomids are adso
cdled cubics, quartics, and quintics, respectively. Beyond that there aren't
any specid names for higher-degree polynomias. The graphs of polynomi-
ds greater than second degree ae rather unpredictable. Polynomias can
have any number of terms and can be of any degree. Fortunately, we will be
working only with linear equations, firs-degree polynomias here.

When we have more than one linear equation that must be solved simul-
taneoudy we can use what is cdled the method of row-equivalent matrices.
This technique is dso often referred to as the Gauss—Jordan procedure 0OF
the Gaussian elimination method.
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f To peform the technique, we fird creste the augmented matrix of the
: problem by combining the coefficients matrix with the right-hand sde vec-
L' tor as we have done. Next, we want to use wha are caled elementary trans-

i formations to obtain what is known as the identity matrix. An dementary
f. transformation is a method of processing a métrix to obtain a different but

equivdent matrix. Elementary transformations are  accomplished by what
. are cdled row operations. (We will cover row operations in a moment.)

An identity matrix is a square coefficients matrix where dl of the de

- ments are zeros except for a diagond line of ones sarting in the upper left
i comer. For a Six-by-9x coefficients matrix such as we are using in our exam-

-j ple, the identity matrix would appear as:

1 000O0O
01 00O00O0
001000
000100
0 00O010O0
0 0O0O0O01

This type of matrix, where the number of rows is equa to the number of
columns, is cdled a sguare matrix. Fortunately, due to the generalized form
of our problem of minimizing V for a given E, we are dways deding with a
uare codfficients matrix.

Once an identity matrix is obtained through row operations, it can be
§ regarded as equivdent to the darting coefficients matrix. The answers then
¢ are read from the right-hand-side vector. That is, in the first row of the
B identity matrix, the 1 corresponds to the varidble X, so the answer in the
fight-hand side vector for the first row is the answer for X|. Likewise, the
¢ 'second row of the right-hand side vector contains the answer for Xy, snce
b the 1 in the second row corresponds to Xp. By using row operdions we can
I make dementary transformations to our original matrix until we obtain the
identity matrix. From the identity metrix, we can discern the answers, the
ights X}, . . ., XN, for the components in a portfolio. These weights will
Produce the portfolio with the minimum variance, V, for a given leve of
ected return, E.3

‘anat is, these weights will produce the portfolio with a minimum v for a given E only to the
£ extent that our inputs of E and V for each component and the linear correlation coefficient of
e"l!l'y possible pair of components are accurate and variance in returns is infinite.
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Three types of row operations can be performed:

1. Any two rows may be interchanged.
2. Any row may be multiplied by any nonzero constant.

3. Any row may be multiplied by any nonzero condtant and added to the
corresponding entries of any other row.

Using these three operations, we seek to transform the coefficients matrix
to an identity matrix, which we do in a very prescribed manner.

The first step, of course, is to smply start out by creating the augmented
matrix. Next, we peform the first elementary transformation by invoking
row operations rule 2. Here we take the vaue in the first row, first column,
which is .095, and we want to convert it to the number 1. To do so, we mul-
tiply each vaue in the first row by the constant 1/.095. Snce any number
times 1 divided by that number yidds 1, we have obtained a 1 in the first
row, first column. We have aso multiplied every entry in the first row by
this constant, 1/.095, as specified by row operations rule 2. Thus, we have
obtained dementary transformation number 1.

Our next gep is to invoke row operations rule 3 for al rows except the
one we have just used rule 2 on. Here, for each row, we take the vaue of
that row corresponding to the column we just invoked rule 2 on. In eemen-
tary transformation number 2, for row 2, we will use the value of 1, since
that is the value of row 2, column 1, and we just performed rule 2 on column
1. We now meake this vaue negdive (or podtive if it is dready negdive).
Since our vaue is 1, we make it -1. We now multiply by the corresponding
entry (i.e, same column) of the row we just performed rule 2 on. Since we
just performed rule 2 on row 1, we will multiply this -1 by the value of row
1, column 1, which is 1, thus obtaining -1. Now we add this value back to
the vaue of the cdl we are working on, which is 1, and obtain 0.

Now on row 2, column 2, we take the vaue of that row corresponding to
the column we just invoked rule 2 on. Again we will use the vdue of 1, since
that is the value of row 2, column 1, and we just performed rule 2 on col-
umn 1. We again make this vaue negdive (or postive if it is dready nega
tive). Since our vaue is 1, we make it -1. Now multiply by the correspond-
ing entry (i.e, same column) of the row we just performed rule 2 on. Since
we just performed rule 2 on row 1, we will multiply this -1 by the vaue of
row 1, column 2, which is 1.3684, thus obtaining -1.3684. Agan, we add
this vaue back to the vaue of the cel we are working on, row 2, column 2,
which is 1, obtaining 1 + (-1.3684) = -.3684. We proceed likewise for the
vaue of evary cdl in row 2, induding the vaue of the right-hand sde vector
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of row 2. Then we do the same for al other rows until the column we are

concerned with, column 1 here, is al zeros. Notice that we need not invoke
. row operations rule 3 for the last row, since that dready has a vaue of zero
E: for column 1.

- When we are finished, we will have obtained eementary transformation
B number 2. Now the first column is aready that of the identity matrix. Now
we Proceed with this pattern, and in eementary transformation 3 we invoke
row operations rule 2 to convert the vadue in the second row, second col-
g umn to a 1. In dementary transformation number 4, we invoke row opera-
tions rule 3 to convert the remainder of the rows to zeros for the column

corresponding to the column we just invoked row operations rule 2 on.

We proceed likewise, converting the vaues dong the diagonds to ones
per row operdtions rule 2, then converting the remaining vaues in tha col-
umn to zeros per row operations rule 3 until we have obtained the identity
L. matrix on the left. The right-hand side vector will then be our. solution set.

Bing Augmented Matrix

X5 X3 ) O L, L, Answer Explanation
0.13 0.21 0.085 0 0 1 0.14

! ! ! 0 0 : !
-0.023 0.01 0 0.095 1 | 0

0.25 0.079 0 0.13 1 | 0

0.079 0.4 0 0.21 1 : 0

0 0 0 0.085 1 0

dntary Transformation Number 1

1.3684  2.2105  0.8947 0 0 1.47368 row 1s (1/.095)
! ! ! 0 0 !
-0.023  0.01 0 0.095 ! : 0

0.25 0.079 0 0.13 1 ; 0

0.079 0.4 0 0.21 ! : 0

0 0 0 0.085 ! : 0
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Elementary Transformation Number 2
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X4 ) O X3 Xy L L, Answer Explanation

! 1.3684 2.2105 0.8947 O 0 1.47368

0 -0.368  -1.210 0.1052 0 0 -0.4736 row2 t (-1 +rowy)

0 -0.160  -0.211 -0.089 0.095 1 -0.1473 row 3 + (=1 1 row )

0 0.2824 0.1313 0.0212 0.13 1 03492 row4 t (.0237
£IOW 1)

0 0.0653 0.3778 -0.008 0.21 1 -0.0147 TOW5 t (-.01
£TOW 1)

0 0 0 0 0.085 1 0

Elementary Transformation Number 3

! 1.3684 2.2105 0.8947 O 0 1.47368

0 ! 3.2857 -0.285 0 0 1.28571 ow 2 # (1/-.36842)

0 -0.160 -0.211  -0.089 0.095 1 -0.1473

0 0.2824 0.1313 0.0212 0.13 1 0.03492

0 0.0653  0.3778 -0.008 0.21 1 -0.0147

0 0 0 0 0.085 1 0

Elementary Transformation Number 4

1 0 -2.285 1.2857 0 0 -0.2857 row | + (-1.368421
* row 2)

0 ! 3.2857 -0.285 0 0 1.28571

0 0 0.3164 -0.135 0.095 1 0.05904  row 3t (16054
% row2)

0 0 -0.796 0.1019 0.13 1 -0.3282 row 4 4 (-.28243!
¥ row 2)

0 0 0.1632 0.0097 0.21 1 -0.0987 row 5 t (-.065315
* row 2)

0 0 0 0 0.085 1 0

255
Rentary Transformation Number 5
X, X3 Xs L L i Answer Explanation
1 -2.285 1.2857 0 0 -0.2857
0 L8 1 A% A0 030 3062 0 1.28571
0.18658 oW 3 + (1/.31643)
0 -0.796  0.1019 0.13 ! -0.3282
0 0.1632  0.0097 0.2 ! -0.0987
0 0 0 0.085 ! 0
entary Transformation Number 6
0 0 0.3080 0.6862 7.2233 0.14075 row 1 t (2.2857
® row 3)
! 0 1.1196 -0.986 -10.38 0.67265 row 2 t (-3.28571
* row 3)
0 ! -0.427  0.3002 3.1602 0.18658
0 0 -0.238  0.3691 3.5174 -0.1795 row 4 t {.7966
* row 3)
0 0 0.0795 0.1609 0.4839 -0.1291 row 5 t (~.16328
* row 3)
0 0 0 0.085 ! 0
ntary Transformation Number 7
0 0 0.3080 0.6862 7.2233 0.14075
0 1.1196 -0.986 -10.38 0.67265
0 ! -0.427  0.3002 3.1602 0.18658
0 0 ! -1.545 -14.72 0.75192 rowd x {1/-.23881)
0 0 0.0795 0.1609 0.4839 -0.1291
0 0 0 0.085 1 0
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T ————
Elementary Transformation Number 8
—_—
X4 X, X3 Xa Ly L | Answer Explanation
| 0 0 0 1.1624 11.760 -0.0908 row1 + (-.30808
$TOW 4)
0 ! 0 0 0.7443 6.1080 -0.1692 row 2 + (-1.1196p9
*IOW 4)
0 0 ! 0 -0.360 -3.139 0.50819 row3 + (.42772
*IOW 4)
0 0 0 ! -1.545 -14.72 0.75192
0 0 0 0 0.2839 1.6557 -0.1889 row 5 + (-.079551
+ TOW 4)
0 n n 0 0.085 1 o
Elementary Transformation Number 9
1 0 0 0 1.1624  11.761 -0.0909
0 ! 0 0.7445  6.1098 -0.1693
0 0 ! 0 -0.361 -3.140 0.50823
0 0 0 ! -1.545 -14.72 0.75192
0 0 0 ! 5.8307 -0.6655 row 5 » (1/.28396)
0 0 0 0 0.085 1 0
Elementary Transformation Number 10
1 0 0 0 0 4.9831 0.68280 row 1 + (-1.16248
+[OW 5)
0 ! 0 0 0 1.7685 0.32620 row 2 + (-.74455
¥ row 5)
0 0 ! 0 0 -1.035 0.26796  row 3 + (3610
¢ row 5)
0 0.0000 -0.000 1.0000 -0.000 -5.715 -0.2769 row 4 t (1.5458
4 row 5)
0 0 0 0 ! 5.8312 -0.6655
0 0 0 0 0 0.5043 0.05657 row 6 t (085

+ row 5)
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tary Transformation Number 11
X5 X3 X Ly Ly Answer Explanation
0 0 0 4.9826 0.68283
0 0 0 1.7682 0.32622
0 ! 0 0 -1.035 0.26795
0.0000 -0.000 1.0000 -0.000 -5.715 -0.2769
0 0 0 ! 5.8312 -0.6655
0 0 0 0 ! 0.11217 row 6 * (1/.50434)
entary Transformation Number 12
0 0 0 0 0 0.12391 rowit (-4.98265
% row 6)
! 0 0 0 0 0.12787 row 2t (-1.76821
% row 6)
0 1 0 0 0 0.38407 ‘row 3+ (1.0352
+ row 6)
0 0 ! 0 0 0.36424 row 4t (5.7158
* row6)
0 0 0 1 0 -1.3197 row 5t (-5.83123
% row 6)
0 0 0 0 ! 0.11217
sy Matrix Obtained
0 0 0 0 0.12391 = X,
0 0 0 0.12787 = X
0 ! 0 0 0 0.38407 = X3
0 0 1 0 0 0.36424 = X
0 0 0 1 0 -1.3197/5 = -2.6394 = |
0 0 0 0 | 0.11217/5 = 22434 = L,
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INTERPRETING THE RESULTS

Once We have obtained the identity matrix, we can interpret its meaning.
Here, given the inputs of expected returns and expected variance in returns
for all of the components under consideration, and given the linear correls-
tion coefficients of each possible pair of components, for an expected yield
of 14% this solution set is optimal. Optimal, as used here, means that this
solution set will yield the lowest variance for a 14% yield. In a moment, we
will determine the variance, but first we must interpret the results.

The first four values, the values for X, through Xy, tell us the weights
(the percentages of investable funds) that should be allocated to these
investments to achieve this optimal portfolio with a 14% expected return.
Hence, we should invest 12.391% in Toxico, 12.787% in Incubeast,
38.407% in LA Garb, and 36.424% in the savings account. If we are looking
at investing $50,000 per this portfolio mix:

Stock Percentage (%50,000=) Dollarsto Invest
Toxico .12391 $6,195.50
Incubeast  .12787 $6,393.50
LA Garb .38407 $19,203.50
Savings 36424 $18,212.00

Thus, for Incubeast, we would invest $6,393.50. Now assume that
Incubeast sells for $20 a share. We would optimally buy 319.675 shares
(6393.5/20). However, in the real world we cannot run out and buy frac-
tional shares, so we would say that optimally we would buy either 319 or
320 shares. Now, the odd lot, the 19 or 20 shares remaining after we pur-
chased the first 300, we would have to pay up for. Odd lots are usually
marked up a small fraction of a point, so we would have to pay extra for
those 19 or 20 shares, which in turn would affect the expected return on our
Incubeast holdings, which in turn would affect the optimal portfolio mix.
We are often better off to just buy the round lot-in this case, 300 shares.
As you can see, more slop creeps into the mechanics of this. Whereas We
can identify what the optimal portfolio is down to the fraction of a share, the
real-life implementation requires again that we allow for slop.

Furthermore, the larger the equity you are employing, the more closely
the real-life implementation of the approach will resemble the theoretical
optimal. Suppose, rather than looking at $50,000 to invest, you were run-
ning a fund of $5 million. You would be looking to invest 12.787% m
Incubeast (if we were only considering these four investment alternatives)?
and would therefore be investing 5,000,000 #.12787 = $639,350. Therefore:
at $20 a share, you would buy 639,350/20 = 31,967.S shares. Again, if you
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. restricted it down to the round lot, you would buy 31,900 shares, deviating
from the optimal number of shares by about 0.2%. Contrast this to the case
here you have $50,000 to invest and buy 300 shares versus the optimal of
$19.675. There you are deviating from the optimal by about 6.5%.

The Lagrangian multipliers have an interesting interpretation. To begin
with, the Lagrangians we are using here must be divided by .5 after the
identity matrix is obtained before we can interpret them. This is in accor-
dance with the generalized form of our problem. The L; variable equals
~SV/8E. This means that L, represents the marginal variance in expected
returns. In the case of our example, where L; = -2.6394, we can state that V
is changing at arate of -L,, or —(-2.6394), or 2.6394 units for every unit in
E instantaneously at E = 14,

To interpret the Ly variable requires that the problem first be restated.
Rather than having ZX; = 1, we will state that 2X; = M, where M equals the
dollar amount of funds to be invested. Then Ly = §V/8M. In other words,
L, represents the marginal risk of increased or decreased investment.

Returning now to what the variance of the entire portfolio is, we can use
Equation (6.06) to discern the variance. Although we could use any varia-
tion of Equation (6.06a) through (6.06d), here we will use variation a:

N N

Plugging in the values and performing Equation(6.06a) gives:

(6.06a)

Xi cov,
* 0.12391 . 0.1 = 0.0015353688
* 0.12787  * -0.0237 =  _0.0003755116
* 0.38407 0.01 = 0.0004759011
* 0.36424  * 0 = 0
* 0.12301 * -0.0237 =  _0.0003755116
. 0.12787  * 0.25 = 0.0040876842
: 0.38407 0.079 = 0.0038797714
. 0.36424  * 0 = 0
0.12301 : 0.01 = 0.0004759011
0.12787 0.079 = 0.0038797714
0.38407 0.4 = 0.059003906
: 0.36424  ° 0 = 0
* 0.12391 0 = 0
. 0.12787  ° 0 = 0
: 0.38407 % 0 = 0
0.36424  ° 0 = 0
.0725872809
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Thus, we see that at thevdue of E = .14, the lowest value for Vis obtaineq
at V = .0725872809.

Now suppose we decided to input a value of E = .18. Again, we begin
with the augmented matrix, which is exactly the same & in the last examp]e
of E = .14, only the upper rightmost cell, that is the first cell in the right-
hand side vector, is changed to reflect this new E of .18:

Starting  Augmented  Matrix
X4 X X3 X4 L L, Answer
0.095 0.13 0.21 0.085 0 0 0.18
1 1 1 1 0 0 1
0.1 -0.023 0.01 0 0.095 1 0
-0.023 0.25 0.079 0 0.13 1 0
0.01 0.079 0.4 0 0.21 1 | 0
0 0 0 0 0.085 1 0
Through the Use of row operations . . . the identity malrix is obtained:
I 0 0 0 0 0 0.21401 = X,
0 1 0 0 0 0 4 0.22106 = X,
0 0 ! 0 0 0 0.66334 = X3
0 0 0 ! 0 0 -0981 =X,
0 0 0 0 | 0 -1.3197/6 = -2.63% L1
0 0 0 0 0 1 1 0.11217/5 = 22434 L,

We then go about solving the matrix exactly as before, only this time we get
a negative answer in the fourth cell down of the right-hand side vector.
Meaning, we should allocate a negative proportion, a disinvestment of
981% in the saings account.

To account for this, whenever we get a negative answer for any of the
X;'s—which meens if ay of the first N rows of the righthand side vector is
less than or equd to zero-we must pull tha row + 2 and that column out
of the starting augmented matrix, and solve for the new augmented matrix-
If either of the last 2 rows of the right-hand side vector are less than 9f
equal tozero, we don’t need to do this, Theselast 2 entriesin the right-
hand side vector always pertain to the Lagrangians, no matter how many of

how few components there are in total in the matrix. The Lagrangians ar¢
allowed to be negative.
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§  Since the variable returning with the negative answer corresponds to the
I weighting of the fourth component, we pull out the fourth column and the
k. sixth row from the starting augmented matrix. We then use row operations
i to perform elementary transformations until, again, the identity matrix s
¢ obtained:

Starting  Augmented  Matrix
X, X2 X Ly L, Answer
0.095 0.13 0.21 0 0
! ! 0 0 ! :J.ls
-0.023 0.01 0.095 | 0
0.25 0.079 0.13 1 0
0.079 0.4 0.21 ! I 0

Through the use of row operations . . . the identity matrix is obtained:

0.1283688

0 0 - x,
1 0 0 0 0.1904699 = X,
0 10 0 0.6811613 = x3

0 10 -2.38/.5 = -4.76 -
c o 0o 1 I 0.210944/5=4219 =1,

When you must pull out a row and column like this, it is important that
* you remember what rows correspond to what variables, especially when you
have more than one row and column to pull. Again, using an example to
illustrate, suppose we want to solve for E = ,1965. The first identity matrix
we arrive at will show negative valuesfor the weighting of Toxico, X;, and

#he savings account, X,. Therefore, we return to our starting augmented
£ natrix:

) O X3 X, Ly L, Answer Pertains to
0.13 0.21 0.085 0 0 | 0.1965 Toxico
. ! 1 ! 0 o i 1 Incubeast
023 -0.223 0.0y9 O 0.5 | 0 LA Garb
0.079 0.4 0 Savings
0 0.21 ! 0 Ly
) 0 0 0.085 L 1 0 L,
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Now we pull out row 3 and column 1, the ones that pertain to Toxico,
and aso pull row 6 and column 4, the ones that pertain to the savings
account:

Starting Augmented Matrix

X5 X3 Ly L Answer Pertains to
0.13 0.21 0 0 I 0.1965 Incubeast
! ! 0 0 [ 1 LA Garb
0.25 0.079 0.13 1 0 Ly
0.079 0.4 0.21 1 0 L,

So we will be working with the following matrix:
Starting Augmented Matrix
X, X3 L L, 1 Answer Pertains to
0.13 021 0 0 0.1965 Incubeast
| ! 0 0 1 IA Garb
0.25 0.079 0.13 1 0 L,
0.079 0.4 0.21 1 0 Ly

Through the use of row operations . . . the identity matrix is obtained:

1 0 0 0 .169 Incubeast
1 1 0 0 .831 LA Garb
0 0 1 0 -2.97/.5 = -5.94 Ly
0 0 0 1 , 2779695/.5 = 555039 L,

Another method we can use to solve for the matrix is to use the inversé
of the coefficients matrix. An inverse matrix is a matrix that, when multi-
plied by the original matrix, yields the identity matrix. This technique will
be explained without discussing the details of matrix multiplication.

In matrix algebra, a matrix is often denoted with a boldface capita] let-
ter. For example, we can denote our coefficients matrix as C. The inverse
to amatrix is denoted as superscripting -1 to it. The inverse matrik to C
then is C-1.

To use this method, we need to first discern the inverse matrix to ouf
coefficients matrix. To do this, rather than start by augmenting the n'ght'
hand-side vector onto the coefficients matrix, we augment the identity
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tarting Augmented Matrix

X4 X5 X3 X4 Ly L | Identity Matrix
.095 0.13 021 0.085 0 0 1 00000
1 1 1 0 0 01 00 00O
0.1 -0.023 0.01 0 0.095 1 1001 000
«0.023 0.25 0.079 0 0.13 1 0 00 100
01 0.079 0.4 0 0.21 1100 0 0 1 0
0 0 0 0.085 1 00 0001

Now we proceed using row operations to transform the coefficients
atrix to an identity matrix. In the process, since every row operation per-

ormed on the left is also performed on the right, we will have transformed

‘the identity matrix on the right-hand side into the inverse matrix C-r, of the

“coefficients matrix C. In our example, the result of the row Op‘;‘?&ti@[‘j
ields:

C J c-
0 00 0 O 2.2527 -0.1915 10.1049 0.9127 -1.1370 -9.8806
10 0 0 0 2.3248 -0.1976 0.9127 4.1654 -1.5726 -3.5056
01 0 0 O 6.9829 -0.5935 -1.1370 -1.5726 0.6571 5 504
001 0 0 -11.5603 1.9826 -9.8806 -3.5056 2.0524 11.3337
00 0 1t o0 -23.9957 2.0396 2.2526 2.3248 6.9829-11.5603
00 0 0 1 2.0396 -0.1734 -0.1915 -0.1976 -0.5935 1.9826

£, Nov we can take the inverse matrix, C-i, and multiply it by our original
f ¥ight-hand side vector. Recall that our right-hand side vector is:

ocoococowmm

Whenever we multiply a matrix by a columnar vector (such as this) we
4 ]tiply a] elements in the first column of the matrix by the first element in
2 vector, all elements in the second column of the matrix by the second
g'ment in the vector, and so on. If our vector were a row vector, we would

F‘ﬁply allelements in the first row of the matrix by the first element in the
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vector, al elements in the second row of the matrix by the second element
in the vector, and so on. Since our vector is columnar, and since the |y
four elements are zeros, we need only multiply the first column of the
inverse matrix by E (the expected return for the portfolio) and the second
column of the inverse matrix by S, the sum of the weights. This yields the
following set of equations, which we can plug values for E and S into and
obtain the optimal weightings. In our example, this yields:

E % 22527 + S % -01915 = Optima weight for first stock
E x 23248 + S % -0.1976
E % 69829 + S % -0.5935
E % -11.5603 + S * 1.9826 = Optimal weight for fourth stock
E %-239957 + S #2039 = .5 of first Lagrangian

E x 2039 + S * -0.1734

= Optimal weight for second stock
= Optimal weight for third stock

=5 of second Lagrangian

Thus, to solve for an expected return of 14% (E = .14) with the sum of
the weights equal to 1.

14 % 22527 + 1 *-01915 =.315378 -.1915 =.1239 Toxico
14 £ 23248 + | + 01976 = .325472 - .1976  =.1279 Incubeast
14 % 69829 + 1 % -05935 = .977606 - .5935  =.3841 LA Gab

14 % -115603 + 1 * 1.9826 = -1.618442 + 1.9826 = .3641 Savings

14 #-239957 4+ 1 % 20396 = -3.359398 + 2.0396 = -1.319798 * 2
= -263%5 L,

14 * 20396 + 1 % -0.1734
=.2243L,

= ,285544 - .1734 =.1121144* 2

Once you have obtained the inverse to the coefficients matrix, you ¢an
quickly solve for any value of E provided that your answers, the optim
weights, are al] positive. If not, again you must create the coefficients matrix
without that item, and obtain a new inverse matrix.

Thus far we have looked at investing in stocks from the long side only
How can we consider short sale candidates in our analysis?

To begin with, you would be looking to sell short astock if you .
it would dedline. Recall that the term ~Teturns” means not only the divi
dends in the underlying security, but any gains in the vadue of the security as

expeCted
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:well. This figure is then specified as a percentage. Thus, in determining the
;retums of ashort position, you would have to estimate what percentage gain
Eyou would expect to make on the declining stock, and from that you would
then need to subtract the dividend (however many dividends go ex-date
er the holding period you are calculating your E and V on) as a percent-
e 4 Lastly, any linear correlation coefficients of which the stock you are
king to short is a member must be multiplied by -1. Therefore, since the
ear correlation coefficient between Toxico and Incubeast is 15, if you
re looking to short Toxico, you would multiply this by -1. In such a case
ou would use -.15 * -1 = 15 as the linear correlation coefficient. If you
re looking to short both of these stocks, the linear correlation coefficient
tween the two would be —,15 * -1 * -1 = - 15. In other words, if you are
king to short both stocks, the linear correlation coefficient between them
mains unchanged, as it would if you were looking to go long both socks.

~ Thusfar we have sought to obtain the optimal portfolio, and its variance
V, when we know the expected return, E, that we seek. We can also solve
for E when we know V. The simplest way to do thisis by iteration using the
hniques discussed thus far in this chepter.

There is much more to matrix algebra than is presented in this chap-
ter. There are other matrix algebra techniques to solve systms of linear
equations. Often you will encounter reference to technigues such as
Cramer’s Rule, the Simplex Method, or the Simplex Tableau. These
.. are techniques similar to the ones described in this chapter, although
more involved. There are a multitude of applications in business and
. science for matrix algebra, and the topic is considerably involved. We
. have only etched the surface, just enough for what we need to accom-
plish. For a more detailed discussion of matrix algebra and its applica-
E tions in business and science, the reader is referred to Sets, Matrices,
k. and Linear Programming, by Robert L. Childress.

k. Tie next chapter covers utilizing the techniques detailed in this
L chapter for any tradeable instrument, as well as stocks, while incorpo-
i rating optimal f, as well as a mechanical system.

1Ihis clap br we are assuming that all transactions are performed in a cash account. Thus,
Iy iti i : H .

& though a short position is required to be performed In.a marein 000Ut as appven to-0

¥ account, we will not calculate interest on the margin.




E CAPITAL MARKET LINES (CMLs)

106} CM7 LINE
7 bt | EFFICIEI!IT FRONTIER
5 e
The Geometry of Portfolios 1
1 : . L !
0 0.02 0.04 0.06 0.08

STANDARD DEVIATION

We have now covered how to find the optimal fs for a given market fiFigure 7-1  Enhancing returns with the risk-free asset.

system from a number of différent standpoints. Also, we have seen
how to derive the efficient frontier. In this chapter we show how to
combine the two notions of optimal f and the efficient frontier to
obtain a truly efficient portfolio for which geometric growth is maxi-
mized. Furthermore, we will delve into an analytical study of the
geometry of portfolio construction,

tiio, and at point A all of the assets would be in the risk-free asset. Anywhere
' .u between points A and B represents having a portion of the assetsin both
e portfolio and the risk-free asset. Notice that any portfolio along line seg-
ment AB dominates any portfolio on the efficient frontier at the same risk
el, since being on the line sesgment AB has a higher return for the same
BRIsk. Thus, an investor who wanted a portfolio less risky than portfolio B
Edould be better off to put a portion of his or her investable funds in portfo-
b B and a portion in the risk-free asset, as opposed to owning 100% of a
portfolio on the efficient frontier at apoint less risky than portfolio B.
The line emanating from point A, the risk-free rate on the vertical axis
d zero on the horizontal axis, and emanating to the right, tangent to one
t on the efficient frontier, is called the capital market line (CML). To
#e right of point B, the CML line represents portfolios where the investor
% gone out and borrowed more money to invest further in portfolio B.
Wlice that an investor who wanted a portfolio with a greater return than
gy olio B would be better off to do this, as bei ng on the CML line right of
‘ _. #t B dominates (has higher return than) those portfolios on the efficient
fitier with the same level of risk.
sually, point B will be a very well-diversified portfolio. Most portfolios
' up and to the right and low down and to the left on the efficient fron-
have very few components. Those in the middle of the efficient fron-

,Where the tangent point to the risk-free rate is, usually are very well
ified.

THE CAPITAL MARKET LINES (CMLs)

In the last chapter we saw how to determine the efficient frontier paramet-
rically. We can improve upon the performance of any given portfolio by
combining a certain percentage of the portfolio with cash. Figure 7-I shows
this relationship graphically.

In Figure 7-1, point A represents the return on the risk-free asset. This
would usually be the return on 91-day Treasury Bills. Since the risk, the
standard deviation in returns, is regarded as nonexistent, point A is at zef0
on the horizontal axis.

Point B represents the tangent portfolio. It is the only portfolio lying
upon the efficient frontier that would be touched by a line drawn fron t}?e
risk-free rate of return on the vertical axis and zero on the horizontal a%:
Any point along line segment AB will be composed of the portfolio at Point
B and the risk-free asset. At point B, all of the assets would bein the pol‘tfo'

266
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It has traditionally been assumed that all rational investors will want to
get the greatest return for agiven risk and take on the lowest risk for agiven
return. Thus, all investors would want to be somewhere on the CML line.
In other words, all investors would want to own the same portfolio, only
with differing degrees of leverage. This distinction between the investment
decison and the financing decison is known as the separation theorem.l

We assume now that the vertical scale, the E in E-V theory, represents
the arithmetic average HPR (AHPR) for the portfolios and the horizontal,
or V, scale represents the standard deviation in the HPRs. For a given risk.
free rate, we can determine where this tangent point portfolio on our effj.
cient frontier is, as the coordinates (AHPR, V) that maximize the following
function are:

(7.01a) Tangent Portfolio = MAX{(AHPR - (1 + RFR))/SD}
where MAX{} = The maximum value.

AHPR = The arithmetic average HPR. This is the E coordinate
of agiven portfolio on theefficient frontier.

SD = The standard deviation inHPRs. Thisisthe V coordi-
nate of a given portfolio onthe efficient frontier.

RFR = The risk-free rate.

In Equation (7.01a), the formula inside the braces ({ }) is known as the
Sharpe ratio, a measurement of risk-adjusted returns. Expressed literaly,
the Sharpe ratio for a portfolio is a measure of the ratio of the expected
excess returns to the standard deviation. The portfolio with the highest
Sharpe ratio, therefore, IS the portfolio where the CML line is tangent to
the efficient frontier for a given RFR.

The Sharpe ratio, when multiplied by the square root of the number of
periods over which it was derived, equals the t statistic. From the resulting t
ddidic it is possble to obtan a confidence level that the AHPR exceeds the
RFR by more than chance alone, assuming finite variance in the returns.

The following table shows how to use Equation(7.01a) and demonstrate®
the entire process discussed thus far. The first two columns represent the
coordinates of different portfolios on the efficient frontier. The coordinates
are given in (AHPR, SD) format, which corresponds to the Y and X axes
Figure 7-1. The third column is the answer obtained for Equation (7.01a)
assuming a 1.5% risk-free rate (equating to an AHPR of 1.015. We assum®

1See Tobin, James, “Liquidity Preference as Behavior Towards Risk,” Review of Economic
Studies 25, pp. 65-85, February 1958,
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' } that the HPRs here are quarterly HPRs, thus a 1.5% risk-free rate for the
I quarter equates to roughly a 6% risk-free rate for the year). Thus, to work
ut (7.01a) for the third set of coordinates (60013. 1.002):

(AHPR - (1 + RFR))/SD = (1.002 - (1 + .015))/.00013
= (1.002 = 1.015)/.00013
= -.013/.00013

= -100

¢ The process is completed for each point along the efficient frontier.
k. Equation (7.01a) peaks out at .502265, which is at the coordinates (02986,
‘ 1.03). These coordinates are the point where the CML line is tangent to the
¥ efficient frontier, corresponding to point B in Figure 7-1. This tangent
L point is a certain portfolio along the efficient frontier. The Sharpe ratio is
the slope of the CML, with the steepest slope being the tangent line to the

iefficient frontier.

Effident  Frontier CML line
SD g. (7.00 9 Percentage AHPR
RFR =.015

0.00000 0 0.00% 1.0150
0.00003 -421.902 0.11% 1.0150
0.00013 -100.000 0.44% 1.0151
0.00030 -40.1812 1.00% 1.0152
0.00053 -20.7184 1.78% 1.0153
0.00063 -12.0543 2.78% 1.0154
0.00119 -7.53397 4.00% 1.0156
0.00163 -4.92014 5.45% 1.0158
0.00212 -3.29611 7.11% 1.0161
0.00269 -2.23228 9.00% 1.0164
0.00332 -1.50679 11.11% 1.0167
0.00402 -0.99622 13.45% 1.0170
0.00476 -0.62783 16.00% 1.0174
0.00561 -0.35663 18.78% 1.0178
0.00650 -0.15375 21.78% 1.0183
0.00747 0 25.00% 1.0188
0.00649 0.117718 28.45% 1.0193
0.00959 0.208552 32.12% 1.0198
0.01075 0.279036 36.01% 1.0204
0.01198 0.333916 40.12% 1.0210
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Efficient Frontier CML line

AHPR SD Eq. (7.01a) Percentage AHPR
1.02000 0.01327 0.376698 44 . 45% 1.0217
1.02100 0.01463 0.410012 49.01% 1.0224
1.02200 0.01606 0.435850 53.79% 1.0231
1.02300 0.01755 0.455741 58.79%% 1.0236
1.02400 0.01911 0.470073 64.01% 1.0246
1.02500 0.02074 0.482174 69.46% 1.0254
1.02600 0.02243 0.490377 75.12% 1.0263
1.02700 0.02419 0.496064 81.01% 1.0272
1.02800 0.02602 0.499702 87.12% 1.0281
1.02900 0.02791 0.501667 93.46% 1.0290
1.03000 0.02986 0.502265  (peak) 100.02% 1.0300
1.03100 0.03189 0.501742 106.79% 1.0310
1.03200 0.03398 0.500303 113.80% 1.0321
1.03300 0.03614 0.498114 121.02% 1.0332
1.03400 0.03836 0.495313 128.46% 1.0343
1.03500 0.04065 0.492014 136.13% 1.0354
0.04301 0.488313 144.02% 1.0366

100 LB 0.04543 0.484287 152.13% 1.0376
1.03800 0.04792 0.480004 160.47% 1.0391
1.03900 0.05047 0.475517 169.03% 1.0404
1.04000 0.05309 0.470873 177.81% 1.0417
1.04100 0.05578 0.466111 186.81% 1.0430
1.04200 0.05853 0.461264 196.03% 1.0444
1.04300 0.06136 0.456357 205.48% 1.0456
1.04400 0.06424 0.451416 215.14% 1.0473
1.04500 0.06720 0.446458 225.04% 1.0466
1.04600 0.07022 0.441499 235.15% 1.0503
1.04700 0.07330 0.436554 245_48% 1.0516
1.04800 0.07645 0.431634 256.04% 1.0534
1.04900 0.07967 0.426747 266.82% 1.0550
1.05000 0.08296 0.421902 277.82% 1.0567

The next column over, “percentage,” represents what percentage of your
assets must be invested in the tangent portfolio if you are at the CML line
for that standard deviation coordinate. In other words, for the last entry in
the table, to be on the CML line at the .08296 standard deviation level, cor
responds to having 277.82% of your assets in the tangent portfolio (i-e-
being fully invested and borrowing another $1.7782 for every dollar already
invested to invest further). This percentage value is calculated from the
standard deviation of the tangent portfolio as:

(7.02) P = SX/ST
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where  SX = The standard deviation coordinate for a particul ar point on
the CML line.

ST = The standard deviation coordinate of the tangent portfolio.

P = The percentage of your assets that must be invested in the
tangent portfolio to be on the CML line for agiven SX.

Thus, the CML line at the standard deviation coordinate .08296, the last
g entry in the table, is divided by the standard deviation coordinate of the tan-

b The last column in the table, the CML line AHPR, is the AHPR of the
CML line at the given standard deviation coordinate. Thisis figured as:
£ (703)  ACML = (AT * P) + (1 + RFR) * (1 -P)

where  ACML = The AHPR of the CML line at a given risk coordinate,
or a corresponding percentage figured from (7.02).

AT = The AHPR at the tangent point, figured from (7.01a).

P = The percentage in the tangent portfolio, figured from
(7.02)

RFR = The risk-free rate.
On occasion you may want to know the standard deviation of a certain
oint on the CML line for a given AHPR. This linear relationship can be
btained &

where  SD = The standard deviation at a given point on the CML line

corresponding to a certain percentage, P, corresponding
to a certain AHPR.

P = The percentage in the tangent portfolio, figured from
(7.02).

ST = The standard deviation coordinate of the tangent portfo-
lio.

E GEOMETRIC EFFICIENT FRONTIER

E problem with Figure 7-1 is that it shows the arithmetic average HPR.
: €n we are reinvesting profits back into the program we must look at the
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geometric average HPR for the vertical axis of the efficient frontier. This
changes things considerably. The formulato convert a point on the efficient
frontier from an arithmetic HPR to a geometric is:

(7.05) GHPR = (AHPR A 2-Vv) A (172)
where  GHPR = The geometric average HPR.
AHPR = The arithmetic average HPR.

V = The variance coordinate. (Thisis equal to the stan-
dard deviation coordinate squared.)

In Figure 7-2 you can see the efficient frontier corresponding to the
arithmetic average HPRs as well as that corresponding to the geometric
average HPRs. You can see what happens to the efficient frontier when
reinvestment is involved.

By graphing your GHPR line, you can see which portfolio is the geomet-
ric optimal (the highest point on the GHPR line). You could also determine
this portfolio by converting the AHPRs and Vs of each portfolio along the
AHPR éefficient frontier into GHPRs per Equation (7.05) and see which had
the highest GHPR. Again, that would be the geometric optimal. However,
given the AHPRs and the Vs of the portfolios lying along the AHPR effi-
cient frontier, we can readily discern which portfolio would be geometric
optimal-the one that solves the following equality:

(7.06a) AHPR-1-V=0

AHPR

GHPR
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where  AlIPR = The arithmetic average HPRs. This is the E coordinate
of agiven portfolio on the efficient frontier.

V = The variance in HPR. Thisis the V coordinate of a
given portfolio on the efficient frontier. Thisis equal to
the standard deviation squared.

‘ Equation (7.06a) can also be written as any one of the following three
b forms:

L (706b) AHPR-1=V
L (7.06c) AHPR-V= 1]
E (706)  AHPR=V +1

g A brief note on the geometric optimal portfolio is in order here. Variance
'3, in a portfolio is generally directly and positively correlated to drawdown in
- that higher variance is generally indicative of a portfolio with higher draw-
& down. Since the geometric optimal portfolio is that portfolio for which E
and V are equal (with E = AHPR = 1), then we can assume that the geomet-
ic optima portfolio will see high drawdowns. In fact, the greater the
CHPR of the geometric optimal portfolio-that is, the more the portfolio
makes-the greater will be its drawdown in terms of equity retracements,
ince the GHPR is directly positively correlated with the AHPR. Here again
% is a paradox. We want to be at the geometric optimal portfolio. Yet, the
igher the geometric mean of a portfolio, the greater will be the drawdowns
n terms of percentage equity retracements generally. Hence, when we per-
orm the exercise of diversification, we should view it as an exercise to
btain the highest geometric mean rather than the lowest drawdown, as the
wo tend to pull in opposite directions! The geometrical optimal portfolio is
ne where a line drawn from (0,0), with slope 1, intersects the AHPR effi-
ient frontier.

Figure 7-2 demonstrates the efficient frontiers on a one-trade basis.
}” at s, its 1bws what you can expect on a one-trade basis. We can convert
e geometric average HPR to a TWR by the equation:

GTWR = GHPR A N

GTWR = The vertical axis corresponding to a given GHPR
after N trades.

Figure 7-2 The efficient frontier with/without reinvestment.

GHPR = The geometric average HPR.

N = The number of trades we desire to observe.
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Thus, after 50 trades a GHPR of 1.0154 would be a GTWR of 1.0154 a
50 = 2.15. In other words, after 50 trades we would expect our stake to have
grown by amultiple of 2.15.

We can likewise project the efficient frontier of the arithmetic average
HPRs into ATWRs as:

(7.08) ATWR =1+ N * (AHPR-1)

where  ATWR = The vertical axis corresponding to a given AHPR after
N trades.

AHPR = The arithmetic average HPR.

N = The number of trades we desire to observe.

Thus, after 50 trades, an arithmetic average HPR of 1.03 would have
made 1+ 50 %(1.03-1) =1+50* 03 =1+ 15= 25 times our starting
stake. Note that this shows what happens when we do not reinvest our win-
nings back into the trading program. Equation (7.08) is the TWR you can
expect when constant-contract trading.

Just as Figure 7-2 shows the TWRs, both arithmetic and geometric, for
one trade, Figure 7-3 shows them for a few trades later. Notice that the
GTWR line is approaching the ATWR line. At some point for N, the geo-
metric TWR will overtake the arithmetic TWR. Figure 7—4 shows the arith-

ATWR

GTWAR

Figure 7-3 The efficient frontier with/without reinvestment.
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e

ATWR

GTWR

Figure 7-4 The efficient frontier with/without reinvestment.

metic and geometric TWRs after more trades have elapsed. Notice that the
, geometric has overtaken the arithmetic. If we were to continue with more
and more trades, the geometric TWR would continue to outpace the arith-
metic. Eventually, the geometric TWR becomes infinitely greater than the
b arithmetic.
f  Thelogical questionis, “How many trades must elapse until the geomet-
¥ ric TWR surpasses the arithmetic? Recall Equation (2.09a), which tells us
I the number of trades required to reach a specific goal:

‘(2.0921)

where N = The expected number of tradestoreach a specific goal.

N = In(Goal) / In(Geometric Mean)

God = The goal in terms of a multiple onour starting stake, a
TWR.

In() = The natural logarithm function.

We let the AHPR at the same V as our geometric optimal portfolio be
$9Ur goal and usc the geometric mean of our geometric optimal portfolio in
tthe denominator of (2.09a). We can now discern how many trades are
pequired to make our geometric optimal portfolio match one trade in the
forresponding arithmetic portfolio. Thus:
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N = In(1.031)/In( 1.01542)
= 035294/.0153023
= 1.995075

We would thus expect 1.995075, or roughly 2, trades for the optimal GHPR
to be as high up as the corresponding (same V) AHPR after one trade.

The problem is that the ATWR needs to reflect the fact that two trades
have elapsed. In other words, as the GTWR approaches the ATWR, the
ATWR is also moving upward, albeit at a constant rate (compared to the
GTWR, which is accelerating). We can relate this problem to Equations
(7.07) and (7.08), the geometric and arithmetic TWRs respectively, and
express it mathematically:

(7.09) GHPRAN=>1+N=*(AHPR-1)

Since we know that when N = 1, G will be less than A, we can rephrase

the question to “At how many N will G equal A?” Mathematically thisis:

(7.10a) GHPRAN=1+N=*(AHPR-1)

which can be written as:

(710b) 1+ N*(AHPR-1)-GHPRAN =0
or

(710c) 1+ N#AHPR-N-GHPRAN=0
or

(7.10d) N =(GHPR AN -1)/(AHPR -1)

The N that solves(7.10a) through(7.10d) isthe N that is required for the
geometric HPR to equal the arithmetic. All three equations are equivalent.
The solution must be arrived at by iteration. Taking our geometric optimal
portfolio of a GHPR of 1.01542 and a corresponding AHPR of 1.031, if we
were to solve for any of Equations (7.10a) through (7.10d), we would find
the solution to these equations at N = 83.49894. That is, at 83.49894
elapsed trades, the geometric TWR will overtake the arithmetic TWR for

those TWRs corresponding to a variance coordinate of the geometric opti-
mal portfolio.
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AHPR

GHPR

. sb
g Figure 7-5  AHPR, GHPR, and their CML lines.

. Just asthe AHPR has a CML line, so too does the GHPR. Figure 7-5

. shows both the AHPR and the GHPR with a CML line for both calculated

¥ from the same risk-free rate.

B  The CML for the GHPR is calculated from the CML for the AHPR by

g the following equation:

b (1) OMLG = (CMLA A2 VT * P) A (112)

E  Where CMLG = The E coordinate (vertical) to the CML line to the
GHPR for agiven V coordinate corresponding to P.

CMLA = The E coordinate (vertical) to the CML line to the
AIlIPR for agivenV coordinate corresponding to P.

P = The percentage in the tangent portfolio, figured from
(7.02).

VT = The variance coordinate of the tangent portfolio.

4 You should know that, for any given risk-free rate, the tangent portfolio
B0d the geometric optimal portfolioare not necessarily (and usually are not)
k'€ same. The only time that these portfolios will be the same is when the
Pollowing equation is  satisfied:
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(7.12) RFR = GHPROPT -~ 1
where RFR = The risk-free rate.

GHPROPT = The geometric average HPR of the geometric optimal
portfolio. Thisisthe E coordinate of the portfolio on the
efficient frontier.

Only when the GHPR of the geometric optimal portfolio minus | is
equal to the risk-free rate will the geometric optimal portfolio and the port-
folio tangent to the CML line be the same. If RFR > GHPROPT - 1, then
the geometric optimal portfolio will be to the left of (have less variance
than) the tangent portfolio. If RFR < GHPROPT - 1, then the tangent
portfolio will be to the left of (have less variance than) the geometric opti-
mal portfolio. In al cases, though, the tangent portfolio will, of course,
never have a higher GHPR than the geometric optimal portfolio.

Note also that the point of tangency for the CML to the GHPR and for
the CML to the AHPR is at the same SD coordinate. We could use
Equation (7.01a) to find the tangent portfolio of the GHPR line by substi-
tuting the AHPR in (7.01a) with GHPR. The resultant equation is:

(7.01b) Tangent Portfolio = MAX{(GHPR - (1 + RFR))/SD}
where  MAX() = The maximum value.

GHPR = The geometric average HPRs. This is the E coordi-
nate of a given portfolio on the efficient frontier.

SD = The standard deviation in HPRs. Thisis the SD coor-
dinate of a given portfolio on the efficient frontier.

RFR = The risk-free rate.

UNCONSTRAINED PORTFOLIOS

Now we will see how to enhance returns beyond the GCML line by lifting ;
the sum of the weights constraint. Let us return to geometric optimal port-’
folios. If we look for the geometric optimal portfolio among our four market
systems-Toxico, Incubeast, LA Garb and a savings account-we find it at-
E equal to .1688965 and V equal to .1688965, thus conforming W
Equations (7.06a) through (7.06d). The geometric mean of such a por’tfo io
would therefore be 1.094268, and the portfolio’s composition would be:
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Toxico 18.89891%
Incubeast 19.50386%
LA Gab 58.58387%

Savings Account .03014%

| In using Equations (7.06a) through (7.06d), you must iterate to the solu-
‘1 tion. That is, you try atest value for E (halfway between the highest and the

| lowest AHPRs, -1 is agood starting point) and solve the matrix for that E. If

' your variance is higher than E, it means the tested for value of E was too

,: high, and you should lower it for the next attempt. Conversely, if your vari-
{ ance is less than E, you should raise E for the next pass. You determine the
. variance for the portfolio by using one of Equations (6.06a) through (6.06d).

You keep on repeating the process until whichever of Equations (7.06a)
b through (7.06d) y ou choose to use, is solved. Then you will have arrived at

| your geometric optimal portfolio. (Note that all of the portfolios discussed
¥ thus far, whether on the AHPR efficient frontier or the GHPR efficient
frontier, are determined by constraining the sum of the percentages, the
b weights, to 100% or 1.00.)

4 Recall Equation (6.10), the equation used in the starting augmented
£ matrix to find the optimal weights in a portfolio. This equation dictates that
" the sum of the weights equal 1:

N

where N = The number of securities comprising the portfalio.

Xi = The percentage weighting of the ith security.

The equation can also be written as:

N
(‘Z_IIX )=

B By allowing theleft side of this equation to be greater than 1, we can find
 the unconstrained optimal portfolio. The easiest way to do this is to add

another market system, called non-interest-bearing cash (NIC), into the

startm;’ augmented matrix. This market system, NIC, will have an arith-

¢ Metic average daily HPR of 1.0 and a population standard deviation (as well

E as variance and covariances) in those daily HPRs of 0. What this means is
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that each day the HPR for NIC will be 1.0. The correlation coefficients for
NIC to any other market system are always 0.

Now we set the sum of the weights constraint to some arbitrarily high
number, greater than I. A good initial value is 3 times the number of mar-
ket systems (without NIC) that you are using. Since we have 4 market sys-
tems (when not counting NIC) we should set this sum of the weights con-
straint to 4 « 3 = 12. Note that we are not redly lifting the constraint that
the sum of the weights be below some number, we are just setting this con-
straint at an arbitrarily high value. The difference between this arbitrarily
high value and what the sum of the weights actually comes out to be will be
the weight assigned to NIC.

We are not going to really invest in NIC, though. It's just a null entry
that we are pumping through the matrix to arrive at the unconstrained
weights of our market systems. Now, let’s take the parameters of our four
market systems from Chapter 6 and add NIC as well:

Expected Standard

Investment Expected Retun as an HPR Deviation of Return

Toxico 1.095 316227766

Incubeast ~ Corp. 1.13 5

LA Garb 1.21 .632455532
1.085 0

Savings Account
NIC 1.00 0

The covariances among the market systems, with NIC included, are as fol-
lows:

T | L S N
T 1 -.0237 01 0 0
\ -.0237 25 .079 0 0
L .01 079 4 0 0
S 0 0 0 0 0
N 0 0 0 0 0

Thus, when we include NIC, we are now dealing with 5 market systems;
therefore, the generalized form of the starting augmented matrix is:

Xp + Uy + Xg* Uy + X3+ Us + Xgx Uy + X5+ Us=E
Xl +X2 +X3 +X4 +X5 =S

- 0 0 0
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Xl * COVL]_ + X2 COVl 92 + X3 * COVI 3 + x4 * COVl 4 + X5

*cov, g+ 5% Ly* Up+.5* Ly =0
Xl COV21+X2 COV22+X3*COV23+X4*COV24+X5
*COV25+ 5*L1*U2+ S* Ly =0
X]*COV}1+XQ*COV39_+Xg*COV33+X4*COV34+X5
*COV35+ 5*L1*U3+ 5*L2 =0
X COV41+X2*COVé’y+X3*COV43+X4*COV44+X5
*COV45+5 Ll 4+5 L2 =0
XI*CO\ l+X2*COV§’2+X3*COV53+X4*COV54+X5
*CO\755+ 5*L1 U5+5 L2 =0

where E = The expected return of the portfolio.
§ = The sum of the weights constraint.
COV, p= The covariance between securities A and B.
X; = The percentage weighting of the ith security.
U; = The expected return of the ith security.
L; = The first Lagrangian multiplier.

Lg = The second Lagrangian multiplier.

Thus, once we have included NIC, our starting augmented matrix

. appears as foliows:

X, Xo X3 X4 X5 L, L, | Answer
.095 13 .21 .085 0 E
1 1 | l 0 12
A -.0237 .01 0 0 .095 | I 0
-.0237 .25 079 0 0 A3 | I 0
0N .079 4 0 0 .21 ! 0
0 0 0 0 .085 1 0
0 0 0 ! I 0

Note that the answer column of the second row, the sum of the weights

’.; Constraint, is 12, as we determined it to be by multiplying the number of
g market systems (not including NIC) by 3.

When you are using NIC, it is important that you include it as the last,
he Nth market system of N market systems, in the starting augmented
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Now, the object is to obtain the identity matrix by using row operations
to produce elementary transformations, as was detailed in Chapter 6. Yoy
can now create an unconstrained AHPR efficient frontier and an uncon-
strained GHPR efficient frontier. The unconstrained AHPR efficient fron-
tier represents using leverage but not reinvesting.

The GHPR efficient frontier represents using leverage and reinvesting
the profits. Ideally, we want to find the unconstrained geometric optimal
portfolio. This is the portfolio that will result in the greatest geometric
growth for us. We can use Equations (7.06a) through (7.06d) to solve for
which of the portfolios along the efficient frontier is geometric optimal. In
so doing, we find that no matter what value we try to solve E for (the value
in the answer column of the first row), we get the same portfolio-com-
prised of only the savings account levered up to give us whatever value for
E we want. Thisresultsin giving us our answer; we get the lowest V (inthis
case zero) for any given E.

What we must do, then, is take the savings account out of the matrix and
start over. This time we will try to solve for only four market systems—
Toxico, Incubeast, LA Garb, and NIC-and we set our sum of the weights
constraint to 9. Whenever you have a component in the matrix with zero
variance and an AHPR greater than 1, you'll end up with the optimal port-
folio as that component levered up to meet the required E.

Now, solving the matrix, we find Equations (7.06a) through (7.06d) satis-
fied at E equals.2457. Since this is the geometric optimal portfolio, V isalso
equal to .2457. The resultant geometric mean is 1.142833. The portfolio is:

Toxico 102.5982%
Incubeast 49.00558%
LA Garb 40.2497%%
NIC 708.14643%

‘Wait,” you say. “How can you invest over 100% in certain components?
We will return to this in a moment.

If NIC is not one of the components in the geometric optimal portfolio,
then you must make your sum of the weights constraint, S, higher. You
must keep on making it higher until NIC becomes one of the components
of the geometric optimal portfolio. Recall that if there are only two COMPO-
nents in a portfolio, if the correlation coefficient between them is -1, and if
both have positive mathematical expectation, you will be required to finance
an infinite number of contracts. This is so because such a portfolio would
never have a losing day. Now, the lower the correlation coefficients are
between the components in the portfolio, the higher the percentage
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required to be invested in those components is going to be. The difference
between the percentages invested and the sum of the weights constraint, S,

must be filled by NIC. If NIC doesn’t show up in the percentage allocations
for the geometric optimal portfolio, it means that the portfolio is running
into a constraint at S and is therefore not the unconstrained geometric opti-
mal. Since you are not going to be actually investing in NIC, it doesn’t mat-

i ter how high a percentage it commands, as long asit is listed as part of the
i geometric optimal portfolio.

HOW OPTIMAL f FITS WITH OPTIMAL PORTFOLIOS

In Chapter 6 we saw that we must determine an expected return (as a per-

centage) and an expected variance in returns for each component in a port-
folio. Generally, the expected returns (and the variances) are determined
from the current price of the stock. An optimal percentage (weighting) is
then determined for each component. The equity of the account is then
multiplied by a components weighting to determine the number of dollars
to allocate to that component, and this dollar allocation is then divided by

the current price per share to determine how many shares to have on.

That generally is how portfolio strategies are currently practiced. But it is

f not optimal. Here lies one of this book’s many hearts. Rather than deter-

\’ mining the expected return and variance in expected return from the cur-

rent price of the component, the expected return and variance in returns
 should be determined from the optimal f, in dollars, for the component. In
L other words, as input you should use the arithmetic average HPR and the
variance in the HPRs. Here, the HPRs used should be not of trades, but of
a fixed time length such as days, weeks, months, quarters, or years-as we
did in Chapter 1 with Equation (1.15).

l (115  Daly HPR = (A/B) + 1
¢ where A =Dollars made or lost that day.
B = Optimal fin dollars.

& We need not necessarily use days. We can use any time length we like so
:f‘|0ng as it is the same time length for all components in the portfolio (and
,— the same time length is used for determining the correlation coefficients
between these HPRs of the different components). Say the market system
. With an optimal f of $2,000 made $100 on a given day. Then the HPR for

s

E that market system for that day is 1.05.




284 THE GEOMETRY OF PORTFOLIOS

if you are figuring your optimal f based on equalized data, you must use
Equation (2.12) in order to obtain your daily HPRs:

(212 Daily HPR = D$/f$ + 1

where  D$=Thedollar gain or loss on 1 unit from the previous day.

This is equa to
(Tonight’s Close = Last Night's Close) * Dollars per Point

f$ = The current optimal fin dollars, calculated from
Equation (2.11). Here, however, the current price vari-
ale is last night's close.

In other words, once you have determined the optimal fin dollars for |
unit of a component, you then take the daily equity changes on a I-unit
basis and convert them to HPRs per Equation (1.15)—or, if you are using
equalized data, you can use Equation (2.12). When you are combining mar-
ket systems in a portfolio, all the market systems should be the same in
terms of whether their data, and hence their optimal fs and by-products,
has been equalized or not.

Then we take the arithmetic average of the HPRs. Subtracting 1 from
the arithmetic average will give us the expected return to use for that com-
ponent. Taking the variance of the daily (weekly, monthly, etc.) HPRs will
give the variance input into the matrix. Lastly, we determine the correlation
coefficients between the daily HPRs for each pair of market systems under
consideration.

Now here is the critical point. Portfolios whose parameters (expected
returns, variance in expected returns, and correlation coefficients of the
expected returns) are selected based on the current price of the component
will not yield truly optimal portfolios. To discern the truly optimal portfolio
you must derive the input parameters based on trading I unit at the optimal
ffor each component. You cannot be more at the peak of the optimal f curve
than optimal f itself. To base the parameters on the current market price of
the component is to base your parameters arbitrarily-and, as a conse-
quence, not necessarily optimally.

Now let’s return to the question of how you can invest more than 100%
in a certain component. One of the basic premises of this book is that
weight and quantity are not the same thing. The weighting that you derive
from solving for a geometric optimal portfolio must be reflected back into
the optimal f’s of the portfolio’s components. The way to do thisisto divide
the optimal f's for each component by its corresponding weight. Assume we
have the following optimal f's (in dollars):
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Toxico $2,500
Incubeast $4,750
LA Gab $5,000

(Notethat, if you are equalizing your data, and hence obtaining an equal-
& ized optimal f and by-products, then your optimal fs in dollars will change
. each day based upon the previous day’ s closing price and Equation [2.11])
We now divide these f’s by their respective weightings:

Toxico $2,500/1.025982 = $2.436.69
$4,750/.4900558 = $9,692.77

$5,000/.4024979 = $12,422.43

Incubeast

LA Gab

L Thus, by trading in these new “adjusted” f values, we will be at the geo-
. metric optimal portfolio. In other words, suppose Toxico represents a cer-
E: tain market system. By trading 1 contract under this market system for
| every $2,436.69 in equity (and doing the same with the other market sys-
§ terns at their new adjusted f values) we will be at the geometric optimal
unconstrained portfolio. Likewise if Toxico is a stock, and we regard 100
jshares as “1 contract,” we will trade 100 shares of Toxico for every
f $2,436.69 in account equity. For the moment, disregard margin com-
> pletely. Later in the next chapter we will address the potential problem of
§ ‘margin requirements.

“Wait a minute,” you protest. “If you take an optimal portfolio and
f cchange it by using optimal f, you have to prove that it is till optimal. But if
pou treat the new values as a different portfolio, it must fall somewhere else
’ the return coordinate, not necessarily on the efficient frontier. In other
k words, if you keep reevaluating f, you cannot stay optimal, can you?'

We are not changing the f values. That is, our f values (the number of
anits put on for so many dollars in equity) are still the same. We are simply
»erforming a shortcut through the calculations, which makes it appear as
nhough we are “adjusting” our f values. We derive our optimal portfolios
$hased on the expected returns and variance in returns of trading 1 unit of
@ "ach of the components, as well as on the correlation coefficients. We thus
krive optimal weights (optimal percentages of the account to trade each
?Dmponent with). Thus, if a market system had an optimal f of $2,000, and
B'n optimal portfolio weight of .5, we would trade 50% of our account at the
Jull optimal f level of $2,000 for this market system. This is exactly the same
i' if we said we will trade 100% of our account at the optimal f divided by
g, optimal weighting ($2,000/.5) of $4000. In other words, we are going to
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trade the optimal f of $2,000 per unit on 50% of our equity, which in turn is
exactly the Same as saying we are going to trade the adjusted f of $4,000 on
100% of our equity.

The AHPRs and §Ds that you input into the matrix are determined from
the optimal f valuesin dollars. If you are doing this on stocks, you can com-
pute your values for AHPR, SD, and optimal f on a |-share or a 100-share
basis (or any other basisyou like). Y ou dictate the size of one unit.

In anonleveraged situation, such as a portfolio of stocks that are not on
margin, weighting and quantity are synonymous. Yet in a leveraged situa-
tion, such as a portfolio of futures market systems, weighting and quantity
arc different indeed. You can now see the idea first roughly introduced in
Portfolio  Management Formulas: that optimal quantities are what we seek
to know, and that this isa function of optimal weightings.

When we figure the correlation coefficients on the HPRs of two market
systems, both with a positive arithmetic mathematical expectation, we find a
slight tendency toward positive correlation. This is because the equity
curves (the cumulative running sum of daily equity changes) both tend to
rise up and to the right. This can be bothersome to some people. One solu-
tion is to determine a least squares regression line to each equity curve
(before equalization, if employed) and then take the difference at each
point in time on the equity curve and its regression line. Next, convert this
now detrended equity curve back to simple daily equity changes (noncumu-
lative, i.e., the daily change in the detrended equity curve). If you are equal -
izing the data, you would then do it at this point inthe sequence of events.
Lastly, you figure your correlations on this processed data.

This techniqueisvalid so long as you are using the correlations of daily
equity changes and not prices. If you use prices, you may do yourself more
harm than good. Very often prices and daily equity changes are IinkedTﬁuS
example would be a long-term moving average crossover system.
detrending technique must always be used with caution. Also, the daily
AHPR and standard deviation in HHPRs must always be figured off of non-
detrended data.

A final problem that happens when you detrend your data occurs with
systems that trade infrequently. Imagine two day-trading systems that give
one trade per week, both on different days. The correlation coefficient
between them may be only slightly positive. Yet when we detrend their
data, we get very high positive correlation. This mistakenly happens because
their regression lines arerising alittle each day. Y et on most days the equity
change is zero. Therefore, the difference is negative. The preponderance 0
slightly negative days with both market systems, then, mistakenly results 1
high positive correlation.
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THRESHOLD TO THE GEOMETRIC FOR PORTFOLIOS

Now let’s address the problem of incorporating the threshold to the geo-
i metric with the given optimal portfolio mix. This problem is readily handled
. simply by dividing the threshold to the geometric for each component by its

weighting in the optimal portfolio. This is done in exactly the same way as

¢+ the optimal fs of the components are divided by their respective weightings
g 10 obtain a new value representative of the optimal portfolio mix. For exam-

- ple, assume that the threshold to the geometric for Toxico is $5,100.

¢ Dividing this by its weighting in the optimal portfolio mix of 1.025982 gives
I usanew adjusted threshold to the geometric of:

Threshold = $5,100/1.025982
= $4,970.85

b Since the weighting for Toxico is greater than 1, both its optimal f and its
7 threshold to the geometric will be reduced, for they are divided by this
i weighting. In this case, if we cannot trade the fractional unit with Toxico,
i and if we aretrading only 1 unit of Toxico, we will switch up to 2 units only
| when our equity gets up t0$4,970.85.

Recall that our new adjusted f value in the optima portfolio mix for
£ Toxico is $2,436.69 ($2,500/1.025982). Since twice this amount equals
i $4,873.38, we would ordinarily move up to trading two contracts at that
point. However, our threshold to the geometric, being greater than twice
.', thef alocation in dollars, tells usthereisn’'t any benefit to switching to trad-
k' ing 2 units before our equity reaches the threshold to the geometric of
- $4970.85.

t  Again, if you are equalizing your data, and hence obtaining an equalized
P optimal f and by-products, including the threshold to the geometric, then
f' Your optimal fsin dollars and your thresholds to the geometric will change
each day, based upon the previous day’ s closing price and Equation (2.11).

B COMPLETING e LOOP

f0ne thing you will readily notice about unconstrained portfolios (portfolios
or which the sum of the weights is greater than 1 and NIC shows up as a
inarket system in the portfolio) is that the portfolio is exactly the same for
y given level of E-the only difference being the degree of leverage.
i This is not true for portfolios lying along the efficient frontier(s) when the
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sum of the weights is constrained). In other words, the ratios of the weight-
ings of the different market systems to e&h other are always the same for

any point along the unconstrained efficient frontiers (AHPR or GHPR).

For example, the ratios of the different weightings between the different
market systems in the geometric optimal portfolio can be calculated. The
ratio of Toxico to Incubeast is 102.5982% divided by 49.00558%, which
equals 2.0936. We can thus determine the ratios of all the components jp
this portfolio to one another:

Toxico/Incubeast = 2.0936

Toxico/lLA Garb = 25490

Incubeast/LA Gab = 1.2175

Now, we can go back to the unconstrained portfolio and solve for differ-
ent values for E. What follows are the weightings for the components of the
unconstrained portfolios that have the lowest variances for the given values

of E. You will notice that the ratios of the weightings of the components are
exactly the same:

E-.1 E=.3
Toxico 4175733 1.252726
Incubeast .1 994545 .5983566
LA Gab 1638171 49145

Thus, we can state that the unconstrained efficient frontiers are the same
portfolio at different levels of 1everage. This portfolio, the one that getslev-
ered up and down with E when the sum of the weights constraint islifted, is
the portfolio that has a value of zero for the second Lagrangian multiplier
when the sum of the weights equals 1.

Therefore, we can readily determine what our unconstrained geometric
optimal portfolio will be. First, we find the portfolio that has a value of zero
for the second Lagrangian multiplier when the sum of the weights is con-
strained to 1.00. One way to find this is through iteration. The resultant
portfolio will be that portfolio which gets levered up (or down) to satisfy any
given E in the unconstrained portfolio. That value for E which satisfies any
of Equations (7.06a) through (7.06d) will be the value for E that yields the
unconstrained geometric optimal portfolio.

Another equation that we can use to solve for which portfolio along the
unconstrained AHPR efficient frontier is geometric optimal is to use the
first Lagrangian multiplier that results in determining a portfolio along any
particular point on the unconstrained AHPR efficient frontier. Recall from
Chapter 6 that one of the by-products in determining the composition of a

E q.
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portfolio by the method of row-equivalent matrices is the first Lagrangian
multiplier. The first Lagrangian multiplier represents the instantaneous rate
of change in variance with respect to expected return, sign reversed. A first
Lagrangian multiplier equal to -2 means that at that point the variance was
changing at that rate (-2) opposite the expected return, sign reversed. This
would result in a portfolio that was geometric optimal.

(7.06e) L1 = -2

where L] = The first Lagrangian multiplier of a given portfolio along
the unconstrained AHHPR efficient frontier.”

Now it gets interesting as we tie these concepts together. The portfolio
that gets levered up and down the unconstrained efficient frontiers (arith-
metic or geometric) isthe portfolio tangent to the CML line emanating from
an RFR of 0 whenthe sumof the weightsis constrained to 1.00 and NIC is
not employed.

Therefore, we can also find the unconstrained geometric optimal portfo-
lio by first finding the tangent portfolio to an RFR equal to O where the sum
of the weights is constrained to 1.00, then levering this portfolio up to the
point where it is the geometric optimal. But how can we determine how
much to lever this constrained portfolio up to make it the equivalent of the
unconstrained geometric optimal portfolio?

Recall that the tangent portfolio is found by taking the portfolio along the

B constrained efficient frontier (arithmetic or geometric) that has the highest
f. * Sharpe ratio, which is Equation (7.01). Now we lever this portfolio up, and
¢ we multiply the weights of each of its components by a variable named g,
k- which can be approximated by:

(713 q=(E-RFRWV

where  E = The expected return (arithmetic) of the tangent portfolio.

RFR = The risk-free rate at which we assume you can borrow or
loan.

V = The variance in the tangent portfolio.

Equation (7.13) actualy is a very close approximation for the actual opti-

’mus, we can state tha_t the geometric optimal portfolio is that portfolio which, when the sum
j of the weights is constrained 1o 1, has @ seoond Lagrangian multiplier equal 10 o ad when
¥ Unconstrained has a first Lagrangian multiplier of -2. Such a portfolio will aso have a second

gian multiplier equal to 0 when unconstrained.
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An example may help illustrate the role of optimal g. Recall that our
unconstrained geometric optimal portfolio is asfollows:

Camoonent Weight
Toxico 1.025955
Incubeast .4900436
LA Garb .4024874

This portfolio, we found, has an AHPR of 1.245694 and variance of
.2456941. Throughout the remainder of this discussion we will assume for
simplicity’s sake an RFR of 0. (Incidentally, the Sharpe ratio of this portfo-
lio, (AHPR - (1 + RFR))/SD, is .49568.)

Now, if we were to input the same returns, variances, and correlation
coefficients of these components into the matrix and solve for which portfo-
lio was tangent to an RFR of 0 when the sum of the weights is constrained
to 1.00 and we do not include NIC, we would obtain the following portfolio:

Comoonent Weight

Toxico .5344908
Incubeast .2652975
LA Garb 2102117

This particular portfolio has an AHPR of 1.128, a variance of .066683,
and a Sharpe ratio of .49568. It isinteresting to note that the Sharpe ratio of
the tangent portfolio, a portfolio for which the sum of the weights is con-
strained to 1.00 and we do not include NIC, is exactly the same as the
Sharpe ratio for our unconstrained geometric optimal portfolio.

Subtracting 1 from our AHPRs gives us the arithmetic average return of
the portfolio. Doing so we notice that in order to obtain the same return for
the constrained tangent portfolio as for the unconstrained geometric opti-
mal portfolio, we must multiply the former by 1.9195.

245694/.128 = 1.9195

Now if we multiply each of the weights of the constrained tangent port-
folio, the portfolio we obtain is virtually identical to the unconstrained geo-
metric optimal portfolio:

Component Weight *1.9195 = Weight
Toxico .5344908 1.025955
Incubeast .2552975 .4900436

LA Gab 2102117 4035013
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The factor 1.9195 was arrived at by dividing the return on the yncon-
strained geometric optimal portfolio by the return on the constrained tan-
gent portfolio. Usually, though, we will want to find the unconstrained geo-
metric optimal portfolio knowing only the constrained tangent portfolio.
This is where optimal ¢ comes in.3 If we assume an RFR of 0, we can deter-
mine the optimal g on our constrained tangent portfolio as:

(713) q=(E - RFRWV
= (. 128 - 0)/.066683
= 1919520715

A few notes on the RFR. To begin with, we should aways assume an
RFR of 0 when we are dealing with futures contracts. Since we are not
actually borrowing or lending funds to lever our portfolio up or down, there
is effectively an RFR of 0. With stocks, however, it is a different story. The
RFR you use should be determined with this fact in mind. Quite possibly,
the leverage you employ does not require you to use an RFR other than 0.

You will often be using AHPRs and variances for portfolios that were
determined by using daily HPRs of the components. In such cases, you
must adjust the RFR from an annual rate to adaily one. Thisis quite easy to

:' accomplish. First, you must be certainthat this annual rate is what is called
*, the effective annual interest rate. Interest rates ae typiclly Stated & annud

¢ percentages, but frequently these annual percentages are what is referred to
b as the nominal annual interest rate. When interest is compounded semian-
; nually, quarterly, monthly, and so on, the interest earned during a year is
¥ greater than if compounded annually (the nominal rate is based on com-
b pounding annually). When interest is compounded more frequently than
® annually, an effective annual interest rate can be determined from the nom-
‘ inal interest rate. It is the effective annual interest rate that concerns us and

. that we will usein our calculations. To convert the nominal rate to an effec-

| tive rde we can use

{ (7.19) E=(1+RM)AM-1

where E = The effective annual interest rate.
R = The nominal annual interest rate.

M = The number of compounding periods per year.

Z3Latane Hem‘v and Donald Tuttle, “Criteriafor Portfolio Building,” ]oumal of Finance 22,
=September 1967, pp. 362363,
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Assume that the nominal annual interest rate is 9%, and suppose that it
is compounded monthly. Therefore, the corresponding effective annual
interest rate is:

(714 E=(1+.0912)712 -1
=(1+.0075)A 12 - 1
=10075 712 = 1
= 1,093306898 - 1
= 093806898

Therefore, our effective annual interest rate is a little over 9.38%. Now if
we figured our HPRs on the basis of weekdays, we can state that there are
365.2425/7 * 5 = 260.8875 weekdays, on average, in a year. Dividing
093806898 by 260.8375 gives us adaily RFR of .0003595683887.

If we determine that we are actually paying interest to lever our portfolio
up, and we want to determine from the constrained tangent portfolio what
the unconstrained geometric optimal portfolio is, we simply input the value
for the RFR into the Sharpe ratio, Equation (7.01), and the optimal g,
Equation (7.13).

Now to close the loop. Suppose you determine that the RFR for your
portfolio is not 0, and you want to find the geometric optimal portfolio with-
out first having to find the constrained portfolio tangent to your applicable
RFR. Can you just go straight to the matrix, set the sum of the weights to
some arbitrarily high number, include NIC, and find the unconstrained
geometric optimal portfolio when the RFR is greater than O? Yes, this is
easily accomplished by subtracting the RFR from the expected returns of
each of the components, but not from NIC (i.e., the expected return for
NIC remains at 0, or an arithmetic average HPR of 1.00). Now, solving the
matrix will yield the unconstrained geometric optimal portfolio when the
RFR is greater than 0.

Since the unconstrained efficient frontier is the same portfolio at differ-
ent levels of leverage, you cannot put a CML line on the unconstrained effi-
cient frontier. You can only put CML lines on the AHPR or GHPR efficient
frontiers if they are constrained (i.e., if the sum of the weights equals1). It
is not logical to put CML lines on the AHPR or GHPR unconstrained effi-
cient frontiers.

We have seen numerous ways of arriving at the geometric optimal
portfolio. For starters, we can find it empirically, as was detailed in
Portfolio Management Formulas and recapped in Chapter 1 of this
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text. We have seen how to find it parametrically in this chapter, from
a number of different angles, for any value of the risk-free rate.

Now that we know how to find the geometric optimal portfolio we
must learn how to use it in real life. The geometric optimal portfolio
will give us the greatest possible geometric growth. In the next chapter
we will go into techniques to use this portfolio within given risk
constraints.
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Risk Management

We now know how to find the optimal portfolios by numerous differ-
ent methods. Further, we now have a thorough understanding of the
geometry of portfolios and the relationship of optimal quantities and
optimal weightings. We can now see that the best way to trade any
portfolio of any underlying instrument is at the geometric optimal
level. Doing so on a reinvestment of returns basis will maximize the
ratio of expected gain to expected risk.

In this chapter we discuss how to use these geometric optimal port-
folios within the risk contraints that we specify. Thus, whatever vehi-
cles we are trading in, we can align ourselves anywhere we desire on
the risk spectrum. In so doing, we will obtain the maximum rate of
geometric growth for a given level of risk.

ASSET ALLOCATION

Y ou should be aware that the optimal portfolio obtained by this parametric
technique will always be amost, if not exactly, the same as the portfolio that
would be obtained by using an empirical technique such as the one detailed
in the firs chapter or in Portfolio Management Formulas.

As such, we can expect tremendous drawdowns on the entire portfolio in
terms of equity retracement. Our only guard against this is to dilute the

portfolio somewhat. What this amounts to is combining the geometric opti-

mal potfolio with the risk-free asset in some fashion. This we cal asset allof

cation. The degree of risk and safety for any investment is not a function
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the investment itself, but rather a function of asset allocation.

Even portfolios of blue-chip stocks, if traded at their unconstrained geo-
metric optimal portfolio levels, will show tremendous drawdowns. Y et these
blue-chip stocks must be traded at these levels to maximize potential geo-
metric gain relative to dispersion (risk) and also provide for attaining a goal
in the least possible time. When viewed from such a perspective, trading
blue-chip stocksis as risky as pork bellies, and pork bellies are no less con-
servative than blue-chip stocks. The same can be said of a portfolio of com-

' modity trading sysems and a portfolio of bonds.

The object now is to achieve the desired level of potential geometric gain
to dispersion (risk) by combining the risk-free asset with whatever it is we
are trading, be it a portfolio of blue-chip stocks, bonds, or commodity trad-
ing systems.

When you trade a portfolio at unconstrained fractional f, you are on the
unconstrained GHPR efficient frontier, but to the left of the geometric
optimal point-the point that satisfies any of Equations (7.06a) through
(7.06e). Thus, you have less potential gain relative to the dispersion than
you would if you were at the geometric optimal point. Thisis one way you
can combine a portfolio with the risk-free asset.

Another way you can practice asset allocation is by splitting your equity
into two subaccounts, an active subaccount and an inactive subaccount.

These are not two separate accounts, rather they are away of splitting asin-
= gle account in theory. The technique works as follows. First, you must

decide upon an initial fractional level. Suppose that, initially, you want to

emulate an account at the half f level. Your initia fractional level is .5 (the

initial fractional level must be greater than zero and less than 1). This means

vou will split your account, with half the equity in your account going into
the inactive subaccount and half going into the active subaccount. Assume
k. you are starting out with a $100,000 account. Initially, $50,000 isin the inac-

tive subaccount and $50,000 is in the active subaccount. It is the equity in
g the active subaccount that you use to determine how many contracts to
i trade. These subaccounts are not real ; they are a hypothetical construct you
I are creating in order to manage your money more effectively. You aways
B usethe full optimal fswith this technique. Any equity changes are reflected

in the active portion of the account. Therefore, each day you must look at

the account’s total equity (closed equity plus open equity, marking open
- Positions to the market), and subtract the inactive amount (which will
E remain constant from day to day). The difference is your active equity, and

E it is on this difference that you will calculate how many contracts to trade at

{ the full f levels,

Now suppose that the optimal f for market system A is ‘to trade 1 ¢con-
act for every $2,500 in account equity. You come into the first day with
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$50,000 in active equity, and therefore you will look to trade 20 contracts. [f
you were using the straight half f strategy; you would end up with the same

number of contracts on day one. At half f, you would trade 1 contract for
every $5,000 in account equity ($2,500/.5), and you would use the fy])
$100,000 account equity to figure how many contracts to trade. Therefore,
under the half f strategy, you would trade 20 contracts onthis day aswell.

However, as soon as the equity in the accounts changes, the number of
contracts you will trade changes as well. Assume now that you make $5,000
this next day, thus pushing the total equity in the account up to $105,000.
Under the half f strategy, you will now be trading 21 contracts. However,
with the split-equity technique, you must subtract the now-constant inactive
amount of $50,000 from your total equity of $105,000. This leaves an active
equity portion of $55,000, from which you will figure your contract size at
the optimal f level of 1 contract for every $2,500 in equity. Therefore, with
the split-equity technique, you will now ook to trade 22 contracts.

The procedure works the same way on the downside of the equity curve,
with the split-equity technique peeling off contracts at a faster rate than the
fractional f strategy does. Suppose you lost $5,000 on the first day of trad-
ing, putting the total account equity at $95,000. With the fractional f strat-
egy you would now look to trade 19 contracts ($95,000/85,000). However,
with the split-equity technique you are now left with $45,000 of active
equity, and thus you will look to trade 18 contracts($45,000/$2,500).

Notice that with the split-equity technique, the exact fraction of optimal f
that we are using changes with the equity changes. We specify the fraction
we want to start at. In our example we used an initial fraction of .5. When
the equity increases, thisfraction of the optimal f increases too, approaching

1 asalimit as the account equity approaches infinity. On the downside, this
fraction approaches 0 as a limit at the level where the total equity in the
account equals the inactive portion. The fact that portfolio insurance is built
into the split-equity technique is atremendous benefit and will be discussed
at length iater in this chapter. Because the split-equity technique has a frac-
tion for f that moves, we refer to it as a dynamic fractional f strategy, as
opposed to the straight fractional f (staticfmctionalf) strategy.

The static fractional f strategy puts you on the CML line somewhere to
the left of the optimal portfolio if you are using a constrained portfolic1i
Throughout the life of the account, regardiess of equity changes, the
account will stay at that point on the CML line. If you are using an uncon-
strained portfolio (as you rightly should), you will be on the unconstrained
efficient frontier (since there are N0 CML lines with unconstrained portfo-
lios) at some point to the left of the optimal portfolio. As the equity in the
account changes, you stay at the same point on the unconstrained efficient
frontier.

With the dynamic fractional f technique, you start at these same points
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| for the constrained and unconstrained portfolios. However, as the account
‘[ equity increases, the portfolio moves up and to the right, and as the equity
£ decreases, the portfolio moves down and to the left. The limits are at the
& peak of the curve to the right where the fraction of f equals 1, and on the
_v left at the point where the fraction off equals 0.

E With the static f method of asset allocation, the dispersion remains con-
:’5' stant, since the fraction of optimal fused is constant. Unfortunately, this js
i . not true with the dynamic fractional f technique. Here, as the account
k- equity increases, so does the dispersion as the fraction of optimal f used
. increases. The upper limit to this dispersion is the dispersion at fyl] f as the
' account equity approaches‘intinity. On the downside, the dispersion dimin-
b ishes rapidly as the fraction of optimal f used approaches zero as the total
account equity approaches the inactive subaccount equity. Here, the lower
£ limit to the dispersion is zero.

: Using the dynamic fractional f technique is analogous to tradinea an
¥ account full out at the optimal f levels, where the initial Size of (. acco e,
E is the active equity portion. So we see that there are two ways to dilute an
"; account down from the full geometric optimal portfolio, two ways tg evar.
cise asset allocation. We can trade a static fractional or a dynamic frag_tig_naj
. f. The dynamic fractional will also have dynamic variance, a slight negative
£ but it also provides for portfolio insurance (more on this later). Although the
e two techniques are related, you can also see that they differ. Which is best?

. Assume we have a system in which the average daily arithmetic HPR is
. 1.0265. The standard deviation in these daily HPRs is.1211, so the geomet-
,‘jl;ic mean is 1.019. Now, we look at the numbers for a .2 static fractional f
j and a1 static fractional f by using Equations (2.06) through (2.08):

i‘,(2-06) FAHPR = (AHPR = 1) * FRAC + 1
(2.07) FSD = SD # FRAC

(208)  FGHPR = (FAHPR A2 ~FSD A 2) A 12

where FRAC = The fraction of optimal f we are solving for.
AHPR = The arithmetic average HPR at the optimal f,
SD = The standard deviation in HPRs at the optimal {,
FAHPR = The arithmetic average HPR at the fractional f,
FSD = The standard deviation in HPRs at the fractional f,

FGHPR = The geometric average HPR at the fractional f.
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The results then are:

Full f 2f Af
AHPR 1.0265 1.0053 1.00265
SD 1211 02422 01211
GHPR 1.01933 1.005 1.002577

Now recall Equation (2.09a), the time expected to reach a specific goal:

(2.092) N = In(Goal)/In(Geometric Mean)
where N = The expected number of trades to reach a specific goal.

Coad = The goal in terms of a multiple on our starting stake, a
TWR.
In{) = The natural logarithm function.

Now, we compare trading at the .2 static fractional f strategy, with a geo-

metric mean of 1.005, to the .2 dynamic fractional f strategy (20% as initial
active equity) with a daily geometric mean of 1.01933. The time (number of

days since the geometric means are daily) required to double the static frac-
tional f is given by Equation(2.09a) as:

In(2)/In( 1.005) = 1389751

To double the dynamic fractional f requires setting the goa] to 6. Thisis
because if you initially have 20% of the equity at work, and you start out
with a $100,000 account, then you initially have $20,000 at work. The goal is
to make the active equity equal $120,000. Since the inactive equity remains
at $80,000, you will then have atotal of $200,000 on your account. Thus, to
make a $20,000 account grow to $120,000 means you need to achieve a
TWR of 6. Therefore, the goal is 6 in order to double a .2 dynamic frac-
tional f:

In(6)/1n(1.01933) = 9358634

Notice that it took 93 days for the dynamic fractional f versus 138 days for
the static fractional f.

Now look at the .1 fraction. The number of days expected in order for
the static technique to doubleis:

In(2)An( 1.002577) = 269.3404
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1 Compare this to doubling a dynamic fractional f that is initially set to .1
. active. You need to achieve a TWR of 11, so the number of days required

for the comparative dynamic fractional fstrategy is:

In(11)/1n(1.01933) = 1252458

To double the account equity at the .1 level of fractiona f takes 269

days for our static example, as compared to 125 days for the dynamic. The
', lower the fraction for f, the faster the dynamic will outperform the static
g technique.

i Now take a look at tripling the .2 fractional f. The number of days
¥ expected by the static techniqueto tripleis:

In(3)/In( 1.005) = 220.2704

5 This compares to its dynamic counterpart, which requires:

In{ 11)/In( 1.01933) = 125.2458 days

k To make 400% profit (i.e., agoal or TWR of 5) requires of the .9 static tech-
nique:

In(5)/In( 1.005) = 322.6902 days

¥ which compares to its dynamic counterpart:

In(21)/In( 1.01933) = 159.0201 days

The dynamic technique takes almost half as much time as the static to

: f_l‘teach the goa of 400% in this example. However, if you look out in time

'%322.6902 days to where the static technique doubled, the dynamic tech-

f hique would be at aTWR of:

TWR

8 + (101933 A 322.6902) * 2
8 + 482.0659576 » .2
97.21319

& This represents making over 9,600% in the time it took the static to make
%

4 We can now amend Equation (2.09a) to accommodate both tha ctatin
:.“ fractional dynamic f strategies to determine the expecteq length

—
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reguired to achieve a specific goal as a TWR. To begin with, for the static
fractional f, we can create Equation (2.09b):

(2.09b) N = In(Goal) /In(A)

where N =The expected number of trades to reach a specific goal.

(2.09¢) N =In(((Goal - 1)/ACTV) + 1)In(Geometric Mean)

it will take an account to double (i.e., TWR = 2) at .1 active equity and a
geometric mean of 1.01933:

@

ULTIMATELY THE DYNAMIC
MAKES INFINITELY MORE
THAN THE STATIC
FRACTIONAL f STRATEGQY
FOR THE SAME INITIAL
LEVEL OF RISK

DYNAMIC

Goal =The goal in terms of a multiple on our starting stake, a
TWR.

A =The adjusted geometric mean. This is the geometric mean,
run through Equation (2.08 to determine the geometric
mean for a given static fractional f.

DS

STATIC

In() =The natural logarithm function.

For a dynamic fractional f, we have Equation (2.09¢):

TIME ==»
Figure 8-1  Static versus dynamic fractional f.

where N = The expected number of trades to reach a specific

goal. expect to double in about 125% days. If our geometric mean is determined
L on atrade-by-trade basis, we can expect to double in about 125% trades. So
¢ long as you are dealing with an N great enough such that (2.09¢) is less than
(2.09b), then you are benefiting from dynamic fractional f trading.

Figure 8-1 demonstrates the relationship between trading at a static ver-
¢ sus a dynamic fractional f strategy over time. The more the time that
¢ elapses, the greater the difference between the static fractional f and the
. dynamic fractional f strategy. Asymptotically, the dynamic fractional f strat-
£ egy providesinfinitely greater wealth than its static counterpart.

In the long run you are better off to practice asset allocation in a dynamic

4 fractionalf technique. That is, you determine an initial level, a percentage,
¢ to allocate as active equity. The remainder isinactive equity. The day-to-day
b equity changes are reflected in the active portion only. The inactive dollar
f amount remains constant. Therefore, each day you subtract the constant

‘ inactive dollar amount from your total account equity. This difference is the
; active portion, and it is on this active portion that you will figure your quan-

‘ E titiesto trade in based on the optimal f levels.

‘ Eventually, if things go well for you, your active portion will dwarf your
1 inactive portion, and you' Il have the same problem of excessive variance and
Potential drawdown that you would have had initially at the full optimal f
¢ level. We now discuss four ways to treat this “problem.” There are no fine
1 lines delineating these four methods, and it is possible to mix methods to
1 Meet your specific needs.

Goal = The goal in terms of a multiple on our starting
stake, aTWR.

ACTV = The active equity percentage.

Geometric Mean = This is simply the raw geometric mean, there is no
adjustment performed on it as there is in (2.09b).

In() = The natural logarithm function.

To illustrate the use of (2.09¢), Suppose we want to determine how long

0%

In(({Goal - 1YACTV) + 1)/In(Geometric Mean)
In(((2 - 1)/.1) + 1)/1n(1.01933)
In((12.1) + 1)/In(1.01933)
In( 10 + 1)/In( 1.01933)

In (11)/In( 1.01933)

- 9.397895273/.01914554872

z 125.2455758

nw owon

Thus, if our geometric mean is determined on 2 daily basis, we €38
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REALLOCATION: FOUR METHODS

First, a word about the risk-free asset. Throughout this chapter the risk-free
asset has been treated as though it were simply cash, or near-cash equiva-
lents such as Treasury Bills or money market funds (assuming that there is
no risk in any of these).

The risk-free asset can also be any asset which the investor believes has
no risk, or risk so negligible as to be nonexistent. This may include long-
term government and corporate bonds. These can be coupon bonds or
zeros. Holders may even write call options against these risk-free assets to
further enhance their returns.

Many trading programs employ zero coupon bonds as the risk-free asset.
For every dollar invested in such a program, a dollar’s worth of face value
zero coupon bonds is bought in the account. Such a bond, if it were tp
mature in, say, 5 years, would surely cost less than a dollar. The difference
between the dollar face value of the bond and its actual cost is the return
the bond will generate over its remaining life. This difference is then
applied toward the trading program. If the program loses al of this money,
the bonds will still mature at their full face value. At the time of the bond
maturity, the investor is then paid an amount equal to hisinitial investment,
although he would not have seen any return on that initial investment over
the term that the money was in the program (5 years in the case of this
example). Of course, this is predicated upon the managers of the program
not losing an amount in excess of the difference between the face value of
the bond and its market cost.

This same principle can be applied by any trader. Further, you need not
use zero coupon bonds. Any kind of interest-generating vehicle can be used.
The point is that the risk-free asset need not be simply “dead” cash. It can
be an actual investment program, designed to provide areal yield, and this
yield can be made to offset potential losses in the program. The main con-
sidcration is that the risk-free asset be regarded as risk-free (i.e., treated as
though safety of principal were the primary concern).

Now on with our discussion of allocating between the risk-free asset, the
“inactive” portion of the account, and the active, trading portion. The first,
and perhaps the crudest, way to determine what the active/inactive percent-
age split will be initially, and when to reallocate back to this percentage, is
the investor utility method. This can also referred to as the gut feel method.
Here, we assume that the drawdowns to be seen will be equal to a complete
retracement of active equity. Therefore, if we are willing to see a 50% draw-
down, we initially allocate 50% to active equity. Likewise, if we are tilling
to see a 10% drawdown, we initially split the account into 10% active, 90%
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inactive. Basically, with the investor utility method you are trying to alocate
& high a percentage to active equity as you are willing to risk losing.

Now, it is possible that the active portion may be completely wiped out,
at which point the trader no longer has any active portion of hisaccount left
with which to continue trading. At such a point, it will be necessary for the
trader to decide whether to keep on trading, and if so, what percentage of
the remaining funds in the account (the inactive subaccount) to allocate as
new active equity. This new active equity can also be lost, so it isimportant
that the trader bear in mind at the outset of this program that the initial
active equity is not the maximum amount that can be lost. Furthermore, in

any trading where there is unlimited liability on a given position (such as a

futures trade) the entire account is at risk, and even the trader’s assets out-
side of the account are at risk! The reader should not be deluded into think-
ing that he or she isimmune from a string of locked limit days, or an enor-
mous opening gap that could take the entire account into a deficit position,
regadless of what the “activé’ equity portion of the account is.

This approach also makes a distinction between a drawdown in blood
and a drawdown in diet cola. For instance, if a trader decides that a 25%
equity retracement is the most that the trader would initially care to sit
through, he or she should initially split the account into 75% inactive, 2.5%
active. Suppose the trader is starting out with a $100,000 account. Initialy,
therefore, $25,000 is active and $75,000 is inactive. Now suppose that the
account gets up to $200,000. The trader still has $75,000 inactive, but now

i the active portion is up to $125,000. Since he or she is trading at the full f

amount on this $125,000, it is very possible to lose a good portion, if not all

of this amount by going into an historically typical drawdown at this point.

Such a drawdown would represent greater than a 25% equity retracement,
even though the amount of the initial starting equity that would be lost

would be 25% if the total account value plunged down to the inactive

$75,000.
An account that starts out at a lower percentage of active equity will

therefore be able to reallocate sooner than an account trading the same
market systems starting out at a higher percentage of active equity.
' £ Therefore, not only doesthe account that starts out at alower percentage of
i active equity have a lower potential drawdown on initial margin, but aso
g since the trader can reallocate sooner he is less likely to get into awkward
£ ratios of active to inactive equity (assuming an equity runnup) than if he
| started out at a higher initial active equity percentage.

As atrader, you are also faced with the question of when to reallocate,

L whether you are using the crude investor utility method or one of the more
| sophisticated methods about to be described. Y ou should decide in advance
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at what point in your equity, both on the upside and on the downside, you
want to reallocate. For instance, you may decide that if you get a 100%

return on your initial investment, it would be a good time to reallocate.
Likewise, you should also decide in advance at what point on the downside
you will reallocate. Usually this point is the point where there is either no
active equity left or the active equity left doesn’t allow for even 1 contract in
any of the market systems you are using. You should decide, preferably in
advance, whether to continue trading if this downside limit is hit, and if so,
what percentage to reallocate to active equity to start anew.

Also, you may decide to reallocate with respect to time, particularly for
professionally managed accounts. For example, you may decide to reallo-
cate every quarter. This could be incorporated with the equity limits of real-
location. You may decide that if the active portion is completely wiped out,
you will stop trading altogether until the quarter is over. At the beginning of
the next quarter, the account is reallocated with X% as active equity and
100 - X% as inative equity.

It is not beneficial to reallocate too frequently. Ideally, you will never
reallocate. Ideally, you will let the fraction of optimal f you are using keep
approaching 1 as your account equity grows. In reality, however, you most
likely will reallocate at some point in time. It is to be hoped you will not
reallocate so frequently that it becomes a problem.

Consider the case of reallocating after every trade or every day. Such is
the case with static fractional f trading. Recall again Equation (2.09a), the
time required to reach a specific goal.

Let's return to our system, which we are trading with a .2 active portion
and a geometric mean of 1.01933. We will compare this to trading at the
static fractional .2 f, where the resultant geometric mean is 1.005. If we start
with a $100,000 account and we want to reallocate at $110,000 total equity,
the number of days (since our geometric means here are on a per day basis)
required by the static fractional .2f is:

In(1.1)/In(1.003) = 19.10956

This compares to using $20,000 of the $100,000 total equity at the full f
amount and trying to get the total account up to $110,000. This would rep-
resent a goal of 1.5 times the $20,000:

In(1.5)/1n(1.01933) = 21.17807

At lower goals, the static fractional f strategy grows faster than its corre-
sponding dynamic fractional f counterpart. As time elapses, the dynamic
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overtakes the static, until eventually the dynamic is infinitely farther ahead.
Figure 8-1 displays this relationship between the static and dynamic frac-
tional fs graphically.

If you reallocate too frequently you are only shooting yourself in the foot,
as the technique would then be inferior to its static fractional f counterpart,

Therefore, since you are best off in the long run to use the dynamic frac-
.. tional f approach to asset allocation, you are also best off to reallocate funds
¢ between the active and inactive subaccounts as infrequently as possible.

Ideally, you will make this division between active and inactive equity only

[ once, at the outset of the program.

Generally, the dynamic fractional f will overtake its static counterpart

faster the lower the portion of initial active equity. In other words, a portfo-

lio with an initial active equity of .I will overcome its static counterpart

& faster than a portfolio with an initial active equity allocation of .2 will over-
| take its static counterpart. At an initial active equity alocation of 100%
¥ (1.0), the dynamic never overtakes the static fractional f (rather they grow at
[ the same rate). Also affecting the rate at which the dynamic fractional f
I overtakes its static counterpart is the geometric mean of the portfolio itself.
B The higher the geometric mean, the sooner the dynamic will overtake the

static. At a geometric mean of 1.0, the dynamic never overtakes its static

8 counterpart.

A second method for determining initial active equity amounts and real-

location is the scenario planning method. Under this method the amount
alocated initially is determined mathematically as a function of the different
K. scenarios, their outcomes, and their probabilities of occurrence, for the per-
E formance of the account. This exercise, too, can be performed at regular
E intervals. The technique involves the scenario planning method detailed in
E Chapter 4.

As an example, suppose you are pondering three possible scenarios for

B the next quarter:

Scenario Probability Result
Drawdown 50% -100%
No gan 25% 0%
Good runup 25% +300%

‘ The result column pertains to the results on the account’s active equity.

' Thus, there is a 50% chance here of a 100% loss of active equity, a 25%

chance of the active equity remaining unchanged, and a 25% chance of a
i 360% gain on the active equity.

In reality you should consider more than three scenarios, but for simplic-
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ity, only three are used here. You input the three different scenarios, their
probabilities of occurrence, and their results in units, where each unit rep-
resents a percentage point. The results are determined based on what you
see happening for each scenario if you were trading at the full optimal f
amount.

Inputting these three scenarios yields an optimal f of .11. Don’t confuse
this optimal f with the optimal fs of the components of the portfolio you are
trading. They are different. Optimal f here pertains to the optimal f of the
scenario planning exercise you just performed, which also told you the opti-
ma amount to alocate as active equity for your given parameters.
Therefore, given these three scenarios, you are best off in an asymptotic
sense to allocate 11% to active equity and the remaining 89% to inactive. At
the beginning of the next quarter, you perform this exercise again, and
determine your new allocations at that time. Since the amount of funds you
have to reallocate for a given quarter is afunction of how you have allocated
them for the previous quarter, you are best off to use this optimal f amount,
as it will provide you with the greatest geometric growth in the long run.
(Again, that's provided that your input-the scenarios, their probabilities,
and the corresponding results-is accurate.)

This scenario planning method of asset allocation is also useful if you are
trying to incorporate the opinion of more than one adviser. In our example,
rather than pondering three possible scenarios for the next quarter, you
might want to incorporate the opinions of three different advisers. The
probability column corresponds to how much faith you have in each differ-
ent adviser. So in our example, the first scenario, a 50% probability of a
100% loss on active equity, corresponds to a very bearish adviser whose
opinion deserves twice the weight of the other two advisers.

Recall the share average method of pulling out of a program, which was
examined in Chapter 2. We can incorporate this concept here as a realloca-
tion method. In so doing, we will be creating a technigque that systematically
takes profits out of a program advantageously and also takes us out of alos-
ing program.

The program calls for pulling out a regular periodic percentage of the
total equity in the account (active equity + inactive equity). Therefore, each
month, quarter, or whatever time period you are using, you will pull out X%
of your equity. Remember though, that you want to get enough time in
each period to make certain that you are benefiting, at least somewhat, by
dynamic fractional f: Any value for N that is high enough to satisfy Equation
(8.01) isavaue for N that we can use and be certain that we are benefiting
from dynamic fractiona f:

80)  FGAN<=G*N=#FRAC + 1 - FRAC
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where  FG = The geometric mean for the fractional f, found by
Equation (2.08).

N = The number of periods, with G and FG figured on the
bess of 1 period.

G = The geometric mean at the optimal f level.
FRAC = The active equity percentage.

If we are using an active equity percentage of 20% (i.e., FRAC = .2),
then FG must be figured on the basis of a .2 f. Thus, for the case where our
geometric mean at full optimal f is 1.01933, and the .2 f (FG) is 1.005, we
want avaluefor N that satisfies the following:

1005AN <=101933AN* 2+1=.2

We figured our geometric mean for optimal f(G) and therefore also our
geometric mean for the fractional f (FG) on a daily basis, and we want to
see if 1 quarter is enough time. Since there are about 63 trading days per
quarter, we want to see if an N of 63 is enough time to benefit by dynamic
fractional f. Therefore, we check Equation (8.01) at a value of 63 for N:

10057263 «<=101933A63* 2+1 = .2
1.369184237 «= 3.340663933 * 2+ 1 - .2
1.369184237 <= 6681327866 + 1 - .2
1.369184237 <= 16681327866 « .2
1.369184237 <= 1.4681327866

The equation is satisfied, since the left sideis less than or equal to the right
side. Thus, we can reallocate on a quarterly basis under the given values
here and be benefiting from using dynamic fractional f.

And where do you put this now pulled-out equity? Why, it goes right
back into the account as inactive equity. Each period you will figure the
total value of your account, and transfer that amount from active to inactive
equity. Thus, there is reallocation. For example, again assume a $100,000
account where $20,000 is regarded as the active amount. Say you are share
averaging out on aquarterly basis, and the quarterly percentage you pull out
is 2%. Now assume that at the beginning of the following quarter the
account dtill stands at $100,000 total equity, of which $20,000 is active
equity. You now take out 2% of the total account equity of $100,000 and
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transfer that amount from active to inactive equity. Therefore, you transfer
$2,000 from active to inactive equity, and your $100,000 account now has
$18,000 active equity and $82,000 inactive.

We hope that the program will outpace the periodic percentage with-
drawals to the upside. Suppose that in our last example, our $100,000
account goes to $110,000 at the end of the quarter. Now, when we go to
reallocate 2%, $2,200, we debit our active equity amount of $30,000 and
credit our inactive amount of $80,000. Thus, we have $27,800 active equity
and $82,200 inactive. Since our active equity after the reallocation is till
greater than it was at the beginning of the previous period, we can say that
the program has outpaced the reallocation.

On the other hand, if the program loses money, or if the program goes
nowhere (in which case you are risking money repeatedly, yet not making
any upward progress on your equity), thistechnique has you eventually end
up with the entire account equity as inactive equity. At that point, you have
automatically ceased trading alosing program.

Naturally, two questions must now crop up. Thefirstis, ‘What must this
periodic percentage reduction be such that if the account equity were to
stagnate after N periodic deductions from active equity, the program would
automatically terminate (i.e., active equity equal to O)? The solution is given
by Equation (8.02):

(8.02 P =1 - INACTIVE A (1/N)

where P = The periodic percentage of the total account equity
that should be transferred from active to inactive
equity.

INACTIVE = The inactive percent of account equity.

N = The number of periods we want the program to termi-
nae in if the equity degnaes.

Thus, if we were to make quarterly transfers of equity from active to
inactive, and we were using an initial allocation of 80% as inactive equity,
and we wanted the program to terminate in 2% years (10 quarters-i.e, N =
10), the quarterly percentage would be:

P=1- 8§A(1/10)
=1-84A1
=1 = 9779327685
= .0220672315

REALLOCATION: FOUR METHODS 309

Thus, we should pull out 2.20672315% of the total equity each quarter, and
transfer that from active to inactive equity.

The second quedtion to aise s, “If we are pulling out a certain given per-
centage, what must the number of periods be in order for the active equity
to equal O?’ In other words, if we know we want to pull out P% each period
(again we assume that the periods here are quarters) and if the account
equity stagnates, over how many periods, N, must we make these equity
transfers until the active equity equals 0. The solution is given by Equation
(8.03):

(803 N = In(INACTIVE)In( - P)

where P = The periodic percentage of the total account equity
that will be transferred from active to inactive equity.

INACTIVE = The inactive percentage of account equity.

N = The number of periods it will take for the program to
terminate if the equity stagnates.

Again, assume that the initial inactive equity is allocated as 80% and that
you are pulling out 2.20672315% per quarter. Therefore, the number of
periods, quarters in this case, required until the program terminates if the
equity  Stagnates  is.

N =In(.8)/In( 1 -.0220672315)
=In( .8)/In( .9779327685)

-.223143/-.0223143

10

For the given values, it would thus take 10 periods for the program to ter-
minate.

Share averaging will get us out of a portfolio over time at an above-aver-
age price, just as dollar averaging will get us into a portfolio over time at a
below-average cost. Consider now that most people do just the opposite of
this, hence they are getting into and out of a portfolio at prices worse than
average. When someone opens an account to trade, they dump all the trad-
ing capital in and just start trading. When they want to add funds, they will
almost always invariably add in single blocks of cash, unable to make equal
dollar deposits over time.

A trader trying to live off trading profits will generally withdraw enough
money from the account on a periodic basis to cover his living expenses,
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regardless of what percentage of his account this constitutes. Thisis exactly
what he should not do. Suppose that the trader’s living expenses are con-

stant from one month to the next, so he is withdrawing a constant dollar
amount. By doing this he is accomplishing the exact opposite of share aver-

aging in that he will be withdrawing a larger percentage of his funds when
the account balance is lower, and a smaller percentage when the account
balance is higher. In short, he is slowly getting out of the portfolio (or a por-

tion of it) over time at a below-average price.

Rather, the trader should withdraw a constant percentage (of total
account equity, active plus inactive) each month. The withdrawn funds can
be put into a middle account, a simple demand deposit account. Then from
this demand deposit account the trader can withdraw a constant dollar
amount each month to meet his living expenses. If the trader were to bypass
this middle account and withdraw a constant dollar amount directly from
the trading account, it would cause the ideas of share averaging and dollar
averaging to work agang  him.

Recall from Chapter 2 the observation that when you are trading at the
optimal f levels you can expect to be in the worst-case drawdown 35 to 55%
of the time period you are looking at. Generally, this doesn’t sit well with
most traders. Most traders want or need a much smoother equity curve,
either to satisfy the needs of their living expenses or for other, more emo-
tional, reasons. What trader wouldn’t like to make a steady $X per day from
trading? This 35 to 55% principle is true on afull optimal f basis, and there-
foreistrue on adynamic fractional f basis aswell, but is not true on a static
fractional f basis. Since the dynamic is asymptotically better than its static
fractional f counterpart, we can expect this 35 to 55% principle to apply to
us if we are going to trade our account in the mathematically optimal fash-
ion-that is, at full optimal f for a given level of initia risk (our initial active
equity).

The establishment of a buffer demand deposit account allows for the
account to be traded in the mathematically optimal fashion (dynamic opti-
md f) while it also allows the share averaging method of reallocation to
work (i.e., cash is transferred to the buffer demand deposit account) and
allows for a steady dollar outcome from the buffer demand deposit account,
thus meeting the trader’s needs. Thus, if atrader needs $X per day to meet
his needs, be they living expenses or otherwise, these can be satisfied with-
out sabotaging the mathematics in the account by establishing and adminis-
tering a buffer demand deposit account, and share averaging funds on a
periodic basis from the trading program to this buffer account. The trader
then makes regular withdrawals of a constant dollar amount from this buffer
account.
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Of course, the regular dollar withdrawals must be for an amount less than
the smallest amount transferred from the trading account to the buffer
account. For example, if we are looking at a $500,000 account, we are with-
drawing 1% per month, and we start out with 20% initial active equity, then
we know that our smallest withdrawal from the trading account will be .01 *
500,000 * (1 =.2) =.01* 500,000 * .8 = $4,000. Therefore, our constant dol-
lar withdrawal from the buffer account should be for an amount no greater
than $4,000. The buffer account can also be the inactive subaccount.

Before we come to the fourth asset allocation technique, a certain confu-
sion must be cleared up. With optimal fixed fractional trading, you can see
that you add more and more contracts when your equity increases, and vice
versa when it decreases. This technique makes the greatest geometric
growth of your equity in the long run.

LWHY  REALLOCATE?

Reallocation seems to do just the opposite of what we want to do in that
reallocation trims back after a runup in equity or adds more equity to the
active portion after a period where the equity has been run down.
Reallocation is a compromise between the theoretical idea and the real-life
implementation. These techniques allow us to make the most of this com-

g promise.

Ideally, you would never reallocate. When your humble little $10,000
account grew to $10 million, it would never go through reallocation. Idedly,
you would sit through the drawdown that took your account back down to
$50,000 from the $10 million mark before it shot up to $20 million. Idedlly,
if your active equity were depleted down to 1 dollar, you would still be able
to trade a fractional contract (a “microcontract”?). In an ideal world, all of
these things would be possible. In real life, you are going to reallocate at
some point on the upside or the downside. Given that you are going to do
this, you might aswell do it in a systematic, beneficial way.

In reallocating, or compromising, you “reset” things back to a state you
would be at if you were starting the program all over again, only at a differ-
ent equity level. Then you let the outcome of the trading dictate where the
fraction off used floats to by using a dynamic fractional fin between reallo-
cations. Things can get levered up awfully fast, even when you start out with

,~ an active equity allocation of only 20%. Remember, you are using the full

optimal f on this 20%, and if your program does modestly well, you'll be
trading in substantial quantities relative to the total equity in the account in
short order.
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PORTFOLIO  INSURANCE-THE FOURTH
REALLOCATION TECHNIQUE

Assume for a moment that you are managing a stock fund. Figure 8-2
depicts a typical portfolio insurance strategy (also known as dynamic hedg-
ing). The floor in this example is the current portfolio value of 100 (dollars
per share). The typical portfolio follows the equity market 1 for 1. This is
represented by the unbroken line. The insured portfolio is depicted here by
the dotted line. Note that the dotted line is below the unbroken line when
the portfolio is at or above its initial value (100). This difference represents
the cost of the portfolio insurance. Otherwise, as the portfolio fallsin value,
portfolio insurance provides afloor on the value of the portfolio at a desired
floor value (in this case the present value of 100) minus the cost of perform-
ing the drategy.

In a nutshell, portfolio insurance is akin to buying a put option on the
portfolio. Suppose the fund you ae managing conddts of only 1 sock, which
is currently priced at 100. Buying a put option on this stock, with a strike
price of 100, at a cost of 10, would replicate the dotted line in Figure 8-2.
The worst that could happen now to your portfolio of 1 stock and a put
option on it isthat you could exercise the put, which sells your stock at 100,
and you lose the value of the put, 10. Thus, the worst that this portfolio can
be worth is 90, no matter how far down the underlying stock goes. On the
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Figure 8-2 Portfolio insurance.
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upside, your insured portfolio suffers somewhat in that the value of the
portfolio is dways reduced by the cot of the put.

Clearly, looking at Figure 8-2 and considering the fundamental equation
for trading, the estimated TWR of Equation (1.19¢), you can intuitively see
that an insured portfolio is superior to an uninsured portfolio in an asymp-
totic sense. In other words, if you're only as smart as your dumbest mistake,
you have put afloor on that dumbest mistake by portfolio insurance.

Now consider that being long a call option will give you the same profile
as being long the underlying and long a put option with the same strike
price and expiration date as the call option. Here, when we speak of the
same profile, we mean an equivalent position in terms of the risk/reward
characteristics at different values for the underlying. Thus, the dotted line
in Figure 8-2 can aso represent a portfolio comprised of simply being long
the 100 call option at expiration.

Here is how dynamic hedging works to provide portfolio insurance.
Suppose you buy 100 shares of a single stock for your fund, at a price of
$100 per share. You now replicate the call option by using this underlying
stock. You dothis by determining an initial floor for the stock. The floor you
choose s, say, 100. Y ou also determine an expiration date for the hypotheti-
cal option you are going to create. Say the expiration date you choose isthe
dae on which this quater ends.

Now you figure the delta for this 100 call optionwith the chosen expira-
tion date. Y ou can use Equation (5.05) to find the delta of a call option on a
stock (you can use the delta for whatever option model you are using; we're
using the Black-Scholes Stock Option Model here). Suppose the deltais 5,
This means that you should be 50% invested in the given stock. Y ou would
thus have only 50 shares of stock onrather than the 100 shares you would
have on if you were not practicing portfolio insurance. As the value of the
stock increases, so will the delta, and likewise the number of shares you
hold. The upside limit isadeltaat 1, where you would be 100% invested. In
our example, at a delta of 1 you would have on 100 shares. As the stock
price decreases, so does the delta, and so does the size of your position in
the stock. The downside limit is at a delta of O (where the put deltais-1), at
which point you wouldn't have any postion in the sock.

Operationally, stock fund managers have used noninvasive methods of
dynamic hedging. Such a technique involves not having to trade the cash
portfolio. Rather, the portfolio as a whole is adjusted to what the current
delta should be as dictated by the model by using futures, and sometimes
put options. One benefit of using futures is low transaction costs. Selling
short futures against the portfolio is equivalent to selling off part of the
portfolio and putting it into cash. As the portfolio falls, more futures are
sold, and asiit rises, these short positions are covered. The loss to the port-
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folio as it goes up and the short futures positions are covered is what
accounts for the portfolio insurance cost, the cost of the replicated put
options. Dynamic hedging, though, has the benefit of allowing us to close]y
estimate this cost at the outset. To managers trying to implement such a
strategy, it allows the portfolio to remain untouched while the appropriate
asset allocation shifts are performed through futures and/or options trades,
This noninvasive technique of using futures and/or options permits the sep-
aration of asset allocation and active portfolio management.

To implement portfolio insurance, you must continuously adjust the port-
folio to the appropriate delta. This means that, say each day, you must input
into the option pricing model the current portfolio value, time till expiration,
interest rate levels, and portfolio volatility to determine the delta of the put
option you are trying to replicate. Adding this delta (which is a number
between 0 and -1) to 1 will give you the corresponding call’s delta. Thisis
the hedge ratio, the percentage that you should be invested in the fund. Y ou
must make sure that you say as close to this hedge ratio as possble

Suppose your hedge ratio for the present moment is.46. Say that the size
of the fund you are managing is the equivalent to 50 S& P futures contracts.
Since you only want to be 46% invested, you want to be 54% dis-invested.
Fifty-four percent of 50 contracts is 27 contracts. Therefore, at the present
price level of the fund, at this point in time, for the given interest rate and
volatility levels, the fund should be short 27 S& P contracts along with its
long position in cash stocks. Because the delta needs to be recomputed on
an ongoing basis, and portfolio adjustments constantly monitored, the strat-
egy is called a dynamic hedging strategy.

One problem with using futures in the strategy is that the futures market
does not exactly track the cash market. Further, the portfolio you are selling
futures against may not exactly follow the cash index upon which the futures
market is traded. These tracking errors can add to the expense of a portfolio
insurance program. Furthermore, when the option being replicated gets
very near to expiration and the portfolio value is near the strike price, the
gamma of the replicated option goes up astronomically. Gamma is the
instantaneous rate of change Of the delta or hedge ratio. In other words,
gamma is the delta of the delta. If the delta is changing very fast (i.e., if the
replicated option has a high gamma), portfolio insurance becomes increas-
ingly more cumbersome to perform. There are numerous ways to work
around this problem, some of which are very sophisticated. One of the sim-
plest involves not only trying to match the delta of the replicated option, but
using futures and options together to match both the delta and gamma of
the replicated option. Again, this high gamma usually becomes a problem
only when expiration draws near and the portfolio value and the replicated
option's drike price ae very close
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There is a very interesting relationship between optimal f and portfolio
insurance. When you enter a position, you can state that f percent of your
funds are invested. For example, consider a gambling game in which your
optimal f is.5, your biggest lossis -1, and your bankroll is $10,000. In such a
case, you would bet $1 for every $2 in your stake, since -1, the biggest loss,
divided by -.5, the negative optima f, is 2. Dividing $10,000 by 2 yields
$5,000. You would therefore bet $5,000 on the next bet, which is f percent,
50%, of your bankroll. Had you multiplied our bankroll of $10,000 by f, .5,
you would have arrived at the same $5,000 result. Hence, you have bet f
percent of our bankroll.

Likewise, if your biggest loss were $250 and everything else remained
the same, you would be making 1 bet for every $500 in your bankroll (since
-$250/-.5 = $500). Dividing $10,000 by $500 means that you would make
20 bets. Since the most you can lose on any one bet is $250, you have thus
risked f percent, 50% of our stake, in risking $5,000 ($250 * 20). We can
therefore state that f equals the percentage of our funds at risk, or f equals
the hedge ratio. Since f is only applied on the active portion of our portfolio
in adynamic fractional f strategy, the hedge ratio of the portfolioiis:

(8.04a) H=f*A/E
where H = The hedge ratio of the portfolio.
f = The optimal f (O to 1).
A = Theactive portion of fundsin an account.

E = The total equity of the account.

Equation (8.04a) gives us the hedge ratio for a portfolio being traded on
adynamic fractional f strategy. Portfolio insurance is also at work in a static
fractional f strategy, only the quotient A/E equals 1, and the value for f, the
optimal f, is multiplied by whatever value we are using for the fraction off.
Thus, in astatic fractional f strategy the hedgeratioiis:

(8.04b) H={»FRAC
where  H = The hedge ratio of the portfalio.
f = The optimal f (0 to 1).
FRAC = Thefraction of optimal f that you are using.
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Since there is usualy more than one market system working in an
account, we must account for this. When this is the case, the variable fin
Equation (8.04a) or (8.04b) must be calculated as:

N
805 f=Xf*W,
i=1

where  f=Thef (0to 1) to be input in Equation (8.04a) or (8.04b).
N = The total number of market systems in the portfolio.

W, = The weighting of the ith component in the portfolio (from
the identity matrix).

f, = The f factor (O to 1) of the ith component in the portfolio.

We can state that in trading an account on adynamic fractional f basiswe
are performing portfolio insurance. Here, the floor is equal to the initial
inactive equity plus the cost of performing the insurance. However, it is
often simpler to refer to the floor of a dynamic fractional f strategy as simply
theinitial inactive equity of an account.

We can state that Equation (8.04a) or (8.04b) equals the delta of the call
option of the terms used in portfolio insurance. Further, we find that this
delta changes much the way a call option thatis deep out-of-the-money and
very far from expiration changes. Thus, by using a constant inactive dollar
amount, trading an account on a dynamic fractional f strategy is equivalent
to owning a put option on the portfolio that is deep in-the-money and very
far out in time. Equivalently, we can state that trading a dynamic fractional f
strategy is the same as owning a call option on the portfolio that doesn’t
expire for a very long time and is very far out-of-the-money, rather than the
portfolio itself. This quality, this relationship to portfolio insurance, is true
for any dynamic fractional f strategy, whether we are using share averaging,
scenario  planning, or investor  utility.

It isalso possible to use portfolio insurance as a reall ocation technique to
“steer” performance somewhat. This steering may be analogous to trying to
steer a tanker with a rowboat oar, but this is a valid reallocation technique.
The method involves setting parameters for the program initially. First you
must determine a floor value. Once this has been chosen, you must decide
upon an expiration date, a volatility level, and other input parameters for the
particular option model you intend to use. These inputs will give you the
options delta at any given point in time. Once the delta is known, you can
determine what your active equity should be. Since the delta for the
account, the variable H in Equation (8.04a), must cqual the delta for the call
option being replicated, D, we can replace H in Equation (8.04a) with D:

D=fx*A/E
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Therefore:

(8.06) D/f = AIEif D < f (otherwise AJE = 1)
where D = The hedge ratio of the call option being replicated.
f = Thef (0 to 1) from Equation (8.05).
A = The active portion of fundsin an account.

E = The total equity of the account.

Since A/E is equal to the percentage of active equity, we can state that
the percentage of the total account equity funds that we should have in
active equity is equal to the delta on the call option divided by the f deter-
mined in Equation (8.05). However, you will note that if D is greater than f,
then it is suggesting that you allocate greater than 100% of an account’s
equity as active. Since thisis not possible, thereis an upper limit of 100% of
the account’ s equity that can be used as active equity. Y ou can use Equation
(5.05) to find the delta of a call option on a stock, or Equation (5.08) to find
the delta of acall option on afuture.

The problem with implementing portfolio insurance as a reallocation
technique, as detailed here, is that reallocation is taking place constantly.
This detracts from the fact that a dynamic fractional f strategy will asymp-
totically dominate a static fractional f strategy. As a result, trying to steer
performance by way of portfolio insurance as a dynamic fractional f reallo-
cation strategy probably isn’'t such a good idea. However, any time you use
dynamic fractional f, you are employing portfolio insurance.

We now cover an example of portfolio insurance. Recall our geometric
optimal portfolio of Toxico, Incubeast, and LA Garb. We found the geomet-
ric optimal portfolio to exist at V = .2457. We must now convert this portfo-
lio variance into the volatility input for the option pricing model. Recall that
thisinput is described as the annualized standard deviation. Equation (8.07)
allows us to convert between the portfolio variance and the volatility esti-
mate for an option on the portfolio:

(8.07) OV =(VA3)*ACTV * YEARDAYS A 5

where QV = The option volatility input for an option on
the portfolio.

V = The variance on the portfolio.
ACTV = The current active equity portion of the account.

YEARDAYS = The number of market daysin a year.
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If we assume a year of 251 market days and an active equity percentage of
100% (1.00) for the sake of simplicity:

OV=(2457TA5)* 1 *251 A5
4956813493 * 1584297952
7.853069464

This corresponds to a volatility of over 785%! Remember, thisis the annual-
ized volatility on the portfolio being traded at the optimal f level with 100%
of the account designated as active equity. As aresult, we are going to get
very high volatility readings. Since we are going to demonstrate portfolio
insurance as a reallocation technique, we must use 1.00 as the value for
ACTV.

Equation (5.05) will give usthe delta on a particular call option as:

(5.05) Cal Ddta = N(H)

The H term in (5.05) is given by (5.03) as.

(503) HzIn(UAE* EXP-R* T))(V * T A(L/2)+ (V * T A(1/2))/2

U = The price of the underlying instrument.
E = The exercise price of the option.
T = Decimal fraction of the year to expiration.
V = The annual volatility in percent.
R = The risk-free rate.

In( ) = The natural logarithm function.

N() = The cumulative Normal density function, as givenin

Equation (3.21).

Notice that we are using the stock option pricing model here. We now
use our answer for OV as the volatility input, V, in Equation (5.03). If we
assume the risk-free rate, R, to be 6% and the decimal fraction of the year
left till expiration, T, to be .25, Equation (5.03) yields:

H = In(100/( 100 * EXP(-.06 * .25)))/ (7.853069464 * 25 A.5)
+ (7.853069464 * 25 A 5)/ 2
= In(100/(100 » EXP(--.015))) / (7.853069464 * .5) + (7.853069464
*.3) /2
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= In(100/(100 * .9851119396)) / (7.853069464 * 5) + (7.853069464
» 5)/2

= In( 100/98.51119396) / 3926534732 + 3.926534732/ 2

= In( 1.015113065) / 3926534732 + 1.963267366

= 015 13926534732 + 1.963267366

= .00382 + 1.963267366

= 1.967087528

This answer represents the H portion of (5.05). We must now run this
through Equation (3.21) asthe Z variable to obtain the actual call delta:

(3.21) N@Z) =1 = N'(2) * ((1.330274429 * Y A 5) - (1.821255978 «
vy Mgy + (L781477937 * Y A 3) = (356563782 + Y A 2)
+(.31938153* V)

Where Y =1/(1 + .2316419 * ABS(Z))
N'(Z) = .398942 * EXP(-(Z A 2/2))

Thus:

Y =1/ (1+ .2316419 * ABS(1967087528))
= 1/(1 + .4556598925)

1/1 4556598925

6869736574

Now solving for the term N'( 1.967087528)

N'(1.967087528) = .398942 * EXP(-(1.967087528 A 2/2))
= 398942 * EXP(~(3.869433343/2))

398942 * EXP(-1.934716672)

398942 * 1444651941

= 05763323346

Now, plugging the values for Y and N’ (1.967087528) into (3.21) to obtain
the actual call deltaas given by Equation (5.05):

N(Z) = 1 - 05763323346 * ((1.330274429 * 6869736574 A 5)
- (1821255978 * 6869736574 A 4) + (1.781477937
* 6869736574 A 3) - (.356563782 * 6869736574 A 2)
+(.31938153 * .6869736574))
=1 - 05763323346 * ((1.330274429 * .1530031) = (1.821255978
« 99979205) + (1.781477937 * .3242054) « (.356563782
* 4719328) + (.31938153 * .6869736))
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1-.05763323346 * (2035361115 - 405631042 + -5775647672
- . 168274144 + .2194066794)

1 - .05763323346 * .4266023721

1 =.02458647411

9754135259

TR

Thus, we have a delta of .9754135259 on our hypothetical call option for
a portfolio trading at a price of 100%, with a strike price of 100%, with .23
of ayear left to expiration, a risk-free rate of 6%, and a volatility on this
portfolio of 785.3069464%.

Now recall that the sum of the weights on this geometric optimal portfo-
lio consisting of Toxico, Incubeast, and LA Garb, per Equation (8.03), is
1.9185357. Thus, per Equation (8.06), we would reallocate to
50.84156244% (.9754135259/1.9185357) active equity if we were using
portfolio insurance to reallocate.

“What is the cost of this insurance?’ That depends upon the volatility
that will actually be seen over the life of the replicated option. For instance,
if the equity in the account were not to fluctuate at al over the life of the
replicated option (volatility equal to 0), the replicated option, the insurance,
would cost us nothing. Thisis a great benefit to portfolio insurance versus
outright buying a put option (assuming one was available on our portfolio).
We pay the actual theoretical price of the option for the volatility actually
encountered, not the volatility perceived by the marketplace before the fact,
as would be the case with actually buying the put option. Further, actually
buying the put option (again assuming one was available) entails a bid-ask
spread that is circumvented by replicating the option.

THE MARGIN CONSTRAINT

Hereis aproblem that continuously crops up when we take any of the fixed
fractional trading techniques out of its theoretical context and apply it in the
real world. We have seen that anytime an additional market system is added
to the portfolio, so long as the linear correlation coefficient of daily equity
changes between that market system and another market system in the
portfolio is less than +1, the portfolio is improved. That is to say that the
geometric mean of daily HPRs is increased. Thus, it stands to reason that
you would want to have as many market systems as possible in a portfolio.
Naturally, at some point, margin considerations become a problem.

Even if you are trading only 1 market system, margin considerations can
often be a problem. Consider that the optimal fin dollars is very often less
than the initial margin requirements for a given market. Now, depending on
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what fraction of f you are using at the moment, whether you are using a
static or dynamic fractional f strategy, you will encounter a margin call if the
fraction is too high.

When you trade a portfolio of market systems, the problem of a margin
call becomes even more likely. With an unconstrained portfolio, the sum of
the weights is often considerably greater than 1. When you trade only 1
market system, the weight is, de facto, 1. If the sum of the weights of a mar-
ket system you are trading is, say, 3, then the likelihood of amargin call is3
times as great asit would be if you were trading just 1 market.

What is needed is a way to reconcile how to create an optimal portfolio
within the bounds of the margin requirements on the components in the
portfolio. This can very easily be found. The way to accomplish this is to
find what fraction off you can use gs an upper limit. This upper limit, U, is
given by Equation (8.08) as:

N N
(8.08) U =.zlfi$/((.zlmargini$) * N)
1= i=

where U = The upside fraction of f At this particular fraction off you
are trading the optimal portfolio as aggressively as possible
without incurring an initial margin call.

f:$ = The optimal fin dollars for the ith market system.
margin;$ = The initiadl margin requirement of the ith market system.

N = The total humber of market systems in the portfolio.

If U isgreater than 1, then use 1 as the answer for U. For instance, suppose

we have a portfolio with the three market systems as follows, with the fol-

lowing optimal fs in dollars for the three market systems and the following

initial margin requirements. (Note: the f$ are the optimal fs in dollars for
each market system in the portfolio. This represents the market system’s
individual optimal f$ divided by its weighting in the portfolio):

Market System 1$ Initid  Margin
A $2,500 $2,000
B $2,000 $2,000
C $3,000 $2,000
Sums $7,500 $6,000

Now, per Equation (8.08) we use the sum of the f$ column in the
numerator, which is $7,500, and divide by the sum of the initial margin
requirements, $6,000, times the number of markets, N, which is 3:
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U = $7,500/($6,000 » 3)
= 7500/18,000
= 4167

Therefore, we can determine that, as an upside limit, our fraction off can-
not exceed 41.67% in this case (that is, if we are employing a dynamic frac-
tional f strategy). Therefore, we must reallocate when our active equity
divided by our total equity in the account equals or exceeds.4167.

If, however, you are still employing a static fractional f strategy (despite
my protestations), then the highest you should set that fraction to is .4167.
This will put you on the unconstrained geometric efficient frontier, to the
left of the optimal portfolio, but as far to the right as possible without
encountering a margin call.

To see this, suppose we have a $100,000 account. We set our fractional f
values to a .4167 fraction of optimal. Therefore for each market system:

Market System 1$ 1.4167 = New f$
A $2,500 $6,000
B $2,000 $4,600
C $3,000 $7,200

For a $100,000 account, we will trade 16 contracts of market system A
(100,000/6,000), 20 contracts of market system B (100,000/4,800), and 13
contracts of market system C (100,000/7,200). The resulting margin
requirement for such a portfoliois:

16 * $2,000 = $32,000
20 » 2,000 = 40,000
13 * 2,000 = 26,000

Initial margin reguirement $96,000

Notice that using this formula (8.08) yields the highest fraction for f
(without incurring an initial margin call) that gives you the same ratios of
the different market systems to one another. Hence, Equation (8.08)
returns the unconstrained optimal portfolio at its least diluted state without
incurring an initial margin call.

Notice in the previously cited example that if you are trading a fractional
f strategy, the value returned from Equation (8.08) is the maximum fraction
for f you can get to without incurring an initial margin call. Again consider a
$100,000 account. Assume that at one time, when you opened this account,
it had $70,000 in it. Further assume that of that initial $70,000 you allocated
$58,330 as inactive equity. Thus, you initially started out at a roughly 83:17
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percentage split between inactive and active equity. You have traded the
active portion at the full optimal f values. Now your account stands at
$100,000. You still have $58,330 as inactive equity, therefore your active
equity is $41,670, which is .4167 of your total equity. This should now be
the maximum fraction you can use, the maximum ratio of active to tota
equity, without incurring a margin call. Recall that you are trading at the full
f levels. Therefore, you will trade 16 contracts of market system A
(41,670/2,500), 20 contracts of market system B (41,670/2,000), and 13 con-
tracts of market system C (41,670/3,000). The resultant margin requirement
for such a portfolio is

16 * $2,000 = $32,000
20 * 2,000 = 40,000
13 = 2,000 = 26,000

Initial margin requirement $96,000

Again we can see that this is pushing it as much as possible without incur-
ring amargin call, since we have $100,000 total equity in the account.

Recall from Chapter 2 the fact that adding more and more market sys-
tems results in higher and higher geometric means for the portfolio as a
whole. However, there is a tradeoff in that each market system adds
marginally less benefit to the geometric mean, but marginally more detri-
ment in the way of efficiency loss due to simultaneous rather than sequen-
tial outcomes. Therefore, you do not want to trade an infinite number of
market systems. What's more, theoretically optimal portfolios run into the
real-life application problem of margin constraints. In other words, you are
better off to trade 3 market systems at the full optimal f levels than to trade
300 market systems at dramatically reduced levels as a result of Equation
(8.08). Usually, you will find that the optimal number of market systems to
trade in, particularly when you have many orders to place and the potential
for mistakes, is but a handful.

If one or more market systems in the portfolio have optimal weightings
greater than 1, a potential problem emerges. For example, assume a market
system with an optimal f of .8 and a biggest loss of $4,000. Therefore, f$ is
$5,000. Let's suppose the optimal weighting for this component of the port-
folio is 1.25. Therefore you will trade one unit of this component for every
$4,000 ($5,000/1.25) in account equity. ASyou can see, as soon as the com-
ponent sees its largest loss, al of the active equity in the account will be
wiped out (unless profits are sufficient in the other market systems to sal-
vage some active equity).

This problem tends to crop up for systems that trade infrequently. For

example, recall that if we could have two market systems with perfect nega-
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tive correlation and a positive expectation, we would optimally have on an
infinite number of contracts. When one of the components lost, the other
would win an equal or greater amount. Thus, we would always have a net
profit on each play. However, these market systems are always having a
simultaneous play. The situation being discussed is analogous to this hypo-
thetical situation when one of these components is not active on a certain
play. Now there’s only one market system active on a given play, and that
market system has on an infinite number of contracts. A lossis catastrophic.

The solution isto divide 1 by the highest weighting of any of the compo-
nents in the portfolio and use the answer as the upper limit on active equity
if the answer is less than the answer to Equation (8.08). This ensures that if
alossisencountered in the future of the same magnitude as the largest loss
over which f was derived, it will not wipe out the account. For example,
suppose the highest weighting of any component in our portfolio is 1.25.
Then if Equation (8.08) does not give us an answer less than .8 (I/1.25), we
will use § as our upper limit on our active equity percentage.

Thisis unlikely to be a problem if you start with a low active equity per-
centage. However, a more aggressive trader may encounter this problem.
An aternative solution is to set additional constraintsin the portfolio matrix
(such as constraints on the maximum weighting for each market system
being set to 1, as well as constraints pertaining to margin). These additional
linear programming constraints may be slightly beneficia to the aggressive
trader, but the matrix solutions can be involved. Interested readers are
again referred to Childress.

ROTATING MARKETS

Many traders use systems or techniques that have them monitoring many
markets all the time, filtering for what they feel are the best markets for the
systems at the moment. For example, some traders may prefer to monitor
the volatility in all of the futures markets and trade only those markets
whose volatility exceeds a certain amount. Sometimes they will be in many
markets, sometimes they won't be in any. Further, the markets that they are
in are constantly changing. This changing composition seems to be particu-
larly a problem for stock fund managers. How can we manage such a thing
and still be at the optimal portfolio?

The solution is really quite simple. Anytime a market is added or deleted
from the portfolio, the new unconstrained geometric optimal portfolio is
calculated as detailed in this chapter. Any adjustments to existing positions
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in terms of the quantity that should be on in light of the newly added or
deleted market system ought to be made as well.

Inanutshell, it is alright to have a constantly changing portfolio in terms
of components. The goal for the manager of such a portfolio, however, isto
have the portfolio always be the unconstrained geometric optimal of the
components involved and to keep the inactive equity amount constant. In so
doing, a constantly changing portfolio composition can be managed in a
manner that is asymptotically optimal.

There is a potential problem with this type of trading from a portfolio
standpoint. An example may help illustrate. Imagine two highly correlated
markets, such as gold and silver. Now imagine that your system trades so
infrequently that you have never had a position in both of these markets on
the same day. When you determine the correlation coefficients of the daily
equity changes, it is quite possible that the correlation coefficient you will
show between gold and silver is 0. However, if in the future you have a
trade in both markets simultaneously, you can expect them to have a high
positive correlation.

To solve this problem, it is helpful to edit your correlation coefficients
with an eye toward this type of situation. In short, don’t be afraid to edit the
correlation coefficients upward. However, be wary of moving them lower.
Suppose you show the correlation coefficient between Bonds and Soybeans
as 0, but you feel it should be lower, say —25. You really should not adjust
correlation coefficients lower, as lower correlation coefficients tend to have
you increase position size. In short, if you're going to err in the correlation
coefficients, err by moving them upward rather than downward. Moving
them upward will tend to move the portfolio to the left of the peak of the
portfolio’s f curve, while moving correlation coefficients lower will tend to
move you to the right of the portfalio's f curve

Often people try to filter trades in a manner as to have them in a particu-
lar market during certain times and out at others in an attempt to lower
drawdown. If the filtering technique works, if it lowers drawdown On a one-
unit basis, then the f that is optimal for the filtered trades will be higher
(and f$ lower) than for the entire series of trades before filtering. If the
trader applies the optimal f over the entire prefiltered series to the postfil-
tered series, she will find herself at a fractional f on the postfiltered series
and hence cannot be obtaining a geometric optimal portfolio. On the other
hand, if the trader applies the optimal f on the postfiltered series, she can
obtain the geometric optimal portfolio, but she is right back to the problem

of impending large drawdowns at optimal f. She seems to have defeated the
purpose of her filter.
This illustrates the fallacy of filters from a money-management stand-
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point. Filters might work (reduce drawdown on a one-unit basis) only
because they cause the trader to be at a fraction of the optimal f.

Why filter at all? We could state that we benefit by filtering if our answer
to the fundamental equation of trading on postfiltered trades at the pre-
filtered optimal f is greater than the answer to the fundamental equation of
trading on prefiltered trades at the prefiltered optimal f. It is important to
note when making such a comparison that the postfiltered trades are lessin
number (have lower N) than the prefiltered trades.

TO SUMMARIZE

We have seen that trading on a fixed fractional basis makes the most money
in an asymptotic sense. It maximizes the ratio of potential gain to potential
loss. Once we have an optimal f value we can convert our daily equity
changes on a l-unit basis to an HPR, we can determine the arithmetic aver-
age HPR and standard deviation in those HPRs, and we can calculate the
correlation coefficient of the HPRs between any two market systems, We
can then use these parameters as inputs in determining the optimal weight-
ings for an optimal portfolio. (Since we are using leveraged vehicles, weight-
ing and quantity are not synonymous, as they would be if there was no
leverage involved.) These weightings then are reflected back into the f val-
ues, the amount we should finance each contract by, as the f values are
divided by their respective weightings. This gives us new f values, which
result in the greatest geometric growth with respect to the intercorrelations
of the other market systems and their wcightings.

The greatest geometric growth is obtained by using that set of weightings
whose sum is unconstrained and whose arithmetic average HPR minus its
standard deviation in HPRs squared (its variance) equals 1 [Equation
{7.06¢)]. Rather than being diluted (which only puts you farther left on the
unconstrained efficient frontier), asis the case with a static fractional f strat-
egy, this portfolio is traded full out with only a fraction of the funds in the
account. Such a technique is called a dynamic fractional f strategy. The
remaining funds, the inactive equity, are left untouched by the activity that
goes on in these active funds.

Since this active portion is being traded at the optimal levels, fluctuations
in this active equity will be swift. Asaresult, at some point on the upside or
downside in the equity fluctuations, or a some point in time, you will likely
find it necessary, even if only from an emotional standpoint, to reallocate
funds bchveen the active and inactive portions. Four methods of doing so
have been explained, although other, possibly better, methods may exist:
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1. Investor Utility.
2. Scenario Planning.
3. Share Averaging.

4. Portfolio Insurance.

The fourth method, portfolio insurance or dynamic hedging, is inherent in
any dynamic fractional f strategy, but it can also be utilized as a reallocation
method.

We have further seen that to take the unconstrained geometric optimal
portfolio and apply it in real time will most likely encounter a problem in
terms of the initial margin requirements. This problem can be aleviated by
determining an upper level limit for the ratio of active equity to total
account equity.

APPLICATION TO STOCK TRADING

The techniques that have been described in this book apply not only to
futures traders, but to traders in any market. Even someone trading a port-
folio of only blue chip stocks is not immune from the principles and the
consequences discussed in this book. Y ou have seen that such a portfolio of
blue chip stocks has an optimal level of leverage where the ratio of potential
gains to potential losses in equity are maximized. At such a level, the draw-
downs to be expected arc also quite severe, and therefore the portfolio
ought to be diluted, preferably by way of adynamic fractional f strategy.

The entire procedure can be performed exactly as though the stock
being traded were a commodity market system. For instance, suppose
Toxico were trading at $40 per share. The cost of 100 shares of Toxico
would be $4,000. This 100-share block of Toxico can be treated as 1 con-
tract of the Toxico market system. Thus, if we were operating in a cash
account, wc could replace the margin;$ variable in Equation (8.08) with the
value of 100 shares of Toxico ($4,000 in this example). In so doing, we can
determine the upper limit on the fraction of f to use such that we never
have to even perform the procedure in a margin account. When you are
doing this type of exercise, remember that you are replicating a leveraged
situation, but there isn't really any borrowing or lending going on.
Therefore, you should use an RFR of 0 in any calculations (such as the
Sharpe ratio) that require an RFR.

On the other hand, if we perform the procedure in a margin account,
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and if initial margin levels are, say, 50%, then we would use a value of
$2,000 for the margin;$ variable for Toxico in (8.08).

Traditionally, stock fund managers have used portfolios where the sum
of the weightsis constrained to 1. Then they opt for that portfolio composi-
tion which gives the lowest variance for a given level of arithmetic return.
The resultant portfolio composition is expressed in the form of the weights,
or percentages of the trading account, to apply to each component of the
portfolio.

By lifting this sum of the weights constraint and opting for the single
portfolio that is geometric optimal, we get the optimal leveraged portfalio.
Here, the weights and quantities are completely different. We now divide
the optimal amount to finance | unit of each component by its respective
weighting; the result is the optimal leverage for each component in the
portfolio. Now, we can dilute this portfolio down by marrying it to the risk-
free asset. We can dilute the portfolio to the point where there really isn't
any leverage involved. That is, we are leveraging the active equity portion of
the portfolio but the active equity portion is actually borrowing its own
money, interest-free, from the inactive equity portion. The result is a port-
folio and a method of adding to and trimming back from positions as the
equity in the account changes that will result in the greatest geometric
growth. As such a method maximizes the potential geometric growth to the
potential loss and alows for the maximum loss acceptable to be essentially
specified at the outset, it can also be argued to be a superior means of man-
ajng a dock portfalio.

The current generally accepted procedure for determining the efficient
frontier will not really yield the efficient frontier, much less the portfolio
that is geometric optimal (the geometric optimal portfolio always lies on the
efficient frontier). This can be derived only by incorporating the optimal f.
Further, the generally accepted procedure yields a portfolio that gets traded
on astatic f basis rather than on a dynamic basis, the latter being asymptoti-
caly infinitely more powerful.

A CLOSING COMMENT

This is a very exciting time to be in this field, New concepts have been

emerging nearly continuously since the mid 1950s. We have witnessed an
avalanche of great ideas from the academic community building upon the
E-V model. Among the ideas presented has been the E-S model. With the
E-S model the measure of risk is semivariance in lieu of variance.’

IMarkowitz, Harry, Portfolio Selection: Efficient Diversification of Investments. New York:
John Wiley, 1959.
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Semivariance is defined as the variation beneath some target level of return,
which could be the expected return, zero return, or any other fixed level of
return. When this target level of return equals the expected return and the
distribution of returns is symmetrical (without skew), the E-S efficient fron-
tier is the same as the E-V efficient frontier.

Other portfolio models have been presented using other measures for
risk than variance in returns. Still other portfolio models have been pre-
sented using moments of the distribution of returns beyond the first two
moments. Of particular interest in this regard have been the stochastic dom-
inance approaches, which encompass the entire distribution of returns and
hence can be considered the limiting case of multidimensional portfolio
analysis as the number of moments incorporated approaches infinity.2 This
approach may be particularly useful when the variance in returns is infinite
or undefined.

Again, | am not a so-called academic. Thisis neither a boast nor an apol-
ogy. | am no more an academic than | am a ventriloquist or a TV wrestler.
Academics want a model to explain how the markets work. As a nonaca-
demic, | don’'t care how they work. For example, many people in the aca-
demic community argue that the efficient market hypothesis is flawed
because there is no such thing as arational investor. They argue that people
do not behave rationally, and therefore conventional portfolio models, such
as E-V theory (and its offshoots) and the Capital Asset Pricing model, are
poor models of how the markets operate. While | agree that people certainly
do not behave rationally, it does not mean that we shouldn’t behave ratio-
nally or that we cannot benefit by behaving rationally. When variance in
returnsisfinite, we can certainly benefit by being on the efficient frontier.

There has been much debate in recent years over the usefulness of cur-
rent portfolio models in light of the fact that the distribution of the logs of
price changes appear to be stable Paretian with infinite (or undefined) vari-
ance. Yet many studies demonstrate that the markets in recent years have
seen a move toward Normality (therefore finite variance) and indepen-
dence, which the portfolio models being criticized assume.3 Further, the
portfolio models use the distribution of returns as input, not the distribution

28ee Quirk, J. P, and R. Saposnik, “Admissibility and Measurable Utility Functions,” Review of
Economic Studies, 29(79):140-146, February 1962. Also see Reilly, Frank K., Investment
Analysis and Portfolic Management. Hinsdale, IL: The Dryden Press, 1979.

3See Helms, Billy P, and Terrence F. Martell, “An Examination of the Distribution of
Commodity Price Changes,” Working Paper Series. New York: Columbia University Center
for the Study of Futures Markets, CFSM-76, April 1984. Also see Hudson, Michael A.,
Raymond M. Leuthold, and Choroton F. Sarassorro, “Commodity Futures Price Changes:
Distribution, Market Emciency, and Pricing Commodity Options,” Working Paper Series,
New York: Columbia University Center for the Study of Futures Markets, CFSM-127, June
1986.
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of the logs of price changes. Whereas the distribution of returns is a trans-
formed distribution of the logs of price changes (transformed by techniques
such as cutting losses short and letting profits run), they are not necessarily
the same distribution, and the distribution of returns may not be a member
of the stable Paretian (which is why we modeled the distribution of trade
P&L’s in Chapter 4 with our adjustable distribution). Furthermore, there
are derivative products such as options that have finite semivariance (if
long) or finite variance altogether. For example, a vertical option spread put
on at adebit guarantees finite variance in returns.

I’m not defending against the attacks on the current portfolio models.
Rather, | am playing devil's advocate here. The current portfolio models
can be employed provided we are aware of their shortcomings. We no
doubt need better portfolio models. It is not my contention that the current
portfolio models are adequate. Rather, it is my contention that the input to
the portfolio models, current and future for whatever portfolio models we
use, should be based on trading one unit at the optimal level-or what we
believe will be the optimal level for that item in the future, as though we
were trading only that item. For example, if we are employing E-V theory,
the Markowitz model, the inputs are the expected return, variance in
returns, and correlation of returns to other market systems. These inputs
must be determined from trading one unit on each market system at the
optimal f level. Portfolio models other than E-V may require different input
parameters. These parameters must be discerned based on trading one unit
of the market systems at their optimal f levels.

Portfolio models are but one facet of money management, but they are a
facet where debate is certain to rage for quite some time. This book could
not be definitive in that regard, as newer, better models are yet to be for-
mulated. We most likely will never have amodel we all agree upon as being
adequate. That should make for a healthy and stimulating environment.

APPENDIX A

The Chi-Square Test

There exist a number of statistical tests designed to determine if two sam-
ples come from the same population. Essentially, we want to know if two
distributions are different. Perhaps the most well known of these testsis the
chi-square test, devised by Karl Pearson around 1900. It is perhaps the most
popular of al statistical tests used to determine whether two distributions
are different.

The chi-square statistic, X2, is computed as:

M=

(A0 X2=X(0; - E) " 2E,

i

where N = The total number of bins.
O, = The number of events observed in theith bin.

E; = The number of events expected in the ith bin.

A large value for the chi-sguare statistic indicates that it is unlikely that
the two distributions are the same (i.e., the two samples are not drawn from
the same population). Likewise, the smaller the value for the chi-square
statistic, the more likely it is that the two distributions are the same (i.e., the
two samples were drawn from the same population).

Note that the observed values, the O;’s, will always be integers. However,
the expected values, the E;’s, can be nonintegers. Equation (A.O1) givesthe
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&i-square statistic when both the expected and observed values are inte-
gers. When the expected values, the E;’s, are permitted to be nonintegers,
we must use a different equation, known as Yates’ correction, to find the
chi-square statistic:

N
(A.02) ;ABSO E) - 5) A VE;

where N =z The total number of bins.
0, = The number of events observed in the ith bin.
E; = The number of events expected in the ith bin.

ABS() = The absolute value function.

If we are comparing the number of events observed in a bin to what the
Normal Distribution dictates should be in that bin, we must employ Y ates'
correction. That is because the number of events expected,” the Es, are
nonintegers.

We now work through an example of the chi-square statistic for the data
corresponding to Figure 3-16. This is the 232 trades, converted to standard
units, placed in 10 bins from -2 to +2 sigma, and plotted versus what the
data would be if it were Normally distributed. Note that we must use Y ates
correction:

Bin # Observed Expected {(ABS(O - E) = .5) " 2)/E
! 7.435423 4.738029
2 17 13.98273 .4531787
3 25 22.45426 .1863813
4 27 30.79172 .3518931
5 38 36.05795 05767105
6 61 36.078 16.56843
7 37 30.7917 1.058229
8 12 22.45426 4.41285
9 4 13.98273 6.430941

10 2 7.435423 3.275994

X2=37.5336

We can convert a chi-square statistic such as 37.5336 to a significance
level. In the sense we are using here, a significance level is a number

1As detailed in Chapter 3, this is determined by the Normal Distribution per Equation (3.21)
for each boundary of the bin, taking the absolute value of the differences, and multiplying by
the total number of events.
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between 0, representing that the two distributions are different, and 1,
meaning that the two distributions are the same. We can never be 100%

certain that two distributions are the same (or different), but we can deter-
mine how alike or different two distributions are to a certain significance
level. There are two ways in which we can find the significance level. This

first and by far the simplest way is by using tables. The second way to con-

vert a chi-square statistic to a significance level is to perform the math your-

self (which is how the tables were drawn up in the first place). However, the

math requires the use of incomplete gamma functions, which, as was men-
tioned in the Introduction, will not be treated in this text. Interested readers
are referred to the Bibliography, in particular to Numerical Recipes.
However, most readers who would want to know how to calculate a signifi-
cance level from a given chi-square statistic would want to know this
because tables are rather awkward to use from a programming standpoint.
Therefore, what follows is a snippet of BASIC language code to convert

from agiven chi-square statistic to asignificance level.

1000 REM INPUT NOBINS%, THE NUMBER OF BINS AND CHISQ, THE
CHI-SQUARE STATISTIC

1010 REM OUTPUT IS CONF, THE CONFIDENCE LEVEL FOR A GIVEN
NOBINS% AND CHISQ

1020 PRINT “CHI SQUARE STATISTIC AT*“NOBINS% ~ 3’ DEGREES FREE-
DOM IS"CHISQ

1030 REM HERE WE CONVERT FROM A GIVEN CHISQR TO A
SIGNIFICANCE LEVEL, CONF

1040 XI = 0:X2 = 0:X3# = 0:X4 = 0:X5= 0:X6 = 0:CONF =0

1050 IF CHISQ < 31 OR (NOBINS%-3) > 2 THEN X6 =

(NOBINS% -3)/2~ 1:X1=1 ELSE CONF =1 :GOTO 1110

1060 FOR X2 =1 TO ((NOBINS% ~ 3)/2 - .5):X1= XI * X6:X6 = X6 - 1: NEXT
1070 IF (NOBINS% - 3) MOD 2 <> 0 THEN X1=X 1%1.77245374942627#
1080 X7 =1:X4 = 1:X3# = ((CHISQ/2) ((NOBINS%—S )/2)) * 2/(EXP(CHISQ/2)
* XI % (NOBINS%-3)):X5 = NOBINS% = 3 + 2

1090 X4 = X4 x CHISQ/X5:X7 = X7 + X4:X5 = X5 + 2:IF X4>0 THEN 1090
1100 CONF = 1 — X3# * X7

1110 PRINT “FOR A SIGNIFICANCE LEVEL OF “;USING “.#########",CONF

Whether you determine your significance levels via a table or calculate
them yourself, you will need two parameters to determine a significance
level. The first of these parameters is, of course, the chi-square statistic
itself. The second is the number of degrees offreedom. Generaly, the num-
ber of degrees of freedom is equal to the number of bins minus 1 minus the
number of population parameters that have to be estimated for the sample
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statistics. Since there are ten bins in our example and we must use the arith-
metic mean and standard deviation of the sample to construct the Normal
curve, we must therefore subtract 3 degrees of freedom. Hence, we have 7
degrees of freedom.

The significance level of a chi-square statistic of 37.5336 at 7 degrees of
freedom is .000002419. Since this significance level is so much closer to
zero than one, we can safely assume that our 232 trades from Chapter 3 are
not Normally distributed. What follows is a small table for converting
between chi-square values and degrees of freedom to significance levels.
More elaborate tables may be found in many of the statistics books men-
tioned in the Bibliography:

VALUES OF X2

Degrees of Significance Level

Freedom .20 A0 .05 .01
1 1.6 2.7 3.8 6.6
2 3.2 4.6 6.0 9.2
3 4.6 6.3 7.8 11.3
4 6.0 7.8 9.5 13.3
5 7.3 9.2 111 15.1
10 13.4 16.0 18.3 23.2
20 25.0 28.4 31.4 37.6

Y ou should be aware that the chi-square test can do a lot more than is
presented here. For instance, you can use the chi-square test on a 2 x 2
contingency table (actually on any N x M contingency table). If you are
interested in learning more about the chi-square test on such a table, con-
sult one of the statistics books mentioned in the Bibliography.

Finally, there is the problem of the arbitrary way we have chosen our
bins as regards both their number and their range. Recall that binning data
involves a certain loss of information about that data, but generally the pro-
file of the distribution remains relatively the same. If we choose to work
with only 3 bins, or if we choose to work with 30, we will likely get some-
what different results. It is often a helpful exercise to bin your data in sev-
eral different ways when conducting statistical tests that rely on binned
data. In so doing, you can be rather certain that the results obtained were
not due soldy to the abitrary nature of how you chose your hins.

In a purely statistical sense, in order for our number of degrees of free-
dom to be valid, it is necessary that the number of elements in each of the
expected bins, the E;’s, be at |east five. When there is a bin with less than
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five expected elements in it, theoretically the number of bins should be
reduced until all of the bins have at least five expected elements in them.
Often, when only the lowest and/or highest bin has less than 5 expected ele-
ments in it, the adjustment can be made by making these groups “all less
than” and “all greater than” respectively.
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Other Common Distributions

This appendix covers many of the other common distributions aside from
the Normal. This text has shown how to find the optimal f and its by-prod-
ucts on any distribution. We have seen in Chapter 3 how to find the optimal

f and its by-products on the Normal distribution. We can use the same tech-
nique to find the optimal f on any other distribution where the cumulative
density function is known.

It matters not whether the distribution is continuous or discrete. When
the distribution is discrete, the equally spaced data points are simply the
discrete points along the cumulative density curve itself. When the distribu-
tion is continuous, we must contrive these equally spaced data points as we
did with the Normal Distribution in Chapter 3.

Further, it matters not whether the tails of the distribution go out to plus
and minus infinity or are bounded at some finite number. When the tails go
to plus and minus infinity we must determine the bounding parameters
(i.e., how far to the left extreme and right extreme we are going to operate
on the distribution). The farther out we go, the more accurate our results. If
the distribution is bounded on its tails at some finite point already, then
these points become the bounding parameters.

Finally, in Chapter 4 we learned a technique to find the optimal f and its
by-products for the area under any curve (not necessarily just our adjustable
distribution) when we do not know the cumulative density function, so we
can find the optimal f and it’s by products for any process regardless of the
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distribution. The hardest part is determining what the distribution in ques-
tion is for a particular process, what the cumulative density function is for
that process, and what parameter value(s) are best for our application.

One of the many hearts of this book is the broader concept of decision
making in environments characterized by geometric consequences. Optimal
f is the regulator of growth in such environments, and the by-products of
optimal f tell us a great deal about the growth rate of a given environment.
You may seek to apply the tools for finding the optimal f parametrically to
other fields where there are such environments. For this reason this
appendix has been included.

THE UNIFORM DISTRIBUTION

The Uniform Distribution, sometimes referred to as the Rectangular
Distribution from its shape, occurs when al items in a population have
equal frequency. A good example is the 10 digits O through 9. If we were to
randomly select one of these digits, each possible selection has an equal
chance of occurrence. Thus, the Uniform Distribution is used to model
truly random events. A particular type of uniform distribution where A = 0
and B =1 s called the Standard Uniform Distribution, and it is used exten-
sively in generating random numbers.

The Uniform Distribution is a continuous distribution. The probability
densty function, N'(X), is described as

(B.01) N'(X)=1/(B=A) forA<=X<=B
else
N'(X)=0
where B = The rightmost limit of the interval AB.
A =Theleftmost limit of the interval AB.

The cumulative density of the Uniformis given by:

(B.02) N(X) =0 forX <A
else

N(X)=(X« AV(B-A)  forA<=X<=B
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Figure B-2 Cumulative probability functions for the Uniform
Distribution (A=2,B =7).
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else
N(X) =1 forX>B
where B = Therightmost limit of theinterval AB.
A = The leftmost limit of the interval AB.
Figures B-I and B-2 illustrate the probability density and cumulative prob-
ability (i.e., cdf) respectively of the Uniform Distribution.
Other qualities of the Uniform Distribution are:
(B.03) Mean = (A + B)/2
(B.04) Vaiance = (B — A) A 2/12
where B = The rightmost limit of the interval AB.
A = The leftmost limit of the interval AB.

THE BERNOULLI DISTRIBUTION

Another simple, common distribution is the Bernoulli Distribution. This is
the distribution when the random variable can have only two possible val-
ues. Examples of this are heads and tails, defective and nondefective arti-
cles, success or failure, hit or miss, and so on. Hence, we say that the
Bernoulli Distribution is a discrete distribution (as opposed to being a con-
tinuous distribution). The distribution is completely described by one
parameter, P, which is the probability of the first event occurring. The vari-
ance in the Bernoulli is:

(B.05) Variance= P +Q
where
(B.06) Q=P-1

Figures B-3 and B4 illustrate the probability density and cumulative prob-
ability (i.e., cdf) respectively of the Bernoulli Distribution.
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Figure B-3 Probability density functions for the Bernoulli Distribution
(P = .5)
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Figure B-4 Cumulative probability functions for the Bernoulli
Distribution (P =.5).
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THE BINOMIAL DISTRIBUTION

The Binomial Distribution arises naturally when sampling from a Bernoulli
Distribution. The probability density function, N’ (X), of the Binomia (the
probability of X successesin N trialsor X defectsin N itemsor X headsin N
coin tosses, efc) is

(BOD)  N(X)= (NUX!* (N-X))* (PAX) * (QA (N -X))
where N = The number of trials.
X = The number of successes.
P = The probahility of a successon asingletrial.

Q= 1-P.

It should be noted here that the exclamation point after a variable denotes
the factorial function:

(B.08a) X!=X*X-1*(X-2)%...*1
which can be also written as:
(B.08b) X! =:q: X-]J
Further, by convention:
(B.08) 0l=1
The cumulative density function for the Binomia is:

X
(B09  N(X) =1§0(N!/(]! (NP *(PA]*(QANN-])

where N = The number of trials.
X = The number of successes.
P = The probability of asuccesson asingletrial.
Q= 1-P.

Figures B-5 and B-6 illustrate the probability density and cumulative prob-
ability (i.e., cdf) respectively of the Binomial Distribution.
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Figure B-6 Cumulative probability functions for the Binomial
Distribution (N = 5, P = 5),
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The Binomial is also a discrete distribution. Other properties of the
Binomial Distribution are:

(B.10) Mean=N * P

(B.11) Variance=N* P* Q
where N = The number of trials.

P = The probability of a successon asingletrial.
Q= 1-P.

As N becomes large, the Binomia tends to the Normal Distribution,
with the Normal being the limiting form of the Binomia. Generally, if N #
P and N * Q are both greater than 5, you could use the Normal in lieu of
the Binomial as an approximation.

The Binomial Distribution is often used to statistically vaidate a gam-
bling system. An example will illustrate. Suppose we have a gambling sys-
tem that has won 51% of the time. We want to determine what the winning
percentage would be if it performs in the future at a level of 3 standard
deviations worse. Thus, the variable of interest here, X, is equal to 51, the
probability of a winning trade. The variable of interest need not always be
for the probability of a win. It can be the probability of an event being in
one of two mutually exclusive groups. We can now perform the first neces-
say equaion in the test;

(B.12) L=PZ*(P*@Q-P)IN=-1)75
where L = The lower boundary for Pto be at Z standard deviations.

P = The variable of interest representing the probability of
being in one of two mutually exclusive groups.

Z = The selected number of standard deviations.
N = The total number of events in the sample.
Suppose our sample conssted of 100 plays. Thus:
L

51=3*% ((51* (1L -.51))/(100-1) 7.5
51-3*((.51* .49)/99)A 5
51=3*(2499/99)A 5

51 -3*.0025242424 A 5

= 51 - 3 * 05024183938

51 - .1507255181

3592744819
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Based on our history of 100 plays which generated a 51% win rate, we
can state that it would take a 3-sigma event for the population of plays (the
future if we play an infinite number of times into the future) to have less
than 35.92744819 percent winners.

What kind of a confidence level does this represent? That is a function of
N, the total number of plays in the sample. We can determine the confi-
dence level of achieving 35 or 36 wins in 100 tosses by Equation (B.09).
However, (B.09) is clumsy to work with as N gets large because of al of the
factoria functions in (B.09). Fortunately, the Normal distribution, Equation
(3.21) for I-tailed probabilities, can be used as a very close approximation
for the Binomial probabilities. In the case of our example, using Equation
(3.21), 3 standard deviations translates into a 99.865% confidence. Thus, if
we were to play this gambling system over an infinite number of times, we
could be 99.865% sure that the percentage of wins would be greater than or
equal to 35.92744819%.

This technique can also be used for statistical validation of trading sys-
tems. However, this method is only valid when the following assumptions
are true. First, the N events (trades) are all independent and randomly
selected. This can easily be verified for any trading system. Second, the N
events (trades) can all be classified into two mutually exclusive groups (wins
and losses, trades greater than or less than the median trade, etc.). This
assumption, too, can easily be satisfied. The third assumption is that the
probability of an event being classified into one of the two mutually exclu-
sive groups is constant from one event to the next. This is not necessarily
true in trading, and the technique becomes inaccurate to the degree that
this assumption is false, Bethat asit may, the technique still can have value
for traders.

Not only can it be used to determine the confidence level for a certain
method being profitable, the technique can also be used to determine the
confidence level for a given market indicator. For instance, if you have an
indicator that will forecast the direction of the next day’s close, you then
have two mutually exclusive groups. correct forecasts, and incorrect fore-
casts. Y ou can now express the reliability of your indicator to a certain confi-
dence level.

This technique can dso be used to discen how many trids are necessary
for a system to be profitable to a given confidence level. For example, sup-
pose we have a gambling system that wins 51% of the time on a game that
pays 1to 1. We want to know how many trials we must observe to be certain
to a given confidence level that the system will be profitable in an asymp-
totic sense. Thus we can restate the problem as, “If the system wins 51% of
the time, how many trials must1 witness, and have it show a 51% winrate,
to know that it will be profitable to agiven confidence level?”
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Since the payoff is]:], the system must win in excess of 50% of thetime
to be considered profitable. Let’s say we want the given confidence level to
again be 99.865, or 3 standard deviations (although we are using 3 standard
deviationsin this discussion, we aren’t restricted to that amount; we can use
any number of standard deviations that we want). How many trials must we
now witness to be 99.865% confident that at least 51% of the trials will be
winners?

If 51 =X =.5,then X = .01. Th erefore, the right factors of Equation
(B.12), Z* ((P* (1 = P))/(N = 1)) A5, must equal .01. Since Z = 3 in this
case, and .01/3 = 0033, then:

(P* (1 =P)/(N - 1) *.5=.0033
We know that P equals .51, thus:
((.51* (1 - BN -1) A 5=0033
Squaring  both  sides gives us.
((L51* (1- .51))AN = 1)) = .00001111
To continue:
(51* 49)/(N « 1) =.00001111
2499/(N - 1) = .00001111
.2499/.00001111 =N « 1
.2499/.00001111 + 1 = N

22491 + 1 =N
N = 22492

Thus, we need to witness a 51% win rate over 22,492 trials to be 99.865%
certain that we will see at least 51% wins.

THE GEOMETRIC DISTRIBUTION

Like the Binomial, the Geometric Distribution, also a discrete distribution,
occurs as a result of N independent Bernoulli trials. The Geometric
Distribution measures the number of trials before the first success (or fail-
ure). The probability density function, N’ (X), is:
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(B.13) NX)=QAX-1)*P
where P =The probability of successfor agiventrial.

Q = The probability of failure for a given trial.

In other words, N’(X) here measures the number of trials until the first
success. The cumulative density function for the Geometric is therefore:
X
(B.14) NX)=2ZQAr(J-1D*P
J=1
where P =The probability of successfor agiventrial.

Q = The probability of failure for a given trial.

Figures B-7 and B-8 illustrate the probability density and cumulative prob-
ability (i.e., cdf) respectively of the Geometric Distribution.
Other properties of the Geometric are:
(B.15) Mean = I/P
(B.16) Variance = Q/P * 2
where P =The probability of successfor agiventrial.

Q = The probability of failure for a given trial.

14 ————

0.8

06|

0.4}

0.2
.
/ %

. S S e
3 4 5 6 7 8 9 1

Figure B-7 Probability density functions for the Geometric
Distribution (P = .6).
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Figure B-8 Cumulative probability functions for the Geometric
Distribution (P = .6).

Suppose we are discussing tossing a single die. If we are talking about
having the outcome of 5, how many times will we have to toss the die, on
average, to achieve this outcome? The mean of the Geometric Distribution
tells us this. If we know the probability of throwing a 5 is 1/6 (.1667) then
the mean is1/.1667 = 6. Thus we would expect, on average, to toss adie six
times in order to get a 5. If we kept repeating this process and recorded
how many tosses it took until a 5 appeared, plotting these results would
yield the Geometric Distribution function formulated in (B.13).

THE HYPERGEOMETRIC DISTRIBUTION

Another type of discrete distribution related to the preceding distributions
is termed the Hypergeometric Distribution. Recal that in the Binomial
Distribution it is assumed that each draw in succession from the population
has the same probabilities. That is, suppose we have a deck of 52 cards. 26
of these cards are black and 26 are red. If we draw a card and record
whether it is black or red, we then put the card back into the deck for the
next draw. This “sampling with replacement” is what the Binomial
Distribution assumes. Now for the next draw, there is still a .5 (26/52) prob-
ability of the next card being black (or red).

The Hypergeometric Distribution assumes almost the same thing, except
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there is no replacement after sampling. Suppose we draw the first card and
itisred, and we do not replace it back into the deck. Now, the probability of
the next draw being red is reduced to 25/51 or .4901960784. In the
Hypergeometric Distribution there is dependency, in that the probabilities
of the next event are dependent on the outcome(s) of the prior event(s).
Contrast this to the Binomial Distribution, where an event isindependent of
the outcome(s) of the prior event(s).

The basic functions N’ (X) and N(X) of the Hypergeometric are the same
as those for the Binomial, (B.07) and (B.09) respectively, except that with
the Hypergeometric the variable P, the probability of success on a single
trial, changes from one trial to the next.

It is interesting to note the relationship between the Hypergeometric
and Binomia Distributions. As N becomes larger, the differences between
the computed probabilities of the Hypergeometric and the Binomial draw
closer to each other. Thus we can state that as N approaches infinity, the
Hypergeometric approaches the Binomial as a limit.

If you want to use the Binomial probabilities as an approximation of the
Hypergeometric, as the Binomial is far easier to compute, how big must the
population be? It is not easy to state with any certainty, since the desired
accuracy of the result will determine whether the approximation is success-
ful or not. Generally, though, a population to sample size of 100 to 1 is usu-
ally sufficient to permit approximating the Hypergeometric with the
Binomial.

THE POISSON DISTRIBUTION

The Poisson Distribution is another important discrete distribution. This
distribution is used to model arrival distributions and other seemingly ran-
dom events that occur repeatedly yet haphazardly. These events can occur
at points in time or at points along a wire or line (one dimension), along a
plane (two dimensions), or in any N-dimensional construct. Figure B-9
shows the arrival of events (the X’s) along aline, or intime.

The Poisson Distribution was originally developed to model incoming
telephone calls to a switchboard. Other typical situations that can be mod-
eled by the Poisson are the breakdown of a piece of equipment, the com-
pletion of a repair job by a steadily working repairman, a typing error, the
growth of a colony of bacteria on a Petri plate, a defect in along ribbon or
chain, and 0 on.

The main difference between the Poisson and the Binomial distributions
is that the Binomial is not appropriate for events that can occur more than
once within a given time frame. Such an example might be the probability
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of an automobile accident over the next 6 months. In the Binomia we
would be working with two distinct cases: Either an accident occurs, with
probability P, or it does not, with probability Q (i.e, 1 = P). However, in the
Poisson Distribution we can also account for the fact that more than one
accident can occur in this time period.

The probability density function of the Poisson, N'(X), is given by:

(B.17) N'(X) = (L A X * EXP(-L)/X!
where L = The parameter of the distribution.

EXP( ) = The exponential function.

Note that X must take discrete values.
Suppose that calls to a switchboard average four calls per minute (L = 4).
The probability of three calls (X = 3) arriving in the next minute are:

N'(3) = (4 A 3* EXP(—4))/3!
= (64 * EXP(—4))/(3* 2)
(64 * 01831564)/6
1.17220096/6
1953668267
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So we can say there is about a 19.5% chance of getting 3 callsin the next
minute. Note that this is not cumulative-that is, this is not the probability
of getting 3 calls or fewer, it is the probability of getting exactly 3 calls. If we
wanted to know the probability of getting 3 calls or fewer we would have
had to use the N(3) formula [which is given in (B.20)].

Other properties of the Poisson Distribution are:

(B.18) Mean = L
(B.1O) Variance = L

where L = The parameter of the distribution.

In the Poisson Distribution, both the mean and the variance equal the
parameter L. Therefore, in our example case we can say that the mean is 4
calls and the variance is 4 calls (or, the standard deviation is 2 calls-the
square root of the variance, 4).

When this parameter, L, is small, the distribution is shaped like a
reversed ], and when L is large, the distribution is not dissimilar to the
Binomial. Actually, the Poisson is the limiting form of the Binomia as N
approaches infinity and P approaches 0. Figures B-10 through B-13 show
the Poisson Distribution with parameter values of .5 and 4.5.
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Figure B-1 0 Probability density functions for the Poisson Distribution
(L =.5).
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Figure EI 1 Cumulative probability functions for the Poisson
Distribution (L = .5).
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Figure B-i 2 Probability density functions for the Poisson Distribution
L = 45).
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Figure 8-13 Cumulative probability functions for the Poisson
Distribution (L = 4.5).

The cumulative density function of the Poisson, N(X), isgiven by:
X
(B.20) N(X) =J20(L A J* EXP(-L))J!

where L = The parameter of the distribution.

EXP() = The exponential function.

THE EXPONENTIAL DISTRIBUTION

Related to the Poisson Distribution is a continuous distribution with awide
utility called the Exponential Distribution, sometimes also referred to as
the Negative Exponential Distribution. This distribution is used to model
interarrival times in queuing systems, service times on equipment, and sud-
den, unexpected failures such as equipment failures due to manufacturing
defects, light bulbs burning out, the time that it takes for a radioactive par-
ticle to decay, and so on. (There is a very interesting relationship between
the Exponential and the Poisson distributions. The arrival of cals to a
gueuing system follows a Poisson Distribution, with arrival rate L. The
interarrival distribution (the time between the arrivals) is Exponential with
parameter I/L.)
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The probability density function N’ (X) for the Exponential Distribution
iS given as:
(B.21) N'(X) = A * EXP(-A * X)

where A = The single parametric input, equal to I/L in the Poisson
Distribution. A must be greater than 0.

EXP() = The exponential function.
The integral of (B.21), N(X), the cumulative density function for the
Exponential Distribution is given as:
(B.22) N(X) = 1 = EXP(-A * X)

where A = The single parametric input, equal to 1/L, in the Poisson
Distribution. A must be greater than 0.

EXP() = The exponential function.
Figures B-14 and B-15 show the functions of the Exponential

Distribution. Note that once you know A, the distribution is completely
determined.
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Figure El4 Probability density functions for the Exponential
Distribution (A = 1).
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Figure EI 5 Cumulative probability functions for the Exponential
Distribution (A = 1).

The mean and variance of the Exponential Distribution are:

(B.23) Mean = 1/A
(B.24) Variance= 1/A * 2

Again A is the single parametric input, equal to I/L in the Poisson
Distribution, and must be greater than 0.

Another interesting quality about the Exponential Distribution is that it
has what is known as the “forgetfulness property.” In terms of a telephone
switchboard, this property states that the probability of acall inagiventime
interval is not affected by the fact that no calls may have taken place in the
preceding interval(s).

THE CHI-SQUARE DISTRIBUTION

A distribution that is used extensively in goodness-of-fit testing is the Chi-
Square Distribution (pronounced ki square, from the Greek letter X (chi)
and hence often represented as the X2 distribution). Appendix A shows how
to perform the chi-square test to determine how alike or unalike two differ-
ent distributions are.

|-
0 6
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Assume that K is a standard normal random variable (i.e., it has mean 0
and variance 1). If we say that K equals the square root of J(J =K A 2), then
we know that K will be a continuous random variable. However, we know
that K will not be less than zero, so its density function will differ from the
Normal. The Chi-Square Distribution gives us the density function of K:

(B.27) N'(K) = (KA ((V/2) « 1) * EXP(-V/2))/(2 A (VI2) * GAM(V/2))
where K = The chi-square variable X2,

V = The number of degrees of freedom, which is the single
input parameter.

EXP() = The exponential function.
GAM() = The standard gamma function.

A few notes on the gamma function are in order. This function has the
following properties:

1. GAM(0)=1
2. GAM( 1/2) = The square root of pi, or 1.772453851

3. GAM(N)= (N = 1) * GAM(N = 1); therefore, if N is an integer,
GAM(N)=(N «1)!

Notice in Equation (B.25) that the only input parameter is V, the num-
ber of degrees of freedom. Suppose that rather than just taking one inde-
pendent random variable squared (K » 2), we take M independent random
variables squared, and take their sum:

JM=K1A2+K2A2. . .KMAQ

Now Jys is said to have the Chi-Square Distribution with M degrees of
freedom. It is the number of degrees of freedom that determines the shape
of aparticular Chi-Square Distribution. When there is one degree of free-
dom, the distribution is severely asymmetric and resembles the Exponential
Distribution (with A = 1). At two degrees of freedom the distribution begins
to look like a straight line going down and to the right, with just a slight con-
cavity to it. At three degrees of freedom, a convexity starts taking shape and
we begin to have a unimodal-shaped distribution. As the number of degrees
of freedom increases, the density function gradually becomes more and
more symmetric. As the number of degrees of freedom becomes very large,
the Chi-Square Distribution begins to resemble the Normal Distribution
per The Central Limit Theorem.
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THE STUDENT'S DISTRIBUTION

The Sudent's Didribution, sometimes cdled the t Digribution or Sudent's
t, isanother important distribution used in hypothesis testing that is related

to the Norma! Distribution. When you are working with less than 30 sam-
ples of a near-Normally distributed population, the Normal Distribution
can no longer be accurately used. Instead, you must use the Student’s
Distribution. This is a symmetrical distribution with one parametric input,

again the degrees of freedom. The degrees of freedom usually equals the
number of elements in a sample minus one (N - 1).

The shape of this distribution closely resembles the Normal except that
the tails are thicker and the peak of the distribution is lower. As the number
of degrees of freedom approaches infinity, this distribution approaches the
Normal in that the tails lower and the peak increases to resemble the
Normal Distribution. When there is one degree of freedom, the tails are at
their thickest and the peak at its smallest. At this point, the distribution is
called Cauchy.

It is interesting that if there is only one degree of freedom, then the
mean of this distribution is said not to exist. If there is more than one
degree of freedom, then the mean does exist and is equal to zero, since the
distribution is symmetrical about zero. The variance of the Student’s
Distribution is infinite if there are fewer than three degrees of freedom.

The concept of infinite variance is realy quite simple. Suppose we mea-
sure the variance in daily closing prices for a particular stock for the last
month. We record that value. Now we measure the variance in daily closing
prices for that stock for the next year and record that value. Generally, it
will be greater than our first value, of simply last month’s variance. Now
let’s go back over the last 5 years and measure the variance in daily closing
prices. Again, the variance has gotten larger. The farther back we go-that
is, the more data we incorporate into our measurement of variance-the
greater the variance becomes. Thus, the variance increases without bound
as the size of the sample increases. This is infinite variance. The distribution
of the log of daily price changes appears to have infinite variance, and thus
the Student’s Distribution is sometimes used to model the log of price
changes. (That is, if CO is today’s close and Cl yesterday’s close, then
In(Co/Cy) will give usavalue symmetrical about 0. The distribution of these
values is sometimes modeled by the Student’ s distribution).

If there are three or more degrees of freedom, then the variance is finite
and is equal to:

(B.26) Vaiance=V /(V = 2) forvs?2
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(B.27) Mean =0 forvs1
where V = The degrees of freedom.

Suppose we have two independent random variables. The first of these,
Z, is standard normal (mean of 0 and variance of 1). The second of these,
which we cal ], is Chi-Square distributed with V degrees of freedom. We
can now say that the variable T, equal to Z/(J/V), is distributed according to
the Student’s Distribution. We can also say that the variable T will follow
the Student’s Distribution with N ~ 1 degrees of freedom if:

T=NA(1/2)* (X =U)S)

where X = A sample mean.
S = A sample standard deviation,
N = The size of asample.

U = The population mean.

The probability density function for the Student’s Distribution, N’ (X), is
given &s

(B28)  N'(X) = (GAM((V + L)/2)/(((V * P) A(1/2)) * GAM(V/2))) * (1
+H((X A2V AV +1)/2))

where P = pi, or 3.1415926536.
V = The degrees of freedom.
GAM() = The standard gamma function.

The mathematics of the Student’s Distribution are related to the incom-
plete beta function. Since we aren’t going to plunge into functions of math-
ematical physics such as the incomplete beta function, we will leave the
Student’s Distribution at this point. Before we do, however, you still heed to
know how to calculate probabilities associated with the Student's
Distribution for a given number of standard units (Z score) and degrees of
freedom. Y ou can use published tables to find these values. Y et, if you're as
averseto tablesas | am, you can simply use the following snippet of BASIC
code to discern the probabilities. You'll note that as the degrees of freedom
variable, DEGFDM, approaches infinity, the values returned, the probabili-
ties, converge to the Normal as given by Equation (3.22):



358 APPENDIX B

1000 REM 2 TAIL PROBABILITIES ASSOCIATED WITH THE STUDENT'S T
DISTRIBUTION
1010 REM INPUT ZSCORE AND DEGFDM, OUTPUTS CF

1020 ST = ABS(ZSCORE):R8 = ATN(ST/SQR(DEGFDM)):RC8
= COS(R8):X8 = 1:R28 = RC8 * RC8:RS8 = SIN(R8)

1030 IF DEGFDM MOD 2 = 0 THEN 1080
1040 IF DEGFDM =1 THEN Y8 =R8:GOTQ 1070

1050 Y8 =RC8:FOR Z8 = 3 TO (DEGFDM-2) STEP 2:X8
= X8 # R28  (Z8-1)/Z8:Y8 = Y8+X8 * RC8:NEXT

1060 Y8 =RB+RS8 * Y8
1070 CF = Y81 .6366197723657157#:GOTO 1100

1080 Y8 = 1 :FOR Z8=2 TO (DEGFDM-2) STEP 2:X8 = X8+ R28
* (28-1)/28:Y8 = YB+X8:NEXT

1090 CF = Y8 « RS8
1100 PRINT CF

Next we come to another distribution, related to the Chi-Square
Distribution, that also has important uses in statistics. The F Distribution,
sometimes referred to as Snedecor’s Distribution or Snedecor’s F, is useful
in hypothesis testing. Let A and B be independent chi-square random vari-
ables with degrees of freedom of M and N respectively. Now the random
variable:

F = (A/M)/(B/N)

can be said to have the F Distribution with M and N degrees of freedom.
The density function, N’ (X), of the F Distribution is given as:

(B.29) N'(X) = (GAM((M + N)/2) * ((M/N) A (M/2))/(GAM(M/2)
* GAM(N/2) * (1 + M/N) A (M + N)/2)))
where M = The number of degrees of freedom of the first parameter.

N = The number of degrees of freedom of the second
parameter.

GAM( ) = The standard gamma function.

THE MULTINOMIAL DISTRIBUTION

The Multinomial Distribution is related to the Binomial, and likewise is a
discrete distribution. Unlike the Binomial, which assumes two possible out-
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comes for an event, the Multinomial assumes that there are M different
outcomes for each trial. The probability density function, N’ (X), is given as:

M M
(B.30) N'(X) = (N!/(I:Il ND) *III PAN,

where N = The total number of trials.
N, = The number of times the ith trial occurs.

P, = The probability that outcome number i will be the result of
any onetrial. The summation of al Pi’s equals 1.

M = The number of possible outcomes on each trial.

For example, consider a single die where there are 6 possible outcomes
on any given roll (M = 6). What is the probability of rolling a 1 once, a 2
twice, and a 3 three times out of 10 rolls of a fair die? The probabilities of
rolling a1, a2 or a 3 are each 1/6. We must consider a fourth alternative to
keep the sum of the probabilities equal to 1, and that is the probability of
not rolling a 1, 2, or 3, which is 3/6. Therefore, P; = Py = P; = 1/6, and P, =
3/6. Also, Ny =1, Ng=2 N3 =3 and Ny=10+3 =2 = 1 = 4. Therefore,
Equation (B.30) can be worked through as:

N'(X) = (10U( 11 = 21 % 31* 41))* (1/6) A 1 * (1/6) ~ 2 * (1/6) A 3% (3/6) 4
= (3628800/(1* 2* 6* 24)) * .1667 * .0278 * .00463 * .0625

(3628800/288) * 000001341

12600 * 000001341

0168966

i

Note that this is the probability of rolling exactly a 1 once, a 2 twice, and
a 3 three times, not the cumulative density. Thisisatype of distribution that
uses more than one random variable, hence its cumulative density cannot
be drawn out nicely and neatly in two dimensions as you could with the
other distributions discussed thus far. We will not be working with other
distributions that have more than one random variable, but you should be
aware that such distributions and their functions do exist.

THE STABLE PARETIAN DISTRIBUTION
The stable Paretian Distribution is actually an entire class of distributions,

sometimes referred to as “Pareto-Levy” distributions. The probability den-
sty function N'(U) is given &s



360 APPENDIX B

(B.31) In(N(U))=i*D* U=V *abs(U)ANA + Z
where U = The variable of the stable distribution.
A = The kurtosis parameter of the distribution.
B = The skewness parameter of the distribution.
D = The location parameter of the distribution.
V = Thisis also called the scale parameter.
i = Theimaginary unit,- 1 A (1/2)

Z=1-i*B* (UASSU)) * tan(A * 3.1415926536/2) when
A><landl+i*B* (UASSU)) * 2/3.1415926536
* log(ABS(U)) when A = I.

ABS() = The absolute value function.
tan() = The tangent function.

In() = The natural logarithm function.
The limits on the parameters of Equation (B.31) are:
(B.32) 0<A<=2
(B.33) -1<=B <=
(B.34) 0<=V

The four parameters of the distribution-A, B, D, and V-allow the distri-
bution to assume a great many different shapes.

The variable A measures the height of the tails of the distribution. Thus,
we can say that A represents the kurtosis variable of the distribution. A is
d0 cdled the characteristic exponent of the didribution. When A equds 2,
the distribution is Normal, and when A equals 1 the distributionis Cauchy.
For values of A that are less than 2, the tails of the distribution are higher
than with the Normal Distribution. The total probability in the tails
increases & A decreases When A is less than 2, the variance is infinite. The
mean of the distribution exists only if A isgreater than 1.

The variable B is the index of skewness. When B equals zero, the distri-
bution is perfectly symmetrical. The degree of skewness is larger the larger
the absolute value of B. Notice that when A equals 2, W(U,A) equals O,
hence B has no effect on the distribution. In this case, when A equals 2, no
matter what B is we dtill have the perfectly symmetrical Normal
Distribution. The scale parameter, V, is sometimes written as a function of
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A,inthat V = CAA, therefore C=V A (I/A). When A equals 2, V is one-
half the variance. When A equals 1, the Cauchy Distribution, V is equal to
the semi-interquartile range. D is the locution parameter. When A is equal
to 2, the arithmetic mean is an unbiased estimator of D; when A is equal to
1, the median is.

The cumulative density functions for the stable Paretian are not known
to exist in closed form. For this reason, evaluation of the parameters of this
distribution is complex, and work with this distribution is made more diffi-
cult. It isinteresting to note that the stable Paretian parameters A, B, C, and
D correspond to the fourth, third, second, and first moments of the distri-
bution respectively. This gives the stable Paretian the power to model many
types of real-life distributions-in particular, those where the tails of the
distribution are thicker than they would be in the Normal, or those with
infinite variance (i.e., when A is less than 2). For these reasons, the stable
Paretian is an extremely powerful distribution with applications in eco-
nomics and the social sciences, where data distributions often have those
characteristics (fatter tails and infinite variance) that the stable Paretian
addresses.

This infinite variance characteristic makes the Central Limit Theorem
inapplicable to data that is distributed per the stable Paretian distribution
when A islessthan 2. Thisis avery important fact if you plan on using the
Centra Limit Theorem.

One of the major characteristics of the stable Paretian is that it is invari-
ant under addition. This means that the sum of independent stable variables
with characteristic exponent A will be stable, with approximately the same
characteristic exponent. Thus we have the Generalized Central Limit
Theorem, which is essentially the Central Limit Theorem, except that the
limiting form of the distribution is the stable Paretian rather than the
Normal, and the theorem applies even when the data has infinite variance
(i.e, A < 2), which is when the Central Limit Theorem does not apply. For
example, the heights of people have finite variance. Thus we could model
the heights of people with the Normal Distribution. The distribution of
people’s incomes, however, does not have finite variance and is therefore
modeled by the stable Paretian distribution rather than the Normal
Distribution.

It is because of this Generalized Central Limit Theorem that the stable
Paretian Distribution is believed by many to be representative of the distri-
bution of price changes.1

There are many more probability distributions that we could still cover

Do not confuse the stable Paretian Distribution with our adjustable distribution discussed in
Chapter 4. The stable Paretian is a real distribution because it models a probability phe-

nomenon. Our adjustable distribution does not. Rather, it models other (Z-dimensional)
probability distributions, such as the stable Paretian.
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(Negative Binomial Distribution, Gamma Distribution, Beta Distribution,
etc.); however, they become increasingly more obscure as we continue from
here. The distributions we have covered thus far are, by and large, the main
common probability distributions.

Efforts have been made to catalogue the many known probability distri-
butions. Undeniably, one of the better efforts in this regard has been done
by Karl Pearson, but perhaps the most comprehensive work done on cata-
loguing the many known probability distributions has been presented by
Frank Haight.2 Haight's “Index” coversalmost all of the known distributions
on which information was published prior to January, 1958. Haight lists
most of the mathematical functions associated with most of the distribu-
tions. More important, references to books and articles are given so that a
user of the index can find what publications to consult for more in-depth
matter on the particular distribution of interest. Haight's index categorizes
digtributions into  ten basic types:

1. Norma

. Type Il

. Binomia

. Discrete

. Distributions on (A, B)

o 01 N

. Distributions on (0, infinity)

~1

. Distributions on (-infinity, infinity)
8. Miscellaneous Univariate
9. Miscellaneous Bivariate

10. Miscellaneous Multivariate

Of the distributions we have covered in this Appendix, the Chi-Square
and Exponential (Negative Exponential) are categorized by Haight as Type
I1l. The Binomia, Geometric, and Bernoulli are categorized as Binomial.
The Poisson and Hypergeometric are categorized as Discrete. The
Rectangular is under Distributions on (A, B), the F Distribution as well as
the Pareto are under Distributions on (0O, infinity), the Student's
Distribution is regarded as a Distribution on (-infinity, infinity), and the

?Haight, F. A., “Index to the Distributions of Mathematical Statistics,” Journal of Research of
the National Brrequ of Standards-B. Mathematics and Mathematical Physics 65B No. 1, pp.
23-60, January-March 1961.
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Multinomial as a Miscellaneous Multivariate. It should also be noted that
not all distributions fit cleanly into one of these ten categories, as some dis-
tributions can actually be considered subclasses of others. For instance, the
Student’s distribution is catalogued as a Distribution on (-infinity, infinity),
yet the Normal can be considered a subclass of the Student’s, and the
Normal is given its own category entirely. As you can see, there really isn't
any “clean” way to categorize distributions. However, Haight’sindex is quite
thorough. Readers interested in learning more about the different types of
digributions  should consult Haight as a dating point.



APPENDIX C

Further on Dependency: The
Turning Points and Phase
Length Tests

There exist statistical tests of dependence other than those mentioned in
Portfolio Management Formulas and reiterated in Chapter 1. The turning
points test is an altogether different test for dependency. Going through the
stream of trades, a turning point is counted if atrade is for a greater P& L
value than both the trade before it and the trade after it. A trade can also be
counted as aturning point if it isfor alesser P& L value than both the trade
before it and the trade after it. Notice that we are using the individual
trades, not the equity curve (the cumulative values of the trades). The num-
ber of turning points is totaled up for the entire stream of trades. Note that
we must start with the second trade and end with the next to last trade, as
we need a trade on either side of the trade we are considering as a turning
point.

Consider now three values (1, 2, 3) in a random series, whereby each of
the six possible orderings are equally likely:

12,3 231 1,3,2 31,2 2,13 321

Of these six, four will result in a turning point. Thus, for a random
stream of trades, the expected number of turning pointsis given as:
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(c.on) Expected number of turning points = 2/3% (N - 2)

where N = The total number of trades.

We can derive the variance in the number of turning points of a random
series &

(C.02) Variance = (16 * N - 29)/90

The standard deviation is the square root of the variance. Taking the dif-
ference between the actual number of turning points counted in the stream
of trades and the expected number and then dividing the difference by the
standard deviation will give usaZ score, which is then expressed as a confi-
dence limit. The confidence limit is discerned from Equation (3.22) for 2-
tailed Normal probabilities. Thus, if our stream of trades is very far away
(very many standard deviations from the expected number), it is unlikely
that our stream of trades is random; rather, dependency is present. If
dependency appears to a high confidence limit (at least 95%) with the turn-
ing points test, you can determine from inspection whether like begets like
(if there are fewer actual turning points than expected) or whether like
begets unlike (if there are more actual turning points than-expected).

Another test for dependence is the phase length test. This is a statistical
test similar to the turning points test. Rather than counting up the number
of turning points between (but not including) trade 1 and the last trade, the
phase length test looks at how many trades have elapsed between turning
points. A “phase” is the number of trades that elapse between a turning
point high and a turning point low, or a turning point low and a turning
point high. It doesn’t matter which occurs first, the high turning point or
the low turning point. Thus, if trade number 4 is a turning point (high or
low) and trade number 5 is a turning point (high or low, so long asit’'s the
opposite of what the last turning point was), then the phase length is 1,
since the difference between 5and 4 is 1.

With the phase length test you add up the number of phases of length 1,
2, and 3 or more. Therefore, you will have 3 categories: 1, 2, and 3+, Thus,
phase lengths of 4 or 5, and so on, are all totaled under the group of 3+. It
doesn’t matter if a phase goes from a high turning point to a low turning
point or from alow turning point to a high turning point; the only thing that
matters is how many trades the phase is comprised of. To figure the phase
length, simply take the trade number of the latter phase (what number it is
in sequence from 1 to N, where N is the total number of trades) and sub-
tract the trade number of the prior phase. For each of the three categories
you will have the total number of complete phases that occurred between
(but not including) the first and the last trades.
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Each of these three categories also has an expected number of trades for
that category. The expected number of trades-of phaselength D is:

(C.03) ED)=2*(N-D-2)*(D"2*3*D + 1)(D + 3)!
where D = The length of the phase.

E(D) = The expected number of counts.
N = The total number of trades.

Once you have calculated the expected number of counts for the three
categories of phase length (1, 2, and 3+), you can perform the chi-square
test. According to Kendall and colleagues,” you should use 2.5 degrees of
freedom here in determining the significance levels, as the lengths of the
phases are not independent. Remember that the phase length test doesn’t
tell you about the dependence (like begetting like, etc.), but rather whether
or Nnot there is dependence or randomness.

Lastly, this discussion of dependence addresses converting a correlation
coefficient to a confidence limit. The technique employs what is known as
Fisher’s Z transformation, which converts/a correlation coefficient, r, to a
Normally distributed variable:

(C.04) F=5*In((1+ r)/(1-r1))
where F = The transformed variable, now Normally distributed.
r = The correlation coefficient of the sample.

In() = The natural logarithm function.
The distribution of these transformed variables will have a variance of:

(C.05) V=1/(N-3
where V = The variance of the transformed variables.

N = The number of elements in the sample.

The mean of the distribution of these transformed variables is discerned
by Equation (C.04), only instead of being the correlation coefficient of the
sample, r is the correlation coefficient of the population. Thus, since our
population has a correlation coefficient of 0 (which we assume, since we are

IKendall, M. G., A. Stuart, and J. K. Ord. The Advanced Theory of Statistics, Vol. I1l. New
York: Halner Publishing, 1983.
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testing deviation from randomness) then Equation (C.04) gives us a value of
0 for the mean of the population.

Now we can determine how many standard deviations the adjusted vari-
able is from the mean by dividing the adjusted variable by the square root of
the variance, Equation (C.05). The result is the Z score associated with a
given correlation coefficient and sample size. For example, suppose we had
a correlation coefficient of .25, and this was discerned over 100 trades.
Thus, we can find our Z score as Equation (C.04) divided by the square root
of Equation (C.05), or:

(C.06) Z=(5* In((1+ )(1-r)))/(I/AN-3) A5
Which, for our exampleis:

z

1
—_— T~

S5 * In((1+.25)/(1 - .25)))/(1/(100 = 3)) A .5
S5 * In(1.25.75)/(1/97) A .5

5* In(1.6667)).010309 * .5

5 * .51085)/.1015346165

.25541275/.1015346165
2.515523856

—_

Now we can translate this into a confidence limit by using Equation
(3.22) for a Normal Distribution e-tailed confidence limit. For our example
this works out to a confidence limit in excess of 98.8%. If we had had 30
trades or less, we would have had to discern our confidence limit by using
the Student’s Distribution with N - 1 degrees of freedom.




