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Preface and
Dedication

The favorable reception of Portfolio Management Formulas exceeded
even the greatest expectation I ever had for the book. I had written it to
promote the concept of optimal f and begin to immerse readers in portfolio
theory and its missing relationship with optimal f.

Besides finding friends out there, Portjdio  Management Formulas was
surprisingly met by quite an appetite for the math concerning money man-
agement. Hence this book. I am indebted to Karl Weber, Wendy Grau, and
others at John Wiley & Sons who allowed me the necessary latitude this
book required.

There are many others with whom I have corresponded in one sort or
another, or who in one way or another have contributed to, helped me with,
or influenced the material in this book. Among them are Florence Bobeck,
Hugo Rourdssa, Joe Bristor, Simon Davis, Richard Firestone, Fred Gehm
(whom I had the good fortune of working with for awhile), Monique Mason,
Gordon Nichols, and Mike Pascaul.  I also wish to thank Fran Bartlett of G
& H Soho,  whose masterful work has once again transformed my little
mountain of chaos, my little truckload of kindling, into the finished product
that you now hold in your hands.

This list is nowhere near complete as there are many others who, to vary-
ing degrees, influenced this book in one form or another.

This book has left me utterly drained, and I intend it to be my last.

V



 

 

 

 
 

7700++  DDVVDD’’ss  FFOORR  SSAALLEE  &&  EEXXCCHHAANNGGEE  
  
 

wwwwww..ttrraaddeerrss--ssooffttwwaarree..ccoomm  
  

wwwwww..ffoorreexx--wwaarreezz..ccoomm  
  

wwwwww..ttrraaddiinngg--ssooffttwwaarree--ccoolllleeccttiioonn..ccoomm  
  

wwwwww..ttrraaddeessttaattiioonn--ddoowwnnllooaadd--ffrreeee..ccoomm  
  
  
 

CCoonnttaaccttss  
  

aannddrreeyybbbbrrvv@@ggmmaaiill..ccoomm  
aannddrreeyybbbbrrvv@@yyaannddeexx..rruu    

SSkkyyppee::  aannddrreeyybbbbrrvv 

http://www.traders-software.com/
http://www.forex-warez.com/
http://www.trading-software-collection.com/
http://www.tradestation-download-free.com/
mailto:andreybbrv@gmail.com
mailto:andreybbrv@yandex.ru


vi PREFACE AND DEDICATION

Considering this, I’d like to dedicate it to the three people who have influ-
enced me the most. To Rejeanne, my mother, for teaching me to appreciate
a vivid imagination; to Larry, my father, for showing me at an early age how
to squeeze numbers to make them jump; to Arlene, my wife, partner, and
best friend. This book is for all three of you. Your influences resonate
throughout it.

Chagrin Falls,  Ohio
March 1992
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I wrote in the first sentence of the Preface of Portfolio Management
Formuhs, the forerunner to this book, that it was a book about mathemati-
cal tools.

This is a book about machines.
Here, we will take tools and build bigger, more elaborate, more powerful

tools-machines, where the whole is greater than the sum of the parts.
We will tty to dissect machines that would otherwise be black boxes in such
a way that we can understand them completely without having to cover all
of the related subjects (which would have made this book impossible). For
instance, a discourse on how to build a jet engine can be very detailed with-
out having to teach you chemistry so that you know how jet fuel works.
Likewise with this book, which relies quite heavily on many areas, particu-
larly statistics, and touches on calculus. I am not trying to teach mathemat-
ics here, aside from that necessary to understand the text. However, I have
tried to write this book so that if you understand calculus (or statistics) it will

make sense, and if you do not there will be little, if any, loss of continuity,
and you will still be able to utilize and understand (for the most part) the
material covered without feeling lost.

Certain mathematical functions are called upon from time to time in
statistics. These functions-which include the gamma and incomplete

xi
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gamma functions, as well as the beta and incomplete beta functions-are
often called functions of muthemutical  phykics  and reside just beyond the
perimeter of the material in this text. To cover them in the depth necessary
to do the reader justice is beyond the scope, and away from the direction of,
this book. This is a book about account management for traders, not mathe-
matical physics, remember.2 For those truly interested in knowing the
“chemistry of the jet fuel” I suggest Numerical Recipes, which is referred to
in the Bibliography.

I have tried to cover my material as deeply as possible considering that
you do not have to know calculus or functions of mathematical physics to be
a good trader or money manager. It is my opinion that there isn’t much cor-
relation between intelligence and making money in the markets. By this I
do not mean that the dumber you are the better I think your chances of suc-
cess in the markets are. I mean that intelligence alone is but a very small
input to the equation of what makes a good trader. In terms of what input
makes a good trader, I think that mental toughness and discipline far out-
weigh intelligence. Every successful trader I have ever met or heard about
has had at least one experience of a cataclysmic loss. The common denomi-
nator, it seems, the characteristic that separates a good trader from the oth-
ers, is that the good trader picks up the phone and puts in the order when
things are at their bleakest. This requires a lot more from an individual than
calculus or statistics can teach a person.

In short, I have written this as a book to be utilized by traders in the real-
world marketplace. I am not an academic. My interest is in real-world utility
before academic pureness.

Furthermore, I have tried to supply the reader with more basic informa-
tion than the text requires in hopes that the reader will pursue concepts far-
ther than I have here.

One thing I have always been intrigued by is the architecture of music-
music theory. I enjoy reading and learning about it. Yet I am not a musician.
To be a musician requires a certain discipline that simply understanding the
rudiments of music theory cannot bestow. Likewise with trading. Money
management may be the core of a sound trading program, but simply
understanding money management will not make you a successful trader.

This is a book about music theory, not a how-to book about playing an
instrument. Likewise, this is not a book about beating the markets, and you
won’t find  a single price chart in this book. Rather it is a book about mathe-
matical concepts, taking that important step from theory to application, that
you can employ. It will not bestow on you the ability to tolerate the emo-
tional pain that trading inevitably has in store for you, win or lose.

This book is not a sequel to Portfolio Management Formulas. Rather,

Portfolio Management Formulas laid the foundations for what will be cov-
ered here.

Readers will find this book to be more abstruse than its forerunner.
Hence, this is not a book for beginners. Many readers of this text will have
read Portfolio Management Formulas. For those who have not, Chapter 1 of
this book summarizes, in broad strokes, the basic concepts from Portfolio
Management Formulas. Including these basic concepts allows this book to
“stand alone” from Portfolio Management Formulas.

Many of the ideas covered in this book are already in practice by profes-
sional money managers. However, the ideas that are widespread among
professional money managers are not usually readily available to the invest-
ing public. Because money is involved, everyone seems to be very secretive
about portfolio techniques. Finding out information in this regard is like try-
ing to find out information about atom bombs. I am indebted to numerous
librarians who helped me through many mazes of professional journals to
fill in many of the gaps in putting this book together.

This book does not require that you utilize a mechanical, objective trad-
ing system in order to employ the tools to be described herein. In other
words, someone who uses Elliott Wave for making trading decisions, for
example, can now employ optimal f.

However, the techniques described in this book, like those in Portjdio
Management Formulas, require that the sum of your bets be a positive
result. In other words, these techniques will do a lot for you, but they will
not perform miracles. Shuffling money cannot turn losses into profits. You
must have a winning approach to start with.

Most of the techniques advocated in this text are techniques that are
advantageous to you in the long run. Throughout the text you will encounter
the term “an asymptotic sense” to mean the eventual outcome of something
performed an infinite number of times, whose probability approaches cer-
tainty as the number of trials continues. In other words, something we can
be nearly certain of in the long run. The root of this expression is the mathe-
matical term “asymptote,” which is a straight line considered as a limit to a
curved line in the sense that the distance between a moving point on the
curved line and the straight line approaches zero as the point moves an in&
nite distance from the origin.

Trading is never an easy game. When people study these concepts, they
often get a false feeling of power. I say false because people tend to get the
impression that something very difficult to do is easy when they understand
the mechanics of what they must do. As you go through this text, bear in
mind that there is nothing in this text that will make you a better trader,
nothing that will improve your timing of entry and exit from a given market,
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nothing that will improve your trade selection. These difficult exercises will
still be difficult exercises even after you have finished and comprehended
this book.

Since the publication of Portfolio Management Formulas I have been
asked by some people why I chose to write a book in the first place. The
argument usually has something to do with the marketplace being a com-
petitive arena, and writing a book, in their view, is analogous to educating
your adversaries.

The markets are vast. Very few people seem to realize how huge today’s
markets are. True, the markets are a zero sum game (at best), but as a result
of their enormity you, the reader, are not my adversary.

Like most traders, I myself am most often my own biggest enemy. This is
not only true in my endeavors in and around the markets, but in life in gen-
eral. Other traders do not pose anywhere near the threat to me that I myself
do. I do not think that I am alone in this. I think most traders, like myself,
are their own worst enemies.

In the mid 198Os,  as the microcomputer was fast becoming the primary
tool for traders, there was an abundance of trading programs that entered a
position on a stop order, and the placement of these entry stops was often a
function of the current volatility in a given market. These systems worked
beautifully for a time. Then, near the end of the decade, these types of sys-
tems seemed to collapse. At best, they were able to carve out only a small
fraction of the profits that these systems had just a few years earlier. Most
traders of such systems would later abandon them, claiming that if “every-
one was trading them, how could they work anymore?”

Most of these systems traded the Treasury Bond futures market.
Consider now the size of the cash market underlying this futures market.
Arbitrageurs in these markets will come in when the prices of the cash and
futures diverge by an appropriate amount (usually not more than a few
ticks), buying the less expensive of the two instruments and selling the more
expensive. As a result, the divergence between the price of cash and futures
will dissipate in short order. The only time that the relationship between
cash and futures can really get out of line is when an exogenous shock, such
as some sort of news event, drives prices to diverge farther than the arbi-
trage process ordinarily would allow for. Such disruptions are usually veiy
short-lived and rather rare. An arbitrageur capitalizes on price discrepan-
cies, one type of which is the relationship of a futures contract to its under-
lying cash instrument. As a result of this process, the Treasury Bond futures
market is intrinsically tied to the enormous cash Treasury market. The
futures market reflects, at least to within a few ticks, what’s going on in the
gigantic cash market. The cash market is not, and never has been, domi-
nated by systems traders. Quite the contrary.

Returning now to our argument, it is rather inconceivable that the
traders in the cash market all started trading the same types of systems as
those who were making money in the futures market at that time! Nor is it
any more conceivable that these cash participants decided to all gang up on
those who were profiteering in the futures market, There is no valid reason
why these systems should have stopped working, or stopped working as well
as they had, simply because many futures traders were trading them. That
argument would also suggest that a large participant in a very thin market
be doomed to the same failure as traders of these systems in the bonds
were. Likewise, it is silly to believe that all of the fat will be cut out of the
markets just because I write a book on account management concepts.

Cutting the fat out of the market requires more than an understanding of
money management concepts. It requires discipline to tolerate and endure
emotional pain to a level that 19 out of 20 people cannot bear. This you will
not learn in this book or any other. Anyone who claims to be intrigued by
the “intellectual challenge of the markets ” is not a trader. The markets are
as intellectually challenging as a fistfight. In that light, the best advice I
know of is to always cover your chin and jab on the run. Whether you win or
lose, there are significant beatings along the way. But there is really very lit-
tle to the markets in the way of an intellectual challenge. Ultimately, trading
is an exercise in self-mastery and endurance. This book attempts to detail
the strategy of the fistfight. As such, this book is of use only to someone who
already possesses the necessary mental toughness.

SOME PREVALENT MISCONCEPTIONS

You will come face to face with many prevalent misconceptions in this text.
Among these are:

l Potential gain to potential risk is a straight-line function. That is, the
more you risk, the more you stand to gain.

l Where you are on the spectrum of risk depends on the type of vehicle
you are trading in.

l Diversification reduces drawdowns (it can do this, but only to a very
minor extent-much less than most traders realize).

l Price behaves in a rational manner.

The last of these misconceptions, that price behaves in a rational man-
ner, is probably the least understood of all, considering how devastating its
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effects can be. By “rational manner” is meant that when a trade occurs at a
certain price, you can be certain that pricewill proceed in an orderly fash-
ion to the next tick, whether up or down-that is, if a price is making a
move from one point to the next, it will trade at every point in between.
Most people are vaguely aware that price does not behave this way, yet most
people develop trading methodologies that assume that price does act in
this orderly fashion.

But price is a synthetic perceived value, and therefore does not act in
such a rational manner. Price can make very large leaps at times when pro-
ceeding from one price to the next, completely bypassing all prices in
between. Price is capable of making gigantic leaps, and far more frequently
than most traders believe. To be on the wrong side of such a move can be a
devastating experience, completely wiping out a trader.

Why bring up this point here? Because the foundation of any effective
gaming strategy (and money management is, in the final analysis, a gaming
strategy) is to hope for the best but prepare for the worst.

WORST-CASE SCENARIOS AND STRATEGY

The “hope for the best” part is pretty easy to handle. Preparing for the worst
is quite difficult and something most traders never do. Preparing for the
worst, whether in trading or anything else, is something most of us put off
indefinitely. This is particularly easy to do when we consider that worst-case
scenarios usually have rather remote probabilities of occurrence. Yet
preparing for the worst-case scenario is something we must do now. If we
are to be prepared for the worst, we must do it as the starting point in our
money management strategy.

You will see as you proceed through this text that we always build a strat-
egy from a worst-case scenario. We always start with a worst case and incor-
porate it into a mathematical technique to take advantage of situations that
include the realization of the worst case.

Finally, you must consider this next axiom. If you play a game with
unlimited liability, you will go broke with a probability that approaches cer-
tainty (IS  the length of the game approaches infinity. Not a very pleasant
prospect. The situation can be better understood by saying that if you can
only die by being struck by lightning, eventually you will die by being struck
by lightning. Simple. If you trade a vehicle with unlimited liability (such as
futures), you will eventually experience a loss of such magnitude as to lose
everything you have.

Granted, the probabilities of being struck by lightning are extremely
small for you today, and extremely small for you for the next fifty years.
However, the probability exists, and if you were to live long enough, eventu-
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ally this microscopic probability would see realization. Likewise, the proba-
bility of experiencing a cataclysmic loss on a position today may be
extremely small (but far greater than being struck by lightning today). Yet if
you trade long enough, eventually this probability, too, would be realized.

There are three possible courses of action you can take. One is to trade
only vehicles where the liability is limited (such as long options). The sec-
ond is not to trade for an infinitely long period of time. Most traders will die
before they see the cataclysmic loss manifest itself (or before they get hit by
lightning). The probability of an enormous winning trade exists, too, and
one of the nice things about winning in trading is that you don’t have to
have the gigantic winning trade. Many smaller wins will suffice. Therefore,
if you aren’t going to trade in limited liability vehicles and you aren’t going
to die, make up your mind that you are going to quit trading unlimited lia-
bility vehicles altogether if and when your account equity reaches some pre-
specified goal. If and when you achieve that goal, get out and don’t ever
come back.

We’ve been discussing worst-case scenarios and how to avoid, or at least
reduce the probabilities of, their occurrence. However, this has not truly
prepared us for their occurrence, and we must prepare for the worst. For
now, consider that today you had that cataclysmic loss. Your account has
been tapped out. The brokerage firm wants to know what you’re going to do
about that big fat debit in your account. You weren’t expecting this to hap-

. pen today. No one who ever experiences this ever does expect it.
Take some time and try to imagine how you are going to feel in such a

situation. Next, try to determine what you will do in such an instance. Now
write down on a sheet of paper exactly what you will do, who you can call
for legal help, and so on. Make it as definitive as possible. Do it now so that
if it happens you’ll know what to do without having to think about these
matters. Are there arrangements you can make now to protect yourself
before this possible cataclysmic loss.2  Are you sure you wouldn’t rather be
trading a vehicle with limited liability? If you’re going to trade a vehicle with
unlimited liability, at what point on the upside will you stop? Write down
what that level of profit is. Don’t just read this and then keep plowing
through the book. Close the book and think about these things for awhile.
This is the point from which we will build.

The point here has not been to get you thinking in a fatalistic way. That
would be counterproductive, because to trade the markets effectively will
require a great deal of optimism on your part to make it through the
inevitable prolonged losing streaks. The point here has been to get you to
think about the worst-case scenario and to make contingency plans in case
such a worst-case scenario occurs. Now, take that sheet of paper with your
contingency plans (and with the amount at which point you will quit trading
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unlimited liability vehicles altogether written on it) and put it in the top
drawer of your desk. Now, if the worst-case scenario should develop you
know you won’t be jumping out of the window.

Hope for the best but prepare for the worst. If you haven’t done these
exercises, then close this book now and keep it closed. Nothing can help you
if you do not have this foundation to build upon.

MATHEMATICS NOTATION

Since this book is infected with mathematical equations, I have tried to
make the mathematical notation as easy to understand, and as easy to take
from the text to the computer keyboard, as possible. Multiplication will
always be denoted with an asterisk (*),  and exponentiation will always be
denoted with a raised caret (^). Therefore, the square root of a number will
be denoted as “(l/2).  You will never have to encounter the radical sign.
Division is expressed with a slash (/) in most cases. Since the radical sign
and the means of expressing division with a horizontal line are also used as a
grouping operator instead of parentheses, that confusion will be avoided by
using these conventions for division and exponentiation. Parentheses will be
the only grouping operator used, and they may be used to aid in the clarity
of an expression even if they are not mathematically necessary. At certain
special times, brackets (( J)  may also be used as a grouping operator.

Most of the mathematical functions used are quite straightforward (e.g.,
the absolute value function and the natural log function). One function that
may not be familiar to all readers, however, is the exponential function,
denoted in this text as EXP(). This is more commonly expressed mathemati-
cally as the constant e, equal to 2.7182818285, raised to the power of the
function. Thus:

EXP(X) = e A  X = 2.7182818285 A  X

The main reason I have opted to use the function notation EXP(X) is
that most computer languages have this function in one form or another.
Since much of the math in this book will end up transcribed into computer
code, I find this notation more straightforward.

SYNTHETIC CONSTRUCTS IN THIS TEXT

As you proceed through the text, you will see that there is a certain geome-
try to this material. However, in order to get to this geometry we will have
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to create certain synthetic constructs. For one, we will convert trade profits
and losses over to what will be referred to as hoZding  period returns or
HPRs  for short. An HPR is simply 1 plus what you made or lost on the trade
as a percentage. Therefore, a trade that made a 10% profit would be con-
verted to an HPR of 1 + .lO = 1.10. Similarly, a trade that lost 10% would
have an HPR of 1 + (-.lO)  = .90.  Most texts, when referring to a holding
period return, do not add 1 to the percentage gain or loss. However,
throughout this text, whenever we refer to an HPR, it will always be 1 plus
the gain or loss as a percentage.

Another synthetic construct we must use is that of a market system. A
market system is any given trading approach on any given market (the
approach need not be a mechanical trading system, but often is). For exam-
ple, say we are using two separate approaches to trading two separate mar-
kets, and say that one of our approaches is a simple moving average
crossover system. The other approach takes trades based upon our Elliott
Wave interpretation. Further, say we are trading two separate markets, say
Treasury Bonds and heating oil. We therefore have a total of four different
market systems. We have the moving average system on bonds, the Elliott
Wave trades on bonds, the moving average system on heating oil, and the
Elliott Wave trades on heating oil.

A market system can be further differentiated by other factors, one of
which is dependency. For example, say that in our moving average system
we discern (through methods discussed in this text) that winning trades
beget losing trades and vice versa. We would, therefore, break our moving
average system on any given market into two distinct market systems. One
of the market systems would take trades only after a loss (because of the
nature of this dependency, this is a more advantageous system), the other
market system only after a profit. Referring back to our example of trading
this moving average system in conjunction with Treasury Bonds and heating
oil and using the Elliott Wave trades also, we now have six market systems:
the moving average system after a loss on bonds, the moving average system
after a win on bonds, the Elliott Wave trades on bonds, the moving average
system after a win on heating oil, the moving average system after a loss on
heating oil, and the Elliott Wave trades on heating oil.

Pyramiding (adding on contracts throughout the course of a trade) is
viewed in a money management sense as separate, distinct market systems
rather than as the original entry. For example, if you are using a trading
technique that pyramids, you should treat the initial entry as one market
system. Each add-on, each time you pyramid further, constitutes another
market system. Suppose your trading technique calls for you to add on each
time you have a $1,000 profit in a trade. If you catch a really big trade, you
will be adding on more and more contracts as the trade progresses through
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these $1,000 levels of profit. Each separate add-on should be treated as a
separate market system. There is a big benefit in doing this. The benefit is
that the techniques discussed in this book will yield the optimal quantities
to have on for a given market system as a function of the level of equity in
your account. By treating each add-on as a separate market system, you will
be able to use the techniques discussed in this book to know the optimal
amount to add on for your current level of equity.

Another very important synthetic construct we will use is the concept of
a unit. The HPRs  that you will be calculating for the separate market sys-
tems must be calculated on a “1 unit” basis. In other words, if they are
futures or options contracts, each trade should be for 1 contract. If it is
stocks you are trading, you must decide how big 1 unit is. It can be 100
shares or it can be 1 share. If you are trading cash markets or foreign
exchange (forex), you must decide how big 1 unit is. By using results based
upon trading 1 unit as input to the methods in this book, you will be able to
get output results based upon 1 unit. That is, you will know how many units
you should have on for a given trade. It doesn’t matter what size you decide
1 unit to be, because it’s just an hypothetical construct necessary in order to
make the calculations. For each market system you must figure how big 1
unit is going to be. For example, if you are a forex trader, you may decide
that 1 unit will be one million U.S. dollars. If you are a stock trader, you
may opt for a size of 100 shares.

Finally, you must determine whether you can trade fractional units or
not. For instance, if you are trading commodities and you define 1 unit as
being 1 contract, then you cannot trade fractional units (i.e., a unit size less
than l), because the smallest denomination in which you can trade futures
contracts in is 1 unit (you can possibly trade quasifractional units if you also
trade minicontracts). If you are a stock trader and you define 1 unit as 1
share, then you cannot trade the fractional unit. However, if you define 1
unit as 100 shares, then you can trade the fractional unit, if you’re willing to
trade the odd lot.

If you are trading futures you may decide to have 1 unit be 1 minicon-
tract, and not allow the fractional unit. Now, assuming that 2 minicontracts
equal 1 regular contract, if you get an answer from the techniques in this
book to trade 9 units, that would mean you should trade 9 minicontracts.
Since 9 divided by 2 equals 4.5, you would optimally trade 4 regular con-
tracts and 1 minicontract here.

Generally, it is very advantageous from a money management perspec-
tive to be able to trade the fractional unit, but this isn’t always true.
Consider two stock traders. One defines 1 unit as 1 share and cannot trade
the fractional unit; the other defines 1 unit as 100 shares and can trade the
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fractional unit. Suppose the optimal quantity to trade in today for the first
trader is to trade 61 units (i.e., 61 shares) and for the second trader for the
same day it is to trade 0.61 units (again 61 shares).

I have been told by others that, in order to be a better teacher, I must
bring the material to a level which the reader can understand. Often these
other people’s suggestions have to do with creating analogies between the
concept I am trying to convey and something they already are familiar with.
Therefore, for the sake of instruction you will find numerous analogies in
this text. But I abhor analogies. Whereas analogies may be an effective tool
for instruction as well as arguments, I don’t like them because they take
something foreign to people and (often quite deceptively) force fit it to a
template of logic of something people already know is true. Here is an
example:

The square root of 6 is 3 because the square root of 4 is 2 and 2 + 2 = 4.
Therefore, since 3 + 3 =  6, then the square root of 6 must be 3.

Analogies explain, but they do not solve. Rather, an analogy makes the a
priori assumption that something is true, and this “explanation” then mas-
querades as the proof. You have my apologies in advance for the use of the
analogies in this text. I have opted for them only for the purpose of instruc-
tion.

O P T I M A L  T R A D I N G  Q U A N T I T I E S

A N D  O P T I M A L  f

Modem portfolio theory, perhaps the pinnacle of money management con-
cepts from the stock trading arena, has not been embraced by the rest of
the trading world. Futures traders, whose technical trading ideas are usually
adopted by their stock trading cousins, have been reluctant to accept ideas
from the stock trading world. As a consequence, modem portfolio theory
has never really been embraced by futures traders.

Whereas modem portfolio theory will determine optimal weightings of
the components within a portfolio (so as to give the least variance to a pre-
specified return or vice versa), it does not address the notion of optimal
quantities. That is, for a given market system, there is an optimal amount to
trade in for a given level of account equity so as to maximize geometric
growth. This we will refer to as the optimal f.  This book proposes that mod-
em portfolio theory can and should be used by traders in any markets, not
just the stock markets. However, we must marry modem portfolio theory

(which gives us optimal weights) with the notion of optimal quantity (opti-
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ma1 f) to arrive at a truly optimal portfolio. It is this truly optimal portfolio
that can and should be used by traders inany  markets, including the stock
markets.

In a nonleveraged situation, such as a portfolio of stocks that are not on
margin, weighting and quantity are synonymous, but in a leveraged situa-
tion, such as a portfolio of futures market systems, weighting and quantity
are different indeed. In this book you will see an idea first roughly intro-
duced in Portfolio Management Formulas, that optimal quantities are what
we seek to know, and that this is afunction of optimal weightings.

Once we amend modern portfolio theory to separate the notions of
weight and quantity, we can return to the stock trading arena with this now
reworked tool. We will see how almost any nonleveraged portfolio of stocks
can be improved dramatically by making it a leveraged portfolio, and marry-
ing the portfolio with the risk-free asset. This will become intuitively obvi-
ous to you. The degree of risk (or conservativeness) is then dictated by the
trader as a function of how much or how little leverage the trader wishes to
apply to this portfolio. This implies that where a trader is on the spectrum
of risk aversion is a function of the leverage used and not a function of the
type of trading vehicle used.

In short, this book will teach you about risk management. Very few
traders have an inkling as to what constitutes risk management. It is not
simply a matter of eliminating risk altogether. To do so is to eliminate
return altogether. It isn’t simply a matter of maximizing potential reward to
potential risk either. Rather, risk management is about decision-making
strategies that seek to maximize the ratio of potential reward to potential
risk within a given acceptable level of risk.

To learn this, we must first learn about optimal f,  the optimal quantity
component of the equation. Then we must learn about combining optimal f
with the optimal portfolio weighting. Such a portfolio will maximize poten-
tial reward to potential risk. We will first cover these concepts from an
empirical standpoint (as was introduced in Portfolio Management
Form&s),  then study them from a more powerful standpoint, the paramet-
ric standpoint. In contrast to an empirical approach, which utilizes past data
to come up with answers directly, a parametric approach utilizes past data
to come up with parameters. These are certain measurements about some-
thing. These parameters are then used in a model  to come up with essen-
tially the same answers that were derived from an empirical approach. The
strong point about the parametric approach is that you can alter the values
of the parameters to see the effect on the outcome from the model. This is
something you cannot do with an empirical technique. However, empirical
techniques have their strong points, too. The empirical techniques are gen-
erally more straightforward and less math intensive. Therefore they are eas-

ier to use and comprehend. For this reason, the empirical techniques are
covered first.

Finally, we will see how to implement the concepts within a user-speci-
fied acceptable level of risk, and learn strategies to maximize this situation
further.

There is a lot of material to be covered here. I have tried to make this
text as concise as possible. Some of the material may not sit well with you,
the reader, and perhaps may raise more questions than it answers. If that is
the case, than I have succeeded in one facet of what I have attempted to do.

Most books have a single “heart,” a central concept that the entire text
flows toward. This book is a little different in that it has many hearts. Thus,
some people may find this book difhcult  when they go to read it if they are
subconsciously searching for a single heart. I make no apologies for this; this
does not weaken the logic of the text; rather, it enriches it. This book may
take you more than one reading to discover many of its hearts, or just to be
comfortable with it.

One of the many hearts of this book is the broader concept of decision
making  in environments characterized by geometric consequences. An envi-
ronment of geometric consequence is an environment where a quantity that
you have to work with today is a function of prior outcomes. I think this cov-
ers most environments we live in! Optimal f is the regulator of growth in
such environments, and the by-products of optimal f tell us a great deal of
information about the growth rate of a given environment. In this text you
will learn how to determine the optimal f and its by-products for any distri-
butional form. This is a statistical tool that is directly applicable to many
real-world environments in business and science. I hope that you will seek
to apply the tools for finding the optimal f parametrically in other fields
where there are such environments, for numerous different distributions,
not just for trading the markets.

For years the trading community has discussed the broad concept of
“money management.” Yet by and large, money management has been
characterized by a loose collection of rules of thumb, many of which were
incorrect. Ultimately, I hope that this book will have provided traders with
exactitude under the heading of money management.
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The Empirical Techniques

This chapter is a condensation of Portfolio Management Formulas.
The purpose here is to bring those readers unfamiliar with these
empirical techniques up to the same level of understarxding  as  those
who are.

D E C I D I N G  O N  Q U A N T I T Y

Whenever you enter a trade, you have made two decisions: Not only have
you decided whether to enter long or short, you have also decided upon the
quantity to trade in. This decision regarding quantity is always a function of
your account equity. If you have a $10,000 account, don’t you think you
would be leaning into the trade a little if you put on 100 gold contracts?
Likewise, if you have a $10 million account, don’t you think you’d be a little

light if you only put on one gold contract ? Whether we acknowledge it or
not, the decision of what quantity to have on for a given trade is inseparable
from the level of equity in our account.

It is a very fortunate fact for us though that an account will grow the
fastest when we trade a fraction of the account on each and every trade-in
other words, when we trade a quantity relative to the size of our stake.

However, the quantity decision is not simply a function of the equity in
our account, it is also a function of a few other things. It is a function of our

perceived “worst-case” loss on the next trade. It is a function of the speed
with which we wish to make the account grow. It is a function of depen-
dency to past trades. More variables than these just mentioned may be asso-
ciated with the quantity decision, yet we try to agglomerate all of these vari-
ables, including the account’s level of equity, into a subjective decision
regarding quantity: How many contracts or shares should we put on?

1
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In this discussion, you will learn how to make the mathematically correct
decision regarding quantity. You will no longer have to make this decision
subjectively (and quite possibly erroneously). You will see that there is a
steep price to be paid by not having on the correct quantity, and this price
increases as time goes by.

Most traders gloss over this decision about quantity. They feel that it is

somewhat arbitrary in that it doesn’t much matter what quantity they have

on. What matters is that they be right about the direction of the trade.
Furthermore, they have the mistaken impression that there is a straight-line
relationship between how many contracts they have on and how much they
stand to make or lose in the long run.

This is not correct. As we shall see in a moment, the relationship
between potential gain and quantity risked is not a straight line. It is curved.
There is a peak to this curve, and it is at this peak that we maximize poten-
tial gain per quantity at risk. Furthermore, as you will see throughout this
discussion, the decision regarding quantity for a given trade is as important
as the decision to enter long or short in the first place. Contrary to most
traders’ misconception, whether you are right or wrong on the direction of
the market when you enter a trade does not dominate whether or not you

have the right quantity on. Ultimately, we have no control over whether the
next trade will  be profitable or not. Yet we do have control over the quantity
we  have on. Since one does not dominate the other, our resources are better
spent concentrating on putting on the tight quantity.

On any given trade, you have a perceived worst-case loss. You may not
even be conscious of this, but whenever you enter a trade you have some
idea in your mind, even if only subconsciously, of what can happen to this
trade in the worst-case. This worst-case perception, along with the level of

equity in your account, shapes your decision about how many contracts to
trade.

Thus, we can now state that there is a divisor of this biggest perceived
loss, a number between 0 and 1 that you will use in determining how many
contracts to trade. For instance, if you have a $50,000 account, if you
expect, in the worst case, to lose $5,000  per contract, and if you have on 5
contracts, your divisor is .5, since:

50,000/(5,000/.5)  = 5

In other words, you have on 5 contracts for a $50,000 account, so YOU

hsdve 1 contract for every $10,000 in equity. You expect in the worst case to
lose $5,000 per contract, thus your divisor here is .5. If you had on only 1
contract, your divisor in this case would be .l since:

s0,000/(5,000/.1)  = 1
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Figure l-l 20 sequences of +2,  -1,

This divisor we will call by its variable name f.  Thus, whether consciously
or subconsciously, on any given trade you are selecting a value for f when

you decide how many contracts or shares to put on.
Refer now to Figure l-l. This represents a game where you have a 50%

chance of winning $2 versus a 50% chance of losing $1 on every play.
Notice that here the optimal f is .25 when the TWR is 10.55 after 40 bets
(20 sequences of +2, -1). TWR stands for Terminal Wealth Relative. It rep-
resents the return on your stake as a multiple. A TWR of 10.55 means you
would have made 10.55 times your original stake, or 955% profit. Now look
at what happens if you bet only 15% away from the optimal .25 f. At an f of

.I or .4 your TWR is 4.66. This is not even half of what it is at .25, yet you

are only 15% away from the optimal and only 40 bets have elapsed!
How  much are we talking about in terms of dollars? At f = .l, you would

be making 1 bet for every $10 in your stake. At f = .4, you would be making
I bet for every $2.50 in your stake. Both make the same amount with a
TWR  of 4.66. At f = .25, you are making 1 bet for every $4 in your stake.
Notice that if you make 1 bet for every $4 in your stake, you will make more
than twice as much after 40 bets as you would if you were making 1 bet for

every $2.50 in your stake! Clearly it does not pay to overbet.  At 1 bet per
every $2.50 in your stake you make the same amount as if you had bet a
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quarter of that amount, 1 bet  for every $10 in your stake! Notice that in a
50/50 game where you win twice the amount that you lose, at an f of .5 you
are only breaking even.1 That means you are only breaking even if you made
1 bet for every $2 in your stake. At an f greater than .5 you are losing in this
game, and it is simply a matter of time until you are completely tapped out!
In other words, if your fin this 50/50, 2:l game is .25 beyond what is opti-
mal, you will go broke with a probability that approaches certainty as you
continue to play. Our goal, then, is to objectively find  the peak of the f curve
for a given trading system.

Try to think of the difference between independent and dependent trials
processes as simply whether the probability statement isjxed (independent
trials) or variable (dependent trials) from one event to the next based on
prior outcomes. This is in fact the only difference.

THE RUNS TEST

In this discussion certain concepts will be illuminated in terms of gam-
bling illustrations. The main difference between gambling and speculation
is that gambling creates risk (and hence many people are opposed to it)
whereas speculation is a transference of an already existing risk (supposedly)
from one party to another. The gambling illustrations are used to illustrate
the concepts as clearly and simply as possible. The mathematics of money
management and the principles involved in trading and gambling are quite
similar. The main difference is that in the math of gambling we are usually
dealing with Bernoulli outcomes (only two possible outcomes), whereas in
trading we are dealing with the entire probability distribution that the trade
may take.

When we do sampling without replacement from a deck of cards, we can
determine by inspection that there is dependency. For certain events (such
as the profit and loss stream of a system’s trades) where dependency cannot
be determined upon inspection, we have the runs test. The runs test will tell
us if our system has more (or fewer) streaks of consecutive wins and losses
than a random distribution.

The runs test is essentially a matter of obtaining the Z scores for the win
and loss streaks of a system’s trades. A Z score is how many standard devia-
tions you are away  from the mean of a distribution. Thus, a Z score of 2.00
is 2.00 standard deviations away from the mean (the expectation of a ran-
dom distribution of streaks of wins and losses).

The Z score is simply the number of standard deviations the data is from
the mean of the Norrnal Probability Distribution. For example, a Z score of
1.00 would mean that the data you arc testing is within 1 standard deviation
from the mean. Incidentally, this is perfectly normal.

BASIC CONCEPTS

A probability statement is a number between 0 and 1 that specifies how
probable an outcome is, with 0 being no probability whatsoever of the event
in question occurring and 1 being that the event in question is certain to
occur. An independent trials process (sampling with replacement) is a
sequence of outcomes where the probability statement is constant from one
event to the next. A coin toss is an example of just such a process. Each toss
has a 5O/50  probability regardless of the outcome of the prior toss. Even if
the last 5 flips of a coin were heads, the probability of this flip being heads is
unaffected and remains .5.

Naturally, the other type of random process is one in which the outcome
of prior events does affect the probability statement, and naturally, the
probability statement is not constant from one event to the next. These
types of events are called dependent trials processes (sampling without
replacement). Blackjack is an example of just such a process. Once a card is
played, the composition of the deck changes. Suppose a new deck is shuf-
fled and a card removed-say, the ace of diamonds. Prior to removing this
card the probability of drawing an ace was 4l52 or .07692307692.  Now that
an.  ace has been drawn from the deck, and not replaced, the probability of
drawing an ace on the next draw is 3/51 or .05882352941.

The Z score is then converted into a confidence limit, sometimes also
called a degree of certainty. The area under the curve of the Normal
Probability Function at 1 standard deviation on either side of the mean
equals 68% of the total area under the curve. So we take our Z score and
convert it to a confidence limit, the relationship being that the Z score is a
number of standard deviations from the mean and the confidence limit is
the percentage of area under the curve occupied at so many standard
deviations.

Confidence Limit
WI

Z Score

99.73 3.00
99 2.58
98 2.33
97 2.17
96 2.05
95.45 2.00
95 1.96
90 1.64
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With a minimum of 30 closed trades we can now compute our Z scores.

What we are trying to answer is how many streaks of wins (losses) can we
expect from a given system.2 Are the win (loss) streaks of the system we are
testing in line with what we could expect? If not, is there a high enough
confidence limit that we can assume dependency exists behveen  trades-
i.e., is the outcome of a trade dependent on the outcome of previous trades?

Here then is the equation for the runs test, the system’s Z score:

(1.01) Z = (N *  (R-.5)-X)/((X*  (X-N))/(N-1)) *  (l/2)

where N = The total number of trades in the sequence.

R = The total number of runs in the sequence.

x  =  2*W*L

W = The total number of winning trades in the sequence.

L = The total number of losing trades in the sequence.

Here is how to perform this computation:

1. Compile the following data from your run of trades:

A. The total number of trades, hereafter called N.
B. The total number of winning trades and the total number of losing

trades. Now compute what we will call X. X = 2 * Total Number of
Wins * Total Number of Losses.

C. The total number of runs in a sequence. We’ll call this R.

2. Let’s construct an example to follow along with. Assume the following
trades:

-3, +2,  +7, -4, +l, -1, +l, +6, -1, 0, -2, +I

The net profit is +7. The total number of trades is 12, so N = 12, to keep
the example simple. We are not now concerned with how big the wins and
losses are, but rather how many wins and losses there are and how many
streaks. Therefore, we can reduce our run of trades to a simple sequence of
pluses and minuses. Note that a trade with a P&L of 0 is regarded as a loss.
We now have:

- + +  - +  - +  +  - - - +

As can be seen, there are 6 profits and 6 losses; therefore, X = 2 * 6 * 6
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= 72. AS can also be seen, there are 8 runs in this sequence; therefore, R
= 8. We define a run as  anytime you encounter a sign change when reading
the sequence as just shown from left  to right (i.e., chronologically). Assume
also that you start at 1.

1. You would thus count this sequence as follows:

-++-+-++---+

1 2 3 4 5 6 7 8

2. Solve the expression:

N * (R-.5)-X

For our example this would be:

12 * (8 - .5) - 72

12 *  7.5 - 72

90-72

18

3. Solve the expression:

(X * (X - N))/(N - 1)

For our example this would be:

4.

5.

6.

(72 * (72 - 12))/(  12 - 1)

(72 *  60)/11

4320/l  1

392.727272

Take the square root of the answer in number 3. For our example this

would be:

392.727272 * (l/2)  = 19.81734777

Divide the answer in number 2 by the answer in number 4. This is
your 2 score. For our example this would be:

18/19.81734777  = .9082951063

Now convert your Z score to a confidence limit. The distribution of
runs is binomially distributed. However, when there are 30 or more
trades involved, we can use the Normal Distribution to very closely
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approximate the binomial probabilities. Thus, if you are using 30 or
more trades, you can simply convert your Z score to a confidence limit
based upon Equation (3.22) for 2-tailed probabilities in the NormaI
Distribution.

The runs test will tell you if your sequence of wins and losses contains
more or fewer streaks (of wins or losses) than would ordinarily be expected
in a truly random sequence, one that has no dependence between trials.
Since we are at such a relatively low confidence limit in our example, we
can assume that there is no dependence between trials in this particular
sequence.

If your Z score is negative, simply convert it to positive (take the absolute
value) when finding your confidence limit. A negative Z score implies posi-
tive dependency, meaning fewer streaks than the Normal Probability
Function would imply and hence that wins beget wins and losses beget
losses. A positive Z score implies negative dependency, meaning more
streaks than the Normal Probability Function would imply and hence that
wins beget losses and losses beget wins.

\\‘hat would an acceptable confidence limit be? Statisticians generally
recommend selecting a confidence limit at least in the high nineties. Some
statisticians recommend a confidence limit in excess of 99% in order to
assume dependency,  some recommend a less stringent minimum of 95.45%
(2 standard deviations).

Rarely, if ever, will you find a system that shows confidence limits in
excess of 95.45%. Most frequently the confidence limits encountered are
less than 90%. Even if you find  a system with a confidence limit behveen 90
and 95.45%,  this is not exactly a nugget of gold. To assume that there is
dependency involved that can be capitalized upon to make a substantial dif-
ference, you really need to exceed 95.45% as a bare minimum.

As long as the dependency is at an acceptable confidence limit, you can
alter your behavior accordingly to make better trading decisions, even
though you do not understand the underlying cause of the dependency. If
you could know the cause, you could then better estimate when the depen-
dency was in effect and when it was not, as well as when a change in the
degree of dependency could be expected.

So far, we have only looked at dependency from the point of view of
whether the last trade was a winner or a loser. We are trying to determine if
the sequence of wins and losses exhibits dependency or not. The runs test
for dependency automatically takes the percentage of wins and losses into
account. However, in performing the runs test on runs of wins and losses,
we have accounted for the sequence of wins and losses but not their .size.  In
order to have true independence, not only must the sequence of the wins
and losses be independent, the sizes of the wins and losses within the
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sequence must also be independent. It is possible for the wins and losses to
be independent, yet their sizes to be dependent (or vice versa). One possi-
ble solution is to run the runs test on only the winning trades, segregating
the runs in some way (such as those that are greater than the median win
and those that are less), and then look for dependency among the size of the
winning trades. Then do this for the losing trades.

SERIAL CORRELATION

There is a different, perhaps better, way to quantify this possible depen-
dency behveen the size of the wins and losses. The technique to be dis-
cussed next looks at the sizes of wins and losses from an entirely different
perspective mathematically than the does runs test, and hence, when used
in conjunction with the runs test, measures the relationship of trades with
more depth than the runs test alone could provide. This technique utilizes
the linear correlation coeffjcient,  r, sometimes called Pearson’s r, to quan-
tify the dependency/independency relationship.

Now look at Figure l-2. It depicts two sequences that are perfectly cor-
related with each other. We call  this effect positive correlation.

Figure l-2 Positive correlation (r = +l .OO).
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r

7gure l - 3 Negative correlation (r = -1 .OO).

Now look at Figure l-3. It shows two sequences that are perfectly nega-
tively correlated with each other. \lihen  one line is zigging the other is zag-
ging. \Ve call this effect negative correlation.

The formula for finding the linear correlation coefficient, r, between two
sequences, X and Y, is as follows (a bar over a variable means the arithmetic
mearl of the variable):

(1.02) R = (1(X,-X)  * (Y,-1’))/((~(x,-x)  h 2)  h (l/Q)

*&Y,- Y) A 2)  A (l/2);

Ilere  is how to perform the calculation:

1. Average the X’s and the Y’s (shown as x  and 7).

2. For each period find the difference behveen eacl~  X and the average
X and each Y and the average Y.

3. Now calculate the numerator. To do this, for each period multiply the
answers from step 2-in other words, for each period multiply

SERIAL CORRELATION 1 1

together the differences between that period’s X and the average X
amd between that period’s Y and the average Y.

4. Total up all of the answers to step 3 for all of the periods. This is the
numerator.

5. Now find the denominator. To do this, take the answers to step 2 for
each period, for both the X differences and the Y differences, and
square them (they will now all be positive numbers).

6. Sum up the squared X differences for all periods into one final total.
Do the same with the squared Y differences.

7. Take the square root to the sum of the squared X differences you just
found in step 6. Now do the same with the Y’s by taking the square
root of the sum of the squared Y differences.

8. Multiply together the two answers you just found in step i-that is,
multiply together the square root of the sum of the squared X differ-
ences by the square root of the sum of the squared Y differences. This
product is your denominator.

9. Divide the numerator you found in step 4 by the denominator you
found in step 8. This is your linear correlation coefficient, r.

The value for r will always be between +l.OO  and -1.00. A value of 0 indi-
cates no correlation whatsoever.

Now look at Figure l-4. It represents the following sequence of 21
trades:

1, 2, 1, -1, 3, 2, -1, -2, -3, 1, -2, 3, 1, 1, 2, 3, 3, -1, 2, -1, 3

We can use the linear correlation coefficient in the following manner to
see if there is any correlation between the previous trade and the current
trade. The idea here is to treat the trade P&L’s as the X values in the for-
mula for r. Superimposed over that we duplicate the same trade P&L’s,
only this time we skew them by 1 trade and use these as the Y values in the
formula for r. In other words, the Y value is the previous  X value. (See
Figure l-5.)
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A B C D E
IX\ NI (X  - X)  (Y  - 91 %(C * D)

1
2 1

1 2
- 1 1

3 -1

2 3
- 1 2
-2 - 1
-3 -2

1 -3
-2 1

3 -2
1 3
1 1
2 1
3 2

3 3
- 1 3
2 -1

- 1 2
3 -1

3

1.2 ' 0.3 0.36 1.44 0.09

0.2 1.3 0.26 0.04 1.69
-1.8 0.3 -0.54 3.24 0.09

2.2 -1.7 -3.74 4.84 2.89

1.2 2.3 2.76 1.44 5.29
-1.8 1.3 -2.34 3.24 1.69
-2.8 -1.7 4.76 7.84 2.89

-3.8 -2.7 10.26 14.44 7.29

0.2 -3.7 -0.74 0.04 13.69

-2.8 0.3 -0.84 7.84 0.09
2.2 -2.7 -5.94 4.84 7.29
0.2 2.3 0.46 0.04 5.29

0.2 0.3 0.06 0.04 0.09

1.2 0.3 0.36 1.44 0.09
2.2 1.3 2.86 4.84 1.69

2.2 2.3 5.06 4.84 5.29
-1.8 2.3 -4.14 3.24 5.29
1.2 -1.7 -2.04 1.44 2.89

-1.8 1.3 -2.34 3.24 1.69
2.2 -1.7 -3.74 4.84 2.89

% .8 Y= .7 Totals 0.8 73.2 68.2

The averages differ because you only average those X’s and Y’s that have
a corresponding X or Y  value (i.e., you average only those values that over-
lap), so the last Y value (3) is not figured in the Y  average nor is the first X

value (1) figured in the x average.
The numerator is the total of all entries in column E (0.8). To find  the

denominator, we take the square root of the total in column F, which is
855.5699,  and we take the square root to the total in column G, which is
8.258329, and multiply them together to obtain a denominator of 70.65578.
We now divide our numerator of 0.8 by our denominator of 70.65578 to
obtain .011322.  This is our linear correlation coefficient, r.

The linear correlation coefficient of .011322  in this case is hardly indica-
tive of anything, but it is pretty much in the range you can expect for most
trading systems. High positive correlation (at least .25) generally suggests

that big wins are seldom followed by big losses and vice versa. Negative cor-

relation readings (below -.25  to -.30)  imply that big losses tend to be fol-

lowed by big wins and vice versa. The correlation coefficients can be trans-

, I
Figure l-4 Individual outcomes of 21 trades.

Figure l-5 Individual outcomes of 21 trades skewed by 1 trade.
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lated, by a technique known as Fisher’s Z transformation, into a confidence
level for a given number of trades. This topic is treated in Appendix C.

Negative correlation is just as helpful as positive correlation. For exam-
ple, if there appears to be negative correlation and the system has just suf-
fered a large loss, we can expect a large win and would therefore have more
contracts on than we ordinarily would. If this trade proves to be a loss, it will
most likely not be a large loss (due to the negative correlation).

Finally, in determining dependency you should also consider out-of-sam-
ple tests. That is, break your data segment into two or more parts. If you see
dependency in the first part, then see if that dependency also exists in the
second part, and so on. This will help eliminate cases where there appears
to be dependency when in fact no dependency exists.

Using these two tools (the runs test and the linear correlation coefficient)
can help answer many of these questions. However, they can only answer
them  if you have  a high enough confidence limit and/or a high enough cor-
relation coefficient. Most of the time these tools are of little help, because
all too often the universe of futures system trades is dominated by indepen-
dency. If you get readings indicating dependency, and you want to take
advantage of it in your trading, you must go back and incorporate a rule in
your trading logic to exploit the dependency. In other words, you must go
back and change the trading system logic to account for this dependency
(i.e., by passing certain trades or breaking up the system into two different
systems, such as one for trades after wins and one for trades after losses).
Thus, we can state that if dependency shows up in your trades, you haven’t
maximized your system. In other words, dependency, if found, should be
exploited (by changing the rules of the system to take advantage of the
dependency) until it no longer appears to exist. The first stage in money
management is therefore to exploit, and hence remove, any dependency in
trades.

For more on dependency than was covered in Portfolio Management
Formu1a.s  and reiterated here, see Appendix C, “Further on Dependency:
The Turning Points and Phase Length Tests.”

We have been discussing dependency in the stream of trade profits and
losses. You can also look for dependency between an indicator and the sub-
sequent trade, or between any two variables. For more on these concepts,
the reader is referred to the section on statistical validation of a trading sys-
tem under “The Binomial Distribution” in Appendix B.

COMMON DEPENDENCY ERRORS

As traders we must generally assume that dependency does not exist in the
marketplace for the majority of market systems. That is, when trading a
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given market system, we will usually be operating in an environment where
the outcome of the next trade is not predicated upon the outcome(s) of
prior trade(s). That is not to say that there is never dependency between
trades for some market systems (because for some market systems depen-
dency does exist), only that we should act as though dependency does not
exist unless there is very strong evidence to the contrary. Such would be the
case if the 2 score and the linear correlation coefficient indicated depen-
dency, and the dependency held up across markets and across optimizable
parameter values. If we act as though there is dependency when the evi-
dence is not overwhelming, we may well just be fooling ourselves and caus-
ing more self-inflicted harm than good as a result. Even if a system showed
dependency to a 95% confidence limit for all values of a parameter, it still is
hardly a high enough confidence limit to assume that dependency does in
fact exist between the trades of a given market or system.

A type I error is committed when we reject an hypothesis that should be
accepted. If, however, we accept an hypothesis when it should be rejected,
we have committed a type II error. Absent knowledge of whether an
hypothesis is correct or not, WC must decide on the penalties associated with
a type I and type II error. Sometimes one type of error is more serious than
the other, and in such cases we must decide whether to accept or reject an
unproven hypothesis based on the lesser penalty.

Suppose you are considering using a certain trading system, yet you’re
not extremely sure that it will hold up when you go to trade it real-time.
Here, the hypothesis is that the trading system will hold up real-time. You
decide to accept the hypothesis and trade the system. If it does not hold up,
you will have committed a type II error, and you will pay the penalty in
terms of the losses you have incurred trading the system real-time. On the
other hand, if you choose to not trade the system, and it is profitable, you
will have committed a type I error. In this instance, the penalty you pay is in
forgone profits.

Which is the lesser penalty to pay? Clearly it is the latter, the forgone
profits of not trading the system. Although from this example you can con-
clude that if you’re going to trade a system real-time it had better be prof-
itable, there is an ulterior motive for using this example. If we assume there
is dependency, when in fact there isn’t, we will have committed a type ‘II
error. Again, the penalty we pay will not be in forgone profits, but in actual
losses. However, if we assume there is not dependency when in fact there
is, we will have committed a type I error and our penalty will be in forgone
profits. Clearly, we are better off paying the penalty of forgone profits than
undergoing actual losses. Therefore, unless there is absolutely overwhelm-
ing evidence of dependency, you are much better off assuming that the
profits and losses in trading (whether with a mechanical system or not) are
independent of prior outcomes.
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There seems to be a paradox presented here. First, if there is depen-
dency in the trades, then the system is ‘suboptimal. Yet dependency can
never be proven beyond a doubt. Now, if we assume and act as though
there is dependency (when in fact there isn’t), we have committed a more
expensive error than if we assume and act as though dependency does not
exist (when in fact it does). For instance, suppose we have a system with a
history of 60 trades, and suppose we see dependency to a confidence level
of 95% based on the runs test. We want our system to be optimal, so we
adjust its rules accordingly to exploit this apparent dependency. After we
have done so, say we are left with 40 trades, and dependency no longer is
apparent. We are therefore satisfied that the system rules are optimal.
These 40 trades will now have a higher optimal f than the entire 60 (more
on optimal f later in this chapter).

If you go and trade this system with the new rules to exploit the depen-
dency, and the higher concomitant optimal f,  and if the dependency is not
present, your performance will be closer to that of the 60 trades, rather than
the superior 40 trades. Thus, the f you have chosen will be too far to the
right, resulting in a big price to pay on your part for assuming dependency.
If dependency is there, then you will be closer to the peak of the f curve by
assuming that the dependency is there. Had you decided not to assume it
when in fact there was dependency, you would tend to be to the left of the
peak of the f curve, and hence your performance would be suboptimal (but
a lesser price to pay than being to the right of the peak).

In a nutshell, look for dependency. If it shows to a high enough degree
across parameter values and markets for that system, then alter the system
rules to capitalize on the dependency. Otherwise, in the absence of over-
whelming statistical evidence of dependency, assume that it does not exist,
(thus opting to pay the lesser penalty if in fact dependency does exist).

MATHEMATICAL EXPECTATION

By the same token, you are better off not to trade unless there is absolutely
overwhelming evidence that the market system you are contemplating trad-
ing t&Z  be profitable-that is, unless you fully expect the market system in
question to have a positive mathematical expectation when you trade it real-
time.

Mathematical expectation is the amount you expect to make or lose, on
average, each bet. In gambling parlance this is sometimes known as the
player’s e&e  (if positive to the player) or the house’s advantage (if negative
to the player):

MATHEMATICAL EXPECTATION

N

(1.03) Mathematical Expectation = z(P,  * Ai)
i=l
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where P = Probability of winning or losing.

A = Amount won or lost.

N = Number of possible outcomes.

The mathematical expectation is computed by multiplying each possible
gain or loss by the probability of that gain or loss and then summing these
products together.

Let’s look at the mathematical expectation for a game where you have a
50% chance of winning 82 and a 50% chance of losing $1 under this
formula:

Mathematical Expectation = (.5 * 2) + (.5 *  (-I))

= 1 c (-.5)

= .5

In such an instance, of course, your mathematical expectation is to win 50
cents per toss on average.

Consider betting on one number in roulette, where your mathematical
expectation is:

ME = ((l/38)  * 35) + ((37138)  * (-1))

= (.02631578947  * 35) + (.9736842105  * (-1))

= (9210526315) + (-.9736842105)

= -.05263157903

Here, if you bet $1 on one number in roulette (American double-zero) you
would expect to lose, on average, 5.26 cents per roll. If you bet $5, you
would expect to lose, on average, 26.3 cents per roll. Notice that difirent
amounts bet have diflerent  muthemuticul  expectations in terms of amounts,
but the expectation as a percentage of the amount bet is ulumys  the same.
‘FL-  player’s expectation for a series of bets is the total of the expectations for
the individual bets. So if you go play $1 on a number in roulette, then $10
on a number, then $5 on a number, your total expectation is:
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ME = (-.0526  * 1) + (-.0526  * 10) + (-.0526  * 5)

= -.0526  - .526 - .263

= - 3416

You would therefore expect to lose, on average, 84.16 cents.
This principle explains why systems that try to change the sizes of their

bets relative to how many wins or losses have been seen (assuming an inde-
pendent trials process) are doomed to fail. The summation of negative
expectation bets is always a negative expectation!

The most fundamental point that you must understand in terms of
money management is that in a negative  expectation game, there is no
money-management scheme that will make you a winner. If you continue to
bet, regardless of how you manage your money, it is alnwst  certain that you
will  be a loser, losing your entire stake no matter how large it was  to
start.

This axiom is not only true of a negative expectation game, it is true of an
even-money game as well. Therefore, the only game you have a chance at
winning in the long run is a positive arithmetic expectation game. Then, you
can only win if you either always bet the same constant bet size or bet with
an f value less than the f value corresponding to the point where the geo-
metric mean HPR is less than or equal to 1. (We wivill cover the second part
of this, regarding the geometric mean HPR, later on in the text.)

This axiom is true only in the absence of an upper absorbing barrier. For
example, let’s assume a gambler who starts out with a $100 stake who will
quit playing if his stake grows to $101. This upper target of $101 is called an
absorbing barrier. Let’s suppose our gambler is always betting $1 per play
on red in roulette. Thus, he has a slight negative mathematical expectation.
The gambler is far more likely to see his stake grow to $101 and quit than
he is to see his stake go to zero and be forced to quit. If, however, he
repeats this process over and over, he will find  himself in a negative mathe-
matical expectation. If he intends on playing this game like this only once,
then the axiom of going broke with certainty, eventually, does not apply.

The difference between a negative expectation and a positive one is the
difference between life and death. It doesn’t matter so much how positive
or how negative your expectation is; what matters is whether it is positive or
negative. So before money management can even be considered, you must
have a positive expectancy game. If you don’t, all the money management in
the world cannot save you’. On the other hand, if you have a positive expec-

‘This rule is applicable to trading one market system only. When you begin trading more than
one market system, you step into a strange environment where it is possible to include a mar-
kct system with a negative mathematical expectation as one of the markets being traded and
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tation,  you can, through proper money management, turn it into an expo-
nential growth function. It doesn’t even matter how marginally positive the
expectation is!

In other words, it doesn’t so much matter how profitable your trading
system is on a 1 contract basis, so long as it is profitable, even if only
marginally so. If you have a system that makes $10 per contract per trade
(once commissions and slippage have been deducted), you can use money
management to make it be far more profitable than a system that shows a
$1,000 average trade (once commissions and slippage have been deducted).
What matters, then, is not how profitable your system has been, but rather
how certain is it that the system will show at least a marginal profit in the
future. Therefore, the most important preparation a trader can do is to
make as certain as possible that he has a positive mathematical expectation
in the future.

The key to ensuring that you have a positive mathematical expectation in
the future is to not restrict your system’s degrees of freedom. You want to
keep your system’s degrees of freedom as high as possible to ensure the
positive mathematical expectation in the future. This is accomplished not
only by eliminating, or at least minimizing, the number of optimizable
parameters, but also by eliminating, or at least minimizing, as many of the
system rules as possible. Every parameter you add, every rule you add,
every little adjustment and qualification you add to your system diminishes
its degrees of freedom. Ideally, you will have a system that is very primitive
and simple, and that continually grinds out marginal profits over time in
ahnost  all the different markets. Again, it is important that you realize that it
really doesn’t matter how profitable the system is, so long as it is profitable.
The money you will make trading will be made by how effective the money
management you employ is. The trading system is simply a vehicle to give
YOU a positive mathematical expectation on which to use money manage-
ment. Systems that work (show at least a marginal profit) on only one or a
few markets, or have different rules or parameters for different markets,
probably won’t work real-time for very long. The problem with most techni-
cally oriented traders is that they spend too much time and effort hating the
computer crank out run after run of different rules and parameter values for
trading systems. This is the ultimate “woulda,  shoulda,  coulda”  game. It is

actually have a higher net mathematical expectation than the net mathematical expectation of
the group before the inclusion of the negative expectation system! Further, it is possible that
the net mathematical expectation for the group with the inclusion of the negative mathematical
evctation  market system can be higher than the mathematical Pxpectation of any of the indi-
\+dual market systems! For the time being we will consider only one market system at a time,
so we most have a positive mathematical expectation in order for the money-management
techtiques  to work.
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completely counterproductive. Rather than concentrating your efforts and
computer time toward maximizing your trading system profits, direct the
energy toward maximizing the certainty level of a marginal profit.

TO REINVEST TRADING PROFITS OR NOT

Let’s call the following system “System A. ” In it we have 2 trades: the first
making SO%, the second losing 40%. If we do not reinvest our returns, we
make 10%. If we do reinvest, the same sequence of trades loses 10%.

System A

No Reinvestment
Trade No. P & L Cumula t i ve

100
1 5 0 150
2 - 4 0 110

With Reinvestment
P & L Cumula t i ve

100
5 0 150

- 6 0 9 0

Now let’s look at System B, a gain of 15% and a loss of 5%, which also nets
out 10% over 2 trades on a nonreinvestment basis, just like System A. But
look at the results of System B with reinvestment: Unlike system A, it makes
money.

System B

No Reinvestment With Reinvestment
Trade No. P & L Cumula t i ve P & L Cumula t i ve

100 100
1 1 5 115 1 5 115
2 - 5 110 - 5.75 109.25

An important characteristic of trading with reinvestment that must be
realized is that reinoesting  trading profits  can turn a winning system into a
losing system but  not vice versa.1  A winning system is turned into a losing
system in trading with reinvestment if the returns are not consistent
enough.

Changing the order or sequence of trades does not affect the final out-
come.  This is not only true on a nonreinvestment basis, but also true on a
reinvestment basis (contrary to most people’s misconception).

System A

No Reinvestment
Trade No. P & L Cumula t i ve

With Reinvestment
P & L Cumula t i ve

-100 100
1 4 0 6 0 4 0 6 0
2 5 0 110 3 0 9 0

System B

No Reinvestment With Reinvestment
Trade No. P & L Cumula t i ve P & L Cumula t i ve

-100 100
1 - 5 9 5 - 5 9 5
2 1 5 110 14.25 109.25

As can obviously be seen, the sequence of trades has no bearing on the final
outcome, whether viewed on a reinvestment or a nonreinvestment basis.
(One side benefit to trading on a reinvestment basis is that the drawdowns
tend to be buffered. As a system goes into and through a drawdown period,
each losing trade is followed by a trade with fewer and fewer contracts.)

By inspection it would seem you are better off trading on a nonreinvest-
ment basis than you are reinvesting because your probability of winning is
greater. However, this is not a valid assumption, because in the real world
we do not withdraw all of our profits and make up all of our losses by
depositing new cash into an account. Further, the nature of investment or
trading is predicated upon the effects of compounding. If we do away with
compounding (as in the nonreinvestment basis), we can plan on doing little
better in the future than we can today, no matter how successful our trading
is between now and then. It is compounding that takes the linear function
of account growth and makes it a geometric function.

If a system is good enough, the profits generated on a reinvestment basis
will be far greater than those generated on a nonreinvestment basis, and
that gap will widen as time goes by. If you have a system that can beat the
market, it doesn’t make any sense to trade it in any other way than to
increase your amount wagered as your stake increases.

MEASURING A GOOD SYSTEM FOR
REINVESTMENT: THE GEOMETRIC MEAN

SO far we have seen how a system can be sabotaged by not being consistent
enough from trade to trade. Does this mean we should close up and put our
money in the bank?



2 2 THE EMPIRICAL TECHNIQUES MEASURING A GOOD SYSTEM FOR REINVESTMENT 2 3

Let’s go back to System A, with its first 2 trades. For the sake of illustra-
tion we are going to add two winners of 1 point each.

System A

No Reinvestment
Trade No. P & L Cumula t i ve

100
1 5 0 150
2 - 4 0 110
3 1 1 1 1
4 1 112

Percentage of Wins 7 5 %
Avg. Trade 3
Risk/Rew. 1 .3
Std. Dev. 31.88
Avg. TradefStd. Dev. 0.09

With Reinvestment
P & L Cumula t i ve

100
50 150

- 60 90
0.9 90.9
0.909 91.809

7 5 %
- 2.04775

0.86
39.00
-0.05

Now let’s take System B and add 2 more losers of 1 point each.

System B

No Reinvestment
Trade No. P & L Cumula t i ve

100
1 1 5 115
2 - 5 110
3 - 1 109
4 - 1 108

Percentage of Wins 2 5 %
Avg. Trade 2
Risk/Rew. 2.14
Std. Dev. 7.68
Avg. TradelStd. Dev. 0.26

With Reinvestment
P & L Cumula t i ve

100
15 115

- 5.75 109.25
- 1.0925 108.1575
- 1.08157 107.0759

2 5 %
1.768981
1.89
7.87
0.22

Now, if consistency is what we’re really after, let’s look at a bank account,
the perfectly consistent vehicle (relative to trading), paying 1 point per
period. We’ll call this series System C.

System C
No Reinvestment

Trade NO. P & L Cumula t i ve

100
1 1 1 0 1
2 1 102
3 1 103
4 1 104

With Reinvestment
P & L Cumula t i ve

100
1 1 0 1
1 .01 102.01
1.0201 103.0301
1.030301 104.0604

Percentage of Wins
Avg. Trade

Risk/Rew.
Std. Dev.

Avg. TradelStd.  Dev.

1.00
1

Infinite
0.00

Infinite

1  . oo
1 .015100

Infinite
0.01

89.89

Our aim is to maximize our profits under reinvestment trading. With that
as the goal, we can see that our best reinvestment sequence comes from
System B. How could we have known that, given only information regarding
nonreinvestment trading? By percentage of winning trades? By total dol-
lars? By average trade? The answer to these questions is “no,” because
answering “yes” would have us trading System A (but this is the solution
most futures traders opt for). What if we opted for most consistency (i.e.,
highest ratio average trade/standard deviation or lowest standard deviation)?
How about highest risk/reward or lowest drawdown? These are not the
answers either. If they were, we should put our money in the bank and for-
get about trading.

System B has the tight mix of profitability and consistency. Systems A
and C do not. That is why System B performs the best under reinvestment
trading. What is the best way to measure this “right mix”? It turns out there
is a formula that will do just that-the geometric mean. This is simply the
Nth root of the Terminal Wealth Relative (TWR), where N is the number
of periods (trades). The TWR is simply what we’ve been computing when
we figure what the final cumulative amount is under reinvestment, In other
words, the TWRs for the three systems we just saw are:

System T W R

System A .91809
System 6 1.070759
System C 1.040604

Since there are 4 trades in each of these, we take the TWRs to the 4th
root to obtain the geometric mean:
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System Geometric Mean

System A 0.978861

System B 1.017238

System C 1.009999

(1.04) TWR = &PRi
i=l

(1.05) Geometric Mean = TWR A  (UN)

where N = Total number of trades.

HPR = Holding period returns (equal to 1 plus the rate of retum-
e.g., an HPR of 1.10 means a 10% return over a given
period, bet, or trade).

TWR = The number of dollars of value at the end of a run of peri-
ods/bets/trades per dollar of initial investment, assuming
gains and losses are allowed to compound.

IIere  is another way of expressing these variables:

(1.06) TWR = Final Stake/Starting Stake

The geometric mean (G) equals your growth factor per play, or:

(1.07) G = (Final Stake/Starting Stake) A  (l/Number of Plays)

Think of the geometric mean as the “growth factor per play” of your
stake. The system or market with the highest geometric mean is the system
or market that makes the most profit trading on a reinvestment of returns
basis. A geometric mean less than one means that the system would have
lost money if you were trading it on a reinvestment basis.

Investment performance is often measured with respect to the dispersion
of returns. Measures such as the Sharpe ratio, Treynor measure, Jensen
measure, Vami, and so on, attempt to relate investment performance to dis-
persion. The geometric mean here can be considered another of these types
of measures. However, unlike the other measures, the geometric mean mea-
sures investment performance relative to dispersion in the same mathemati-
cal form as that in which the equity in your account is affected.

Equation (1.04) bears out another point. If you suffer an HPR of 0, you
will be completely wiped out, because anything multiplied by zero equals
zero. Any big losing trade will have a very adverse effect on the TWR, since
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it  is a multiplicative rather than additive function. Thus we can state that in
trading you are only as smart  as your dumbest mistake.

HOW BEST TO REINVEST

Thus far we have discussed reinvestment of returns in trading whereby we
reinvest 100% of our stake on all occasions. Although we know that in order
to maximize a potentially profitable situation we must use reinvestment, a
100% reinvestment is rarely the wisest thing to do.

Take the case of a fair bet (SO/SO)  on a coin toss. Someone is willing to
pay you $2 if you win the toss but will charge you $1 if you lose. Our mathe-
matical expectaion  is .5. In other words, you would expect to make 50 cents
per toss, on average. This is true of the first toss and all subsequent tosses,
provided you do not step up the amount you are wagering. But in an inde-
pendent trials process this is exactly what you should do. As you win you
should commit more and more to each toss.

Suppose you begin with an initial stake of one dollar. Now suppose you
win the first toss and are paid two dollars. Since you had your entire stake
($1) riding on the last bet, you bet your entire stake (now $3) on the next
toss as well. However, this next toss is a loser and your entire $3 stake is
gone. You have lost your original $1 plus the $2 you had won. If you had
won the last toss, it would have paid you $6 since you had three $1 bets on
it. The point is that if you are betting 100% of your stake, you’ll be wiped
out as soon as you encounter a losing wager, an inevitable event. If we were
to replay the previous scenario and you had bet on a nonreinvestment basis
(i.e., constant bet size) you would have made $2 on the first bet and lost $1
on the second. You would now be net ahead $1 and have a total stake of $2.

Somewhere between these two scenarios lies the optimal betting
approach for a positive expectation.  However, we should first discuss the
optima1 betting strategy  for a negative expectation game. When you know
that the game you are playing has a negative mathematical expectation, the
best bet is no bet. Remember, there is no money-management strategy that
can turn a losing game into a winner. ‘However, if you must bet on a nega-
tive expectation game, the next best strategy is the maximum boldness strat-
egy. In other words, you want to bet on as few trials as possible (as opposed
to a positive expectation game, where you want to bet on as many trials as
possible). The more trials, the greater the likelihood that the positive expec-
tation will be realized, and hence the greater the likelihood that betting on
the negative expectation side will lose. Therefore, the negative expectation
side has a lesser and lesser chance of losing as the length of the game is
shortened-i.e., as the number of trials approaches 1. If yov  play a game
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whereby you have a 49% chance of winning $1 and a Sl%  of losing $1, you
are best off betting on only 1 trial. The tiore  trials you bet on, the greater
the likelihood you will lose, with the probability of losing approaching cer-
tainty as the length of the game approaches infinity. That isn’t to say that
you are in a positive expectation for the 1 trial, but you have at least mini-
mized the probabilities of being a loser by only playing 1 trial.

Return now to a positive expectation game. We determined at the outset
of this discussion that on any given trade, the quantity that a trader puts on
can be expressed as a factor, f,  between 0 and 1, that represents the trader’s
quantity with respect to both the perceived loss on the next trade and the
trader’s total equity. If you know you have an edge over N bets but you do
not know which of those N bets will be winners (and for how much), and
which will be losers (and for how much), you are best off (in the long run)
treating each bet exactly the same in terms of what percentage of your total
stake is at risk. This method of always trading a fixed fraction of your stake
has shown time and again to be the best staking system. If there is depen-
dency in your trades, where winners beget winners and losers beget losers,
or vice versa, you are still best off betting a fraction of your total stake on
each bet, but that fraction is no longer fixed. In such a case, the fraction
must reflect the effect of this dependency (that is, if you have not yet
“flushed” the dependency out of your system by creating system rules to
exploit it).

“\Vait,”  you say. “Aren’t staking systems foolish to begin with? Haven’t
we seen that they don’t overcome the house advantage, they only increase
our total action?” This is absolutely true for a situation with a negative math-
ematical expectation. For a positive mathematical expectation, it is a differ-
ent story altogether. In a positive expectancy situation the trader/gambler is
faced with the question of how best to exploit the positive expectation.

OPTIMAL FIXED FRACTIONAL TRADING

We have spent the course of this discussion laying the groundwork for this
section. We have seen that in order to consider betting or trading a given
situation or system you must first determine if a positive mathematical
expectation exists. We have seen that what is seemingly a “good bet” on a
mathematical expectation basis (i.e., the mathematical expectation is posi-
tive) may in fact not be such a good bet when you consider reinvestment of
returns, if you are reinvesting too high a percentage of your winnings rela-
tive to the dispersion of outcomes of the system. Reinvesting returns never
raises the mathematical expectation (as a percentage-although it can raise
the mathematical expectation in terms of dollars, which it does geometri-

tally,  which is why we want to reinvest). If there is in fact a positive mathe-
matical expectation, however small, the next step is to exploit this positive
expectation to its fullest potential. For an independent trials process, this is
achieved by reinvesting a fixed fraction of your total stake.’

And how do we find this optimal f? Much work has been done in recent
decades on this topic in the gambling community, the most famous and
accurate of which is known as the Kelly Betting System. This is actually an
application of a mathematical idea developed in early 1956 by John L. Kelly,
Jr.3 The Kelly criterion states that we should bet that fixed fraction of our
stake (f)  which maximizes the growth function G(f):

(1.08) G(f) = P * ln(1 + B * f)  + (1 -P) * ln(l-  f)

where f = The optimal fLved  fraction.

P = The probability of a winning bet or trade.

B = The ratio of amount won on a winning bet to amount lost on
a losing bet.

In(  ) = The natural logarithm function.

As it turns out, for an event with two possible outcomes, this optimal f’
can be found quite easily with the Kelly formulas.

KELLY FORMULAS

Beginning around the late 194Os,  Bell System engineers were working on
the problem of data transmission over long-distance lines. The problem fac-
ing them was that the lines were subject to seemingly random, unavoidable
“noise” that would interfere with the transmission. Some rather ingenious
solutions were proposed by engineers at Bell Labs. Oddly enough, there are

‘For a dependent trials process, just a for an independent trials process, the idea of betting a
proportion of your total stake also yields the greatest exploitation of a positive mathematical
expectation. However, in a dependent trials process you optimally bet a variable fraction of
yollr  total stake, the exact fraction for each individual bet being determined by the pmbabilities
and payolas involved for each individual bet. This is analogous to trading a dependent trials
process m two separate market systems.

‘Kelly,  J.  L., Jr., A Neu: Interpretation oflnfonnation  Rate, Bell System Technical Journal, pp.
917-926,  July, 1956.

‘As  used throughout the text, I is always lowercase and in reman  type. It is not to be confused
Wh  the universal constant, F, equal to 4.669201609. . .,  pertaining to bifurcations in chaotic
?xtems.
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great similarities between this data communications problem and the prob-
lem of geometric growth as pertains to gambling money management (as
both problems are the product of an environment of favorable uncertainty).
One of the outgrowths of these solutions is the first Kelly formula.

The first equation here is:

(LOga) f=Z*P-1

or

(1.09b) f = P - Q

where f = The optimal fixed fraction.

P = The probability of a winning bet or trade.

Q = The probability f Io a oss, (or the complement of P, equal to
1 -P).

Both forms of Equation (1.09) are equivalent.
Equation (1.09a) or (l.O9b) will yield the correct answer for optimal f

provided the quantities are the same for both wins and losses. As an exam-
ple, consider the following stream of bets:

-1, +l, +1,-1,-l, +l,  +I,  +L +L-1

There are 10 bets, 6 winners, hence:

f=(.6*2)-1
= 1.2-1
= .2

If the winners and losers were not all the same size, then this formula
would not yield the correct answer. Such a case would be our two-to-one
coin-toss example, where all of the winners were for 2 units and all of the

losers for 1 unit. For this situation the Kelly formula is:

(l.lOa) f = ((B + 1) * P- 1)/B

where f = The optimal futed  fraction.

P = The probability of a winning bet or trade.

B = The ratio of amount won on a winning bet to amount lost on
a losing bet.

KELLY FORMULAS 2 9

In our two-to-one coin-toss example:

f =(( 2+ 1) .5 - 1)/Z

= (3 * .5  - 1)/Z

= (1.5 - 1)/Z

= .5/Z

= .25

This formula will yield the correct answer for optimal f provided all wins are
always for the same amount and all losses are always for the same amount.
If this is not so, then this formula will not yield the correct answer.

The Kelly jornw1a.s  are applicable only to outcotws  that have a Bernoulli
Urtbution.  A Bernoulli distribution is a distribution with two possible, dis-
crete outcomes. Gambling games very often have a Bernoulli distribution.
The two outcomes are how much you make when you win, and how much
you lose when you lose. Trading, unfortunately, is not this simple. To apply
the Kelly formulas to a non-Bernoulli distribution of outcomes (such as
trading) is a mistake. The result will not be the true optimal f.  For more on
the Bernoulli distribution, consult Appendix B.

Consider the following sequence of bets/trades:

+9, +18, +7,  +l, +lO, -5, -3, -17, -7

Since this is not a Bernoulli distribution (the wins and losses are of different
amounts), the Kelly formula is not applicable. However, let’s try it anyway
and see what we get.

Since 5 of the 9 events are profitable, then P = .555. Now let’s take aver-

ages of the wins and losses to calculate B (here is where so many traders go
wrong). The average win is 9, and the average loss is 8. Therefore we say
that B = 1.125. Plugging in the values we obtain:

f = ((1.125 + 1) .555 - 1)/1.125

= (2.125 * .555 - 1)/1.125

= (1.179375 - 1)/1.125

= .179375/1.125

= .159444444

So we say f = .16. You will see later in this chapter that this is not the opti-
mal f. The optimal f for this sequence of trades is .24.  Applying the Kelly
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formula when all wins are not for the same amount an&or  all losses are not
for the same amount is a mistake, for it &II not yield the optimal f.

Notice that the numerator in this formula equals the mathematical
expectation for an event with two possible outcomes as defined earlier.

Therefore, we can  say that as long as all wins are for the same amount and
all losses are for the same amount (whether or not the amount that can be
won equals the amount that can be lost), the optimal f is:

(l.lOb) f = Mathematical Expectation/B

where f = The optimal fixed fraction.

B = The ratio of amount won on a winning bet to amount lost on
a losing bet.

The mathematical expectation is defined in Equation (1.03), but since we
must have a Bernoulli distribution of outcomes we must make certain in
using Equation (l.lOb)  that we only have two possible outcomes.

Equation (l.lOa)  is the most commonly seen of the forms of Equation
(1.10) (which are all equivalent). However, the formula can be reduced to
the following simpler form:

(1.10c) f=P-Q/I3

where f = The optimal fixed fraction.

P = The probability of a winning bet or trade.

Q = The probability f 1o a oss (or the complement of P, equal to
1 - P).

F I N D I N G  T H E  O P T I M A L  f  B Y  T H E

G E O M E T R I C  M E A N

In trading we can count on our wins being for varying amounts and our
losses being for varying amounts. Therefore the Kelly formulas could not
give us the correct optimal f. How then can we find our optimal f to know
how many contracts to have on and have it be mathematically correct?

Here is the solution. To begin with, we must amend our formula for
tinding  HPRs  to incorporate f:

(1.11) HPR = 1 + f *  ( -Trade/Biggest Loss)
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where f = The value we are using for f.

-Trade = The profit or loss on a trade (with the sign reversed
so that losses are positive numbers and profits are
negative).

Biggest Loss = The P&L that resulted in the biggest loss. (This should
always be a negative number.)

And again, TWR is simply the geometric product of the HPRs  and geomet-
ric mean (G) is simply the Nth root of the TWR.

N
(1.12) TWR = nl  + f * (-Tradei/Biggest  LOSS))

i=l

(1.13) G = ( fl(l + f * (-Tradei/Biggest  LOSS))] A (l/N)
i=l

where f = The v&e  we are using for f.

-Tradei  = The profit or loss on the ith trade (with the sign

reversed so that losses are positive numbers and profits
are negative).

Biggest Loss = The P&L that resulted in the biggest loss. (This should
always be a negative number.)

N = The total number of trades.

G = The geometric mean of the HPRs.

By looping through all values for f bettceen  .Ol  and 1, we can jnd  that
’ value for f which results in the highest 1171/R.  This is the value for f that

would provide us with the maximum return on our money using fixed frac-

tion. We can also state that the optimal f is the f that yields the highest geo-

metric mean. It matters not whether we look for highest TWR  or geometric

mean, as both are maximized at the same value for f.
Doing this with a computer is easy, since both the TWR  curve and the

geometric mean curve are smooth with only one peak. You simply loop
from f = .Ol  to f = 1.0 by .Ol.  As soon as you get a TWR  that is less than the
previous TWR, you know that the f corresponding to the previous TWR is
the optimal f.  You can employ many other search algorithms to facilitate this

process of finding the optimal f in the range of 0 to 1. One of the fastest
ways is with the parabolic interpolation search procedure detailed in
portfolio Management Formulas.
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T O  S U M M A R I Z E  T H U S  F A R

You have seen that a good system is the one with the highest geometric
mean. Yet to find the geometric mean you must know f. You may find this
confusing. Here now is a summary and clarification of the process:

1. Take the trade listing of a given market system.

2. Find the optimal f,  either by testing various f values from 0 to 1 or
through iteration. The optimal f is that which yields the highest TWR.

3. Once you have found f,  you can take the Nth root of the TWR that
corresponds to your f,  where N is the total number of trades. This is

your geometric mean for this market system. You can now use this

geometric mean to make apples-to-apples comparisons with other
market systems, as well as use the f to know how many contracts to
trade for that particular market system.

Once the highest f is found, it can readily be turned into a dollar amount
by dividing the biggest loss by the negative oytimul f: For example, if our
biggest loss is $100 and our optimal f is .25, then -$lOO/-.25  = $400. In
other words, we should bet 1 unit for every $400 we have in our stake.

If you’re having trouble with some of these concepts, try thinking in
terms of betting in units, not dollars (e.g., one $5 chip or one futures con-
tract or one lOO-share  unit of stock). The number of dollars you allocate to
each unit is calculated by figuring your largest loss divided by the negative
optimal f.

The optimal f is a result of the balance between a system’s profit-making
ability (on a constant l-unit basis) and its risk (on a constant l-unit basis).

Most people think that the optimal fixed fraction is that percentage of
your total stake to bet, This is absolutely false. There is an interim step
involved. Optimal f is not in itself the percentage of your total stake to bet, it
is the divisor of your biggest loss. The quotient of this division is what you
divide your total stake by to know how many bets to make or contracts to
have on.

You will also notice that margin has nothing whatsoever to ~141  with  &at
is the mathematically optimal number of contracts to have on. Margin
doesn’t matter because the sizes of individual profits and losses are not the
product of the amount of money put up as margin (they would be the same
whatever the size of the margin). Rather, the profits and losses are the prod-
uct of the  exposure of 1 unit (1 futures contract). The amount put up as
margin is further made meaningless in a money-management sense,
because the size of the loss is not limited to the margin.

Most people incorrectly believe that f is a straight-line function rising up
and to the right. They believe this because they think it would mean that
the more you are willing to risk the more you stand to make. People reason
this way because they think that a positive mathematical expectancy is just
the mirror image of a negative expectancy. They mistakenly believe that if
increasing your total action in a negative expectancy game results in losing
faster, then increasing your total action in a positive expectancy game will
result in winning faster. This is not true. At some point in a positive
expectancy situation, further increasing your total action works against you.
That point is a function of both the system’s profitability and its consistency
(i.e., its geometric mean), since you are reinvesting the returns back into the
system.

It is a mathematical fact that when two people face the same sequence of
favorable betting or trading opportunities, if one uses the optimal f and the
other uses any different money-management system, then the ratio of the
optimal f bettor’s stake to the other person’s stake will increase as time goes
on, with higher and higher probability. In the long run, the optimal f bettor
will have infinitely greater wealth than any other money-management sys-
tem bettor with a probability approaching 1. Furthermore, if a bettor has
the goal of reaching a specified fortune and is facing a series of favorable
betting or trading opportunities, the expected time to reach the fortune will
be lower (faster) with optimal f than with any other betting system.

Let’s go back and reconsider the following sequence of bets (trades):

+9, +18, +7,  +l, +lO, -5, -3, -17, -7

Recall that we determined earlier in this chapter that the Kelly formula
was not applicable to this sequence, because the wins were not all for the
same amount and neither were the losses. We also decided to average the
wins and average the losses and take these averages as our values into the
Kelly formula (as many traders mistakenly do). Doing this we arrived at an f
value of .16.  It was stated that this is an incorrect application of Kelly, that it
would not yield the optimal f. The Kelly formula must be specific to a single
bet. You cannot average your wins and losses from trading and obtain the
true optimal fusing the Kelly formula.

Our highest TWR on this sequence of bets (trades) is obtained at .24, or
betting $1 for every $71 in our stake. That is the optimal geometric growth
you can squeeze out of this sequence of bets (trades) trading fixed fraction.
Let’s look at the TWRs at different points along 100 loops through this
sequence of bets. At 1 loop through (9 bets or trades), the TWR for f = .16
is 1.085, and for f = .24 it is 1.096. This means that for 1 pass through this
sequence of bets an f = .16 made 99% of what an f = .24 would have made.
TO continue:
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Passes Total TWR for TWR for Percentage
Throuah Bets or Trades f = .24 f = .I6 Difference

1 9 1.096 1.085 1
10 9 0 2.494 2.261 9.4
4 0 360 38.694 26.132 32.5

100 900 9313.312 3490.761 62.5

As can be seen, using an f value that we mistakenly figured from Kelly
only made 37.5% as much as did our optimal f of .24 after 900 bets or trades
(100 cycles through the series of 9 outcomes). In other words, our optimal f
of .24,  which is only .08 different from .16 (50% beyond the optimal) made
almost 267% the profit that f = .16 did after 900 bets!

Let’s go another 11 cycles through this sequence of trades, so that we
now have a total of 999 trades. Now our TWR for f = .16 is 8563.302 (not
even what it was for f = .24 at 900 trades) and our TWR for f = .24 is
25,451.045.  At 999 trades f = .16 is only 33.6% off = .24, or f = .24 is 297%
off = .16!

As you see, using the optimal f does not appear to ogler  much adtiantage
over the short run, but over the long run it becomes more  and more impor-
tant. The point is, you must give the program time when trading at the opti-
mal f and not expect miracles in the short run. The nwre  time (i.e., bets or
trades) that elapses, the greater the diference between using the optimal f
and any other money-management strategy.

GEOMETRIC AVERAGE TRADE

At this point the trader may be interested in figuring his or her geometric
average trade--that is, what is the average garnered per contract per trade
assuming profits are always reinvested and fractional contracts can be pur-
chased. This is the mathematical expectation when you are trading on a
fixed fractional basis. This figure shows you tvhat effect there is by losers
occurring when you have many contracts on and winners occurring when
you have fewer contracts on. In effect, this approximates how a system
would have fared per contract per trade doing fixed fraction. (Actually the
geometric average trade is your mathematical expectation in dollars per
contract per trade. The geometric mean minus 1 is your mathematical
expectation per trade-a geometric mean of 1.025 represents a mathemati-
cal expectation of 2.5% per trade, irrespective of size.) Many traders look
only at the average trade of a market system to see if it is high enough to
justify trading the system. However, they should be looking at the geomet-
ric averape  trade (GAT)  in making their decision.
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(1.14) CAT = G * (Biggest Loss/-f)

where G = Geometric mean - 1.

f = Optimal fixed fraction.

(and, of course, our biggest loss is always a negative number).
For example, suppose a system has a geometric mean of 1.017238, the

biggest loss is $8,000, and the optimal f is .31.  Our geometric average trade
would be:

GAT = (1.017238 - 1) * (-$S,OOO/  -.31)

= .017238 * $25,806.45

= $444.85

WHY YOU MUST KNOW YOUR OPTIMAL f

The graph in Figure l-6 further demonstrates the importance of using opti-
mal fin fixed fractional trading. Recall our fcurve  for a 2:l coin-toss game,
which was illustrated in Figure l-l.

Let’s increase the winning payout from 2 units to 5 units as is demon-
strated in Figure 1-6. Here your optimai f is .4, or to bet $1 for every $2.50
in you stake. After 20 sequences of +5,-l  (40 bets), your $2.50 stake has
grown to $127,482, thanks to optimal f. Now look what happens in this
extremely favorable situation if you miss the optimal f by 20%. At f values of
.6 and .2 you don’t make a tenth as much as you do at .4. This particular sit-
uation, a SO/,50 bet paying 5 to 1, has a mathematical expectation of (5 * .5)
+ (1 * ( -.5))  = 2 , yet if you bet using an f value greater than .8 you lose
money.

Two points must be illuminated here. The first is that whenever we dis-
CUSS  a TWR, we assume that in arriving at that TWR we allowed fractional
contracts along the way. In other words, the TWR ‘assumes  that you are able
to  trade 5.4789 contracts if that is called for at some point. It is because the
TWR  calculation allows for fractional contracts that the TWR  will always be
the  same for a given set of trade outcomes regardless of their sequence. You
may argue that in real life this is not the case. In real life you cannot trade
fractional contracts. Your argument is correct. However, 1  am allowing the
TWR  to  be calculated this way because in so doing we represent the aver-
age TWR  for all possible starting stakes. If you require that all bets be for
integer amounts, then the amount of the starting stake becomes important.
However, if you were lo average the TWRs from all possible starting stake
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f VALUES

Figure 1-6 20 sequences of +5,  -1.

values using integer bets only, you would arrive at the same TWR  value that
we &xlate  by allowing the fractional bet. Therefore, the TW’R value as

calculated is more realistic than if we were to constrain it to integer bets
only, in that it is representative of the universe of outcomes of different
starting stakes.

Furthermore,  the greater the equity in the account, the more trading on
an intecer contract basis will be the same as trading on a fractional contract. _
basis. The limit here is an account with an infinite amount of capital where
the integer bet and fractional bet are for the same amounts exactly.

This is interesting in that generally the closer you can stick to optimal f,

the better. That is to say that the greater the capitalization of an account,
the greater will be the effect of optimal f. Since optimal f will make an
account grow at the fastest possible rate, we can state that optimal f will
make  itself work better and better for you at the fastest possible rate.

The  graphs (Figures l-l and l-6) bear out a few more interesting
points. The first is that at no otherfixedfruction  u;ill  you make  more money
than you t&l at optimlf  In other words, it does not pay to bet $1 for every
$2 in your stake in the earlier example of a 51 game. In such a case you
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would make more money if you bet $1 for every $2.50 in your stake. It c/ooes
not pay to risk vwre  than the optimal f-in fact, you pay a price to do so!

Obviously, the greater the capitalization of an account the more accu-
rately you can stick to optimal f, as the dollars per single contract required
are a smaller percentage of the total equity. For example, suppose optimal f
for a given market system dictates you trade 1 contract for every $5,000 in
an account. If an account starts out with $10,000 in equity, it will need to
gain (or lose) 50% before a quantity adjustment is necessary. Contrast this to
a $500,000  account, where there would be a contract adjustment for every
I% change in equity. Clearly the larger account can better take advantage of
the benefits provided by optimal f than can the smaller account.
Theoretically, optimal f assumes you can trade in infinitely divisible quanti-
ties, which is not the case in real life, where the smallest quantity you can
trade in is a single contract. In the asymptotic sense this does not matter.
But in the real-life integer-bet scenario, a good case could be presented for
trading a market system that requires as small a percentage of the account
equity as possible, especially for smaller accounts. But there is a tradeoff
here as well. Since we are striving to trade in markets that would require us
to trade in greater multiples than other markets, we will be paying greater
commissions, execution costs, and slippage. Bear in mind that the amount
rgquired per contract in real life is the greater of the initial margin require-
ment and the dollar amount per contract dictated by the optimal f.

The finer you can cut it (i.e., the more frequently you can adjust the size
of the positions you are trading so as to align yourself with what the optimal
f dictates), the better off you are. Most accounts would therefore be better
off trading the smaller markets. Corn may not seem like a very exciting mar-
ket to you compared to the S&P’s Yet for most people the corn market can
get awfully exciting if they have a few hundred contracts on.

Those who trade stocks or forwards (such as forex traders) have a
tremendous advantage here. Since you must calculate your optimal f based
on the outcomes (the P&Ls)  on a l-contract (1 unit) basis, you must first
decide what 1 unit is in stocks or forex. As a stock trader, say you decide that
I unit will be 100 shares. You will use the P&L stream generated by trading
100 shares on each and every trade to determine your optimal f.  When you
go to trade this particular stock (and let’s say your system calls for trading
2.39 contracts or units), you will be able to trade the fractional part (the .39
part)  by putting on 239 shares. Thus, by being able to trade the fractional
pati of 1  unit, you are able to take more advantage of optimal f. Likewise for
forex traders, who must first decide what 1 contract or unit is. For the forex
trader, 1 unit may be one million U.S. dollars or one million Swiss francs.
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THE SEVERITY OF DRAWDOWN

It is important to note at this point that the drawdown you can expect with
fixed fractional trading, as a percentage retracement of your account equity,
historically would have been at least as much as f percent. In other words if
f is .55,  then your drawdown would have been at least 55% of your equity
(leaving you with 45% at one point). This is so because if you are trading at
the optimal f, as soon as your biggest loss was hit, you would experience the
drawdown equivalent to f. Again, assuming that f for a system is .55 and
assuming that translates into trading 1 contract for every $10,000, this
means that your biggest loss was $5,500. As should by now be obvi‘ous,
when the biggest loss was encountered (again we’re speaking historically
what would have happened), you would have lost $5,500 for each contract
you had on, and would have had 1 contract on for every $10,000 in the
account. At that point, your drawdown  is 55% of equity. Moreover, the
drawdown might continue: The next trade or series of trades migflt  draw
your account down even more. Therefore, the better a system, the higher
the f.  The higher the f,  generally the higher the drawdown, since the draw-
down (in terms of a percentage) can never be any less than the f as a per-
centage. There is a paradox involved here in that if a system is good enough
to generate an optimal f that is a high percentage, then the drawdown for
such a good system will also be quite high. Whereas optimal fallows you to
experience the greatest geometric growth, it also gives you enough rope to
hang yourself with.

Most traders harbor great illusions about the severity of drawdowns.
Further, most people have fallacious ideas regarding the ratio of potential
gains to dispersion of those gains.

We know that if we are using the optimal f when we are fixed fractional
trading, we can expect substantial drawdowns in terms of percentage equity
retracements. Optimal f is like plutonium. It gives you a tremendous
amount of power, yet it is dreadfully dangerous. These substantial draw-
downs are truly a problem, particularly for notices, in that trading at the
optimal f level gives them the chance to experience a cataclysmic loss
sooner than they ordinarily might have. Diversification can greatly buffer
the drawdowns. This it does, but the reader is warned not to expect to elim-
inate drawdown. In fact, the real benefit  of diversification  is that it lets you
get off many more  trials,  many more  plays, in the same time period, thus
increa.sing  your total profit. Diversification, although usually the best means
by which to buffer drawdowns, does not necessarily reduce drawdowns, and
in some instances, may actually increase them!

Many people have the mistaken impression that drawdown can be com-
pletely eliminated if they diversify effectively enough. To an extent this is
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true, in that drawdowns can be buffered through effective diversification,
but they can never be completely eliminated. Do not be deluded. No matter
how good the systems employed are, no matter how effectively you diversify,
you will still encounter substantial drawdowns. The reason is that no matter
of how uncorrefated your market systems are, there comes a period when
most or all of the market systems in your portfolio zig in unison against you
when they should be zagging. You will have enormous difficulty finding a
portfolio with at least 5 years of historical data to it and all market systems
employing the optimal f that has had any less than a 30% drawdown in terms
of equity retracement! This is regardless of how many market systems you
employ. If you want to be in this and do it mathematically correctly, you bet-
ter expect to be nailed for 30% to 95% equity retracements. This takes enor-
mous discipline, and very few people can emotionally handle this.

When you dilutei  although you reduce the drawdowns  arithmetically,
you also reduce the returns geometrically. Why commit funds to futures
trading that aren’t necessary simply to flatten out the equity curve at the
expense of your bottom-line profits? You can dioersify cheaply somewhere
else.

Any time a trader deviates from always trading the same constant con-
tract size, he or she encounters the problem of what quantities to trade in.
This is so whether the trader recognizes this problem or not. Constant con-
tract trading is not the solution, as you can never experience geometric
growth trading constant contract. So, like it or not, the question of what
quantity to take on the next trade is inevitable for everyone. To simply
select an arbitrary quantity is a costly mistake. Optimal f is factual; it is
mathematically correct.

MODERN PORTFOLIO THEORY

Recall the paradox of tfle optimal f and a market system’s drawdown. The
better a market system is, the higher the value for f.  Yet the drawdown (his-
torically) if you are trading the optimal f can never be lower than f.
Generally speaking, then, the better the market system is, the greater the
drawdown will be as a percentage of account equity if you are trading opti-
mal f.  That is, if you want to have the greatest geometric growth in an
account, then you can count on severe drawdowns along the way.

Effective diversification among other market systems is the most effec-
tive way in which this drawdown can be buffered and conquered while still
staying close to the peak of the f curve (i.e., without hating to trim back to,
say,  f/z). Wflen  one market system goes into a drawdown,  anotfler  one tflat
is being traded in the account will come on strong, thus canceling the draw-
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down of the other. This also provides for a catalytic effect on the entire
account. The market system that just experienced the drawdown (and now
is getting back to performing well) will have no less funds to start with than
it did when the drawdown began (thanks to the other market system cancel-
ing out the drawdown). Diversification won’t hinder the upside of a system
(quite the reverse-the upside is far greater, since after a drawdown you
aren’t starting back with fewer contracts), yet it will buffer the downside
(but only to a very limited extent).

There exists a quantifiable, optimal portfolio mix given a group of market
systems and their respective optimal fs. Although we cannot be certain that
the optimal portfolio mix in the past will be optimal in the future, such is

more likely than that the optimal system parameters of the past will be opti-
mal or near optimal in the future. Whereas optimal system parameters
change quite quickly from one time period to another, optimal portfolio
mixes change very slowly (as do optimal f values). Gcncrally, the correla-
tions between market systems tend to remain constant. This is good news to
a trader who  has found the optimal portfolio mix, the optimal diversification
among market systems.

T H E  M A R K O W I T Z  M O D E L

The basic concepts of modem portfolio theory emanate from a monograph
written by Dr. Harry Markowitz.’ Essentially, Markowitz proposed that
portfolio management is one of composition, not individual stock selection
as is more commonly practiced. Markowitz argued that diversification is
effective only to the extent that the correlation coefficient between the mar-
kets involved is negative. If we have a portfolio composed of one stock, our
best diversification is obtained if we choose another stock such that the cor-
relation between the two stock prices is as low as possible. The net result
would be that the portfolio, as a whole (composed of these two stocks with
negative correlation), would have less variation in price than either one of
the stocks alone.

Markowitz proposed that investors act in a rational manner and, given
the choice, would opt for a similar portfolio with the same return as the one
they have, but with less risk, or opt for a portfolio with a higher return than
the one they have but with the same risk. Further, for a given level of risk
there is an optimal portfolio with the highest yield, and likewise for a given
yield there is an optimal portfolio with the lowest risk. An investor with a
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Figure l-7 Modern portfolio theory.

portfolio whose yield could be increased with no resultant increase in risk,
or an investor with a portfolio whose risk could be lowered with no resultant
decrease in yield, are said to have ineficient  portfolios.

Figure I-7 shows all of the available portfolios under a given study. If
you hold portfolio C, you would be better off with portfolio A, where you
would have the same return with less risk, or portfolio B, where you would
have more return with the same risk.

In describing this, Markowitz described what is called the efficientfron-
tier. This is the set of portfolios that lie on the upper and left sides of the
graph. These are portfolios whose yield can no longer be increased without
increasing the risk and whose risk cannot be lowered without lowering the
yield. Portfolios lying on the efficient frontier are said to be efficient portfo-
lios. (See Figure l-8.)

Those portfolios lying high and off to the right and low and to the left are
generally not very well diversified among very many issues. Those portfolios
lying in the middle of the efficient frontier are usually very well diversified.
Which portfolio a particular investor chooses is a function of the investor’s
risk aversion-his or her willingness to assume risk. In the Markowitz model
any portfolio that lies upon the efficient frontier is said to be a good portfo-
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Figure l-8 The efficient frontier

ho  choice, but where on the efficient frontier is a matter of personal prefer-
ence (later on we’ll see that there is an exact optimal spot on the efficient
frontier for all investors).

The Markowitz model was originally introduced as applying to a portfolio
of stocks that the investor would hold long. Therefore, the basic inputs were
the expected returns on the stocks (defined as the expected appreciation in
share price plus any dividends), the expected variation in those returns, and
the correlations of the different returns among the different stocks. If we
were to transport this concept to futures it would stand to reason (since
futures don’t pay any dividends) that we measure the expected price gains,
variances, and correlations of the different futures.

The question arises, “If we are measuring the correlation of prices, what
if we have two systems on the same market that are negatively correlated?”
In other words, suppose we have systems A and B. There is a perfect nega-
tive correlation between the two. When A is in a drawdown, B is in a
drawup and vice  versa. Isn’t this really an ideal diversification? What we
really want to measure then is not the correlations of prices of the markets
we’re using. Rather, we want to measure the correlations of daily erlrrity
changes between the clifferent  market system.

Yet this is still an apples-and-oranges comparison. Say that two of the
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market systems we are going to examine the correlations on are both trading
the same market, yet one of the systems has an optimal f corresponding to I
contract per every $2,000 in account equity and the other system has an
optimal f corresponding to 1 contract per every $10,000 in account equity.
To overcome this and incorporate the optimal fs of the various market sys-
tems under consideration, as well as to account for fixed fractional trading,
we convert the daily equity changes for a given market system into daily
HPRs.  The HPR in this context is how much a particular market made or
lost for a given day on a l-contract basis relative to what the optimal f for
that system is. Here is how this can be solved. Say the market system with
an optimal f of $2,000 made $100 on a given day. The HPR then for that
market system for that day is 1.05. To find  the daily IIPR,  then:

(1.15) Daily HPR = (A/B)+1

where A = Dollars made or lost that day.

B = Optimal fin dollars.

We begin by converting the daily dollar gains and losses for the market
systems we are looking at into daily HPRs  relative to the optimal fin dollars
for a given market system. In so doing, we make quantity irrelevant. In the
example just cited, where your daily HPR is 1.05, you made 5% that day on
that money. This is 5% regardless of whether you had on 1 contract or 1,000
contracts.

Now you are ready to begin comparing different portfolios. The trick
here is to compare every possible portfolio combination, from portfolios of 1
market system (for every market system under consideration) to portfolios
of N market systems.

As an example, suppose you are looking at market systems A, B, and C.
Every combination would be:

A
6
C

A”:
BC
ABC

But you do not stop there. For each combination you must figure each
Percentage allocation as well. To do so you will need to have a minimum
Percentage increment. The following example, continued from the portfolio
Al  B, C example, illustrates this with a minimum portfolio allocation of 10%
(.IO):
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A 100%
B 100%
C 100%
AB 9 0 %

8 0 %
70%
60%
50%
40%
30%
20%
10%

A C 90%
80%
70%
60%
50%
40%
30%
20%
10%

B C 90%
80%
70%
60%
50%
40%
30%
20%
10%

ABC 80%
70%
70%

1 0 %
10%
10%

10%
20%
30%
40%
50%
60%
70%
80%
90%
10%
20%
30%
40%
50%
60%
70%
80%
90%
10%
20%
30%
40%
50%
60%
70%
80%
90%
10%
20%
10%

30%
20%
10%

40% respectively. Further, suppose that the individual HPRs  for those mar-
ket systems for that day are .9, 1.4, and 1.05 respectively. Then the net HPR
for this day is:

Net HPR = (.9 * .1) + (1.4 * .5) + (1.05 * .4)

= .09 + .7 + .42

= 1.21

We must perform now two necessary tabulations. The first is that of the
average daily net HPR for each CPA. This comprises the reward or Y axis of
the Markowitz model. The second necessary tabulation is that of the stan-
dard deviation of the daily net HPRs  for a given CPA-specifically, the pop-
ulation standard deviation. This measure corresponds to the risk or X axis of
the Markowitz model.

Modern portfolio theory is often called E-V Theory, corresponding to
the other names given the two axes. The vertical axis is often called E, for
expected return, and the horizontal axis V, for variance in expected returns.

From these first two tabulations we can tind  our efficient frontier. We
have effectively incorporated various markets, systems, and f factors, and we
can now see quantitatively what our best CPAs  are (i.e., which CPAs  lie
along the efficient frontier).

THE GEOMETRIC MEAN PORTFOLIO STRATEGY

1 0 %
10%
20%

Which particular point on the efficient frontier you decide to be on (i.e.,
which particular efficient CPA) is a function of your own risk-aversion pref-
erence, at least according to the Markowitz model. However, there is an
optimal point to be at on the efficient frontier, and finding this point is
mathematically solvable.

60%
70%
80%

If you choose that CPA which shows the highest geometric mean of the
HPRs,  you will arrive at the optimal CPA! We can estimate the geometric
mean from the arithmetic mean HPR and the population standard deviation
of the HPRs  (both of which are calculations we already have, as they are the_-

Now  for each CPA we go through each day and compute a net HPR for
eac.  day.  The net  HPR for  a given day is the sum of each market system’s
HPR for that day times its percentage allocation. For example, suppose for
systems  A, B, and C we are looking at percentage atlocations  of IO%,  SO%,

X and Y axes  for the Markowitz model!). Equations (1.16a) and (l.i6b)  give
us  the formula for the estimated geometric mean (EGM). This estimate is
“cry close (usually within four or five decimal places) to the actual geomet-
ric mean, and it is acceptable to use the estimated geometric  mean and the
actual geometric mean interchangeably.
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(1.16a) EGM  = (AHPR h 2 - SD A  2) A  (I/2)

or

(1.16b) EGM = (AHPR h 2 -V) A  (l/2)

where EGM = The estimated geometric mean.

AHPR = The arithmetic average HPR, or the return coordinate
of the portfolio.

SD = The standard deviation in HPRs, or the risk coordinate
of the portfolio.

V = The variance in HPRs, equal to SD A  2.

Both forms of Equation (1.16) are equivalent.
The CPA with the highest geometric mean is the CPA that will  maximize

the growth  of the portfolio value over the long run; furthermore it will mini-
mize the time required to reach a specified level of equity.

DAILY PROCEDURES FOR USING OPTIMAL
PORTFOLIOS

At this point, there may be some question as to how you implement this
portfolio approach on a day-to-day basis. Again an example will be used to
illustrate. Suppose your optimal CPA calls for you to be in three different
market systems. In this case, suppose the percentage allocations are lo%,
SO%,  and 40%. If you were looking at a $50,000 account, your account
would be “subdivided” into three accounts of $5,000, $25,000, and $20,000
for each market system (A, B, and C) respectively. For each market system’s
subaccount balance you then figure how many contracts you could trade.
Say the f factors dictated the following:

Market system A, 1 contract per $5,000 in account equity.

Market system B, 1 contract per $2,500 in account equity.

Market system C,l contract per $2,000 in account equity.

You would then be trading 1 contract for market system A ($5,000/$5,000),
10 contracts for market system B ($25,000/$2,500),  and 10 contracts for
market system C ($20,000/$2,000).
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Each day, as the total equity in the account changes, all subaccounts are
recapitalized. What is meant here is, suppose this $50,000 account dropped
to $45,000  the next day. Since we recapitalize the subaccounts each day, we
then have $4,500 for market system subaccount A, $22,500 for market sys-
tem subaccount B, and $18,000 for market system subaccount C, from
which we would trade zero contracts the next day on market system A
($4,500 I $5,000 = .9, or, since we always floor to the integer, 0), 9 contracts
for market system B ($22,500/$2,500), and 9 contracts for market system C
($18,000/$2,000).  You always recapitalize the subaccounts each day regard-
less of whether there was a profit or a loss. Do not be confused.
Subaccount, as used here, is a mental construct.

Another way of doing this that will give us the same answers and that is
perhaps easier to understand is to divide a market system’s optimal f
amount by its percentage allocation. This gives us a dollar amount that we
then divide the entire account equity by to know how many contracts to
trade. Since the account equity changes daily, we recapitalize this daily to
the new total account equity. In the example we have cited, market system
A, at an f value of 1 contract per $5,000 in account equity and a percentage
allocation of lo%, yields 1 contract per $50,000 in total account equity
($S,OOO/.lO).  Market system B, at an f value of 1 contract per $2,500 in
account equity and a percentage allocation of SO%,  yields 1 contract per
$5,000 in total account equity ($2,500/.50). Market system C, at an f value
of 1 contract per $2,000 in account equity and a percentage allocation of
401, yields 1 contract per $5,000 in total account equity ($2,000/.40).  Thus,
if we had $50,000  in total account equity, we would trade 1 contract for
market system A, 10 contracts for market system B, and 10 contracts for
market system C.

Tomorrow we would do the same thing. Say our total account equity got
UP to $59,000. In this case, dividing $59,000 into $50,000 yields 1.18, which
floored to the integer is 1, so we would trade 1 contract for market system A
tomorrow. For market system B, we would trade 11 contracts
($59,000/$5,000  = 11.8, which floored to the integer = 11). For market sys-
tem C we would also trade 11 contracts, since market system C also trades 1
contract for every $5,000 in total account equity.

Suppose we have a trade on from market system C yesterday and we are
long 10 contracts. We do not need to go in and add another today to bring
us up to 11 contracts. Rather the amounts we are calculating using the
equity  as of the most recent close mark-to-market is for new positions only.
So for tomorrow, since we have 10 contracts on, if we get stopped out of
this trade (or exit it on a profit target), we will be going 11 contracts on a
new trade if one should occur. Determining our optimal portfolio using the
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daily HPRs  means that we should go in>and  alter our positions on a day-by-
day rather than a trade-by-trade basis, but this really isn’t necessary unless
you are trading a longer-term system, and then it may not be beneficial to
adjust your position size on a day-by-day basis due to increased transaction
costs. In a pure sense, you should adjust your positions on a day-by-day
basis. In real life, you are usually almost as well off to alter them on a trade-
by-trade basis, with little loss of accuracy.

This matter of implementing the correct daily positions is not such a
problem. Recall that in finding the optimal portfolio we used the daily
HPRs  as input, We should therefore adjust our position size daily (if we
could adjust each position at the price it closed at yesterday). In real life this
becomes impractical, however, as transaction costs begin to outweigh the
benefits of adjusting our positions daily and may actually cost us more than
the benefit of adjusting daily. We are usually better off adjusting only at the
end of each trade. The fact that the portfolio is temporarily out of balance
after day 1 of a trade is a lesser price to pay than the cost of adjusting the
portfolio daily.

On the other hand, if we take a position that we are going to hold for a
year, we may want to adjust such a position daily rather than adjust it more
than a year from now when we take another trade. Generally, though, on
longer-term systems such as this we are better off adjusting the position
each week, say, rather than each day. The reasoning here again is that the
loss in efficiency by having the portfolio temporarily out of balance is less of
a price to pay than the added transaction costs of a daily adjustment. You
have to sit down and determine which is the lesser penalty for you to pay,
based upon your trading strategy (i.e., how long you are typically in a trade)
as well as the transaction costs involved.

How long a time period should you look at when calculating the optimal
portfolios? Just like the question, “How long a time period should you look
at to determine the optimal f for a given market system?” there is no defini-
tive answer here. Generally, the more back data you use, the better should
be your result (i.e., that the near optimal portfolios in the future will resem-
ble what your study concluded were the near optimal portfolios). However,
correlations do change, albeit slowly. One of the problems with using too
long a time period is that there will be a tendency to use what were yester-
day’s hot markets. For instance, if you ran this program in 1983 over 5 years
of back data you would most likely have one of the precious metals show
very clearly as being a part of the optimal portfolio. However, the precious
metals did very poorly for most trading systems for quite a few years after
the 1980-1981 markets. So you see there is a tradeoff between using too
much past history and too little in the determination of the optimal portfolio
of the future.

Finally, the question arises as to how often you should rerun this entire
procedure of finding the optimal portfolio. Ideally you should run this on a
continuous basis. However, rarely will the portfolio composition change.
Realistically you should probably run this about every 3 months. Even by
running  this program every 3 months there is still a high likelihood that you
wiII  arrive at the same optimal portfolio composition, or one very similar to
it, that you arrived at before.

ALLOCATIONS GREATER THAN 100%

Thus far, we have been restricting the sum of the percentage allocations to
100%. It is quite possible that the sum of the percentage allocations for the
portfolio that would result in the greatest geometric growth would exceed
100%. Consider, for instance, two market systems, A and B, that are identi-
cal in every respect, except that there is a negative correlation (R c 0)
between them. Assume that the optimal f,  in dollars, for each of these mar-
ket systems is $5,000. Suppose the optimal portfolio (based on highest
geomean) proves to be that portfolio that allocates 50% to each of the two
market systems. This would mean that you should trade 1 contract for every
$10,000 in equity for market system A and likewise for B. When there is
negative correlation, however, it can be shown that the optimal account
growth is actually obtained by trading 1 contract for an amount less than
$10,000 in equity for market system A and/or market system B. In other
words, when there is negative correlation, you can have the sum of percent-
age allocations exceed 100%. Fur&r,  it is possible, although not too likely,
that the individual percentage allocations to the market systems may exceed
100% individually.

It is interesting to consider what happens when the correlation between
two market systems approaches -1.00. When such an event occurs, the
amount to finance trades by for the market systems tends to become
infinitesimal. This is so because the portfolio, the net result of the market
systems, tends to never suffer a losing day (since an amount lost by a market
system on a given day is offset by the same amount being won by a different
market system in the portfolio that day). Therefore, with diversification it is
possible to have the optimal portfolio allocate a smaller f factor in dollars to
a given market system than trading that market system alone would.

To accommodate this, you can divide the optimal f in dollars for each
market system by the number of market systems you are running. In our
example, rather than inputting $5,000 as the optimal f for market system A,
we would input $2,500 (dividing $5,000,  the optimal f,  by 2, the number of
market systems we are going to run), and likewise for market system B.
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Now when we use this procedure to determine the optimal geomean port-
folio as being the one that allocates 50% to A and 50% to B, it means that
we should trade 1 contract for every $5,000 in equity for market system A
($2,500/.5)  and likewise for B.

You must also make sure to use cash as another market system. This is
non-interest-bearing cash, and it has an HPR of 1.00 for every day. Suppose
in our previous example that the optimal growth is obtained at 50% in mar-
ket system A and 40% in market system B. In other words, to trade 1 con-
tract for every $5,000 in equity for market system A and 1 contract for every
$6,250 for B ($2,500/.4).  If we were using cash as another market system,
this would be a possible combination (showing the optimal portfolio as hav-
ing the remaining 10% in cash). If we were not using cash as another mar-
ket system, this combination wouldn’t be possible.

If your answer obtained by using this procedure does not include the
non-interest-bearing cash as one of the output components, then you must
raise the factor you are using to divide the optimal fs in dollars you are
using as input. Returning to our example, suppose we used non-interest-
bearing cash with the two market systems A and B. Further suppose that
our resultant optimal portfolio did not include at least some percentage allo-
cation to non-interest bearing cash. Instead, suppose that the optimal port-
folio turned out to be 60% in market system A and 40% in market system B
(or any other percentage combination, so long as they added up to 100% as
a sum for the percentage allocations for the two market systems) and 0%
allocated to non-interest-bearing cash. This would mean that even though
we divided our optimal fs in dollars by two,  that was not enough, We must
instead divide them by a number higher than 2. So we will go back and
divide our optimal fs in dollars by 3 or 4 until we get an optimal portfolio
which includes a certain percentage allocation to non-interest-bearing cash.
This will be the optimal portfolio. Of course, in real life this does not mean
that we must actually allocate any of our trading capital to non-interest-
bearing cash, Rather, the non-interest-bearing cash was used to derive the
optimal amount of funds to allocate for I contract to each market system,
when viewed in light of each market system’s relationship to each other
market system.

Be aware that the percentage allocations of the portfolio that would have
resulted in the greatest geometric growth in the past can be in excess of
100% and usually are. This is accommodated for in this technique by divid-
ing the optimal f in dollars for each market system by a specific integer
(which usually is the number of market systems) and including non-interest-
bearing cash (i.e., a market system with an HPR of 1.00 every day) as
another market system. The correlations of the different market systems
can have a profound effect on a portfolio. It is important that you realize
that a portfolio can be greater than the sum of its parts (if the correlations of
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its component parts are low enough). It is also possible that a portfolio may
be less than the sum of its parts (if the correlations are too high).

Consider again a coin-toss game, a game where you win $2 on heads and
lose $1 on tails. Such a game has a mathematical expectation (arithmetic) of
fifty  cents. The optimal f is .25, or bet $1 for every $4 in your stake, and
results in a geometric mean of 1.0607. Now consider a second game, one
where the amount you can win on a coin toss is $.90 and the amount you
can lose is $1.10. Such a game has a negative mathematical expectation of
-$.lO,  thus, there is no optimal f,  and therefore no geometric mean either.

Consider what happens when we play both games simultaneously. If the
second game had a correlation coefficient of 1.0 to the first-that is, if we
won on both games on heads or both coins always came up either both
heads or both tails, then the two possible net outcomes would be that we
win $2.90 on heads or lose $2.10 on tails. Such a game would have a mathe-
matical expectation then  of $.40, an optimal f of .14,  and a geometric mean
of 1.013. Obviously, this is an inferior approach to just trading the positive
mathematical expectation game.

Now assume that the games are negatively correlated. That is, when the
coin on the game with the positive mathematical expectation comes up
heads, we lose the $1.10 of the negative expectation game and vice versa.
Thus, the net of the two games is a win of $90 if the coins come up heads
and a loss of -$.lO if the coins come up tails. The mathematical expectation
is still $.40, yet the optimal f is .44, which yields a geometric mean of 1.67.
Recall that the geometric mean is the growth factor on your stake on aver-
age per play. This means that on average in this game we would expect to
make more than 10 times as much per play as in the outright positive math-
ematical expectation game. Yet this result is obtained by taking that positive
mathematical expectation game and combining it with a negative expecta-
tion game. The reason for the dramatic difference in results is due to the
negative correlation bebeen  the two market systems. Here is an example
where the portfolio is greater than the sum of its parts.

Yet it is also important to bear in mind that your drawdown, historically,
would have been at least as high as f percent in terms of percentage of
equity retraced. In real life, you should expect that in the future it will be
higher than this. This means that the combination of the two market sys-
tems, even though they are negatively correlated, would have resulted in at
least a 44% equity retracement. This is higher than the outright positive
mathematical expectation which resulted in an optimal f of .25, and there-
fore a minimum historical drawdown of at least 25% equity retracement.
The moral is clear. Dioersijkation,  if done properly, is a technique that
increases returns. It does not necessarily reduce worst-case drawdowns.
This is absolutely contrary to the popular notion.

Diversification will buffer many of the little pullbacks from equity highs,
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but it does not reduce worst-case drawdowns.  Further, as we have seen with
optimal f, drawdowns are far greater than most people imagine. Therefore,
even if you are very well diversified, you must still expect substantial equity
retracements.

However, let’s go back and look at the results if the correlation coeffi-
cient between the two games were 0. In such a game, whatever the results
of one toss were would have no bearing on the results of the other toss.
Thus, there are four possible outcomes:

Game 1 G a m e  2
Outcome Amount Outcome Amount

Win $2.00 Win $.90

Win $2.00 Lose -$I.10

Lose -$I  .oo Win $.90

Lose -$l .oo Lose -$I.10

Net
Outcome Amount

W i n $2.90
W i n $.90
Lose -$.I0
Lose -$2.10

The mathematical expectation is thus:

ME = 2.9 *  .25+.9 *  .25 - .l * $25 - 2.1 * .25

= . 725+ .225 - .025 - .525

= .4

Once again, the mathematical expectation is $.40. The optima1 f on this
sequence is .26, or 1 bet for every $8.08 in account equity (since the biggest
loss here is -$2.10).  Thus, the least the historical drawdown may have been
was 26% (about the same as with the outright positive expectation game).
However, here is an example where there is buffering of the equity retrace-
ments. If we were simply playing the outright positive expectation game,
the third sequence would have hit us for the maximum drawdown. Since we
are combining the two systems, the third sequence is buffered. But that is
the only benefit. The resultant geometric mean is 1.025, less than half the
rate of growth of playing just the outright positive expectation game. We
placed 4 bets in the same time as we would have placed 2 bets in the out-
right positive expectation game, but as you can see, still didn’t make as
much money:

1.0607 h 2 = 1.12508449

1.025 A 4 = 1.103812891

helped out by the diversification, although you may be able to buffer many
of the other lesser equity retracements. The most important thing to realize
about diversification is that its greatest benefit is in what it can do to
improve your geometric mean. The technique for finding the optimal port-
folio by looking at the net daily HPRs  eliminates having to look at how many
trades each market system accomplished in determining optimal portfolios.
Using the technique allows you to look at the geometric mean alone, with-
out regard to the frequency of trading. Thus, the geometric mean becomes
the single statistic of how beneficial a portfolio is. There is no benefit to be
obtained by diversifying into more market systems than that which results in
the highest geometric mean. This may mean no diversification at all if a
portfolio of one market system results in the highest geometric mean. It
may also mean combining market systems that you would never want to
trade by themselves.

HOW THE DISPERSION OF OUTCOMES
AFFECTS GEOMETRIC GROWTH

Once we acknowledge the fact that whether we want to or not, whether
consciously or not, we determine our quantities to trade in as a function of
the level of equity in an account, we can look at HPRs  instead of dollar
amounts for trades. III  so doing, we can give  money management specificity
and exactitude. We can examine our money-management strategies, draw
rules, and make conclusions. One of the big conclusions, one that will no
doubt spawn many others for us, regards the relationship of geometric
growth and the dispersion of outcomes (HPRs).

This discussion will use a gambling illustration for the sake of simplicity.
Consider two systems, System A, which wins 10% of the time and has a 28
to 1 win/loss  ratio, and System B, which wins 70% of the time and has a 1 to
1  win/loss ratio. Our mathematical expectation, per unit bet, for A is 1.9 and
for B is .4. We can therefore say that for every unit bet System A will return,
on average, 4.75 times as much as System B. But let’s examine this under
fixed fractional trading. We can find our optimal fs here by dividing the
mathematical expectations by the win/loss ratios. This gives us an optimal f
of .0678 for A and .4 for B. The geometric means for each system at their
optimal f levels are then:

Clearly, when you diversify you must use market systems that have as low
a correlation in returns to each other as possible and preferably a negative
one. You must realize that your worst-case equity retracement will hardly be

A = 1.044176755

B  = 1.0857629
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System % Wins Win:Loss ME f Geomean

A 10 28:l 1.9 .0678 1.0441768
B 7 0 1:l .4 .4 1 .0857629

As you can see, System B, although less than one quarter the mathemati-
cal expectation of A, makes almost twice as much per bet (returning
8.57629% of your entire stake per bet on average when you reinvest at the
optimal f levels) as does A (which returns 4.4176755% of your entire stake
per bet on average when you reinvest at the optimal f levels).

Now assuming a 50% drawdown on equity will require a 100% gain to
recoup, then 1.044177 to the power of X is equal to 2.0 at approximately X
equals 16.5, or more than 16 trades to recoup from a 50% drawdown for
System A. Contrast this to System B, where 1.0857629 to the power of X is
equal to 2.0 at approximately X equals 9, or 9 trades for System B to recoup
from a 50% drawdown.

ClJhat’s  going on here.2 Is this because System B has a higher percentage
of winning trades? The reason B is outperforming A has to do with the dis-
persion of outcomes and its effect on the growth function. Most people
have the mistaken impression that the growth function, the TWR, is:

(1.17) TWR  = (1 + R) h N

where R  = The interest rate per period (e.g., 7% = .07).

N = The number of periods.

Since 1 + R is the same thing as an HPR, we can say that most people
have the mistaken impression that the growth function,fi  the TVVR, is:

(1.18) TWR=HPR”N

This function is only true when the return (i.e., the IIPR) is constant, which

is not the case in trading.
The real growth function in trading (or any event where the HPR is not

constant) is the multiplicative product of the HPRs. Assume we are trading

6Many  people mistakenly use the arithmetic average HI’R in the equation for HPH h N. As is
demonstrated here, this will not give the true TWR  after N plays. What you must use is the
geometric, rather than the arithmetic, average HPR h N. This will give you the true TWR.  If
the standard deviation in HPRs is 0, then the arithmetic average HPR and the geometric aver-
age HPR are equivalent, and it matters not which you use.

HOW DISPERSION OF OUTCOMES AFFECTS GEOMETRIC GROWTH 5 5

coffee, our optimal f is 1 contract for every $21,000 in equity, and we have 2
trades, a loss  of $210 and a gain of $210, for HPRs  of .99 and 1.01 respec-
tively. In this example our TWR would be:

TWR  = 1.01 * .99

= .9999

An insight can be gained by using the estimated geometric mean (EGM)
for.Equation (1.16a):

(1.16a) EGM = (AHPR A  2 - SD h 2) A  (l/2)

or

(1.16b) EGM = (AHPR A  2 - V) A  (l/2)

Now we take Equation (1.16a) or (1.16b) to the power of N to estimate
the TWR. This will very closely approximate the “multiplicative” growth
function. the actual TWR:

(1.19a) Estimated TWR = ((AHPR A  2 - SD A  2) A  (l/2))  A  N

or

(1.19b) Estimated TWR = ((AHPR A  2 -V) A  (l/2))  A  N

where N = The number of periods.

AHPR = The arithmetic mean HPR.

SD = The population standard deviation in HPRs.

V = The population variance in HPRs.

The two equations in (1.19) are equivalent.
The insight gained is that we can see here, mathematically, the tradeoff

between an increase in the arithmetic average trade (the HPR) and the vari-

ance in the HPRs,  and hence the reason that the 70% 1:l  system did better
than the 10% 28:l  system!

Our goal should be to maximize the coefficient of this function, to maxi-
mize:

(1.16b) EGM = (AHPR A  2 - V) A  (l/2)
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Expressed literally, our goal is “To maximize the square root of the quantity
HPR squared minus the population oarlance  in HPRs.”

The exponent of the estimated TWR, N, will take care of itself. That is to
say that increasing N is not a problem, as we can increase the number of
markets we are following, can trade more short-term types of systems, and
so on.

However, these statistical measures of dispersion, variance, and standard
deviation (V and SD respectively), are difficult  for most nonstatisticians to
envision. What many people therefore use in lieu of these measures is
known as the mean absolute deviation (which we’ll call M). Essentially, to
find M you simply take the average absolute value of the difference of each
data point to an average of the data points.

(1.20) M = 1  ABS(Xi-X)/N

In a bell-shaped distribution (as is almost always the case with the distribu-
tion of P&L’s from a trading system) the mean absolute deviation equals
about .8 of the standard deviation (in a Normal Distribution, it is .7979).
Therefore, we can say:

(1.21) M=.8*SD

and
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From this equation we can isolate each variable, as well as isolating zero
to obtain the fundamental relationships between the arithmetic mean, geo-
metric mean, and dispersion, expressed as SD * 2 here:

(1.25) A”2-G”2-SD”2=0

(1.26) GA2=AA2-SD”2

(1.27) SDA2=AA2-GA2

(1.28) AA2=GA2+SDA2

In these equations, the value SD A  2 can also be written as V or as (1.25
*M) “ 2 .

This brings us to the point now where we can envision exactly what the
relationships are. Notice that the last of these equations is the familiar
Pythagorean Theorem: The hypotenuse of a right angle triangle squared
equals the sum of the squares of its sides! But here the hypotenuse is A, and
we want to maximize one of the legs, G.

In maximizing G, any increase in D (the dispersion leg, equal to SD or V
n (l/2)  or 1.25 * M)  will require an increase in A to offset. When D equals
zero, then A equals G, thus conforming to the misconstrued growth func-
tion TWR = (1 + R) A  N. Actually when D equals zero, then A equals G per
Equation (1.26).

So, in terms of their relative effect on G, we can state that an increase in
A A  2 is equal to a decrease of the same amount in (1.25 * M)  A  2.

(1.22) SD = 1.25 * M
(1.29) AA  * 2  = - A((1.25 * M) A  2)

We will denote the arithmetic average HPR with the variable A, and the
geometric average HPR with the variable G. Using Equation (l.l6b),  we
can express the estimated geometric mean as:

(1.16b) G = (AA2-V)  A  (l/2)

From this equation, we can obtain:

(1.23) GA2=(AA2-V)

Now substituting the standard deviation squared for the variance [as in
(l.l6a)]:

(1.24) GA2=A”2-SD”2

To see this, consider when A goes from 1.1 to 1.2:

A S D M G A ” 2  SDA2=(1.25*M)^2

1.1 .I .08 1.095445 1.21 .Ol
1 . 2 .4899 .39192 1.095445 1.44 .24

.23 = .23

When A = 1.1, we are given an SD of .l. When A = 1.2, to get an equiva-
lent G, SD must equal .4899 per Equation (1.27). Since M = .8 * SD, then
M = .3919. If we square the values and take the difference, they are both
equal to .23,  as predicted by Equation (1.29).

Consider the following:
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A S D M G AA2 SDA2=(1.25*M)"2

1.1 .25 .2 1.071214 1.21 .0625
1.2 .5408 .4327 1.071214 1.44 .2925

.23 = .23

Notice that in the previous example, where we started with lower disper-
sion values (SD or M),  how much proportionally greater an increase was
required to yield the same G. Thus we can state that the tmre  you reduce
your dispersion, the better, tvith  each reduction providing greater and
greater benefit. It is an exponential function, with a limit at the dispersion
equal to zero, where G is then equal to A.

A trader who is trading on a fixed fractional basis wants to maximize G,
not necessarily A. In maximizing G, the trader should realize that the stan-
dard deviation, SD, affects G in the same proportion as does A, per the

Pythagorean Theorem! Thus, when the trader reduces the standard devia-
tion (SD) of his or her trades, it is equivalent to an equal increase in the
arithmetic average HPR (A), and vice versa!

THE FUNDAMENTAL EQUATION OF TRADING

\Ve can glean a lot more here than just how trimming the size of our losses
improves our bottom line. We  return now to equation (1.19a):

(1.19a) Estimated TWR  = ((AIIPR h 2 - SD * 2) A  (l/2))  h  N

We  again replace AHPR with A, representing the arithmetic average
HPR. Also, since (X h Y) h Z = X h (Y * Z), we can further simplify the

exponents in the equation, thus obtaining:

(1.19c) Estimated TWR  = (A h 2 - SD * 2) *  (N/2)

This last equation, the simplification for the estimated TWR, we call the
fundamental equation for trading, since it describes how the different fac-
tors, A, SD, and N affect our bottom line in trading.

A few things are readily apparent. The first  of these is that if A is less
than or equal to 1, then regardless of the other two variables, SD and N, our
result can be no greater than 1. If A is less than 1, then as N approaches
infinity, A approaches zero. This means that if A is less than or equal to 1
(mathematical expectation less than or equal to zero, since mathematical
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expectation = A - l), we do not stand a chance at making profits. In fact, if
A is less than 1, it is simply a matter of time (i.e., as N increases) until we go
broke.

Provided that A is greater than 1, we can see that increasing N increases
our total profits. For each increase of 1 trade, the coefficient is further mul-
tiplied by its square root. For instance, suppose your system showed an
arithmetic mean of 1.1, and a standard deviation of .25. Thus:

Estimated TWR  = (1.1 * 2 - .25 * 2) h  (N /2)

= (1.21- .0625) h (N/2)

= 1.1475 h (N/2)

Each time we can increase N by 1, we increase our TWR by a factor
equivalent to the square root of the coefficient. In the case of our example,
where we have a coefficient of 1.1475, then 1.1475 h (l/2)  = 1.071214264.
Thus every trade increase, every l-point increase in N, is the equivalent to
multiplying our final  stake by 1.071214264. Notice that this figure is the
geometric mean. Each time a trade occurs, each time N is increased by 1,
the coefficient is multiplied by the geometric mean. Herein is the real bene-
fit of diversification expressed mathematically in the fundamental equation
of trading. Divemification  lets you get more  N off in a given period of time.

The other important point to note about the fundamental trading equa-
tion is that it shows that if you reduce your standard deviation more than
you reduce your arithmetic average HPR, you are better off. It stands to
reason, therefore, that cutting your losses short, if possible, benefits you.
But the equation demonstrates that at some point you no longer benefit by
cutting your losses short. That point is the point where you would be getting
stopped out of too many trades with a small loss that later would have
turned profitable, thus reducing your A to a greater extent than your SD.

Along these same lines, reducing big winning trades can help your pro-
gram if it reduces your SD more than it reduces your A. In many cases, this
can be accomplished by incorporating options into your trading program.
Having an option position that goes against your position in the underlying
(either by buying long an option or writing an option) can possibly help. For
instance, if you are long a given stock (or commodity), buying a put option

. (or writing a call option) may reduce your SD on this net position more than
it reduces your A. If you are profitable on the underlying, you will be
unprofitable on the option, but profitable overall, only to a lesser extent
than had you not had the option position. Hence, you have reduced both
your SD and your A. If you are unprofitable on the underlying, you will
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have increased your A and decreased your SD. All told, you will tend to
have reduced your SD to a greater extent than you have reduced your A. Of
course, transaction costs are a large consideration in such a strategy, and
they must always be taken into account. Your program may be too short-
term oriented to take advantage of such a strategy, but it does point out the
fact that different strategies, along with different trading rules, should be
looked at relative to the fundamental trading equation. In doing so, we gain
an insight into how these factors will affect the bottom line, and what specif-
ically we can work on to improve our method.

Suppose, for instance, that our trading program was long-term enough
that the aforementioned strategy of buying a put in conjunction with a long
position in the underlying was feasible and resulted in a greater estimated
TWR. Such a position, a long position in the underlying and a long put, is
the equivalent to simply being outright long the call. Hence, we are better
off simply to be long the call, as it will result in considerably lower transac-
tion costs’ than being both long the underlying and long the put option.

To demonstrate this, we’ll use the extreme example of the stock indexes
in 1987. Let’s assume that we can actually buy the underlying OEX index.
The system we will use is a simple 20-day  channel breakout. Each day we
calculate the highest high and lowest low of the last 20 days. Then, through-
out the day if the market comes up and touches the high point, we enter
long on a stop. If the system comes down and touches the low point, we go
short on a stop. If the daily opens are through the entry points, we enter on
the open. The system is always in the market:

Date Position Entry P&L Cumulative Volatility

870106
870414
870507
870904
871001
871012
871221

24107 0 0 .I 516987
27654 35.47 35.47 .2082573
29228 -15.74 19.73 .2182117
31347 21.19 40.92 .1793583
32067 - 7 . 2 33.72 .I 848783
30281 - 1 7 . 8 6 15.86 .2076074
24294 59.87 75.73 .3492674

:There  is another hen&  here that is not readily apparent hut hxc cnormmls  merit. That is that
we know, in advance, what our worst-case loss is in advance. Considering how sensitive the
optimal f equation is to what the biggest loss in the future is, such a strategy can have us be
much closer to the peak of the f curve  in the future by allowing us  to predetermine what our
largest loss can he with certainty. Second, the problem or a loss of 3 stnndard  deviations or
more having a much higher probability of occurrence than the Normal Distribution implies is
eliminated. It is the gargantuan losses in excess of 3 standard deviations  that kill most traders.
An options strategy such as this can totally eliminate such terminal IOSSPS.

If we were to determine the optimal f on this stream of trades, we would
find its corresponding geometric mean, the growth factor on our stake per
play, to be 1.12445.

Now we will take the exact same trades, only, using the Black-Scholes
stock option pricing model from Chapter 5, we will convert the entry ptices
to theoretical option prices. The inputs into the pricing model are the his-
torical volatility determined on a 20-day  basis (the calculation for historical
volatility is also  given in Chapter S),  a risk-free rate of 6%,  and a 260.8875-
day year (this is the average number of weekdays in a year). Further, we will
assume that we are buying options with exactly .5 of a year left till expiration
(6 months) and that they are at-the-money. In other words, that there is a
strike price corresponding to the exact entry price. Buying long a call when
the system goes long the underlying, and buying long a put when the system
goes short the underlying, using the parameters of the option pricing model
mentioned, would have resulted in a trade stream as follows:

Date Position Entry P&L Cumulative Underlying Action

870106 L 9.623 0 0 24107 LONG CALL
870414 F 35.47 25.846 25.846 27654
870414 L 15.428 0 25.846 27654 LONG PUT
870507 F 8.792 - 6 . 6 3 7 19.21 29228
870507 L 17.116 0 19.21 29228 LONG CALL
870904 F 21.242 4.126 23.336 31347
870904 L 14.957 0 23.336 31347 LONG PUT
871001 F 10.844 -4.113 19.223 32067
871001 L 15.797 0 19.223 32067 LONG CALL
871012 F 9.374 -6.423 12.8 30281
871012 L 16.839 0 12.8 30281 LONG PUT
871221 F 61.013 44.173 56.974 24294
871221 L 2 3 0 56.974 24294 LONG CALL

If we were to determine the optimal f on this stream of trades, we would
find  its corresponding geometric mean, the growth factor on our stake per
play, to be 1.2166, which compares to the geometric mean at the optimal f
for the underlying  of 1.12445. This is an enormous difference. Since there
are a total of 6 trades, we can raise each geometric mean to the power of 6
to detcrminc  the TWR  on our stake at the end of the  6 trades. This returns
a 1U’R on the underlying of 2.02 versus a n1’R  on the options of 3.24.
Subtracting 1 from each TWR  translates these results to percentage gains
on our starting stake, or a 102% gain trading the underlying and a 224%
gain making the same trades in the options. The options are clearly superior
in this case, as the fundamental equation of trading testifies.
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Trading long the options outright as in this example may not always be
superior to being long the underlying instrument. This example is an
extreme case, yet it does illuminate the fact that trading strategies (as well as
what option series to buy) should be looked at in light of the fundamental
equation for trading in order to be judged properly.

As you can see, the fundamental trading equation can be utilized to dic-
tate many changes in our trading. These changes may be in the way of tight-
ening (or loosening) our stops, setting targets, and so on. These changes are
the results  of inefficiencies in the way we are carrying out our trading as
well as inefficiencies in our trading program or methodology.

I hope you will now begin to see that the computer has been terribly
misused by most  traders. Optimizing and searching for the systems
and parameter values that made the most money over past data is, by
and large a futile process. You only need something that will be
marginally profitable in the future. By correct money management
you can get an awful lot out of a system that is only marginally prof-
itable. In general, then, the degree of profitability is determined by
the money management you apply to the system more than by the
system itself

Therefore, you should build your systems (or trading tech-
niques, for those opposed to mechanical systems) around how certain
you can be that they will be profitable (even if only marginally so) in
the frcture.  This is accomplished primarily by not restricting a system
or technique’s degrees of freedom. The second thing you should do
regarding building your system or technique is to bear the fundamen-
tal equation of trading in mind. It will guide you in the right direc-
tion regarding ineficiencies  in your system or technique, and when it
is used in conjunction with the principle of not restricting the degrees
of freedom, you will have obtained a technique or system on which
you can now employ the money-management techniques. Using these
money-management techniques, whether empirical, as detailed in this
chapter, or parametric (which we will delve into starting in Chapter
3),  will determine the degree of profitability of your technique or
s y&em.

2
Characteristics of Fixed
Fractional Trading and
Salutary Techniques

We have seen that the optimal growth of an account is achieved
through optimal f This is true regardless of the underlying vehicle.
Whether we are trading futures, stocks, or options, or managing a
group of traders,  we achieve optimal growth at the optimal J and we
reach a specified goal in the shortest time.

We have also seen how to combine various market systems at their
optimal f levels into an optimal portfolio from an empirical standpoint.
That is, we have seen how to combine optimal f and portfolio theory,
not from a mathemutical  model standpoint, but from the standpoint of
using the past data directly to determine the optimal quantities to
trade in for the components of the optimal portfolio.

Certain important characteristics about fixed fractional trading still
need to be mentioned. We now cover these characteristics.

OPTIMAL f FOR SMALL TRADERS JUST STARTING OUT

HOW  does a very small account, an account that is going to start out trading
1  contract, use the optimal f approach? One suggestion is that such an
account start out by trading 1 contract not for every optimal f amount in
dollars (biggest loss/-f), but rather that the drawdown and margin must be

63
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considered in the initial phase. The amount of funds allocated towards the
first contract should be the greater of the optimal f amount in dollars or the
margin plus the maximum historic drawdown (on a l-unit basis):

THRESHOLD TO GEOMETRIC 6 5

$14,000/$7,500  = 1.867

Then WC take this result down to the integer:

(2.01) A = MAX {(Biggest Loss/-f), (Margin + ABS(Drawdown))) INT(1.867) = 1

where A =

f=

Margin =

Drawdown =

MAX{]=

The dollar amount to allocate to the first contract.

The optimal f (0 to 1).

The initial speculative margin for the given con-
tract.

The historic maximum drawdown.

The maximum value of the bracketed values.

ABS( ) = The absolute value function.

With this procedure an account can experience the maximum drawdown
again and still have enough funds to cover the initial margin on another
trade. Although we cannot expect the worst-case drawdown in the future
not to cxcccd the  worst-case drawdown historically, it is rather unlikely that
we will start trading right at the beginning of a new historic drawdown.

A trader utilizing this idea will then subtract the amount in Equation
(2.01) from his or her equity each day. With the remainder, he or she will
then divide by (Biggest Loss/-f). The answer obtained will be rounded
down to the integer, and 1 will be added. The result is how many contracts
to trade.

An example may help clarify. Suppose we have a system where the opti-
mal f is .4, the biggest historical loss is -$3,000,  the maximum drawdown
was -$6,000,  and the margin is $2,500. Employing Equation (2.01) then:

A = MAX((  -$3,000/-.4),  ($2,500 + ABS( -$6,000))]
= MAX(($7,500), ($2,500 + $6,000))
= MAX($7,500, $8,500)
= $8,500

We would thus allocate $8,500 for the first contract. Now suppose we are
dealing with $22,500 in account equity. We therefore subtract this first con-
tract allocation from the equity:

$22,500 - $8,500 = $lkooo

We then divide this amount by the optimal fin dollars:

and add 1 to the result (the 1 contract represented by the $8,500 we have
subtracted from our equity):

1+1=2

We therefore would trade 2 contracts. If we were just trading at the opti-
mal f level of 1 contract for every $7,500 in account equity, we would have
traded 3 contracts ($22,500/$7,500).  As you can see, this technique can be
utilized no matter of how large an account’s equity is (yet the larger the
equity the closer the two answers will be). Further, the larger the equity,
the less likely it is that we will eventually experience a drawdown that will
have us eventually trading only 1 contract. For smaller accounts, or for
accounts just starting out, this is a good idea to employ.

THRESHOLD TO GEOMETRIC

Here is another good idea  for accounts just starting out, one that may not be
possible if you are employing the technique just mentioned. This technique
makes use of another by-product calculation of optimal f called the thresh-
old to geometric. The by-products of the optimal f calculation include calcu-
lations, such as the TWR, the geometric mean, and so on, that were derived
in obtaining the optimal f, and that tell us something about the system. The
threshold to the geometric is another of these by-product calculations.
Essentially, the threshold to geometric tells us at what point we should
switch ol;er  to fixed fractional trading, assuming tee  are starting out con-
stant-contract trading.

Refer back to the example of a coin toss where we win $2 if the toss
comes up heads and we lose $1 if the toss comes up tails. We know that our
optimal f is .25,  or to make 1 bet for every $4 we have in account equity. If
we are starting out trading on a constant-contract basis, we know we will
average s.50 per unit per play. However, if we start trading on a fixed frac-
tional basis, we can expect to make the geometric average trade of $.2428
per unit per play.

Assume we start out with an initial stake of $4, and therefore we are
making 1 bet per play. Eventually, when we get to $8, the optimal f would
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have us step up to making 2 bets per play. However, 2 bets times the geo-
metric average trade of $.2428  is $.4856,‘Wouldn’t  we be better off sticking
with 1  bet at the equity level of $8, whereby our expectation per play would
still be $.50? The answer is, “Yes.” The reason that the optimal f is figured
on the basis of contracts that are infinitely divisible, which may not be the
case in real life.

We can find that point where we should move up to trading two con-
tracts by the formula for the threshold to the geometric, T:

(2.02) T = AAT/GAT  *  Biggest Loss/-f

where T = The threshold to the geometric.

AAT  = The arithmetic average trade.

CAT = The geometric average trade.

f = The optimal f (0 to 1).

In our example of the 2-to-1 coin toss:

T = .50/.2428  *  -l/-.25

= 8 .24

Therefore, we are better off switching up to trading 2 contracts when our
equity gets to $8.24 rather than $8.00. Figure 2-l shows the threshold to
the geometric for a game with a 50% chance of winning $2 and a 50%
chance of losing $1.

Notice that the trough of the threshold to the geometric curve occurs at
the optimal f.  This means that since the threshold to the geometric is the
optimal level of equity to go to trading 2 units, you go to 2 units at the low-
est level of equity, optimally, when incorporating the threshold to the geo-
metric at the optimal f.

Now the question is, “Can we use a similar approach to know when to go
from 2 cars to 3 cars?” Also, ‘Why can’t the unit size be 100 cars starting
out, assuming you are starting out with a large account, rather than simply a
small account starting out with 1 car.2” To answer the second question first,
it is valid to use this technique when starting out with a unit size greater
than 1. However, it is valid only if you do not trim back units on the down-
side before switching into the geometric mode. The reason is that before
you switch into the geometric mode you are assumed to be trading in a con-
stant-unit size.

Assume you start out with a stake of 400 units in our 2-to-1 coin-toss
game. Your optimal fin dollars is to trade 1 contract (make 1 bet) for every
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Figure 2-l Threshold to the geometric for 2:l coin toss.

$4 in equity. Therefore, you will start out trading 100 contracts (making 100
bets) on the first trade. Your threshold to the geometric is at $8.24, and
therefore you would start trading 101 contracts at an equity level of
$404.24. You can convert your threshold to the geometric, which is com-
puted on the basis of advancing from 1 contract to 2, as:

(2.03) Converted T = EQ + T - (Biggest Loss/-f)

where EQ = The starting account equity level.

T = The threshold to the geometric for going from I car to 2.

f = The optimal f (0 to 1).

Therefore, since your starting account equity is $400, your T is $8.24,
your biggest loss -$l,  and your f is .25:

Converted T = 400 + 8.24 - ( -l/ -.25)

=400+8.24-4

= 404.24

Thus, you would progress to trading 101 contracts (making 101 bets) if
and when your account equity reached $404.24. We will assume you are

trading in a constant-contract mode until your account equity reaches
$404.24, at which point you will begin the geometric mode. Therefore, until
Your account equity reaches $404.24, you will trade 100 contracts on the
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next trade regardless of the remaining equity in your account. If, after you
cross the geometric threshold (that is, after your account equity hits
$404.24),  you suffer a loss and your equity drops below $404.24, you will go
back to trading on a constant lOO-contract  basis if and until you cross the
geometric threshold again.

This inability to trim back contracts on the downside when you are below
the geometric threshold is the drawback to using this procedure when you
are at an equity level of trading more than 2 contacts. If you are only trading
1 contract, the geometric threshold is a very valid technique for determin-
ing at what equity level to start trading 2 contracts (since you cannot trim
back any further than 1 contract should you experience an equity decline).
However, it is not a valid technique for advancing from 2 contracts to 3,
because the technique is predicated upon the fact that you are currently
trading on a constant-contract basis. That is, if you are trading 2 contracts,
unless you are willing not to trim back to 1 contract if you suffer an equity
decline, the  technique is not valid, and likewise if you start out trading 100
contracts. YOU could do just that (not trim back the number of contracts you
are presently trading if you experience an equity decline), in which case the
threshold to the geometric, or its converted version in Equation (2.03),
would be the valid equity point to add the next contract. The problem with
doing this (not trimming back on the downside) is that you will make less
(your T\VR will be less) in an asymptotic sense. You will not make as much
as if you simply traded the full optimal f.  Further, your drawdowns will be
greater and your risk of ruin higher. Therefore, the threshold to the geo-
metric is only beneficial if you are starting out in the lowest denomination of
bet size (I contract) and advancing to 2, and it is only a benefit if the arith-
metic average trade is more than twice the size of the geometric average
trade. Furthermore, it is beneficial to use only when you cannot trade frac-
tional units.

both have a payoff ratio of 2:l. Therefore, the optimal f dictates that we bet
$1 for every $4 units in equity. The first run we see shows these two systems
with positive correlation to each other. We start out with $100, splitting it
into 2 subaccount units of $50 each. After a trade is registered, it only
affects the cumulative column for that system, as each system has its own
separate bankroll. The size of each system’s separate bankroll is used to
determine bet size on the subsequent play:

Trade
System A
P & L Cumula t i ve Trade

System 6
P & L Cumula t i ve

50.00
2 25.00 75.00 2 25.00

- 1 -18.75 56.25 - 1 -18.75
2 28.13 84.38 2 28.13

- 1 -21.09 63.28 -1 -21.09
2 31.64 94.92 2 31.64

- 1 -23.73 71.19 -1 -23.73
-50.00

Net Profit 21.19140

Total net profit of the two banks =

50.00
75.00
56.25
84.38
63.28
94.92
71.19

-50.00

21.19140

$42.38

Now we will see the same thing, only this time we will operate from a
combined bank starting at 100 units. Rather than betting $1 for every $4 in
the combined stake for each system, we will bet $1 for every $8 in the com-
bined bank. Each trade for either system affects the combined bank, and it
is the combined bank that is used to determine bet size on the subsequent
play:

ONE COMBINED BANKROLL VERSUS SEPARATE
BANKROLLS

Some very important points regarding fixed fractional trading must be cov-
crcd before WC  discuss the parametric  techniques. First, when trading more
than one market system simultaneously, you will generally do better in an
asymptotic sense using only one combined bankroll from which to figure
your contract sizes, rather than separate bankrolls for each.

It is for this reason that we “recapitalize” the subaccounts on a daily basis
as the equity in an account fluctuates. What follows is a run of two similar
systems, System A and System B. Both have a 50% chance of winning, and

System A System 6
Trade P & L Trade P & L Combined Bank

100.00
2 25.00 2 25.00 150.00

-1 -18.75 -1 -18.75 112.50
2 28.13 2 28.13 168.75

-1 -21.09 -1 -21.09 126.56
2 31.64 2 31.64 189.84

- 1 -23.73 - 1 -23.73 142.38
-100.00

Total net profit of the combined bank = $42.3Q

Notice that using either a combined bank or a separate bank in the preced-
ing example shows a profit on the $100 of $42.38. Yet what was shown is the
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case where there is positive correlation between the two systems. Now we
will look at negative correlation between the same two systems, first with
both systems operating from their own separate bankrolls:

System A System B
Trade P&L Cumulative Trade P&L Cumulative

50.00 50.00
2 25.00 75.00 -1 -12.50 37.50

- 1 -18.75 56.25 2 18.75 56.25
2 28.13 84.38 - 1 -14.06 42.19

- 1 -21.09 63.28 2 21.09 63.28
2 31.64 94.92 -1 -15.82 47.46

- 1 -23.73 71.19 2 23.73 71.19
- 50 00 -50.00.

Net Profit 21.19140 21.19140

Total net profit of the two banks = $42.38

As you can see, when operating from separate bankrolls, both systems net
out making the same amount regardless of correlation. However, with the
combined bank:

System A System B
Trade P&L Trade P&L Combined Bank

100.00
2 25.00 -1 -12.50 112.50

-1 -14.06 2 28.12 126.56
2 31.64 -1 -15.82 142.38

-1 -17.80 2 35.59 160.18
2 40.05 - 1 -20.02 180.20

-1 -22.53 2 45.00 202.73
-1OO.OQ

Total net profit of the combined bank = $102.78

With the combined bank, the results are dramatically improved. When
usingfixed  fractional trading you are best offoperating  from a single com-
bined bank.

TREAT EACH PLAY AS IF INFINITELY REPEATED 7 1

TREAT EACH PLAY AS IF INFINITELY REPEATED

The next axiom of fixed fractional trading regards maximizing the current
event as though it were to be performed an infinite number of times in the
future. We have determined that for an independent trials process, you
should ahys  bet that fwhich  is optimal (and constant) and likewise when
there is dependency  involved, only with  dependency f is not constant.

Suppose we have a system where there is dependency in like begetting
like, and suppose that this is one of those rare gems where the confidence
limit is at an acceptable level for us, that we feel we can safely assume that
there really is dependency here. For the sake of simplicity we till  use a pay-
off ratio of 2:l.  Our system has shown that, historically, if the last play was a
win, then the next play has a 55% chance of being a tin. If the last play was
a loss, our system has a 45% chance of the next play being a loss. Thus, if
the last play was a win, then from the Kelly formula, Equation (l.lO),  for
finding the optimal f (since the payoff ratio is Bernoulli distributed):

(1.10) f = ((2 + 1) *  .55 - 1)/2

= (3 * .55- 1)/2

= .65/2

= .325

After a losing play, our optimal f is:

f=((2+  1)*.45-1)/2

= (3 *.45-  1)/2

= .35/2

= .175

Now dividing our biggest losses ( -1) by these negative optimal f’s dic-
tates that we make 1 bet for every 3.076923077 units in our stake after a
tin,  and make 1 bet for every 5.714285714 units in our stake after a loss. In
so doing we will maximize the growth over the long run. Notice that we
treat each individual play as though it were to be performed an infinite
number of times.

Notice in this example that betting after both the wins and the losses still
has a positive mathematical expectation individually. What if, after a loss,
the probability of a win was .3? In such a case, the mathematical expectation
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is negative, hence there is no optimal f and as a result you shouldn’t take

this play:

(1.03) ME = (.3 * 2) + (.7 *  -1)
= .6-.7
= -. 1

In such  circumstances, you would bet the optimal amount only after a win,

and you would not bet after a loss. If there is dependency present, you must
segregate the trades of the market system based upon the dependency and
treat the segregated trades as separate market systems.

The same principle, namely that asymptotic growth is muxirnizcd  if each
play  is considered to be performed  an infinite number of times into the
ftcture,  also applies to simultaneous wagering (or trading a portfolio).
Consider two betting systems, A and B. Both have a 2:l  payoff ratio, and
both win 50% of the time. We will assume that the correlation coefficient

between the two systems is 0, but that is not relevant to the point being illu-

minated here. The optimal fs for both systems (if they were being traded
alone, rather than simultaneously) are .25,  or to make 1 bet for every 4 units
in equity. The optimal fs for trading both systems simultaneously are .23,  or
1 bet for every 4.347826087 units in account equity.’ System B only trades
two-thirds of the time, so some trades will be done when the two systems
are not trading simultaneously. This first sequence is demonstrated with a
starting combined bank of 1,000 units, and each bet for each system is per-

formed with an optimal f of 1 bet per every 4.347826087 units:

A

-1 - 230.00
2 354.20

- 1 - 217.83
2 535.87

-1 -391 .18
2 422.48

B Combined Bank

1 ,ooo.oo
770.00

-1 -177.10 947.10

2 435.67 1,164.93

1,700.80
- 1 -391.18 918.43
2 422.48 1,763.39

IThe  n&d we  are  using here to arrive at these optimal bet sizes is descrubed  in Chapters 6
and ‘i.  \~e  are,  in  e f fect ,  us ing 3 market  systems,  Systems A and U a~  descr ibed here,  both wiith
m arihn&c  HPH  ol’  1.125 and  a standard deviation in HPKs  of .375,  and null cash, with a11
liPI{  of 1.0  and a standard  deviation oT0.  The geometric average  is thus mnximized  at spproxi-
m&y  E  = 23,  where the weightings for A and B both are .92.  Thlls,  the optimal l’s for  both A
and B are transformed to 4.347826. Using such [actors  will mtimize  growth in this game.

EFFICIENCY LOSS IN SIMULTANEOUS WAGERING 73

Next we see the same exact thing, the only difference being that when A
is  betting alone (i.e., when B does not have a bet at the same time as A), we
make 1 bet for every 4 units in the combined bank for System A, since that
is the optimal f on the single, individual play. On the plays where the bets
are simultaneous, we are still betting 1 unit for every 4.347826087 units in
account equity for both A and B. Notice that in so doing we are taking  each
bet, whether it is individual or simultaneous, and applying that optimal f
which would maximize the play as though it were to be performed an in&
nite  number of times in the future.

A B Combined Bank

1 ,ooo.oo
- 1 -250.00 750.00
2 345.00 - 1 -172.50 922.50

- 1 -212.17 2 424.35 1,134.67
2 567.34 1,702.Ol

- 1 -391.46 - 1 -391.46 919.09
2 422.78 2 422.78 1,764.65

As can be seen, there is a slight gain to be obtained by doing this, and the
more trades that elapse, the greater the gain. The same principle applies to
trading a portfolio where not all components of the portfolio are in the mar-
ket all the time. You should trade at the optimal levels for the combination
of components (or single component) that results in the optimal growth as
though that combination of components (or single component) were to be
traded an infinite number of times in the future.

EFFICIENCY LOSS IN SIMULTANEOUS
WAGERING OR PORTFOLIO TRADING

Let’s again return to our 2:l coin-toss game. Let’s again assume that we are

going to play two  of these games, which we’ll call System A and System B,
simultaneously and that there is zero correlation between the outcomes of

the two games. We can determine our optimal fs for such a case as betting
1  unit for every 4.347826 in account equity when the games are played
simultaneously. When starting with a bank of 100 units, notice that we finish
*th  a bank of 156.86 units:
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System A System B
Trade -P&L Trade P & L Bank

Optimal f is 1 unit for every
4.347826 in equity: 100.00

- 1 -23.00 -1 -23.00 54.00
2 24.84 - 1 -12.42 66.42

- 1 -15.28 2 30.55 81.70
2 37.58 2 37.58 156.66

Now let’s consider System C. This would be the same as Systems A and
B, only we’re going to play this game alone, without another game going
simultaneously. We’re also going to play it for 8 plays-as opposed to the
previous endeavor, where we played 2 games for 4 simultaneous plays. Now
our optimal f is to bet 1 unit for every 4 units in equity. What we have is the
same 8 outcomes as before, but a different, better end result:

Trade
System C

P & L Bank

Optimal f is 1 unit for
every 4.00 in equity:

- 1
100.00

- 2 5 . 0 0 75.00
2 37.50 112.50

- 1 - 2 8 . 1 3 84.38
2 42.19 126.56
2 63.28 189.84
2 94.92 284.77

- 1 - 7 1 . 1 9 213.57
- 1 - 5 3 . 3 9 160.18

The end result here is better not because the optimal fs differ slightly
(both are at their respective optimal levels), but because there is a small
efficiency loss involved with simultaneous wagering. This ineflciency  is the
result of not being able to recapitalize your account after every single wager
as you could betting only 1 market system. In the simultaneous e-bet case,
you can only recapitalize 3 times, whereas in the single B-bet case you

recapitalize 7 times. Hence, the efficiency  loss in simultaneous wagering (or
in trading a portfolio of market systems).

We just witnessed the  case where the simultaneous bets were not corre-
lated. Let’s look at what happens when we deal with positive ( +l.OO)
correlation:

System A System B
Trade P&L Trade P & L Bank

Optimal f is 1 unit for every
8.00 in equity:

100.00
- 1 -12.50 - 1 -12.50 75.00

2 18.75 2 18.75 112.50
- 1 - 1 4 . 0 6 - 1 - 1 4 . 0 6 84.38

2 21.09 2 21.09 126.56

Notice that after 4 simultaneous plays where the correlation between the
market systems employed is + 1.00, the result is a gain of 126.56 on a start-
ing stake of 100 units. This equates to a TWR of 1.2656, or a geometric
mean, a growth factor per play (even though these are combined plays) of
1.2656 h (l/4) = 1.06066.

Now refer back to the single-bet case. Notice here that after 4 plays, the

outcome is 126.56, again on a starting stake of 100 units. Thus, the geomet-
ric mean of 1.06066. This demonstrates that the rate of growth is the same
when trading at the optimal fractions for perfectly correlated markets. As
soon as the correlation coefficient comes down below + 1.00, the rate of
growth increases. Thus, we can state that when combining market systems,
your rate of growth will never be any less than with the single-bet case, no
matter of how high the correlations are, provided that the market system
being added has a positive arithmetic mathematical expectation.

Recall the first example in this section, where there were 2 market sys-
tems that had a zero correlation coefficient between them. This market sys-
tem made 156.86 on 100 units after 4 plays,  for a geometric mean of
(156.86/100)  A  (l/4)  = 1.119. Let’s now look at a case where the correlation
coefficients  are -1.00. Since there is never a losing play under the following
scenario, the optimal amount to bet is an infinitely high amount (in other
words, bet 1 unit for every infinitely small amount of account equity). But,
G&r than getting that greedy, we’ll just make 1 bet for every 4 units in our
stake SO that we can make the illustration here:
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Systam A System B
Trade P&L Trade P&L Bank

Optimal f is 1 unit for every
0.00 in equity (shown is
1 for every 4): 100.00

-1 -12.50 2 25.00 112.50
2 28.13 - 1 -14.06 126.56

- 1 -15.82 2 31.64 142.38
2 35.60 -1 -17.80 160.18

There are two main points to glean from this section. The first is that
there is a small efficiency loss with simultaneous betting or portfolio trading,
a loss caused by the inability to recapitalize after every individual play. The
second point is that combining market systems, provided they have a posi-
tive mathematical expectation, and even if they have perfect positive corre-
lation, never decreases your total growth per time period. Ilowever,  as you
continue to add more and more market systems, the efficiency loss becomes
considerably greater. If you have, say, 10 market systems and they all suffer
a loss simultaneously, that loss could be terminal to the account, since you
have not been able to trim back size for each loss as you would have had the
trades occurred sequentially.

Therefore, we can say that there is a gain from adding each new market
system to the portfolio provided that the market system has a correlation
coefficient less than 1 and a positive mathematical expectation, or a negative
expectation but a low enough correlation to the other components in the
portfolio to more than compensate for the negative expectation. There is a
marginally decreasing benefit to the geometric mean for each market sys-
tem added. That is, each new market system benefits the geometric mean
to a lesser and lesser degree. Further, as you add each new market system,
there is a greater and greater efficiency loss caused as a result of simultane-
ous rather than sequential outcomes. At some point, to add another market
system will do more harm then good.

where AHPR = The arithmetic mean HPR.

SD = The population standard deviation in HPRs.

Therefore, we can estimate the standard deviation, SD, as:

(2.04) S D  A  2=AHPR  A  2-EGM * 2

Returning to our 2:l coin-toss game, we have a mathematical expectation
of $.50, and an optimal f of betting $1 for every $4 in equity, which yields a
geometric mean of 1.06066. We can use Equation (2.05) to determine our
arithmetic average HPR:

(2.05) AHPR = 1 + (ME/f$)

where AHPR = The arithmetic average HPR.

ME = The arithmetic mathematical expectation in units.

f$ = The biggest loss/-f.

f = The optimal f (0 to 1).

Thus, we would have an arithmetic average HPR of:

AHPR = 1 + (.5/(  -l/ -.25))

= 1 + (.5/4)

= 1 + .125

= 1.125

Now, since we have our AHPR and our ECM, we can employ equation
(2.04) to determine the estimated standard deviation in the HPRs:

(2.04) SD * 2 = AHPR A  2-EGM * 2

TIME REQUIRED TO REACH A SPECIFIED GOAL = 1.125 A  2- 1.06066 A  2
AND THE TROUBLE WITH FRACTIONAL f = 1.265625 - 1.124999636

Suppose  we are given the arithmetic average HPR and the geometric aver-
age HPR for a given system. We can determine the standard deviation in
HPRs  from the formula for estimated geometric mean:

= .140625364

Thus  SD A 2, which is the variance in HPRs, is .140625364.  Taking the
square mot  of this yields a standard deviation in these HPRs  of .140625364

(1.19a) FGM  = (AHPR A  2 - SD A  2) A  (l/2) A (112)  = .3X0904853.  YOU should note that this is the estimated standard
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deviation because it uses the estimated geometric mean as input. It is prob-
ably not completely exact, but it is close enough for our purposes.

However, suppose we want to convert these values for the standard devi-
ation (or variance), arithmetic, and geometric mean HPRs  to reflect trading
at the fractional f. These conversions are now given:

(2.06) FAHPR = (AHPR - 1) *  FRAC + 1

(2.07) FSD = SD * FRAC

(2.08) FGHPR = (FAHPR h 2 - FSD h 2) A  (l/2)

where FRAC = The fraction of optimal f we are solving  for.

AHPR = The arithmetic average HPR at the optimal E

SD = The standard deviation in HPRs  at the optimal f.

FAHPR = The arithmetic average HPR at the fractional f.

FSD = The standard deviation in HPRs  at the fractional f

FGHPR = The geometric average HPR at the fractional f.

For example, suppose we want to see what values we would have for
FAHPR, FGHPR, and FSD at half the optima1 f (FRAC = .5) in our 2:1
coin-toss game. Here, we know our AHPR is 1.125 and our SD is
.3750004853.  Thus:

(2.06) FAHPR = (AHPR - 1) * FRAC + l

= (1.12890625 - .03515634101)  h (l/2)

= 1.093749909 A  (l/2)

= 1.04582499

Thus, for an optima1 f of .25, or making 1 bet for every $4 in equity, we
have values of 1.125, 1.06066, and .3750004853  for the arithmetic average,
geometric average, and standard deviation of HPRs  respectively. Now we
have solved for a fractional (.5) f of .125 or making 1 bet for every $8 in
our stake, yielding values of 1.0625, 1.04582499, and .1875002427  for the
.arithmetic  average, geometric average, and standard deviation of HPRs
respectively.

We can now take a look at what happens when we practice a fractional f
strategy. We have already determined that under fractional f we will make
geometrically less money than under optimal f.  Further, we have deter-
mined that the drawdowns and variance in returns will be less with frac-
tional f.  What about time required to reach a specific goal?

We can quantify the expected number of trades required to reach a spe-
cific goal. This is not the same thing as the  expected time required to reach
a specific goal, but since our measurement is in trades we will use the two
notions of time and trades elapsed interchangeably here:

(2.09) N = ln(Goal)/ln(Geometric  Mean)

where N = The expected number of trades to reach a specific goal.

Goal  = The goal in terms of a multiple on our starting stake, a
TWR.

= (1.125- 1) * .5 + l ln( ) = The natural logarithm function.

= .125 * .5 + 1

= .0625 + 1

= 1.0625

Returning to our 2:l coin-toss example. At optimal f we have a geometric
mean of 1.06066, and at half f this is 1.04582499. Now let’s calculate the
expected number of trades required to double our stake (goal = 2). At full f :

N = 1n(2)/1n(  1.06066)
(2.07) FSD = SD * FRAC

= .6931471/.05889134
= . 3750004853 * .5

= 11.76993
= .1875002427

(2.08) FGHPR = (FAIIPR A  2- FSD A  2) A  (l/2)

= (1 .0625  A  2- .1875002427  A  2) A  (l/2)

Thus, at the full  f amount in this 2:1 coin-toss game, we anticipate it till
take US 11.76993 plays (trades) to double our stake.

NOW, at the half f amount:
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N = ln(  2)/ 1n(  1.04582499)

= .6931471/.04480602

= 15.46996

Thus, at the half f amount, we anticipate it will take us 15.46996 trades to
double our stake. In other words, trading half f in this case will take us
31.44% longer to reach our goal.

Well, that doesn’t sound too bad. By being more patient, allowing
31.44% longer to reach our goal, we eliminate our drawdown by half and
our variance in the trades by half. Half f is a seemingly attractive way to go.
The smaller the fraction of optimal f that you use, the smoother the equity
curve, and hence the less time you can expect to be in the worst-case draw-
down.

Now, let’s look at it in another light. Suppose you open two accounts,
one to trade the full f and one to trade the half f.  After 12 plays, your full f
account will have more than doubled to 2.02728259 (1.06066 h 12) times
your starting stake. After I2 trades your half f account will have grown to
1.712017427 (1.04582499 h 12) times your starting stake. This half f
account will double at 16 trades to a multiple of 2.048067384 (1.04582499
A  16) times your starting stake. So, by waiting about one-third longer, you
have achieved the same goal as with full optimal f, only with half the com-
motion. However, by trade 16 the full f account is now at a multiple of

2.565777865 (1.06066 A  16) times your starting stake. Full f will continue to
pull out and away. By trade 100, your half f account should be at a multiple
of 88.28796546 times your starting stake, but the full f will be at a multiple
of 361.093016!

So anyone who claims that the only thing you sacrifice with trading at a
fractional versus full f is time required to reach a specific goal is completely
correct. Yet time is what it’s all about. We can put our money in Treasury
Bills and they will reach a specific goal in a certain time with an absolute
minimum of drawdown and variance! Time truly is of the essence.

C O M P A R I N G  T R A D I N G  S Y S T E M S

We have seen that two trading systems can be compared on the basis of

their geometric means at their respective optimal fs. Further, we can com-
pare systems based on how high their optimal fs themselves are, with the
higher optimal f being the riskier system. This is because the least the draw-
down may have been is at least an f percent equity retracement. So, there

COMPARING TRADING SYSTEMS 8 1

are two  basic measures for comparing systems, the geometric means at the
optimal fs, with the higher geometric mean being the superior system, and
the optimal fs themselves, with the lower optimal f being the superior sys-
tem. Thus, rather than having a single, one-dimensional measure of system
performance, we see that performance must be measured on a two-dimen-
sional plane, one axis being the geometric mean, the other being the value
for f itself. The higher the geometric mean at the optimal J the better the
system, Also, the lower the optinuzlj,  the better the system.

Geometric mean does not imply anything regarding drawdown. That is, a
higher geometric mean does not mean a higher (or lower) drawdown. The
geometric mean only pertains to return. The optimal f is the measure of
minimum expected historical drawdown as a percentage of equity retrace-
merit.  A higher optimal f does not mean a higher (or lower) return. We can
also use these benchmarks to compare a given system at a fractional f value
and another given system at its full optimal f value.

Therefore, when looking at systems, you should look at them in terms of
how high their geometric means are and what their optimal fs are. For
example, suppose we have System A, which has a 1.05 geometric mean and
an optimal f of .8. Also, we have System B, which has a geometric mean of
1.025 and an optimal f of .4. System A at the half f level will have the same

minimum historical worst-case equity retracement (drawdown) of 40%, just
as System B’s at full f,  but System A’s geometric mean at half f will still be
higher than System B’s at the full f amount. Therefore, System A is superior
to System B.

“Wait a minute,” you say, “I thought the only thing that mattered was
that we had a geometric mean greater than 1, that the system need be only
marginally profitable, that we can make all the money we want through
money management!” That’s still true. However, the rate at which you will
make the money is still a function of the geometric mean at the f level you
are employing. The expected variability will be a function of how high the f
YOU  are using is. So, although it’s true that you must have a system with a
geometric mean at the optimal f that is greater than 1 (i.e., a positive mathe-
matical expectation) and that you can still make virtually an unlimited
amount with such a system after enough trades, the rate of growth (the
number of trades required to reach a specific goal) is dependent upon the
geometric mean at the f value employed. The variability en route to that
goal is also a function of the f value employed.

Yet these considerations, the degree of the geometric mean and the f
employed, are secondary to the fact that you must have a positive mathe-
matical expectation, although they are useful in comparing two systems or
techniques that have positive mathematical expectations and an equal confi-
dence of their working in the future.
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TOO MUCH SENSITIVITY TO THE BIGGEST LOSS

A recurring criticism with the entire approach of optima] f is that it is too
dependent on the biggest losing trade. This seems to be rather disturbing to
many traders. They argue that the amount of contracts you put on today
should not be so much a function of a single bad trade in the past.

Numerous different algorithms have been worked up by people to allevi-
ate this apparent oversensitivity to the largest loss. Many of these algorithms
work by adjusting the largest loss upward or downward to make the largest
loss be a function of the current volatility in the market. The relationship
seems to be a quadratic one. That is, the absolute value of the largest loss
seems to get bigger at a faster rate than the volatility. (Volatility is usually
defined by these practitioners as the average daily range of the last few
weeks, or average absolute value of the daily net change of the last few
weeks, or any of the other conventional measures of volatility.) However,
this is not a deterministic relationship. That is, just because the volatility is X
today does not mean that our largest loss will  be X A  Y. It simply means that
it usually is somewhere near X A  Y.

If we could determine in advance what the largest possible loss would be
going into today, we could then have a much better handle on our money
management.* Here again is a case where we must consider the worst-case
scenario and build from there. The problem is that we do not know exactly
what our largest loss can be going into today. An algorithm that can predict
this is really not very useful to us because of the one time that it fails.

Consider for instance the possibility of an exogenous shock occurring in a
market overnight. Suppose the volatility were quite low prior to this
overnight shock, and the market then went locked-limit against you for the
next few days. Or suppose that there were no price limits, and the market
just opened an enormous amount against you the next day. These types of
events are as old as commodity and stock trading itself. They can and do
happen, and they are not always telegraphed in adtjance  by increased
volatility.

Generally then you are better off not to “shrink” your largest historical

“This is where using options in a trading strategy is so useful. Either buying a put or call out-
right in opposition to the underlying position to limit the loss to the strike price of the options,
or simply bu+ng  options outright in lieu of the underlying, gives you a floor, an absohlte  maxi-
mum loss. Knowing this is extremely handy from a money-management, particularly an opti-
mal f,  standpoint, Further, il you know what your maximum possible loss is in advance (e.g., a
day trade),  then you can always determine what the f is  in dollan perfectly for any trade by the
relation dollars at r isk per unit/opeimal  L For example, suppose a day trader knew her optimal I’
wa5  .4.  Her  stop today, on a I-unit basis,  is going to be $900. She will therefore optimally trade
1 unit  roar every $2,250 ($!300/.4)  in account equity.
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loss  to reflect a current low-volatility marketplace. Furthermore, tlzere is the
concrete possibility of experiencing a loss larger in the future than what  u;m
the  historically largest loss. There is no mandate that the largest loss seen in
the past is the largest loss you can experience today.3 This is true regardless
ofthe current volatility coming into today.

The problem is that, empirically, the f that has been optima1 in the past is
a function of the largest loss of the past. There’s no getting around this.
However, as you shall see when we get into the parametric techniques, you
can budget for a greater loss in the future. In so doing, you will be prepared
if the ahnost inevitable larger loss comes along. Rather than trying to adjust
the largest loss to the current climate of a given market so that your empiti-
Cal  optimal f reflects the current climate, you will be much better off learn-
ing the parametric techniques.

The technique that follows is a possible solution to this problem, and it
can be applied whether we are deriving our optimal f empirically or, as we
shall learn later, parametrically.

EQUALIZING OPTIMAL f

Optimal f will yield the greatest geometric growth on a stream of outcomes.
This is a mathematical fact. Consider the hypothetical stream of outcomes:

+2,  -3, + 10, -5

This is a stream from which we can determine our optimal f as .17,  or to
bet 1 unit for every $29.41 in equity. Doing so on such a stream will yield
the greatest growth on our equity.

Consider for a moment that this stream represents the trade profits and
losses on one share of stock. Optimally we should buy  one share of stock for
every $29.41 that we have in account equity, regardless of what the current
stock price is. But suppose the current stock price is $100 per share.
Further, suppose the stock was $20 per share when the first two trades
occurred and was $50 per share when the last two trades occurred.

Recall that with optimal f we are using the stream of past trade P&L’s as
a proxy for the distribution of expected trade P&L’s currently. Therefore,

3Prudence  requi res  that  we USC  a largest  loss at  least  as  big as the largest  loss  seen in  the past .
As the Iilture  unrolds and we obtain more and more data, we till der ive longer runs or l o s s e s .

For  instance, if I  flip a coin 100  times I might see it come up tails  12  times in a row at the
lon&st  run  of tails. If I go and nip it 1,000 times, I most likely will see a longer run of tails. This
same  principle is at work when we trade. Not only should we  expect longer streaks ol’  losing
trades in the future, we should also expect  a bigger largest losing trade.
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we can preprocess the trade P&L data>to  reflect this by converting the past
trade P&L data to reflect a commensurate percentage gain or loss based
upon the current price.

For our first two trades, which occurred at a stock price of $20 per share,
the $2 gain corresponds to a 10% gain and the $3 loss corresponds to a 15%
loss. For the last two trades, taken at a stock price of $50 per share, the $10
gain corresponds to a 20% gain and the $5 loss corresponds to a 10% loss.

The formulas to convert raw trade P&L’s to percentage gains and losses
for longs and shorts are as follows:

(2.10a) P&L% = Exit Price/Entry Price - 1 (for longs)

2.10b) P&L% = Entry Price/Exit Price - 1 (for shorts)

or we can use the following formula to convert both longs and shorts:

(2.1Oc) P&L% = P&L in Points/Entry Price

Thus, for our 4 hypothetical trades, we now have the following stream of
percentage gains and losses (assuming all trades are long trades):

+ .l,-.15,  + 2, -.l

We call this new stream of translated P&L’s the eyu&ed  data,  because
it is equalized to the price of the underlying instrument when the trade
occurred.

To account for commissions and slippage, you must adjust the exit price
downward in Equation (2.10a)  for an amount commensurate with the
amount of the commissions and slippage. Likewise, you should adjust the
exit price upward in (2.IOb). If you are using (2.IOc), you must deduct the
amount of the commissions and slippage (in points again) from the numera-
tor P&L in Points.

Next WC determine our optimal f on these percentage gains and losses.
The f that is optimal is .09.  We must now convert this optimal f of .09 into a
dollar amount based upon the current stock price. This is accomplished by
the following formula:

(2.11) f$ = Biggest % Loss * Current Price * $ per Point/-f

Thus, since our biggest percentage loss was -.15,  the current price is
$100 per share, and the number of dollars per full point is 1 (since we are
only dealing with buying 1 share), we can determine our f$ as:
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f$ = -.15  * 100 * l/ -.09

= -15/-.09

= 166.67

Thus, we would optimally buy 1 share for every $166.67 in account
equity. If we used 100 shares as our unit size, the only variable affected
would have been the number of dollars per full point, which would have
been 100. The resulting f$ would have been $16,666.67  in equity for every
IO0  shares.

Suppose now that the stock went down to $3 per share. Our f$ equation
would be exactly the same except for the current price variable which would
now be 3. Thus, the amount to finance 1 share by becomes:

f$ = -.15  *  3 * l/ -.09

= -.45/  -.09

=5

We optimally would buy 1 share for every $5 we had in account equity.
Notice that the optimal f does not change with the current price of the

stock. It remains at .09.  However, the f$ changes continuously as the price
of the stock changes. This doesn’t mean that you must alter a position you
are already in on a daily basis, but it does make it more likely to be benefi-
cial that you do so. As an example, if you are long a given stock and it
declines, the dollars that you should allocate to 1 unit (100 shares in this
case) of this stock will decline as well, with the optimal f determined off of
equalized data. If your optimal f is determined off of the raw trade P&L
data, it will not decline. In both cases, your daily equity is declining. Using
the equalized optimal f makes it more likely that adjusting your position size
daily  will be beneficial.

Equalizing the data for your optimal f necessitates changes in the by-
products.4 We have already seen that both the optimal f and the geometric
mean (and hcncc  the TWR) change. The arithmetic average trade changes

‘Risk-of-min  equations, although not directly addressed in this text, must also be adjusted to
reflect  equalized data when being used. Generally, risk-of-ruin equations use the raw trade
P&L data as input. However, when you use equalized data, the new stream of percentage gains
and losses must be multipled  by the current price of the underlying instrument and the result-
ing stream used. Thus, a stream of percentage gains and losses such ar .l, 45,  .2,  4 trans-
lates into a stream of 10,  -15.20, -10 for an under+g  at a current price of $100. This new
stream should then be used as the data for the risk-of-ruin equations.
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because now it, too, must be based on the idea that all trades in the past
must be adjusted as if they had occurred from the current price. Thus, in
our hypothetical example of outcomes on 1 share of +2, -3, + 10, and -5, we
have an average trade of $1. When we take our percentage gains and losses
of +.l,  -15, +.2, and -.l, we have an average trade (in percent) of +.5. At
$100 per share, this translates into an average trade of 100 * .05 or $5 per
trade. At $3 per share, the average trade becomes $.15 (3 * .05).

The geometric average trade changes as well. Recall Equation (1.14) for
the geometric average trade:

Finally, when putting together a portfolio of market systems we must fig-
ure daily HPRs. These too are a function of f$:

(2.12) Daily HPR = D$/f$ + 1

where D$ = The dollar gain or loss on 1 unit from the previous day.
This is equal to (Tonight’s Close - Last Night’s Close)
*  Dollars per Point.

(1.14) GAT = G * (Biggest Loss/-f)

where G = Geometric mean - 1.

f = Optimal fixed fraction.

f$ = The current optima1 fin dollars, calculated from Equation
(2.11). Here, however, the current price variable is last
night’s close.

For example, suppose a stock tonight closed at $99 per share. Last night
it was $102 per share. Our biggest percentage loss is -15. If our f is .09 then
our f$ is:

(and, of course, our biggest loss is always a negative number).
This equation is the equivalent of:

GAT = (geometric mean - 1) * f$

f$ = -.15  * 102 * l/-.09

= -15.3/-.09

= 170
We have already obtained a new geometric mean by equalizing the past

data. The f$ variable, which is constant when we do not equalize the past
data, now changes continuously, as it is a function of the current underlying
price. Hence our geometric average trade changes continuously as the price
of the underlying instrument changes.

Our threshold to the geometric also must be changed to reflect the
equalized data. Recall Equation (2.02) for the threshold to the geometric:

Since we are dealing with only 1 share, our dollars per point value is $1. We
can now determine our daily HPR for today by Equation (2.12) as:

(2.02) T = AAT/GAT  *  Biggest Loss/-f

where T = The threshold to the geometric.

AAT  = The arithmetic average trade.

GAT = The geometric average trade.

f = The optimal f (0 to 1).

(2.12) Daily HPR = (99 - 102) * l/170  + 1

= -3/170  + 1

= -.01764705882 + 1

= .9823529412

This equation can also be rewritten as:

T = AAT/GAT  * f$

Now, not only do the AAT  and GAT variables change continuously as the
price of the underlying changes, so too does the f$ variable.

Return now to what was said at the outset of this discussion. Given a
stream of trade P&L’s, the optimal f will make the greatest geometric
growth on that stream (provided it has a positive arithmetic mathematical
expectation). We use the stream of trade P&L’s as a proxy for the distribu-
tion of possible outcomes on the next trade. Along this line of reasoning, it
may be advantageous for us to equalize the stream of past trade profits and
losses to be what they would be if they were performed at the current mar-
ket price. In so doing, we may obtain a more realistic proxy of the distribu-
tion of potential trade profits and losses on the next trade. Therefore, we
should figure our optimal f from this adjusted distribution of trade profits
and  losses.
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This does not mean that we would have made more by using the optimal
f off of the equalized data. We would ndt  have, as the following demonstra-
tion shows:

P & L

At f = .09,
trading the
equalized
method:

+2

- 3
+lO
-5

Percentage Underlying f$ Number of Cumulative
Pr ice Shares

$10,000
.l 2 0 $33.33 3 0 0 $10,600

-.15 2 0 $33.33 3 1 8 $9,646
.2 5 0 $83.33 115.752 $10,803.52

-. 1 5 0 $83.33 129.642 $10,155.31

P&L Percentage

At f = .17,
trading the
nonequalized
method:

+2 .l
-3 -.15

+lO .2
-5 -.l

Underlying f$ Number of Cumulative
Pr ice Shares

$10,000
2 0 $29.41 340.02 $10,680.04
2 0 $29.41 363.14 $9,590.61
5 0 $29.41 326.1 $12,851.61
5 0 $29.41 436.98 $10,666.71

However, if all of the trades were figured off of the current price (say
$100 per share), the equalized optimal f would have made more than the
raw optimal f.

Which then is the better to use? Should we equalize our data and deter-
mine our optimal f (and its by-products), or should we just run everything as
it is? This is more a matter of your beliefs than it is mathematical fact. It is a
matter of what is more pertinent in the item you are trading, percentage
changes  or absolute changes. Is a $2 move in a $20 stock the same as a $10
move in a $100 stock? What if we are discussing dollars and deutsche
marks? Is a .30-point move at .4500 the same as a .40-point move at .6000?

My personal opinion is that you are probably better off with the equal-
ized data. Often the matter is moot, in that if a stock has moved from $20
per share to $100 per share and we want to determine the optimal f, we
want to use current data. The trades that occurred at $20 per share may not
be representative of the way the stock is presently trading, regardless of
whether they are equalized or not.
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Generally, then, you are better off not using data where the underlying
was at a dramatically different price than it presently is, as the characteris-
tics of the way the item trades may have changed as well. In that sense, the
optimal f off of the raw data and the optimal f off of the equalized data will
be identical if all trades occurred at the same underlying price.

So we can state that if it does matter a great deal whether you equalize
your data or not, then you’re probably using too much data anyway. You’ve
gone so far into the past that the trades generated back then probably are
not very representative of the next trade. In short, we can say that it doesn’t
much matter whether you use equalized data or not, and if it does, there’s
probably a problem. If there isn’t a problem, and there is a difference
between using the equalized data and the raw data, you should opt for the

equalized data. This does not mean that the optimal f figured off of the
equalized data would have been optimal in the past. It would not have been.
The optimal f figured off of the raw data would have been the optimal in
the past. However, in terms of determining the as-yet-unknown answer to
the question of what will be the optimal f (or closer to it tomorrow), the
optimal f figured off of the equalized data makes better sense, as the equal-
ized data is a fairer representation of the distribution of possible outcomes
on the next trade.

Equations (2.1Oa)  through (2.10~) will give different answers depending
upon whether the trade was initiated as a long or a short. For example, if a
stock is bought at 80 and sold at 100, the percentage gain is 25. However, if
a stock is sold short at 100 and covered at 80, the gain is only 20%. In both
cases, the stock was bought at 80 and sold at 100, but the sequence-the
chronology of these transactions-must be accounted for. As the chronol-
ogy of transactions affects the distribution of percentage gains and losses,
we assume that the chronology of transactions in the future will be more
like the chronology in the past than not. Thus, Equations (2.10a) through
(2.10~)  will give different answers for longs and shorts.

Of course, we could ignore the chronology of the trades (using 2.10~ for
longs and using the exit price in the denominator of 2.10~ for shorts), but to
do SO would be to reduce the information content of the trade’s history.
Further, the risk involved with a trade is a function of the chronology of the
trade, a fact we would be forced to ignore.

D O L L A R  A V E R A G I N G  A N D  S H A R E

A V E R A G I N G  I D E A S

Here is an old, underused money-management technique that is an ideal
tooI for dealing with situations where you are absent knowledge.



9 0 CHARACTERISTICS OF FIXED FRACTIONAL TRADING

Consider a hypothetical motorist, Joe Putzivakian, case number
286952343. Every week, he puts $20 of gasoline into his auto, regardless of
the price of gasoline that week. He always gets $20 worth, and every week
he uses the $20 worth no matter how much or how little that buys him.
\Vhen the price for gasoline is higher, it forces him to be more austere in his
driving.

As a result, Joe Putzivakian will have gone through life buying more
gasoline when it is cheaper, and buying less when it was more expensive.
He will have therefore gone through life paying a below average cost per
gallon of gasoline. In other words, if you averaged the cost of a gallon of
gasoline for all of the weeks of which Joe was a motorist, the average would
have been higher than the average that Joe paid.

Now consider his hypothetical cousin, Cecil Putzivakian, case number
286952344. Whenever he needs gasoline, he just fills up his pickup and
complains about the high price of gasoline. As a result, Cecil has used a con-
sistent amount of gas each week, and has therefore paid the average price
for it throughout his motoring lifetime.

Now let’s suppose you are looking at a long-term investment program.
You decide that you want to put money into a mutual fund to be used for
your retirement many years down the road. You believe that when you
retire the mutual fund will be at a much higher value than it is today. That
is, you believe that in an asymptotic sense the mutual fund will be an invcst-
ment that makes money (of course, in an asymptotic sense, lightning does
strike twice). However, you do not know if it is going to go up or down over
the next month, or the next year. You are absent knowledge about the
nearer-term performance of the mutual fund.

To cope with this, you can dollar average into the mutual fund. Say you
want to space your entry into the mutual fund over the course of hvo years.
Further, say you have $36,000 to invest. Therefore, every month for the
next 24 months you will invest $1,500 of this $36,000 into the fund, until
after 24 months you will be completely invested. By so doing, you have
obtained a below average cost into the fund. “Average” as it is used here
refers to the average price of the fund over the 24-month period during
which you are investing. It doesn’t necessarily mean that you will get a price
that is cheaper than if you put the full $36,000 into it today, nor does it
guarantee that at the end of these 24 months of entering the fund you will
show a profit on your $36,000. The amount you have in the fund at that
time may be less than the $36,000. What it does mean is that if you simply
entered arbitrarily at some point along the next 24 months with your full
$36,000 in one shot, you would probably have ended up buying fewer
mutual fund shares,  and hence have paid a higher price than if you dollar
averaged in.

The same is true when you go to exit a mutual fund, only the exit side
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works with share averaging rather than dollar averaging. Say it is now time
for you to retire and you have a total of 1,000 shares in this mutual fund,
YOU don’t know if this is a good time for you to be getting out or not, so you
decide to take 2 years (24 months), to average out of the fund. Here’s how
you do it. You take the total number of shares you have (1,000) and divide it
by the number of periods you want to get out over (24 months). Therefore,
since 1,000/24 = 41.67, you will sell 41.67 shares every month for the next
24 months. In so doing, you will have ended up selling your shares at a
higher price than the average price over the next 24 months. Of course, this
is no guarantee that you will have sold them for a higher price than you
could have received for them today, nor does it guarantee that you will have
sold your shares at a higher price than what you might get if you were to sell
all of your shares 24 months from now. What you will get is a higher price
than the average over the time period that you are averaging out over. That
is guaranteed.

These same principles can be applied to a trading account. By dollar
averaging money into a trading account as opposed to simply “taking the
plunge” at some point during the time period you are averaging over, you
will have gotten into the account at a better “average price.” Absent knowl-
edge of what the near-term equity changes in the account will be you are
better off, on average, to dollar average into a trading program. Don’t just
rely on your gut and your nose, use the measures of dependency discussed
in Chapter 1 on the monthly equity changes of a trading program. Try to
see if there is dependency in the monthly equity changes. If there is depen-
dency to a high enough confidence level so you can plunge in at a favorable
point, then do so. However, if there isn’t a high enough confidence in the
dependency of the monthly equity changes, then dollar average into (and
share average out of) a trading program. In so doing, you will be ahead in an
asymptotic sense.

The same is true for withdrawing money from an account. The way to
share average out of a trading program (when there aren’t any shares, like a
commodity account) is to decide upon a date to start averaging out, as well
as how long a period of time to average out for. On the date when you are
going to start averaging out, divide the equity in the account by 100. This
gives  you the value of “1 share.” Now, divide 100 by the number of periods
that you want to average out over. Say you want to average out of the
account weekly over the next 20 weeks. That makes 20 periods. Dividing
100  by 20 gives 5. Therefore, you are going to average out of your account
by 5 “shares” per week. Multiply the value you had figured for 1 share by 5,
and that will tell you how much money to withdraw from your trading
account this week. Now, going into next week, you must keep track of how
many shares you have left. Since you got out of 5 shares last week, you are
left with 95. When the  time comes along for withdrawal number 2, divide
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the equity in your account by 95 and multiply by 5. This will give you the

value of the 5 shares you are “cashing in” this week. You will keep on doing
this until you have zero shares left, at which point no equity will be left in
your account. By doing this, you have probably obtained a better average
price for getting out of your account than you would have received had you
gotten out of the account at some arbitrary point along this 20-week with-
drawal period.

This principle of averaging in and out of a trading account is so simple,
you have to wonder why no one ever does it. I always ask the accounts that I
manage to do this. Yet I have never had anyone, to date, take me up on it.
The reason is simple. The concept, although completely valid, requires dis-
cipline and time in order to work-exactly the same ingredients as those
required to make the concept of optimal f work.

Just ask Joe Putzivakian. It’s one thing to understand the concepts and
believe in them. It’s another thing to do it.

THE ARC SINE LAWS AND RANDOM WALKS

Now we turn the discussion toward drawdowns. First, however, we need to
study a little bit of theory in the way of the first and second arc sine laws.
These are principles that pertain to random walks.  The stream of trade
P&L’s that you are dealing with may not be truly random. The degree to
which the stream of P&L’s you are using differs from being purely random
is the degree to which this discussion will not pertain to your stream of prof-
its and losses. Generally though, most streams of trade profits and losses are
nearly random as determined by the runs test and the linear correlation
coefficient (serial correlation).

Furthermore, not only do the arc sine laws assume that you know in
advance what the amount that you can win or lose is, they also assume that

the amount you can win is equal to the amount you can lose, and that this is
always a constant amount. In our discussion, we will assume that the
amount that you can win or lose is $1 on each play. The arc sine laws also
assume that you have a 50% chance of winning and a 50% chance of losing.
Thus, the arc sine laws assume a game where the mathematical expectation
is 0.

These caveats make for a game that is considerably different, and consid-
erably more simple, than trading is. However, the first and second arc sine
laws are exact for the game just described. To the degree that trading differs
from the game just described, the arc sine laws do not apply. For the sake of
learning the theory, however, we wiill not let these differences concern US

for the moment.

Imagine a truly random sequence such as coin tossing5 where we win 1
unit when we win and we lose 1 unit when we lose. If we were to plot out
our equity curve over X tosses, we could refer to a specific point (X,Y),
where X represented the Xth toss and Y our cumulative gain or loss as of
that toss.

We define positbe  territory as anytime the equity curve is above the X
axis or on the X axis when the previous point was above the X axis. Likewise,
we define negative territory as anytime the equity curve is below the X axis
or on the X axis when the previous point was below the X axis. We would
expect the total number of points in positive territory to be close to the total
number of points in negative territory. But this is not the case.

If you were to toss the coin N times, your probability (Prob)  of spending
K of the events in positive territory is:

(2.13) Prob - l/(Pi  * K h .5 * (N - K) h .5)

where Pi = 3.141592654.

The symbol - means that both sides tend to equality in the limit. In this
case, as either K or (N - K) approaches infinity, the two sides of the equa-
tion will tend toward equality.

Thus, if we were to toss a coin 10 times (N = 10) we would have the fol-
lowing probabilities of being in positive territory for K of the tosses:

K

0 .I4795
1 .I061
2 .0796
3 .0695
4 ,065
5 .0637
6 .065
7 .0695
6 .0796
9 .1061

10 .14795

Probability6

‘Although empirical tests show that coin tossing is not a truly random sequence due to slight
imperfections  in the coin used, we will assume here, and elsewhere in the text when referring
to min  tossing, that we are tossing an ideal coin with exactly a .5  chance of landing heads or
tails.
‘Note that since neither K nor N may equal 0 in Equation (2.13) (as you would then be divid-
trig  by 0). we can discern the prohahililies  corresponding to K = 0 and K =  N by summing the
PmbabiIities  from K =  1 to K =  N - 1 and subtracting this Sum  from  1. Dividing this difference
by2  ‘IIWI give us the probabilities associated with K = 0 and K = N.
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You would expect to be in positive territory for 5 of the 10 tosses, yet that
is the least likely outcome.1 In fact, the most likely outcomes are that you
will be in positive territory for all ofthe  tosses or for none of them!

This principle is formally detailed in thefirst  arc sine Zau;  which states:

For a Fixed A (0 <  A < 1) and as N approaches infinity, the probability that
K/N spent on the positive side is < A tends to:

(2.14) Prob[(WN)  < A] = !Wi  * ARC SIN (A h  5)

where Pi = 3.141592654.

Even with N as small as 20, you obtain a very close approximation for the
probability.

Equation (2.14), the first arc sine law, tells us that with probability .l, we
can expect to see 99.4% of the time spent on one side of the origin, and
with probability .2, the equity curve will spend 97.6% of the time on the
same side of the origin! With a probability of .5, we can expect the equity
curve to spend in excess of 85.35% of the time on the same side of the ori-
gin. That is just how perverse the equity curve of a fair coin is!

Now here is the second arc sine law, which also uses Equation (2.14) and
hence has the same probabilities as the first arc sine law, but applies to an
altogether different incident, the maximum or minimum of the equity
curve. The second arc sine law states that the maximum (or minimum)
point of an equity curve will most likely occur at the endpoints, and least
likely at the center. The distribution is exactly the same as the amount of
time spent on one side of the origin!

If you were to toss the coin N times, your probability of achieving the
maximum (or minimum) at point K in the equity curve is also given by
Equation (2.13):

(2.13) Prob - l/(Pi  * K * .5 * (N - K) A  5)

where Pi = 3.141592654.

Thus, if you were to toss a coin 10 times (N = 10) you would have the fol-
lowing probabilities of the maximum (or minimum) occurring on the Kth
toss:

TIME  SPENT IN A DRAWDOWN QC

K Probability

0 .14795
1 .I061
2 .0796
3 .0695
4 .065
5 .0637
6 ,065
7 .0695
8 .0796
9 .1061

10 .14795

In a nutshell, the second arc sine law states that the maximum or mini-
m.um are most likely to occur near the endpoints of the equity curve and
least likely to occur in the center.

TIME SPENT IN A DRAWDOWN

Recall the caveats involved with the arc sine laws. That is, the arc sine laws
assume a 50% chance of winning, and a 50% chance of losing. Further, they
assume that you win or lose the exact same amounts and that the generating
stream is purely random. Trading is considerably more complicated than
this. Thus, the arc sine laws don’t apply in a pure sense, but they do apply in
spirit.

Consider that the arc sine laws worked on an arithmetic mathematical
expectation of 0. Thus, with the first law, we can interpret the percentage of
time on either side of the zero line as the percentage of time on either side
of the arithmetic mathematical expectation. Likewise with the second law,
where, rather than looking for an absolute maximum and minimum, we
were looking for a maximum above the mathematical expectation and a
minimum below it. The minimum below the mathematical expectation
could be greater than the maximum above it if the minimum happened
later and the arithmetic mathematical expectation was a rising line (as in
trading) rather than a horizontal line at zero.

Thus, we can interpret the spirit of the arc sine laws as applying to trad-
ing in the following ways. (However, rather than imagining the important
line as being a, horizontal line at zero, we should imagine a line that slopes
upward at the rate of the arithmetic average trade (if we are constant-con-
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tract trading). If we are Axed fractional trading, the line will be one that
curves upward, getting ever steeper, ‘at such a rate that the next point
equals the current point times the geometric mean.) We can interpret the
first arc sine law as stating that we should expect to be on one side of the
mathematical expectation line for far more trades than we spend on the
other side of the mathematical expectation line. Regarding the second arc
sine law, we should expect the maximum deviations from the mathemati-
cal expectation line, either above or below it, as being most likely to occur
near the beginning or the end of the equity curve graph and least likely
near the center of it.

You will notice another characteristic that happens when you are trading
at the optimal f levels. This characteristic concerns the length of time you
spend between two equity high points. If you are trading at the optimal f
level, whether you are trading just 1 market system or a portfolio of market
systems, the time of the longest drawdown  (not necessarily the worst, or
deepest, drawdown) takes to elapse is usually 35 to 55% of the total time
you are looking at. This seems to be true no matter how long or short a time
period you are looking at! (Again, time in this sense is measured in trades.)

This is not a hard-and-fast rule. Rather, it is the effect of the spirit of the
arc sine laws at work. It is perfectly natural, and should be expected.

This principle appears to hold true no matter how long or short a period
we are looking at. This means that we can expect to be in the largest draw-
down for approximately 35 to 55% of the trades over the life of a trading
program we are employing! This is true whether we are trading 1 market
system or an entire portfolio. Therefore, we must learn to expect to be
within the maximum drawdown for 35 to 55% of the life of a program that
we wish to trade. Knowing this before the fact allows us to be mentally pre-
pared to trade through it.

Whether you are about to manage an account, about to have one man-
aged by someone else, or about to trade your own account, you should bear
in mind the spirit of the arc sine laws and how they work on your equity
curve relative to the mathematical expectation line, along with the 35% to
55% rule. By so doing you will be tuned to reality regarding what to expect
as the future unfolds.

We have now covered the empirical techniques entirely. Further,
we have discussed many characteristics offixed fractional trading and

‘By longest drawdown  here is meant the longest time, in terms of the number of elapsed
trades, between one equity peak and the time (or number of elapsed trades) until that peak is
equaled or exceeded.

TIME  SPENT IN A DRAWDOWN 9 7

have introduced some salutary techniques, which will be used
throughout the sequel. We have seen that by trading at the optimal
levels of money management, not only can we expect substantial draw-
downs, but the time spent between two equity highs can also be quite
substantial. Now we turn our attention to studying the parametric
techniques, the subject of the next chapter.
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record whether the horse in the pole position came in first, second, and so
on for each race of the day. You will only record ten places. If the horse
came in worse than in tenth place, you will record it as a tenth-place finish.
If you do this for a number of days, you will have gathered enough data to
see the distribu~on of finishing positions for a horse  starting out in the pole
position. Now you take your data and plot it on a graph. The horizontal axis
represents where the horse finished, with  the far left being the worst finish-
ing position (tenth) and the far right being a win. The vertical axis will
record how many times the pole position horse finished in the position
noted on the  horizontal axis. You would begin to see a bell-shaped curve
develop.

Under this scenario, there are ten possible finishing positions for each
race. We say that there are ten bins in this distribution. What if, rather than
using ten bins, we used five? The first bin would be for a first- or sccond-
place finish, the second bin for a third-or fourth-place finish, and so on.
What would have been the result?

Using f&ver  bins on the same set of data would have resulted in a proba-
bility distribution with the same profile as one determined on the same data
with more bins. That is, they would look pretty much the same graphically.
However, using fewer bins does reduce the information content of a distri-
bution. Likewise, using more bins increases the information content of a
distribution. If, rather than recording the finishing position of the pole posi-
tion horse in each race, we record the time the horse ran in, rounded to the
nearest second, we will get more than ten bins; and thus the information
content of the distribution obtained will be greater.

If we recorded the exact finish time, rather than rounding finish times to
use the nearest second, we would be creating what is called a continuous
distribution. In a continuous distribution, there are no bins. Think of a con-
tinuous distribution as a series of infinitely thin bins (see Figure  3-l). A
continuous distribution differs from a discrete distribution, the type we dis-
cussed first in that a discrete distribution is a binned distribution. Although
binning does reduce the information content of a distribution, in real life it
is often necessary to bin data. Therefore, in real life it is often necessary to

*  lose some of the information content of a distribution, while keeping the
profile of the distribution the same, so that you can process the distribution.
Finally, you should know that it is possible to take a continuous distribution
and make it discrete by binning it, but it is not possible to take a discrete
distribution and make it continuous.

When we are discussing the profits and losses of trades, we are essen-
tially discussing a continuous distribution. A trade can take a multitude of
values (although we could say that the data is binned to the nearest cent). In
order to work with such a distribution, you may find it necessary to bin the

3
Parametric Optimal f on the
Normal Distribution

Now that we are Jnished  with  our discussion of the empirical tech-
niques as well as the characteristics of fixed fractional trading, we
enter the realm (If the parametric techniques. Simply put, these tech-
niques differfrom  the empirical in that they do not use the past his-
toy itself as the data to be operated on. Rather, we observe the payt
history to deoelop  a mathematical description of that distribution of

that data. This mathematical description is based upon what has hap-
pened in the past as well as what we expect to happen in the future. In
the parametric techniques we operate on these mathematical descrip-
tions rather than on the past histo  y itself:

The mathematical descriptions used in the parametric tech-
niques are most often what are referred to as probability distributions.
Therefore, if we are to study the parametric techniques, we must study
probability distributions (in general) as a foundation. We will then
mote on to studying a certain type of distribution, the Normal
Distribution. Then we will see how to find the optimal f and its by-
products on the Normal  Distribution.

THE BASICS OF PROBABILITY DISTRIBUTIONS

Imagine if you will that you are at a racetrack and you want to keep a log of
the position in which the horses in a race finish. Specifically, you want to

9 8
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Figure 3-l A continuous distribution is a series of infinitely thin bins

data into, for example, one-hundred-dollar-wide bins. Such a distribution
would have a bin for trades that made nothing to $99.99, the next bin would
be for trades that made $100 to $199.99, and so on. There is a loss of infor-
mation content in binning this way, yet the profile of the distribution of the
trade profits and losses remains relatively unchanged.

DESCRIPTIVE MEASURES OF DISTRIBUTIONS

Most people are familiar with the average, or more specifically the nrith-
metic  mcun.  This is simply the sum of the data points in a distribution
divided by the number of data points:

(3.01) A = (~ X,)/N
i= 1

where A = The arithmetic mean.

Xi = The ith data point.

N = The total number of data points in the distribution.

The arithmetic mean is the most common of the types of measures of

DESCRIPTIVE MEASURES OF DISTRIBUTIONS 1 0 1

location, or central tendency of a body of data, a distribution. However, you
should be aware that the arithmetic mean is not the only available measure
of central tendency and often it is not the best. The arithmetic mean tends
to be a poor measure when a distribution has very broad tails. Suppose you
randomly select data points from a distribution and calculate their mean. If
you continue to do this you will find that the arithmetic means thus
obtained converge poorly, if at all, when you are dealing with a distribution
with very broad tails.

Another important measure of location of a distribution is the median.
The median is described as the middle value when data are arranged in an
array according to size. The median divides a probability distribution into
two halves such that the area under the curve of one half is equal to the area
under the curve of the other half. The median is frequently a better mea-
sure of central tendency than the arithmetic mean. Unlike the arithmetic
mean, the median is not distorted by extreme outlier values. Further, the
median can be calculated even for open-ended distributions. An open-
ended distribution is a distribution in which all of the values in excess of a
certain bin are thrown into one bin. An example of an open-ended distribu-
tion is the one we were compiling when we recorded the finishing position
in horse racing for the horse starting out in the pole position. Any finishes
worse than tenth place were recorded as a tenth place finish. Thus, we had
an open distribution. The median is extensively used by the U.S. Bureau of
the Census.

The third measure of central tendency is the mode-the most frequent
occurrence. The mode is the peak of the distribution curve. In some distri-
butions there is no mode and sometimes there is more than one mode. Like
the median, the mode can often be regarded as a superior measure of cen-
trdl  tendency. The mode is completely independent of extreme outlier val-
ues, and it is more readily obtained than the arithmetic mean or the
median.

We have seen how the median divides the distribution into hvo equal
areas. In the  same way  a distribution can be divided by three quartiles (to
give four areas of equal size or probability), or nine deciles  (to give ten areas
of equal size or probability) or 99 percentiZe.s  (to give 100 areas of equal size
or probability). The SOth  percentile is the median, and along with the 2Sth
and 75th  percentiles give us the quartiles. Finally, another term you should
become familiar with is that of a pantile.  A quantile is any of the N - 1
variate-values that divide the total frequency into N equal parts.

We now return to the mean. We have discussed the arithmetic mean as a
measure of central tendency of a distribution. You should be aware that
there are other types of means as well. These other means are less common,
but th d hey 0 ave significance in certain applications.
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First is the geometric mean, which we saw how to calculate in the first
chapter. The geometric mean is simply the Nth root of all the data points
multiplied together.

(3.02) G = (lXi)  A  (l/N)

w h e r e  G  =

xj  =

N =

The geometric mean.

The ith data point.

The total number of data points in the distribution.

The geometric mean cannot be used if any of the variate-values is zero or
negative.

We  can state that the arithmetic mathematical expectation is the arith-
metic average outcome of each play (on a constant I-unit basis) minus the

bet size. Likewise, we can state that the geometric mathematical expecta-
tion is the geometric average outcome of each play (on a constant l-unit
basis) minus the bet size.

Another type  of mean is the harnwnic  mean. This is the reciprocal of the
mean of the reciprocals of the data points.

(3.03) l/II = UN i$/&

where H = The harmonic mean.

Xi = The ith data point.

N = The total number of data points in the distribution.

The final measure of central
mean square.

(3.04) R”2=l/N~Xi”2
i= 1

tendency is the quadratic mean or roof

where R = The root mean square.

Xi = The ith data point.

N = The total number of data points in the distribution.

You should realize that the  arithmetic mean (A) is always greater than or
equal to the geometric mean (G), and the geometric  mean is always greater
than or equal to the harmonic mean (H):

MOMENTS OF A DISTRIBUTION 1n.a

(3.05) H<=G<=A

where H = The harmonic mean.

G = The geometric mean.

A = The arithmetic mean.

M O M E N T S  O F  A  D I S T R I B U T I O N

The central value or location of a distribution is often the first thing you
want to know about a group of data, and often the next thing you want to
know is the data’s variability or “width” around that central value. We call
the measures of a distributions central tendency thejrst  nwmmt of a distri-
bution. The variability of the data points around this central tendency is
called the second moment of a distribution. Hence the second moment
measures a distribution’s dispersion about the first moment.

As with the measure of central tendency, many measures of dispersion
are available. We cover seven of them here, starting with the least common
measures and ending with the most common.

The range of a distribution is simply the difference between the largest

and smallest values in a distribution. Likewise, the 10-90  percent& range is

the difference between the 90th and 10th percentile points. These first hvo
measures of dispersion measure the spread from one extreme to the other.

The remaining five measures of dispersion measure the departure from the
central tendency (and hence measure the half-spread).

The semi-interquartile range or quartile deciation  equals one half of the
distance between the first and third quartiles (the 25th and 75th per-
centiles). This is similar to the lo-90  percentile range, except that with this

measure the range is commonly divided by 2.
The half-t&h  is an even more frequently used measure of dispersion.

Here, we take the height of a distribution at its peak, the mode. If we find
the point half&y  up this vertical measure and run a horizontal line through
it perpendicular to the vertical line, the horizontal line will touch the distri-
bution at one point to the left and one point to the right. The distance
between these hvo points is called the half-width.

Next, the mean absolute deez;iation  or mean decintion  is the arithmetic
average of the absolute value of the difference between the data points and
the arithmetic  average of the data points. In otller  words, as its name
implies, it is the average distance that a data point is from the mean.
Expressed mathematically:
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(3.06) M = I/N GABS  (Xi-A)
i=l

where M = The mean absolute deviation.

N = The total number of data points.

Xi = The ith data point.

A = The arithmetic average of the data points.

ABS(  ) = The absolute value function.

Equation (3.06) gives us what is known as the poprllution  mean absolute
deviation. You should know that the mean absolute deviation can also be
calculated as what is known as the sample mean absolute deviation. To cal-
culate the sample mean absolute deviation, replace the term l/N  in
Equation (3.06) with l/(N  - 1). You use the sample version when you are
making judgments about the population based on a sample of that

population.
The next two measures of dispersion, variance and standard deviation,

are the two mos‘t  commonly used. Both are used extensively, so we cannot
sav that one is more common than the other; suffice to say they are both the

mbst common. Like the mean absolute deviation, they can be calculated
two different ways, for a population as well as a sample. The population ver-
sion is shown, and again it can readily be altered to the  sample version by
replacing the term l/N with l/(N  - 1).

The cariance  is the same thing as the mean absolute deviation except
that we square each difference between a data point and the average of the
data points. As a result, we do not need to take the absolute value of each
difference, since multiplying each difference by itself makes the result posi-
tive whether the difference was positive or negative. Further, since each
distance  is squared, extreme outliers will have a stronger  effect on the vari-
ance than they would on the mean  absolute deviation. Mathematically
expressed:

(3.07) V = l/N f ((Xi - A) A  2)
i=l

&ere V = The variance.

N = The total number of data points.

Xi = The ith data point.

A = The arithmetic average of the data points.
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Figure 3-2 Skewness.

Finally, the standard deuiation  is related to the variance (and  hence the
mean absolute deviation) in that the standard detiiation  is simply the square
root of the txriunce.

The third nwment of a distribution is called skewness, and it describes
the extent of asymmetry about a distributions mean (Figure 3-2). Whereas
the first  two moments of a distribution have values that can be considered
dimensional (i.e., having the same units as the measured quantities), skew-
ness is defined in such a way as to make it nondimensional. It is a pure num-
ber that represents nothing more than the shape of the distribution.

A positive value for skewness means that the tails are thicker on the posi-
tive side of the distribution, and vice versa. A perfectly symmetrical distri-
bution has a skewness of 0.

In a symmetrical distribution the mean, median, and mode are all at the
same value. However, when a distribution ha5  a nonzero value for skewness,
this  changes as depicted in Figure 3-3. The relationship for a skewed distri-
bution (any distribution with a nonzero skewness) is:

(3.08) Mean - Mode = 3 * (Mean - Median)

As with the first two moments of a distribution, there are numerous mea-
sures for skewness, which most frequently will give different answers. These
measures now follow:
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MOC’E

M E A N
MEDIAN

Figure 3-3 Skewness alters location.

(3.09) S = (Mean - Mode)/Standard Deviation

(3.10) S = (3 *  (Mean - Median))/Standard  Deviation

These last two equations, (3.09) and (3.10),  are often referred to as j
Pearson’s first and second coefficients of skewness, respectively. Skewness
is also commonly determined as:

(3.11) S = l/N f (((Xi-A)/D)  A  3)
i=l

where S = The skewness.

N = The total  number of data points.

Xi = The ith data point.

A = The arithmetic average of the data points.

D = The population standard deviation of the data points.

Finally, thefiurth  moment of a distribution, kurtosis (see Figure 3-4)
measures the peakedness or flatness of a distribution (relative to the Normal
Distribution). Like skewness, it is a nondimensional quantity. A curve less
peaked than the Normal is said to be plutykutiic  (kurtosis will be negative),
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KURTOSIS

PLATYKURTIC

Figure 3-4 Kurtosis.

and a curve more peaked than the Normal is called Zeptokwtic  (kurtosis will
be positive). When the peak of the curve resembles the Normal
Distribution curve, kurtosis equals zero, and we call this type of peak on a
distribution mesokut-tic.

Like the preceding moments, kurtosis has more than one measure. The
two most common are:

(3.12) K=Q/I’

where K = The kurtosis.

Q = The semi-interquartile range.

P = The 10-90 percentile range.

(3.13) K=  (l/N  (9 (((Xi-A)/D)  h 4)))-3
i=  1

where K = T h e  k u r t o s i s .

N = The total number of data points.

T = The ith data point.

A = The arithmetic average of the data points.

D = The population standard deviation of the data points.
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Finally, it should be pointed out there is a lot more “theory” behind the
moments of a distribution than is covered  here, For a more in-depth discus-
sion you should consult one of the statistics books mentioned in the
Bibliography. The depth of discussion about the moments of a distribution
presented here will be more than adequate for our purposes throughout
this text.

Thus far, we have covered data distributions in a general sense. NOW we
will cover the specific distribution called the Normal Distribution.

THE NORMAL DISTRIBUTION

Frequently the Normal Distribution is referred to as the Gaussian distribu-
tion, or de Moivre’s distribution, after those  who are believed to have dis-
covered it-Karl Friedrich Gauss (1777-1855) and, about a century earlier
and far more obscurely, Abraham de Moivre (1667-1754).

The Normal Distribution is considered to be the most useful distribution
in modeling. This is due to the fact that the Normal Distribution accurately
models many phenomena. Generally speaking, we can measure heights,
weights, intelligence levels, and so on from a population, and these will very i
closely resemble the Normal Distribution. /

Let’s consider what is known as Galton’s  board (Figure 3-5). This is a i
vertically mounted board in the shape of an isosceles  triangle. The board is !
studded with pegs, one on the top row, two on the second, and so on. Each
row down has one more peg than the previous row. The pegs are arranged I
in a triangular fashion such that when a ball is dropped in, it has a 50/,50
probability of going right or left with each peg it encounters. At the base of
the board is a series of troughs to record the exit gate of each ball.

The balls falling through Calton’s  board and arriving in the troughs will
begin to form a Normal Distribution. The “deeper” the board is (i.e., the
more rows it has) and the more balls are dropped through, the more closely
the final result will resemble the Normal Distribution. I

The Normal is useful in its own right, but also because it tends to be the
limiting form of many other types of distributions. For example, if X is dis-
tributed binomially,  then as N tends toward infinity, X tends to be Normally
distributed. Further, the Normal Distribution is also the limiting form of a
number of other useful probability distributions such as the Poisson, the
Student’s,  or the T distribution. In other words, as the data (N) used in
these other distributions increases, these distributions increasingly resemble
the Normal Distribution.
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Figure 3-5 Galton’s  board.

THE CENTRAL LIMIT THEOREM

One of the most important applications for statistical purposes involving
the Normal Distribution has to do with the distribution of averages. The
averages of samples of a given size, taken such that each sampled item is
selected independent of the others, will yield a distribution that is close to
Normal. This is an extremely powerful fact, for it means that you can gener-
alize about an actual random process from averages computed using sample
data.

Thus, we can state that if N random samples are drawn from a popula-
tion, then the sums (or averages) of the samples will be approximately
Norm&y  distributed, regurdless  of the dktrtbution  of the population from
which the samples are drawn. The closeness to the Normal Distribution
improves a.s  N (the number of samples) increases.

AS an example, consider the distribution of numbers from 1 to 100. This
is what is known as  a uniform distribution: All elements (numbers in this
Case)  occur only once. The number 82 occurs once and only once, as does
19,  and so on. Suppose now that we take a sample of five elements and we
take the average of these five sampled elements (we can just as well take
their sums). Now, we replace those five elements back into the population,
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EVEN

THE MEANS OF SAMPLES

TAKEN FROM THE EXPONENTIAL

WILL TEND TO BE NORldALLY

DISTRIBUTED!

Figure 3-6 The Exponential Distribution and the Normal.

and we take another sample and calculate the sample mean. If we keep on
repeating this process, we will see that the sample means are Normally dis-

;
/

tributed,  even though the population from which they are drawn is uni-
formly distributed. I

Furthermore, this is true regardless of how the population is distributed! !
The Central Limit Theorem allows us to treat the distribution of sample
means as being Normal without having to know the distribution of the pop-
ulation. This is an enormously convenient fact for many areas of study.

If the population itself happens to be Normally distributed, then the dis-
tribution of sample means will be exactly (not approximately) Normal. This
is true because how quickly the distribution of the sample means
approaches the Normal, as N increases, is a function of how close the popu-
lation is to Normal. As a general rule of thumb, if a population has a uni-
modal distribution-any type of distribution where there is a concentration
of frequency around a single mode, and diminishing frequencies on either
side of the mode (i.e., it is convex)-or is uniformly distributed, using a
value of 20 for N is considered sufficient, and a value of 10 for N is consid-
ered probably sufficient. However, if the population is distributed accord-
ing to the Exponential Distribution (Figure 3-6),  then it may be necessary
to use an N of 100 or so.

WORKING  WITH THE NORMAL DISTRIBUTION 1 1 1

The Central Limit Theorem, this amazingly simple and beautiful fact,
validates the importance of the Normal Distribution.

WORKING WITH THE NORMAL DISTRIBUTION

In using the Normal Distribution, we most frequently want to find the per-
centage of area under the curve at a given point along the curve. In the par-
lance of calculus this would be called the integral of the function for the
curve itself. Likewise, we could call the function for the curve itself the
derivative of the function for the area under the curve. Derivatives are often
noted with a prime after the variable for the function. Therefore, if we have
a function, N(X), that represents the percentage of area under the curve at a
given point, X, we can say that the derivative of this function, N’(X) (called
N prime of X), is the function for the curve itself at point X.

We will begin with the formula for the curve itself, N’(X). This function
is represented as:

(3.14) N’(X) = l/(S * (2 * 3.1415926536) h (l/2))
* EXP( - ((X - U) h 2)/(2 * S h  2))

where U = The mean of the data.

S = The standard deviation of the data.

X = The observed data point.

EXP( ) = The exponential function.

This formula will give us the Y axis value, or the height of the curve if you
till,  at any given X axis value.

Often it is easier to refer to a point along the curve with reference to its
X coordinate in terms of how many standard deviations it is away from the
mean. Thus, a data point that was one standard deviation away from the
mean would be said to be one standurd unit from the mean.

Further, it is often easier to subtract the mean from all of the data points,
which has the effect of shifting the distribution so that it is centered over
sr~  rather than over the mean. Therefore, a data point that was one stan-
dard deviation to the right of the mean would now have a value of 1 on the
x  axis.

When we make these conversions, subtracting the mean from the data
points, then dividing the difference by the standard deviation of the data
points, we are converting the distribution to what is called the standardized
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nor&,  which is the Normal Distribution with mean = 0 and variance = I. /
Now, N’(Z) will g ive us the Y axis vilue (the height of the curve) for any
value of Z:

(3.15a) N’(Z) = 1/((2  * 3.1415926536) h (l/2))  * EXP( - (Z A  2/2))
= .398942  * EXP( - (Z h 2/2))

where (3.16) Z = (X - U)/S

and U = The mean of the data.

S = The standard deviation of the data.

X = The observed data point.

EXP( ) = The exponential function.

Equation (3.16) gives us the number ofstandard  units that the data point
corresponds to-in other words, how many standard deviations away from
the mean the data point is. When Equation (3.16) equals 1, it is called the
standard nerd  deviate. A standard deviation or a standard unit is some-
times referred to as a sigma. Thus, when someone speaks of an event being
a “five sigma event,” they are referring to an event whose probability of
occurrence is the probability of being beyond five standard deviations.

N’(Z)

<-- z -->

Figure 3-7 The Normal Probability density function.
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Consider Figure 3-7, which shows this equation for the Normal curve.
Notice that the height of the standard Normal curve is .39894.  From
Equation (3.15a),  the height is:

(3.15a) N’(Z) = .398942  * EXP( - (Z A  2/2))

N’(O) = .398942  * EXP( - (0 h U2))

N’(O) = .398942

Notice that the curve is continuous-that is, there are no “breaks” in the
Curve  as it runs from minus infinity on the left to positive infinity on the
right. Notice also that the curve is symmetrical, the side to the right of the
peak being the mirror image of the side to the left of the peak.

Suppose we had a group of data where the mean of the data was 11 and
the standard deviation of the group of data was 20. To see where a data
point  in that set would be located on the curve, we could first calculate it as
a standard unit. Suppose the data point in question had a value of -9. To
calculate how many standard units this is we first  must subtract the mean
from this data point:

-g-11=--20

Next we need to divide the result by the standard deviation:

-20120 = -1

kt’e can  therefore say that the number of standard units is -1, when the data
point equals -9, and the mean is 11, and the standard deviation is 20. In
other words, we are one standard deviation away from the peak of the
curve, the mean, and since this value is negative we know that it means we
are one standard deviation to the left of the peak. To see where this places
Us on the curve  itself (i.e., how high the curve is at one standard deviation
left of center, or what the Y axis value of the curve is for a corresponding X
axis value of-l), we need to now plug this into Equation (3.15a):

(3.15a) N’(Z) = .398942  * EXP( - (Z A  2/2))

= .398942  * 2.7182818285 A  ( - (-1 A  2/2))

= .398942  * 2.7182818285 A  (-l/2)

= .398942  * .6065307

= .2419705705
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Thus we can say that the height of the curve at X = -1 is .2419705505.
The function N’(Z) is also often expr&sed as:

(3.15b) N’(Z) = EXP( - (Z h 2/2))/((8 * ATN(l)) A  (l/2)

= EXP( - (Z h 2/2))/((8 * .7853983)  h (l/2)

= EXP( - (Z  A  2/2))/2.506629

where

(3.16) z = (X-U)/S

and ATN ( ) = The arctangent function.

U = The mean of the data.

S = The standard deviation of the data.

X = The observed data point.

EXP( ) = The exponential function.

Nonstatisticians often find the concept of the standard deviation (or its
square, oariance)  hard to envision. A remedy for this is to use what is known
as the mean absolute deoiation  and convert it to and from the standard devi-
ation in these equations. The mean absolute deoiation  is exactly what its
name implies. The mean of the data is subtracted from each data point. The
absolute values of each of these differences are then summed, and this sum
is divided by the number of data points. What you end up with is the aver-
age distance each data point is away from the mean. The conversion for
mean absolute deviation and standard deviation are given now:

(3.17) Mean Absolute Deviation = S * ((2/3.1415926536)  A  (l/2))
= S *  .7978845609

where M = The mean absolute deviation.

S = The standard deviation.

Thus we can say that in the Normal Distribution, the mean absolute
deviation equals the standard deviation times .7979. Likewise:

(3.18) S = M * l/.7978845609
= M * 1.253314137

where S = The standard deviation.

M = The mean absolute deviation.
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So we can also say that in the Normal Distribution the standard deviation
equals the mean absolute deviation times 1.2533. Since the variance is
always the standard deviation squared (and standard deviation is always the
square root of variance), we can make the conversion between variance and
myan  absolute deviation.

(3.19) M = V A  (l/2)  * ((2/3.1415926536)  A  (l/2))
= V A  (l/2)  * .7978845609

where M = The mean absolute deviation.

V = The variance.

(3.20) V = (M * 1.253314137) A  2

where V = The variance.

M = The mean absolute deviation.

Since the standard deviation in the standard normal curve equals 1, we
can state that the mean absolute deviation  in the standard normal curve
equals .i979.

Further, in a bell-shaped curve like the Normal, the semi-interquartile
range equals approximately two-thirds of the standard deviation, and there-
fore the standard deviation equals about 1.5 times the semi-interquartile
range. This is true of most bell-shaped distributions, not just the Normal, as
are the conversions given for the mean absolute deviation and standard
deviation.

NORMAL PROBABILITIES

We now know how to convert our raw data to standard units and how to
form the curve N’(Z) itself (i.e., how to find the height of the curve, or Y
coordinate for a given standard unit) as well as N’(X) (Equation (3.14), the
curve itself without first converting to standard units). To really use the
Normal  Probability Distribution though, we want to know what the proba-
bilities of a certain outcome happening  arc. This is nol  given by the height
of the curve.  Rather, the probabilities  correspond to the area under the
curve. These areas are given by the integral of this N’(Z) function which we
have thus far studied. We will now concern ourselves with N(Z), the integral

. to N’(Z), to find the areas under the curve (the probabilities).’

‘The  actual integral to the Normal probabilitv  density does not exist in closed form, but it can
“~‘e3’closel~  be approximated by Equation (3.41).
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(3.21) N(Z) = 1 -N’(Z) * ((1.330274429 * Y h 5) - (1.821255978
* Y h 4) + (1.781477937 * Y h 3)
- (.356563782  * Y h 2) + (.31938153  * Y))

If Z < 0 then N(Z) = 1 -N(Z)

(3.15a) N’(Z) = .398942  * EXP( - (Z A 2/2))

where Y = l/(1 + 2316419 * ABS(Z))

and ABS(  ) = The absolute value function.

EXP( ) = The exponential function.

We will always convert our data to standard units when finding probabili-
ties under the curve. That is, we will not describe an N(X) function, but
rather we will use the N(Z) function where:

(3.16)

and

z = (X-U)/!3

U = The mean of the data.

S = The standard deviation of the data.

X = The observed data point.

Refer now to Equation (3.21). Suppose we want to know what the proba-
bility is of an event not exceeding +2 standard units (Z = +2).

Y = l/(1  + 2316419 * ABS(+B))

= l/l  .4632838

= .68339443311

(3.15a) N’(Z) = .398942  * EXP( - (+2 A  2/2))

= .398942  * EXP(-2)

= .398942  * .1353353

= .05399093525

Notice that this tells us the height of the curve at +2 standard units.
Plugging these values for Y and N’(Z) into Equation (3.21) we can obtain
the probability of an event not exceeding +2 standard units:

NORMAL PROBABILITIES

N(Z) = 1 - N’(Z) * ((1.330274429 * Y A  5) - (1.821255978 * Y A  4)

+ (1.781477937 * Y A  3) - (.356563782  * Y A  2)

+ (.31938153  * Y))

= 1 - .05399093525  * (( 1.330274429 * .68339443311  A  5)

- (1.821255978 * .68339443311  A  4 + 1.781477937

*.68339443311  A  3) - (.356563782  * .68339443311  A  2)

+ (.31938153  * .68339443311))

= 1 - .05399093525  * (( 1.330274429 * .1490587)

- (1.821255978 * .2181151  + (1.781477937 * .3191643)

- (-356563782 *  .467028  + .31938153  * .68339443311))

= 1 - .05399093525  * (. 198288977 - .3972434298

+ .5685841587  - .16652527  + .2182635596)

= 1 - .05399093525  * .4213679955

= 1 - .02275005216

= .9772499478

Thus we can say that we can expect 97.72% of the outcomes in a
Normally distributed random process to fall shy of +2 standard units. This is
depicted in Figure 3-8.

If we wanted to know what the probabilities were for an event equaling
or exceeding a prescribed number of standard units (in this case +2), we
would simply amend Equation (3.21), taking out the l- in the beginning of
the equation and doing away with the -Z provision (i.e., doing away  with “If
Z c 0 then N(Z) = 1 - N(Z)“). There fore, the second to last line in the last
computation would be changed from

= 1  - .02275005216

to simply

.02275005216

We would therefore say that there is about a 2.275% chance that an
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N(Z) 8 N’(Z)
1

-3 -2 -1 0 1 2

Z

Figure 3-8 Equation (3.21) showing probability with Z = +2.

event in a Nonnally distributed random process would equal or exceed +2
standard units. This is shown in Figure 3-9.

Thus far  we have looked at areas under the curve (probabilities) where
we are only dealing with what are known as “l-tailed” probabilities. That is
to say we have thus far looked to solve such questions as, “What are the
probabilities of an event being less (more) than such-and-such standard

N(Z) S N’(Z)

-3 -2 -1 z" 1 2

Figure 3-9 Doing away with the l- and -Z provision in Equation
(3.21).

l-((l-N(Z)bZ)

N’(Z)
0.5 I

-3 -2 -1 0 1 2

<-- z -->

Figure 3-10 A two-tailed probability of an event being + or - 2
sigma.

zl

units from the mean?” Suppose now we were to pose the question as,
‘What are the probabilities of an event being within so many standard units
of the mean?” In other words, we wish to find out what the “e-tailed” proba-
bilities are.

Consider Figure 3-10. This represents the probabilities of being within 2
standard units of the mean. Unlike Figure 3-8, this probability computation
does not include the extreme left tail area, the area of less than -2 standard
units. To calculate the probability of being within Z standard units of the
mean, you must first calculate the I-tailed probability of the absolute value
nf Z with Equation (3.21). This will be your input to the next Equation,
(3.22),  which gives us the e-tailed  probabilities (i.e., the probabilities of
being within ABS(Z)  standard units of the mean):

(3.22) e-tailed probability = 1 - ((1 - N(ABS(Z))) *  2)

If we are considering what our probabilities of occurrence within 2 stan-
dard deviations are (Z = 2), then from Equation (3.21) we know that N(2)
= .9772499478,  and using this as input to Equation (3.22):
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(l-N(Z))*2
N’(Z)

0.5 /

I

;:- \ I
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< - -  z -->

Figure 3-11 Two-tailed probability of an event being beyond 2
sigma.

e-tailed probability = 1 - (( 1 - .9772499478) * 2)

= 1 - (.02275005216  * 2)

= 1 - .04550010432

= .9544998957

Thus we can state from this equation that the probability of an event in a
Normally distributed random process falling within 2 standard units of the
mean is about 95.45%.

Just as with Equation (3.21), we can eliminate the leading l- in Equation
(3.22) to obtain (1 - N(ABS(Z))) * 2, which represents the probabilities of
an event falling outside of ABS(Z) standard units of the mean. This is
depicted in Figure 3-11. For the example where Z = 2, we can state that
the probabilities of an event in a Normally distributed random process
falling outside of 2 standard units is:

2 tailed probability (outside) = (1 - .9772499478)  * 2

= .0227*5005216  *  2

= .04550010432

NORMAL  PROBAB~L~TIES 1 2 1
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Finally, we come to the case where we want to find what the probabili-
ties (areas under the N’(Z) curve) are for two different values of Z.

Suppose we want to find the area under the N’(Z) curve between -1
standard unit and +2 standard units. There are a couple of ways to accom-
plish this. To begin with, we can compute the probability of not exceeding
+2 standard units with Equation (3.21), and from this we can subtract the
probability of not exceeding -1 standard units (see Figure 3-12). This
would give us:

.9772499478-.1586552595  = .8185946883

Another way we could have performed this is to take the number 1, rep-
resenting the entire area under the curve, and then subtract the sum of the
probability of not exceeding -1 standard unit and the probability of exceed-
ing 2 standard units:

= 1 - (.022750052  + .1586552595)

= 1 - .1814053117

= .8185946883

With  the basic mathematical tools regarding the Normal Distribution

N’(Z)
0.5,

-3 -2 - 1 0 1 2
<-- z - - ,

Figure 3-l 2 The area between -1 and +2  standard units.



1 2 2 PARAMETRIC OPTIMAL f ON THE NORMAL DISTRIBUTION

thus far covered in this chapter, you can now use your powers of reasoning
to figure any probabilities of occurrence for Normally distributed random
variables.

Further Derivatives of the Normal

Sometimes you may want to know the second derivative of the N(Z)
function. Since the N(Z) function gives us the arca under the curve at Z,
md  the N’(Z) function gives us the height of the curve itself at Z, then the
N”(Z) function gives us the instantaneous slope of the curve  at a given Z:

(3.23) N”(Z) = -Z/2.506628274 * EXP(  - (Z A 2)/2)

where EXP( ) = The exponential function.

To determine what the slope of the N’(Z) curve is at +2 standard units:

N”(Z) = -2/2.506625274  * EXP( - (+2 A  2)/2)

= -212.506628274 * EXP( -2)

=  -2/2.506628274  * .I353353

= -. 1079968336

Therefore, we can state that the instantaneous rate of change in the
N’(Z) function when Z = +2 is -.1079968336.  This represents rise/run, so
vve  can say that when Z = +2, the N’(Z) curve is rising -.1079968336  for
ever) 1  unit run in Z. This is depicted in Figure 3-13.

For the reader’s own reference,  further derivatives are now given.  These
will not be ncedcd throughout the  rcmaindcr  of this text,  but arc provided
for the sake of completeness:

(3.24)

(3.25)

(3.26)

N”‘(Z) = (Z h 2 - 1)/2.506628274  * EXP( - (Z A  2)/2)

N”“(Z) =  ((3 * Z) - Z h 3)/2.506628274  * EXP( - (Z h  2)/2)

N”“‘(Z) =  (Z h 4 - (6 * Z h 2) + 3)/2.506628274
* EXP( - (Z A  2)/2)

As a final note regarding the  Normal Distribution, you should bc aware
that the distribution is nowhere near as “peaked’* as the graphic examples
preserrted  in this chapter imply. The real shape of the Normal Distribution
is depicted in Figure 3-14.
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Figure 3-13 N”(Z) giving the slope of the line tangent tangent to
N’(Z) at Z = +2.

Notice that here the scales of the two axes are the same, whereas in the
other graphic examples they differ so as to exaggerate the shape of the dis-
tribution.

i

!
- 3 - 2 - 1 0 1 2

Figure 3-14 The real shape of the Normal Distribution.
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THE LOGNORMAL DISTRIBUTION

Many of the real-world applications in trading require a small but crucial
modification to the Normal Distribution. This modification takes the
Normal, and changes it to what is known as the Lognormal Distribution.

Consider that the price of any freely traded item has zero as a lower
limit.2 Therefore, as the price of an item drops and approaches zero, it
should in theory become progressively mvre difficult for the item to get
lower. For example, consider the price of a hypothetical stock at $10 per
share. If the stock were to drop $5, to $5 per share, a 50% loss, then accord-
ing to the Normal Distribution it could just as easily drop from $5 to $0.
IIowever, under the Lognormal, a similar drop of SO%  from a price of $5
per share to $2.50 per share would be about as probable as a drop from $10
to $5 per share.

The Lognormal Distribution, Figure 3-15, works exactly like the Normal
Distribution except that  with the Lognormal we are dealing with percentage
changes rather than absolute changes.

Consider now the upside. According to the Lognormal, a move from $10
per share to  $20 per share is about as likely as a move from $5 to $10 per
share, as both moves represent a 100% gain.

That isn’t to say that we won’t be using the Normal Distribution. The
purpose here is to introduce you to the Lognormal, show you its relation-
ship to the Normal (the Lognormal uses percentage price changes rather
than absolute price changes), and point out that it usually is used when talk-
ing about price moves, or  anytime that the Normal would apply but be
bounded on the low end at zero.

TV use the Lognormal distribution, you simply convert the data you are
working with to natural lvgaritllms. 3 Now the converted data will be
Normally distributed if the raw data was Lognormally distributed.

For instance, if we are discussing the distribution of price changes as

“This idea that the lowest  an item can trade for  is zero is not ahrays  entirely true.  For instancr.
dining  the stock  market crnsh  or 1929  and the ensuing bear market, the shareholders of man)
fai led banks were held l iable to the deposi tors in those banks.  Persons who owned stock in such
banks not only lost their full investment, they also realized liability buyonrl the amount or their
imestment. Thr  point  here isn’ t  to  say that  such an event  can or  cannot  happen again.  Hathrr.
UP  cannot always say that zero is the absolute low end of what a Freely  traded item can be
priced at,  al though i t  usual ly is .

“The  dis t inct ion behveen common and natural  logar i thms is  re i terated here.  A common log is  a
log base 10,  while a natural log is a log base e, where  e = 2.7182818285. The common log ofX
is r&rred to mathematically a~  log(X) while the natural log is referr4  to as In(X). Thp distinc-
tion gets bhtrrrd  when we obsewe  BASIC programming code, which often utilizes a function
LOC(X)  to return the natural log. This is diametrically opposed to mathematical convention.
BASIC does not have a provis ion For common logs,  but the natural  log can be converted to the
common log by multiplying the natural log hy .434%lli’.  Likewise, we CM convert common
logs to natural logs hy multiplying the common log hy 2.3026.
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Figure 3-15 The Normal and Lognormal distributions.

being Lognormal, we can use the Norma1 distribution on it. First, we must
divide each closing price by the previous closing price. Suppose in this
instance we are looking at the distribution of monthly closing prices (we
could use any time period-hourly, daily, yearly, or  whatever). Suppose we
now see $10, $5, $10, $10, then $20 per share as our  first five months clos-
ing prices. This would then equate to a loss of 50% going into the second
month, a gain of 100% gving into the third month, a gain of 0% going into
the fourth month, and another gain of 100% into the fifth month.
Respectively then, we have quotients of .5, 2, 1, and 2 for the monthly price
changes of months 2 through 5. These are the same as IIPRs  from one
month to the next in succession. We must now convert to natural logarithms
in order to study their distribution under the math for the Normal
Distribution. Thus, the natural log of .5 is -.6931473,  of 2 it is .6931471,  and
of 1  it is 0. We  are now able to apply the mathematics pertaining to the
Normal  distribution to this converted data.

THE PARAMETRIC OPTIMAL f

NOW that we have studied the mathematics of the Norma1 and
Lognormal  distributions, we will see how to determine an optimal f based
on outcomes that are Normally distributed.
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The Kelly formula is an example of a parametric optimal f in that the
optimal f returned is a function of two parameters. In the Kelly formula the
input parameters are the percentage of winning bets and the payoff ratio.
However, the Kelly formula only gives you the optimal f when the possible
outcomes have a Bernoulli distribution. In other words, the Kelly formula
will only give the correct optimal f when there are only two possible out-
comes. When the outcomes do not have a Bemouth distribution, such as
Normally distributed outcomes (which we arc about to study), the Kelly for-
mula will not give you the correct optimal E4

When they are applicable, parametric techniques are far more powerful
than their empirical counterparts. Assume we have a situation that can be
described completely by the Bernoulli distribution. We can derive our opti-
mal f here by way of either the Kelly formula or the empirical technique
detailed in Portfolio Management Formulas. Suppose in this instance we
win 60% of the time. Say we are tossing a coin that is biased, that we know
that in the long run 60% of the tosses will be heads. We are therefore going
to bet that each toss will be heads, and the payoff is 1:l.  The Kelly formula
would tell us to bet a fraction of .2 of our stake on the next bet. Further sup-
pose that of the last 20 tosses, 11 were heads and 9 were tails. If we were to
use these last 20 trades as the input into the empirical techniques, the result
would be that we should risk .l of our stake on the next bet.

Which is correct, the .2 returned by the parametric technique (the Kelly
formula in this Bernoulli distributed case) or the .l returned empirically by
the last 20 tosses? The correct answer is .2, the answer returned from the
parametric technique. The reason is that the next toss has a 60% probability
of being heads, not a 55% probability as the last 20 tosses would indicate.
Although we are only discussing a 5% probability difference, 1 toss in 20,
the effect on how much we should bet is dramatic. Generally, the paramet-
ric techniques are inherently more accurate in this regard than are their
empirical counterparts (provided  we know the distribution of the out-
comes). This is the first advantage of the parametric to the empirical. This is
also a critical proviso-that we must know what the distribution of out-
comes is in the long run in order to use the parametric techniques. This is
the biggest drawback to using the parametric techniques.

The second advantage is that the empirical technique rquires  a past his-
tory of outcomes whereas the parametric does not. Further, this past history
needs  to bc rather extensive. In the example just cited,  we can assume that
if we had a history  of 50 tosses we would have arrived at an empirical opti-

J\l’e  are speaking of the Kelly Fnrmulas  here in a singular sense  even  though there are,  in fact,
hvo different Kcliy  formulas,  one for when the payofr  rat ion is l:l,  and the other for when the
payoff  is any ratio. In the examples of Kelly in this discussion we are assuming a payoff or  1:l.
hence it doesn?  matter which or  the two Kell)  form& we are using.
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ma]  f closer to .2. With a history of 1,000 tosses, it would be even closer
according to the law of averages.

The fact that the empirical techniques require a rather lengthy stream of
past  data has almost restricted them to mechanical trading systems.
Someone trading anything other than a mechanical trading system, be it by
Elliott Wave or fundamentals, has almost been shut out from using the opti-
mal f technique. With the parametric techniques this is no longer true.
Someone who wishes to blindly follow some market guru, for instance, now
has a way to employ the power of optimal f.  Therein lies the third advantage
of the parametric technique over the empirical-it can be used by any
trader in any market.

There is a big assumption here, however, for someone not employing a
mechanical trading system. The assumption is that the future distribution of
profits  and losses will resemble the distribution in the past (which is what
we figure the optimal f on). This may be less likely than with a mechanical
system.

This also sheds new light on the expected performance of any technique
that is not purely mechanical. Even the best practitioners of such tech-
niques, be it by fundamentals, Gann, Elliott Wave, and so on, are doomed
to fail if they are too far beyond the peak of (to the right of) the f curve. If
they are too far to the left of the peak, they are going to end up with geo-
metrically lower profits than their expertise in their area should have made
for them. Furthermore, practitioners of techniques that are not purely
mechanical must realize that everything said about optimal f and the purely
mechanical techniques applies. This should be considered when contem-
plating expected drawdowns of such techniques. Remember that the draw-
downs will  be substantial, and this fact does not mean that the technique
should be abandoned.

The fourth and perhaps the biggest advantage of the parametric over the
empirical method of determining optimal f,  is that the parametric method
allows  you to do ‘What if’ types of modeling. For example, suppose you are
trading a market system that has been running very hot. You want to be pre-
pared for when that market system stops performing so well, as you know it
Inevitably will. With the parametric techniques, you can vary your input
Pameters  to reflect this and thereby put yourself at what the optimal f wili
be when the market system cools down to the state that the parameters you
Input reflect. The parametric techniques are therefore far more powerful
than  the empirical  ones.

SO  why use the empirical techniques at all? The empirical techniques are
more intuitively obvious than the parametric ones are. Hence, the empirical
techniques are what one should learn first before moving on to the para-
metric. We have now covered the empirical techniques in detail and are
therefore prepared to study the parameiric  techniques.
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The Distribution of Trade P&L’s

Consider the following sequence of 232 trade profits and losses in points. It
doesn’t matter what the commodity is or what system generated this
stream-it could be any system on any market.

Trade#  P & L Trade#  P & L Trade#  P & L Trade#  P & L

1. 0.18 42. -1.58 83. -4.13 124. -2.63
2. -1.11 43. -0.5 84. -1.63 125. -0.73
3. 0.42 44. 0.17 85. -1.23 126. -1.83
4. -0.83 45. 0.17 86. 1.62 127. 0.32
5. 1.42 46. -0.65 87. 0.27 128. 1.62
6. 0.42 47. 0.96 88. 1.97 130. 1.02
7. -0.99 48. -0.88 89. -1.72 131. -0.81
8. 0.87 49. 0.17 90. 1.47 132. -0.74
9. 0.92 50. -1.53 91. -1.88 133. 1.09

10. -0.4 51. 0.15 92. 1.72 134. -1.13
11. -1.48 52. -0.93 93. 1.02 135. 0.52
12. 1.87 53. 0.42 94. 0.67 136. 0.18
13. 1.37 54. 2.77 95. 0.67 137. 0.18
14. -1.48 55. 8.52 96. -1.18 138. 1.47
15. -0.21 56. 2.47 97. 3.22 139. -1.07
16. 1.82 57. -2.08 98. -4.83 140. -0.98
17. 0.15 58. -1.88 99. 8.42 141. 1.07
18. 0.32 59. -1.88 100. -1.58 142. -0.88
19. -1.18 60. 1.67 101. -1.88 143. -0.51
20. -0.43 61. -1.88 102. 1.23 144. 0.57
21. 0.42 62. 3.72 103. 1.72 145. 2.07
22. 0.57 63. 2.87 104. 1.12 146. 0.55
23. 4.72 64. 2.17 105. -0.97 147. 0.42
24. 12.42 65. 1.37 106. -1.88 148. 1.42
25. 0.15 66. 1.62 107. -1.88 149. 0.97
26. 0.15 67. 0.17 108. 1.27 150. 0.62
27. -1.14 68. 0.62 109. 0.16 151. 0.32
28. 1.12 69. 0.92 110. 1.22 152. 0.67
29. -1.88 70. 0.17 111. -0.99 153. 0.77
30. 0.17 71. 1.52 112. 1.37 154. 0.67
31. 0.57 72. -1.78 113. 0.18 155. 0.37
32. 0.47 73. 0.22 114. 0.18 156. 0.87
33. -1.88 74. 0.92 115. 2.07 157. 1.32
34. 0.17 75. 0.32 116. 1.47 158. 0.16
35. -1.93 76. 0.17 117. 4.87 159. 0.18
36. 0.92 77. 0.57 118. -1.08 160. 0.52
37. 1.45 78. 0.17 119. 1.27 161. -2.33
38. 0.17 79. 1.18 120. 0.62 162. 1.07
39. 1.87 80. 0.17 121. -1.03 163. 1.32
40. 0.52 81. 0.72 122. 1.82 164. 1.42
41. 0.67 82. -3.33 123. 0.42 165. 2.72
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Trade#  P&L Trade#  P & L Trade#  P & L Trade!+  P & L

166. 1.37 183. 0.24 200. -0.98 217. -1.08
167. -1.93 184. 0.57 201. 0.17 218. 0.25
168. 2.12 185. 0.35 202. -0.96 219. 0.14
169. 0.62 186. 1.57 203. 0.35 220. 0.79
170. 0.57 187. -1.73 204. 0.52 221. -0.55
171. 0.42 188. -0.83 205. 0.77 222. 0.32
172. 1.58 189. -1.18 206. 1.10 223. -1.30
173. 0.17 190. -0.65 207. -1.88 224. 0.37
174. 0.62 191. -0.78 208. 0.35 225. -0.51
175. 0.77 192. -1.28 209. 0.92 226. 0.34
176. 0.37 193. 0.32 210. 1.55 227. -1.28
177. -1.33 194. 1.24 211. 1.17 228. 1.80
178. -1.18 195. 2.05 212. 0.67 229. 2.12
179. 0.97 196. 0.75 213. 0.82 230. 0.77
180. 0.70 197. 0.17 214. -0.98 231. -1.33
181. 1.64 198. 0.67 215. -0.85 232. 1.52
182. 0.57 199. -0.56 216. 0.22

If we wanted to determine an equalized parametric optimal f we would
now convert these trade profits and losses to percentage gains and losses
[based on Equations (2.10a) through (2.1Oc)l.  Next, we would convert these
percentage profits and losses by multiplying them by the current price of
the underlying instrument. For example, P&L #l is .18.  Suppose that the
entry price to this trade was 100.50. Thus, the percentage gain on this trade
would be .18/100.50  = .001791044776.  Now suppose that the current price
of this underlying instrument is 112.00. Multiplying .001791044776  by
112.00 translates into an equalized P&L of .2005970149.  If we were seeking
to do this procedure on an equalized basis, we would perform this operation
on all 232 trade profits and losses.

Whether or not we are going to perform our calculations on an equalized
basis (in this chapter we will not operate on an equalized basis), we must
now calculate the mean (arithmetic) and population standard deviation of
these 232 individual trade profits and losses as .330129 and 1.743232
respectively (again, if we were doing things on an equalized basis, we would
need to determine the mean and standard deviation on the equalized trade
p&L’s).  With these two numbers we can use Equation (3.16) to translate
each individual trade profit and loss into standard units.

(3.16) z =  (X-uys

w h e r e U = The mean of the data.

S = The standard deviation of the data.

X = The observed data point.
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Thus, to translate trade #l,  a profit of .18,  to standard units:

Z = (.18 - .330129)/1.743232

= -.150129/1.743232

= -.08612106708

Likewise, the next three trades of -1.11, .42, and -.83 translate into
-.8261258398,  .05155423948,  and -.6655046488  standard units respectively.

If we are using equalized data, we simply standardize by subtracting the
mean of the data and dividing by the data’s standard deviation.

Once we have converted all of our individual trade profits and losses over
to standard units, we can bin the now standardized data. Recall that with
binning there is a loss of information content about a particular distribution
(in this case the distribution of the individual trades) but the character of
the distribution remains unchanged.

Suppose we were to now take these 232 individual trades and place them
into 10 bins. We  are choosing arbitrarily here-we could have chosen 9 bins
or 50 bins. In fact, one of the big arguments about binning data is that most
frequently there is considerable arbitrariness as to how the bins should be
chosen.

Whenever we bin something, we must decide on the ranges of the bins.
We  will therefore select a range of -2 to +2 sigmas, or standard deviations.
This means we will have 10 equially spaced bins between -2 standard units
to +2 standard units. Since there are 4 standard units in total between -2
and +2 standard units and we are dividing this space into 10 equal regions,
we have 4/IO  = .4 standard units as the size or “width” of each bin.
Therefore, our first bin, the one “farthest to the left,” will contain those
trades that were within -2 to -1.6 standard units, the next one trades from
-1.6 to -1.2, then -1.2 to -.8,  and so on, until our final bin contains those
trades that were 1.6 to 2 standard units. Those trades that are less than -2
standard units or greater than +2 standard units will not be binned in this
exercise, and we will ignore them. If we so desired, we could have included
them in the extreme bins, placing those data points less than -2 in the -2 to
-1.6 hin, and likewise for those data points greater than 2. Of course, we
could have chosen a wider range for binning, but since these trades are
beyond the range of our bins, we have chosen not to include them. In other
words, we are eliminating from this exercise those trades with P&L’s less
than .330129  - (1.743232 * 2) = -3.156335 or greater than .330129
+ (1.743232 * 2) = 3.816593.

UJhat  we have created now is a distribution of this system’s trade P&L’s,
Our distribution contains 10 data points because we chose to work with 10
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232 ACTUAL TRADES

NORMAL DISTRIEUTION

J
Figure 3-16 232 individual trades in 10 bins from -2 to +2  sigma

versus the Normal Distribution.

bins. Each data point represents the number of trades that fell into that bin.
Each trade could not fall into more than 1 bin, and if the trade was beyond
2 standard units either side of the mean (P&L’s < -3.156335 or z 3.816593),
then it is not represented in this distribution. Fi@re  3-16 shows this distri-
bution as we have just calculated it.

“Wait a minute,” you say. “Shouldn’t the distribution of a trading sys-
tem’s P&L’s be skewed to the right because we are probably going to have a
few large profits?”

This particular distribution of 232 trade P&L’s happens to be from a sys-
tem that very often takes small profits via a target. Many people have the
mistaken impression that P&L distributions are going to be skewed to the
right  for all trading systems. This is not at all true, as Figure 3-16 attests.
Different market systems will have different distributions, and you
shouldn’t expect them all to be the same.

Also in Figure 3-16, superimposed over the distribution we have just put
together, is the Normal Distribution as it would look for 232 trade P&L’s if
they were Normally distributed. This was done so that you can compare,
graphically, the trade P&L’s as we have just calculated them to the Normal.
The Normal Distribution here is calculated by first taking the boundaries of
each bin. For the leftmost bin in our example this would be Z = -2 and Z
= -1.6. Now we run these Z values through Equation (3.21) to convert these
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boundaries to a cumulative probability. In our example, this corresponds  to
.02275 for Z = -2 and .05479932  for Z = -1.6. Next, we take the absolute
value of the difference between  these two values, which gives us
ABS(.02275  - .05479932)  = .03204932  for our example.. Last, we multiply
this answer by the number of data points, which in this case is 232 because
there are 232 total trades (we still must use 232 even though some have
been eliminated because they were beyond the range of our bins).
Therefore, we can state that if the data were Normally distributed and
placed into 10 bins of equal width between -2 and +2 sigmas, then the left-
most bin would contain .03204932  * 232 = 7.43544224 elements. If we
were to calculate this for each of the 10 bins, we would calculate the
Normal curve superimposed in Figure 3-16.

FINDING THE OPTIMAL f ON THE NORMAL
DISTRIBUTION

Now we can construct a technique for finding the optimal f on Normally
distributed data. Like the Kelly formula, this will be a parametric tech-
nique. However, this technique is far more powerful than the Kelly for-
mula, because the Kelly formula allows for only two possible outcomes for
an event whereas this technique allows for the full spectrum of the out-
comes (provided that the outcomes are Normally distributed). The beauty
of Normally distributed outcomes (aside from the fact that they so fre-
quently occur, since they are the limit of many other distributions) is that
they can be described by 2 parameters. The Kelly formulas will give you the
optimal f for Bernoulli distributed outcomes by inputting the 2 pmuneters
of the payoff ratio and the probability of winning. The technique about to
be described likewise only needs hvo parameters as input, the average and
the standard deviation of the outcomes, to return the optimal f.

Recall that the Normal Distribution is a continuous distribution, In order
to USC this technique we need to make this distribution be discrete. Further
recall that the Normal Distribution is unbounded.  That is, the distribution
runs from minus infinity on  the left to plus infinity on the right.

Therefore, the first two steps that we must take to find the optimal f on

Normally distributed data is that we must determine (1) at how many sig-
mas from the mean of the distribution we truncate the distribution, and (2)
into how many equally spaced data points will we divide the range between
the hvo extremes determined in (1).

For instance, we know that 99.73% of all the data points will fall between
plus and minus 3 sigmas of the mean, so we might decide to use 3 sigmas as
our parameter for (1). In other words, we are deciding to consider the
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Normal Distribution only between minus 3 sigmas and plus 3 sigmas of the
mean. In so doing, we will encompass 99.73% of all of the activity under the
Normal Distribution. Generally we will want to use a value of 3 to 5 sigmas
for this parameter.

Regarding step (2), the number of equally spaced data points, we will
generally want to use a bare minimum of ten times the number of sigmas
we are using in (1). If we select 3 sigmas for (l), then we should select at
least 30 equally spaced data points for (2). This means that we are going to
take  the horizontal axis of the Normal Distribution, of which we are using
the area from minus 3 sigmas to plus 3 sigmas from the mean, and divide
that into 30 equally spaced points. Since there are 6 sigmas between minus
3 sigmas and plus 3 sigmas, and we want to divide this into 30 equially
spaced points, we Inust divide 6 by 30 - 1, or 29. This gives us .2068965517.
So, our first data point will be minus 3, and we will add .2068965517  to each
previous point until we reach plus 3, at which point we will have created 30
equally spaced data points behveen minus 3 and plus 3. Therefore, our sec-
ond data point will be -3 + .2068965517  = -2.793103448, our third data
point 2.i9310344 + .2068965517  = -2.586206896, and so on. In so doing,
we will have determined the 30 horizontal input coordinates to this system.

The more data points you decide on, the better will be the resolution of
the Normal curve. Using ten times the number of sigmas is a rough rule for
determining the bare minimum number of data points you should use.
Recall that the Normal distribution is a continous distribution. However, we
Inust make it discrete in order to find the optimal f on it. The greater the
number of equally spaced data points we use, the closer our discrete model
will be to the actual continous distribution itself, with the limit of the num-
ber of equally spaced data points approaching infinity where the discrete
model approaches the continous exxtly.

\Vhy  not use an extremely large number of data points? The more data
points you use in the Normal curve, the more calculations will be required
to find the optimal f on it. Even though you will usually be using a computer
to solve  for the optimal f, it will still be slower the more data points you use.
Further, each data point added resolves the curve further to a lesser degree
than the previous data point did. We will refer to these first two input
Pralneters as the bounding parameters.

Now, the third and fourth steps are to determine the arithmetic average
1 trade and the population standard deviation for the market system we are

ivorking  on. If vou  do not have a mechanical system, you can get these num-
bers from your brokerage statements or you can estimate them. That is the
one of the real benefits of this technique-that you don’t need to have a
mechanical system, you don’t even riced brokerage statements or paper

,i
I, trading results to use this technique. The technique can be used by simply
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estimating these two inputs, the arithmetic mean average trade (in points or
in dollars) and the population standard deviation of trades (in points or in
dollars, so long as it’s consistent with what you use for the arithmetic mean
trade). Be forewarned, though, that your results will only be as accurate as
your estimates.

If you are having difficulty estimating your population standard devia-
tion, then simply try to estimate by how much, on average, a trade will differ
from the average trade. By estimating the mean absolute deviation in this
way, you can use Equation (3.18) to convert your estimated mean absolute
deviation into an estimated standard deviation:

(3.18) S = M * 1l.7978845609
= M * 1.253314137

where S = The standard deviation.

M = The mean absolute deviation.

We will refer to these two parameters, the arithmetic mean average
trade and the standard deviation of the trades, as the actunl  input
parameters.

Now we want to take all of the equally spaced data points from step (2)
and find their corresponding price values, based on the arithmetic mean
and standard deviation. Recall that our equally spaced data points are
expressed in terms of standard units. Now for each of these equally spaced
data points we will find the corresponding price as:

(3.27) D = U + (S * E)

where D = The price value corresponding to a standard unit value.

E = The standard unit value.

S = The population standard deviation.

U = The arithmetic mean.

Once we have determined all of the price values corresponding to each
data point we have truly accomplished a great deal. We have now con-
structed the distribution that we expect thefuture  data points to tend to.

However, this technique allows us to do a lot more than that. We can
incorporate two more parameters that will allow us to perform “What if’
byes  of scenarios about the future. These parameters, which we will calI

the ‘VJhat  if” parutneters,  allow us to see the effect of a change in our aver-
age trade or a change in the dispersion (standard deviation) of our trades.
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The first of these parameters, called shrink, affects the average trade.
Shrink is simply a multiplier on our average trade. Recall that when we find
the optimal f we also obtain other calculations, which are useful by-products
of the optimal f.  Such calculations include the geometric mean, TWR, and
geolnettic  average trade. Shrink is the factor by which we will multiply our
average trade before we perform the optimal f technique on it. Hence,
shrink lets us see what the optimal f would be if our average trade were
affected by shrink as well as how the other by-product calculations would be
affected.

For example, suppose you are trading a system that has been running
very hot lately. You know from past experience that the system is likely to
stop performing so well in the future. You would like to see what would
happen if the average trade were cut in half. By using a shrink value of .5
(since shrink is a multiplier, the average trade times 5  equals the average
trade cut in half) you can perform the optimal f technique to determine
what your optimal f should be if the  average trade were to be cut in half.
Further, you can see how such changes affect your geometric average trade,
andsoon.

By using a shrink value of 2, you can also see the affect that a doubling of
your average trade would have. In other words, the shrink parameter can
also be used to increase (unshrink?)  your average trade. What’s more, it lets
you take an unprofitable system (that is, a system with an average trade less
than zero), and, by using a negative value for shrink, see what would happen
if that system became profitable. For example, suppose you have a system
that shows an average trade of -$lOO. If you use a shrink value of -.5,  this
will give you your optimal f for this distribution as if the average trade were
$50, since -100 * -.5 = 50. If we used a shrink factor of -2, we would obtain
the distribution centered about an average trade of $200.

You must be careful in using these “What if” parameters, for they make
it easy to mismanage performance. Mention was just made of how you can
turn a system with a negative arithmetic average trade into a positive one.
This can lead to problems if, for instance, in the future, you still have a neg-
ative expectation.

The other “What if” parameter is one called stretch. This is not, as its
name would imply, the opposite of shrink. Rather, stretch is the multiplier
to be used on the standard deviation. You can use this parameter to deter-
-mine the effect on f and its by-products by an increase or decrease in the
dispersion. Also, unlike shrink, stretch must always be a positive number,
whereas shrink can be positive or negative (so long as the average trade
times shrink  is positive). If you want to see what will happen if your stan-
dard deviation doubles, simply use a value of 2 for stretch. To see what
Would happen if the dispersion quieted down, use a value less than I.
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You will notice  in using this technique that lowering the  stretch  toward
zero will tend to increase the by-product calculations, resulting in a more
optimistic assessment of the future and vice versa. Shrink works in an oppo-
site fashion, as lowering the shrink towards zero will result in more pes-
simistic assessments about the future and vice versa.

Once we have determined what values we want to use for stretch and
shrink (and for the time being we will use values of 1 for both, which means
to leave the actual parameters unaffected) we can amend Equation (3.27)
to:

(3.28) D = (U * Shrink) + (S * E * Stretch)

where D = The price value corresponding to a standard unit value.

E = The standard unit value.

S = The  population standard deviation.

U = The arithmetic mean.

To summarize thus far, the first two steps are to determine the bounding
parameters of the number of sigmas either side of the mean we are going to
use, as well as how many equally spaced data points we are going to use
within this range. The next two steps are the actual input parameters of the
arithmetic average trade and population standard deviation. Cl’e can derive
these parameters empirically by looking at the results of a given trading sys-
tem or by using brokerage statements or paper trading results. We can also
derive these figures by estimation, but remember that the results obtained
will only be as accurate as your estimates. The fifth and sixth steps are to
determine the factors to use for stretch and shrink if you are going to per-
forrn a “Ff’hat  if’ type of scenario. If you are not, simply use values of 1 for
both stretch and shrink. Once you have completed these six steps, you can
now use Equation (3.28) to perform the seventh step. The seventh step is to
convert the equally spaced data points from standard values to an actual
amount of either points or dollars (depending on whether  you used points
or dollars as input for your arithmetic average trade and population stan-
dard deviation).

Now the eighth step is to find the associated probability with each of the
equally spaced data points. This probability is determined by using
Equation (3.21):

(3.21) N(Z) = 1 - N’(Z) * ((1.330274429 * Y  h  5) - (1.821255978
*  Y A  4 ) + (1.781477937 * Y  h  3) - (.356563782  * Y h 2)
+(.31938153  * Y))
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If Z < 0 then N(Z) = 1 - N(Z)

where Y  = l/(1 + .2316419  * ABS(Z))

ABS() = The absolute value function.

N’(Z) = .398942  * EXP( - (Z h 212))

EXP( ) = The exponential function.

However, we will use Equation (3.21) without its 1 - as the first term in the
equation and without the -Z provision (i.e., without the “If Z < 0 then N(Z)
= 1- N(Z)“), since we want to know what the probabilities are for an event
equ&g or exceeding a prescribed amount of standard units.

So we go along through each of our equally spaced data points. Each
point has a standard value, which we will use as the Z parameter in
Equation (3.21), and a dollar or point amount. Now there will be another
variable  corresponding to each equally spaced data point-the associated
probability.

The Mechanics of the Procedure

The procedure will now be demonstrated on the trading example intro-
duced earlier in this chapter. Since our 232 trades are currently in points,
we should convert them to their dollar representations. However, since the

q market is a not specified, we will assign an arbitrary value of $1,000 per
point. Thus, the average trade of .330129  now becomes .330129  * $1000, or
an average trade of $330.13. Likewise the population standard deviation of
1.743232 is also multiplied by $1,000 per point to give $1,743.23.

Now we construct the matrix. First, we must determine the range, in sig-
mas from the mean, that we want our calculations to encompass. For our
example we till  choose 3 sigmas, so our range will go from minus 3 sigmas
to plus 3 sigmas. Note that you should use the same amount to the left of
the mean that you use to the right of the mean. That is, if you go 3 sigmas to
the  left (minus 3 sigmas) then you should not go only 2 or 4 sigmas to the
fight,  but rather you should go 3 sigmas to the right as well (i.e., plus 3 sig-
mas from the mean).

- Next we must determine how many equally spaced data points to divide
this  range into. Choosing 61 as our value gives a data point at every tenth of
a standard unit-simple. Thus we can determine our column of standard
values.

,/ . Now  we must determine the  arithmetic mean that we are going to use as
‘,i Input.  We determine this empirically from the 232 trades as $330.13.qz
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Further, we must determine the population standard deviation, which we
also determine empirically from the 232 trades as $1,743.23.

Now to determine the column of associated P&L’s.  That is, we must
determine a P&L amount for each standard value. Before we can deter-
mine our associated P&L column, we must decide on values for stretch and
shrink. Since  we are not going to perform any “What if” types of scenarios at
this time, we will choose a value of 1 for both stretch and shrink.

Arithmetic mean = 330.13

Population Standard Deviation = 1743.23

Stretch = 1

Shrink = 1

Using Equation (3.28) we can calculate our associated P&L column. We
do this by taking each standard value and using it as E in Equation (3.28) to
get the column of associated P&L’s:

(3.29) D = (U * Shrink) + (S * E * Stretch)

where D = The price value corresponding to a standard unit value.

E = The standard unit value.

S = The population standard deviation.

U = The arithmetic mean.

For the -3 standard value, the associated P&L is:

D = (U * Shrink) + (S * E * Stretch)

= (330.129 * 1) + (1743.232 * (-3) * 1)

= 330.129 + (-5229.696)

= 330.129 - 5229.696

= -4899.567

Thus, our associated P&L column at a standard value of -3 equals
4899.567. \Ve now want to construct the associated P&L for the next stan-
dard value, which is -2.9, so we simply perform the same Equation, (3.29),
again-only this time we use a value of -2.9 for E.

Now to determine the associated probability column. This is calcuIateJ
using the standard value column as the Z input to Equation (3.21) without
the preceding 1 - and without the - Z provision (i.e, the “If Z < 0 then N(Z)
= 1 - N(Z)“). For the standard value of -3 (Z = -3),  this is:
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N(Z) = N’(Z) * (( 1.330274429 * Y A  5) - (1.821255978 * Y h 4)
+(1.781477937  * Y A  3) - (.356563i82  * Y h 2 + (.31938153  * Y))

If Z < 0 then N(Z) = 1 - N(Z)

where Y = l/(1 + .2316419  * ABS(Z))

ABS() = The absolute value function.

N’(Z) = .398942  * EXP( - (Z A  2/2))

EXP( ) = The exponential function.

Thus:

N’(3) = .398942  * EXP( - (( - 3) A  2/2))

= .398942  * EXP( - (g/2))

= .398942  * EXP( - 4.5)

= .398942  * .011109

= .004431846678

Y = l/(1  + 2316419 * ABS(-3))

= l/(1 + 2316419 * 3)

= l/(1 + 6949257)

= l/l  .6949257

= .5899963639

N(3)  = .004431846678  * ((1.330274429 * .5899963639  h 5)
- (1.821255978 * .5899963639  A  4) + (1.781477937
* .5899963639  A  3) - (.356563782  * .5899963639  A 2)
+ (.31938153  * .5899963639))

= .004431846678  * (( 1.330274429 * .07149022693)
- (1.821255978 * .1211706)  + (1.781477937 * .2053752)
- (.356563782  * .3480957094)  + (.31938153  * .5899963639))

= .004431846678  * (.09510162081-  .2206826796
+ .3658713876  - .1241183226  + .1884339414)

= .004431846678*.3046059476

= .001349966857
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Note that even though Z is negative (Z = -3), we do not adjust N(Z) here
by making N(Z) = 1 - N(Z). S ince  we are not using the - Z provision, we
just let the answer be.

Now for each value in the standard value column there will be a corre-

sponding entry in the associated P&L column and in the associated proba-
bility column. This is shown in the following table. Once you have these
three columns established you are ready to begin the search for the optimal
f and its by-products.

STD ASSOCIATED ASSOCIATED ASSOCIATED
VALUE P&L PROBABILITY HPRATf=.Ol

-3.0 ($4,899.57) 0.001350 0.9999864325
-2.9 ($4,725.24) 0.001866 0.9999819179
-2.8 ($4,550.92) 0.002555 0.9999761557
-2.7 ($4,376.60) 0.003467 0.9999688918
-2.6 ($4,202.27) 0.004661 0.9999598499
-2.5 ($4,027.95) 0.006210 0.9999487404
-2.4 ($3,853.63) 0.008198 0.9999352717
-2.3 ($3,679.30) 0.010724 0.9999191675
-2.2 ($3,504.98) 0.013903 0.9999001875
-2.1 ($3,330.66) 0.017864 0.9998781535
-2.0 ($3,156.33) 0.022750 0.9998529794
-1.9 ($2,982.01) 0.028716 0.9998247051
-1.8 ($2,807.69) 0.035930 0.9997935316
-1.7 ($2,633.37) 0.044565 0.9997598578
-1.6 ($2,459.04) 0.054799 0.9997243139
-1.5 ($2,284.72) 0.066807 0.9996877915
-1.4 ($2,110.40) 0.080757 0.9996514657
-1.3 ($1,936.07) 0.096800 0.9996168071
-1.2 ($1,761.75) 0.115070 0.9995855817
-1.1 ($1,587.43) 0.135666 0.999559835
-1.0 ($1,413.10) 0.158655 0.9995418607
-0.9 ($1,238.78) 0.184060 0.9995341524
-6.8 ($1,064.46) 0.211855 0.9995393392
-0.7 ($890.13) 0.241963 0.999560108
-0.6 ($715.81) 0.274253 0.9995991135
-0.5 ($541.49) 0.308537 0.9996588827
-0.4 ($367.16) 0.344578 09997417168

-0.3 ($192.84) 0.382088 0.9998495968
-0.2 ($18.52) 0.420740 0.9999840984
-0.1 $155.81 0.460172 1.00014632~6

0.0 $330.13 0.500000 1.0003368389
0.1 $504.45 0.460172 1.0004736542
0.2 $678.78 0.420740 1.00058265
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STD
VALUE

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

ASSOCIATED ASSOCIATED ASSOCIATED
P&L PROBABILITY HPRATf=.Ol

$853.10 0.382088 1.0006649234
$1,027.42 0.344578 1.0007220715
$1,201.75 0.308537 1.0007561259
$1,376.07 0.274253 1.0007694689
$1,550.39 0.241963 1.0007647383
$1,724.71 0.211855 1.0007447264
$1,899.04 0.184060 1.0007122776
$2,073.36 0.158655 1.0006701921
$2,247.68 0.135666 1.0006211392

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

$2,422.01 0.115070
$2,596.33 0.096800
$2,770.65 0.080757
$2,944.98 0.066807
$3,119.30 0.054799
$3,293.62 0.044565
$3,467.95 0.035930
$3,642.27 0.028716
$3,816.59 0.022750
$3,990.92 0.017864
$4,165.24 0.013903
$4,339.56 0.010724
$4,513.89 0.008198

1
1

1
1

.0005675842

.0005117319

.0004554875

.0004004351

.0003478328

.0002986228

.0002534528

.0002127072

.0001765438

.000144934

.0001177033

.0000945697

.0000751794
2.5 $4,688.21
2.6 $4,862.53
2.7 $5,036.86
2.8 $5,211.18
2.9 $5,385.50
3.0 $5,559.83

By-products atf = .Ol:

TWR=l.0053555695

0.006210 1.0000591373
0.004661 1.0000460328
0.003467 1.0000354603
0.002555 1.0000270338
0.001866 1.0000203976
0.001350 1.0000152327

Sum of the probabilities = 7.9791232176
Ceomean  =1.0006696309
GAT=$328.09

Here is how you go about finding the optima1 f. First, you must deter-

d mine the search method for f. You can simply loop from 0 to 1 by a prede-
termined  amount (e.g., .Ol), use an iterative technique, or use the tech-
nique of parabolic interpolation described in Portfolio Management

F~~m&.s.  What you seek to find is what value for f (between 0 and 1) will
msult in the highest geometric mean.

Once you have decided upon a search technique, you must determine
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what the worst-case associated P&L is in your table. In our example it is the
P&L corresponding to -3 standard units, 4899.57. You will need to use this
particular value repeatedly throughout the calculations.

In order to find the geometric mean for a given f value, for each value of
f that you are going to process in your search for the optimal, you must con-
vert each associated P&L and probability to an HPR.  Equation (3.30) shows
the calculation for the HPR:

(3.30) HPR = (1 + (W(W/(  - 0)))  A  P

where L = The associated P&L.

W = The worst-case associated P&L in the table (This will
always be a negative value).

f = The tested value for f.

P = The associated probability.

Working through an example now where we use the value of .Ol  for the
tested value for f, we will find the associated HPR at the standard value of

-3. Here, our worst-case associated P&L is 4899.57, as is our associated
P&L. Therefore, our HPR here is:

HPR = (1 + (4899.57/(4899.57/(-901))))  A  .001349966857

= (1 + (4899.57/489957))  A  .001349966857

= (1 + (-.Ol))  h  .001349966857

= .99 h .001349966857

= .9999864325
Now we move down to our next standard value, of -2.9, where we have

an associated P&L of -2866.72 and an associated probability of 0.001865.
Our associated HPR here will be:

HPR = ( l+ (4725.24/(4899.57/(-.Ol))))  A  .001866

= (1 + (4725.24/489957))  A  .001866

= (1 + (4725.24/489957))  A  .001866

= (1 + (-.009644193266))  A  .001866

= .990355807  A  .001866

= .9999819
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Once we have calculated an associated HPR for each standard value for a
given  test value off (.Ol  in our example table), you are ready to calculate the
TWR.  The TWR is simply the product of all of the HPRs  for a given f value
multiplied together:

(3.31) TRW = lifil  HP&)

where N = The total number of equally spaced data points.

HPR, = The HPR corresponding to the i’th data point, given by
Equation (3.30).

So for our test value off = .Ol, the TWR will be:

TWR = .9999864325  * .9999819179  * . . . * 1.0000152327

= 1.0053555695

We can readily convert a TWR into a geometric mean by taking the TWR
to the power of 1 divided by the sum of all of the associated probabilities.

(3.32) G = TRW A  (l&l’i)

w h e r e N = The number of equally spaced data points.

Pi = The associated probability of the ith data point.

Note that if we sum the column that lists the 61 associated probabilities
it equals 7.979105. Therefore, our geometric mean at f = .Ol  is:

G = 1.0053555695 A  (l/7.979105)

= 1.0053555695 A  .1253273393

= 1.00066963

We can also calculate the geometric average trade (CAT). This is the
-amount you would have made, on average per contract per trade, if you

l.-Were trading this distribution of outcomes at a specified f value../;

GAT = (G(f) - 1) * (w/(-f))
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where G(f) = The geometric mean for a given f value.

f = The given f value.

W = The worst-case associated P&L.

In the case of our example, the f value is .Ol:

CAT = (1.00066963 - 1) *  (4899.57/(-.Ol))

= BOO66963  *489957

= 328.09

Therefore, we would expect to make, on average per contract per trade,
$328.09.

Now we go to our next value for f that must be tested according to our
chosen search procedure for the optimal E In the case of our example we
are looping from 0 to 1 by .Ol  for f,  so our next test value for f is .02.  We will
do the same thing again. We will calculate a new associated HPRs column,
and calculate our TWR and geometric mean. The f value that results in the
highest geometric mean is that value for f which is the optimal based on the
input parameters we have used.

In our example, if we were to continue with our search for the optimal f,
we would find the optimal at f = .744 (I am using a step increment of .OOl in
my search for the optimal f here.) This results in a geometric mean of
1.0265. Therefore, the corresponding geometric average trade is $174.45.

It is important to note that the TWR  itself doesn’t have any real meaning
as a by-product. Rather, when we are calculating our geometric mean para-
metrically, as we are here, the TW’R is simply an interim step in obtaining
that geometric mean. Now, we can figure what our TWR would be after X
trades by taking the geometric mean to the power of X. Therefore, if we
want to calculate our TWR for 232 trades at a geometric mean of 1.0265,
we would raise 1.0265 to the power of 232, obtaining 431.79. So we can
state that trading at an optimal f of ,744, we would expect to make 43,079s
((431.79 - 1) * 100) on our stake after 232 trades.

Another by-product we will calculate is our threshold to geometric
Equation (2.02):

Threshold to geometric = 330.13074.45  * 4899.57/-.744

= 12,462.32

Notice that the arithmetic average trade of $330.13 is not something that
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we have calculated with this technique, rather it is a given as it is one of the
input parameters.

We can now convert our optimal f into how many contracts to trade by
the equations:

(3.34) K = E/Q

where K = The number of contracts to trade.

E = The current account equity.

(3.35) Q  = W/(  - f )

where W = The worst-case associated P&L.

f = The optimal f value.

Note that this variable, Q, represents a number that you can divide your
account equity by as your equity changes on a day-by-day basis to know how
many contracts to trade.

Returning now to our example:

Q = 4,899.57/-.744

= $6,585.44

Therefore, we will trade 1 contract for every $6,585.44  in account equity.
For a $25,000 account this means we would trade:

K = 25OOOl6585.44

= 3.796253553

Since we cannot trade in fractional contracts, we must round this figure
of3796253553 down to the nearest integer. We would therefore trade 3
rontracts for a $25,000 account. The reason we always round down rather
than  up is that the price extracted for being slightly below optimal is less
than  the price for being slightly beyond it.

Notice how sensitive the optimal number of contracts to trade is to the
worst loss. This worst loss is solely a function of how many sigmas you have
decided  to go to the left of the mean. This bounding parameter, the range
of sigmas, is very important in this calculation. We have chosen three sigmas
in our calculation. This means that we are, in effect, budgeted for a three-
Sigma loss. However, a loss greater than three sigmas can really hurt us,
depending on how far beyond three sigmas it is. Therefore, you should be
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very careful what value you choose for this range bounding parameter.
You’ll have a lot riding on it.

Notice that for the sake of simplicity in illustration, we have not
deducted commissions and slippage from these figures. If you wanted to
incorporate commissions and slippage, you should deduct X dollars in com-
missions and slippage from each of the 232 trades at the outset of this exer-
cise. You would calculate your arithmetic average trade and population
standard deviation from this set of 232 adjusted trades, and then perform
the exercise exactly as described.

We could now go back and perform a “What if” type of scenario here.
Suppose we want to see what will happen if the system begins to perform at
only half the profitability it is now (shrink = .5). Further, assume that the
market that the system we are looking at is in gets very volatile, and that as a
consequence the dispersion among the trades increases by 60% (stretch =
1.6). By pumping these parameters through this system we can see what the
optimal will be so that we can make adjustments to our trading before these
changes become history. In so doing we find that the optimal f now
becomes .262, or to trade 1 contract for every $31,305.92  in account equity
(since the worst-case associated P&L is strongly affected by changes in
stretch and shrink). This is quite a change. This means that if these changes
in the market system start to materialize, we are going to have to do some
altering in our money management regarding that system. The geometric
mean will drop to 1.0027, the geometric average trade will be cut to $83.02,
and the TWR over 232 trades will be 1.869. This is not even close to what it
presently would be. All of this is predicated upon a 50% decrease in average
trade and a 60% increase in standard deviation. This quite possibly could
happen. It is also quite possible that the future could work out vwre  favor-

ably than the past. We can test this out, too. Suppose we want to see what
will happen if our average profit increases by only 10%. We can check this
by inputting a shrink value of 1.1. These “What if’ parameters, stretch and
shrink, really give us a great deal of power in our money management.

The closer your distribution of trade P&L’s is to Normal to begin with,
the better the technique will work for you. The problem with almost any
money management technique is that there is a certain amount of “slop”
involved. IIere,  we can define slop as the difference between the Normal
Distribution and the distribution we are actually using. The difference
between the two is slop, and the more slop there is, the less effective the
technique becomes.

To illustrate, recall that using this method we have determined that to
trade 1 contract for every $6,585.44  in account equity is optimal. However,
if we were to go over these trades and find our optimal f empirically, we
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would find that the optimal is to trade 1 contract for every $7,918.04  in
account equity. As you can see, using the Normal Distribution technique
here would have us slightly to the right of the f curve, trading slightly more
contracts  than the empirical would suggest.

However, as we shall see, there is a lot to be said for expecting the future
distribution of prices to be Normally distributed. When someone buys or
sells an option, the assumption that the future distribution of the log of
price  changes in the underlying instrument will be Normal is built into the
price of the option. Along this same line of reasoning, someone who is
entering a trade in a market and is not using a mechanical system can be
said  to be looking at the same possible future distribution.

The technique detailed in this chapter was shown using data that was not
equalized. We can also use this very same technique on equalized data by
incorporating the following changes:

I. Before the data is standardized, it should be equalized by first con-
verting all of the trade profits and losses to percentage profits and
losses per Equations (2.10a) through (2.10~). Then these percentage
profits and losses should be translated into percentages of the current
price by simply multiplying them by the current price.

2. When you go to standardize this data, standardize the now equalized
data by using the mean and standard deviation of the equalized data.

3. The rest of the procedure is the same as written in this chapter in
terms of determining the optimal f,  geometric mean, and TWR. The
geometric average trade, arithmetic average trade, and threshold to
the geometric are only valid for the current price of the underlying
instrument. When the price of the underlying instrument changes,
the procedure must be done again, going back to step 1 and multiply-
ing the percentage profits and losses by the new underlying price.
When you go to red? the procedure with a different underlying price,
you will obtain the same optimal f, geometric  mean, and TWR.
However, your arithmetic average trade, geometric average trade, and
threshold to the geometric will differ, depending on the new price of
the underlying instrument.

4. The number of contracts to trade as given in Equation (3.34) must be
changed. The worst-case associated P&L, the W variable in Equation
(3.34) [as subequation (3.35)] will be different as a result of the
changes caused in the equalized data by a different current price.
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In this chapter we have learned how to find the optimal f on a
probability distribution. We have used the Normal Distribution
because it shows up so frequently in many naturally occurruzg  pro-
cesses and because it is easier to work with than many other distribu-
tions, since its cumulative density function, Equation (3.21),  exists.5
Yet the Normal is often  regarded as a poor model for the distribution
of trade profits and losses. What then is a good model for our pur-
poses? In the next chapter we will address this question and build
upon the techniques we have learned in this  chapter to work for any
type of probability distribution, whether its cumulative density func-
tion is known or not.

sAgain,  the cumulative density function to the Normal Distribution does not really exist, but
rather  i s  w-9  c lose ly  approximated  by  Equat ion  (3.21). However,  the cumulative density of the
Normal can at leact  be appmximated  by an equation, a hmwy which not all distributions possess.

Parametric Techniques on
Other Distributions

We have seen in the previous chapter how to find  the optimal f and its
by-products on the Normal Distribution. The same technique can be
applied to any other distribution where the cumulative density func-
tion is known. Many of these more common distributions and their
cumulative density functions are covered in Appendix B.
Lrnfortunately,  most distributions of trade P&L’s  do not fit neatly into
the Normal or other common distribution functions. In this chapter
we first treat this problem of the undefined nature of the distribution
of trade PbL’s  and later look at the technique of scenario planning, a
natural outgrowth of the notion of optimalf This technique  has many
broad applications. This then leads into finding the optimal f on a
binned distribution, which leads us to the next chapter regarding both
options and multiple simultaneous positions.

Before we attempt to model the real distribution of trade P&L’s,  we
must have a method for comparing two distributions.

THE KOLMOGOROV-SMIRNOV (K-S) TEST

The chi-square test is no doubt the most popular of all methods of compar-
ing hvo distributions. Since many market-oriented applications other than
the ones we perform in this chapter often use the chi-square test, it is dis-
cussed in Appendix A. However, the best test for our purposes may well be
the K-S test. This very efficient test is applicable to unbinned distributions
that are a function of a single independent variable (profit per trade in our
Case).

All cumulative density functions have a minimum value of 0 and a maxi-
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mum value of 1.  What goes on in between differentiates them. The K-S test
measures a very simple variable, D, which is defined as the maximum abso-
lute value of the difference between two distributions’ cumulative density
functions.

To perform the K-S test is relatively simple. N objects (trades in our
case) are standardized (by subtracting the mean and dividing by the stan-
dard deviation) and sorted in ascending order. As we go through these
sorted and standardized trades, the cumulative probability is however many
trades we’ve gone through divided by N. When we get to our first trade in
the sorted sequence, the trade with the lowest standard value, the cumula-
tive density function (CDF)  is equal to l/N. With each standard value that
we pass along the way up to our highest standard value, 1 is added to the
numerator until, at the end of the sequence, our CDF is equal to N/N or 1.

For each standard value we can compute the theoretical distribution that
we wish to compare to. Thus, we can compare our actual cumulative density
to any theoretical cumulative density. The variable D, the K-S statistic, is
equal to the greatest distance between any standard values of our actual
cumulative density and the value of the theoretical distribution’s CDF at
that standard value. Whichever standard value results in the greatest differ-
ence is assigned to the variable D.

When comparing our actual CDF at a given standard value to the theo-
retical CDF at that standard value, we must also compare the previous stan-
dard value’s actual CDF to the current standard value’s actual CDF. The
reason is that the actual CDF breaks upward instantaneously at the data
points, and, if the actual is below the theoreticah the difference between the
lines is greater the instant before the actual jumps up.

To see this, look at Figure 4-1. Notice that at point A the actual line is
above the theoretical. Therefore, we want to compare the current actual
CDF value to the current theoretical value to tind  the greatest difference.
Yet at point B, the actual line is below the theoretical. Therefore, we want
to compare the previous actual value to the current theoretical value. The
rationale is that we are measuring the greatest distance between the two
lines. Since we are measuring at the instant the actual jumps up, we can
consider using the previous value for the actual as the current value for the
actual the instant before it jumps.

In summary, then, for each standard value, we want to take the absolute
value of the difference between the current actual CDF value and the cur-
rent theoretical CDF value. We also want to take the absolute value of the
difference between the previous actual CDF value and the current theoreti-
cal CDF value. By doing this for all standard values, all points where the
actual CDF jumps up by l/N,  and taking the greatest difference, we will
have determined the variable D.

A

THE KOLMOGOROV-SMIRNOV (K-S) TEST 1 5 1

1

c 0.8

5
:
: 0 . 6

:
/

THECRE  T/CAL
rrr7T-n  tmT~~rTTS.,-rm,~rrrt~rr,  TTTrl

- 3 - 2 - 1
STANDAR:  VALUES

1 2

Figure 4-l The K-S test.

The lower the value of D, the more the two distributions are alike. We
can readily convert the D value to a significance level by the following for-
mula:

(4.01)

where

SIG = $J % 2) * 4 - 2 * EXP(-2 * J h  2 * (N  h (l/2)  * D) A  2)

SIG = The significance  lcvci  for a given D and N.

D = The K-S statistic.

N = The number of trades that the K-S statistic is determined
over.

% = The modulus operator, the remainder from division. As it

is used here, J % 2 yields  the remainder when J is divided
by2.

EXP() = The exponential function.

There is no need to keep summing the values until J gets to infinity. The
equation converges (in short order, usually) to a value. Once the conver-
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gence  is obtained to a close enough user tolerance, there is no need to con-
tinue summing values.

To illustrate Equation (4.01) by example. Suppose we had 100 trades
that yielded a K-S statistic of .04:

J 1 = (1 % 2) * 4 - 2 * EXP(-2 * 1 h 2 * (100 h (l/2)  *  .04) A  2)

= 1 * 4 - 2 *  EXP(-2 * 1 h 2 * (10 *  .04)  A  2)

= 2 * EXP(-2 * 1 A  2 * .4 A  2)

= 2 *  EXP(-2 * 1  * .16)

= 2 * EXP(-.32)

= 2 * .726149

= 1.452298

So our first value is 1.452298. Now to this we will add the next  pass
through the equation, and as such we must increment J by 1 so that J now
equals J2:

J2 = (2 % 2) * 4 - 2 *  EXP(-2 * 2 A  2 * (100 A  (l/2)  * .04)  A  2)

= 0 * 4 - 2 *  EXP(-2 * 2 A  2 * (10 * .04)  A  2)

= -2 *  EXP(-2 *  2 A  2 * .4 A  2)

= -2 * EXP(-2 * 4 * .16)

= -2 * EXP(-1.28)

= -2 *  .2780373

= -.5560746

Adding this value of -.5560746  back into our running sum of 1.452298
gives us a new running sum of .8962234.  We again increment J by 1, SO it
equals J3, and perform the equation. We take the resulting sum and add it
to our running total of .8962234.  We keep on doing  this until we converge
to a value within a close enough tolerance. For our example, this point of
convergence wivill be right around .997, depending upon how many decimal
places we want to be accurate to. This answer means that for 100 trades
where the greatest value between the two distributions was . 04, we can be
99.7% certain that the actual distribution was generated by the theoretical
distribution function. 111 other words, we can be 99.7% certain that the the-
oretical distribution function represents the actual distribution. Incidentally,
this is a very good significance level.
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CREATING OUR OWN CHARACTERISTIC
DISTRIBUTION FUNCTION

IVe have determined that the Normal Probability Distribution is generally
not a very good model of the distribution of trade profits and losses.
Further, none of the more common probability distributions are either.
Therefore, we must create a function to model the distribution of our trade
profits and losses ourselves.

The distribution of the logs of price changes is generally assumed to be
of the stable Paretian variety (for a discussion of the stable Paretian distri-
bution, refer to Appendix B). The distribution of trade P&L’s can be
regarded as a tmnsfb-mation  of the distribution of prices. This transforma-
tion occurs as a result of trading techniques such as traders trying to cut
their losses and let their profits run. Hence, the distribution of trade P&L’s
can also be regarded as of the stable Paretian variety. IVhat we are about to
study, however, is not the stable Paretian.

The stable Paretian, like all other distributional functions, models a spe-
cific probability phenomenon. The stable Paretian models the distribution
of smns  of indcpcndent, identically distributed random variables. The distri-
butional function we arc about to study does not model a specific probabil-
ity phenomenon. Rather, it models other unimodal distributional functions.
As such, it can replicate the shape, and therefore the probability densities,
of the stable Paretian as well as any other unimodal distribution.

Now we wivill create this function. To begin with, consider the following
: equation:

This equation graphs as a genrral  bell-shaped curve, symmetric about
the X axis, as is shown in Figure 4-2.

We will thus build from this general equation. The variable X can be
thought of as the number of standard units we are either side of the mean,
or  Y ‘axis.  We  can affect the first moment of this “distribution,” the location,
by adding a value  to represent a change  in location to X. Thus, the equation
becomes:

44.03) Y  = l/((X - LOC) A  2 + 1)

where Y = The ordinate of the characteristic function.

X = The standard value amount.

LOC = A variable representing the location, the first moment of the
distribution.
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Figure 4-2 LOC = 0 SCALE = 1 SKEW = 0 KURT = 2.

Thus, if we wanted to alter location by moving it to the left by l/2 of a
standard unit, we would set LOC to -5. This would give us the graph
depicted in Figure 4-3.

Likewise, if we wanted to shift location to the right, we would use a posi-
tive value for the LOC variable. Keeping LOC at zero will result in no shift
in location, as depicted in Figure 4-2.

The exponent in the denominator affects kurtosis. Thus far, we have seen
the  distribution with the kurtosis set to a value of 2, but we can control the
kurtosis of the  distribution by changing the  value of the exponent. This
alters our characteristic function, which now appears as:

( 4 . 0 4 ) Y = l/((X - LOC) h KURT + 1)

where Y = The ordinate of the characteristic function.

X = The standard value amount.

LOC = A variable representing the location, the first mornent of the
distribution.

KURT = A variable representing kurtosis, the fourth moment of the
distribution.

Figures 4-4 and 4-5 demonstrate the effect of the kurtosis variable on
our characteristic function. Note that the higher the exponent the more flat-

i,
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0.6

0.6

Figure 4-3 LOC = .5  SCALE = 1 SKEW = 0 KURT = 2.

‘J-igure  4-4 L& = o SCALE = 1 SKEW = o KURT = i.

topped  and thin-tailed the distribution (platykurtic), and the lower the expo-
lent, the more pointed the peak and thicker the tails of the distribution
$rtokurtic).
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Figure 4 - 5 L O C = 0 SCALE = 1 SKEW = 0 K U R T = 1.

So that we do not run into problems with irrational numbers when
KURT < 1, we will use the absolute value of the coefficient in the denomi-
nator. This does not affect the shape of the curve. Thus, we can rewrite
Equation (4.04) as:

(4.04) Y = l/(ABS(X-  LOC) h KURT + 1)

We can put a multiplier on the coefficient in the denominator to allow US

to control the scale, the second moment of the distribution. Thus, our char-

acteristic function has now become:

(4.05)

where

Y = l/(ABS((X - LOC) * SCALE) * KURT + 1)

Y = The ordinate of the characteristic function.

X = The standard value amount.

LOC = A variable representing the location, the first moment of
the distribution.

SCALE = A variable representing the scale, the second moment of
the distribution.

KURT = A variable representing kurtosis, the fourth moment of
the distribution.
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(4.06)

where

(4.07)

Y = (l/(ABS((X  - LOC) * SCALE) A  KURT + 1)) h  C

C = The exponent for skewness, calculated as:

C = (1 + (ABS(SKEW) h ABS(  l/(X - LOC)) * sign(X)
*  -sign(SKEW)))  A  .5

1.2

l -
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igure  4 - 6  l&Z  =  0  S C A L E  =  .5 S K E W  =  0  K U R T  =  2 .

Figures 4-6 and 4-7 demonstrate the effect of the scale parameter. The
effect of this parameter can be thought of as moving the horizontal axis up

’ or down on the distribution. When the axis is moved up (by decreasing
scale), the graph is also enlarged. This results in what we have in Figure

._ 4-6. This has the effect of moving the horizontal axis up and enlarging the
distribution curve. The result is as though we were looking at the “cap” of
the  distribution. Figure 4-‘i  does just the opposite. As is borne out in the

I figure, the effect is that the horizontal axis has been moved down and the
distribution curve shrunken.

We now have a characteristic function to a distribution whereby we have
complete control over three of the first four moments of the distribution.

1 Presently, the distribution is symmetric about the location. What we now
need is to be able to incorporate a variable for skewness, the third moment
of the distribution, into this function. To account for skewness, we must
amend our function further. Our characteristic function has now evolved to:
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Figure 4-7 L O C = 0 SCALE = 2 SKEW = 0 KURT = 2 .

Y = The ordinate of the characteristic function.

X = The standard value amount.

LOC = A variable representing the location, the first moment of the
distribution.

SCALE = A variable representing the scale, the second moment of the
distribution.

SKEW = A variable representing the skewness, the third moment of
the distribution.

KURT = A variable representing kurtosis, the fourth moment of the
distribution.

sign0  = The sign function, equal to 1 or -1. The sign of X is cab-

lated  as X/ASS(X)  for X not equal to 0. If X is equal to zero,
the sign should be regarded as positive.

Figures 4-8  and 4-9 demonstrate the effect of the skewness variable on
our distribution.
A few important notes on the four parameters LOC, SCALE, SKEW,

and KURT. With the exception of the variable LOC (which is expressed a~
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Figure 4-8 L O C = 0 SCALE = 1 S K E W = -.5 KURT = 2.
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igure  4-9 LOC  = 0 SCALE = 1 SKEW = +.5  KURT = 2.
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the number of standard values to offset the distribution by), the other three
variables are nondimensional-that  is, their values are pure numbers which

have meaning only in a relative context, characterizing the shape of the dis-
tribution and are relevant only to this distribution.

Furthermore, the parameter values are not the same values you would

get if you employed any of the standard measuring techniques detailed in
“Descriptive Measures of Distributions ” in Chapter 3. For instance, if you
determined one of Pearson’s coefficients of skewness on a set of data, it
would not be the same value that you would use for the variable SKEW in
the adjustable  distributions here. The values for the  four variables are
unique to our distribution and have meaning only in a relative context.

Also of importance is the range that the variables can take. The SCALE
variable must always be positive with no upper bound, and likewise with

KURT. In application, though, you will generally use values between .5 and
3, and in extreme cases between .05 and 5. However, you can use values
beyond these extremes, so long as they are greater than zero.

The LOC variable can be positive, negative, or zero. The SKEW param-
eter must be greater than or equal to -1 and less than or equal to +l.  When
SKE\f’  equals +l, the entire right side of the distribution (right of the peak)
is equal to the peak, and vice versa when SKEW equals -1.

The ranges on the variables are summarized as:

(4.08) -infinity < LOC < +infinity

(4.09) SCALE > 0

(4.10) -1 <= SKEW <= +l

(4.11) KURT > 0

Figures 4-2 through 4-9 demonstrate just how pliable our distribution is.
We can fit these four parameters such that the resultant distribution can fit
to just about any other distribution.

F I T T I N G  T H E  P A R A M E T E R S  O F  T H E  D I S T R I B U T I O N

Just as with the process described in Chapter 3 for finding our optimal f on
the Normal Distribution, we must convert our raw trades data over to stan-
dard units. We do this by first subtracting the mean from each trade, then
dil-iding  by the population standard deviation. From this point forward, we
will be working with the data in standard units rather than in its raw form.
After we have our trades in standard values, we can sort them in ascending
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order. With our trades data arranged this way, we will be able to perform
the  K-S test on it.

Our objective now is to find what values for LOC, SCALE, SKEW, and
KURT best fit our actual trades distribution. To determine this “best fit” we
rely on the K-S test. We estimate the parameter values by employing the
“hventieth-century  brute force technique.” We run every combination for

KURT from 3 to .5 by -.l (we could just as easily run it from 5  to 3 by .l, as
it doesn’t matter whether we ascend or descend through the values). We

also run every combination for SCALE from 3 to .5 by -.l.  For the time
being we leave LOC and SKEW at 0. Thus, we are going to run the follow-
ing combinations:

LOC S C A L E S K E W K U R T

0 3 0 3
0 3 0 2.9
0 3 0 2.8
0 3 0 2.7
0 3 0 2.6
0 3 0 2.5
0 3 0 2.4
0 3 0 2.3
0 3 0 2.2
0 3 0 2.1
0 3 0 2
0 3 0 1.9

0 2.9 0 3
0 2.9 0 2.9

0 .5 0 .6
0 .5 0 .5

We  perform the K-S test for each combination. The combination that

resul ts in the lowest K-S statistic we assume to bc our optimal best-fitting
Parameter values for SCALE and KURT (for the time being).

1. To perform the K-S test for each combination, we need both the actual.
ulstribution and the theoretical distribution (determined from the parame-
ers  for the adjustable distribution that we are testing). We already have
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seen how to construct the actual cumulative density as X/N, where N is the
total number of trades and X is the ranking (between 1 and N) of a given
trade. Now we need to calculate the CDF, (the function for what percent-
age of the area of the characteristic function a certain point constitutes) for
our theoretical distribution for the given LOC, SCALE, SKEW, and KURT
parameter values we are presently looping through.

We have the characteristic function for our adjustable distribution. This
is Equation (4.06). To obtain a CDF from a distribution’s characteristic
function we must find the integral of the characteristic function. We define
the integral, the percentage of area under the characteristic function at
point X, as N(X). Thus, since Equation (4.06) gives us the first  derivative to
the integral, we define Equation (4.06) as N’(X).

Often you may not be able to derive the integral of a function, even if
you are proficient in calculus. Therefore, rather than determining the inte-
gral to Equation (4.06), we are going to rely on a different technique, one
that, although a bit more labor intensive, is hardier than the technique of
finding the integral.

The respective probabilities can always be estimated for any point on the
function’s characteristic line by making the distribution be a series of many
bars. Then, for any given bar on the distribution, you can calculate the prob-
ability associated at that bar by taking the sum of the areas of all those bars
to the left of your bar, including your bar, and dividing it by the sum of the
areas of all the bars in the distribution. The more bars you use, the more
accurate your estimated probabilities will be. If you could use an infinite
number of bars, your estimate would be exact.

\Ve now discuss the procedure for finding the areas under our adjustable
distribution by way of an example. Assume we wish to find probabilities
associated with every  .l increment  in standard values from -3 to +3 sigmas
of our adjustable distribution. Notice that our table (p. 163) starts at -5
standard units and ends at +5 standard units, the reason being that YOU

should begin and end 2 sigmas beyond the bounding parameters (-3 and +3
sigmas in this case) to get more accurate results. Therefore, we begin our
table at -5 sigmas and end it at +5 sigmas.

Notice that X represents the number of standard units that we are away
from the mean. This is then followed by the four parameter values. The
next column is the N’(X) column, the height of the curve at point X given
these parameter values. N’(X) is calculated as Equation (4.06).

\C’e now work with Equation (4.06). Assume that we want to calculate
N’(X) for X at -3, with the values for the parameters of .02,  2.76,0,  and 1.78
for LOC, SCALE, SKEW, and KURT respectively. First, we calculate the
exponent of skewness, C in Equation (4.06)-given  as Equation (4.07)--a~:
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i:.  x
L O C  S C A L E  S K E W  K U R T N’(X) RUNNING NW

Eq. (4.06) S U M

.@ - 5 . 0  0 . 0 2  2 . 7 6
,P 4.9 0 . 0 2  2 . 7 6
“5 4.8 0 . 0 2  2 . 7 6_’

- 4 . 7  0 . 0 2  2 . 7 6
I’ -4.6 0.02 2.76
- 4 . 5  0 . 0 2  2 . 7 6

::  - 4 . 4  0 . 0 2  2 . 7 6
- 4 . 3  0 . 0 2  2 . 7 6

1 -4.2 0.02 2.76
-4.1  0 . 0 2  2 . 7 6
-4.0 0 . 0 2  2 . 7 6

\ - 3 . 9  0 . 0 2  2 . 7 6
-3.8 0 . 0 2  2 . 7 6
- 3 . 7  0 . 0 2  2 . 7 6
- 3 . 6  0 . 0 2  2 . 7 6
- 3 . 5  0 . 0 2  2 . 7 6

v - 3 . 4  0 . 0 2  2 . 7 6
- 3 . 3  0 . 0 2  2 . 7 6
- 3 . 2  0 . 0 2  2 . 7 6

-3 .1  0 .02  2 .76
- 3 . 0  0 . 0 2  2 . 7 6
- 2 . 9  0 . 0 2  2 . 7 6
- 2 . 8  0 . 0 2  2 . 7 6
- 2 . 7  0 . 0 2  2 . 7 6

’ -2.6 0.02 2.76
- 2 . 5  0 . 0 2  2 . 7 6
- 2 . 4  0 . 0 2  2 . 7 6
- 2 . 3  0 . 0 2  2 . 7 6
- 2 . 2  0 . 0 2  2 . 7 6
- 2 . 1  0 . 0 2  2 . 7 6
- 2 . 0  0 . 0 2  2 . 7 6
- 1 . 9  0 . 0 2  2 . 7 6
-1.8 0 . 0 2  2 . 7 6
-1.7 0 . 0 2  2 . 7 6

-1.6 0 . 0 2  2 . 7 6
,:.  -1.5 0 . 0 2  2 . 7 6
‘8.  -1.4 0 . 0 2  2 . 7 6
.,
;:  -1.3  0 . 0 2  2 . 7 6
.@  -1.2  0 . 0 2  2 . 7 6

0 1 . 7 8 0 . 0 0 9 2 0 2 6 7 4 1 0 . 0 0 9 2 0 2 6 7 4 1  0 . 0 0 0 3 8 8
0 I .78 0 . 0 0 9 5 3 5 0 5 1 9 0 . 0 1 8 7 3 7 7 2 6  0 . 0 0 1  I 7 8
0 I .78 0 . 0 0 9 8 8 6 5 1 1 7 0 . 0 2 8 6 2 4 2 3 7 7  0 . 0 0 1 9 9 7
0 1 . 7 8 0 . 0 1 0 2 5 8 5 7 0 . 0 3 8 8 8 2 8 0 7 7  0 . 0 0 2 8 4 7
0 I .78 0 . 0 1 0 6 5 2 8 9 8 8 0 . 0 4 9 5 3 5 7 0 6 5  0 . 0 0 3 7 2 9
0 I .78 0 . 0 1 1 0 7 1 3 4 4 9 0 . 0 6 0 6 0 7 0 5 1 4  0 . 0 0 4 6 4 5
0 I . 7 8 0 . 0 1 1 5 1 5 9 5 2 4 0 . 0 7 2 1 2 3 0 0 3 8  0 . 0 0 5 5 9 8
0 I .78 0 . 0 1 1 9 8 8 9 8 8 7 0 . 0 8 4 1 1  I 9 9 2 5  0 . 0 0 6 5 9 0
0 1 . 7 8 0 . 0 1 2 4 9 2 9 7 4 8 0 . 0 9 6 6 0 4 9 6 7 3  0 . 0 0 7 6 2 2
0 I .78 0 . 0 1 3 0 3 0 7 2 0 3 0 .  I O 9 6 3 5 6 8 7 6  0 . 0 0 8 6 9 9
0 1 . 7 8 0 . 0 1 3 6 0 5 3 6 3 9 0 . 1 2 3 2 4 1 0 5 1 5  0 . 0 0 9 8 2 3
0 I .78 0 . 0 1 4 2 2 0 4 2 0 9 0 . 1 3 7 4 6 1 4 7 2 4  0 . 0 1 0 9 9 6
0 I .78 0 . 0 1 4 8 7 9 8 3 9 8 0 . 1 5 2 3 4 1 3 1 2 2  0 . 0 1 2 2 2 4
0 1 . 7 8 0 . 0 1 5 5 8 8 0 6 7 2 0 . 1 6 7 9 2 9 3 7 9 5  0 . 0 1 3 5 0 9
0 I . 7 8 0 . 0 1 6 3 5 0 1 2 6 6 0 . 1 8 4 2 7 9 5 0 6 0 . 0 1 4 8 5 6
0 1 . 7 8 0 . 0 1 7 1 7 1 7 0 9 9 0 . 2 0 1 4 5 1 2 1 5 9  0 . 0 1 6 2 7 0
0 1 . 7 8 0 . 0 1 8 0 5 9 2 8 8 3 0 . 2 1 9 5 1 0 5 0 4 2  0 . 0 1 7 7 5 6
0 I .78 0 . 0 1 9 0 2 0 2 4 4 3 0 . 2 3 8 5 3 0 7 4 8 5  0 . 0 1 9 3 2 0
0 1 . 7 8 0 . 0 2 0 0 6 3 0 3 0 1 0 . 2 5 8 5 9 3 7 7 8 6  0 . 0 2 0 9 6 9
0 I .78 0 . 0 2 1 1 9 7 3 6 0 6 0 . 2 7 9 7 9 1 1 3 9 2  0 . 0 2 2 7 0 9
0 1 . 7 8 0 . 0 2 2 4 3 4 4 4 6 8 0 . 3 0 2 2 2 5 5 8 6 0 . 0 2 4 5 5 0
0 I .78 0 . 0 2 3 7 8 7 2 8 1 9 0 . 3 2 6 0 1 2 8 6 7 9  0 . 0 2 6 4 9 9
0 I .78 0 . 0 2 5 2 7 0 9 9 3 2 0 . 3 5 1 2 8 3 8 6 1 2  0 . 0 2 8 5 6 9
0 I .78 0 . 0 2 6 9 0 3 2 7 7 7 0 . 3 7 8 1 8 7 1 3 8 9  0 . 0 3 0 7 7 0
0 1 . 7 8 0 . 0 2 8 7 0 4 9 4 4 6 0 . 4 0 6 8 9 2 0 8 3 5  0 . 0 3 3 1  I 5
0 1 . 7 8 0 . 0 3 0 7 0 0 5 9 6 7 0 . 4 3 7 5 9 2 6 8 0 2  0 . 0 3 5 6 2 1
0 I .78 0 . 0 3 2 9 1 9 4 9 1  I 0 . 4 7 0 5 1 2 1 7 1 3  0 . 0 3 8 3 0 5
0 I .78 0 . 0 3 5 3 9 6 6 3 6 2 0 . 5 0 5 9 0 8 8 0 7 5  0 . 0 4 1 1 8 6
0 I .78 0 . 0 3 8 1 7 4 2 0 1 5 0 . 5 4 4 0 8 3 0 0 9 0 . 0 4 4 2 9 0
0 1 . 7 8 0 . 0 4 1 3 0 3 3 4 4 0 . 5 8 5 3 8 6 3 5 2 9  0 . 0 4 7 6 4 2
0 I .78 0 . 0 4 4 8 4 6 5 9 9 9 0 . 6 3 0 2 3 2 9 5 2 9  0 . 0 5 1 2 7 6
0 I .78 0 . 0 4 8 8 8 1 0 4 5 2 0 . 6 7 9 1 1 3 9 9 8 1  0 . 0 5 5 2 2 9
0 I .78 0 . 0 5 3 5 0 2 5 1 8 5 0 . 7 3 2 6 1 6 5 1 6 6  0 . 0 5 9 5 4 8
0 I .78 0 . 0 5 8 8 3 1 3 2 9 2 0 . 7 9 1 4 4 7 8 4 5 8  0 . 0 6 4 2 8 7
0 1 . 7 8 0 . 0 6 5 0 2 0 0 6 4 9 0 . 8 5 6 4 6 7 9 1 0 7  0 . 0 6 9 5 1  I
0 I .78 0 . 0 7 2 2 6 4 4 1 0 5 0 . 9 2 8 7 3 2 3 2 1 3  0 . 0 7 5 3 0 2
0 I .78 0 . 0 8 0 8 1 8 3 4 1 I  .0095506622  0 . 0 8 1 7 5 9
0 1 . 7 8 0 . 0 9 1 0 1 5 7 5 8 1 1  .1005664203  0 . 0 8 9 0 0 7
0 I .78 0 . 1 0 3 3 0 1 7 4 5 5 I  .2038681658  0 . 0 9 7 2 0 4
0 1 . 7 8 0 .  I  1 8 2 7 8 3 5 0 2 1 . 3 2 2 1 4 6 5 1 6 0 . 1 0 6 5 5 0
0 I .78 0 . 1 3 6 7 7 2 5 0 2 8 1 . 4 5 8 9 1 9 0 1 8 7  0 . 1 1 7 3 0 8
0 I .78 0 . 1 5 9 9 3 7 7 4 6 4 1 . 6 1 8 8 5 6 7 6 5 1  0 . 1 2 9 8 2 4
0 I .78 0 . 1 8 9 4 0 7 0 0 0 1 1 . 8 0 8 2 6 3 7 6 5 3  0 . 1 4 4 5 6 0
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X LOC SCALE SKEW KURT N'(X) RUNNING NW)
Eq.-(4.06) S U M

-0.7 0.02 2.76 0
-0.6 0.02 2.76 0
-0.5 0.02 2.76 0
-0.4 0.02 2.76 0
-0.3 0.02 2.76 0
-0.2 0.02 2.76 0

-0.1 0.02 2.76 0
0.0 0.02 2.76 0

0.1 0.02 2.76 0
0.2 0.02 2.76 0
0.3 0.02 2.76 0
0.4 0.02 2.76 0

0.5 0.02 2.76 0

0.6 0.02 2.76 0
0.7 0.02 2.76 0
0.8 0.02 2.76 0
0.9 0.02 2.76 0
1.0 0.02 2.76 0

1.1 0.02 2.76 0
1.2 0.02 2.76 0

1.3 0.02 2.76 0
1.4 0.02 2.76 0
1.5 0.02 2.76 0
1.6 0.02 2.76 0

1.7 0.02 2.76 0
1.8 0.02 2.76 0
1.9 0.02 2.76 0
2.0 0.02 2.76 0
2.1 0.02 2.76 0

2.2 0.02 2.76 0

2.3 0.02 2.76 0
2.4 0.02 2.76 0
2.5 0.02 2.76 0
2.6 0.02 2.76 0
2.7 0.02 2.76 0
2.8 0.02 2.76 0
2.9 0.02 2.76 0
3.0 0.02 2.76 0

3.1 0.02 2.76 0
3.2 0.02 2.76 0
3.3 0.02 2.76 0
3.4 0.02 2.76 0
3.5 0.02 2.76 0
3.6 0.02 2.76 0

1.78 0.2275190511 2.0357828164
1.78 0.2776382822 2.3134210986
1.78 0.3445412618 2.6579623604
1.78 0.4346363128 3.0925986732
1.78 0.5550465747 3.6476452479

1.78 0.7084848615 4.3561301093
1.78 0.8772840491 5.2334141584

1.78 1 6.2334141584
1.78 0.9363557429 7.1697699013
1.78 0.776473162 7.9462430634
1.78 0.6127219404 8.5589650037
1.78 0.4788099392 9.0377749429

1.78 0.377388991 9.4151639339
1.78 0.3020623672 9.7172263011
1.78 0.2458941852 9.9631204863
1.78 0.2034532796 10.1665737659
1.78 0.1708567846 10.3374305505
1.78 0.1453993995 10.48282995
1.78 0.1251979811 10.6080279311

1.78 0.1089291462 10.7169570773
1.78 0.0956499316 10.8126070089
1.78 0.0846780659 10.8972850748
1.78 0.0755122067 10.9727972814

1.78 0.0677784099 11.0405756913
1.78 0.0611937787 11.10176947
1.78 0.0555414402 11.1573109102
1.78 0.0506530744 11.2079639847
1.78 0.0463965419 11.2543605266
1.78 0.0426670018 11.2970275284
1.78 0.0393804519 11.3364079803
1.78 0.0364689711 11.3728769515
1.78 0.0338771754 11.4067541269
1.78 0.0315595472 11.4383136741
1.78 0.0294784036 11.4677920777
1.78 0.0276023341 1
1.78 0.0259049892 1
1.78 0.0243641331 1
1.78 0.0229608959 1
1.78 0.0216791802 1
1.78 0.0205051855 1

.4953944118 0.968617

.5212994011  0.970874

.5456635342 0.972994

.5686244301  0.974990

.5903036102 0.976873

.6108087957 0.978653
1.78 0.0194270256 11.6302358213 0.980337
1.78 0.0184344179 11.6486702392 0.981934
1.78 0.0175184304 11.6661886696 0.983451
1.78 0.0166712734 11.682859943 0.984893

0.162146
0.183455
0.209699
0.242566
0.284312

0.337609
0.404499
0.483685
0.565363
0.637613
0.696211
0.742253

0.778369
0.807029
0.830142
0.849096
0.864885
0.878225
0.889639
0.899515
0.908145
0.915751
0.922508
0.928552
0.933993
0.938917
0.943396
0.947490
0.951246
0.954707
0.957907
0.960874
0.963634
0.966209

X LOC SCALE SKEW KURT N'(X) RUNNING N(X)
Eq. (4.06) S U M

3.7 0.02 2.76 0 1.78 0.0158861285 11.6987460714 0.986266
- 3.8 0.02 2.76 0 1.78 0.0151570063 11.7139030777 0.987576

3.9 0.02 2.76 0 1.78 0.014478628 11.7283817056 0.988826
4.0 0.02 2.76 0 1.78
4.1 0.02 2.76 0 1.78

' 4.2 0.02 2.76 0 1.78
4.3 0.02 2.76 0 1.78
4.4 0.02 2.76 0 1.78
4.5 0.02 2.76 0 1.78

i 4.6 0.02 2.76 0 1.78
4.7 0.02 2.76 0 1.78
4.8 0.02 2.76 0 1.78
4.9 0.02 2.76 0 1.78
5.0 0.02 2.76 0 1.78

0.0138463263
0.0132559621
0.012703854
0.0121867187
0.0117016203
0.0112459269
0.0108172734
0.0104135298
0.0100327732
0.0096732643
0.0093334265

11
11
11
11
11
11
11
1
1
1
1

.742228032

.7554839941

.7681878481

.7803745668

.7920761871

.8033221139

.8141393873
1.8245529171
1.8345856903
1.8442589547
1.8535923812
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0.990020
0.991164
0.992259
0.993309
0.994316
0.995284
0.996215
0.997110
0.997973
0.998804
0.999606

(4.07) C = (1 + (ABS(SKEW) A  ABS(l/(X  - LOC)) * sign(X)
* -sign(SKEW)))  h  5

= (1 + (ABS(0)  h  ABS(l/(-3  - .02)) *  -1 *  -..I))  A  ,5

= (1 + 0) A .5

= 1

Thus, substituting 1 for C in Equation (4.06):

(4.06) Y = (l/(ABS((X-  LOC) * SCALE) A  KUKT + 1))  A  C

= (l/(ABS((-3  - .02) * 2.76) A  1.78 + I)) A  1

= (U((3.02  * 2.76) A 1.78 + 1)) A  1

= (l/(8.3352 A  1.78 + 1)) A  1

:. = (l/(43.57431058 + 1)) A 1
$’

/
, ;-‘y:’ = (l/44.57431058) A  1

Y$$;
*p- - = .02243444681 h 1

= .02243444681

Thus, at the point X = -3, the N’(X) value is .02243444681.  (Notice that
ddate an N’(X) column, which corresponds to every value of X).
The next step  we must perform, the next  column, is the running sum of

as we advance up through the X’s. This is straightforward
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enough. Now we calculate the N(X) column, the resultant probabilities
associated with each value of X, for the given parameter values. To do this,
we must perform Equation (4.12):

(4.12) N(C) = (,gp’CXi)  +~,N’(XiJW  gy’(Xi)

where C = The current X value.

M = The total count of X values.

Equation (4.12) says, literally, to add the running sum at the current
value of X to the running sum at the previous value of X as we advance up
through the x’s.  Now divide this sum by 2. Then take the new quotient and
divide it by the last value in the column of the running sum of the N’(X)‘s
(the total of the N’(X) column). This gives  us the resultant probabilities for a
given value of X, for given parameter values.

Thus, for the value of -3 for X, the running sum of the N’(X)‘s  at -3 is
.302225586, and the previous X, -3.1, has a running sum value of
.2797911392.  Summing these two running sums together gives us
5820167252. Dividing this by 2 gives us .2910083626.  Then dividing this by
the last value in the running sum column, the total of all of the N’(X)‘s,
11.8535923812, gives us a quotient of .02455022522.  This is the associated
probability, N(X), at the standard value of X = -3.

Once we have constructed cumulative probabilities for each trade in the
actual distribution and probabilities for each standard value increment in
our adjustable distribution, we can perform the K-S test for the parameter
values we are currently using. Before we do, however, we must make
adjustments for a couple of other preliminary considerations.

111  the example of the table of cumulative probabilities shown earlier for
our adjustable distribution, we calculated probabilities at every .l increment
in standard values. This was for the sake of simplicity. In practice, you can
obtain a greater degree of accuracy by using a smaller step increment. I find
that using .Ol  standard values is a good step increment.

A word on how to determine your bounding parameters in actual pmc-
tice-that is, how many sigmas either side of the mean you should go in
determining your probabilities for our adjustable distribution. In our exam-
ple we were using 3 sigmas either side of the mean, but in reality you must
use the absolute value of the farthest point from the mean. For our 232-
trade example, the extreme left (lowest) standard value is -2.96 standard
units and the extreme right (highest) is 6.935321 standard units. Since 6.93
is greater than ABS(-2.96),  we must take the 6.935321. Now, we add at
least 2 sigmas to this value, for the sake of accuracy, and construct probabili-
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ties for a distribution from -8.94 to +8.94 sigmas. Since  we want a good deal
of accuracy, we will use a step increment of .Ol.  Therefore, we will figure
probabilities for standard values of:

-8.94
-8.93
-8.92
-8.91

/ +8.94

\ Now, the last thing we must do before we can actually perform our K-S
statistic is to round the actual standard values of the sorted trades to the
nearest .Ol  (since we are using .Ol  as our step value on the theoretical dis-
tribution). For example, the value 6.935321 will not have a corresponding

theoretical probability associated with it, since it is in between the step val-
ues 6.93 and 6.94. Since 6.94 is closer to 6.935321, we round 6.935321 to
6.94. Before we can begin the procedure of optimizing our adjustable dis-
tribution parameters to the actual distribution by employing the K-S test,
we must round our actual sorted standardized trades to the nearest step
increment.

In lieu of rounding the standard values of the trades to the nearest Xth
J decimal place you can use linear interpolation on your table of cumulative

probabilities to derive probabilities corresponding to the actual standard
values of the trades. For more on linear interpolation, consult a good statis-
tics book, such as some of the ones suggested in the bibliography or
Connru~lit~~  Market h1oney  Managonent  by Fred G&m.

Thus far, we have been optimizing only for the best-fitting  KURT and
SCALE v&es.  Logically, it would seem that if we standardized our data, as

we have, then the LOC parameter should be kept at 0 and the SCALE
‘s:  ; parameter should be kept at 1. This is not necessarily true, as the true loca-
i. tion  of the distribution may not be the arithmetic mean, and the true opti-
2  mal  value for scale may not be at 1. The KURT and SCALE values have ah‘,”
$c Very  strong relationship to one another. Thus, we first try to isolate  the
$2 -“neighborhood” of best-fitting parameter values for KURT and SCALE. For
“““’  -our  232 trades this occurs at SCALE equal  to 2.7 and KURT equal  to 1.9.

Now we progressively try to zero in on the  best-fitting paramctrr values.
his is a computer-time-intensive process. We  run our next pass through,

ling  the LOC parameter from .1 to -.I by -.OS,  the SCALE parameter
*n  2.6 to 2.8 by .OS,  the SKEW parameter from .l to -.l by -.OS,  and the
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KURT parameter from 1.86 to 1.92 by .02.  The results of this cycle through
give the optimal (lowest K-S statistic) at LOC = 0, SCALE = 2.8, SKEW
= 0, and KURT = 1.86.

Thus we perform a third cycle through. This time we run LOC from .04
to -.04  by -.02,  SCALE from 2.76 to 2.82 by .02, SKEW from .04 to -.04  by
-.02,  and KURT from 1.8 to 1.9 by .02. The results of the third cycle
through show optima1 values at LOC = .02,  SCALE = 2.76, SKEW = 0, and
KURT = 1.8.

Now we have zeroed right in on the optimal neighborhood, the areas
where the parameters make for the best fit of our adjustable characteristic
function to the actual data. For our last cycle through we are going to run
LOC from 0 to .03 by .Ol, SCALE from 2.76 to 2.73 by -.Ol,  SKEW from
.Ol  to -.Ol  by -.Ol,  and KURT from 1.8 to 1.75 by -.Ol.  The results of this
final pass show optimal parameters for our 232 trades at LOC = .02,
SCALE = 2.76, SKEW = 0, and KURT = 1.78.

USING THE PARAMETERS TO FIND THE OPTIMAL f

Now that we have found the best-fitting parameter values, we can find the
optimal f on this distribution. We can take the same procedure we used to
find the optimal f on the Normal Distribution discussed in the last chapter.
The only difference now is that the associated probabilities for each stan-
dard value (X value) are calculated per the procedure  described for
Equations (4.06) and (4.12). With the Normal Distribution, we find our
associated probabilities column (probabilities corresponding to a certain
standard value) by using Equation (3.21). Here, to find our associated prob-
abilities, we must follow the procedure detailed previously:

1. For a given standard value, X, we figure its corresponding N’(X) by
Equation (4.06).

2. For each standard value, we also have the interim step of keeping a
running sum of the N’(X) ‘s corresponding to each value of X.

3. Now, to find N(X), the resultant probability for a given X, add
together the running sum corresponding to the X value with the run-
ning sum corresponding to the previous Xv&c. Divide this sum by 2.
Then divide this quotient by the sum total of the N’(X)‘s,  the  last enW
in the column of running sums. This new quotient is the associated I-
tailed probability for a given X.

Since we now have a procedure to find the associated probabilities for a
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given  standard value,  X, for a given set of parameter values, we can find our
optimal f.  The procedure is exactly the same as that detailed for finding the
optimal f on the Normal Distribution. The only difference is that we calcu-
late the associated probabilities column differently.

In our 232-trade example, the parameter values that result in the lowest
K-S statistic are .02, 2.76, 0, and 1.78 for LOC, SCALE, SKEW, and

~8  KURT respectively. We arrived at these parameter values by using the opti-
,id’  mization  procedure outlined in this chapter. This resulted in a K-S statistic&,3%i,. of .0835529  (meaning that at its worst point, the two distributions were
$ apart  by 8.35529%),  and a significance level of 7.8384%. Figure 4-10 shows
i$ the  distribution function for those parameter values that best fit our 232

, ;iiy,  tr&$s.
i If we take these parameters and find the optimal f on this distribution,

‘4, bounding the distribution from +3 to -3 sigmas and using 100 equally
spaced data points, we arrive at an optimal f value of .206, or 1 contract for

’ every $23,783.17.  Compare this to the empirical method, which showed
a that optimal growth is obtained at 1 contract for every $i,918.04  in account
.i  ̂ ewty.

But that is the result we get if we bound the distribution at 3 sigmas
either side of the mean. In reality,  in the empirical stream of trades, we had
a worst-case loss  of 2.96 sigmas and a best-case gain of 6.94.sigmas. Now if

A--------/“N(X)/

‘TI”‘I’I’I’I’III’I11111111’11111111) ‘--
e

-3156.33 -1413.1 330.13 2073.36 3816.59

be 4-10 Adjustable distribution fit to the 232 trades.
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we go back and bound our distribution at 2.96 sigmas on the left (negative
side) of the mean and 6.94 on the right (and we’ll use 300 equally spaced
data points this time), we obtain an optimal f of .954 or 1 contract for every
$5,062.71  in account equity. Why does this differ from the empirical opti-
mal f of $7,918.04?

The difference is in the “roughness” of the actual distribution. Recall that
the significance level of our best-fitting parameters was only 7.8384%. Let
us take our 232-trade distribution and bin it into 12 bins from -3 to +3
sigmas.

B i n Number of Trades

-3.0 -2.5 2

-2.5 -2.0 1

-2.0 -1.5 2
-1.5 -1.0 24
-1.0 -0.5 39

-0.5 0.0 43
0.0 0.5 69

0.5 1.0 38

1.0 1.5 7

1.5 2.0 2

2.0 2.5 0

2.5 3.0 2

Notice that out on the tails of the distribution are gaps, areas or bins
where there isn’t any empirical data. These areas invariably get smoothed
over when we fit our adjustable distribution to the data, and it is these

smoothed-over areas that cause the difference behvecn the parametric and
the empirical optimal fs. Why doesn’t our distribution fit the observed bet-
ter, especially in light of how malleable it is? The reason has to do with the
obsemed distribution having too many  points  ufinjlec~ion.

A parabola can be cupped upward or downward. Yet over the extent of a
parabola, the direction of the cup, whether it points upward or downward,
is unchanged. We define a point of inflection as any time the direction of
the concavity changes from up to down. Therefore, a parabola has 0 points
of inflection, since the direction of the concavity never changes. An object
shaped like the letter S lying on its side has one  point of inflection, one
poiut  whcrc the concavity changes  from up to down.

Figure 4-l 1 shows the Normal Distribution. Notice there are hvo points
of inflection in a bell-shaped curve such as the Normal Distribution.
Depending on the value for SCALE, oiir adjustable distribution C~JI be

WNCAVE  UP

L

: Figure 4-l 1 Points of inflection on a bell-shaped distribution.

zero points of inflection (if SCALE is very low) or two points of inflection.
The reason our adjustable distribution does not fit the actual distribution of
trades any better than it does is that the actual distribution has too many

,s  Points of inflection.
Does this mean that our fitted adjustable distribution is wrong? Probably

not. If we were so inclined, we could create a distribution function that
_‘ allowed for more than two points of inflection, which would better curve-fit

$, to the actual observed distribution. If we created a distribution function that
:;:’  allowed  for as many points of inflection as we desired, we could fit to the
& observed distribution perfectly. Our optimal f derived therefrom would
-?’  then be nearly the same as the empirical. However, the more points of

n we were to add to our distribution function, the less robust it
uld be (i.e., it would probably be less representative of the  trades in the

\
‘-...

A

However, we are not trying to fit the parametric f to the observed
We are trying to determine how the observed data is distributed so
can determine with a fair degree of accuracy what the optimal fin
re will be if the data is distributed as it were in the past. When we

at the adjustable distribution that has been fit to our actual trades, the
~0~s  points of inflection are removed.

!C THE PARAMETERS TO FIND THE OPTIMAL f 1 7 1
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An analogy may clarify this. Suppose we are using Galton’s  board. me
know that asymptotically the distribution of the balls falling through the
board will be Normal. However, we are only going to see 4 balls rolled
through the board. Can we expect the outcomes of the 4 balls to be per-
fectly conformable to the Normal? How about 5 balls? 50 balls?

In an asymptotic sense, we expect the observed distribution to flesh out
to the expected as the number of trades increases. Fitting our theoretical
distribution to every point of inflection in the actual will not give us any
greater degree of accuracy in the future. As more trades occur, we can
expect the observed distribution to converge toward the expected, as we can
expect the extraneous points of inflection to be filled in with trades as the
number of trades approaches infinity. If the process generating the trades  is
accurately modeled by our parameters, the optimal f derived from the theo-
retical will be more accurate over the future sequence of trades than the
optimal f derived empirically over the past trades.

In other words, if our 232 trades are a proxy of the distribution of the
trades in the future, then we can expect the trades in the future to arrive in
a distribution more like the theoretical one that we have fit than like the
observed with its extraneous points of inflection and its roughness due to
not having an infinite number of trades. In so doing, we can expect the opti-
mal fin the future to be more like the optimal f obtained from the theoreti-
cal distribution than it is like the optimal f obtained empirically over the
observed distribution.

So, we are better off in this case to use the parametric optimal f rather
than the empirical. The situation is analogous to the 20-coin-toss discussion
of the previous chapter. If we expect 60% wins at a 1:l  payoff, the optimal f
is correctly .2. However, if we only had empirical data of the last 20 tosses,
11 of which were wins, our optimal f would show as .l, even though .2 is

what we should optimally bet on the next toss since it has a 60% chance of
winning. We must assume that the parametric optimal f ($S,O62.71  in this
case) is correct because it is the optimal f on the generating function. As
with the coin-toss game just mentioned, we must assume that the optimal f
for the next trade is determined parametrically by the gcncrating function,
even though this may differ from the empirical optimal f

Obviously, the bounding parameters have a very important effect on the
optimal f.  Where should you place the bounding parameters so as to obtain
the best results? Look at what happens as we move the upper bound up.
The following table is compiled by bounding the lower end at 3 sigmas, and
using 100 equally spaced data points and the optimal parameters to our 232
trades:

3 Sigmas ,206 $23783.17
4 Sigmas 588 $8,332.51
5 Sigmas ,784 $6,249.42
6 Sigmas .887 $5,523.73
7 Sigmas ,938 $5,223.41

,9638 Sigmas $5,087.81

100 Sigmas ,999 S4v904.46

\

’
Notice that, keeping the lower bound constant, the higher up we move

the higher bound, the more the optimal f approaches 1. Thus, the more we

‘7 move the upper bound up, the more the optimal f in dollars will approach
‘2 the lower bound (worst-case expected loss) exactly. In this case, where our
_ lower bound is at -3 sigmas, the more we move the upper bound up, the

more the optimal f in dollars will approach the lower bound as a limit-
$330.13 - (1743.23 *  3) = -$4,899.56.

Now observe what happens when we keep the upper bound constant (at
3),  but move the lower bound lower. Very soon into this process the arith-
metic  mathematical expectation turns negative. This happens because more
than 50% of the area under the characteristic function is to the left of the

6 Nero  axis. Consequently, as we move the lower bounding parameter lower,
the optimal f quickly goes to zero.

Now consider what happens when we move both bounding parameters
out at the same rate. Here we are using the optimal parameter set of .02,

~; 2.76, 0, and 1.78 on our distribution of 232 trades, and 100 equally spaced
,:I:  data points:“9  1:.: -_

“:~.,
i,  y”
+$i;:

Upper and Lower Bound f f$

3 Sigmas ,206 $23,783.17
4 Sigmas .158 $42,040.42
5 Sigmas ,126 $66,550.75
6 Sigmas ,104 $97,387.87

10 Sigmas ,053 $322,625.17
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Upper Bound f f$
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Notice  that our optimal f approaches 0 as wc move both bounding
parameters out to plus and minus infinity. Furthermore, since our worst-

case loss gets greater and greater, and gets divided by a smaller and smaller
optimal f,  our f$,  the amount to finance 1 unit by, approaches infinity as
Wll.

The problem of where the best place is to put the bounding parameters
is best rephrased as, “Where, in the extreme case, do we expect the best and
worst trades in the future (over the course of which WC are going to trade
this market system) to occur ?” The tails of the distribution itscif actually go
to plus and minus infinity. To account for this we would optimally finance
each contract by an infinitely high amount (as in our last example, where we

moved both bounds outward). If we were going to trade for an infinitely
long time into the future, our optimal f in dollars would be infinite. But
we’re not going to trade this market system forever. The optimal f in the

firtrlre  over which we are going to trade this market system is a function of
what the best and worst trades in that future are.

Recall that if we flip a coin 100 times and record what the longest streak
of consecutive tails is, then flip the coin another 100 times, the longest
streak of consecutive tails at the end of 200 flips will more than likely be
greater than it was after only the first 100 flips. Similarly, if the worst-case
loss seen over our 232-trade history was a 2.96-sigma  loss (let’s say a 3-sigma
loss) then we should expect a loss of greater than 3 sigmas in the future over
which we are going to trade this market system. Therefore, rather than
bounding our distribution at what the bounds of the past history of trades
were (-2.96 and +6.94 sigmas), we will bound it at -4 and +6.94 sigmas. We
should perhaps expect the high-end bound to be violated in the future,
much as we expect the low-end bound to be violated. IIowever, we won’t
make this assumption for a couple of reasons. The first is that trading SYS-

tems notoriously do not trade as well into the future, in general, as they
have over historical data, even when there are no optimizeable parameters
involved. It gets back to the principle that mechanical trading systems seem
to suffer from a contint~all~  deteriorating edge.  Second, the fact that we pay
a lesser penalty for erring in optimal f if we err to the left of the peak of the
f curve than if we err to the right of it suggests that we should err on the
conservative side in our prognostications about the future.

Therefore, we will determine our parametric optimal f by using the
bounding parameters of -4 and +6.94 sigmas and use 300 equally spaced
data points. However, in calculating the probabilities at each of the 300

equally  spaced  data points, it is important that we begin our distribution 2
sigmas before and after our selected bounding parameters. We therefore
determine the associated probabilities by creating bars from -6 to +8.94
sigmas, even though we are only going to use the bars between -4 and
+6.94 sigmas. In so doing, we have enhanced the accuracy of our results.

PERFORMING  “WHAT IFS” 175

Using our optimal parameters of .02,  2.76,0,  and 1.78 now yields an optimal
fof  .837, or 1 contract per every $7,936.41.

So long as our selected bounding parameters are not violated, our model
of reality is accurate in terms of the bounds selected. That is, so long as we
do not see a loss greater than 4 sigmas-$330.13 - (1743.23 * 4) =
-$6,642.79-or  a profit greater than 6.94 sigmas-$330.13 + (1743.23
a 6.94) = $12,428.15-we  have accurately modeled the bounds of the distri-
bution of trades in the future.

The possible divergence between our model and reality is our blind spot.
That is, the optimal f derived from our model (with our selected bounding
parameters) is the optimal f for our model, not necessarily for reality. If our
selected bounding parameters are violated in the future, our selected opti-
mal f cannot then be the optimal. We would be smart to defend this blind
spot with techniques, such as long options, that limit our liability to a pre-
scribed amount.

\Vhile  we are discussing weaknesses with the method, one final weakness
should be pointed out. Once you have obtained your parametric optimal f,
you should be aware that the actual distribution of trade profits and losses is
one in which the parameters are constantly changing, albeit slowly. You
should frequently run the technique on your trade profits and losses for
each market system you are trading to monitor these dynamics of the
distributions.

P E R F O R M I N G  “ W H A T  I F S ”

Once you have obtained your parametric optimal f, you can perform “What
If’ types of scenarios on your distribution function by altering the parame-

‘ters  LOC, SCALE, SKEW, and KURT of the distribution function to repli-
cate different expected outcomes in the near future (different distributions
the future might take) and observe the effects. Just as we can tinker with

stretch and shrink on the Normal distribution, so, too, can we tinker with
the parameters LOC, SCALE, SKEW, and KURT of our adjustable
distribution.

The “What if’ capabilities of the parametric technique are the strengths
‘that  help to offset the weaknesses of the actual distribution of trade P&L’s
moving  around. The parametric techniques allow us to see the effects of
Thanges  in the distribution of actual trade profits and losses before they

avur,  and possibly to budget for them.
When tinkering with the parameters, a suggestion is in order. When

finding the optimal f, rather than tinkering with the LOC, the location
IParameter, you are better off tinkering with  the arithmetic average trade in
,dollars  that you are using as input. The reason is illustrated in Figure 4-12.
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Figure 4-l 2 Altering location parameters.

Notice that in Figure 4-12, changing the location parameter LOC moves
the distribution right or left in the “window” of the bounding parameters.
But the bounding parameters do not move with the distribution. Thus, a
change in the LOC parameter also affects how many equally spaced  data
points will be left of the mode and right of the mode of the  distribution. By
changing the actual arithmetic mean (or using the shrink variable in the
Normal Distribution search for f),  the window of the bounding parameters
moves also. When you alter the arithmetic average trade as input, or alter
the shrink variable in the Normal Distribution mechanism, you still have the

same number of equally spaced data points to the right and left of the mode
of the distribution that you had before the alteration.

EQUALIZING f

The technique detailed in this chapter was shown using data that was not
equalized. \Ve can also use this very same technique on equalized data. If
we want to determine an equalized parametric optimal f,  we would convert
the raw trade profits and losses over to percentage gains and losses, based
on Equations (2.10a) through (2.10~). Next, we would convert these  per-
centage profits and losses by multiplying them by the current price of the
underlying instrument.  For cxamplc, P&L number  1 is .18. Suppose  the
entry price to this trade was 100.50. The percentage gain on this trade

OPTIMAL  f ON OTHER DISTRIBUTIONS AND FITTED CURVES 177

,vould  be .18/100.50  = .001791044776.  Now suppose tllat the current price
of  this underlying instrument is 112.00. Multiplying .001791044776  by
112.00  translates into an equalized P&L of .2005970149.

If we were seeking to do this procedure on an equalized basis, we would
perform this operation on all 232 trade profits and losses. We would then
calculate  the arithmetic mean and population standard deviation on the
equalized trades and would use Equation (3.16) to standardize the trades.
Next, we could find the optimal parameter set for LOC, SCALE, SKEW,
and KURT on the equalized data exactly as was shown in this chapter for
nonequalized data.

The rest of the procedure is the same in this chapter in terms of deter-
mining the optimal f,  geometric mean, and TWR. The by-products of the
geometric average trade, arithmetic average trade, and threshold to the geo-

metric are only valid for the current price of the underlying instrument.
When the price of the underlying instrument changes, the procedure must
be done again, going back to step one and multiplying the percentage prof-
its and losses by the new underlying price. When you go to redo the proce-
dure with a different underlying price, you will obtain the same optimal f,
geometric mean, and TWR. However, your arithmetic average trade, geo-
metric average trade, and threshold to the geometric will be different based
upon the new price of the underlying instrument.

The number of contracts to trade as given in Equation (3.34) must be
changed. The worst-case associated P&L, the W variable, Equation (3.35),
will be different in Equation (3.34) as a result of the changes caused in the

equalized data by a different current price.

OPTIMAL f ON OTHER DISTRIBUTIONS AND
FITTED CURVES

At this point you should realize that there are many other ways you can

determine your parametric optimal f.  We have covered a procedure for
finding the optimal f on Normally distributed data in the previous chapter.
Thus we have a procedure that will give us the optimal f for any Normally
distributed phenomenon. That same procedure can be used tojnd  the opti-
mlf on data of any distribution, so long as the cumulative density function
Qf  the selected distribution is available (these functions arc given for many
tther  common distributions in Appendix B).  When the cumulative density

Unction is not available, the optimal f can be found for any otherftlndion
by the integration method used in this chapter to approximate the cumula-
tfve  densities, the areas under the curve.

1 have elected in this chapter to model the actual distribution of trades
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by way of our adjustable distribution. This amounts to little more than find-
ing a function and its appropriate values, which model the actual density
function of the trade P&L’s  with a maximum of 2 points of inflection. you
could use or create many other functions and methods to do this-such as
polynomial interpolation and extrapolation, rational function (quotients of
polynomials) interpolation and extrapolation, or using splines  to fit a theo-
retical function to the actual. Once any theoretical function is found, the
associated probabilities can be determined by the same method of integral
estimation as was used in finding the associated probabilities of our
adjustable distribution or by using integration techniques of calculus.

There is a problem with fitting any of these other functions. Part of the
thrust of this book has been to allow users of systems that are not purely
mechanical to have the same account management power that users of
purely mechanical systems have. As such, the adjustable distribution route
that I took only requires estimates for the parameters. These parameters
pertain to the first four moments of the distribution. It is these moments-
location, scale, skewness, and kurtosis-that describe the distribution. Thus,
someone trading on some not purely mechanical basis-e.g., Elliott wave-
could estimate the parameters and have access to optimal f and its by-prod-
uct calculations. A past history of trades is not a prerequisite for estimating
these parameters. If you were to use any of the other fitting techniques
mentioned, you wouldn’t necessarily need a past history of trades either, but
the estimates for the parameters of those fitting techniques do not necessar-
ily pertain to the moments of the distribution. What they pertain to is a
function of the particular function you are using. These other techniques
would not necessarily allow you to see what would happen if kurtosis
increased or skewness changed or the scale were altered, and so on. Our
adjustable distribution is the logical choice for a theoretical function to fit to
the actual, since the parameters not only measure the moments of the dis-
tribution, they give us control over those moments when prognosticating
about future changes to the distribution. Furthermore, estimating the
parameters of our adjustable distribution is easier than with fitting any other
function which I am aware of.

SCENARIO PLANNING

People who forecast for a living (economists, stock market forecasters,
weathennen, government agencies, etc.) have a notorious history for incor-
rect forecasts, but most decisions anyone must make in life usually require
making afirecast  about the future.

A couple of pitfalls immediately crop up here. To begin with, people
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generally make assumptions about the future that are more optimistic than
the actual probabilities. Most people feel that they arc far more likely to win
the lottery this month than they are to die in an auto accident, even though
the probabilities of the latter are greater. This is not only true on the level of
the individual, it is even more pronounced at the level of the group. When
people work together, they tend to see a favorable outcome as the most
likely  result (everyone else seems to, otherwise they wouldn’t be working

j$ here), tho envise  they would quit the project they are a part of (unless, of
9, course, we have all become automatons mindlessly slabing  away on sinking
-$ ships).
::

‘, f
The second and more harmful pitfall is that people make straight-line

i :., orecasts
‘:I

into the future. People try to predict the price of a gallon of gas
two years from now, predict what will happen with their jobs, who will be

\ the next president, what the next styles will be, and on and on. Whenever
we think of tile future, we tend to think  in terms of a single, rruwt likely out-
come.  As a result, whenever we must make decisions, whether as an individ-
ual or a group, we tend to make these decisions based on what we think will

Y be the single most likely outcome in the future. As a consequence, we are
.  . extremely vulnerable to unpleasant surprises.

Scenario planning is a partial solution to this problem. A scenario is sim-
ply a possible forecast, a story about one way that the future might unfold.

Scenario  planning is a collection of scenarios to cover the spectrum of possi-
bilities. Of course, the complete spectrum  can never be covered, but the
scenario planner wants to cover as many possibilities as he or she can. By
acting in this manner, as opposed to a straight-line forecast of the most

.I  I’k  11 e y outcome, the scenario planner can prepare for the future as it unfolds.

.I. Furthermore, scenario planning allows the planner to be prepared for what

i:
might otherwise be an unexpected event. Scenario planning is tuned to real-

“C,ity  in that it recognizes that cu-taitlty  is an illusion.
<‘i
?+

Suppose you are involved in tong-run  planning for your company. Say

$!:
you make a particular product. Bather than making a single-most-likely-out-
cY)rne,  straight-line forecast, you decide to exercise scenario planning. You

%i  \iU need to sit down with the other planners and brainstorm for possible.b”
scenarios. What if you cannot get enough of the raw materials to make your
product? What if one of your competitors fails?  \Vhat if a new competitor
emerges? What if you have severely underestimated demand for this prod-
uct? What if a war breaks out on such-and-such a continent? \Vhat if it is a
nuclear war? Because each scenario is only one of several, each scenario can
b  considered seriously. But what do you do once you have defined these

scenarios?
TO begin with, you must determine what goal you would like to achieve

for each given scenario. Depending upon the scenario, the goal need not be
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a positive one. For instance, under a bleak scenario your goal may simply be
damage control. Once you have defined a goal for a given scenario, you then
need to draw up the contingency plans pertaining to that scenario to achieve
the desired goal. For instance, in the rather unlikely bleak scenario where
your goal is damage control, you need to have plans formulated so that you
can minimize the damage. Above all else, scenario planning provides the
planner with a course of action to take should a certain scenario develop. It
forces you to make plans before the fact; it forces you to be prepared for the
unexpected.

Scenario planning can do a lot more, however. There is a hand-in-glove
fit between scenario planning and optimal f.  Optimal fallows us to deter-

mine the optimal quantity to allocate to a given set of possible scenarios. We
can exist in only one scenario at a time, even though we are planning for
multiple futures (multiple scenarios). Scenario planning puts us in a position
where we must make a decision regarding how much of a resource to allo-
cate today given the possible scenarios of tomorrow. This is the true heart of
scenario planning-quantifying it.

We can use another parametric method for optimal f to determine how
much of a certain resource to allocate given a certain set of scenarios. This
technique will maximize the utility obtained in an asymptotic geometric
sense. First, we must define each unique scenario. Second, we must assign a
number to the probability of that scenario’s occurrence. Being a probability
means that this number is between 0 and 1. Scenarios with a probability of
0 we need not consider any further. Note that these probabilities are not
cumulative. In other words, the probability assigned to a given scenario is
unique to that scenario. Suppose we are a decision maker for XYZ
Manufacturing Corporation. Two of the many scenarios we have are as fol-
lows. In one scenario XYZ Manufacturing files for bankruptcy, with a proba-
bility of .15; in the other scenario XYZ is being put out of business by
intense foreign competition, with a probability of .O7. Now, we must ask if
the first scenario, filing for bankruptcy, includes filing for bankruptcy due to
the second scenario, intense foreign competition. If it does, then the proba-
bilities in the first scenario have not taken the probabilities of the second
scenario into account, and we must amend the probabilities of the first  sce-
nario to be .08 (.15 - .07). Note also that just as important as the uniqueness
of each probability to each scenario is that the sum of the probabilities of al1
of the scenarios we are considering must equal 1 exactly, not 1.01 nor .99,
but 1.

For each scenario we now have assigned a probability of just that sce-
nario occurring. We must also assign an outcome result. This is a numerical
value. It can be dollars made or lost as a result of a scenario manifesting

: at least one scenario with  a negative outcome in order to use this technique.
: This is mandatory. Since we are trying to answer the question “How much

of this resource should we allocate today given the possible scenarios of
tomorrow?“, if there is not a negative outcome scenario, then we should
allocate  100% of this resource. Further, without a negative outcome sce-
nario it is questionable how tuned to reality this set of scenarios really is.

A last prerequisite to using this technique is that the mathematical
expectation, the sum of all of the outcome results times their respective
probabilities, must be greater than zero.

SCENARIO  PLANNING 1 8 1

itself, it can be units of utility, medication, or anything. However, our out-

put is going to be in the same units that we put in as input. You must /laoe

i,’
‘; (1.03) ME =i~l(Pi  * Ai)

where Pi = The probability associated with the ith scenario.

Ai  = The result of the ith scenario.

N = The total number of scenarios under consideration.

If the mathematical expectation equals zero or is negative, the following
technique cannot be used. That’s not to say that scenario planning itself
cannot be used. It can and should. IIowever, optimal f can only be incorpo-
rated with scenario  planning when there is a positive mathematical  expecta-

+ tion. When the mathematical expectation is zero or negative, we ought not
allocate any of this resource at this time.

Lastly, you must try to cover as mucll of the spectrum  of outcomes as
possible. In other words, you really want to account for 99% of the possible
outcomes. This may sound nearly impossible, but many scenarios can be

,:
made broader so that you don’t need 10,000 scenarios to cover 99% of the

i
,$

spectrum. In making your scenarios broader, you must avoid the common
pitfall of three scenarios: an optimistic one, a pessimistic one, and a third

i.r
$

where things remain the same. This is too simple, and the answers derived
“A I therefrom are often too crude to be of any value. Would you want to find

:i#$
.;,i*

your optimal f for a trading system based  on only three trades?
&$ SO even though there may be an unknowably large mnnber of scenarios
‘RG covering the entire spectrum, we can cover what we believe to be about

e spectrum of outcomes. If this makes for an unmanageably large
number of scenarios, we can make the scenarios broader to trim down their
number. However, by trimming down their number we lose a certain
amount of information. When we trim down the number of scenarios (by
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broadening them) down to only three, a common pitfall, we have effectively
eliminated so much information that this technique is severely hampered in
its effectiveness.

What is a good number of scenarios to have then? As many as you can
and still manage them. Here, a computer is a great asset. Assume again that
we are decision making for XYZ. We are looking at marketing a new prod-
uct of ours in a primitive, remote little country. We are looking at five possi-
ble scenarios (in reality you should have many more than this, but we’ll use
five for the sake of illustration). These five scenarios portray what we per-
ceive as possible futures for this primitive remote country, their probabili-
ties of occurrence, and the gain or loss of investing there.

Scenario Probability Result

War .1 -$500,000
Trouble .2 -$200,000
Stagnation .2
Peace .45 $500,00~
Prosperity .05 $1,000,000

Sum 1.00

The sum of our probabilities equals 1. We have at least 1 scenario with a
negative result, and our mathematical expectation is positive:

(.l *  -$SOO,OOO)  + (.2 * -$200,000)  + . . = $185,000

We can therefore use the technique on this set of scenarios.
Notice first, however, that if we used the single most likely outcome

method we would conclude that peace will  bc the future of this country,
and we would then act as though peace was to occur, as though it were a
certainty, only vaguely remaining aware of the other possibilities.

Returning to the technique, we must determine the optimal f.  The opti-
mal f is that value for f (between 0 and 1) which maximizes the geometric
mean:

(4.13)

and

(4.14)

Geometric mean = TWR h (L’tIPi)

TWR = ,clHPRi
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: (4.15) I-IPR,  = (1 + (Ai/(W/-~)) rl Pi

j$ therefore
+J,
,$ (4.16) Geometric mean = (fi,(I + (Ai/(tV/-D)) A  Pi) A  (I<glPi)
%‘.
u Finally then, we can compute the real TWR as:

f’  ( 4 .17 ) TWR = Geometric Mean h X
/,. where N = The number of different scenarios.

TWR = The terminal wealth relative.

HPRi = The holding period return of the ith scenario.

Ai  = The outcome of the ith scenario.

Pi = The probability of the ith scenario.

W = The worst outcome of all N scenarios.

f = The value  for f which we are testing.

X = However many times we want to “expand” this scenario
out. That is, what we would expect to make if we
invested f amount into these possible scenarios X times.

r The TWR  returned by  Equation (4.14) is just an interim value we must, .
: have in or&r  to obtain the geometric mean. Once we have this geometric
_’

il mean, the  real T\Z’R  can bc obtained by Equation (4.17).
‘,‘,$

J&
Here is how to perform these equations. To begin with, WF must  decide

g. on an optilnization  scheme, a way of searching through the f values to firId
3”+:* that f which maximizes our equation. Again, we can do this with a straight

loop  with f from .Ol  to 1, through iteration, or through parabolic interpoln-
tion. Next, we must determine what the worst possible result for a scenario
is of all of the scenarios we are looking at, regardless of how  sdl  the prob-
abilities of that  scenario’s occurrence are. In the example  of XYZ
Corporation this is -$SOO,OOO.  Now for each possible scenario, we must first
divide the worst possible outcome by negative E 1r1 our XYZ Corporation
&3mple,  we will assume that we are going to loop through f values from .Ol
to 1. Therefore we start out with an f value of .Ol.  Now, if we divide  the
worst  possible outcome of the scenarios under consideration by the negative
Vdue  for f:
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-$500,000/-.Ol  = $50,000,000

Negative values divided by negative values yield positive results, so our
result in this case is positive. As we go through each scenario, we divide the
outcome of the scenario by the result just obtained. Since the outcome to
the first scenario is also the worst scenario, a loss of $500,000, we now have:

-$500,000/$50,000,000  = -.Ol

The next step is to add this value to 1. This gives us:

1 + (-.Ol)  = .99

Lastly, we take this answer to the power of the probability of its occur-
rence, which in our example is .l:

.99 h .l = .9989954713

Next, we go to the next scenario labeled “Trouble,” where there is a .2
probability of a loss of $200,000.  Our worst-case result is still -$500,000.
The f value we are working on is still .Ol,  so the value we want to divide this
scenario’s result by is still $5O,OOO,OOO:

-$200,000/$50,000,000  = -.004

Working through the rest of the steps to obtain our HPR:

1 + (-,004)  = .996

.996 h .2 = .9991987169

If we continue through the scenarios for this test value of .Ol  for f,  we
will find the 3 HPRs  corresponding to the last 3 scenarios:

Stagnation 1.0
Peace 1.004467689
Prosperity 1.000990622

Once we have turned each scenario into an HPR for the given f value,
we must multiply these HPRs  together:

SCENARIO PLANNING 185

.9989954713

*  .9991987169

*l.O

*  1.004487689

*  1.000990622

1.00366'7853

This gives us the interim TWR, which in this case is 1.003667853. Our
next step is to take this to the power of 1 divided by the sum of the probabil-
ities. Since the sum of the probabilities is 1, we can state that we must raise
the TWR  to the power of 1 to give us the geometric mean. Since anything
raised to the power of 1 equals itself, we can say that our geometric mean
equals the T\VR in this case. We therefore have a geometric  mean of
1.003667853. If,  however, we relaxed the constraint that each scenario must
have a unique probability, then we could allow the sum of the probabilities
of the scenarios to be greater than 1. In such a case, we would have to raise

our TWR to the power of 1 divided by this sum of the probabilities in order
to derive the geometric mean.

The answer we have just obtained in our example is our geometric mean
corresponding to an f value of .Ol.  Now we move on to an f value of .02,  and
repeat the whole process until we have found the geometric mean corre-
sponding to an f value of .O2. We keep on proceeding until we arrive at that
value for f which yields the highest geometric mean.

In our example we find that the highest geometric mean is obtained at
an f value of .57,  which yields a geometric mean of 1.1106. Dividing our
worst possible outcome to a scenario (-$500,000) by the negative optimal f
yields a result of $877,192.35.  In other words, if XYZ Corporation wants to
commit to marketing this new product in this remote country, they will
optimally commit this amount to this venture at this time.  As time goes by
and things develop, so do the scenarios, and as their resultant outcomes and
.probabilitics  change, so does this f amount change. The more  XYZ
Corporation keeps abreast of these changing scenarios, and the more accu-
rate the scenarios they develop as input are, the more  accurate their deci-
Pans  will be. Note that if XYZ Corporation cannot commit this $877,192.35
b this  undertaking at this time, then they are too far beyond the peak of
the  fcurve.  It is the equivalent to the trader who has too many commodity

‘contracts  on with respect to what the optimal f says he or she should have
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on. If XYZ Corporation commits more than this amount to this project at
this time, the situation would be anabgous  to a commodity trader with too
few  contracts on.

Furthermore, although the quantity discussed here is a quantity of
money, it could be a quantity of anything and the technique would be just
as \.alid.  The approach can be used for any quantitative decision in an en\i-
ronment of favorable uncertainty.

If you create different scenarios for the stock market, the optimal f
derived from this methodology will give you the correct percentage to be
invested in the stock market at any given time. For instance, if the f
returned is .65,  then that means that 65% of your equity should be in the
stock market with the remaining 35% in, say, cash. This approach will pro-
kidc )rou  with the greatest  geometric growth of your capital in the long run.
Of course, again, the output is only as accurate as the iiiput you have pro-
vided the system with in terms of scenarios, their probabilities of occur-
rence, and resultant payoffs and costs. Furthermore, recall that everything
said about optimal f applies here, and that also means that the expected
drawdowns will approach a 100% equity retracement. If you exercise this
scenario planning approach to asset allocation, you can expect close to 100%
of the  assets allocated  to the  endeavor in question  to be depleted at any one
time in the future. For example, suppose you arc using this technique to
dctcrmine  what percentage of investable  funds should be in the stock mar-
ket and what percentage should bc in a risk-free asset. Assume that the
answer is to have 65% invested in the stock market and the remaining 35%
in the risk-free asset. You can expect the drawdowns in the future to
approach 1OOQo  of the amount allocated to the stock market. In other
words, you can expect to see, at some point in the future, ahnost 100% of

your entire 65% allocated to the stock market to be gone. Yet this is how
you will achieve maximum geometric growth.

This same process can be used as an alternative parametric technique for
determining  the optimal f for a given trade. Suppose you are making your
trading decisions based on fundamentals. If you wanted to, you could out-
line the  different scenarios that the trade may take. The more scenarios, and
the  more accurate the scenarios, the more accurate your results would be.
Say you are looking to buy a municipal bond for income, but you’re not
plarming on holding the bond to maturity. You could outline numerous dif-
ferent scenarios of how the future might unfold and use these scenarios to
determine how much to invest in this particular bond issue.

This concept of using scenario planning to determine the optimal f can
be used for everything from military strategies to deciding the optimal level
to participate in an underwriting  to the optimal down payment on a house.
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For our purposes, this technique is perhaps the best technique, and cer-
tainly the easiest to employ for someone not using a mechanical means of
entering and exiting the markets. Those who trade on fundamentals,
weather patterns, Elliott waves, or any other approach that requires a
degree of subjective judgment, can easily discern their optimal fs with this
approach. This approach is easier than determining distributional parameter
values.

The arithmetic average HPR of a group of scenarios can be computed as:

(4.18) AHPR = iti1  + (Ai/(W/-  0))  * Piltri

where N = the number of scenarios.

f = the f value employed.

Ai  = the outcome (gain or loss) associated with the ith scenario.

Pi = the probability associated with the ith scenario.

W = the most negative outcome of all the scenarios.

The AHPR will be important later in the text when we will need to dis-
cern the efficient frontier of numerous market systems. We will need to
determine the expected return (arithmetic) of a given market system. This
expected return is simply AHPR-1.

The technique need not be applied parametrically, as detailed here; it
can also be applied empirically. In other words, we can take the trade listing
of a given market system and use each of those trades as a scenario that
might occur in the future, the profit or loss amount of the trade being the
outcome result of the given scenario. Each scenario (trade) would have an
equal probability of occurrence-l/N, where N is the total number of
trades (scenarios). This will give us the optimal f empirically. This technique
bridges th e gap between the empirical and the parametric. There is not a
fine line that delineates the two schools. As you can see, there is a gray area.

When we are presented with a decision where there is a different set of
scenarios  for each facet of the decision, selecting the scenario whose geo-
metric mean corresponding to its optimal f is greatest will maximize our
dtision  in an asymptotic sense. Often this flies in the face of conventional
decision-making  rules such as the Hutwicz rule, maximax,  minimax,  mini-
max  regret, and greatest mathematical expectation.

For example, suppose we must decide between two possible choices. We
muld  have many possible choices, but for the sake of simplicity we choose



188 PARAMETRIC TECHNIQUES ON OTHER DISTRIBUTIONS

two, which we call “white” and “black.” If we select the decision labeled
“white,” we determine that it will present the possible future scenarios to us:

White Decision

Scenario Probability

A .3
B .4
C .3

Mathematical expectation = $3.00
Optimal f = .17
Geometric mean = 1 .0123

Result

-20
0

30

It doesn’t matter what these scenarios are, they can be anything, and to fur-
ther illustrate this they will simply be assigned letters, A, B, C in this discus-
sion. Further, it doesn’t matter what the result is, it can be just about any-
thing.

The Black decision will present the following scenarios:

Black Decision

Scenario Probability

A .3
B .4
C .15
D .I5

Mathematical expectation = $2.90
Optimal f = .31
Geometric mean = 1.0453

Result

-10
5
6

2 0

Many people would opt for the white decision, since it is the decision

with the higher mathematical expectation. With the white decision you can
expect, “on average, ” a $3.00  gain versus black’s $2.90 gain. Yet the black
decision is actually the correct decision, because it results in a greater geo-
metric mean. With the black decision, you would expect to make 4.53%
(1.0453 - 1) “on average” as opposed to white’s 1.23% gain. When YOU  Con-
sider the effects of reinvestment, the black decision makes more than three
times as much, on average, as does the white decision!

“Hold on, pal,” you say. “We’re not doing this thing over again, we’re
doing it only once. We’re not reinvesting back into the same future scenar-
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ios here. Won’t we come out ahead if we always select the highest arith-
metic mathematical expectation for each set of decisions that present them-
selves this way to us?”

The only time we want to be making decisions based on greatest atith-
metic mathematical expectation is if we are planning on not reinvesting the
money risked on the decision at hand. Since, in almost every case, the
money risked on an event today will be risked again on a different event in
the future, and money made or lost in the past affects what we have avail-
able to risk today (i.e., an environment of geometric consequences), we
should  decide based on geometric mean to maximize the long-run growth
ofour money. Even though the scenarios that present themselves tomorrow
won’t  be the same as those of today, by always deciding based on greatest
geometric mean we are maximizing our decisions. It is analogous to a
dependent trials process such as a game of blackjack. Each hand the proba-
bilities change, and therefore the optimal fraction to bet changes as well. By
always betting what is optimal for that hand, however, we maximize our
long-run growth. Remember that to maximize long-run growth, we must
fook  at the current contest as one that expands infinitely into the future. In
other words, we must look at each individual event as though we  were to
play  it an infinite nnrnber  of times ocer if we want to maximize growth over
many plays of different contests.

As a generalization, whenever the outcome of an event has an effect on
the outcome(s) of subsequent event(s) we are best off to maximize for
greatest geometric expectation. In the rare cases where the outcome of an
went has no effect on subsequent events, we are then best off to maximize
for greatest arithmetic expectation. Mathematical expectation (arithmetic)
rlOes  not take the variance between the outcomes of the different scenarios
into account, and therefore can lead to incorrect decisions when rcinvest-
merit  is considered, or in any environment of geometric consequences.

Using this method in scenario planning gets you quantitatively positioned
with respect to the possible scenarios, their outcomes,  and the  likelihood of
their  occurrence. The method is inherently more consemative than posi-
tioning yourself per the greatest arithmetic matllematical  expectation.
equation (3.05) .I5 lowed that the geometric mean is never greater than the
Gthmetic  mean. Likewise, this method can never have you position your-
@f (have a greater commitment) than selecting by the greatest arithmetic
mathematical expectation would. In the asymptotic sense, the long-run
dense,  this is not only a superior method of positioning yourself, as it
khieves greatest geometric growth, it is also a more conservative one than
ptioning  yourself per the greatest arithmetic mathematical expectation,
Pkich  would  incariably  put you to the right of the peak of the f
Pme.
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Since reinvestment is almost always a fact of life (except on the day
before you retire*)-that is, you reuse the money that you are using today--
we must make today’s decision under the assumption that the same decision
will present itself a thousand tirnes over in order to maximize the results of
our decision. We  must make our decisions and position ourselves in order  to
maximize geometric expectation. Further, since the outcomes of most
events do in fact have an effect on the outcomes of subsequent events, we
should make our decisions and position ourselves based on maximum geo-
metric cxpcctation. This tends to lead to decisions and positions that arc net

always apparently obvious.

OPTIMAL f ON BINNED DATA

Now we come to the case of finding the optimal f and its by-products on
binned data. This approach is also something of a hybrid between the para-
metric  and the empirical techniques. Essentially, the process  is almost iden-
tical to the process of finding the optimal f on different scenarios, only
rather than different payoffs for each bin (scenario), we use the midpoint of
each bin. Therefore, for each bin we have an associated probability figured
as the total number of elements (trades) in that bin divided by the  total
number of elements  (trades) in all the bins. Further,  for each bin we have
an associated result of an element ending up in that bin. The associated
results are calculated as the midpoint of each bin.

For exan$e,  suppose we have 3 bins of 10 trades. The first bin we will
dcfinc as those trades where the P&L’s were -$l,OOO  to -SlOO. Say  there
are 2 elements in this bin. The next bin, we say, is for those trades wliich  are
-$lOO to $100. This bin has 5 trades in it. Lastly, the third bin has 3 trades
in it and is for those trades that have P&L’s of $100 to $1,000.

Bin Bin Trades

-1,000 -100 2
- 1 0 0 100 5

100 1,000 3

Associated Associated
Probabil i ty Result

.2 -550

.5 0

.3 550

ITherr  are  certain times when you  will want to maximize for greatest arithmetic mathematics
expectation instead of geometric, Such  a case is when an entiv  is opwating in a “constant-con-
tract”  kind or way  and wants to switch over  to a “fied  fract ional” mode of  operat ing at  some

~avornblr  point in thr future. This favorable point cnn  be detennincd as the gcomrtric  thrcsh-
old whwe the arithmetic average trade that is used 3s  input is calculated as the arithmetic
mathematical expectation (the sum of the outcome of each scenario times its probabilit);  of
occ~~rrcncc)  divided  by the sum of the probabilities  ol’  all of the scenarios. Since the sum  of the
probabilities  of all of the scemios  usually  equals  1, we can  state  that the arithmetic average
“trade” is  equal to the ar i thmetic mathematical  expectat ion.
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Now it is simply a matter of solving for Equation (4.16), where each bin
represents a different scenario. Thus, for the case of our S-bin example
hem, we find that our optimal f is at .2, or 1 contract for every $2,750 in

equity  (our worst-case loss being the midpoint of the first bin, or (-$1000 +
-$100)/2 = -$550).

This technique, though valid, is also very rough. To begin with, it
assumes that the biggest loss is the midpoint of the worst bin. This is not
hays  the case. Often it is helpful to make a single extra bin to hold the
worst-case loss. As applied to our 3-bin example, suppose we had a trade
that was a loss of $1,000. Such a trade would fall into the -$l,OOO  to -$I00
bin, and would be recorded as -$550,  the midpoint of the bin. Instead we
can  bin this same data as follows:

Bin Bin Trades Associated Associated
Probabil i ty Resul t

-1,000 -1,000 1 .I -1,000
-999 -100 1 .l -550
-100 100 5 .5 0

1 0 0 1,000 3 .3 550

Now, the optimal f is .04,  or 1 contract for every $25,000 in equity. Are
you beginning to see how rough this technique is? So, although this tech-

nique will give us the optimal f for binned data, we can see that the loss of
information involved in binning the data to begin with can make our results

EO inaccurate as to be useless. If we had more data points and more bins to
start with, the technique would not be rough at all. In fact, if we had infinite
data and an infinite number of bins, the technique would be exact. (Another
Wly in which this method could be exact is if the data in each of the bins
equaled the midpoints of their respective bins exactly.)

The other problem with this technique is that the average element in a
bin is not necessarily the midpoint of the bin. In fact, the average of the ele-

ments in a bin will tend to be closer to the rnode of the entire distribution
than the midpoint of the bin is. Hence, the dispersion tends to be greater
with  this technique than is the real case. There are ways to correct for this,
but  these corrections themselves can often be incorrect, depending upon
the  shape of the distribution. Again, this problem would be alleviated and
the results would be exact if we had an infinite number of elements (trades)
9d an infinite number of bins.

If YOU  happen to have a large enough number of trades and a large
enough  number of bins, you can use this technique with a fair degree of
buracy  if you so desire. You can do “What  if” types of simulations by alter-
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ing the number of elements in the various bins and get a fair approximation
for the effects of such changes.

WHICH IS THE BEST OPTIMAL f?

\Ve have now seen that we can find our optimal f from an empirical proce-
dure as well as from a number of different parametric procedures for both
binned and unbinned data. Further, we have seen that we can equalize the
data as a means of preprocessing, to find  what our optimal f should be if all

trades occurred at the present underlying price. At this point you are proba-
bly asking for the real optimal f to please stand up. Which optimal f is really
optimal?

For starters, the straight (nonequalized) empirical optimal f will give you
the optimal f on past data. Using the empirical optimal f technique detailed
in Chapter 1 and in Portfolio ~Vanagenent  Formulas will yield the optimal f
that would have realized the greatest geometric growth on a past  stream of
outcomes. However, we want to discern what the value for this optimal f
will be in the future (specifically, over the next trade), considering that we
are absent knowledge regarding the outcome of the next trade. We  do not
know whether it will be a profit, in which case the optimal f would be 1,  or a
loss, in which case the optimal f would be 0. Rather, we can only express the

outcome of the next trade as an estimate of  the probability distribution of
outcows  for the next trade.  That being said, our best estimate for traders
employing a mechanical system, is most likely to be obtained by using the
parametric technique on our adjustable distribution function as detailed in
this chapter on either equalized or nonequalized data. If there is a material
difference in using equalized versus nonequalized data, then there is most
likely too much data, or not enough data at the present price level. For non-
system traders, the scenario planning approach is the easiest to employ
accurately. In my opinion, these techniques will result in the best estimate
of the probability distribution of outcomes on the next trade.

YOU  now  have a good conception ojboth the empirical and parametric
techniques, as  well as some hybrid techniques forfinding  the optimal
j In the next chapter, we consider finding the optimal j (paralnetri-
tally)  when more than one position is running concurrently.

5
Introduction to Multiple
Simultaneous Positions under
the Parametric Approach

Mention has already been made in this text of  the idea of using
options, either by themselves or in conjunction with a position in the
underlying, to improve returns. Buying a long put in conjunction with
a long position in the underlying (or simply buying a call in lieu of
both), or sometimes even writing (selling short) a call in conjunction
with a long position in the underlying can increase asymptotic geo-
metric growth. This happens as the result of  incorporating the options
into the position, which then often (but not always) reduces dispersion
to a greater degree than it reduces arithmetic average return. Per the
fundamental equation of trading, this then results in a greater esti-
muted TWR.

Options can be used in a variety of ways, both among themselves
and in conjunction with positions in the underlying, to manage risk.
In the future, as tra&rs concentrate more  and more on risk manage-
ment, options will very  likely play an ever greater role.

Portfolio Management Formulas discussed the relationship ojopti-
ml  jand options.I In this chapter we pick up on that discussion and
carry  it further into an introduction of multiple simultaneous posi-
tbn.s,  especially with regard to options.

This  chapter gives us another method for finding the optimal j’s for
‘ 6 posttions  that are not entered and exited by using a mechanical sys-

;
p,re  were  some minor formulative problems with the options material in Portfolio
q-t Formulas.  These have since been resolved, and the corrected formulations are

kd  here. My apologies for whatever confusion this may have caused.

Y
kren

i
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tern. The parametric techniques discussed  thus far could be utilized by
someone not trading by means of a mechanical system, but aside from
the scenario planning approach, they still have some rough edges. For
example, someone not using a mechanical system who was using the
technique described in Chapter 4 would need an estimate of the kurto-
sis  of his or her trades. This may not be too easy to come by (at least,
an accurate estimate of this may not be readily available). Therefore,
this chapter is for those who are using purely nonmechanical means of
entering and exiting their trades. Users of these techniques will not
need parameter estimates for the distribution of trades. However, they
will need parameter estimates for both the volatility of the underlying
instrument and the trader’s forecast for the price  of the underlying
instrument. For a trader not utilizing a mechanical, objective system,
these parameters are far easier to come by than parameter estimates

for the distribution of tra&s  that have not yet occurred.
This discussion of optimal f and its by-products for those traders

not utilizing a mechanical, objective system comes at a convenient
stage in the book, as it is the perfect entree for multiple simultaneous
positions. Does this mean that someone who is using a mechanical
means to enter and exit trades cannot engage in multiple simultaneous
positions? No. Chapter 6 will show us a method for finding optimal
multiple simultaneous positions for tra&rs  whether they are using a
mechanical system or not. This chapter introduces the concept of mul-
tiple simultaneous positions, but the standpoint is that of someone not
using a mechanical system, and possibly using options as well as the
underlying instruments.

ESTIMATING VOLATILITY

One important parameter a trader wishing to use the following concepts
must input is volatility. We discuss two ways to determine volatility. The
first is to use the estimate that has been determined by the marketplace.
This is called implied volatility. The option valuation models introduced ia
this chapter use volatility as one of their inputs to derive the fair theoretical
price of an option. Implied volatility is determined by assuming that the
market price of an option is equivalent to its fair theoretical price. Solving
for the volatility value that yields a fair theoretical price equal to the market
price determines the implied volatility. This value for volatility is arrived at
by iteration.
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The second method of estimating volatility is to use what is known as his-
torical  volatility, which is determined by the actual price changes in the
underlying instrument. Although volatility as input to the options pricing
models is an annualized figure, a much shorter period of time, usually IO to
29 days, is used when determining historical volatility and the resulting

answer is annualized.
Here is how to calculate a 2O-day  annualized historical volatility.

Step 1 Divide tonight’s close by the previous market day’s close.

Step 2 Take the natural log of the quotient obtained in step 1. Thus,
for the March 1991 Japanese yen on the night of 910225 (this is
known as YYMMDD format for February 25, 1991), we take the close
of 74.82 and divide it by the 910222 close of 75.52:

74.82I75.52  = .9907309322

We then take the natural log of this answer. Since the natural log of
.9907309322  is -.009312258,  our answer to step 2 is -.009312258.

Step 3 After 21 days of back data have elapsed, you will have 20 values
for step 2. Now you can start running a 20-day moving average to the
answers from step 2.

Step 4 You now want to run a 20-day sample variance for the data
from step 2. For a 2O-day  variance you must first determine the mov-
ing average for the last 20 days. This was done in step 3. Then, for
each day of the last 20 days, you take the difference between today’s
moving average, and that day’s answer to step 2. In other words, for
each of the last 20 days you will subtract the moving average from that
day’s answer to step 2. Now, you square this difference (multiply it by
itself). In so doing, you convert all negative answers to positives so
that all answers are now positive. Once that is done, you add up all of
these positive differences for the last 20 days. Finally, you divide this
sum by 19,  and the result is your sample variance for the last 20 days.

The following spreadsheet will show how to find the 2O-day  sample
variance for the March 1991 Japanese yen for a single day, 901226
(December 26,199O):
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A I3 C D E F G
Date Close LN 20-Day CofC- Col E Sumof CotlG

Change Average (-.0029)  Squared Last20 Divided
Values by19
of Col F

901127 77.96
901128 76.91 -9.0136 -0.0107 0.000113
901129 74.93 -0.0261 -0.0232 0.000537
901130 75.37 0.0059 0.0088 0.000076
901203 74.18 -0.0159 -0.0130 0.000169
901204 74.72 0.0073 0.0102 0.000103
901205 74.57 -0.0020 0.0009 0.000000
901206 75.42 0.0113 0.0142 0.000202
901207 76.44 0.0134 0.0163 0.000266
901210 75.54 -0.0118 -0.0089 0.000079
901211 75.37 -0.0023 0.0006 0.000000
901212 75.9 0.0070 0.0099 0.000098
901213 75.57 -0.0044 -0.0015 0.000002
901214 75.08 -0.0065 -0.0036 0.000012
901217 75.11 0.0004 0.0033 0.000010
901218 74.99 -0.0016 0.0013 0.000001
901219 74.52 -0.0063 -0.0034 0.000011
901220 74.06 -0.0062 -0.0033 0.000010
901221 73.91 -0.0020 0.0009 0.000000
901224 73.49 -0.0057 -0.0028 0.000007
901226 73.5 0.0001 -.0029 0.0030 0.000009 .001716 .000090

As you can see, the 20-day sample variance for 901226 is .00009. You
need to do this for every day so that you will have detennined the 20-
day sample variance for every single day.

Step 5 Once you have determined the 20-day sample variance for
every single day, you must convert this into a 2O-day  sample standard
deviation. This is easily accomplished by taking the square root of the
variance for each day. Thus, for 901226, taking the square root of the
variance (which was shown to be .00009)  gives us a 20-day sample
standard deviation of .009486832981.

Step 6 Now we must “annualize” the data. Since we are using daily
data, and we’ll suppose that there are 252 trading days in the yen per
year (approximateIy),  we must muItipIy the answers from step 5 by
the square root of 252, or 15.87450787. Thus, for 901226, the 20-day
sample standard deviation is . 009486832981, and multiplying by
15.87450787 gives us an answer of .1505988048.  This answer is the
historical volatility-in this case, 15.06%-and  can be used as the
volatility input to the Black-Scholes option pricing model.

IIN, RISK, AND REALITY 197

The following spreadsheet shows how to go through the steps to get to
this 20-day  annualized historical volatility. You will notice that the interim

steps in determining variance for a given day, which were detailed on the
previous  spreadsheet, are not on this one. This was done in order for you to
see the whole process. Therefore, bear in mind that the variance column in
this following spreadsheet is determined for each row exactly as in the pre-
vious spreadsheet.

A 6 C D E F G
DATE CLOSE LN 20-Day 20-Day 20-Day Annualized

Change Average Variance SD *15.87451

#~901127
:' 961128
1;; ,901 129
$2 901130
$j 961203

F 961212
.P

:!I:
961213

Lf 991214
4, 961217

77.96
76.91
74.93
75.37
74.18
74.72
74.57
75.42
76.44
75.54
75.37
75.9
75.57
75.08
75.11
74.99
74.52
74.06
73.91
73.49
73.5
73.34
74.07
73.84

IN, RISK, AND REALITY

call the following axiom from the Introduction to this text: If you play u
with unlimited liability, you will go broke with a probability that
aches certainty as the length of the game approaches infinity. What
tutes a game with  unlimited liability? The answer is a distribution of

bmes where the left tail (the adverse outcomes) is unbounded and goes

-0.0136
-0.0261
0.0059

-0.0159
0.0073

-0.0020
0.0113
0.0134

-0.0118
-0.0023
0.0070

-0.0044
-0.0065
0.0004

-0.0016
-0.0063
-0.0062
-0.0020
-0.0057
0.0001 -0.0029 0.0001 0.0095 0.1508

-0.0022 -0.0024 0.0001 0.0092 0.1460
0.0099 -0.0006 0.0001 0.0077 0.1222

-0.0031 -0.0010 0.0001 0.0076 0.1206
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to minus infinity. Long option positions allow us to bound the adverse tail of
the distribution of outcomes.

You may take issue with this axiom. It seems irreconcilable that the +,k
of ruin be less than 1 (i.e., ruin is not certain), yet I contend that in trading
an instrument with unlimited liability on any given trade, ruin is certain. In
other words, my contention here is that if you trade anything other than
options and you are looking at trading for an infinile  length of time, your
real risk of ruin is 1. Ruin is certain under such conditions. This can bc ret-

onciled with risk-of-ruin equations in that equations used for risk of ruin use
empirical data as input. That is, the input to risk-of-ruin equations comes
from afinite  sample of trades. My contention of certain ruin for playing an
infinitely long game with unlimited liability on any given trade is derived
from a parametric standpoint. The parametric standpoint encompasses the
large losing trades, those trades way out on the left tail of the distribution,
which have not yet occurred and are therefore not a part of the finite sam-
ple used as input into the risk-of-rum equations.

To picture this, assume for a moment a trading system being performed
under constant-contract trading. Each trade taken is taken with only 1 con-
tract. To plot out where we would expect the equity to be X trades into the
future, we simply multiply X by the average trade. Thus, if our system has
an average trade of $250, and we want to know where we can expect our
equity to be, say, 7 trades into the future, we can determine this as $250 * 7
= $1,750. Notice that this line of arithmetic mathematical expectation is a
straight-line function.

Now, on any given trade, a certain amount can be lost, thus dropping us
down (temporarily) from this expected line. In this hypothetical situation we
have a limit to what we can lose on any given trade. Since our line is always
higher than the most we can lose on a given trade, we cannot be ruined on
one trade. However, a prolonged losing streak could drop us far enough
down from this line that we could not continue to trade, hence we would be
“ruined.” The probability of this diminishes as more trades elapse, as the
line of expectation gets higher and higher. A risk-of-ruin equation can tell us
what the probability of ruin is before we start out trading this system.

If we were trading this system on a fixed fractional basis, the line would
curve upward, getting steeper and steeper with each elapsed trade.
However, the amount we could drop off of this line is always commensurate
with how high we are on the line. That is, the probability of ruin does not
diminish as more and more trades elapse. In theory, though, the tisk  of ruin
in fixed fractional trading is zero, because we can trade in infinitely divisible
units. In real life this is not necessarily so. In real life, the risk of ruin in
fixed fractional trading is always a little higher than in the same system
under constant-contract trading.

In reality, there is no limit on how much you can lose on any given trade,

i
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In reality, the equity expectation lines we are talking about can be retraced
completely in one trade, regardless of how high they are. Thus, the risk of
win,  if we are to trade for an infinitely long period of time in an instrument
with  unlimited liability, regardless of whether we are trading on a constant-
contract or a fixed fractional basis, is 1. Ruin is certain. The only way to
defuse this is to be able to put a cap on the maximum loss. This can be
accomplished by trading options where the position is initiated at a debit.2

OPTION PRICING MODELS

Imagine an underlying instrument (it can be a stock, bond, foreign cur-
mncy,  commodity, or anything else) that can trade up or down by 1 tick on
the next trade. If, say, we measure where this stock will be 100 ticks down
the road, and if we do this over and over, we will find that the distribution of
outcomes is Normal. This, per Galton’s  board, is as we would expect it to
be.\

If we then figured the price of the option based on this principle such
that you could not make a profit by buying these options, or by selling them
short, we would have arrived at the Binomial Option Pricing Model
(Binomial Model or Binomial). This is sometimes also called the Cox-Ross-
Rubenstein model after those who devised it. Such an option price is based
on its expected value (its arithmetic mathematical expectation), since you
cannot make a profit by either buying these options repeatedly and holding
them to expiration or selling them repeatedly and holding the position till
expiration, losing on some and winning on others but netting out a profit in
the end. Thus, the option is said to befairly  priced.

We will not cover the specific mathematics of the Binomial Model.
Rather, we till cover the mathematics of the Black-Scholes Stock Option
Model and the Black Futures Option Model. You should be aware that,
bide  from these three models, there are other valid options pricing models
which will not be covered here either, although the concepts discussed in
Ibis  chapter apply to all options pricing models. Finally, the best reference I
bow of regarding the mathematics of options pricing models is Option
bbtility  and Pricing Strategies by Sheldon Natenberg. Natenberg’s book
F the mathematics for many of the options pricing models (including

see  later in this chapter that underlying instruments are identical to call  options with
Ime till  expiration. Therefore, ilwe  are long the underlying instrument, we can (~swnlc
wont-care  loss is the full  vahle  of the instrument. In many cases,  this can be regarded
of such magnitude as to be synonymous with a cataclysmic loss.  However,  being short
rlying instrument is analogous to being short a call option with infinite time remaining

9iWon,  and liability is truly unlimited in such a situation.
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the Binomial Model) in great detail. The math for the Black-Scholes Stock
Option Model and the Black Futures Option Model, which we are about to
discuss, comes from Natenberg. These topics take an entire text to discuss,
more space than we have here. Those readers who want to pursue the con-
cepts of optimal f and options are referred to Natenberg for foundational
material regarding options.

We must cover pricing models on a level sufficient to work the optimal f
techniques about to be discussed on option prices. Therefore, we will now
discuss the Black-Scholes Stock Option Pricing Model (hereafter, Black-
Scholes). This model is named after those who devised it, Fischer Black at
the University of Chicago and Myron Scholes at M.I.T., and appeared in the
May-June 1973 ]ournal of Political Economy. Black-Scholes is considered
the limiting form of the Binomial Model (hereafter, Binomial). In other
words, with the Binomial, you must determine how many up or down ticks
you are going to use before you record where the price might end up. The
following little diagram shows the idea.

/

1::
/\I\

/\I\/
/\/\I\

In i t i a l -  /\/\I\/
Price \/\/\I\

\/\I\/
\/\I\
\/\I
\I\
\/

\

Here, you start out at an initial price, where price can branch off in 2 direc-
tions for the next period. The period after that, there are 4 directions that
the price might end up. Ultimately, with the Binomial you must determine
in advance how many periods in total you are going to use to figure the fair
price of the option on.

Black-Scholes is considered the limiting form of the Binomial because it
assumes an infinite number of periods (in theory). That is, Black-Scholes
assumes that this little diagram will keep on branching out and to the right,
infinitely. If you determine an option’s fair price via Black-Scholes, then you
will tend toward the same answer with the Binomial as the number of ped-
ods used in the Binomial tends toward infinity. (The fact that Black-Scholes
is the limiting form of the Binomial would imply that the Binomial Model
appeared first. Oddly enough, the Black-Scholes model appeared first.)

PRICING MODELS 2 0 1

‘ial
The mathematics of Black-Scholes are quite straightforward. The fair
ue of a call on a stock option is given as:

(5.01) C = U * EXP(-R  * T) * N(H) - E * EXP(-R * T)
* N(H -V * T A  (l/2))

and for a put:

(5.02) P = -U * EXP(-R  * T) * N&H)  + E * EXP(-R  * T)
* N(V * T A  (l/2)  - H)

where C = The fair value of a call option.

P = The fair value of a put option.

U = The price of the underlying instrument.

E = The exercise price of the option.

T = Decimal fraction of the year left to expiration.3

V = The annual volatility in percent.

R  = The risk-free rate.

In() = The natural logarithm function.

N( ) = The cumulative Normal density function, as given in
Equation (3.21).

(5.03) H = ln(U/(E * EXP(-R  * T)))/(V * T h (l/2))  + (V * T h (1/2))/2

For stocks that pay dividends, you must adjust the variable U to reflect
the current price of the underlying minus the present value of the expected
dividends:

(5.04) U = U -i~~Di  * EXP(-R  * Wi)

’ where Di = The ith expected dividend payout.

Wi = The time (decimal fraction of a year) to the ith payout.

post  often, only market days are used in calculating the fraction of a year in options. The
pber of weekdays in a year (Gregorian) can be determined as 365.24297  * 5 = 260.8875

!-kdays on average per year. Due to holidays, the actual number of trading days in a year is
mb somewhere between 250 and 252. Therefore, if we are using a 252-trading-day  year,
km-a? re are 50 trading days left to expiration, the decimal fraction of the year lelt to expira-
b T,  would be 50~2.52  =  .19841269&1.
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One of the very nice things about the Black-Scholes Model is the exact
calculation of the delta, the first derivative of the price of the option. This is
the option’s instantaneous rate of change with respect to a change in U, the
price of the underlying:

(5.05) Call Delta = N(H)

(5.06) Put Delta = -N(-H)

These deltas become quite important in Chapter 7, when we discuss portfo-
lio insurance.

Black went on to make the model applicable to futures options, which
have a stock-type settlement.4 The Black futures option pricing model is the
same as the Black-Scholes stock option pricing model except for the vari-
able H:

(5.07) H = In(U/E)/(V * T A  (l/2))  + (V * T A  (1/2))/2

The only other difference in the futures model is the deltas, which are:

(5.08) Call Delta = EXP(-R  * T) * N(H)

(5.09) Put Delta = -EXP(-R  * T) * N(-H)

For example, suppose we are looking at a futures option that has a strike
price of 600, a current market price of 575 on the underlying, and an annual
volatility of 25%. We will use the commodity options model, a 252-day year,
and a risk-free rate of 0 for simplicity. Further, we will assume that the expi-
ration day of the options is September 15,  I991  (9IO915),  and that the day
on which we are observing these options is August 1, 1991 (910801).

To begin with, we will calculate the variable T, the decimal fraction of
the year left to expiration. First, we must convert both 910801 and 910915
to their Julian day equivalents. To do this, we must use the follow@
algorithm.

1. Set variable 1 equal to the year (I991),  variable 2 equal to the month
(8) and variable 3 equal to the day (1).

2.  If variable 2 is less than 3 (i.e., the month is January or February) thea

dFuhlres-type  settlement requires no initial cash payment, although the required margin must
be posted. Additionally, all profits and losses are realized immediately, even if the position is
not liquidated. These points are in direct contrast to stock-type settlement. In stock-type settl e-
ment, purchase requires full and immediate payment, and profits (or losses) are not real1ked

unt i l  the  pos i t ion  i s  l iqu idated .
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set variable 1 equal to the year minus 1 and set variable 2 equal to the
month plus 13.

3. If variable 2 is greater than 2 (i.e., the month is March or after) then
set variable 2 equal to the month plus 1.

4. Set variable 4 equal to variable 3 plus 1720995 plus the integer of the
quantity 365.25 times variable 1 plus the integer of the quantity
30.6001 times variable 2. Mathematically:

V4 = V3 + 1720995 + INT(365.25 * Vl) + INT(30.6001 * V2)

5. Set variable 5 equal to the integer of the quantity .Ol  times variable 1:
Mathematically:

V5 = INT(.Ol  * Vl)

6. Now to obtain the Julian date as variable 4 plus 2 minus variable 5
plus the integer of the quantity .25 times variable 5. Mathematically:

JULIAN DATE = V4 + 2 - V5 + INT(.25  * V5)

So to convert our date of 910801 to Julian:

Step 1 Vl = 1991, V2 = 8, V3 = 1

Step 2 Since it is later in the year than January or February, this step
does not apply.

Step 3 Since it is later in the year than January or February, this step
does apply. Therefore V2 = 8 + 1 = 9.

Step 4 Now we set V4 as:

V4 =V3 + 1720995 + INT(365.25 * Vl) + INT(30.6001 * V2)

= 1 + 1720995 + INT(365.25 * 1991) + INT(30.6001*  9)

= 1 + 1720995 + INT(727212.75) + INT(275.4009)

= 1 + 1720995 + 727212 + 275

= 2448483

Step 5 Now we set V5 as:

V5 = INT(.Ol  * Vl)
b
i = INT(.Ol  * 1991)
i

1
= INT( 19.91)

x = 19
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Step 6 Now we obtain the Julian date as:

JULIAN DATE = V4 + 2 - V5 + INT(.25  *  V5)

= 2448483 + 2 - 19 + INT(.25  * 19)

= 2448483 + 2 - 19 + INT(4.75)

= 2448483 + 2 - 19 + 4

= 2448470

Thus, we can state that the Julian date for August 1, 1991, is 2448470. Now
if we convert the expiration date of September 15, 1991 to Julian, we would
obtain a Julian date of 2448515.

If we were using a 365 day year (or 365.2425, the Gregorian Calendar
length), we could find the time left until expiration by simply taking the dif-
ference between these two Julian dates, subtracting 1 and dividing the sum
by 365 (or 365.2425).

However, we are not using a 365 day year; rather we are using a 252-day
year, as we are only counting days when the exchange is open (weekdays
less holidays). Here is how we account for this. We must examine each day
between the two Julian dates to see if it is a weekend. We can determine
what day of the week a given Julian date is by adding 1 to the Julian date,
dividing by 7, and taking the remainder (the modulus operation). The
remainder will be a value of 0 through 6, corresponding to Sunday through
Saturday. Thus, for August 1, 1991, where the Julian date is 2448470:

Day of week = ((2448470 + 1)/7)  % 7

= 2448471/  % 7

= ((2448471fl)  - INT(2448471fl))  * 7

= (349781.5714 - 349781) * 7

= .5714 * 7

= 4

Since 4 corresponds to Thursday, we can state that August 1, 1991 is a

Thursday.
We now proceed through each Julian date up to and including the expi-

ration date. We count up all of the weekdays in between those two dates
and find that there are 32 weekdays in between (and including) August 17
1991 and September 15,199l.  From our final answer we must subtract 1,  as
we count day one when August 2, 1991 arrives. Therefore, we have 3l
weekdays between 910801 and 910915.
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Now we must subtract holidays, when the exchange is closed. Monday
September 2, 1991, is Labor Day in the United States. Even though we may
not  live  in the United States, the exchange where this particular option is
traded on, being in the United States, will be closed on September 2, and
therefore we must subtract 1 from our count of days. Therefore, we deter-
mine that we have 30 “tradeable” days before expiration.

Now we divide the number of tradeable days before expiration by the
length of what we have determined the year to be. Since we are using a 252
day  year, we divide 30 by 252 to obtain .119047619.  This is the decimal
fraction of the year left to expiration, the variable T.

Next, we must determine the variable H for the pricing model. Since we
, are using the futures model, we must calculate H as in Equation (5.07):

H = ln(  U/E)@’  * T h (l/2))  + (V * T h (1/2))/2

= ln(575/600)/(.25  * .119047619  * (l/2))
+ (.25 * .119047619  h (1/2))/2

= in(575/600)/(.25  * .119047619  h .5)
+ (.25 * .119047619  A  .5)/2

= ln(575/600)/(.25  * .3450327796)  + (.25 * .3450327796)/2

,+ = 1n(575/600)/.0862581949  + .0862581949/2
$;
‘$ = ln(.9583333)/.0862581949  + .0862581949/2
;,>+. ..> = -.04255961442/.0862581949  + .0862581949/2.;L;,<‘*(I = -.4933979255  + .0862581949/2

= -.4933979255  + .04312909745

= -.4502688281

In Equation (5.01) you will notice that we need to use Equation (3.21)
on two occasions. The first is where we set the variable Z in Equation (3.01)
to the variable H as we have just calculated it; the second is where we set it

‘to  the expression H - V * T A  (l/2).  We know that V * T A  (l/2)  is equal to
1+6862581949  from the last expression, so H - V * T A  (l/2) equals

- .0862581949  = -.536527023. We therefore must use
21) with the input variable Z as -.4502688281  and
From Equation (3.21),  this yields .3262583  and .2957971

ely (Equation (3.21) has been demonstrated in Chapter 3, so we
repeat it here). Notice, however, that we have now obtained the

the instantaneous rate of change of the price of the option with
t to the price of the underlying. The delta is N(H), or the variable H

ped through as Z in Equation (3.21). Our delta for this option is there-
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We now have all of the inputs required to determine the theoretical
option price. Plugging our values into Equation (5.01):

(5.01) C=U*EXP(-R*T)*N(H)-E*EXP(-R*T)*N(H-V
* T h (l/2))

= 575 * EXP(-0 * .119047619)  * N(-.4502688281)  - 600
* EXP(-0 * .119047619)  *  N(-.4502688281-  .25
* .119047619  h (l/2))

= 575 *  EXP(-0 * .119047619)  * .3262583  - 600 * EXP(-0
* .119047619)  * .2957971

= 575 * EXP(0)  * .3262583  - 600 * EXP(0)  * .2957971

= 575 * 1 *  .3262583  - 600 * 1 * .2957971

= 575 * .3262583  - 600 * .2957971

= 187.5985225 - 177.47826

= 10.1202625

Thus, the fair price of the 600 call option that expires September 15,
1991, with the underlying at 575 on August 1, 1991, with volatility at 25%,
and using a 252-day year and the Black futures model with R = 0, is
10.1202625.

It is interesting to note the relationship between options and their under-
lying instruments by using these pricing models. We know that 0 is the lim-
iting downside price of an option, but on the upside the limiting price is the
price of the underlying instrument itself. The models demonstrate this in
that the theoretical fair price of an option approaches its upside limiting
value of the value of the underlying, U, if any or all three of the variables T,
R, or V are increased. This would mean, for instance, that if we increased T,
the time till expiration of the option, to an infinitely high amount, then the
price of the option would equal that of the underlying instrument. In this
regard, we can state that all underlying instruments are really the same as
options, only with infinite T. Thus, what follows in this discussion is not only
true of options, it can likewise be said to be true of the underlying as though
it were an option with infinite T.

Both the Black&holes stock option model and the Black futures model
are based on certain assumptions. The developers of these models were
aware of these assumptions and so should you be. Nonetheless, despite
whatever shortcomings are involved in the assumptions, these models are
still very accurate, and option prices will tend to these models’ values.

The first of these assumptions is that the option cannot be exercised
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until the exercise date. This European style options settlement tends to
underprice certain options as compared to the American style, where the
options can be exercised at any time. Some of the other assumptions in this
model are that we actually know the future volatility of the underlying
instrument and that it will remain constant throughout the life of the
option. Not only will this not happen (i.e., the volatility wi21  change), but
the distribution of volatility changes is lognormal, an issue that the models
do not address.5 Another issue that the models assume is that the risk-free
interest rate will remain constant throughout the life of an option. This also
Is unlikely. Furthermore, short-term rates appear to be lognormally dis-
tributed. Since the higher the short-term rates are the higher the resultant
option prices will be, this assumption regarding short-term rates being con-
stant may further undervalue the fair price of the option (the price
returned by the models) relative to the expected value (its true arithmetic
mathematical expectation).

Finally, another point (perhaps the most important point) that might
undervalue the model-generated fair value of the option relative to the true
expected value regards the assumption that the logs of price changes are
‘Normally distributed. If rather than having a time frame in which they
expired, options had a given number of up and down ticks before they
expired, and could only change by 1 tick at a time, and if each tick was sta-
tistically independent of the last tick, we could rightly make this assumption
of Normality. The logs of price changes, however, do not have these clean
characteristics.

All of these assumptions made by the pricing models aside, the theoreti-
cal fair prices returned by the models are monitored by professionals in the
marketplace. Even though many are using models that differ from these
detailed here, most models return similar theoretical fair prices. When
actual prices diverge from the models to the extent that an arbitrageur has a
profit opportunity, they will begin to again converge to what the models
claim  is the theoretical fair price. This fact, that we can predict with a fair
degree of accuracy what the price of an option will be given the various
inputs (time to expiration, price of the underlying instrument, etc.) allows us
to perform the exercises regarding optimal f and its by-products on options
and mixed positions. The reader should bear in mind that all of these tech-
niques are based on the assumptions just noted about the options pricing
models  themselves.

“‘&  fact that  the distr ibut ion of  volat i l i ty  changes is  lognormal  is not a vety widely considered
h.  In light of how extremely sensitive option prices are to the volatility of the underlying

‘htr~ment,  this certainly makes the prospect of buying LI long option (put or call) more appeal-

tk in  terms of mathematical expectation.
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A EUROPEAN OPTIONS PRICING MODEL FOR
ALL DISTRIBUTIONS

We can create our own pricing model devoid of any assumptions regarding
the distribution of price changes.

First, the term “theoretically fair” needs to be defined when referring to
an options price. This definition is given as the arithmetic mathematical
expectation of the option at expiration, expressed in terms of-its present
tcorth,  assuming no directional bias in the underlying. This is our options
pricing model in literal terms. The frame of reference employed here is
‘What is this option worth to me today as an options buyer?”

In mathematical terms, recall that the mathematical expectation (arith-
metic) is defined as Equation (1.03):

(1.03) Mathematical expectation = i$,(pi  * ai)

where p = Probability fo winning or losing the ith trial.

a = Amount won or lost on the ith trial.

N = Number of possible outcomes (trials).

The mathematical expectation is computed by multiplying each possible
gain or loss by the probability of that gain or loss and then summing these
products. When the sum of the probabilities, the pi terms, is greater than 1,
Equation I.03  must then be divided by the sum of the probabilities, the pi
terms.

In a nutshell, our options pricing model will take all those discrete price
increments that have a probability greater than or equal to .OOl of occurring
at expiration and determine an arithmetic mathematical expectation on
them.

(5.10)

where

C = C (pi  * tlj)/L1 pi

C = The theoretically fair value of an option, or an arithmetic
mathematical expectation.

pi = The probability of being at price i on expiration.

ai  = The intrinsic value associated with the  underlying instru-
ment being at price i.

In using this model, we first begin at the current price and work up I tick
at a time, summing the values in both the numerator and denominator until
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the price, i, has a probability, pi, less than .OOl  (you can use a value less than
this, but I find .OOl to be a good value to use; it implies finding a fair value
assuming you are going to have 1,000 option trades in your lifetime). Then,
starting at that value which is 1 tick below the current price, we work down
I tick at a time, summing values for both the numerator and denominator
until the price, i, results in a probability, pi, less than .OOl. Note that the
probabilities we are using are l-tailed probabilities, where if a probability is
greater than .5, we are subtracting the probability from 1.

Of interest to note is that the pi terms, the probabilities, can be dis-
cerned by whatever distribution the user feels is applicable, not just the
Normal. That is, the user can derive a theoretically fair value of an option
for any distributional form! Thus, this model frees us to use the stable
Paretian,  Student’s t, Poisson, our own adjustable distribution, or any other
distribution we feel price conforms to in determining fair options values.

We still need to amend the model to express the arithmetic mathemati-
cal expectation at expiration as a present value:

C = (C (pi * ai) * EXP(-R  * T))/ ~ pi

C = The theoretically fair value of an option, or the present
value of the arithmetic mathematical expectation at time T.

pi = The probability of being at price i on expiration.

ai  = The intrinsic value associated with the underlying instru-
ment being at price i.

R = The current risk-free rate.

T = Decimal fraction of a year remaining till expiration.

ns pricing model for all distributions, retum-
arithmetic mathematical expectation of the

.s  Note that the model can be used for put values as
rence being in discerning the intrinsic values, the ai

terms,  at each price increment, i.

oes not differentiate stock from commodity options.
mbedded  in  the pr ice of  a  s tock opt ion,  i s  the in teres t  on a
at expiration with a face value equal to the strike price.

it is believed, see an interest rate of 0 on this, so it is as if they do not have
f reference-that is, ‘What  is this option worth to me today as an options

stock and a commodity have exactly the same expected
hmetic mathematical  expectat ions are the same, and the
g the less exznsive.  This situation is analogous to some-
den&al  houses  where one is priced higher because the

paid a higher interest  rate on the mortgage.
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When dividends are involved, Equation (5.04) should be employed to
adjust the current price of the under&g  by. Then this adjusted current
price is used in determining the probabilities associated with being at a
given price, i, at expiration.

An example of using Equation (5.11) is as follows. Suppose we determine
that the Student’s t distribution is a good model of the distribution of the
log of price changes’ for a hypothetical commodity that we are considering
buying options on. Now we use the K-S test to determine the best-fitting
parameter value for the degrees offreedom  parameter of the Student’s t dis-
tribution. We will assume that 5 degrees of freedom provides for the best fit
to the actual data per the K-S test.

We will assume that we are discerning the fair price for a call option on
911104 that expires 911220, where the price of the underlying is 100 and
the strike price is 100. We will assume an annualized volatility of 20%, a
risk-free rate of 5%,  and a 260.8875-day  year (the average number of week-
days in a year; we therefore ignore holidays that fall on a weekday, for
example, Thanksgiving in the United States). Further, we will assume that
the minimum tick that this hypothetical commodity can trade in is .lO.

If we perform Equations (5.01) and (5.02) using (5.07) for the variable
II, we obtain fair values of 2.861 for both the 100 call and 100 put. These
options prices are thus the fair values according to the Black commodity
options model, which assumes a lognormal distribution of prices. If, how-
ever, we use Equation (5.11), we must figure the pi terms. These we obtain
from the snippet of BASIC code in Appendix B. Note that the snippet of
code requires a standard value, given the variable name Z, and the degrees
of freedom, given the variable name DEGFDM. Before we call this snippet
of code we can convert the price, i, to a standard value by the following
formula:

(5.12) Z = ln(i/current  underlying price)/(V * T A  .5)

i = The price associated with the current status of the summa-
tion process.

V = The annualized volatility as a standard deviation.

T = Decimal fraction of a year remaining till expiration.

ln() = The natural logarithm function.

YThe  Student’s t distribution is generally a poor model of the distribution of price changes,
However, since the only other parameter, aside fmm volatility as an annualized standard d&a-
tion,  which needs to be considered in using the Student’s t distribution, is the degrees of free-
dom, and since the probabilities associated with the Student’s t distribution are easily a.~+
tained by the snippet  of  Basic  code in  Appendix B,  we wi l l  use  the Student’s  t  distr ibution here
for  the  sake  of  s impl ic i ty  and demonstrat ion.

i
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Equation (5.12) can be expressed in BASIC as:

z = LOG(1 / U)/(V  * T A  .5)

The variable U represents the current underlying price (adjusted for diti-
den&,  if necessary).

Lastly, once we have obtained a probability from the Student’s t disttibu-
tion  BASIC code snippet in Appendix B, the probability returned is a 2-

tailed one. We need to make it a l-tailed probability and express it as a
probability of deviating from the current price (i.e., bound it behveen 0 and
.5).  These two procedures are performed by the following hvo lines of
BASIC:

CF = 1 - ((1- CF)/2)

IF CF >.5 then CF=l - CF

Doing this with the option parameters WC  have specified, and 5 degrees
bf  freedom, yields a fair call option value of 3.842 and a fair put value of
2.562. These values differ considerably from the more conventional models
for a number of reasons.

First, the fatter tails of the Student’s t distribution with 5 degrees of free-
dom will make for a higher fair call value. Generally, the thicker the tails of
the distribution used, the greater the call value returned. Had we used 4
degrees of freedom, we would have obtained an even greater fair call value.

Second, the put value and the call value differ substantially, whereas with
the more conventional model the put and call value were equivalent. This
difference requires some discussion.

The fair value of a put can be determined from a call option with the
same strike and expiration (or vice versa) by the put-call parity formula:

(5.13) P = C + ( E - U ) * E X P ( - R * T )

where P = The fair put value.

C = The fair call value.

E = The strike price.

U = The current price of the underlying instrument.

R = The risk-free rate.

T = Decimal fraction of a year remaining till expiration.

. When Equation (5.13) is not true, an arbitrage opportunity exists. From

(5.13) we can see that the conventional model’s prices, being equivalent,

i,
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would appear to be correct since the expression E - U is 0, and tllerefore
P = c.

However, let’s consider the variable U in Equation (5.13) as the expected
price of the current underlying instrument at expiration. The expected
value of the underlying can be discerned by (5.10) except the ai  term simply
equals i. For our example with DEGFDM = 5, the expected value  for the
underlying instrument = 101.288467. This happens as a result of the fact
that the least a commodity can trade for in this model is 0, whereas there is
no upside limit. A move from a price of 100 to a price of .50 is as likely as a
move from a price of 100 to 200. Hence, call values will be priced greater
than put values. It comes as no surprise then that the expected value of the
underlying instrument at expiration should be greater than its current value.
This seems to be consistent with our experience  with inflation. When we
replace the U in Equation (5.13), the current price of the underlying instru-
ment, with its expected value at expiration, we can derive our fair put value
from (5.13) as:

P =3.842  + (100 - 101.288467) * EXP(-.05  *  33 / 260.8875)

= 3.842 + -1.288467 * EXP(-.006324565186)

= 3.842 + -1.288467 * .9936954

= 3.842 + -1.280343731

= 2.561656269

This value is consistent with the put value discerned by using Equation
(5.11) for the current value of the arithmetic mathematical expectation of
the put at expiration.

There’s only one problem. If both the put and call options for the same
strike and expiration are fairly priced per (5.II),  then an arbitrage opportu-
nity exists.  In the real world the U in (5.13) is the current price of the
underlying, not the expected value of the underlying, at expiration. In other
words, if the current price is 100 and the December 100 call is 3.842 and
the 100 put is 2.561656269, then an arbitrage opportunity exists per (5.13).

The absence of put-call parity would suggest, given our newly derived
options prices, that rather than buy the call for 3.842 we instead obtain a*
equivalent position by buying the put for 2.562 and buy the underlying.

The problem is resolved if we first calculate the expected value on the
underlying, discerned by Equation (5.10) except the  ai  term simply equals i
(for our example with DEGFDM=5,  the expected value for the underlying
instnunent equals 101.288467) and btsu ract  the current price of the under-
lying from this value. This gives us 101.288467 - 100 = 1.28846i.  Now if we
subtract this value from each ai  term, each intrinsic value in (5.11) (and set-
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ting  any resultant values less than 0 to 0), then Equation (5.11) will yield
theoretical values that are consistent with (5.13). This procedure has the
effect of forcing the arithmetic mathematical expectation on the underlying
to equal the current price of the underlying. In the case of our example
using the Student’s t distribution with 5 degrees of freedom, we obtain a
value for both the 100 put and call of 3.218. Thus our answer is consistent
with  Equation (5.13), and an arbitrage opportunity no longer exists between
these two options and their underlying instrument.

Whenever we are using a distribution that results in an arithmetic mathe-
matical expectation at expiration on the underlying which differs from the
current value of the underlying, we must subtract the difference (expecta-
tion - current value) from the intrinsic value at expiration of the options and
floor those resultant intrinsic values less than 0 to 0. In so doing, Equation
(5.11) will give us, for any distributional form we care to use, the present
worth of the arithmtic  mathematical expectation of the option at expiration,
@en an arithmetic mathematical expectation on the underlying instrument
equit;alent  to its current price (i.e., assuming no directional bias in the

<underlying  instrument).

THE SINGLE LONG OPTION AND OPTIMAL f

Let us assume here that we are speaking about the simple outright purchase
of a call option. Rather than taking a full history of option trades that a given
market system produced and deriving our optimal f therefrom, we are going
to take a look at all the possible outcomes of what this particular option
might do throughout the term that we hold it. We are going to weight each
outcome by the probability of its occurrence. This probability-weighted out-
come will be derived as an HPR relative to the purchase price of the option.
Finally, we will look at the full spectrum of outcomes (i.e., the geometric
mean) for each value for f until we obtain the optimal value.

In almost all of the good options pricing models the input variables that
have the most effect on the theoretical options price are (a) the time
remaining till expiration, (b) the strike price, (c) the underlying price, and
(d)  the volatility. D’ffI erent models have different input, but basically these
four have the greatest bearing on the theoretical value returned.

Of the four basic inputs, two-the time remaining till expiration and the
underlying price-are certain to change. One, volatility, may change, yet
rarely to the extent of the underlying price or the time till expiration, and
certainly not as definitely as these two. One, the strike price, is certain not
to change.

Therefore, we must look at the theoretical price returned by our model
for all of these different values of different underlying prices and different
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for all of these different values of different underlying prices and different
times left till expiration. The HPR for an option is thus a function not only
of the price of the underlying, but also of how much time is left on the

option:

(5.14)

where

HPR(T, U) = (1 + f * (Z(T,  U - Y)/S  - 1)) A  P(T, U)

HPR(T, U) = The HPR for a given test value  for T and U.

f = The tested value for f.

S = The current price of the option.

Z(T, U -Y) = The theoretical option price if the underlying
were at price U -Y with time T remaining till
expiration. This can be discerned by whatever
pricing model the user deems appropriate.

P(T, U) = The I-tailed probability of the underlying being at
price U by time T remaining till expiration. This
can discerned by whatever distributional form the
user deems appropriate.

Y = The difference between the arithmetic mathemat-
ical expectation of the underlying at time T, given
by Equation (5.10), and the current price.

This formula will give us the HPR (which is probability-weighted to the

probability of the outcome) of one possible outcome for this option: that the
underlying instrument will be at price U by time T.

In the preceding equation the variable T represents the decimal part of
the year remaining until option expiration. Therefore, at expiration T = 0. If
1 year is left to expiration, T = 1. The variable Z(T, U - Y) is found via what-
ever option model you are using. The only other variable you need to calcu-
late is the variable P(T, U), the probability of the underlying being at price
U with time T left in the life of the option.

If we are using the Black-&holes model or the Black commodity model,
we can calculate P(T, U) as:

ifU<or=toQ:

(5.15a) P(T, U) = N((ln(U/Q))/(V  * (L * (l/2))))

ifU  > Q:

(5.15b) P(T, U) = 1 - N((ln(U/Q))/(V  * (L h (l/2))))
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where U = The price in question.

Q = Current price of the underlying instrument.

V = The annual volatility of the underlying instrument.

L = Decimal fraction of the year elapsed since the option was
put on.

N() = The Cumulative Normal Distribution Function. This is
given as Equation (3.21).

In() = The natural logarithm function.

Having performed these equations, we can derive a probability-weighted
HPR for a particular outcome in the option. A broad range of outcomes are

possible, but fortunately, these outcomes are not continuous. Take the time
remaining till expiration. This is not a continuous function. Rather, a dis-
crete number of days are left till expiration. The same is true for the price of
the underlying. If a stock is at a price of, say, 35 and we want to know how
many possible price outcomes there are between the possible prices of 30
and 40, and if the stock is traded in eighths, then we know that there are 81
possible price outcomes between 30 and 40 inclusive.

What we must now do is calculate all of the probability- weighted HPRs
on the option for the expiration date or for some other mandated exit date
prior to the expiration date. Say we know we will be out of the option no
later than a week from today. In such a case we do not need to calculate
HPRs for the expiration day, since that is immaterial to the question of how
many of these options to buy, given all of the available information (time to
expiration, time we expect to remain in the trade, price of the underlying
instrument, price of the option, and volatility). If we do not have a set time
when we will be out of the trade, then we must use the expiration day as the

date on which to calculate probability-weighted HPRs.
Once we know how many days to calculate for (and we will assume here

that we will calculate up to the expiration day), we must calculate the proba-
bility-weighted HPRs  for all possible prices for that market day. Again, this
is not as overwhelming as you might think. In the Normal Probability
Distribution, 99.73% of all outcomes will fall within three standard devia-
cons  of the mean. The mean here is the current price of the underlying
instrument. Therefore, we really only need to calculate the probability-
weighted HPRs  for a particular market day, for each discrete price between
-3 and +3 standard deviations. This should get us quite accurately close to
the correct answer. Of course if we wanted to we could go out to 4,5,  6 or
more standard deviations, but that would not be much more accurate.
Likewise, if we wanted to, we could contract the price window in by only
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looking at 2 or 1 standard deviations. There is no gain in accuracy by doing
this though. The point is that 3 standard deviations is not set in stone, but
should provide for sufficient accuracy.

If we are using the Black-Scholes model or the Black futures option
model, we can determine how much 1 standard deviation is above a given
underlying price, U:

(5.16)

where

Std. Dev. = U * EXP(V * (T h (l/2)))

U = Current price of the underlying instrument.

V = The annual volatility of the underlying instrument.

T = Decimal fraction of the year elapsed since the option was
put on.

EXP( ) = The exponential function.

Notice that the standard deviation is a function of the time elapsed in the
trade (i.e., you must know how much time has elapsed in order to know
where the three standard deviation points are).

Building upon this equation, to determine that point that is X standard
deviations above the current underlying price:

(5.17a) +X Std. Dev. = U * EXP(X * (V  * T h (l/2)))

Likewise, X standard deviations below the current underlying price is found
by:

(5.17b) -X Std. Dev. = U * EXP(-X * (V * T A  (l/2)))

where U = Current price of the underlying instrument.

V = The annual volatility of the underlying instrument.

T = Decimal fraction of the year elapsed since the option was
put on.

EXP( ) = The exponential function.

X = The number of standard deviations away from the mean
you are trying to discern probabilities on.

Remember, you must first determine how old the trade is, as a fraction of a
year, before you can determine what price constitutes X standard deviations
above or below a given price U.

Here, then, is a summary of the procedure for finding the optimal f for a
given option.
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Step I Determine if you will be out of the option by a definite date. If
not, then use the expiration date.

Step 2 Counting the first day as day 1, determine how many days you
will have been in the trade by the date in number 1. Now convert this
number of days into a decimal fraction of a year.

Step 3 For the day in number 1, calculate those points that are within
+3 and -3 standard deviations of the current underlying  price.

Step 4 Convert these ranges of values of prices in step 3 to discrete
values. In other words, using increments of 1 tick, determine all of the
possible prices between and including those values in step 3 that
bound the range.

Step 5 For each of these outcomes now calculate the Z(T, U - Y)‘s and
P(T, U)‘s  for the probability-weighted HPR equation. In other words,
for each of these outcomes now calculate the resultant theoretical
option price as well as the probability of the underlying instrument
being at that price by the dates in question.

Step 6 After you have completed step 5, you now have all of the input
required to calculate the probability-weighted HPRs  for all of the out-
comes.

(5.14) HPR(T,  U) = (1 + f * (Z(T, U - Y)/S  - 1)) h  P(T, U)

where f = The tested value for f.

S = The current price of the option.

Z(T, U -Y) = The theoretical option price if the underlying
were at price U - Y with time T remaining till
expiration. This can discerned by whatever pricing
model  the user deems  appropriate.

P(T, U) = The l-tailed probability of the underlying being at
price U by time T remaining till expiration. This
can be discerned by whatever distributional from
the user deems appropriate.

Y = The difference between the arithmetic mathemat-
ical expectation of the underlying at time T, given
by (5.10), and the current price.

YOU should note that the distributional form used for the variable P(T,
U) need not be the same distributional form used by the pricing
model employed to discern the values for Z(T, U - Y). For example,
suppose you are using the Black-Scholes stock option model to dis-
cern the values for Z(T, U - Y). Th’is model assumes a lognormal dis-
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tribution of price changes. However, you can  correctly USC nnotller

distributional form to determineXthe  corresponding  P(T, U). Literally,
this translates as follows: You know that if the underlying goes  to price
U, the option’s price will tend to that vahle  given by Black-SchoIes,
Yet tlte  probability of the underlying going to price U from here is
greater than the lognormal distribution would indicate.

Step ‘7 Now you can begin the process of finding the optimal f.  Again
you  can do this by iteration, by looping through all of the possible f
va111es  between 0 and 1, by parabolic interpolation, or by any other
one-dimensional search algorithm. By plugging the test values  for f
into the HPRs  (and you have an HPR for each of the possible  price
increments between +3 and -3 standard deviations on the expiration
date or mandated exit date) you can find your geometric mcan for a
given  test value  of f. The way you now obtain this gcomctric  mean is
to  multiply  all of these HPRs  together and then take the resulting
prodllct to the power of 1 dibitled  hy  the sum of the probabilities:

(5.18a)

+3SD +3SD

G(f,  T,  ; j-~/PR(T>  U)l  A iljC,sqiT,  u))

Therefore:

(.j.lSb) G(f, ‘I
c3SD +3SD

‘) =( n(l  + f * (Z(T,  U - Y)/S  - 1)) A P(T, U))  “Ji/zP(T,  U))
u  = -3sll

where G(f, T) = The geometric  mean IIPR for a given test value for f
and a given time  remaining  till expiration from a man-
dated  exit date.

f = The  tested value for f.

S = Tlw  current price of the option.

Z(T,  U - Y) = The theoretical option price if the  underlying were at
price U -Y with time T remaining till expiration. This
can be discerned by whatever  pricing model  the  user
deems appropriate.

P(T, U)  = The probability of the underlying being at price U by
time T remaining till expiration. This can be discerned
by whatever  distributional form the user deems
appropriate.

Y = The  difference bchveen  tile arithmetic  mathematical
expectation of the underlying at time T, given by
(S.lO),  and the current price.
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The value for f that results in the greatest geometric mean is the value
for f that is optimal.

We can optimize for the optimal mandated exit date as well. In other
mrds,  say we want to find what tile optimal f is for a given option for each
lay  behveen now and expiration. That is, we run this procedure over and
ver,  starting with tomorrow as the mandated exit date and finding the opti-
mal f,  then starting the whole process over again with  the next day as the
andated  exit date. We keep moving the mandated exit date forward until
e mandated exit date is the expiration date. We record the optimal fs and

etric  means for each mandated exit date. When we are through with
ntire procedure, we can find the mandated exit date that results in the
st geometric mean. Now we know the date by which we must be out

e option position by in order to have the highest mathematical expecta-
n (i.e., the highest geometric mean). We also know how many contracts
buy by using the f value that corresponds to the highest- geometric mean.
We now have a mathematical technique whereby we can blindly go out

uy an option and (as long as we are out of it by the mandated exit date
as the highest geometric mean-provided that it is greater than 1.0, of
e - a n d buy the number of contracts indicated by the optimal f corre-

to that highest geometric mean) be in a positive mathematical
n. Furthermore, these are geo?rw!ric  positive matllematical  expec-
other words, the geometric mean (minus 1.0) is the mathematical

tation  when you are reinvesting returns. (The true arithmetic positive
aticat expectation would of course be higher than the geometric.)

e you know the optimal f for a given option, you can readily turn this
nto  how many contracts to buy based on the following equation:

0.19) K = INT( E/(  S/f))

where K = The optima1 number of option contracts to buy.

f = The value for the optimal f (0 to 1).

S = the current price of the option.

E = The total account equity.

INT() = The integer function.

he  answer derived from this equation must be “floored to the integer.” In
6cr words, for cxamplc, if the answer is to buy 4.53 contracts, you would
ly 4 contracts.
We  can determine the TWR for the option trade. To do so we must

Iow  how many times we would perform this same trade over and over. In
her  words, if our geometric mean is 1.001 and we want to find the TWR
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that corresponds to make this same play  over and over 100 times, our T\VR
would be 1.001 A  100 = 1.105115698. We would therefore expect to make
10.3115698% on our stake if we were to make this same options play IO0
times over. The formula to convert from a gcomctric  mean to a mVR was
given as Equation (4.18):

(4.18) TWR = Geometric Mean A  X

where TWR = The terminal wealth relative.

X = However many times we want to “expand” this play out.
That is, what we would expect to make if we invested f
amount into these possible scenarios X times.

Further, we can determine our other by-products, such as the geometric
mathematical expectation, as the geometric mean minus 1. If we take the
biggest loss possible (the cost of the option itself), divide this by the optimal
f.  and multiply the result by the geometric mathematical expectation, the
result will yield  the geometric average trade. As you have  seen, when
applied to options positions such as this, the optimal f technique has the
added by-product of discerning what the optimal exit date is.

\Ve have discussed the options position in its pure form, devoid of any

underlying bias we may have in the direction of the price of the underlying.
For a mandated exit date, the points of 3 standard deviations above and
below are calculated from the current price. This assumes that we know
nothing of the future direction of the underlying. According to the mathe-
matical pricing models, we should not be able to find positive arithmetic
mathematical expectations if we were to hold these options to expiration.
However, as we have seen, through the use of this technique it is possible to
find positive geometric mathematical expectations if we put on a certain
quantity and exit the position on a certain date.

If you have a bias toward the direction of the underlying, that can also  be
incorporated. Suppose we are looking at options on a particular underlying
instrument, which is currently priced at 100. Further suppose that our bias,
generated by our analysis of this market, suggests a price of 105 by the expi-
ration date, which is 40 market days from now. We expect the price to rise
by S points in 40 days. If we assume a straight-line basis for this advance, we
can state that the price should rise, on average, .125 points per market day.
Therefore, for the mandated exit day of tomorrow, we will figure a value of
U of 100.125. For the next mandated exit date, U will be 100.25. Finally, by
the time that the mandated exit date is the expiration date, U will be 105  If
the underlying is a stock, you should subtract the dividends from this
adjusted U via Equation (5.04). The bias is applied to the process by having
a different value for U each day because of our forecast. Because they affect
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be outcomes of Equations (5.17a) and (S.lib),  these different values for U
till  dramatically affect our optimal f and by-product calculations. Notice
that  because Equations (5.17a) and (5.17b) are affected by the new value
for  U each day, there is an automatic equalization of the data. Hence, the
optilnal f’s we obtain are based on equalized data.

As you work with this optimal f idea and options, you will notice that

each  day the numbers change. Suppose you buy an option today at a certain
price  that has a given mandated exit date. Suppose the option has a differ-
ent price after tomorrow. If you run the optimal f procedure again on this
Dew  option, it, too, may have a positive mathematical expectation and a dif-
krent mandated exit date. What does this mean?

The situation is analogous to a horse race where you can still place bets
Bfter  the race has begun, until the race is finished. The odds change contin-
uously, and you can cash your ticket at any time, you need not wait until the

‘race  is over. Say you bet $2 on a horse before the race begins, based on a
positive mathematical expectation that you have for that horse, and the

horse is running next to last by the first turn. You make time stop (because
you can do that in hypothetical situations) and now you look at the tote
board. Your $2 ticket on this horse is now only worth $1.50. You determine
khe  mathematical expectation on your horse again, considering how much of
the race is already finished, the current odds on your horse, and where it
resently  is in the field. You determine that the current price of that $1.50

t on your horse is 10% undervalued. Therefore, since you could cash
$2 ticket that you bought before the race for $150  right now, taking a
and you could also purchase the $1.50 ticket on the horse right now
a positive mathematical expectation, you do nothing. The current situa-
is thus that you have a positive mathematical situation, but on the basis
$1.50 ticket not a $2 ticket.

same analogy holds for our option trade, which is now slightly
ater but has a positive mathematical expectation on the basis of the

price. You should USC the new optimal f on the  new price, adjusting
rent position if necessary, and go with the new optimal exit date. In
, you will have incorporated the latest price information about the

ymg instrument. Often, doing this may  have you take the position all
into expiration. There are many inevitable losses along the way by

g this technique of optimal f on options.
you should be able to find positive mathematical expectations in

ens  that are theoretically fairly priced in the first place may stem like a
x or simply quackcry to you. However, thcrc is a very  valid reason

is so: InefJiciencies  are a jhction  of fjourfraiue  of reference.
‘s  start by stating that theoretical option prices as returned by the
s do not give a positive mathematical expectation (arithmetic) to
the buyer or seller. In other words, the models are theoretically fair.
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The missing caveat here is “if held till expiration.” It is this missing caveat
that allows an option to be fairly priced per the models, yet have a positive
expectation if not held till expiration.

Consider that options decay at the rate of the square root of the tinre
remaining  till expiration. Thus, the day with the least expected time pre-
mium decay will always be the first day you are in the option. Now consider
Equations (5.1ia)  and (S.IYb), the price corresponding to a move of X stan-
dard deviations after so much time has elapsed. Notice that each day the
window returned by these formulas expands, but by less  and less. The day
of the greatest rate of expansion is the first day in the option.

Thus, for the first day in the option, the  time premium will shrink the
least, and the window of X standard deviations will expand the fastest. The
less  the time decay, the more likely we are to have a positive expectation in
a long option. Further, the wider the window of X standard deviations, the
more likely we are to have a positive expectation, as the downside is fixed
with an option but the upside is not. There is a constant tug-of-war going on
between the window of X standard deviations getting wider and wider with
each passing day (at a slower and slower rate, though) and time decaying
the  premium  faster and faster with each passing day.

\\‘hat  happens is that the first  day sees the most positive mathematical
expectation,  although it may not be positive. In other  words, the  mathemati-
cal expectation (atithmetic  and geometric) is greatest after you have been in
the option 1 day (it’s actually greatest the first instant you put on the option
and decays gradually thereafter, but we are looking at this thing at discrete
intervals-each day’s close). Each day thereafter the expectation gets lower,
but at a slower rate.

The following table depicts this decay of expectation of a long option.
The table is derived from the option discussed earlier in this chapter. This is
the 100 call option where the underlying is at 100, and it expires 911220.
The volatility is 20% and it is now 911104. \Ve are using the Black commod-
ity option formula (H discerned as in Equation (5.07) and R = 5%) and a
260.8875-&y  year. We are using 8 standard deviations to calculate our opti-
mal f’s from, and we are using a minimum tick increment of .l (which will
be explained shortly).

Exit Date AHPR GHPR f

Tue. 911105 1.000409 1 .000195 .0806
Wed. 911106 1.000001 1 .oooooo .0016
Thu. 911107 <1 <1 0

The AIIPR column is the arithmetic average IIPR (the calculation of
which will be discussed later on in this chapter),  and GHPR is the  geomet-
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lc mean HPR. The f column is the  optimal f from which the  AHPR and
;HPR columns were derived. The arithmetic mathematical expectation, as
percentage, is simply the AHPR minus 1, and the geometric mathematical
pectation,  as a percentage, is the GHPR minus 1.

Notice that the greatest mathematical expectations occur on the day after
re  put the option on (although this example has a positive mathematical
qectation,  not all options will show a positive mathematical expectation).
:a&  day thereafter the expectations themselves decay. The rate of decay
$0 gets slower and slower each day. After 911106 the mathematical expec-
Itions  (HPR - 1) go negative.

)I Therefore, if we wanted to trade on this information, we could elect to
nter  today (911104) and exit on the close tomorrow (911105). The fair
ption  price is 2.861. If we assume it is traded at a price of $100 per full
Dint,  the cost of the option is 2.861 * $100 = $286.10. Dividing this price
y  the optimal f of .0806 tells us to buy one option for every $3,549.63  in
quity.  If we wanted to hold the option till the close of 911106, the last day
rat  still has a positive mathematical expectation, we would have to initiate
re position today using the f value corresponding to the optimal for an exit
11106  of .0016.  We would therefore enter today (911104) with I contract
c every $178,812.50  in account equity ($286.10/  .0016). Notice that to do
) has a much lower expectation than if we entered with 1 contract for every
8J49.63  in account equity and exited on the close tomorrow, 911105.

$”  The rate of change between the two functions, time premium &cay and
E espanding window  of X standard deviations, muy  create a positive muth-

natical  expectation for being long a given option. This expectation is at its
wtest  the&-St  instant in the position and declines at a decreasing rate
urn  there. Thus, an option that is priced hirly  to expiration based on the
lodeIs  can be found to have a positive expectation if exited early on in the
emium  decay.
The next table looks at this same 100 call option again, only this time we
ok  at it using different-sized windows (different amounts of standard
tiations):

Number of Standard Deviations

2 3 5 8 1 0

VI 1 .000102 1.000379 1.000409 1.000409 1.000409
I 1.000047 1 .00018 1 .000195 1.000195 1 .000195

.043989 .0781 .0806 .0806 .0806
Dff 911105 911105 911106 911106 911106

!The  AHPR and GHPR pertain to the arithmetic and geometric HPRs  at
;e  optimal  f values if you exit the trade on the close of 911105  (the most
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opportune date to exit, because it has the highest AHPR and GIIPR). The f
corresponds to the optimal f for 911105. The heading Cutoff pertains to the
last date when a positive expectation (i.e., AIIPR  and GIIPR both greater

-than 1) exists.
The interesting point to note is that the four values AIIPR, GIIPR, f, and

Cutoff all conver& to given points as we increase the number of standard
deviations toward infinity. Beyond 5 standard deviations the values hardly
change  at all. Beyond 8 standard deviations they seem to stop changing. The
tradeoff in using more standard deviations is that extra computer time is
required. This seems a small price to pay, but as we get into multiple simul-
taneous positions in this chapter, you will notice that each additional leg of a

multiple simultaneous position increases the time required exponentially.
For one leg we can  argue that using 8 standard deviations is ideal. IIowever,
for more than one leg  simultaneously, we may find it necessary to trim back
this number of standard deviations. Furthermore, this 8 standard deviation
rule applies  only  when we asume Normality in the logs of price changes.

THE SINGLE SHORT OPTION

Everything stated about the single long option holds true for a single short
option position. The only difference is in regard to Equation (5.14):

(5.14)

where

HPR(T, U) = (1 + f *  (Z(T,  U - Y)/S  - 1)) h  P(T, U)

HPR(T,  U) = The HPR for a given test value for T and U.

f = The tested value for f.

S = The current price of the option.

Z(T, U - Y) = The theoretical option price if the underlying
were at price U with time T remaining till
expiration.

P(T, U) = The probability of the underlying being at price U
by time T remaining till ex+ration.

Y = The difference behveen the arithmetic mathemat-
ical expectation of the underlying at time T, given
by (5.IO), and the current price.

For a single short option position this equation now becomes:

(5.20) HPR(T, U) = (1 + f * (1 - Z(T, U - Y)/S))  h  P(T, U)

IIPR(T,  U)  = The HPR for a given test value for T and U.

f = The tested value for f.

S = The current price of the option.

Z(T, U - Y) = The theoretical option price if the underlying
were at price U with  time T remaining till expira-
tion.

P(T, U) = The probability of the underlying being at price U
by time T remaining till expiration.

Y = The difference between the arithmetic mathemat-

; * ical expectation of the underlying at time T, given
il1‘ by (5.IO), and the current price.

t’ You will notice  that the only difference behveen Equation (5.14),  the

equation for a single long option position, and Equation (5.20), the equation
ifi or a single short option position, is in the expression (Z(T,  U - Y)/S  - l),
bvhich  becomes (1 - Z(T, U - Y)/S)  for the single short option position. Aside
ifrom  this change, everything else detailed about the single long option posi-

[; tion  holds for the single short option position.
I-  ’

SINGLE POSITION IN THE UNDERLYING
RUMENT

hapter 3 we detailed the math of finding the optimal f parametrically.
we can use the same method as with a single long option, only our cal-
ion of the HPR is taken from Equation (3.30).

IIPR(U)  = (1 + (Ll(W/(-0)))  h  P

HPR(U)  = The HPR for a given U.

L = The associated P&L.

W = The worst-case associated P&L in the  table (this will

always be a negative value).

f = The tested value for f.

P = The associated probability.

e variable L, the associated P&L, is discerned by taking the price of
nderlying  at a given price U, minus the price at which the trade was
ed,  S, for a long position.
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(5.214 L for a long position = U - S

For a short position, the associated P&L is figured just the reverse:

(5.21b) L for a short position = S - U

where S = The current price of the underlying instrument.

U = The price  of the underlying instrurnent for this given HPR.

We could also figure the optimal f for a single position in the underlying
instrument using Equation (5.14). When doing so we must realize that the
optimal f returned can be greater than 1.

For example, consider an underlying instrument at a price of 100. We
determine that the five following outcomes might occur:

Outcome Probability P&L

110 .I5 1 0
105 .30 5
100 .50 0
9 5 .25 -5
9 0 .lO - 1 0

Note that per Equation (5.10), our arithmetic mathematical expectation
on the underlying is 100.5769230 77. This means that the variable Y in (5.14)
is equal to .576923077  since 100.576923077 - 100 = .576923077.

If we were to figure the optimal f using the P&L column and the

Equation (3.30) method, we derive an f of .19, or 1 unit for every $52.63 in
equity.

If instead we used Equation (5.14) on the outcome column, whereby the
variable S is therefore equal to 100, and u;e cl0 not  subtract the value of Y,
the  arithmetic mathematical expectation of the underlying minus its current
value fro1n  U in discerning our Z(T, U -Y) variable, we find our optimal fat
approximately 1.9. Tllis  translates again into 1 unit for every $52.63 ia
equity as 100/1.9 = 52.63.

On the other hand, if we subtract the value of Y, the arithmetic mathe-
matical expectation on the underlying per Equation (5.IO), in the Z(T, U
- Y) term of (5.14) we end up with a mathematical expectation on the
urldcrlying  equal to its current value, and thcreforc  WC do not have an opti-
mal f. This is what we must do, subtract the value of Y in the Z(T,  U - y,
term of Equation (5.14) in order to be consistent with the options calcula-
tions as well as the put/call parity formula.

If we are using the Equation (3.30) method instead of the Equation

~,(5.14)  metllod, then each value for U in (5.21a) and (5.21b) must have the

: arithmetic mathematical expectation of the underlying, Y, subtracted from
i it.  That is, we must subtract the value of Y from each P&L. Doing so again

yields  a situation where there is not a positive mathematical expectation,
and therefore there is no value for f that is optimal.

Literally, this means only that if we blindly go out and take a position in
; the urlderlying  instrument, we do not get a positive mathematical cxpecta-
; tion  (as we do with some options), and therefore there is no f that is optimal
: in this case. We can have an optimal f only if we have a positive mathemati-
” cal  expectation. We can have this only if we have a bias in the underlying.
: Now we have a methodology  that can be used to give us the optimal f
: /(and  its by-products) for options, whether long or short, as well as trades in

the underlying instrument (from a number of different methods).
Note that the methods used in this chapter to discern the optimal fs and

by-products for either options or the underlying instrument are predicated
upon not necessarily using a mechanical system to enter your trades. For

‘.instance,  the empirical method  for finding optimal f used an empirical
stream of trade P&L’s generated by a mechanical system. In Chapter 3 we

learned of a parametric technique to find the optimal f from data that was

*Normally distributed. This same teclmique can be used to find the optimal f
.,-from  data of any distribution, so long as the distribution in question has a
&nnulative  density function. In Chapter 4 we learned of a method to find
:, the optimal f parametrically for distributions that do not have a cumulative

e;density  function, such as the distribution of trade P&L’s (whether a
~mechanical  system is used or not) or the scenario planning approach.

” In this chapter we have learned of a method for finding the optimal f
!+vhen  not using a mechanical system. You will notice that all of the calcula-

-%ions thus far assume that you are, in effect, blindly entering a position at
@me  point in time arid exiting at some unknown future point. Usually the

‘&ethod  is shown where there isn’t a bias in the price of the underl\iing-
[*hat  is, the method is shown devoid of any price forecast in the unddrlying.i...

! have seen, however, that we can incorporate our price forecast into the
lcess  simply by changing the value of the underlying used as input into
Equations (5.17a  and 5.17b) each day as the  trade  progrcsscs. Even a

;llt bias changes  the  expectation function dramatically. The optimal exit
pte* may now very well not be the market day immediately after the entry

‘a  In fact, tile  optimal exit date may well become the expiration day. In
h a case, the option has a positive mathematical expectation even if held
expiration. Not only is the expectation function altered dramatically by

‘n a slight bias in the price of the underlying, so, too, are the optimal fs,
lPRs, and GHPRs.
For instance, the following table is once again derived from the option
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discussed  earlier in this chapter. This is the 100 call optiou whcrc  the
underlying is at 100, and it expires 911220. The volatility  is 20% and  it is
now 911104. We are using the Black commodity option formula (H dis.
cerued as in Equation (5.07) and R = 5%) and a 260.8875&y  year. We  till
again use 8 standard deviations to calculate our optimal fs from (to be con-
sistent with the previous tables showing no bias in the underlying, or bias =
O), and we are using a minimum tick increment of .l. IIcre,  however, we
will assume a bias of .Ol  points (one tenth of one tick) upward per day in the
price of the  underlying:

Exit Date AHPR GHPR f

Tue. 911105
Wed. 911106
Thu. 911107
Fri. 911108

1.000744 1.000357 .1081663
1 .000149 1.000077 .0377557
1.000003 1.000003 .0040674

Cl <l 0

Notice how simply a tiny .OI-point upward bias per day changes the
results. Our optimal exit date is still 911105, and our optimal f is .1081663,
which translates into 1 contract for every  $2,645.00  in account equity (2.861
*  lOO/.lO81663).  Also notice that a positive expectation is obtained in this
option all the way until the close of 911107. Had we had a stronger bias
tllan  simply .Ol  point upward per day, the results would be changed to an
even more pronounced degree.

The last point that needs to be addressed is the cost of commissions. In
the price of the option obtained with Equation (5.14),  the variable Z(T,
U - Y) must be adjusted downward to reflect the commissions involved in
the transaction (if you are charged commissions on the entry side also, then
you must adjust the variable S in Equation (5.14) I~~UXZ’TCI  by the  amount of
the commissions).

\\‘e have covered finding the optimal f and its by-products when we are
uot using a mechanical system. We can now begin to combine multiple
positions.

MULTIPLE SIMULTANEOUS POSITIONS WITH A
CAUSAL RELATIONSHIP

As we begin our discussion of multiple simultaneous positions, it is iV@-
tallt to differentiate between causal relationships and correlative relation-
ships. In the causal relationship, there is a factual, connective explanation

o f

the  correlation between two or more items. That is, a causal relationship is
one tvllere there is correlation, and the correlation can be explained Of
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Wcounted  for in some logical, connective fashion. Tllis  is in contrast to a
correlative  relationship where  thcrc is, of course, correlation, but there is no
Wusal,  connective, explanation of the correlation.

As  an example of a causal relationship, let’s look at put options on IBM
hd call options on IBM. Certainly the correlation between the IBM puts
md the IBM calls is -1 (or very close to it), but there is more to the rela-
tionship than simply correlation. We know for a fact that when there is
apward  pressure on IBM calls that there will be downward pressure on the
puts  (all else remaining constant, including volatility). This logical, connec-
&e relationship means that there is a causal relationship between IBM calls
tnd  IBM puts.

When  there is correlation but no cause, we simply say that there is a cor-
elative  relationship (as  opposed to a causal relationship). Usually, correla-
ive relationships will not have correlation coeficients  whose absolute vdl-
tes  are close to 1. Usually, the absolute value of the correlation coefficient
will be closer to 0. For example, corn and soybeans tend to move in tandem.
Llthough  their correlation coefficients are not exactly equal to I, there is
till a causal relationship because both markets are affected by things that
fleet the grains. If we look at IBM CdS  and Digital Equipment puts (or
ails),  we cannot say that the relationship is completely a causal relationship.
iudy  there is somewhat of a causal relationship, as both of the underlying
tacks  are members of the computer group, but just because IBM goes up
Dr  down) is not an absolute mandate that Digital Equipment will also. As
nu  can see, there is not a fine line that differentiates causal and correlative
elationships.

“clouding” of causal relationships and those that are simply correla-
I make our work more difficult. For the time being, we will only deal

sal relationships, or what we believe are causal relationships. In the
pter we will deal with correlative relationships, which encompass

elationships as well. You should be aware right now that the tech-
ntioncd in the  next chapter on correlative relationships  arc also
to, or can bc used in lieu of, the techniques for causal rclation-

out to be discussed. The reverse is not true. Tllat is, it is erroneous
ing techniques on causal relationships to relationships

ationship is one where the correlation coefficients between
Prhs of two items is 1 or -1. To simplify matters, a causal relationship
ost  ~WIYS  consists of any two tradeable items (stock, commodity, option,
) that have the same underlying instrument.  This includes, but is not
ed  to, options spreads, straddles,  strangles,  and combinations, as well as

d writes or any other position where you are using the underlying in
nction with one or more of its options, or one or more  options on the
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same underlying instrument, even if you  do not haoe  a position in t&t
underlying instrument.

In its simplest form, multiple simultaneous positions consisting of only
options (no position in the underlying), when the position is put on at a
debit, can be solved for by using Equation (5.14). By sohedfir I mean that
we call  determine the optimal f for the entire position and its by-products
(including the optimal exit date). The only differences are that the variable
S will now represent the net of the legs of the position at the trade’s incep-
tion. The variable Z(T,  U - Y) will now represent the net of the legs at price
U by time T remaining till expiration.

Likewise, multiple simultaneous positions consisting of only  options (no
position in the underlying), when the position is put on at a credit,  can be
solved for by using Equation (5.20). Again, we must alter the variables S and
Z(T, U - Y) to reflect the net of the legs of the position. For example, sup-
pose we are looking to put on a long option straddle, the purchase of a put
and a call on the same underlying instrument with the same strike price and
expiration date. Further suppose that the optimal f returned by this tech-
nique was 1  contract for every $2,000. This would mean that for every
$2,000 in account equity we should buy 1 straddle; for every $2,000 in
account equity we should buy 1 of the puts and 1 of the calls. The optimal f
returned by this technique pertains to financing 1 unit of the entire position,
no matter how large that position is. Tllis fact will be true for a]] the multi-
ple simultaneous techniques discussed throughout this chapter.

\Ve can now devise an equation for multiple simultaneous positions
involving whether a position in the underlying instrument is included or
not. \Ve can use this generalized form for multiple simultaneous positions
with a causal relationship:

(5.22) HPR(T,  U) = (1 litFi(T,  U)) A  P(T, U)

where N = The number of legs in the position.

HPR(T,  U) = The HPR for a given test value for T and U.

Ci(T,  U)  = The coefficient of the ith kg at a given vahe  for

U, at a given time T remaining till expiration:

For an option leg put on at a debit or a long position in the underlying:

(5.23a) Ci(T, U) = f * (Z(T,  U - Y)/S  - 1)

For an option leg put on at a credit or a short position in the underlying:

S = The current price of the option or underlying
instrument.

Z(T, U - Y) = The theoretical option price if the underlying
were at price U with time T remaining till expira-
tion.

P(T, U) = The probability of the underlying being at price U
by time T remaining till expiration.

Y = The difference between the arithmetic mathemat-
ical expectation of the underly’ng  at time T, given
by (5.10), and the current price.

Equation (5.22) can be used if you are plarming on putting these legs all
on at once, one for one, and you only need to iterate for the optimal f and
optimal exit date of the entire position (that is what is meant by “multiple
simultaneous positions”).

For each value of U you will have an IIPR given by Equation (5.22). For
each value for f you will have a geometric mean, composed of all of the
UDD.. _..- lY. .r: . /r In \
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Ci(T, U)  = f * (1 - Z(T,  U - Y)/S)

f = The tested value for f.

+HSD +RSD
G(f, T) = (nHPR(T,  U))  h  (l/zP(T,  U))

u = -Kill u = -XSD

G(f, T) = The geometric mean IIPR  for a given test value for f
and a given time rernaining till expiration from a man-
dated exit date. Those values  off and T (the values  of
the optimal f and mandated exit date)  that result in
the  highest geometric means, are the ones that you
should use on the net position of the legs.

To summarize the entire procedure. L\‘e want to find the optimal f for

h day, using each market day between now and expiration as the rnan-
d exit date. For each mandated exit  date you will determine those  dis-
e prices behveen plus and minus X standard de\riations  (ordinarily we
let X equal 8) from the base price of the underlying instrument. The
price can be the current price of the underlying instrument or it can be
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altered to reflect a particular bias you might ha\fe  regarding that marketss
direction. You now need to find the value between 0 and 1 for f that results
in the greatest geometric mean IIPR, using an IIPR for each of the discrete
prices between plus and minus X standard deviations of the base price for
that mandated exit date. Therefore, for each mandated exit date you till
leave  an optimal f and a corresponding geometric mean. The mandated exit
date that has the greatest geometric mean is the optimal exit date for the
position, and the f corresponding to that geometric mean is the f that is
optimal.

The “nesting” of the logic of this procedure is as follows:

For each mandated exit date (weekday) between now and expiration

For each value off (until the optimal is found)

For each market system

For each tick between + and - 8 std. devs.

Determine the HPR

Finally, you should note that in this section we have been attempting,
among other things, to discern the optimal exit date, which we have looked
upon as a single date at which to close down all of the legs of the position.
You can apply the same procedure to determine the optimal exit date for
each leg in the position. This compounds the number of computations geo-
mrtrically,  but it can be accomplished. This would alter the logic to appear
as:

For each market system

For each mandated exit date (weekday) behveen now and expiration

For each  value off (until the optimal is found)

For each market system

For each tick between +8 and -8 std. devs.

Determine the HPR

WC have thus covered multiple simultaneous positions with a causal  rela-
tionship.  Now we can  move on to a similar situation where the relationship
is random.
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HULTIPLE  SIMULTANEOUS POSITIONS WITH A
uNDOM  RELATIONSHIP

fan  should be aware that, as with the causal relationships already discussed,
fie techniques mentioned in the next chapter on correlative relationships
m also applicable to, or can be used in lieu of, the techniques for random
elationships  about to be discussed. This is not true the other way  around.
mat  is, it is erroneous to apply the techniques on random relationships that

low in this chapter to relationships that are correlative (unless the corre-
bon  coefficients equal 0). A random relationship is one where the correla-

n coefficients between the prices of two items is 0.
A random relationship exists between any two tradeable items (stock,
res, options, etc.) whose prices are independent of one another, where

rrelation coefficient between the two prices is zero, or is expected to
in an asymptotic sense.

en there is a correlation coefficient of 0 between every combination
62 legs in a multiple simultaneous Dosition. the HPR for the net position il;
@en  as:

5.24) T, U)HPR(T,  U) = (1 + 5
i=  1

where N = The number of legs in the position.

HPR(T,  U)  = The HPR for a given test value for T and U.

Ci(T, U) = The coefficient of the ith leg at a given value for
U, at a given time remaining till expiration of T:

For an option leg put on at a debit or a long poistion in the underlying
Lrument:

i.23a) Ci(T, U) = f * (Z(T,  U - Y)/S  - 1)

For an option leg  put on at a credit or a short Dosition  in the underltinn
atrument:
,,’
.,

I

Ci(T, U) = f *  (1 - Z(T, U - Y)/S)
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where f = The tested value for f.

S = The current price of the option.

Z(T, U - Y) = The theoretical option price if the underlying
were at price U with time T remaining  till expird-
tion.

P,(T,  U) = The probability of the ith underlying being at
price U by time remaining till expiration of T.

Y = The difference between the arithmetic mathemat-
ical expectation of the underlying at time T, given
by (5.10), and the current price.

We can now figure the geometric mean for random relationship HPRs
as :

(5.25)

fi  Pi(T,  U)))

where G(f, T) = The geometric mean HPR for a given test value for f
and a given time remaining till expiration from a man-
dated exit date. Once again, the f and T that result in
the greatest geometric mean are optimal.

The “nesting” of the logic of this procedure is exactly the same as with
the causal relationships:

For each mandated exit date (weekday) between now and expiration

For each value off (until the optimal is found)

For each market system

For each tick between +8 and -8 std. devs.

Determine the HPR

The only difference between the procedure for solving for random rek+
tionships and that for causal relationships is that the exponent to each I~PR
in the random relationship is calculated by multiplying together the prob*
bilities of all of the legs being at the given price of the particular HPR. Each
of these probability sums used as exponents for each IIPR are themselves

. the
summed so that when ali of the HPRs  are multiplied  togcthcr  to obtain
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interim TCVR, it can be raised to the power of 1 divided by the sum of the
exponents used in the HPRs. And again, the outer loop of the logic could be
mended to accommodate a search for the optimal exit date for each leg in

i
the  position.

;,  I
Complicated as Equation (5.25) looks, it still does not address the prob-

em of a linear correlation coeficient  between the prices of any two compo-
[: Dents  that is not 0. AS you can see, solving for the optimal mixture of com-
f pnents  is quite a task! In the next few chapters you will see how to find the
: d ht8.” q uantities for each leg  in a multiple position-using stock, commodi-
4 hes,  options, or any other tradeable item-regardless of the relationship
Bjcausal, random, or correlative). The inputs you wivili need for a given option
,*wsition in the next chapter are (1) the correlation coefficient of its average
!&lily HPR on a l-contract basis to each of the other positions in the portfo-
[lie, and (2) its arithmetic average HPR and standard deviation in HPRs.

Equations (5.14) and (5.20) detailed how to find the HPR for long
options and short options respectively. Equation (5.18) then showed how to
urn this into a geometric mean. Now, we can also discern the arithmetic

For long options, options put on at a debit:

+8SD
3.26a) AIIPR ; &I + f * (Z(T,  U - Y)/S  - 1)) * P(T, U)$j?T, U)

For short options, options put on at a credit:

+8SD
i.26b) AHPR ;&l + f * (1 - Z(T,  U - Y)/S))  * P(T, U)$&T, U)

where AHPR = The arithmetic average HPR.

f = The optimal f (0 to 1).

S = The current price of the option.

Z(T,  U - Y) = The theoretical option price if the underlying
were at price U with time  T remaining till
expiration.

i
k

P(T, U)  = The probability of the underlying being at price U
with time T remaining till expiration.

Y = The difference between the arithmetic mathemat-
ical expectation of the underlying at time T, given
by (5.10), and the current price.
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Once you have the geometric average HPR and the arithmetic average
HPR, you can readily discern the standard deviation in HPRs:

(5.27) SD = (A h 2 - G h 2) h  (l/2)

where A = The arithmetic average HPR.

G = The geometric average HPR.

SD = The standard deviation in HPRs.

In this chapter we have learned of yet another way to calculate optt-
ma1  f The technique shown was for nonsystem traders and used the
distribution of outcomes on the underlying instrument by a certain
date in thefirture  as input. As  a side benefit, this approach allows us
to find the optimal f on both options and for  multiple simultaneous
positions. However, one of the drawbacks of this technique is that the
relationships between all of the positions must be random or causal.

Does this mean we cannot use the techniques for finding the opti-
mal f, discussed in earlier chapter,s, on multiple simultaneous positions
or options? No-again, which method you choose is a matter of utility
to you. The methods detailed in this chapter have certain drawbacks
as well as benefits  (such as the ability to discern optimal exit times). In
tlte  next  chapter, we will begin to delve into optimal portfolio con-
struction, which will later allow us to pe$orm multiple simultaneous
positions using the techniques detailed earlier.

There are rrlany  diiffrent  directions of study we could head t$f into
at this function. Howetier,  the goal in this text is to study por$olios  of
diflerent  markets, portfolios of dfferent market systems, and different
tradeable items. This being the case, we will part from the trail of the-
oretical option prices and head in the direction of optimal portf~~lio
construction.

6
Correlative Relationships
and the Derivation of the
Efficient Frontier

We have now covered finding the optimal quantities to trade for
futures, stocks, and options, trading them either alone or in tandem
with another item, when there is either a ran&m or a causal relation-
ship between the prices of the items. That is, we have defined the opti-
mal set when the linear correlation coefficient between any two ele-
ments in the portfolio equals 1,  -1,  or 0.  Yet the relationships between
any two elements in a portfolio, whether we look at the correlation of
prices  (in a nonmechanical means of trading) or equity changes (in a
mechanical system), are rarely at such convenient values of the linear
correlation coefficient.

In the last chapter we looked at trading these items from the stand-
point of someone not using a mechanical trading system. Because a
mechanical trading system was not employed, we were looking at the
correlative relationship of the prices of the items.

This chapter provides a method for determining the efficient fron-
tier of portfolios of market systems when the linear correlation coefi-
cient  between any two portfolio components under consideration is
any value between -1 and 1 inclusive. Herein is the technique
employed by professionals for determining optimal portfolios of
stocks. In the next chapter we will adapt it for use with any tradeable
f Wrument.

237
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In this chapter, an important assumption is made regarding these
techniques. The assumption is that the generating distributions (the
distribution of returns) have finite variance. These techniques are
effective only to the extent that the input data used has finite

variance.’

DEFINITION OF THE PROBLEM

For the moment we are dropping the entire idea of optimal f; it will catch

up with us later. It is easier to understand the derivation of the efficient
frontier parametrically if we begin from the assumption that we are dis-
cussing a portfolio of stocks. These stocks are in a cash account and are paid
for completely. That is, they are not on margin.

Under such a circumstance, we derive the efficient frontier of portfolios.
That is, for given stocks we want to find those with the lowest level of
expected risk  for a given level of expected gain, the given levels being deter-
mined by the particular investor’s aversion to risk. Hence, this basic theory
of Markowitz (aside from the general reference to it as Modem Portfolio
Theory) is often referred to as E-V theory  (Expected return - Variance of
return). Note that the inputs are based on returns. That is, the inputs to the
derivation of the efficient frontier are the returns we would expect on a
given stock and the variance we would expect of those returns. Generally,
returns on stocks can be defined as the dividends expected over a given

period of time plus the capital appreciation (or minus depreciation) over
that period of time, expressed as a percentage gain (or loss).

Consider four potential investments, three of which are stocks and one a
savings account paying 8%%  per year. Notice that we are defining the
length of a holding period, the period we measure returns and their vari-
antes,  as 1 year in this example:

‘For more on this, see Fama, Eugene F., “Portfolio Analysis in a Stable Paretian Market,”

i\f~mngettvnt  Science 11, pp. 404-419, 1965. Fama has demonstrated techniques for finding
the eficient  frontier parametrically for stably distributed secruiti~s  possessing the same  charac-
teristic exponent, A, when the returns of the components all depend upon a single underly%
market index. Headers should be aware that other work has been d o n e  o n  determining the efli-
cient  frontier when there is infinite variance in the returns of the components in the portfolio.
These techniques are not covered here other than to refer interested  readers to pertinent arti-
cles. For more on the stable Par&an  distribution,  see Appendix B. For a discussion of infinite

vnriance,  see ‘The Student’s Distribution” in Appendix B.
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tinvestment Expected Return Expected Variance of Return

Toxic0 9.5% 10%
fncubeast  Corp. 13% 2 5 %
~4  Garb 2 1 % 4 0 %
savings  Account 6.5% 0 %

h
1 We can express expected returns as HPR’s by adding 1 to them. Also, we
m express expected variance of return as expected standard deviation of
return by taking the square root of the variance. In so doing, we transform
our  table to:

Expected Standard
Investment Expected Return as an HPR Deviation of Return

1.095 .316227766

1.13 .5
1 .21 .632455532

ii6avings  Account 1.085 0

!i
: ’
F’

i: The time horizon involved is irrelevant so long as it is consistent for all
‘,mmponents under consideration. That is, when we discuss expected return,

‘t matter if we mean over the next year, quarter, 5 years, or day, as
the expected returns and standard deviations for all of the compo-

under consideration all have the same time frame. (That is, they must
be for the next year, or they must all be for the next day, and so on.)
Expected return is synonymous with potential gains, while variance (or

pdard deviation) in those expected returns is synonymous with potential
$@k.  Note that th
k& h dl

e model is two-dimensional. In other words, we can say
at t e mo e can be represented on the upper right quadrant of the

esian plane (see Figure 6-1) by placing expected return along one axis
nerally the vertical or Y  axis) and expected variance or standard deviation

ms along the other axis (generally the horizontal or X axis).
ere are other aspects to potential risk, such as potential risk of (proba-

iv 09 a catastrophic loss, which E-V theory does not differentiate from
iance  of returns in regards to defining potential risk. While this may very
ll be true, we will not address this concept any further in this chapter so
to discuss E-V theory in its classic  sense. However, Markowitz himself
arly  stated that a portfolio derived from E-V theory is optimal only if the
IitY,  the “satisfaction,” of the investor is a function of expected return and
iance  in expected return only. Markowitz indicated that investor utility
Y very well encompass moments of the distribution higher than the first
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Figure 6-l The upper- r ight  quadrant  o f  the Car tes ian p lane.

two (which are what E-V theory addresses), such as skewness and kurtosis
of expected returns.

Potential risk is still a far broader and more nebulous thing than what we
have tried to define it as. Whether potential risk is simply variance on a con-
trived sample, or is represented on a multidimensional hypercube, or incor-
porates further moments of the distribution, we try to define potential risk
to account for our inability to really put our finger on it. That said, we will
go forward defining potential risk as the variance in expected returns.
However, we must not delude ourselves into thinking that risk is simply
defined as such. Risk is far broader, and its definition far more elusive.

So the first step that an investor wishing to employ E-V theory must
make is to quantify his or her beliefs regarding the expected returns and
variance in returns of the securities under consideration for a certain time
horizon (holding period) specified by the investor. These parameters can be
arrived at empirically. That is, the investor can examine the past history of
the securities under consideration and calculate the returns and their va+
antes over the specified holding periods. Again the term returns means not
only the dividends in the underlying security, but any gains in the value o f

the security as well. This is then specified as a percentage. Variance is the
statistical variance of the percentage returns. A user of this approach wouId

P
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often  perform a linear regression on the past returns to determine the
@turn  (the expected return) in the next holding period. The variance por-
don  of the input would then be determined by calculating the variance of
each  past data point from what would have been predicted for that past data
point  (and not from the regression line calculated to predict the next
expected return). Rather than gathering these figures empirically, the
investor can also simply estimate what he or she believes will be the future
returns  and variances2  in those returns. Perhaps the best way to arrive at
these parameters is to use a combination of the two. The investor should
gather the information empirically, then, if need be, interject his or her
beliefs about the future of those expected returns and their variances.

The next parameters the investor must gather in order to use this tech-
nique are the linear correlation coefficients of the returns. Again, these fig-
ures can be arrived at empirically, by estimation, or by a combination of

. : the two.
In determining the correlation coefficients, it is important to use data

points of the same time frame as was used to determine the expected
returns and variance in returns. In other words, if you are using yearly data
to determine the expected returns and variance in returns (on a yearly
basis), then you should use yearly data in determining the correlation coeff?-
cients.  If you are using daily data to determine the expected returns and
variance in returns (on a daily basis), then you should use daily data in
determining the correlation coefficients.
It is also very important to realize that we are determining the correla-

tion coefficients of returns (gains in the stock price plus dividends), not of
the underlying price of the stocks in question.

Consider our example of four alternative investments-Toxico,
hxbtw  Corp., LA Garb, and a savings account. We designate these with
the symbols T, I, L, and S respectively. Next we construct a grid of the lin-
ear correlation coefficients as follows:

I L S

T -.15 .05 0

I .25 0
L 0

- From  the parameters the investor has input, we can calculate the cooari-
v  between any two securities as:

Cu,  estimating variance  can be quite tricky. in  easier way is to estimate the mean absolute
peri,,

utardd
then multiply this by 1.25 to arrive at the standard deviation. Now multiplying this
eviation  by itself, squaring it, gives the estimated variance.
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(6.01) cov,,  = R,,J,  * s, * sb

where CoV,J,  = The covariance between the ath security and the bth
one.

R,b = The linear correlation coeffcient  between a and b.

S, = The standard deviation of the ath security.

Sb = The standard deviation of the bth security.

The standard deviations, S, and Sb,  are obtained by taking the square root
of the variances in expected returns for securities a and b.

Returning to our example, we can determine the covariance between
Toxic0  (T) and Incubeast (I) as:

COV,,,  = -.15  * .lO h (l/2)  * .25 h (l/2)

= -.15  * .316227766  * .5

= -.02371708245

Thus, given a covariance and the comprising standard deviations, we can
calculate the linear correlation coeficient  as:

(6.02) Ra,b = cov,,b/(s, * sb)

where COVQ = The covariance between the ath security and the bth
one.

I&b = The linear correlation coefficient behveen  a and b.

S, = The standard deviation of the ath security.

Sb = The standard deviation of the bth security.

Notice that the covariance of a security to itself is the variance, since the
linear correlation coefficient of a security to itself is 1:

(6.03) cov,,+  = 1 * s, * s,
=l*S,"2

=S,"2

= v,

where COV,  x = The covariance of a security to itself.

ix = The standard deviation of a security.
V, = The variance of a security.
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We can now create a table of covariances for our example of four invest-
ment alternatives:

T I L S

T .l -.0237 .Ol 0
I -.0237 .25 .079 0
L .Ol .079 .4 0
S 0 0 0 0

We now have compiled the basic parametric information, and we can
begin to state the basic problem formally. First, the sum of the weights of
the  securities comprising the portfolio must be equal to 1, since this is being
done in a cash account and each security is paid for in full:

(6.04)

where N = The number of securities comprising the portfolio.

Xi = The percentage weighting of the ith security.

It is important to note that in Equation (6.04) each Xi must be nonnegative.
That is, each Xi must be zero or positive.

The next equation defining what we are trying to do regards the
expected return of the entire portfolio. This is the E in E-V theory.
Essentially what it says is that the expected return of the portfolio is the sum
of the returns of its components times their respective weightings:

(6.05) %Ji  *  Xi = E
i= 1

f where E = The expected return of the portfolio.

N = The number of securities comprising the portfolio.

i
i T = The percentage weighting of the ith security.
6‘
1’ Ui  = The expected return of the ith security.

inally, we come to the V portion of E-V theory, the variance in
cted returns. This is the sum of the variances contributed by each

curity  in the portfolio plus the sum of all the possible covariances in the
n+fnl;...
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(6.06a)

(6.06b)

(6.06c)

(6.06d)

where

V = ~ ~ Xi * Xj * COVij
i=lj=1

V = ~ ~ xi * Xj * Ri,j * Si * Sj
i=lj=I

VZ&)(InZ*Si"2)+2*2  iXi*Xj*COvi,j
i-1 j=l+l

V Z($ J$  A 2 * Si A 2) + 2 * 2
i=l

i X’ * Xj * Ri,j * Si * Sj
i=l j=l+l

V = The variance in the expected returns of the portfolio.

N = The number of securities comprising the portfolio.

Xi  = The percentage weighting of the ith security.

Si = The standard deviation of expected returns of the ith secu-
rity.

COVi,j = The covariance of expected returns between the ith security
and the jth security.

Ri j = The linear correlation coefficient of expected returns
’ between the ith security and the jth security.

Al! four forms of Equation (6.06) are equivalent. The final answer to
Equation (6.06) is always expressed as a positive number.

We can now consider that our goal is to find those values of Xi, which
when summed equal 1, that result in the lowest value of V for a given value
of E. When confronted with a problem such as trying to maximize (or mini-
mize) a function, H(X,Y), subject to another condition or constraint, such as
G(X,Y), one approach is to use the method of Lagrange.

To do this, we must form the Lagrangian function, F(X,Y,L):

(6.07) F(X,Y,L) = H(X,Y) + L * G(X,Y)

Note the form of Equation (6.07). It states that the new function we have
created, F(X,Y,L),  is equal to the Lagrangian multiplier, L-a slack variable
whose value is as yet undetermined-multiplied by the constraint function
G(X,Y). This result is added to the original function H(X,Y), whose extreme
we seek to find.

Now, the simultaneous solution to the three equations will yield those
points (X,,Y,)  of relative extreme:
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FL(X Y L) = 0, 7
):
$
i

For example, suppose we seek to maximize the product of two numbers,
*ven  that their sum is 20. We will let the variables X and Y be the two num-

t Ers.  Therefore, II(X,Y)  = X * Y is the function to be maximized given the
rconstraining  function G(X,Y) = X + Y - 20 = 0. We must form the
! Lagrangian  function:
i

F (X,Y,L)=X*Y+L*(X+Y-20)

Fx(X,Y,L)  = Y + L

FY(X,Y,L) = X + L

F,JX,Y,L)  = X + Y - 20

: FJow  we set FX(X,Y,L) and FY(X,Y,L) both equal to zero and solve each
for L:

Y+L=O

Y = - L

’ and

X+L=O

x = -L

1 Now  setting FL(X,Y,L)  = 0 we obtain X + Y - 20 = 0. Lastly, we replace X
and Y by their equivalent expressions in terms of L:
F,

(-L) + (-L) - 20 = 0

2 * - L =  2 0

L = -10

iince  Y equals -L, we can state that Y equals 10, and likewise with X. The
aaxurmrn  product is 10 * 10 = 100.

The method of Lagrangian multipliers has been demonstrated here for
ao  variables and one constraint function. The method can also be applied
rhen  there are more than two variables and more than one constraint func-
km. For instance, the following is the form for finding the extreme when
here  are three variables and two constraint functions:
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(6.08) FKY,Z,L,,L,)  = WXY,Z)  + L, * G1(XY,Z)  + L2 * &KY,z)

In this case, you would have to find the simultaneous solution for five equa-
tions in five  unknowns in order to solve for the points of relative extreme.
We will cover how to do that a little later on.

We can restate the problem here as one where we must minimize V, the
variance of the entire portfolio, subject to the two constraints that:

(6.09)

and

& * UJ - E = 0

(6.10) &J - 1  = 0

where N = The number of securities comprising the portfolio.

E = The expected return of the portfolio.

Xi = The percentage weighting of the ith security.

Ui  = The expected return of the ith security.

The minimization of a restricted multivariable function can be handled
by introducing these Lagrangian multipliers and differentiating partially
with respect to each variable. Therefore, we express our problem in terms
of a Lagrangian function, which we call T. Let:

(6.11) T = V + LI * (\t,Xi  * Vi) - E) + L2 * ((itiXi)  - 1)

where V = The variance in the expected returns of the portfolio, from
Equation (6.06).

N = The number of securities comprising the portfolio.

E = The expected return of the portfolio.

Xi = The percentage weighting of the ith security.

Ui  = The expected return of the ith security.

L, = The first Lagrangian multiplier.

L2 = The second Lagrangian multiplier.
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The minimum variance (risk) portfolio is found by setting the first-order
partial  derivatives of T with respect to all variables equal to zero.

Let us again assume that we are looking at four possible investment
Jtematives:  Totico,  Incubeast Corp., LA Garb, and a savings account. If we
take the first-order partial derivative of T with respect to X, we obtain:

(6.12) &T/6X,  = 2 * XI * COV,,, + 2 * x2 * cov,,, + 2 * x, * cov,,,
+ 2 * x, * cov,,, + L, * u,  + L,

Setting this equation equal to zero and dividing both sides by 2 yields:

Xl * cov,,,  + X2 * COV,,, + x, * cov,,, + x, * cov,,, + .5 * L,
*u1+.5*L,=o

Likewise:

6T/6X2  = XI * COV,,,  + X2 +COV2,2 + X3 * COV,  3  + X, * COV2,4 + .5
* LI * u2 + .5 * L, = 0

6T/6X3  = X1 * COV3,,  + X2 * COV3,2 + X3 * COVSg + X, * COV3,4 + .5
*L,*u,+.s*Lg=o

6T/6x,  = X, * COV,,, + x, * cov4,,  + x, * cov,,,  + x, * cov,,, + .5
*L,*u,+.5*&=0

And we already have 6T/6LI  as Equation (6.09) and 6T/6L2 as Equation
(6.10).

Thus, the problem of minimizing V for a given E can be expressed in the
N-component case as N + 2 equations involving N + 2 unknowns. For the
four-component case, the generalized form is:

I+& + x, * u2 + X-J  * u3 + x4 * u, = E

I + x2 + x3 + x4 =l

~*~~~,,+~,*~~~,~+~,*~~~,,+~,*~~~,,+.~*~,*~,+.~*~, =o

t l cov,,,  + x,  * cov2,2  + x, * cov,,,  + x‘j  * cov,,,  + .5 * L,  * u, + .5 * L, =o

=o

‘cq,+x,*c0v,, + x,  * cov, 3 + x4  * cov, 4 + .5  * L,  * u, + .5 * L, =o
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where E = The expected return of the portfolio.

J$ = The percentage weighting of the ith security.

Ui  = The expected return of the ith security.

cov,,,  = The covariance between securities A and B.

L1 = The first Lagrangian multiplier.

Lz = The second Lagrangian multiplier.

This is the generalized form, and you use this basic form for any number of
components. For example, if we were working with the case of three com-
ponents (i.e., N = 3), the generalized form would be:

Xl * Ul +xg*u2 +x,*u, = E

Xl + x2 + x3
= 1

x, * cov,,, + x2  * cov,,,  + x3 *cov,3+.5*L1*u1+.5*L2  =o

Xl *  COV2,t  + X2 * COV2,2 + X3 * COV2:3 + .5 * L, * U2  + .5 * L2 = 0

x, * cov,,,  + x2 * cov3,2  + x, * cov3p  + .5 * L, * u3 + .5 * L2 = 0

You need to decide on a level of expected return (E) to solve for, and your
solution will be that combination of weightings which yields that E with the
least variance. Once you have decided on E, you now have all of the input
variables needed to construct the coefficients matrix.

The E on the right-hand side of the first equation is the E you have
decided you want to solve for (i.e., it is a given by you). The first line simply
states that the sum of all of the expected returns times their weightings
must equal the given E. The second line simply states that the sum of the
weights must equal 1. Shown here is the matrix for a three-security case,
but you can use the general form when solving for N securities. However,
these first two lines are always the same. The next N lines then follow the
prescribed form.

Now, using our expected returns and covariances (from the covariance
table we constructed earlier), we plug the coefficients into the generalized
form. We thus create a matrix that represents the coefficients of the gener-
alized form. In our four-component case (N = 4), we thus have 6 rows (N  +
2):
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Xl x2 x3 x4 Ll L2
1
! Answer

: .095 .13 .21 ,085 II E
1 1 1 1 II 1

.l -.0237 .Ol  0 ,095  1 ,4 0
-.0237 .25 .079 0 .13 1 1I 0

.Ol .079  .4 0 .21 1 II 0
0 0 0 0 .085 1 II 0

1 Note that the expected returns are not expressed in the matrix as HPR’s,
i rather they are expressed in their “raw” decimal state.
1 Notice that we also have 6 columns of coefficients. Adding the answer
; portion of each equation onto the right, and separating it from the coeffi-
: cients  with a I creates what is known as an augmented matrix, which is con-
i strutted  by fusing the coefficients matrix and the answer column, which is
also known as the right-hand side vector.
q Notice that the coefficients in the matrix correspond to our generalized
i: _&n-m  of the problem:

NJ, +x2* u2 +X3*& + x, * u, = E

h +x2 +X3 +x4 = 1

+ x3 * CO",,, + x, * CO”,,, + .5 * L, * u,  + 5  * L, = 0

=o

*CO”3~+X2*CO”,,+Xg*CO”3~+X~*COV3~+.5*L~*U~+.5*L~ =o

~*COV41+X2*COV,,+X3*COV,,+X,*COV,,+,S*L,*U,+.5*L2 =o1

;Th e matrix is simply a representation of these equations. To solve for the
E: matrix, you must decide upon a level for E that you want to solve for. Once
i the matrix is solved, the resultant answers will be the optimal weightings

nimize  the variance in the portfolio as a whole for our speci-

Suppose we wish to solve for E = .14, which represents an expected
,Rturn of 14%. Plugging .14 into the matrix for E and putting in zeros for
the  variables Lt and L2 in the first two rows to complete the matrix gives us
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Xl x2 x3 x4 Ll L2
I
I Answer

.095 .13 .21 ,085  b 0
,
, .14

1 1 1 1 0 0 I 1

.l -.0237 .Ol 0 ,095  1
I
I 0

-.0237 .25 ,079  0 .I3 1
I
, 0

.Ol .079  .4 0 .21 1 1 0

0 0 0 0 .085 1 I
0

By solving the matrix we will solve the N + 2 unknowns in the N + 2 equa-
tions.

SOLUTIONS OF LINEAR SYSTEMS USING
ROW-EQUIVALENT MATRICES

A polynomial is an algebraic expression that is the sum of one or more
terms. A polynomial with only one term is called a monomial; with two

terms a binomial; with three terms a trinomial. Polynomials with more than
three terms are simply called polynomials. The expression 4 * A h 3 + A A 2
+ A + 2 is a polynomial having four terms. The terms are separated by a
plus (+) sign.

Polynomials come in different degrees. The degree of a polynomial is
the value of the highest degree of any of the terms. The degree of a term is
the sum of the exponents on the variables contained in the term. Our
example is a third-degree polynomial since the term 4 * A * 3 is raised to
the power of 3, and that is a higher power than any of the other terms in
the polynomial are raised to. If this term read 4 *  A h 3 * B h 2 * C, we
would have a sixth-degree polynomial since the sum of the exponents of
the variables (3 + 2 + 1) equals 6.

A first-degree polynomial is also called a linear equation, and it graphs as
a straight line. A second-degree polynomial is called a quadratic, and it
graphs as a parabola. Third-, fourth-, and fifth-degree polynomials are also
called cubits, quarks,  and quintics, respectively. Beyond that there aren’t
any special names for higher-dcgrec polynomials. The graphs of polynomi-
als greater than second degree are rather unpredictable. Polynomials can
have any number of terms and can be of any degree. Fortunately, we will be
working only with linear equations, first-degree polynomials here.

When we have more than one linear equation that must be solved simul-
taneously we can use what is called the method of row-equivalent m&-ices.
This technique is also often referred to as the Gauss-jurdan  procedure or
the Gaussian elimination method.
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To perform the technique, we first create the augmented matrix of the
problem by combining the coefficients matrix with the right-hand side vec-
tor as we have done. Next, we want to use what are called elementary truns-
formations  to obtain what is known as  the identity matrix. An elementary
transformation is a method of processing a matrix to obtain a different but
equivalent matrix. Elementary transformations are accomplished by what
are called row operations. (We will cover row operations in a moment.)

An identity matrix is a square coefficients matrix where all of the ele-
ments are zeros except for a diagonal line of ones starting in the upper left
comer. For a six-by-six coefficients matrix such as we are using in our exam-
ple, the identity matrix would appear as:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

This type of matrix, where the number of rows is equal to the number of
columns, is called a square matrix. Fortunately, due to the generalized form
of our problem of minimizing V for a given E, we are always dealing with a
square coefficients matrix.

Once an identity matrix is obtained through row operations, it can be
regarded as equivalent to the starting coefficients matrix. The answers then
are read from the right-hand-side vector. That is, in the first row of the
identity matrix, the 1 corresponds to the variable Xl, so the answer in the
fight-hand side vector for the first row is the answer for Xl. Likewise, the
second row of the right-hand side vector contains the answer for X2, since
the 1 in the second row corresponds to X2.  By using row operations we can
make elementary transformations to our original  matrix until we obtain the
identity matrix. From the identity matrix, we can discern the answers, the
weights  X,, . . ., XN, for the components in a portfolio. These weights will
Produce  the portfolio with the minimum variance, V, for a given level of
expected  return, E.3

mat is ,  these weights wi l l  pmcl~ce  the port fo l io  with  a minimum V for  a  g iven  E  on ly  to  the
sent that our inputs of E and V for each component and the l inear correlation coellkient  of
wv  possible pair of components are accurate and variance in returns is infinite.
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Three types of row operations can be performed:

1. Any two rows may be interchanged.

2. Any row may be multiplied by any nonzero constant.

3. Any row may be multiplied by any nonzero constant and added to the
corresponding entries of any other row.

Using these three operations, we seek to transform the coefficients matrix
to an identity matrix, which we do in a very prescribed manner.

The first step, of course, is to simply start out by creating the augmented
matrix. Next, we perform the first elementary  transformation by invoking
row operations rule 2. Here we take the value in the first row, first column,
which is .095, and we want to convert it to the number 1. To do so, we mul-
tiply each value in the first row by the constant l/.095.  Since any number
times 1 divided by that number yields 1, we have obtained a 1 in the first
row, first  column. We have also multiplied every entry in the first row by
this constant, l/.095,  as specified by row operations rule 2. Thus, we have
obtained elementary transformation number 1.

Our next step is to invoke row operations rule 3 for all rows except the
one we have just used rule 2 on. Here, for each row, we take the value of
that row corresponding to the column we just invoked rule 2 on. In elemen-
tary transformation number 2, for row 2, we will  use the value of 1, since
that is the value of row 2, column 1, and we just performed rule 2 on column
1. We now make this value negative (or positive if it is already negative).
Since our value is 1, we make it -1. We now multiply by the corresponding
entry (i.e., same column) of the row we just performed rule 2 on. Since we
just performed rule 2 on row 1, we will multiply this -1 by the value of row
1, column 1, which is 1, thus obtaining -1. Now we add this value back to
the value of the cell we are working on, which is 1, and obtain 0.

Now on row 2, column 2, we take the value of that row corresponding to
the column we just invoked rule 2 on. Again we will use the value of 1, since
that is the value of row 2, column 1, and we just performed rule 2 on col-
umn 1. We again make this value negative (or positive if it is already nega-
tive). Since our value is 1, we make it -1. Now multiply by the correspond-
ing entry (i.e., same column) of the row we just performed rule 2 on. Since
we just performed rule 2 on row 1, we will multiply this -1 by the value of
row 1, column 2, which is 1.3684, thus obtaining -1.3684. Again, we add
this value back to the value of the cell we are working on, row 2, column 23
which is 1, obtaining 1 + (-1.3684) = -.3684.  We proceed likewise for the
value of every cell in row 2, including the value of the right-hand side vector
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of  row  2. Then we do the same for all other rows until the column we are
concerned  with, column 1 here, is all zeros. Notice that we need not invoke
row  operations rule 3 for the last row, since that already has a value of zero
for column 1.

When we are finished, we will have obtained elementary transformation
number 2. Now the first column is already that of the identity matrix. Now
we proceed with this pattern, and in elementary transformation 3 we invoke
mw operations rule 2 to convert the value in the second row, second col-
umn to a 1. In elementary transformation number 4, we invoke row opera-
eons  rule 3 lo convert the remainder of the rows to zeros for the column
corresponding to the column we just invoked row operations rule 2 on.

We proceed likewise, converting the values along the diagonals to ones
per  row operations rule 2, then converting the remaining values in that col-
umn to zeros per row operations rule 3 until we have obtained the identity
matrix on the left. The rieht-hand side vector will then be our mIlltim  set

”
- -~ _-.-_.-__ --_.

rig  Augmented Matr ix

I Answer Explanation

5 0.13 0.21 0.085 0 0

1 1 1 0 0

-0.023 0.01 0 0.095 1

B 0.25 0.079 0 0.13 1

0.079 0.4 0 0.21 1

0 0 0 0.085 1

0.14

1

0

0

0

0

htaty  Transformation Number 1

1.3684 2.2105 0.8947 0 0

1 1 1 0 0

-0.023 0.01 0 0.095 1
L 0.25 0.079 0 0.13 1

_ 0.079 0.4 0 0.21 1

0 0 0 0.085 1

1.47368 row lr (l/.095)
1

0

0

0

0
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Elementary Transformation Number 2
\

Xl x2 x3 x4 Ll L2 / A n s w e r Explanation
.

1 1.3684 2.2105 0.8947 0 0

0 -0.368 -1.210 0.1052 0 0

0 -0.160 -0.211 -0.089 0.095 1

0 0.2824 0.1313 0.0212 0.13 1

0 0.0653 0.3778 -0.008 0.21 1

0 0 0 0 0.085 1

1.47368

-0.4736 r o w 2 t (-1 * rowl)

-0.1473 row 3 + (-.l  * rowq

.03492 r o w 4 t (.0237
* row 1)

-0.0147 r o w 5 t (-.Ol
* row 1)

0

TO -2.285 1.2857 0 0

I:, 3.2857 1 -0.285 -0.427 0 0.3002 3.1602 0

&I
t 0 -0.796 0.1019 0.13 1

i 0 0.1632 0.0097 0.21 1

0 0 0 0.085 1

$
!

htarv  Transformation Number 6

-0.2857

1.28571

0.18658

-0.3282

-0.0987

0

row 3 * (l/.31643)

Elementary Transformation Number 3
! ; .

0 0 0.3080 0.6862 7.2233 I 0.14075

1 1.3684 2.2105 0.8947 0 0

0 1 3.2857 -0.285 0 0

0 -0.160 -0.211 -0.089 0.095 1

0 0.2824 0.1313 0.0212 0.13 1

0 0.0653 0.3778 -0.008 0.21 1

0 0 0 0 0.085 1

Explanation

1.47368

1.28571 row 2 * (i/-.36842)
-0.1473

0.03492

-0.0147

0

1 0 1.1196 -0.986 -10.38 I 0.67265

0 1 -0.427 0.3002 3.1602 I 0.18658

0 0 -0.238 0.3691 3.5174 I -0.1795

0.0795 0.1609 0.4839 I -0.1291

0 0 0 0.085 1 / 0

Elementary Transformation Number 4

1 0 -2.285 1.2857 0 0

0 1 3.2857 -0.285 0 0

0 0 0.3164 -0.135 0.095 1

0 0 -0.796 0.1019 0.13 1

0 0 0.1632 0.0097 0.21 1

0 0 0 0 0.085 1

-0.2857 row 1 + (-1.368421
* row 2)

1.28571

0.05904 row 3 t (.16054
* row2)

-0.3282 row 4 + (-.262431
* row 2)

-0.0987 row 5 t (-.065315
* row 2)

0

btltary  Transformation Number 7

0 0 0.3080 0.6862 7.2233

1 0 1.1196 -0.986-10.38

0 1 -0.427 0.3002 3.1602

0 0 1 -1.545 -14.72

0 0 0.0795 0.1609 0.4839

0 0 0 0.085 1

row 1 t (2.2857
* row 3)

row 2 t (-3.28571
* row 3)

row 4 t (.7966
* row 3)

row 5 t (-.16328
+ row 3)

0.14075

0.67265

0.18658

0.75192 row4 * (l/-.23881)

-0.1291

0
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Elementary Transformation Number 8

Xl x2 x4 Ll L2 I  A n s w e r Explanation
.

1 0 0 0 1.1624 11.760 -0.0908 row 1 + (-.30806
*  row 4)

0 1 0 0 0.7443 6.1080 I -0.1692 rOW2 + (-1.119tj6g
* row 4)

0 0 1 0 -0.360 -3.139 I 0.50819 row3 + (42772

+  row 4)
0

0

0

0

0

0

1

0

-1.545 -14.72 : 0.75192

0.2839 1.6557 I -0.1889 row 5 + (-.079551
*  row 4)

n r-l n n 0.085 1 0
” _ _--

Elementary Transformation Number 9

1 0 0 0 1.1624 11.761

0 1 0 0 0.7445 6.1098

0 0 1 0 -0.361 -3.140

0 0 0 1 -1.545 -14.72

0 0 0 0 1 5.8307

0 0 0 0 0.085 1

-0.0909
-0.1693

0.50823

0.75192

-0.6655 row 5 * (l/.28396)
0

Elementary Transformation Number 10

1 0 0 0 0 4.9831

0 1 0 0 0 1.7685

0 0 1 0 0 -1.035

0 0.0000 -0.000 1.0000 -0.000 -5.715

0 0 0 0 1 5.8312

0 0 0 0 0 0.5043

0.68280 row 1 + (-1.16248
*  row 5)

0.32620 row 2 + (-.74455
* row 5)

0.26796 row 3 + (.3610
* row 5)

-0.2769 row 4 t (1.5458
+ row 5)

-0.6655

0.05657 row 6 t (-,085
* row 5)

SOLUTIONS OF LINEAR SYSTEMS 2 5 7

entary  Transformation Number 11

x2 x3 x4 l-1 L2 1 A n s w e r Explanation

0 0 0 0 4.9826
1 0 0 0 1.7682

0 1 0 0 -1.035

0.0000 -0.000 1.0000 -0.000 -5.715

0 0 0 1 5.8312

0 0 0 0 1

0.68283

0.32622

0.26795

-0.2769

-0.6655

0.11217 row 6 * (l/.50434)

sntary  Transformation Number 12

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

y Matrix Obtained

0.12391 row 1 t (-4.98265
* row 6)

0.12787 row 2 t (-1.76821
: row 6)

0.38407 .rOW  3 + (1.0352
* row 6)

0.36424 row 4 t (5.7158
* row6)

-1.3197 row 5 t (-5.83123
* row 6)

0.11217

I
0 0 0 0 0
1 0 0 0 0

:.
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0.12391 = x ,

0.12787 = x2

0.38407 = xg

0.36424 = x4

-1.3197/.5 = -2.6394 = L,

0.112171.5 = .22434 = L2
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INTERPRETING THE RESULTS

Once we have obtained the identity matrix, we can interpret its meaning.
Here, given the inputs of expected returns and expected variance in returns
for all of the components under consideration, and given the linear correla.
tion coefficients of each possible pair of components, for an expected yield
of 14% this solution set is optimal. Optimal, as used here, means that this
solution set will yield the lowest variance for a 14% yield. In a moment, we
will determine the variance, but first we must interpret the results.

The first four values, the values for Xl through X4,  tell US  the weights

(the percentages of investable funds) that should be allocated to these
investments to achieve this optimal portfolio with a 14% expected return.
Hence, we should invest 12.391% in Toxico,  12.787% in Incubeast,
38.407% in LA Garb, and 36.424% in the savings account. If we are looking
at investing $50,000  per this portfolio mix:

Stock Percentage ( *  50,000  = ) Dollars to Invest

Toxic0 .I2391 $6,195.50
lncubeast .12787 $6,393.50
LA Garb .38407 $19,203.50
Savings .36424 $18,212.00

Thus, for Incubeast, we would invest $6,393.50.  Now assume that
Incubeast sells for $20 a share. We would optimally buy 319.675 shares
(6393.5/20).  However, in the real world we cannot run out and buy frac-
tional shares, so we would say that optimally we would buy either 319 or
320 shares. Now, the odd lot, the 19 or 20 shares remaining after we pur-
chased the first 300, we would have to pay up for. Odd lots are usually
marked up a small fraction of a point, so we would have to pay extra for
those I9 or 20 shares, which in turn would affect the expected return on our
Incubeast holdings, which in turn would affect the optimal portfolio mix.
We  are often better off to just buy the round lot-in this case, 300 shares.
As you can see, more slop creeps into the mechanics of this. Whereas we

can identify what the optimal portfolio is down to the fraction of a share, the

real-life implementation requires again that we allow for slop.
Furthermore, the larger the equity you are employing, the more closely

the real-life implementation of the approach will resemble the theoretical
optimal. Suppose, rather than looking at $50,000 to invest, you were run-
ning a fund of $5 million. You would be looking to invest 12.787% in
Incubezst  (if we were only considering these four investment alternatives)?
and would therefore be investing 5,000,OOO  *  .12787  = $639,350. Therefore7
at $20 a share, you would buy 639,350/20  = 31,967.S shares. Again, if You
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restricted  it down to the round lot, you would buy 31,900  shares, deviating
-le optimal number of shares by about 0.2%. Contrast this to the case

where you have $50,000 to invest and buy 300 shares versus the optimal of
319.675. There you are deviating from the optimal by about 6.5%.

‘with,
Lagrangian multipliers have an interesting interpretation. To begin

t h e Lagrangians we are using here must be divided by .5 after the
identity  matrix is obtained before we can interpret them. This is in accor-

‘dance with the generalized form of our problem. The L, variable equals
aV/6E.  This means that L, represents the marginal variance in expected

,retums.  In the case of our example, where L, = -2.6394, we can state that V
is changing at a rate of-L,,  or -(-2.6394),  or 2.6394 units for every unit in
E instantaneously at E = .14.

1, To interpret the Lz variable requires that the problem first be restated.
[ Rather than having ZT  = 1, we will state that Z$ = M, where M equals the

-ollar  amount of funds to be invested. Then L, = 6VBM. In other words,
~4  represents the marginal risk of increased or decreased investment.
\a Returning now to what the variance of the entire portfolio is, we can use
jk;q t’
“’

ua Ion  (6.06) to discern the variance. Although we could use any vatia-
“on of Equation (6.06a) through (6.06d), here we will use variation a:

i.06a) v=%$*xj*covij
i=lj=l

Plugging in the values and performing Equation (6.06a) gives:

X i COVi
* 0.12391 l

* 0.12787 *

* 0.38407 *

* 0.36424 *

* 0.12391 *

l 0.12787 l

* 0.38407 *

l 0.36424 *

* 0.12391 *

* 0.12787 *

* 0.38407 *

* 0.36424 *

* 0.12391 *

l 0.12787 *

* 0.38407 *

* 0.36424 *

0.1
-0.0237
0.01
0

-0.0237
0.25
0.079
0
0.01
0.079
0.4
0
0
0
0
0

0.0015353688
-0.0003755116
0.0004759011
0

-0.0003755116
0.0040876842
0.0038797714
0
0.0004759011
0.0038797714
0.059003906
0
0
0
0
0

.0725872809
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Thus,we see  that  at  the value ofE = .14,  the lowest value for Vis obtained
atV = .0725872809.

Now suppose we decided to input a value of E = .18.  Again, we begin
with  the  augmented  matrix, which is exactly the same as in the last example
of E = .14,  only the  upper rightmost cell, that is the first cell in the right-
hand side vector, is changed to reflect this new E of .18:

Starting Augmented Matrix

Xl x2 x3 x4 Li
!

L2 ’ Answer

0.095 0.13 0.21 0.085 0 0 II 0.18
1 0 0 I1 1 1 I 1

0.1 -0.023 0.01 0 0.095 1 I! 0
-0.023 0.25 0.079 0 0.13 1 II 0
0.01 0.079 0.4 0 0.21 1 I 0

I0 0 0 0 0.085 1 I 0

Through the use of row operations . . . the identity matrix is obtained:

1 0 0 0 0 0 II 0.21401 =X,
0 1 0 0 0 0 ,1 0.22106=X2

I0 0 1 0 0 0 I 0.66334 =X3
0 0 0 1 0 0 !4 -.0981  =X4
0 0 0 0 1 0 I! -1.3197/.5  = -2.639 L,=
0 0 0 0 0 1 I 0.11217/.5  = .22434  L2=

We then go about solving the matrix exactly as before, only this time we get
a negative answer in the fourth cell down of the right-hand side vector.
Meaning, we should allocate a negative proportion, a disinvestment of
9.81% in the savings account.

To account for this, whenever we get a negative answer for any of the
Xi’s-which  means if any of the first N rows of the right-hand side vector is
less than or equal to zero-we must pull that row + 2 and that column out
of the starting augmented matrix, and solve for the new augmented matrix*
If either of the last 2 rows of the right-hand side vector are less than or
equal to zero, we don’t need to do this. These last 2 entries in the right-

hand side vector always pertain to the Lagrangians, no matter how many or
how few components there are in total in the matrix. The Lagrangians a
allowed to be negative.
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Since the variable returning with the negative answer corresponds to the
weighting of the fourth component, we pull out the fourth column and the
sixth row from the starting augmented matrix. We then use row operations
b perform elementary transformations until, again, the identity matrix  is
obtained:

Starting Augmented Matrix

Xi x2 x3 l-1 L2 Answer- -
0.095 0.13 0.21 0 0 II 0.18
1 1 1 0 0 tI 1
0.1 -0.023 0.01 0.095 1 II 0

-0.023 0.25 0.079 0.13 1 II 0
0.01 0.079 0.4 0.21 1 I 0

-

Through the use of row operations . . . the identity matrix is obtained:

1 0 0 0 0 i 0.1283688
,o 1 0 0 0

= x,
I 0.1904699

0 0
= x,

0 0
io 0 il 10

i 0.6811613
I -2.381.5  = -4.76

= x3

0 0 0 0 1
= L,

I 0.2109441.5  = .4219 = L2

When you must pull out a row and column like this, it is important that
ou  remember what rows correspond to what variables, especially when you
lave  more than one row and column to pull. Again, using an example to

i,alustrate,  suppose we want to solve for E = .1965. The first identity matrix
I,* arrive at will show negative values for the weighting of Toxico,  Xl, and

he  savings account, X,. Therefore, we return to our starting augmented
natrix:

bting  Augmented Matrix

,X1 x2 x3 x4 Li L, I Answer Pertains to

km5 0.13 0.21 0.085 0._ 0 I 0.1965 T@Yirn
1 1 1 0 0 I1 Inc--.

-0.023 0.01 09.023 0.095 1 I 0 LAGarb0.25 0.079 0
p.01

0.13 1
I 00.079 Savings0.4

0 0 0.21 1 I 0
0

Ll
0 0 0.085 1 I 0 L2
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Now we pull out row 3 and column 1, the ones that pertain to Toxico,
and also pull row 6 and column 4, the ones that pertain to the savings

account:

Starting Augmented Matrix

X2 x3 Ll
1

L2 ' Answer Pertains to

0.13 0 . 2 1 0 0 I 0.1965 lncubeast
1 1 0 0 I 1 LA Garb

0.25 0.079 0.13 1 II 0 Ll

0.079 0.4 0.21 1 I 0 L2

30 we will be working with the following matrix:

Starting Augmented Matrix

x2 Ll L2
II Answer Pertains to

0.21 0 0 I
0.13 I 0.1965 lncubeast

I
1 1 0 0 I 1 IA Garb

0.25 0.079 0.13 1 I 0 Ll

0.079 0.4 0.21 1 II 0 L2

Through the use of row operations . . . the identity matrix is obtained:

I
1 0 0 0 I .169 lncubeast
1 1 0 0 I .831 LA Garb
0 0 1 0 ,I -2.971.5 = -5.94 Ll

0 0 0 1
I, .2779695/.5  = .555939  L2

Another method we can use to solve for the matrix is to use the itrcerse
of the coefficients matrix. An inverse matrix is a matrix that, when multi-
plied by the original matrix, yields the identity matrix. This technique will
be explained without discussing the details of matrix multiplication.

In matrix algebra, a matrix is often denoted with a boldface capita] let-
ter. For example, we can denote our coefficients matrix as C. The inversfj
to a matrix is denoted as superscripting -1 to it. The inverse matrix to
then is C-l.

To use this method, we need to first discern the inverse matrix to our
coefficients matrix. To do this, rather than start by augmenting the right-
hand-side vector onto the coefficients matrix, we augment the identity
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matrix itself onto the coefficients matrix. For our d-stock  example:

Starting Augmented Matrix

x2

:“-O.O23
0.01

0.13
1

-0.023
0.25
0.079
0

x3 x4 Ll

0.21 0.085 0
1 1 0
0.01 0 0.095
0.079 0 0.13
0.4 0 0.21
0 0 0.085

L, I ldentitv Matrix

0 I 1 0 0
0 I 0 1 0
1 I 0 0 1
1 ) 0 0 0
1 I 0 0 0
1 I 0 0 0

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

Now we proceed using row operations to transform the coefficients
matrix to an identity matrix. In the process, since every row operation per-
formed on the left is also performed on the right, we will have transformed

‘the  identity matrix on the right-hand side into the inverse matrix C-r, of the
~coefficients  matrix C. In our example, the result of the row onerntinns

C ,, C-1

2.2527 -0.1915 10.1049 0.9127 -1.1370 -9.8806
2.3248 -0.1976 0.9127 4.1654 -1.5726 -3.5056
6.9829 -0.5935 -1.1370 -1.5726 0.6571 2.0524

-11.5603 1.9826 -9.8806 -3.5056 2.0524 11.3337
-23.9957 2.0396 2.2526 2.3248 6.9829-11.5603

2.0396 -0.1734 -0.1915 -0.1976 -0.5935 1.9826

NOW we can take the  inverse matrix, C-i, and multiply it by our original
fight-hand side vector. Recall that our right-hand side vector is:

&. Whenever we multiply a matrix by a columnar vector (such as this) we
Il6ply  al] elements in the first column of the matrix by the first element in
‘vector, all elements in the second column of the matrix by the second

$ment in the vector, and so on. If our vector were a row vector, we would
ltiply  all Ie ements in the first row of the matrix by the first element in the
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vector, all elements in the second row of the matrix by the second element
in the vector, and so on. Since our vector is columnar, and since the last
four elements are zeros, we need only multiply the first column of the
inverse matrix by E (the expected return for the portfolio) and the second
column of the inverse matrix by S, the sum of the weights. This yields the
following set of equations, which we can plug values for E and S into and
obtain the  optimal weightings. In our example, this yields:

E *  2.2527 + S *  -0.1915 = Optimal weight for first stock

E *  2.3248 + S *  -0.1976 = Optimal weight for second stock

E *  6.9829 + S *  -0.5935 = Optimal weight for third stock

E * -11.5603 + S *  1.9826 = Optimal weight for fourth stock

E *  -23.9957 + S *  2.0396 = .5 of first Lagrangian

E *  2.0396 + S *  -0.1734 = .5 of second Lagrangian

Thus, to solve for an expected return of 14% (E = .14) with the sum of
the weights equal to 1:

.14 *  2.2527 + 1 *  -0.1915 = .315378  - .1915 = .1239 Toxic0

.14 *  2.3248 + 1  *  -0.1976 = .325472  - .1976 = .1279 Incubeast

.14 *  6.9829 + 1 *  -0.5935 = .977606  - .5935 = .3841 LA Garb

.14 *  -11.5603 + 1 *  1.9826 = -1.618442 + 1.9826 = .3641 Savings

.14 *  -23.9957 + 1 *  2.0396 = -3.359398 + 2.0396 = -1.319798 * 2
= -2.6395 L1

.14 *  2.0396 + 1 *  -0.1734 = .285544  - .1734 = .1121144  * 2

= .2243  L2

Once you have obtained the inverse to the coefficients matrix, you caa
quickly solve for any value of E provided that your answers, the optimal
weights, are alI positive. If not, again you must create the coefficients matrix
without that item, and obtain a new inverse matrix.

Thus far we have looked at investing in stocks from the long side only
How can we consider short sale candidates in our analysis?

To begin with, you would be looking to sell short a stock if YOU expected

it would decline. Recall that the term “returns”  means not only the di+
dends in the underlying security, but any gains in the value of the security as
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&I. This figure is then specified as a percentage. Thus, in determining the
wtums  of a short position, you would have to estimate what percentage gain
you  would expect to make on the declining stock, and from that you would
then  need to subtract the dividend (however many dividends go ex-date
mr the holding period you are calculating your E and V on) as a percent-

rking  to short is a member must be multiplied by -1. Therefore, since the
.4 Lastly, any linear correlation coefficients of which the stock you are

bear  correlation coefficient between Toxic0  and Incubeast is -.lS,  if you
hre  looking to short Toxico,  you would multiply this by -1. In such a case
you would use -.I5 * -1 = .I5  as the linear correlation coefficient. If you
were  looking to short both of these stocks, the linear correlation coeficient
between  the two would be -.15  * -1 * -1 = -.15.  In other words, if you are
iooking  to short both stocks, the linear correlation coefficient between them
emains unchanged, as it would if you were looking to go long both stocks.

Thus far we have sought to obtain the optimal portfolio, and its variance
1, when we know the expected return, E, that we seek. We can also solve
br  E when we know V. The simplest way to do this is by iteration using the
echniques  discussed thus far in this chapter.

There is much more to matrix algebra than is presented in this chap-
ter. There are other matrix algebra techniques to solve systms  of linear
equations. O$en  you will encounter reference to techniques such as

’ Cramer’s Rule, the Simplex Method, or the Simplex Tableau. These
are techniques similar to the ones described in this chapter, although
more involved. There are a multitude of applications in business and
science for mat& algebra, and the topic is considerably involved. We
have only etched the surface, just enough for what we need to accom-
plish. For a more detailed discussion of matrix  algebra and its applica-
tions in business and science, the reader is referred to Sets, Matrices,
and Linear Programming, by Robert L. Childress.

j,chut  f
The next chapter covers utilizing the techniques detailed in this
p er or any tradeable instnrment,  as well as stocks, while incorpo-

Wing optimalf as well as a mechanical system.

..-  - --- - ..--~..  ~-C”Y~..  - “pyuxu  UJ  1
mnt, we will‘not  calculate interest on thre G&n.

Ihi h tS C ap  er w are assuming  that all transactions are performed  in a cash account. Thus,
lhgh  a short position is muired  to be rxxformed  in I ma&n  s---n* r,P  n...%.“~.l  L.  _
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7
The Geometry of Portfolios

We have now covered how to find the optimal fs for a given market
system from a number of different standpoints. Also, we hatie  seen
how to derive the efficient frontier. In this chapter we show how to
combine the two notions of optimal f and the efficient frontier to
obtain a truly efficient  portfolio for which geometric growth is maxi-
mized. Furthermore, we will delve into an analytical study of the
geometry of port$olio  construction,

THE CAPITAL MARKET LINES (CMLs)

In the last chapter we saw how to determine the efficient frontier paramet-
rically. We can improve upon the performance of any given portfolio by
combining a certain percentage of the portfolio with cash. Figure 7-l show
this relationship graphically.

In Figure 7-1,  point A represents the return on the risk-free asset. This
would usually be the return on 91-day Treasury Bills. Since the risk, the
standard deviation in returns, is regarded as nonexistent, point A is at zero
on the horizontal axis.

Point B represents the tangent portfolio. It is the only portfolio ly@&
upon the efficient frontier that would be touched by a line drawn from
risk-free rate of return on the vertical axis and zero on the horizontal axis*
Any point along line segment AB will be composed of the portfolio at Point
B and the risk-free asset. At point B, all of the assets would be in the portfo-

CML LINE

EFFICIENT FRCNlIER

0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0.1
STANDARD DEVIATION

Figure 7-l Enhancing returns with the risk-free asset.

I&>,  and at point A all of the assets would be in the risk-free asset. Anywhere
ln between points A and B represents having a portion of the assets in both
b portfolio and th
bent  AB

e
d

risk-free asset. Notice that any portfolio along line seg-

b-l9
ominates any portfolio on the efficient frontier at the same risk

since being on the line segment AB has a higher return for the same
pk.  Thus, an investor who wanted a portfolio less risky than portfolio B
hid  be better off to put a portion of his or her investable funds in portfo-
g B and a portion in the risk-free asset, as opposed to owning 100% of a
&tfolio  on the eff?cient  frontier at a point less risky than portfolio B.

ii The line emanating from point A, the risk-free rate on the vertical axis
zero on the horizontal axis, and emanating to the right, tangent to one
t on the efficient frontier, is called the capital market line (CML). To
right of point B, the CML line represents portfolios where the investor
gone out and borrowed more money to invest further in portfolio B.
ice that an investor who wanted a portfolio with a greater return than
tfolio  B would be better off to do this, as being on the CML line right of
at  B  dominates (has higher return than) those portfolios on the efficient
e.ler  with the same level of risk.
J~~dly, point B will be a very well-diversified portfolio. Most portfolios
1 np  and to the right and low down and to the left on the efficient fron-
have  veiy few components. Those in the middle of the efficient fron-
where the tangent point to the risk-free rate is, usually are very well
!FaL~

2 6 6
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It has traditionally been assumed that all rational investors will want to
get the greatest return for a given risk and take on the lowest risk for a given
return. Thus, all investors would want to be somewhere on the CML line.
In other words, all investors would want to own the same portfolio, only
with differing degrees of leverage. This distinction between the investment
decision and the financing decision is known as  the separation theorem.1

We assume now that the vertical scale, the E in E-V theory, represents
the arithmetic average HPR (AHPR) for the portfolios and the horizontal,
or V, scale represents the standard deviation in the HPRs. For a given risk-
free rate, we can determine where this tangent point portfolio on our eff;-

cient  frontier is, as the coordinates (AHPR, V) that maximize the following
function are:

(7.01a) Tangent Portfolio = MAX((AIIPR - (1 + RFR))/SD]

where MAX{)  = The maximum value.

AHPR = The arithmetic average HPR. This is the E coordinate
of a given portfolio on the efhcient frontier.

SD = The standard deviation in HPRs. This is the V coordi-
nate of a given portfolio on the efficient frontier.

RFR = The risk-free rate.

In Equation (7.Ola), the formula inside the braces (( 1) is known as the
Sharpe ratio, a measurement of risk-adjusted returns. Expressed literally,
the Sharpe ratio for a portfolio is a measure of the ratio of the expected
excess returns to the standard deviation. The portfolio with the highest
Sharpe ratio, therefore, is the portfolio where the CML line is tangent to
t h e efficient frontier for a given RFR.

Tlie Sllarpe  ratio, when multiplied by the square root of the number of
periods over which it was derived, equals the t statistic. From the resultingt
statistic it is possible to obtain a confidence level that the AHPR exceeds the
RFR by more than chance alone, assuming finite variance in the returns.

The following table shows how to use Equation (7.01a) and demonstrates

the entire process discussed thus far. The first two columns represent the
coordinates of different portfolios on the efficient frontier. The coordinates
are given in (AHPR, SD) format, which corresponds to the Y  and X axes o f

Figure 7-l.  The third column is the answer obtained for Equation (7.01a)
assuming a 1.5% risk-free rate (equating to an AHPR of 1.015. We assume

~SPP  Tobin,  James,  “Liquidity Prderencp  as Behavior To~~~rds  Risk,”  Review  of ~~~notnic

Stdics  25, pp. 65-85, February  1958.

THECAPlTALMARKETLlNES(CMLs) 269

that the HPRs  here are quarterly HPRs, thus a 1..5% risk-free rate for the

quarter equates to roughly a 6% risk-free rate for the year). Thus, to work
out (7.01a) for the third set of coordinates (60013. 1.002):

(AHPR - (1 + RFR))/SD  = (1.002 - (1 + .015))/.00013

= (1.002 - 1.015)/.00013

= -.013/.00013

= -100

The process is completed for each point along the efficient frontier.
Equation (7.01a) peaks out at .502265,  which is at the coordinates (.02986,
1.03). These coordinates are the point where the CML line is tangent to the
efficient frontier, corresponding to point B in Figure 7-1. This tangent
point is a certain portfolio along the efficient frontier. The Sharpe ratio is
the slope of the CML, with the steepest slope being the tangent line to the
efficient frontier.

Efficient Frontier CML line
AHPR S D Eq. (7.01 a) Percentage AHPR

I .ooooo
1.00100
I .00200
I .00300
1.00400
1.00500
hlO600
1.00700
1.00600
m900
~.01000
1.01100
',01200
.01300
~01400
91500
k61600
pa1700
~61600
p1900

0.00000
0.00003
0.00013
0.00030
0.00053
0.00063
0.00119
0.00163
0.00212
0.00269
0.00332
0.00402
0.00476
0.00561
0.00650
0.00747
0.00649
0.00959
0.01075
0.01198

RFR =.015
0

-421.902
-100.000
-40.1812
-20.7184
-12.0543
-7.53397
-4.92014
-3.29611
-2.23228
-1.50679
-0.99622
-0.62783
-0.35663
-0.15375
0
0.117718
0.208552
0.279036
0.333916

0.00% 1.0150
0.11% 1.0150
0.44% 1.0151
1.00% 1.0152
1.78% 1.0153
2.78% 1.0154
4.00% 1.0156
5.45% 1.0158
7.11% 1.0161
9.00% 1.0164
11.11% 1.0167
13.45% 1.0170
16.00% 1.0174
18.78% 1.0178
21.78% 1.0183
25.00% 1.0188
28.45% 1.0193
32.12% 1.0198
36.01% 1.0204
40.12% 1.0210
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Efficient Frontier CML line
AHPR SD Eq. (7.01a) Percentage AHPR

1.02000
1.02100
1.02200
1.02300
1.02400
1.02500
1.02600
1.02700
1.02800
1.02900
1.03000
1.03100
1.03200

/, 1.03300/
I 1.03400
I 1.03500

:I 1.03600 1.03700
?! 1.03800

1.03900I
"I / 1.04000
I
) 1.04100
I 1.04200
!I II 1.04300
88 ! 1.04400
)! 1.04500
" 1 1.04600
I 1.04700
/ 1.04800

1.04900
1.05000

0.01327 0.376698 44.45%
0.01463 0.410012 49.01%
0.01606 0.435850 53.79%
0.01755 0.455741 58.79%
0.01911 0.470073 64.01%
0.02074 0.482174 69.46%
0.02243 0.490377 75.12%
0.02419 0.496064 81.01%
0.02602 0.499702 87.12%
0.02791 0.501667 93.46%
0.02986 0.502265 (peak) 100.02%
0.03189 0.501742 106.79%
0.03398 0.500303 113.80%
0.03614 0.498114 121.02%
0.03836 0.495313 128.46%
0.04065 0.492014 136.13%
0.04301 0.488313 144.02%
0.04543 0.484287 152.13%
0.04792 0.480004 160.47%
0.05047 0.475517 169.03%
0.05309 0.470873 177.81%
0.05578 0.466111 186.81%
0.05853 0.461264 196.03%
0.06136 0.456357 205.48%
0.06424 0.451416 215.14%
0.06720 0.446458 225.04%
0.07022 0.441499 235.15%
0.07330 0.436554 245.48%
0.07645 0.431634 256.04%
0.07967 0.426747 266.82%
0.08296 0.421902 277.82%

1.0217
1.0224
1.0231
1.0236
1.0246
1.0254
1.0263
1.0272
1.0281
1.0290
1.0300
1.0310
1.0321
1.0332
1.0343
1.0354
1.0366
1.0376
1.0391
1.0404
1.0417
1.0430
1.0444
1.0456
1.0473
1.0466
1.0503
1.0516
1.0534
1.0550
1.0567

The next column over, “percentage,” represents what percentage of your
assets must be invested in the tangent portfolio if you are at the CML line
for that standard deviation coordinate. In other words, for the last entry ia
the table, to be on the CML line at the .08296 standard deviation level, Car-
responds to having 277.82% of your assets in the tangent portfolio (i.e.*
being fully invested and borrowing another $1.7782 for every dollar already
invested to invest further). This percentage value is calculated from the
standard deviation of the tangent portfolio as:

(7.02) P=SX/ST
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where SX = The standard deviation coordinate for a particular point on
the CML line.

ST = The standard deviation coordinate of the tangent portfolio.

P = The percentage of your assets that must be invested in the
tangent portfolio to be on the CML line for a given SX.

k Thus, the CML line at the standard deviation coordinate .08296,  the last
entry in the table, is divided by the standard deviation coordinate of the tan-

, gent portfolio, .02986, yielding 2.7782, or 277.82%.
The last column in the table, the CML line  AHPR, is the AHPR of the

CML line at the given standard deviation coordinate. This is figured as:

ACML = (AT * P) + ((1 + RFR) * (1 -P))

J’ where ACML = The AHPR of the CML line at a given risk coordinate,

i‘ or a corresponding percentage figured from (7.02).
r: ‘,U

B

AT = The AHPR at the tangent point, figured from (7.01a).

P = The percentage in the tangent portfolio, figured from
r:

1

(7.02)

,:k.
RFR = The risk-free rate.

On occasion you may want to know the standard deviation of a certain
int on the CML line for a given AHPR. This linear relationship can be
tamed as:

W SD=P*ST

where SD = The standard deviation at a given point on the CML line
corresponding to a certain percentage, P, corresponding
to a certain AHPR.

P = The percentage in the tangent portfolio, figured from
(7.02).

ST = The standard deviation coordinate of the tangent portfo-
lio.

E GEOMETRIC EFFICIENT FRONTIER

e problem with Figure 7-l is that it shows the arithmetic average HPR.
len we are reinvesting profits back into the program we must look at the



9”’

272 THE GEOMETRY OF PORTFOLIOS

geometric average HPR for the vertical axis of the efficient frontier. This
changes things considerably. The formula to convert a point on the efficient
frontier from an arithmetic HPR to a geometric is:

(7.05) GHPR = (AHPR h 2 -V) h (l/2)

where GHPR = The geometric average HPR.

AHPR = The arithmetic average HPR.

V = The variance coordinate. (This is equal to the stan-
dard deviation coordinate squared.)

In Figure  7-2 you can see the efficient frontier corresponding to the
arithmetic average HPRs  as well as that corresponding to the geometric
average  HPRs. You can see what happens to the efficient frontier when
reinvestment is involved.

Ry graphing your GHPR line, you can see which portfolio is the geomet-
ric optimal (the highest point on the GHPR line). You could also determine
this portfolio by converting the AHPRs  and Vs of each portfolio along the
AHPR efficient frontier into GHPRs  per Equation (7.05) and see which had
the highest  GHPR.  Again, that would be the geometric optimal. However,
given the AHPRs  and the Vs of the portfolios lying along the AHPR effi-
cient frontier, we can readily discern which portfolio would be geometric
optimal-the one that solves the following equality:

(7.06a) AHPR-l-V=0

AHPR

GIiPR

Figure 7-2 The efficient frontier with/without reinvestment.
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where AIIPR = The arithmetic average HPRs. This is the E coordinate
of a given portfolio on the efficient frontier.

V = The variance in HPR. This is the V coordinate of a
given portfolio on the efficient frontier. This is equal to
the standard deviation squared.

Equation (7.06a) can also be written as any one of the following three
forms:

(7.06b) A H P R - l = V

(7.06c) AHPR-V= 1

(7.06d) AHPR = V + 1

A brief note on the geometric optimal portfolio is in order here. Variance
in a portfolio is generally directly and positively correlated to drawdown in
that higher variance is generally indicative of a portfolio with higher draw-
down. Since the geometric optimal portfolio is that portfolio for which E
and V are equal (with E = AHPR - l), then we can assume that the geomet-
ric optimal portfolio will see high drawdowns. In fact, the greater the
CHPR of the geometric optimal portfolio-that is, the more the portfolio
makes-the greater will be its drawdown in terms of equity retracements,
since the GHPR is directly positively correlated with the AHPR. Here again
is a paradox. We want to be at the geometric optimal portfolio. Yet, the
higher the geometric mean of a portfolio, the greater will be the drawdowns
in terms of percentage equity retracements generally. Hence, when we per-
form the exercise of diversification, we should view it as an exercise to
obtain the highest geometric mean rather than the lowest drawdown, as the
two tend to pull in opposite directions! The geometrical optimal portfolio is
One  where a line drawn from (O,O),  with slope 1, intersects the AHPR efh-
pent frontier.

Figure 7-2 demonstrates the efficient frontiers on a one-trade basis.
ht.  *t  1
p

a is,  I s rows  what you can expect on a one-trade basis. We can convert
e geometric average HPR to a TWR by the equation:

i7.07),̂ GTWR = GHPR A  N

p where GTWR = The vertical axis corresponding to a given GHPR
F after N trades.

GHPR = The geometric average HPR.

N = The number of trades we desire to observe.
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Thus, after 50 trades a GHPR of 1.0154 would be a GTWR of 1.0154 A
50 = 2.15. In other words, after 50 trades we would expect our stake to have
grown by a multiple of 2.15.

We can likewise project the efficient frontier of the arithmetic average
HPRs  into ATWRs  as:

(7.08) ATWR=l+N*(AHPR-1)

where ATWR  = The vertical axis corresponding to a given AHPR after
N trades.

AHPR = The arithmetic average HPR.

N = The number of trades we desire to observe.

Thus, after 50 trades, an arithmetic average HPR of 1.03 would have
made 1 + 50 *  (1.03 - 1) = 1 + 50 * .03 = 1 + 1.5 = 2.5 times our starting
stake. Note that  this shows what happens when we do not reinvest our win-
nings back into the trading program. Equation (7.08) is the TWR you can
expect when constant-contract trading.

Just  as Figure 7-2 shows the TWRs,  both arithmetic and geometric, for
one trade, Figure 7-3 shows them for a few trades later. Notice that the
GTWR line is approaching the ATWR line. At some point for N, the geo-
metric TWR  will overtake the arithmetic TWR. Figure 7-4  shows the arith-.-

A-I-WR

GTWR

Figure 7-3 The efficient frontier with/without reinvestment.
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A T W R

GTWR

Figure 7-4 The efficient frontier with/without reinvestment.

metic and geometric TWRs after more trades have elapsed. Notice that the
geometric has overtaken the arithmetic. If we were to continue with more
and more trades, the geometric TWR would continue to outpace  the arith-
metic. Eventually, the geometric TWR becomes infinitely greater than the
arithmetic.

The logical question is, “ How many trades must elapse until the geomet-
ric  TWR  surpasses the arithmetic?’ Recall Equation (2.09a), which tells us
the number of trades required to reach a specific goal:

(2.09a) N = In(Goal) / ln(Ceometric  Mean)

where N = The expected number of trades to reach a specific goal.

Goal = The  goal in terms of a multiple on our starting stake, a
T W R .

In()  = The natural logarithm function.

We let the AHPR at the same V as our geometric optimal portfolio be
!ur  goal and USC the geometric mean of our geometric optimal portfolio in
th  de enonlinator  of (2.09a).  We can now discern how many trades are
required  to make our geometric optimal portfolio match one trade in the
Corresponding  arithmetic portfolio. Thus:
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N = In(  l.O31)nn( 1.01542)

= .035294/.0153023

= 1.995075

We would thus expect 1.995075, or roughly 2, trades for the optimal GHPR
to be as high up as the corresponding (same V) AHPR after one trade.

The problem is that the ATWR needs to reflect the fact that two trades
have elapsed. In other words, as the GTWR approaches the ATWR, the
ATWR is also mating  upward, albeit at a constant rate (compared to the
GTWR, which is accelerating). We can relate this problem to Equations
(7.07) and (7.08),  the geometric and arithmetic TWRs respectively, and
express it mathematically:

(7.09) GHPR”N=>l+N*(AHPR-1)

Since we know that when N = 1, G will be less than A, we can rephrase
the question to “At how many N will G equal A?” Mathematically this is:

(7.10a) GHPR”N=l+N*(AHPR-1)

which can be written as:

(7.10b) l+N*(AHPR-l)-GHPR”N=O

or

(7.1Oc) l+N*AHPR-N-GHPR”N=O

or

(7.1od) N = (GHPR A  N - l)/(AHPR  -1)

The N that solves (7.lOa) through (7.1Od)  is the N that is required for the
geometric HPR to equal the arithmetic. All three equations are equivalent.
The solution must be arrived at by iteration. Taking our geometric optimal
portfolio of a GHPR of 1.01542 and a corresponding AHPR of 1.031, if we
were to solve for any of Equations (7.10a) through (7.lOd),  we would find
the solution to these equations at N = 83.49894. That is, at 83.49894
elapsed trades, the geometric TWR will overtake the arithmetic TWR  for
those TWRs corresponding to a variance coordinate of the geometric opb-
ma1  portfolio.
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AHPR

SD

Figure 7-5 AHPR, GHPR, and their CML lines.

Just as the AHPR has a CML line, so too does the GHPR. Figure 7-5
: shows both the AHPR and the GHPR with a CML line for both calculated

from the same risk-free rate.
The CML for the GHPR is calculated from the CML for the AHPR by

the follo\ting  equation:

(7.11) CMLG = (CMLA A  2 -VT * P) A  (l/2)

where CMLG = The E coordinate (vertical) to the CML line to the
GHPR for a given V coordinate corresponding to P.

CMLA = The E coordinate (vertical) to the CML line to the
AIIPR for a given 1’ coordinate corresponding to P.

P = The percentage in the tangent portfolio, figured from
(7.02).

VT = The variance coordinate of the tangent portfolio.

you  should know that, for any given risk-free rate, the tangent portfolio
hd  the geometric optimal portfolio are not necessarily  (and usually are not)
he same. The only time that these portfolios will be the same is when the
bllowing  equation is satisfied:
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(7.12) RFR = GHPROPT - 1

where RFR = The risk-free rate.

GHPROPT = The geometric average HPR of the geometric optimal
portfolio. This is the E coordinate of the portfolio on the
efficient frontier.

Only when the GHPR of the geometric optimal portfolio minus 1 is
equal to the risk-free rate will the geometric optimal portfolio and the port-
folio tangent to the CML line be the same. If RFR > GHPROPT - 1, then
the geometric optimal portfolio will be to the left of (have less variance
than) the tangent portfolio. If RFR < GHPROPT - 1, then the tangent
portfolio will be to the left of (have less variance than) the geometric opti-
mal portfolio. In all cases, though, the tangent portfolio will, of course,
never have a higher GHPR than the geometric optimal portfolio.

Note also that the point of tangency for the CML to the GHPR and for
the CML to the AHPR is at the same SD coordinate. We could use
Equation (7.01a)  to find the tangent portfolio of the GHPR line by substi-
tuting the AHPR in (7.01a) with GHPR. The resultant equation is:

(7.01b) Tangent Portfolio = MAX[(GHPR  - (1 + RFR))/SD)

where MAX() = The maximum value.

GHPR = The geometric average HPRs. This is the E coordi-
nate of a given portfolio on the efficient frontier.

SD = The standard deviation in HPRs. This is the SD coor-
dinate of a given portfolio on the efficient frontier.

RFR = The risk-free rate.

UNCONSTRAINED PORTFOLIOS

Now we will see how to enhance returns beyond the GCML line by lifting
the sum of the weights constraint. Let us return to geometric optimal port-
folios. If we look for the geometric optimal portfolio among our four market
systems-Toxico, Incubeast, LA Garb and a savings account-we find it at
E equal to .1688965  and V equal to .1688965,  thus conforming with

Equations (7.06a)  through (7.06d). The geometric mean of such a portfolio
would therefore be 1.094268, and the portfolio’s composition would be:
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Toxic0 18.89891%

Incubeast 19.50386%

LA Garb 58.58387%

Savings Account .03014%

In using Equations (7.06a) through (7.06d), you must iterate to the solu-
tion. That is, you try a test value for E (halfivay  between the highest and the
lowest AHPRs,  -1 is a good starting point) and solve the matrix for that E. If
your variance is higher than E, it means the tested for value of E was too
high, and you should lower it for the next attempt. Conversely, if your vari-
ante is less than E, you should raise E for the next pass. You determine the
variance for the portfolio by using one of Equations (6.06a) through (6.06d).
You keep on repeating the process until whichever of Equations (7.06a)
through (7.06d) you choose to use, is solved. Then you will have arrived at
your geometric optimal portfolio. (Note that all of the portfolios discussed
thus far, whether on the AHPR efficient frontier or the GHPR efficient
frontier, are determined by constraining the sum of the percentages, the
weights, to 100% or 1.00.)

Recall Equation (6.10),  the equation used in the starting augmented
matrix to find the optimal weights in a portfolio. This equation dictates that
the sum of the weights equal 1:

(6.10) (s&)-l  =O

where N = The number of securities comprising the portfolio.

Xi = The percentage weighting of the ith security.

The equation can also be written as:

&Xi) = 1

By allowing the left side of this equation to be greater than 1, we can find
-the unconstrained optimal portfolio. The easiest way to do this is to add
another market system, called non-interest-bearing cash (NIC), into the
starting augmented matrix. This market system, NIC,  will have an arith-
‘metic  average daily HPR of 1.0 and a population standard deviation (as well
as  variance and covariances) in those daily HPRs  of 0. What this means is
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that each day the HPR for NIC will be 1.0. The correlation coefficients for
NIC to any other market system are always 0.

Now we set the sum of the weights constraint to some arbitrarily high
number, greater than I. A good initial value is 3 times the number of mar-
ket systems (without NIC) that you are using. Since we have 4 market sys-
tems (when not counting NIC) we should set this sum of the weights con-
straint to 4 *  3 = 12. Note that we are not really lifting the constraint that
the sum of the weights be below some number, we are just setting this con-
straint at an arbitrarily high value. The difference between this arbitrarily
high value and what the sum of the weights actually comes out to be will be
the weight assigned to NIC.

We are not going to really invest in NIC, though. It’s just a null entry
that we are pumping through the matrix to arrive at the unconstrained
weights of our market systems. Now, let’s take the parameters of our four
market systems from Chapter 6 and add NIC as well:

Expected Standard

Investment Expected Return as an HPR Deviation of Return

Toxic0 1.095 .316227766

lncubeast Corp. 1.13 .5
LA Garb 1 .21 .632455532
Savings Account 1.085 0

NIC 1.00 0

The covariances among the market systems, with NIC included, are as fol-
lows:

T I L S N

T .l -.0237 .Ol 0 0

I -.0237 .25 .079 0 0
L .Ol ,079 .4 0 0
s 0 0 0 0 0

N 0 0 0 0 0

Thus, when we include NIC, we are now dealing with 5 market systems;
therefore, the generalized form of the starting augmented matrix is:

Xl *u1 + x,  * UC2 + x3 * u3 + x4 * u4 + x5 * us = E

Xl + 52 + x3 + x4 +x,  = s
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x1 * cov,,,  + x,  * cov,,,  + x3 * cov,,,  + x4 * cov,,4  + x,

* cov, 5 + .5 * L, * u,  + .5 * Lg

x1 * cov,,,  + x,  * cov,,,  + x3 * cov,,,  + x4 * cov,,,  + x,
*COV,,+.5*L,*U,+.5*L,

x1*c0v31+x,*c0v3,+x3*c0v33+x4*c0v3,+x,

*cov,5;.5*L1*ug+‘.5*Lz ’

x1 * cov4  1 + x, *cov4~+x3*cov43+x4*cov44+x5
* cov, 5 i .5 * L, * u, +‘.5 * L, ’

xl*cov51+x~*cov5~+x3*cov53+x4*cov54+x5

* CO\‘5  5 i .5 * L, * u,  +‘.5 * Lz ’

where E = The expected return of the portfolio.

S = The sum of the weights constraint.

cov,,,  = The covariance between securities A and B.

Xi = The percentage weighting of the ith security.

Ui  = The expected return of the ith security.

LI = The first Lagrangian multiplier.

Lz = The second Lagrangian multiplier.

=o

=o

=o

=o

=o

Thus, once we have included NIC, our starting augmented matrix
r . .appears as tallows:

Xl x2 x3 x4 x5

.095 .13 .21 .085 0
1 1 1 1 0
.l -.0237 .Ol 0 0

-.0237 .25 ,079 0 0
.Ol ,079 .4 0 0

0 0 0 0 0
Cl 0 0 0 0

Ll L2 I Answer

I E
I 1 2

.095 1 I 0

.13 1 I 0

.21 1 I 0

.085 1 I 0
0 1 I 0

1 Note that the answer column of the second row, the sum of the weights
‘constraint, is 12,  as we determined it to be by multiplying the number of

’ market systems (not including NIC) by 3.
When you are using NIC, it is important that you include it as the last,

the Nth market system of N market systems, in the starting augmented
@atrix.
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Now, the object is to obtain the identity matrix by using row operations
to produce elementary transformations,as  was detailed in Chapter 6. You
can now create an unconstrained AHPR efficient frontier and an uncon-
strained GHPR  efficient frontier. The unconstrained AHPR efficient fron-
tier represents using leverage but not reinvesting.

The GHPR efficient frontier represents using leverage and reinvesting
the profits. Ideally, we want to find the unconstrained geometric optimal
portfolio. This is the portfolio that will result in the greatest geometric
growth for us. We can use Equations (7.06a) through (7.06d) to solve for
which of the portfolios along the efficient frontier is geometric optimal. In
so doing, we find that no matter what value we try to solve E for (the value
in the answer column of the frrst  row), we get the same portfolio-com-
prised of only the savings account levered up to give us whatever value for
E we want. This results in giving us our answer; we get the lowest V (in this
case zero) for any given E.

What we must do, then, is take the savings account out of the matrix and
start over. This time we will try to solve for only four market systems-
Toxico,  Incubeast, LA Garb, and NIC-and we set our sum of the weights
constraint to 9. Whenever you have a component in the matrix with zero
variance and an AHPR greater than 1, you’ll end up with the optimal port-
folio as that component levered up to meet the required E.

Now, solving the matrix, we find Equations (7.06a) through (7.06d) satis-
fied at E equals .2457. Since this is the geometric optimal portfolio, V is also
equal to .2457. The resultant geometric mean is 1.142833. The portfolio is:

Toxic0 102.5982%

Incubeast 49.00558%

LA Garb 40.24979%

NIC 708.14643%

‘Wait,” you say. “How can you invest over 100% in certain components?
We will return to this in a moment.

If NIC is not one of the components in the geometric optimal portfolio,
then you must make your sum of the weights constraint, S, higher. you
must keep on making it higher until NIC becomes one of the components
of the geometric optimal portfolio. Recall that if there are only two  compo-
nents in a portfolio, if the correlation coefficient between them is -1, and if
both have positive mathematical expectation, you will be required to finance
an infinite number of contracts. This is so because such a portfolio would
never have a losing day. Now, the lower the correlation coefficients are
between  the components in the portfolio, the higher the percentage
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required to be invested in those components is going to be. The difference
between the percentages invested and the sum of the weights constraint, S,
must be filled by NIC. If NIC doesn’t show up in the percentage allocations
for the geometric optimal portfolio, it means that the portfolio is running
into a constraint at S and is therefore not the unconstrained geometric opti-
mal. Since you are not going to be actually investing in NIC, it doesn’t mat-
ter how high a percentage it commands, as long as it is listed as part of the
geometric optimal portfolio.

HOW OPTIMAL f FITS WITH OPTIMAL PORTFOLIOS

In Chapter 6 we saw that we must determine an expected return (as a per-
centage)  and an expected variance in returns for each component in a port-
folio. Generally, the expected returns (and the variances) are determined
from the current price of the stock. An optimal percentage (weighting) is
then determined for each component. The equity of the account is then
multiplied by a components weighting to determine the number of dollars
to allocate to that component, and this dollar allocation is then divided by
the current price per share to determine how many shares to have on.

That generally is how portfolio strategies are currently practiced. But it is
J not optimal. Here lies one of this book’s many hearts. Rather than deter-
\’ mining the expected return and variance in expected return from the cur-
Id rent price of the component, the expected return and variance in returns
should be determined from the optimal f, in dollars, for the component. In

I other words, as input you should use the arithmetic average HPR and the
! variance in the HPRs.  Here, the HPRs  used should be not of trades, but of

i
a fixed time length such as days, weeks, months, quarters, or years-as we
did in Chapter 1 with Equation (1.15).

(1.15) Daily HPR = (A/B) + 1

where A = Dollars made or lost that day.

B = Optimal fin dollars.

We need not necessarily use days. We can use any time length we like so
‘long as it is the same time length for all components in the portfolio (and
the  same time length is used for determining the correlation coefficients
)etween  these HPRs  of the different components). Say the market system
eth  an optimal f of $2,000 made $100 on a given day. Then the HPR for
hat market system for that day is 1.05.
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if you are figuring your optimal f based on equalized data, you must use
Equation (2.12) in order to obtain your daily HP&:

(2.12) Daily HPR = D$/f$ + 1

where D$ = The dollar gain or loss on 1 unit from the previous day.
This is equal to

(Tonight’s Close - Last Night’s Close) * Dollars per Point

f$ = The current optimal fin dollars, calculated from
Equation (2.11). Here, however, the current price vari-
able is last night’s close.

In other words, once you have determined the optimal fin dollars for l
unit of a component, you then take the daily equity changes on a l-unit
basis and convert them to HPRs  per Equation (1.15)-or,  if you are using
equalized data, you can use Equation (2.12). When you are combining mar-
ket systems in a portfolio, all the market systems should be the same in
terms of whether their data, and hence their optimal fs and by-products,
has been equalized or not.

Then we take the arithmetic average of the HPRs. Subtracting 1 from
the arithmetic average will give us the expected return to use for that com-
ponent. Taking the variance of the daily (weekly, monthly, etc.) IIPRs  will
give the variance input into the matrix. Lastly, we determine the correlation
coefficients between the daily HPRs  for each pair of market systems under
consideration.

Now here is the critical point. Portfolios whose parameters (expected
returns, variance in expected returns, and correlation coefficients of the
expected returns) are selected based on the current price of the component
will not yield truly optimal port$olios.  To discern the truly optimal port$olio
you  must derive the input parameters based on trading 1 unit at the optimal

ffor each component. You cannot be more at the peak of the optimal f curve
than optimal f itself: To base the parameters on the current market price of
the component is to base your parameters arbitrarily-and, as a conse-
quence, not necessarily optimally.

Now let’s return to the question of how you can invest more than 100%
in a certain component. One of the basic premises of this book is that
weight and quantity are not the same thing. The weighting that you derive
from solving for a geometric optimal portfolio must be reflected back into
the optimal f’s of the portfolio’s components. The way to do this is to divide
the optimal f’s for each component by its corresponding weight. Assume we
have the following optimal f’s (in dollars):
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Toxic0

Incubeast

LA Garb

$2,500

$4,750

$5,000

(Note that, if you are equalizing your data, and hence obtaining an equal-
ized optimal f and by-products, then your optimal fs in dollars will change
each day based upon the previous day’s closing price and Equation [2.11].)

We now divide these f’s by their respective weightings:

Toxic0

Incubeast

LA Garb

$2,500/1.025982  = $2,436.69

$4,750/.4900558  = $9,692.77

$5,000/.4024979  = $12,422.43

Thus, by trading in these new “adjusted”f  values, we will be at the geo-
’ metric optimal portfolio. In other words, suppose Toxic0  represents a cer-
: tain market system. By trading 1 contract under this market system for
b every $2,436.69  in equity (and doing the same with the other market sys-
9 terns at their new adjusted f values) we will be at the geometric optimal
i unconstrained portfolio. Likewise if Toxic0 is a stock, and we regard 100
i-.IS hares as “1 contract,” we will trade 100 shares of Toxic0  for every

$2,436.69  in account equity. For the moment, disregard margin com-
pletely. Later in the next chapter we will address the potential problem of
‘margin requirements.

“Wait a minute,” you protest. “If you take an optimal portfolio and
:hange  it by using optimal f, you have to prove that it is still optimal. But if
you  treat the new values as a different portfolio, it must fall somewhere else
Bn the return coordinate, not necessarily on the efficient frontier. In other
mrds, if you keep reevaluating f,  you cannot stay optimal, can you?”

We are not changing the f values. That is, our f values (the number of
mits put on for so many dollars in equity) are still the same. We are simply
?rforming  a shortcut through the calculations, which makes it appear as
bough  we are “adjusting” our f values. We derive our optimal portfolios
med  on the expected returns and variance in returns of trading 1 unit of
wh of the components, as well as on the correlation coefficients. We thus
brive optimal weights (optimal percentages of the account to trade each
bmponent  with). Thus, if a market system had an optimal f of $2,000, and
b  optimal portfolio weight of .5, we would trade 50% of our account at the
iill1 optimal f level of $2,000 for this market system. This is exactly the same
b if we said we will trade 100% of our account at the optimal f divided by
b  optimal weighting ($2,000/.5)  of $4000. In other words, we are going toI
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trade the optimal f of $2,000 per unit on 50% of our equity, which in turn is

exactly the same as saying we are going td trade the adjusted f of $4,000 on
100% of our equity.

The AHPRs  and SDS  that you input into the matrix are determined from
the optimal f values in dollars. If you are doing this on stocks, you can com-
pute your values for AHPR, SD, and optima1 f on a I-share or a lOO-share
basis (or any other basis you like). You dictate the size of one unit.

In a nonleveraged situation, such as a portfolio of stocks that are not on
margin, weighting and quantity are synonymous. Yet in a leveraged situa-
tion, such as a portfolio of futures market systems, weighting and quantity
arc different indeed. YOU can now see the idea first roughly introduced in
Portjiilio  Management Formulas: that optimal quantities are what we seek
to know, and that this is afrrnction of optimal weightings.

\Vhen we figure the correlation coefficients on the HPRs  of two market
systems, both with a positive arithmetic mathematical expectation, we find a
slight tendency toward positive correlation. This is because the equity
curves (the cumulative running sum of daily equity changes) both tend to
rise up and to the right. This can be bothersome to some people. One solu-
tion is to determine a least squares regression line to each equity curve
(before  equalization, if employed) and then take the difference at each
point in time on the equity curve and its regression line. Next, convert this
now detrended equity curve back to simple daily equity changes (noncumu-
lative, i.e., the daily change in the detrended equity curve). If you are equal-
izing the data, you would then do it at this point in the sequence of events.
Lastly, you figure your correlations on this processed data.

This technique is valid so long as you are using the correlations of daily
equity changes and not prices. If you use prices, you may do yourself more
harm than good. Very often prices and daily equity changes are linked. Au
example would be a long-term moving average crossover system. This

detrending technique must always be used with caution. Also, the daily
AHPR and standard deviation in IIPRs  must always be figured off of nou-
detrended data.

A final problem that happens when you detrend your data occurs with
systems that trade infrequently. Imagine two day-trading systems that give
one  trade per week, both on different days. The correlation coefficient
between them may be only slightly positive. Yet when we dctrend therr
data, we get vey  high positive correlation. This mistakenly happens because
their regression lines are rising a little each day. Yet on most days the equitY
change is zero. Therefore, the difference is negative. The preponderance of

slightly negative days with both market systems, then, mistakeuly results ia
high positive correlation.

COMPLETING THE LOOP

THRESHOLD TO THE GEOMETRIC FOR PORTFOLIOS

2 8 7

Now  let’s address the problem of incorporating the threshold to the geo-
metric with the given optimal portfolio mix. This problem is readily handled
simply by dividing the threshold to the geometric for each component by its
weighting in the optimal portfolio. This is done in exactly the same way as

optimal fs of the components are divided by their respective weightings
to obtain a new value representative of the optimal portfolio mix. For exam-
ple, assume that the threshold to the geometric for Toxic0 is $5,100.
Dividing this by its weighting in the optimal portfolio mix of 1.025982 gives
us a new adjusted threshold to the geometric of:

Threshold = $5,100/1.025982

= $4,970.85

Since the weighting for Toxic0  is greater than 1, both its optimal f and its
threshold to the geometric will be reduced, for they are divided by this
weighting. In this case, if we cannot trade the fractional unit with Toxico,
and if we are trading only 1 unit of Toxico, we will switch up to 2 units only
when our equity gets up to $4,970.85.

Recall that our new adjusted f value in the optimal portfolio mix for
Toxic0 is $2,436.69  ($2,500/1.025982).  Since twice this amount equals
$4,873.38, we would ordinarily move up to trading two contracts at that
,point.  However, our threshold to the geometric, being greater than twice
the f allocation in dollars, tells us there isn’t any benefit to switching to trad-
ing 2 units before our equity reaches the threshold to the geometric of
$4970.85.

Again, if you are equalizing your data, and hence obtaining an equalized
optimal f and by-products, including the threshold to the geometric, then

optimal fs in dollars and your thresholds to the geometric will change
day, based upon the previous day’s closing price and Equation (2.11).

XOMPLETING  THE LOOP

Qne thing you will readily notice about unconstrained portfolios (portfolios
$r which the sum of the weights is greater than 1 and NIC shows up as a
parket  system in the portfolio) is that the portfolio is exactly the same for

r given level of E-the only difference being the degree of leverage.
Wis is not true for portfolios lying along the efficient frontier(s) when the
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sum of the weights is constrained). In other words, the ratios of the weigllt-
ings  of the different market systems to e&h other are always the same for
any point along the unconstrained efficient frontiers (AIIPR  or GHPR).

For example, the ratios of the different weightings between the different
market systems in the geometric optimal portfolio can be calculated. The
ratio of Toxic0 to Incubeast is 102.5982% divided by 49.00558%,  which
equals 2.0936. We can thus determine the ratios of all the components in
this portfolio to one another:

ToxicoAncubeast  = 2.0936

Toxico/LA Garb = 2.5490

Incubeast/LA Garb = 1.2175

Now, we can go back to the unconstrained portfolio and solve for differ-
ent values for E. What follows are the weightings for the components of the
unconstrained portfolios that have the lowest variances for the given values
of E. You will notice that the ratios of the weightings of the components are
exactly the  same:

Toxic0
lncubeast
LA Garb

E = .I E = .3

.4175733 1.252726

.I  994545 .5963566

.1636171 .49145

Thus, we can state that the unconstrained eflcient  frontiers are the same
portfolio at di&ent  levels of leverage. This portfolio, the one that gets lev-
ered up and down with E when the sum of the weights constraint is lifted, is
the portfolio that has a value of zero for the second Lagrangian multiplier
when the sum of the weights equals 1.

Therefore, we can readily determine what our unconstrained geometric
optimal portfolio will be. First, we find the portfolio that has a value of zero
for the second Lagrangian multiplier when the sum of the weights is con-
strained to 1.00. One way to find this is through iteration. The resultant
portfolio will be that portfolio which gets levered up (or down) to satisfy any
given E in the unconstrained portfolio. That value for E which satisfies any
of Equations (7.06a)  through (7.06d) will be the value for E that yields the
unconstrained geometric optimal portfolio.

Another equation that we can use to solve for which portfolio along the
unconstrained AHPR eficient  frontier is geometric optima1 is to use the
first Lagrangian multiplier that results in determining a portfolio along any
particular point on the unconstrained AHPR efficient frontier. Recall from
Chapter 6 that one of the by-products in determining the composition of a

mus,  we can state that the geometric optimal portfolio is that portfolio which, when the sum
of the weights is constrained to 1, has a second Lagrangian  m&plier  eqrlal  to 0, and when
unconstrained  ha5  a first Lagrangian  multiplier of -2. Such a portfolio till  also have a second
bgLtn  multiplier equal to 0 when unconstrained.
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portfolio by the method of row-equivalent matrices is the first Lagrangian
multiplier. The first Lagrangian multiplier represents the instantaneous rate
of change in variance with respect to expected return, sign reversed. A first
Lagrangian multiplier equal to -2 means that at that point the variance was
changing at that rate (-2) opposite the expected return, sign reversed. This
would result in a portfolio that was geometric optimal.

(7.06e)  Ll =  -2

where Ll = The first Lagrangian multiplier of a given portfolio along
the unconstrained AHPR efficient frontier.”

Now it gets interesting as we tie these concepts together. TIze portfolio
that gets levered up and doum  the unconstrained ejjkient  frontiers (artth-
metic  or geometric) is the portfolio tangent to the CML line emanating from
an RFR of 0 when the sum of the weights is constrained to 1.00 and NIC  is
not employed.

Therefore, we can also find the unconstrained geometric optimal portfo-
lio by first finding the tangent portfolio to an RFR equal to 0 where the sum
of the weights is constrained to 1.00, then levering this portfolio up to the
point where it is the geometric optimal. But how can we determine how
much to lever this constrained portfolio up to make it the equivalent of the
unconstrained geometric optimal portfolio?

Recall that the tangent portfolio is found by taking the portfolio along the
constrained efficient frontier (arithmetic or geometric) that has the highest
Sharpe ratio, which is Equation (7.01). Now we lever this portfolio up, and
we multiply the weights of each of its components by a variable named q,
which can be approximated by:

(7.13) q = (E - RFR)N

where E = The expected return (arithmetic) of the tangent portfolio.

RFR = The risk-free rate at which we assume you can borrow or
loan.

V = The variance in the tangent portfolio.

Equation (7.13) actually is a very close approximation for the actual opti-
mal q.
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An example may help illustrate the role of optimal q. Recall that our
unconstrained geometric optimal portfolio is as f0llOWS:

Camoonent Weight

Toxic0
lncubeast
LA Garb

1.025955
/I900436
.4024874

This portfolio, we found, has an AHPR of 1.245694 and variance of
.2456941.  Throughout the remainder of this discussion we will assume for
simplicity’s sake an RFR of 0. (Incidentally, the Sharpe ratio of this portfo-
lio, (AHPR - (1 + RFR))/SD,  is .49568.)

Now, if we were to input the same returns, variances, and correlation
coefficients of these components into the matrix and solve for which portfo-
lio was tangent to an RFR of 0 when the sum of the weights is constrained
to 1.00 and we do not include NIC, we would obtain the following portfolio:

Comoonent Weight

Toxic0
lncubeast
LA Garb

.5344908

.2552975

.2102117

This particular portfolio has an AHPR of 1.128, a variance of .066683,
and a Sharpe ratio of .49568. It is interesting to note that the Sharpe ratio of
the tangent portfolio, a portfolio for which the sum of the weights is con-
strained to 1.00 and we do not include NIC, is exactly the same as the
Sharpe ratio for our unconstrained geometric optimal portfolio.

Subtracting 1 from our AHPRs  gives us the arithmetic average return of
the portfolio. Doing so we notice that in order to obtain the same return for
the constrained tangent portfolio as for the unconstrained geometric opti-
mal portfolio, we must multiply the former by 1.9195.

.245694/.128  = 1.9195

Now if we multiply each of the weights of the constrained tangent port-
folio, the portfolio we obtain is virtually identical to the unconstrained gee-
metric optimal portfolio:

Component Weight * 1.9195 = Weight

Toxic0 .5344908 1.025955
lncubeast .2552975 .4900436
LA Garb .2102117 .4035013

COMPLETING THE LOOP

The factor 1.9195 was arrived at by dividing the return on the uncon-
strained geometric optimal portfolio by the return on the constrained tan-
gent portfolio. Usually, though, we will want to find the unconstrained geo-
metric optimal portfolio knowing only the constrained tangent portfolio.
This is where  optimal q comes in.3 If we assume an RFR of 0, we can deter-
mine the optimal q on our constrained tangent portfolio as:

(7.13) q = (E - RFR)N

= (. 128 - O)/.OSSSSS

= 1.919529715

A few notes on the RFR. To begin with, we should always assume an
RFR of 0 when we are dealing with futures contracts. Since we are not
actually borrowing or lending funds to lever our portfolio up or down, there
is effectively an RFR of 0. With stocks, however, it is a different story. The
RFR you use should be determined with this fact in mind. Quite possibly,
the leverage you employ does not require you to use an RFR other than 0.

You will often be using AHPRs  and variances for portfolios that were
determined by using daily HPRs  of the components. In such cases, you
must adjust the RFR from an annual rate to a daily one. This is quite easy to
accomplish. First, you must be certain that this annual rate is what is called
the efictizje  annual interest rate. Interest rates are typically stated as annual
percentages, but frequently these annual percentages are what is referred to

as the nominal annual interest rate. When interest is compounded semian-
nually, quarterly, monthly, and so on, the interest earned during a year is
greater than if compounded annually (the nominal rate is based on com-
pounding annually). When interest is compounded more frequently than
annually, an effective annual interest rate can be determined from the nom-
inal interest rate. It is the effective annual interest rate that concerns us and
that we will use in our calculations. To convert the nominal rate to an effec-
tive rate we can use:

! (7.14) E=(l+WM)AM-I

where E = The effective annual interest rate.

R  = The nominal annual interest rate.

M = The number of compounding periods per year.

hime,  Henly,  and Donald Tuttle, “Criteria for PortTolio  Buikhg,”  Jmrmol  of  Finance 22,
eptember  1967,  pp. 362363.
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Assume that the nominal annual interest rate is 9%, and suppose that it
is compounded monthly. Therefore, the c’orresponding  effective annual
interest rate is:

(7.14) E = (1 + .09/12) A  12 - 1

= (1 + .0075) A  12 - 1

= 1.0075 A  12 - 1

= 1.093806898 - 1

= .093806898

Therefore, our effective annual interest rate is a little over 9.38%. Now if
we figured our HPRs  on the basis of weekdays, we can state that there are
365.2425/7  * 5 = 260.8875 weekdays, on average, in a year. Dividing
.093806898  by  260.8875 g ives us a daily RFR of .0003595683887.

If we determine that we are actually paying interest to lever our portfolio
up, and we want to determine from the constrained tangent portfolio what
the unconstrained geometric optimal portfolio is, we simply input the value
for the RFR into the Sharpe ratio, Equation (7.01),  and the optima1 q,
Equation (7.13).

Now to close the loop. Suppose you determine that the RFR for your
portfolio is not 0, and you want to find the geometric optimal portfolio with-
out first having to find the constrained portfolio tangent to your applicable
RFR. Can you just go straight to the matrix, set the sum of the weights to
some arbitrarily high number, include NIC, and find the unconstrained
geometric optimal portfolio when the RFR is greater than O? Yes, this is
easily accomplished by subtracting the RFR from the expected returns of
each of the components, but not from NIC (i.e., the expected return for
NIC remains at 0, or an arithmetic average HPR of 1.00). Now, solving the
matrix will yield the unconstrained geometric optimal portfolio when the
RFR is greater than 0.

Since the unconstrained efficient frontier is the same portfolio at differ-
ent levels of leverage, you cannot put a CML line on the unconstrained effi-
cient frontier. You can only put CML lines on the AHPR or GHPR efficient
frontiers if they are constrained (i.e., if the sum of the weights equals I). It
is not logical to put CML lines on the AHPR or GHPR unconstrained e@-
cient frontiers.

We have seen numerous ways of arriving at the geometric optimal
port$olio.  For starters, we can $nd  it empirically, as was detailed in
Portfolio Management Formulas and recapped in Chapter 1 of this
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text. We have seen how to find it parametrically in this chapter, from
a number of diflerent  angles, for any value of the risk-free rate.

Now that we know how to find the geometric optimal portfolio we
must learn how to use it in real life. The geometric optimal portfolio
will give us the greatest possible geometric growth. In the next chapter
we will go into techniques to use this portfolio within given risk
constraints.

i
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Risk Management

We now know how to find the optimal portfolios by numerous differ-
ent methods. Further, we now have a thorough understanding  of the
geometry of portjolios  and the relationship of optimal quantities and
optimal weightings. We can now see that the best way to trade  any
portfolio of any underlying instrument is at the geometric optimal
level. Doing so on a reinvestment of returns basis will maximize the
ratio of expected gain to expected risk.

In this chapter we discuss how to use these geom.etric  optimal port-
folios within the risk contraints  that we specify. Thus, whatever vehi-
cles we are trading in, we can align ourselves anywhere we desire on
the risk spectrum. In so doing, we will obtain the maximum rate of
geometric growth for a given level of risk.

ASSET ALLOCATION

You should be aware that the optimal portfolio obtained by this parametric
technique will always be almost, if not exactly, the same as the portfolio that
would be obtained by using an empirical technique such as the one detailed
in the first chapter or in Por$olio  Management Formulas.

As such, we can expect tremendous drawdowns  on the entire port$olio  in
terms of equity retracement. Our only guard against this is to dilute the

portfolio somewhat. What this amounts to is combining the geometric ope-
ma1 portfolio with the risk-free asset in some fashion. This we call asset allo-
cation. The degree of risk  and safety for any investment is not a function

of
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the investment itself; but rather a function of asset allocation.
Even portfolios of blue-chip stocks, if traded at their unconstrained geo-

metric optimal portfolio levels, will show tremendous drawdowns. Yet these
blue-chip stocks must be traded at these levels to maximize potential geo-
metric gain relative to dispersion (risk) and also provide for attaining a goal
in the least possible time. When viewed from such a perspective, trading
blue-chip stocks is as risky as pork bellies, and pork bellies are no less con-
servative than  blue-chip stocks. The same can be said of a portfolio of com-
modity trading systems and a portfolio of bonds.

The object now is to achieve the desired level of potential geometric gain
to dispersion (risk)  by combining the risk-free asset with whatever it is we
are trading, be it a portfolio of blue-chip stocks, bonds, or commodity trad-
ing systems.

When you trade a portfolio at unconstrained fractional f,  you are on tile
unconstrained GHPR efficient frontier, but to the left of the geometric
optimal point-the point that satisfies any of Equations (7.06a) through
(7.06e). Thus, yo u have less potential gain relative to the dispersion than
you would if you were at the geometric optimal point. This is one way you
can combine a portfolio with the risk-free asset.

Another way you can practice asset allocation is by splitting your equity
into two subaccounts, an active subaccount and an inactive subaccount.
These are not two separate accounts, rather they are a way of splitting a sin-
gle account in theory. The technique works as follows. First, you must
decide upon an initial fractional level. Suppose that, initially, you want to
emulate an account at the half f level. Your initial fractional level is .S (tlie
initial fractional level must be greater than zero and less than 1). This means
YOU will split your account, with half the equity in your account going into
the inactive subaccount and half going into the active subaccount. Assume
you are starting out with a $100,000 account. Initially, $SO,OOO  is in the inac-
tive subaccount and $SO,OOO  is in the active  subaccount. It is the  equity in
the active subaccount that you use to determine how many contracts to
trade. These subaccounts are not real; they are a hypothetical construct you
are creating in order to manage your money more effectively. You always
use the full optimal fs with this technique. Any equity changes are reflected
in the active portion of the account. Therefore, each day you must look at
the account’s total equity (closed equity plus open equity, marking open
Positions to the market), and subtract the inactive amount (which will
remain constant from day to day). The difference is your active equity, and
it is on this difference that you will calculate how many contracts to trade at
the &II  f levels.
i Now  suppose that the optimal f for market system A is ‘to trade 1 con-
Tract  for every $2,500 in account equity. You come into the first day with
!,
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$jO,OOO  in active equity, and therefore you will look to trade 20 contracts. If
you were using the straight half f strategy; you  would end up with the same
number of contracts on day one. At half f,  you would trade 1 contract for
every $5,000 in account equity ($2,500/.5),  and you would use the full
$100,000 account equity to figure how many contracts to trade. Therefore,
under the half f strategy, you would trade 20 contracts on this day as well.

However, as soon as the equity in the accounts changes, the number of
contracts you will trade changes as well. Assume now that you make $5,000
this next day, thus pushing the total equity in the account up to $105,000.
Under the half f strategy, you will now be trading 21 contracts. However,
with the split-equity technique, you must subtract the now-constant inactive
amount of $50,000  from your total equity of $105,000. This leaves an active
equity portion of $55,000,  from which you will figure your contract size at
the optimal f level of 1 contract for every $2,500 in equity. Therefore, with
the split-equity technique, you will now look to trade 22 contracts.

The procedure works the same way on the downside of the equity curve,
with the split-equity technique peeling off contracts at a faster rate than the
fractional f strategy does. Suppose you lost $5,000 on the first day of trad-
ing, putting the total account equity at $95,000. With the fractional f strat-
egy you would now look to trade 19 contracts ($9S,OOO/$S,OOO).  However,
with the split-equity technique you are now left with $45,000 of active
equity, and thus you will look to trade 18 contracts ($45,000/$2,500).

Notice that with the split-equity technique, the exact fraction of optimal f
that we are using changes with the equity changes. We specify the fraction
we want to start at. In our example we used an initial fraction of .5. When
the equity increases, this fraction of the optimal f increases too, approaching
1 as a limit as the account equity approaches infinity. On the downside, this
fraction approaches 0 as a limit at the level where the total equity in the
account equals the inactive portion. The fact that portfolio insurance is built
into the split-equity technique is a tremendous benefit and will be discussed
at length later in this chapter. Because the split-equity technique has a frac-
tion for f that moves, we refer to it as a dynamic fractional f strategy,  as
opposed to the straight fractional f (.stuticfkctionalf)  strategy.

The static fractional f strategy puts you on the CML line somewhere to
the left of the optimal portfolio if you are using a constrained portfolio.
Throughout the life of the account, regardless of equity changes, t h e

account will stay at that point on the CML line. If you are using an uncon-
strained portfolio (as you rightly should), you will be on the unconstrained
efficient frontier (since there are no CML lines with unconstrained portfo-
lios) at some point to tl le left of the optimal portfolio. As the equity in the
account changes, you stay at the same point on the unconstrained efficient
frontier.

With  the dynamic fractional f technique, you start at these same points
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for the constrained and unconstrained portfolios. However, as the account
equity increases, the portfolio moves up and to the right, and as the equity
decreases, the portfolio moves down and to the left. The limits are at the
peak of the curve to the right where the fraction of f equals 1, and on the
left at the point where the fraction off equals 0.

With the static f method of asset allocation, the dispersion remains con-
stant , since the fraction of optimal fused is constant. Unfortunately, this is
not true with the dynamic fractional f technique. Here, as the account
equity increases, so does the dispersion as the fraction of optimal f used
increases. The upper limit to this dispersion is the dispersion at full  f as the

._ . .,.

i

account equrty  approaches intinity. On the downside, the dispersion dimin-
ishes rapidly as the fraction of optimal f used approaches zero as the total
account equity approaches the inactive subaccount equity. Here, the lower

$
limit to the dispersion is zero.

, Using the dynamic fractional f technique is analogous tc +roAinn  ‘1”
: account full out at the optimal f levels, where the initial size of L11G  acL.YU1ll
1; is the active equity portion. So we see that there are two ways to dilute an

1
‘. account down from the full geometric optimal portfolio, two ways tc DV~V-

: cise  asset allocation. We can trade a static fractional or a dynamic fraLllvlla
i;f.Th  de ynamic  fractional will also have dynamic variance, a slight negative
b  but it also provides for portfolio insurance (more on this later). Although the

two  techniques are related, you can also see that they differ. Which is best?
Assume we have a system in which the average daily arithmetic HPR is

1.0265. The standard deviation in these daily HPRs  is .1211, so the geomet-
ric mean is 1.019. Now, we look at the numbers for a .2 static fractional f
bd  a .l static fractional f by using Equations (2.06) through (2.08):

(2.06) FAHPR = (AHPR - 1) * FRAC + 1

(2.07) FSD = SD * FRAC

!.08) FGHPR = (FAHPR h 2 - FSD h 2) h  l/2

where FRAC = The fraction of optimal f we are solving for.

AHPR = The arithmetic average HPR at the optimal f.

SD = The standard deviation in HPRs  at the optimal f.

FAHPR = The arithmetic average HPR at the fractional f.

FSD = The standard deviation in HPRs  at the fractional f.

FGHPR = The geometric average HPR at the fractional f.
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The results then are:

AHPR
S D
GHPR

Full f .2  f .l f

1.0265 1.0053 1.00265
.1211 .02422 .01211

1 .01933 1.005 1.002577

Now recall Equation (2.09a), the time expected to reach a specific goal:

(2.09a)  N = In(Goal)/ln(Geometrtc  Mean)

where N = The expected number of trades to reach a specific goal.

Coal = The goal in terms of a multiple on our starting stake, a
TWR.

ln() = The natural logarithm function.

Now, we compare trading at the .2 static fractional f strategy, with a geo-
metric mean of 1.005, to the .2 dynamic fractional f strategy (20% as initial
active equity) with a daily geometric mean of 1.01933. The time (number of
days since the geometric means are daily) required to double the static frac-
tional f is given by Equation (2.09a) as:

ln(2)/ln(  1.005) = 138.9751

To double the dynamic fractional f requires setting the goal  to 6. This is
because if you initially have 20% of the equity at work, and you start out
with a $100,000 account, then you initially have $20,000 at work. The goal  is
to make the active equity equal $120,000. Since the inactive equity remains
at $80,000, you will then have a total of $200,000 on your account. Thus, to
make a $20,000 account grow to $120,000  means you need to achieve a
TWR  of 6. Therefore, the goal is 6 in order to double a .2 dynamic frac-
tional  f:

ln(6)/hr(1.01933)  = 93.58634

Notice that it took 93 days for the dynamic fractional f versus 138 days fur
the static fractional f.

Now look at the .l fraction. The number of days expected in order for
the static technique to double is:

ln(2)An(  1.002577) = 269.3404
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Compare this to doubling a dynamic fractional f that is initially set to .l
active. You  need to achieve a TWR of 11, so the number of days required
for the comparative dynamic fractional f strategy  is:

1n(ll)/hr(l.01933)  = 125.2458

To double the account equity at the .l level of fractional f takes 269
days for our static example, as compared to 125 days for the dynamic. The
lower the fraction for-J  the faster the dynamic will  outperform the static

technique.
Now take a look at tripling the .2 fractional f. The number of days

expected by the static technique to triple is:

ln(3)/hr(  1.005) = 220.2704

This compares to its dynamic counterpart, which requires:

In(  ll)/ln(  1.01933) = 125.2458 days

To make 400% profit (i.e., a goal or TWR of 5) requires of the .2 static tech-
nique:

ln(5)/ln(  1.005) = 322.6902 days

which compares to its dynamic counterpart:

In(21)/ln(  1.01933) = 159.0201 days

Th de ynamic  technique takes almost half as much time as the static to
teach the goal of 400% in this example. However, if you look out in time
322.6902 days to where the static technique doubled, the dynamic tech-
ltque  would be at a TWR of:

‘WR  = .8 + (1.01933 h 322.6902) * .2
= .8  + 482.0659576 * .2
= 97.21319

‘l”f+is  represents making over 9,600% in the time it took the static to make
100%.

We  can now amend Equation (2.09a) to accommodate both +hm  c+n++n
nd  fractional dynamic f strategies to determine the expect+
‘_

I
I
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required to achieve a specific goal as a TWR. TO begin with, for the static

fractional f,  we can create Equation (2.09b):

(2.09b) N = ln(Goa1)  /In(A)

where N =The expected number of trades to reach a specific goal.

Goal =The  goal in terms of a multiple on our starting stake, a
TWR.

A =The  adjusted geometric mean. This is the geometric mean,
run through Equation (2.08 to determine the geometric
mean for a given static fractional f.

ln() =The  natural logarithm function.

For a dynamic fractional f,  we have Equation (2.09c):

I’

/ /
I ’

(2.094 N = In(((Goal - l)/ACTV)  + l)/ln(Geometric  Mean)

where N = The expected number of trades to reach a specific
goal.

Goal = The goal in terms of a multiple on our starting
stake, a TWR.

ACTV = The active equity percentage.

Geometric Mean = This is simply the raw geometric mean, there is no
adjustment performed on it as there is in (2.O9b).

In() = The natural logarithm function.

To illustrate the use of (2.09c), suppose we want to determine how long

it will take an account to double (i.e., TWR = 2) at .l active equity and a
geometric mean of 1.01933:

(2.094 N = In(((Goal-  l)/ACTL’)  + l)nn(Geometric  Mean)
= ln(((2 - l)/.l)  + l)/ln(1.01933)
= ln((U.1)  + l)/ln(1.01933)
= ln( 10 + l)/ln( 1.01933)
= In (ll)/ln(  1.01933)
= 2.397895273/.01914554872
= 125.2455758

Thus, if our geometric mean is determined on a daily basis, we can
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Figure 8-l Static versus dynamic fractional f.

expect to double in about 125% days. If our geometric mean is determined
on a trade-by-trade basis, we can expect to double in about 125% trades. So
long as you are dealing with an N great enough such that (2.09c)  is less than
(2.09b),  then you are benefiting from dynamic fractional f trading.

Figure 8-l demonstrates the relationship between trading at a static ver-

sus a dynamic fractional f strategy over time. The more the time that
elapses, the greater the difference between the static fractional f and the
dynamic fractional f strategy. Asymptotically, the dynamic fractional f strat-
egy provides infinitely greater wealth than its static counterpart.

In the long run you are better off to practice asset  allocation in a dynamic
fkactionalf technique. That is, you determine an initial level, a percentage,

:, to allocate as active equity. The remainder is inactive equity. The day-to-day
equity changes are reflected in the active portion only. The inactive dollar
amount remains constant. Therefore, each day you subtract the constant
inactive dollar amount from your total account equity. This difference is the
active portion, and it is on this active portion that you will figure your quan-
tities to trade in based on the optimal f levels.

Eventually, if things go well for you, your active portion will dwarf your
inactive portion, and you’ll have the same problem of excessive variance and
Potential drawdown that you would have had initially at the full optimal f
level.  We now discuss four ways to treat this “problem.” There are no fine
lines  delineating these four methods, and it is possible to mix methods to

met  your specific needs.
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R E A L L O C A T I O N :  F O U R  M E T H O D S

First, a word about the risk-free asset. Throughout this chapter the risk-free
asset has been treated as though it were simply cash, or near-cash equiva-
lents such as Treasury Bills or money market funds (assuming that there is

no risk in any of these).

The risk-free asset can also be any asset which the investor believes has
no risk, or risk so negligible as to be nonexistent. This may include long-

term government and corporate bonds. These can be coupon bonds or
zeros. Holders may even write call options against these risk-free assets to
further enhance their returns.

Many trading programs employ zero coupon bonds as the risk-free asset.
For every dollar invested in such a program, a dollar’s worth of face value
zero coupon bonds is bought in the account. Such a bond, if it were to

mature in, say, 5 years, would surely cost less than a dollar. The difference
between the dollar face value of the bond and its actual cost is the return
the bond will generate over its remaining life. This difference is then
applied toward the trading program. If the program loses all of this money,
the bonds will still mature at their full face value. At the time of the bond
maturity, the investor is then paid an amount equal to his initial investment,
although he would not have seen any return on that initial investment over
the term that the money was in the program (5 years in the case of this
example). Of course, this is predicated upon the managers of the program
not losing an amount in excess of the difference between the face value of
the bond and its market cost.

This same principle can be applied by any trader. Further, you need not
use zero coupon bonds. Any kind of interest-generating vehicle can be used.
The point is that the risk-free asset need not be simply “dead” cash. It can
be an actual investment program, designed to provide a real yield, and this
yield can be made to offset potential losses in the program. The main con-
sidcration is that the risk-free asset be regarded as risk-free (i.e., treated as
though safety of principal were the primary concern).

Now on with our discussion of allocating between the risk-free asset, the
“inactive” portion of the account, and the active, trading portion. The first,
and perhaps the crudest, way to determine what the active/inactive percent-
age split will be initially, and when to reallocate back to this percentage, is
the inwstur  utility method. This can also referred to as the gut feel mn&od,
Here, we assume that the drawdowns to be seen will be equal to a complete
retracement of active equity. Therefore, if we are willing to see a 50% draw-
down, we initially allocate 50% to active equity. Likewise, if we are tilling

to see a 10% drawdown, we initially split the account into 10% active, 90%
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inactive. Basically, with the investor utility method you are trying to allocate
as high a percentage to active equity as you are willing to risk losing.

Now, it is possible that the active portion may be completely wiped out,
at which point the trader no longer has any active portion of his account left
with which to continue trading. At such a point, it will be necessary for the
trader to decide whether to keep on trading, and if so, what percentage of
the remaining funds in the account (the inactive subaccount) to allocate as
new active equity. This new active equity can also be lost, so it is important
that the trader bear in mind at the outset of this program that the initial
active equity is not the maximum amount that can be lost. Furthermore, in
any trading where there is unlimited liability on a given position (such as a
futures trade) the entire account is at risk, and even the trader’s assets out-
side of the account are at risk! The reader should not be deluded into think-
ing that he or she is immune from a string of locked limit days, or an enor-
mous opening gap that could take the entire account into a deficit position,
regardless of what the “active” equity portion of the account is.

This approach also makes a distinction between a drawdown in blood
and a drawdown in diet cola. For instance, if a trader decides that a 25%
equity retracement is the most that the trader would initially care to sit
through, he or she should initially split the account into 75% inactive, 2.5%
active. Suppose the trader is starting out with a $100,000 account. Initially,
therefore, $25,000 is active and $75,000 is inactive. Now suppose that the
account gets up to $200,000. The trader still has $75,000 inactive, but now
the active portion is up to $125,000. Since he or she is trading at the full f
amount on this $125,000, it is very possible to lose a good portion, if not all
of this amount by going into an historically typical drawdown at this point.
Such a drawdown would represent greater than a 25% equity retracement,
even though the amount of the initial starting equity that would be lost
would be 25% if the total account value plunged down to the inactive
$75,000.

An account that starts out at a lower percentage of active equity will
therefore be able to reallocate sooner than an account trading the same
market systems starting out at a higher percentage of active equity.
Therefore, not only does the account that starts out at a lower percentage of
active equity have a lower potential drawdown on initial margin, but also
since  the trader can reallocate sooner he is less likely to get into awkward
ratios of active to inactive equity (assuming an equity runnup) than if he

started out at a higher initial active equity percentage.
As a trader, you are also faced with the question of when to reallocate,

whether you are using the crude investor utility method or one of the more

i sophisticated methods about to be described. You should decide in advance
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at what point in your equity, both on the upside and on the downside, you
want to reallocate. For instance, you may decide that if you get a 100%
return on your initial investment, it would be a good time to reallocate.
Likewise, you should also decide in advance at what point on the downside
you will reallocate. Usually this point is the point where there is either no
active equity left or the active equity left doesn’t allow for even 1 contract in
any of the market systems you are using. You should decide, preferably in
advance, whether to continue trading if this downside limit is hit, and if so,
what percentage to reallocate to active equity to start anew.

Also, you may decide to reallocate with respect to time, particularly for
professionally managed accounts. For example, you may decide to reallo-
cate every quarter. This could be incorporated with the equity limits of real-
location. You may decide that if the active portion is completely wiped out,
you will stop trading altogether until the quarter is over. At the beginning of
the next quarter, the account is reallocated with X% as active equity and
100 - X% as inactive equity.

It is not beneficial to reallocate too frequently. Ideally, you will never
reallocate. Ideally, you will let the fraction of optimal f you are using keep
approaching 1 as your account equity grows. In reality, however, you most
likely will reallocate at some point in time. It is to be hoped you will not
reallocate so frequently that it becomes a problem.

Consider the case of reallocating after every trade or every day. Such is
the case with static fractional f trading. Recall again Equation (2.09a), the
time required to reach a specific goal.

Let’s return to our system, which we are trading with a .2 active portion
and a geometric mean of I.OI933.  We will compare this to trading at the
static fractional .2 f, where the resultant geometric mean is 1.005. If we start
with a $100,000 account and we want to reallocate at $110,000 total equity,
the number of days (since our geometric means here are on a per day basis)
required by the static fractional .2 f is:

ln(l.l)/In(l.O05)  = 19.10956

This compares to using $20,000 of the $100,000 total equity at the full f
amount and trying to get the total account up to $110,000. This would rep-
resent a goal of I.5 times the $20,000:

ln(l.S)/ln(1.01933)  = 21.17807

At lower goals, the static fractional f strategy grows faster than its corre-
sponding dynamic fractional f counterpart. As time elapses, the dynamic
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overtakes the static, until eventually the dynamic is infinitely farther ahead.
Figure 8-l displays this relationship between the static and dynamic frac-
tional fs graphically.

If you reallocate too frequently you are only shooting yourself in the foot,
as the technique would then be inferior to its static fractional f counterpart,
Therefore, since you are best off in the long run to use the dynamic frac-
tional f approach to asset allocation, you are also best off to reallocate funds
between the active and inactive subaccounts as infrequently as possible.
Ideally, you will make this division between active and inactive equity only
once, at the outset of the program.

Generally, the dynamic fractional f will overtake its static counterpart
faster the lower the portion of initial active equity. In other words, a portfo-
lio with an initial active equity of .I will overcome its static counterpart
faster than a portfolio with an initial active equity allocation of .2 will over-
take its static counterpart. At an initial active equity allocation of 100%
(l.O),  the dynamic never overtakes the static fractional f (rather they grow at
the same rate). Also affecting the rate at which the dynamic fractional f
overtakes its static counterpart is the geometric mean of the portfolio itself.
The higher the geometric mean, the sooner the dynamic will overtake the
static. At a geometric mean of 1.0, the dynamic never overtakes its static
counterpart.

A second method for determining initial active equity amounts and real-
location is the scenario planning method.  Under this method the amount
allocated initially is determined mathematically as a function of the different
scenarios, their outcomes, and their probabilities of occurrence, for the per-
formance of the account. This exercise, too, can be performed at regular
intervals. The technique involves the scenario planning method detailed in
Chapter 4.

As an example, suppose you are pondering three possible scenarios for
the next quarter:

Scenario Probabil i ty Resul t

Drawdown
No gain
Good runup

5 0 % -100%
2 5 % 0 %
2 5 % +300%

The result column pertains to the results on the account’s active equity.
Thus, there is a 50% chance here of a 100% loss of active equity, a 25%
chance of the active equity remaining unchanged, and a 25% chance of a
360% gain on the active equity.

In reality you should consider more than three scenarios, but for simplic-

c
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ity, only three are used here. You input the three different scenarios, their
probabilities of occurrence, and their results in units, where each unit rep-
resents a percentage point. The results are determined based on what you
see happening for each scenario if you were trading at the full optimal f
amount.

Inputting these three scenarios yields an optimal f of .ll. Don’t confuse
this optimal f with the optimal fs of the components of the portfolio you are
trading. They are different. Optimal f here pertains to the optimal f of the
scenario planning exercise you just performed, which also told you the opti-
mal amount to allocate as active equity for your given parameters.
Therefore, given these three scenarios, you are best off in an asymptotic
sense to allocate 11% to active equity and the remaining 89% to inactive. At
the beginning of the next quarter, you perform this exercise again, and
determine your new allocations at that time. Since the amount of funds you
have to reallocate for a given quarter is a function of how you have allocated
them for the previous quarter, you are best off to use this optimal f amount,
as it will provide you with the greatest geometric growth in the long run.
(Again, that’s provided that your input-the scenarios, their probabilities,
and the corresponding results-is accurate.)

This scenario planning method of asset allocation is also useful if you are
trying to incorporate the opinion of more than one adviser. In our example,
rather than pondering three possible scenarios for the next quarter, you
might want to incorporate the opinions of three different advisers. The
probability column corresponds to how much faith you have in each differ-
ent adviser. So in our example, the fjrst  scenario, a 50% probability of a
100% loss on active equity, corresponds to a very bearish adviser whose
opinion deserves twice the weight of the other two advisers.

Recall the share atieruge  method of pulling out of a program, which was
examined in Chapter 2. We can incorporate this concept here as a realloca-
tion method. In so doing, we will be creating a technique that systematically
takes profits out of a program advantageously and also takes us out of a los-
ing program.

The program calls for pulling out a regular periodic percentage of the
total equity in the account (active equity + inactive equity). Therefore, each
month, quarter, or whatever time period you are using, you will pull out X%
of your equity. Remember though, that you want to get enough time in
each period to make certain that you are benefiting, at least somewhat, by
dynamic fractional f: Any value for N that is high enough to satisfy Equation
(8.01) is a value for N that we can use and be certain that we are benefiting
from dynamic fractional f:

(8.01) FG”N<=G”N*FRAC+l-FRAC
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where FG = The geometric mean for the fractional f, found by
Equation (2.08).

N = The number of periods, with G and FG figured on the
basis of 1 period.

G = The geometric mean at the optimal f level.

FRAC = The active equity percentage.

If we are using an active equity percentage of 20% (i.e., FRAC = .2),
then FG must be figured on the basis of a .2 f. Thus, for the case where our
geometric mean at full optimal f is 1.01933, and the .2 f (FG) is 1.005, we
want a value for N that satisfies the following:

1.005 h N <= 1.01933 h N * .2 + 1 - .2

We figured our geometric mean for optimal f(G) and therefore also our
geometric mean for the fractional f (FG) on a daily basis, and we want to
see if 1 quarter is enough time. Since there are about 63 trading days per
quarter, we want to see if an N of 63 is enough time to benefit by dynamic
fractional f.  Therefore, we check Equation (8.01) at a value of 63 for N:

1.005 A  63 <= 1.01933 A  63 * .2 + 1 - .2

1.369184237 <= 3.340663933 * .2 + 1 - .2

1.369184237 <= .6681327866  + 1 - .2

1.369184237 <= 1.6681327866 - .2

1.369184237 <= 1.4681327866

The equation is satisfied, since the left side is less than or equal to the right
side. Thus, we can reallocate on a quarterly basis under the given values
here and be benefiting from using dynamic fractional f.

And where do you put this now pulled-out equity? Why, it goes right
back into the account as inactive equity. Each period you will figure the
total value of your account, and transfer that amount from active to inactive
equity. Thus, there is reallocation. For example, again assume a $100,000
account where $20,000 is regarded as the active amount. Say you are share
averaging out on a quarterly basis, and the quarterly percentage you pull out
is 2%. Now assume that at the beginning of the following quarter the
account still stands at $100,000 total equity, of which $20,000 is active
equity. You now take out 2% of the total account equity of $100,000 and
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transfer that amount from active to inactive equity. Therefore, you transfer
$2,000 from active to inactive equity, and your $100,000 account now has
$18,000 active equity and $82,000 inactive.

We hope that the program will outpace  the periodic percentage with-
drawals to the upside. Suppose that in our last example, our $100,000
account goes to $110,000 at the end of the quarter. Now, when we go to
reallocate 2%, $2,200, we debit our active equity amount of $30,000 and
credit our inactive amount of $80,000. Thus, we have $27,800 active equity
and $82,200 inactive. Since our active equity after the reallocation is still
greater than it was at the beginning of the previous period, we can say that
the program has outpaced  the reallocation.

On the other hand, if the program loses money, or if the program goes
nowhere (in which case you are risking money repeatedly, yet not making
any upward progress on your equity), this technique has you eventually end
up with the entire account equity as inactive equity. At that point, you have
automatically ceased trading a losing program.

Naturally, two questions must now crop up. The first is, ‘What must this
periodic percentage reduction be such that if the account equity were to
stagnate after N periodic deductions from active equity, the program would
automatically terminate (i.e., active equity equal to O)? The solution is given
by Equation (8.02):

(8.02) P = 1 - INACTIVE h (l/N)

where P = The periodic percentage of the total account equity
that should be transferred from active to inactive
equity.

INACTIVE = The inactive percent of account equity.

N = The number of periods we want the program to termi-
nate in if the equity stagnates.

Thus, if we were to make quarterly transfers of equity from active to
inactive, and we were using an initial allocation of 80% as inactive equity,
and we wanted the program to terminate in 2B years (10 quarters-i.e., N =
lo), the quarterly percentage would be:

P = 1 - .8 h  (l/10)
= l-.8 h .l
= 1 - .9779327685
= .0220672315
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Thus, we should pull out 2.20672315% of the total equity each quarter, and
transfer that from active to inactive equity.

The second question to arise is, “If we are pulling out a certain given per-
centage, what must the number of periods be in order for the active equity
to equal O?” In other words, if we know we want to pull out P% each period
(again we assume that the periods here are quarters) and if the account
equity stagnates, over how many periods, N, must we make these equity
transfers until the active equity equals 0. The solution is given by Equation
(8.03):

(8.03) N = ln(INACTIVE)/ln(l - P)

where P = The periodic percentage of the total account equity
that will be transferred from active to inactive equity.

INACTIVE = The inactive percentage of account equity.

N = The number of periods it will take for the program to
terminate if the equity stagnates.

Again, assume that the initial inactive equity is allocated as 80% and that
you are pulling out 2.20672315% per quarter. Therefore, the number of
periods, quarters in this case, required until the program terminates if the
equity stagnates is:

N = ln( .8)/ln(  1 - .0220672315)
= ln( .8)/ln(  .9779327685)
= -.223143/-.0223143
= 10

For the given values, it would thus take 10 periods for the program to ter-
minate.

Share averaging will get us out of a portfolio over time at an above-aver-
age price, just as dollar averaging will get us into a portfolio over time at a
below-average cost. Consider now that most people do just the opposite of
this, hence they are getting into and out of a portfolio at prices worse than
average. When  someone opens an account to trade, they dump all the trad-
ing capital in and just start trading. When they want to add funds, they will
almost always invariably add in single blocks of cash, unable to make equal
dollar deposits over time.

A trader trying to live off trading profits will generally withdraw enough
money from the account on a periodic basis to cover his living expenses,
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regardless of what percentage of his account this constitutes. This is exactly
what he should not do. Suppose that the trader’s living expenses are con-
stant from one month to the next, SO he is withdrawing a constant dollar
amount. By doing this he is accomplishing the exact opposite of share aver-
aging in that he will be withdrawing a larger percentage of his funds when
the account balance is lower, and a smaller percentage when the account
balance is higher. In short, he is slowly getting out of the portfolio (or a par-
tion of it) over time at a below-average price.

Rather, the trader should withdraw a constant percentage (of total
account equity, active plus inactive) each month. The withdrawn funds can
be put into a middle account, a simple demand deposit account. Then from
this demand deposit account the trader can withdraw a constant dollar
amount each month to meet his living expenses. If the trader were to bypass
this middle account and withdraw a constant dollar amount directly from
the trading account, it would cause the ideas of share averaging and dollar
averaging to work against him.

Recall from Chapter 2 the observation that when you are trading at the
optimal f levels you can expect to be in the worst-case drawdown 35 to 55%
of the time period you are looking at. Generally, this doesn’t sit well with
most traders. Most traders want or need a much smoother equity curve,
either to satisfy the needs of their living expenses or for other, more emo-
tional, reasons. What trader wouldn’t like to make a steady $X per day from
trading? This 35 to 55% principle is true on a full optimal f basis, and there-
fore is true on a dynamic fractional f basis as well, but is not true on a static
fractional f basis. Since the dynamic is asymptotically better than its static
fractional f counterpart, we can expect this 35 to 55% principle to apply to
us if we are going to trade our account in the mathematically optimal fash-
ion-that is, at full optimal f for a given level of initial risk (our initial active
equity).

The establishment of a buffer demand deposit account allows for the
account to be traded in the mathematically optimal fashion (dynamic opti-
mal f)  while it also allows the share averaging method of reallocation to
work (i.e., cash is transferred to the buffer demand deposit account) and
allows for a steady dollar outcome from the buffer demand deposit account,
thus meeting the trader’s needs. Thus, if a trader needs $X per day to meet
his needs, be they living expenses or otherwise, these can be satisfied with-
out sabotaging the mathematics in the account by establishing and adminis-
tering a buffer demand deposit account, and share averaging funds on a
periodic basis from the trading program to this buffer account. The trader
then makes regular withdrawals of a constant dollar amount from this buffer
account.

F
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Of course, the regular dollar withdrawals must be for an amount less than
the smallest amount transferred from the trading account to the buffer
account. For example, if we are looking at a $500,000 account, we are with-
drawing 1% per month, and we start out with 20% initial active equity, then
we know that our smallest withdrawal from the trading account will be .Ol  *
500,000 * (1 - .2) = .Ol  * 500,000 * .8 = $4,000. Therefore, our constant dol-
lar withdrawal from the buffer account should be for an amount no greater
than $4,000. The buffer account can also be the inactive subaccount.

Before we come to the fourth asset allocation technique, a certain confu-
sion must be cleared up. With optimal fixed fractional trading, you can see
that you add more and more contracts when your equity increases, and vice
versa when it decreases. This technique makes the greatest geometric
growth of your equity in the long run.

WHY REALLOCATE?

Reallocation seems to do just the opposite of what we want to do in that
reallocation trims back after a runup in equity or adds more equity to the
active portion after a period where the equity has been run down.
Reallocation is a compromise between the theoretical ideal and the real-life
implementation. These techniques allow us to make the most of this com-

p r o m i s e .
Ideally, you would never reallocate. When your humble little $10,000

account grew to $10 million, it would never go through reallocation. Ideally,
you would sit through the drawdown that took your account back down to
$50,000 from the $10 million mark before it shot up to $20 million. Ideally,
if your active equity were depleted down to 1 dollar, you would still be able
to trade a fractional contract (a “microcontract”?). In an ideal world, all of
these things would be possible. In real life, you are going to reallocate at
some point on the upside or the downside. Given that you are going to do
this, you might as well do it in a systematic, beneficial way.

In reallocating, or compromising, you “reset” things back to a state you
: would be at if you were starting the program all over again, only at a differ-

ent equity level. Then you let the outcome of the trading dictate where the
t fraction off used floats to by using a dynamic fractional fin between reallo-
.: cations. Things can get levered up awfully fast, even when you start out with
t-  an active equity allocation of only 20%. Remember, you are using the full
1 optimal f on this 20%, and if your program does modestly well, you’ll be
[ trading in substantial quantities relative to the total equity in the account in
c short order.
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PORTFOLIO INSURANCE-THE FOURTH
R E A L L O C A T I O N  T E C H N I Q U E  ’

Assume for a moment that you are managing a stock fund. Figure 8-2
depicts a typical portfolio insurance strate9  (also known as dynamic hedg-
ing).  The floor in this example is the current portfolio value of 100 (dollars
per share). The typical portfolio follows the equity market 1 for 1. This is
represented by the unbroken line. The insured portfolio is depicted here by
the dotted line. Note that the dotted line is below the unbroken line when
the portfolio is at or above its initial value (100). This difference represents
the cost of the portfolio insurance. Otherwise, as the portfolio falls in value,
portfolio insurance provides a floor on the value of the portfolio at a desired
floor value (in this case the present value of 100) minus the cost of perform-
ing the strategy.

In a nutshell, portfolio insurance is akin to buying a put option on the
portfolio. Suppose the fund you are managing consists of only 1 stock, which
is currently priced at 100. Buying a put option on this stock, with a strike
price of 100, at a cost of 10, would replicate the dotted line in Figure 8-2.
The worst that could happen now to your portfolio of 1 stock and a put
option on it is that you could exercise the put, which sells your stock at 100,
and you lose the value of the put, 10. Thus, the worst that this portfolio can
be worth is 90, no matter how far down the underlying stock goes. On the
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Figure 8-2 Portfolio insurance.
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upside, your insured portfolio suffers somewhat in that the value of the
portfolio is always reduced by the cost of the put.

Clearly, looking at Figure 8-2 and considering the fundamental equation
for trading, the estimated TWR of Equation (1.19c), you can intuitively see
that an insured portfolio is superior to an uninsured portfolio in an asymp-
totic sense. In other words, if you’re only as smart as your dumbest mistake,
you have put a floor on that dumbest mistake by portfolio insurance.

Now consider that being long a call option will give you the same profile
as being long the underlying and long a put option with the same strike
price and expiration date as the call option. Here, when we speak of the
same profile, we mean an equivalent position in terms of the risk/reward
characteristics at different values for the underlying. Thus, the dotted line
in Figure 8-2 can also represent a portfolio comprised of simply being long
the 100 call option at expiration.

Here is how dynamic hedging works to provide portfolio insurance.
Suppose you buy 100 shares of a single stock for your fund, at a price of
$100 per share. You now replicate the call option by using this underlying
stock. You do this by determining an initial floor for the stock. The floor you
choose is, say, 100. You also determine an expiration date for the hypotheti-
cal option you are going to create. Say the expiration date you choose is the
date on which this quarter ends.

Now you figure the delta for this 100 call option with the chosen expira-
tion date. You can use Equation (5.05) to find the delta of a call option on a
stock (you can use the delta for whatever option model you are using; we’re
using the Black-Scholes Stock Option Model here). Suppose the delta is .5.
This means that you should be 50% invested in the given stock. You would
thus have only 50 shares of stock on rather than the 100 shares you would
have on if you were not practicing portfolio insurance. As the value of the
stock increases, so will the delta, and likewise the number of shares you
hold. The upside limit is a delta at 1, where you would be 100% invested. In
our example, at a delta of 1 you would have on 100 shares. As the stock
price decreases, so does the delta, and so does the size of your position in
the stock. The downside limit is at a delta of 0 (where the put delta is -I), at
which point you wouldn’t have any position in the  stock.

Operationally, stock fund managers have used nonirwmiue  methods of
dynamic hedging. Such a technique involves not having to trade the cash
portfolio. Rather, the portfolio as a whole is adjusted to what the current
delta should be as dictated by the model by using futures, and sometimes
put options. One benefit of using futures is low transaction costs. Selling
short futures against the portfolio is equivalent to selling off part of the
portfolio and putting it into cash. As the portfolio falls, more futures are
sold, and as it rises, these short positions are covered. The loss to the port-
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folio as it goes up and the short futures positions are covered is what
accounts for the portfolio insurance cost, the cost of the replicated put
options. Dynamic hedging, though, has the benefit of allowing us to closely
estimate this cost at the outset. To managers trying to implement such a
strategy, it allows the portfolio to remain untouched while the appropriate
asset allocation shifts are performed through futures and/or options trades,
This noninvasive technique of using futures and/or options permits the sep
aration  of asset allocation and active portfolio management.

To implement portfolio insurance, you must continuously adjust the port-
folio to the appropriate delta. This means that, say each day, you must input
into the option pricing model the current portfolio value, time till expiration,

interest rate levels, and portfolio volatility to determine the delta of the put
option you are trying to replicate. Adding this delta (which is a number
between 0 and -1) to 1 will give you the corresponding call’s delta. This is
the hedge ratio, the percentage that you should be invested in the fund. You
must make sure that you stay as close to this hedge ratio as possible.

Suppose your hedge ratio for the present moment is .46.  Say that the size
of the fund you are managing is the equivalent to 50 S&P futures contracts.
Since you only want to be 46% invested, you want to be 54% dis-invested.
Fifty-four percent of 50 contracts is 27 contracts. Therefore, at the present
price level of the fund, at this point in time, for the given interest rate and
volatility levels, the fund should be short 27 S&P contracts along with its
long position in cash stocks. Because the delta needs to be recomputed on
an ongoing basis, and portfolio adjustments constantly monitored, the strat-
egy is called a dynamic hedging strategy.

One problem with using futures in the strategy is that the futures market
does not exactly track the cash market. Further, the portfolio you are selling
futures against may not exactly follow the cash index upon which the futures
market is traded. These tracking errors can add to the expense of a portfolio
insurance program. Furthermore, when the option being replicated gets
very near to expiration and the portfolio value is near the strike price, the
gamma of the replicated option goes up astronomically. Gamma is the
instantaneous rate of change of the delta or hedge ratio. In other words,
gamma is the delta of the delta. If the delta is changing very fast (i.e., if the
replicated option has a high gamma), portfolio insurance becomes increas-
ingly more cumbersome to perform. There are numerous ways to work
around this problem, some of which are very sophisticated. One of the sim-
plest involves not only trying to match the delta of the replicated option, but
using futures and options together to match both the delta and gamma of
the replicated option. Again, this high gamma usually becomes a problem
only when expiration draws near and the portfolio value and the replicated
option’s strike price are very close.
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There is a very interesting relationship between optima1 f and portfolio
insurance. When you enter a position, you can state that f percent of your
funds are invested. For example, consider a gambling game in which your
optimal f is .5, your biggest loss is -1, and your bankroll is $10,000. In such a
case, you would bet $1 for every $2 in your stake, since -1, the biggest loss,
divided by -.5,  the negative optimal f, is 2. Dividing $10,000 by 2 yields
$5,000. You would therefore bet $5,000 on the next bet, which is f percent,
50%, of your bankroll. Had you multiplied our bankroll of $10,000 by f,  .5,
you would have arrived at the same $5,000 result. Hence, you have bet f
percent of our bankroll.

Likewise, if your biggest loss were $250 and everything else remained
t h e same, you would be making 1 bet for every $500 in your bankroll (since
-$250/-.5  = $500). Dividing $10,000 by $500 means that you would make
20 bets. Since the most you can lose on any one bet is $250, you have thus
risked f percent, 50% of our stake, in risking $5,000 ($250 * 20). We can
therefore state that f equals the percentage of our funds at risk, or f equals
the hedge ratio. Since f is only applied on the active portion of our portfolio
in a dynamic fractional f strategy, the hedge ratio of the portfolio is:

(8.04a) H=f*A/E

where H = The hedge ratio of the portfolio.

f = The optimal f (0 to 1).

A = The active portion of funds in an account.

E = The total equity of the account.

Equation (8.04a)  gives us the hedge ratio for a portfolio being traded on
a dynamic fractional f strategy. Portfolio insurance is also at work in a static
fractional f strategy, only the quotient A/E equals 1, and the value for f, the
optimal f, is multiplied by whatever value we are using for the fraction off.
Thus, in a static fractional f strategy the hedge ratio is:

(8.04b) H=f*FBAC

where H = The hedge ratio of the portfolio.

f = The optimal f (0 to 1).

FBAC = The fraction of optimal f that you are using.
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Since there is usually more than one market system working in an
account, we must account for this. When,this  is the case, the variable fin
Equation (8.04a) or (8.04b) must be calculated as:

(8.05) f=  ~f’*Wi
i=l’

where f = The f (0 to 1) to be input in Equation (8.04a) or (8.04b).

N = The total number of market systems in the portfolio.

Wi = The weighting of the ith component in the portfolio (from
the identity matrix).

fi  = The f factor (0 to 1) of the ith component in the portfolio.

We can state that in trading an account on a dynamic fractional f basis we
are performing portfolio insurance. Here, the floor is equal to the initial
inactive equity plus the cost of performing the insurance. However, it is

often simpler to refer to the floor of a dynamic fractional f strategy as simply
the initial inactive equity of an account.

We can state that Equation (8.04a) or (8.04b) equals the delta of the call
option of the terms used in portfolio insurance. Further, we find  that this
delta changes much the way a call option that is deep out-of-the-money and
very far from expiration changes. Thus, by using a constant inactive dollar
amount, trading an account on a dynamic fractional f strategy is equivalent
to owning a put option on the portfolio that is deep in-the-money and very
far out in time. Equivalently, we can state that trading a dynamic fractional f
strategy is the same as owning a call option on the portfolio that doesn’t
expire for a very long time and is very far out-of-the-money, rather than the
portfolio itself. This quality, this relationship to portfolio insurance, is true
for any dynamic fractional f strategy,  whether we are using share averaging,
scenario planning, or investor utility.

It is also possible to use portfolio insurance as a reallocation technique to
“steer” performance somewhat. This steering may be analogous to trying to
steer a tanker with a rowboat oar, but this is a valid reallocation technique.
The method involves setting parameters for the program initially. First you
must determine a floor value. Once this has been chosen, you must decide
upon an expiration date, a volatility level, and other input parameters for the
particular option model you intend to use. These inputs will give you the
options delta at any given point in time. Once the delta is known, you can
determine what your active equity should be. Since the delta for the
account, the variable H in Equation (8.04a), must equal  the delta for the cdl
option being replicated, D, we can replace H in Equation (8.04a)  with D:

D=f*A/E
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Therefore:

(8.06) D/f = A/E if D < f (otherwise A/E = 1)

where D = The hedge ratio of the call option being replicated.

f = The f (0 to 1) from Equation (8.05).

A = The active portion of funds in an account.

E = The total equity of the account.

Since A/E is equal to the percentage of active equity, we can state that
the percentage of the total account equity funds that we should have in
active equity is equal to the delta on the call  option divided by the f deter-
mined in Equation (8.05). However, you will note that if D is greater than f,
then it is suggesting that you allocate greater than 100% of an account’s
equity as active. Since this is not possible, there is an upper limit of 100% of
the account’s equity that can be used as active equity. You can use Equation
(5.05) to find the delta of a call option on a stock, or Equation (5.08) to find
the delta of a call option on a future.

The problem with implementing portfolio insurance as a reallocation
technique, as detailed here, is that reallocation is taking place constantly.
This detracts from the fact that a dynamic fractional f strategy will asymp-
totically dominate a static fractional f strategy. As a result,  trying to steer
performance by way of portfolio insurance as a dynamic fractional f reallo-
cation strategy probably isn’t such a good idea. However, any time you use
dynamic fractional f, you are employing portfolio insurance.

We now cover an example of portfolio insurance. Recall our geometric
optimal portfolio of Toxico,  Incubeast, and LA Garb. We found the geomet-
ric optimal portfolio to exist at V = .2457. We must now convert this portfo-
lio variance into the volatility input for the option pricing model. Recall that
this input is described as the annualized standard deviation. Equation (8.07)
allows  us to convert between the portfolio variance and the volatility esti-
mate for an option on the portfolio:

(8.07) OV = (V h .5) * ACTV * YEARDAYS h .5

where OV = The option volatility input for an option on
the portfolio.

V = The variance on the portfolio.

ACTV = The current active equity portion of the account.

YEARDAYS = The number of market days in a year.
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If we assume a year of 251 market days and an active equity percentage of
100% (1.00) for the sake of simplicity:

OV = (.2457 h .5) * 1 * 251 h .5
= .4956813493 * 15.84297952
= 7.853069464

This corresponds to a volatility of over 785%!  Remember, this is the annual-
ized volatility on the portfolio being traded at the optimal f level with 100%
of the account designated as active equity. As a result, we are going to get
very high volatility readings. Since we are going to demonstrate portfolio

insurance as a reallocation technique, we must use 1.00 as the value for
ACTV.

Equation (5.05) will give us the delta on a particular call option as:

(5.05) Call Delta = N(H)

The 1-I  term in (5.05) is given by (5.03) as:

(5.03) I-I  = In(U/(E * EXP(-R * T)))/(V * T h (l/2))+  (V * T A  (1/2))/2

U = The price of the underlying instrument.

E = The exercise price of the option.

T = Decimal fraction of the year to expiration.

V = The annual volatility in percent.

R = The risk-free rate.

ln(  ) = The natural logarithm function.

N( ) = The cumulative Normal density function, as given in
Equation (3.21).

Notice that we are using the stock option pricing mode1 here. We now

use our answer for OV as the volatility input, V, in Equation (5.03). If we
assume the risk-free rate, R, to be 6% and the decimal fraction of the year

left till expiration,  T, to be .25, Equation (5.03) yields:

H = In(  lOO/( 100 * EXP(-.06  * .25))) / (7.853069464 * .25 A  .5)
+ (7.853069464 * .25 A .5)  / 2

= ln(lOO/(lOO  *  EXP(-.015)))  / (7.853069464 * .5) + (7.853069464
* .5)  I2
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= In(lOO/(lOO  * .9851119396))  / (7.853069464 * .5) + (7.853069464
* .5)/2

= ln(  lOOLI8.51119396)  / 3.926534732 + 3.926534732 / 2
= In{  1.015113065) / 3.926534732 + 1.963267366
= .015 13.926534732 + 1.963267366
= .00382  + 1.963267366
= 1.967087528

This answer represents the H portion of (5.05). We must now run this
through Equation (3.21) as the Z variable to obtain the actual call delta:

(3.21) N(Z) = 1 - N’(Z) * ((1.330274429 * Y A  5) - (1.821255978 *
Y A 4) + (1.781477937 * Y A  3) - (.356563782  *  Y A  2)
+ (.31938153  * Y))

Where Y = l/(1  + .2316419  * ABS(Z))

N’(Z) = a398942  * EXP(-(Z A  U2))

Thus:

Y = 1/ (1 + .2316419  * ABS(1.967087528))
= l/(1  + .4556598925)
= l/l  .4556598925
= .6869736574

Now solving for the term N’(  1.967087528)

N’(1.967087528)  = .398942  * EXP(-(1.967087528 A  2/2))
= .398942  * EXP(-(3.869433343/2))
= .398942  * EXP(-1.934716672)
= .398942  * .1444651941
= .05763323346

Now, plugging the values for Y and N’ (1.967087528) into (3.21) to obtain
the actual call delta as given by Equation (5.05):

N(Z) = 1 - .05763323346  * ((1.330274429 * .6869736574  A  5)
- (1.821255978 * .6869736574  A  4) + (1.781477937
* .6869736574  A 3) - (.356563782  * .6869736574  A 2)

+ (.31938153  * .6869736574))
= 1 - .05763323346  * ((1.330274429 * .1530031)  - (1.821255978

* .2227205)  + (1.781477937 * .3242054)  - (.356563782
* .4719328)  + (.31938153  * .6869736))
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= 1 - .05763323346 * (.2035361115 - .405631042 + -5775647672
-. 168274144 + .2194066794).

= 1 - .05763323346 * .4266023721
= 1 - .02458647411
= .9754135259

Thus, we have a delta of .9754135259  on our hypothetical call option for
a portfolio trading at a price of lOO%,  with a strike price of lOO%,  with .25
of a year left to expiration, a risk-free rate of 6%, and a volatility on this
portfolio of 785.3069464%.

Now recall that the sum of the weights on this geometric optimal portfo-
lio consisting of Toxico,  Incubeast, and LA Garb, per Equation (8.05), is
1.9185357. Thus, per Equation (8.06), we would reallocate to
50.84156244% (.9754135259/1.9185357)  active equity if we were using
portfolio insurance to reallocate.

“What is the cost of this insurance?” That depends upon the volatility
that will actually be seen over the life of the replicated option. For instance,
if the equity in the account were not to fluctuate at all over the life of the
replicated option (volatility equal to 0), the replicated option, the insurance,
would cost us nothing. This is a great benefit to portfolio insurance versus
outright buying a put option (assuming one was available on our portfolio).
We pay the actual theoretical price of the option for the volatility actually
encountered, not the volatility perceived by the marketplace before the fact,
as would be the case with actually buying the put option. Further, actually
buying the put option (again assuming one was available) entails a bid-ask
spread that is circumvented by replicating the option.

THE MARGIN CONSTRAINT

Here is a problem that continuously crops up when we take any of the fixed
fractional trading techniques out of its theoretical context and apply it in the
real world. We have seen that anytime an additional market system is added
to the portfolio, so long as the linear correlation coefficient of daily equity
changes between that market system and another market system in the
portfolio is less than +l, the portfolio is improved. That is to say that the
geometric mean of daily HPRs  is increased. Thus, it stands to reason that
you would want to have as many market systems as possible in a portfolio.
Naturally, at some point, margin considerations become a problem.

Even if you are trading only 1 market system, margin considerations can
often be a problem. Consider that the optimal fin dollars is very often less
than the initial margin requirements for a given market. Now, depending on
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what fraction of f you are using at the moment, whether you are using a
static or dynamic fractional f strateu,  you will encounter a margin call if the
fraction is too high.

When you trade a portfolio of market systems, the problem of a margin
call becomes even more likely. With an unconstrained portfolio, the sum of
the weights is often considerably greater than 1. When you trade only 1
market system, the weight is, de facto, 1. If the sum of the weights of a mar-
ket system you are trading is, say, 3, then the likelihood of a margin call is 3
times as great as it would be if you were trading just 1 market.

What is needed is a way to reconcile how to create an optimal portfolio
within the bounds of the margin requirements on the components in the
portfolio. This can very easily be found. The way to accomplish this is to
find what fraction off you can use as  an upper limit. This upper limit, U, is
given by Equation (8.08) as:

(8.08) U = !Z  fi$i((iflmargin$) * N)
i=l

where U = The upside fraction of E At this particular fraction off you
are trading the optimal portfolio as aggressively as possible
without incurring an initial margin call.

fi$  = The optimal fin dollars for the ith market system.

margini$ = The initial margin requirement of the ith market system.

N = The total number of market systems in the portfolio.

If U is greater than 1, then use 1 as the answer for U. For instance, suppose
we have a portfolio with the three market systems as follows, with the fol-
lowing optimal fs in dollars for the three market systems and the following
initial margin requirements. (Note: the f$ are the optimal fs in dollars for
each market system in the portfolio. This represents the market system’s
individual optimal f$ divided by its weighting in the portfolio):

Market System f.$ Initial Margin

A $2,500 $2,000
B $2,000 $2,000
C $3,000 $2,000

Sums $7,500 $6,000

Now, per Equation (8.08) we use the sum of the f$ column in the
numerator, which is $7,500, and divide by the sum of the initial margin
requirements, $6,000, times the number of markets, N, which is 3:
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U = $7,500/($6,000  *  3)
= 7500/18,000
= .4167

Therefore, we can determine that, as an upside limit, our fraction off can-
not exceed 41.67% in this case (that is, if we are employing a dynamic frac-
tional f strategy). Therefore, we must reallocate when our active equity
divided by our total equity in the account equals or exceeds .4167.

If, however, you are still employing a static fractional f strategy (despite
my protestations), then the highest you should set that fraction to is .4167.
This ~11  put you on the unconstrained geometric efficient frontier, to the
left of the optimal portfolio, but as far to the right as possible without
encountering a margin call.

To see this, suppose we have a $100,000 account. We set our fractional f
values to a .4167 fraction of optimal. Therefore for each market system:

Market System f$ I . 4 1 6 7  =  N e w  f $

A $2,500 $6,000
B $2,000 $4,600
C $3,000 $7,200

For a $100,000 account, we will trade 16 contracts of market system A
(100,000/6,000),  20 contracts of market system B (100,000/4,800),  and 13
contracts of market system C (100,000/7,200).  The resulting margin
requirement for such a portfolio is:

16 * $2,000 = $32,000
20 * 2,000 = 40,000
13 * 2,000 = 26,000

Initial margin requirement $96,000

Notice that using this formula (8.08) yields the highest fraction for f
(without incurring an initial margin call) that gives you the same ratios of
the different market systems to one another. Hence, Equation (8.08)
returns the unconstrained optimal portfolio at its least diluted state without
incurring an initial margin call.

Notice in the previously cited example that if you are trading a fractional
f strategy, the value returned from Equation (8.08) is the maximum fraction
for f you can get to without incurring an initial margin call. Again consider a
$100,000 account. Assume that at one time, when you opened this account,
it had $70,000  in it. Further assume that of that initial $70,000  you allocated
$58,330 as inactive equity. Thus, you initially started out at a roughly 83:I7
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percentage split between inactive and active equity. You have traded the
active portion at the full optimal f values. Now your account stands at
$100,000. You still  have $58,330 as inactive equity, therefore your active
equity is $41,670, which is -4167 of your total equity. This should now be
the maximum fraction you can use, the maximum ratio of active to total
equity, without incurring a margin call. Recall that you are trading at the full
f levels. Therefore, you will trade 16 contracts of market system A
(41,670/2,500),  20 contracts of market system B (41,670/2,000),  and 13 con-
tracts of market system C (41,670/3,000).  Th e resultant margin requirement
for such a portfolio is:

16 * $2,000 = $32,000
20 * 2,000 = 40,000
13* 2,000 = 26,000

Initial margin requirement $96,000

Again we can see that this is pushing it as much as possible without incur-
ring a margin call, since we have $100,000 total equity in the account.

Recall from Chapter 2 the fact that adding more and more market sys-
tems results in higher and higher geometric means for the portfolio as a
whole. However, there is a tradeoff in that each market system adds
marginally less benefit to the geometric mean, but marginally more detri-
ment in the way of efficiency loss due to simultaneous rather than sequen-
tial outcomes. Therefore, you do not want to trade an infinite number of
market systems. What’s more, theoretically optimal portfolios run into the
real-life application problem of margin constraints. In other words, you are
better off to trade 3 market systems at the full optimal f levels than to trade
300 market systems at dramatically reduced levels as a result of Equation
(8.08). Usually, you will find that the optimal number of market systems to
trade in, particularly when you have many orders to place and the potential
for mistakes, is but a handful.

If one or more market systems in the portfolio have optimal weightings
greater than 1, a potential problem emerges. For example, assume a market
system with an optimal f of .8 and a biggest loss of $4,000. Therefore, f$ is
$5,000. Let’s suppose the optimal weighting for this component of the port-
folio is 1.25. Therefore you will trade one unit of this component for every
$4,000 ($5,000/1.25)  in account equity. As you can see, as soon as the com-
ponent sees its largest loss, all of the active equity in the account will be
wiped out (unless profits are sufficient in the other market systems to sal-
vage some active equity).

This problem tends to crop up for systems that trade infrequently. For
example, recall that if we could have two market systems with perfect nega-
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tive correlation and a positive expectation, we would optimally have on an
infinite number of contracts. When one of the components lost, the other
would win an equal or greater amount. Thus, we would always have a net
profit on each play. However, these market systems are always having a
simultaneous play. The situation being discussed is analogous to this hypo-
thetical situation when one of these components is not active on a certain
play. Now there’s only one market system active on a given play, and that
market system has on an infinite number of contracts. A loss is catastrophic.

The solution is to divide 1 by the highest weighting of any of the compo-
nents in the portfolio and use the answer as the upper limit on active equity
if the answer is less than the answer to Equation (8.08). This ensures that if
a loss is encountered in the future of the same magnitude as the largest loss
over which f was derived, it will not wipe out the account. For example,
suppose the highest weighting of any component in our portfolio is 1.25.
Then if Equation (8.08) does not give us an answer less than .8 (l/1.25), we
will use .8 as our upper limit on our active equity percentage.

This is unlikely to be a problem if you start with a low active equity per-
centage. However, a more aggressive trader may encounter this problem.
An alternative solution is to set additional constraints in the portfolio matrix
(such as constraints on the maximum weighting for each market system
being set to 1, as well as constraints pertaining to margin). These additional
linear programming constraints may be slightly beneficial to the aggressive
trader, but the matrix solutions can be involved. Interested readers are
again referred to Childress.

ROTATING MARKETS

Many traders use systems or techniques that have them monitoring many
markets all the time, filtering for what they feel are the best markets for the
systems at the moment. For example, some traders may prefer to monitor
the volatility in all of the futures markets and trade only those markets
whose volatility exceeds a certain amount. Sometimes they will be in many
markets, sometimes they won’t be in any. Further, the markets that they are
in are constantly changing. This changing composition seems to be particu-
larly a problem for stock fund managers. How can we manage such a thing
and still be at the optimal portfolio?

The solution is really quite simple. Anytime a market is added or deleted
from the portfolio, the new unconstrained geometric optimal portfolio is
calculated as detailed in this chapter. Any adjustments to existing positions
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in terms of the quantity that should be on in light of the newly added or
deleted market system ought to be made as well.

In a nutshell, it is alright to have a constantly changing portfolio in terms
of components. The goal for the manager of such a portfolio, however, is to
have the portfolio always be the unconstrained geometric optimal of the
components involved and to keep the inactive equity amount constant. In so
doing, a constantly changing portfolio composition can be managed in a
manner that is asymptotically optimal.

There is a potential problem with this type of trading from a portfolio
standpoint. An example may help illustrate. Imagine two highly correlated
markets, such as gold and silver. Now imagine that your system trades so
infrequently that you have never had a position in both of these markets on
the same day. When you determine the correlation coefficients of the daily
equity changes, it is quite possible that the correlation coefficient you will
show between gold and silver is 0. However, if in the future you have a
trade in both markets simultaneously, you can expect them to have a high
positive correlation.

To solve this problem, it is helpful to edit your correlation coefficients
with an eye toward this type of situation. In short, don’t be afraid to edit the
correlation coefhcients upward. However, be wary of moving them lower.
Suppose you show the correlation coeficient  between Bonds.and  Soybeans
as 0, but you feel it should be lower, say -.25.  You really should not adjust
correlation coefficients lower, as lower correlation coefficients tend to have
you increase position size. In short, if you’re going to err in the correlation
coefficients, err by moving them upward rather than downward. Moving
them upward will tend to move the portfolio to the left of the peak of the
portfolio’s f curve, while moving correlation coefficients lower will tend to
move you to the right of the portfolio’s f curve.

Often people try to filter trades in a manner as to have them in a particu-
lar market during certain times and out at others in an attempt to lower
drawdown. If the filtering technique works, if it lowers drawdown on a one-
unit basis, then the f that is optimal for the filtered trades will be higher
(and f$ lower) than for the entire series of trades before filtering. If the
trader applies the optimal f over the entire prefiltered  series to the postfil-
tered series, she will find  herself at a fractional f on the postfiltered series
and hence cannot be obtaining a geometric optimal portfolio. On the other
hand, if the trader applies the optimal f on the postfiltered series, she can
obtain the geometric optimal portfolio, but she is right back to the problem
of impending large drawdowns at optimal f.  She seems to have defeated the
purpose of her filter.

This illustrates the fallacy of filters from a money-management stand-
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point. Filters might work (reduce drawdown  on a one-unit basis) only
because they cause the trader to be at a fraction of the optimulf.

Why filter at all? We could state that we benefit by filtering if our answer
to the fundamental equation of trading on postfiltered trades at the pre-
filtered optimal f is greater than the answer to the fundamental equation of
trading on prefiltered trades at the prefiltered optimal f. It is important to
note when making such a comparison that the postfiltered trades are less in
number (have lower N) than the prefiltered trades.

T O  S U M M A R I Z E

We have seen that trading on a fixed fractional basis makes the most money
in an asymptotic sense. It maximizes the ratio of potential gain to potential
loss. Once we have an optimal f value we can convert our daily equity
changes on a l-unit basis to an HPR, we can determine the arithmetic aver-
age HPR and standard deviation in those HPRs, and we can calculate the
correlation coefficient of the HPRs  between any two market systems, We
can then use these parameters as inputs in determining the optimal weight-
ings for an optimal portfolio. (Since we are using leveraged vehicles, weight-
ing and quantity are not synonymous, as they would be if there was no
leverage involved.) These weightings then are reflected back into the f val-
ues, the amount we should finance each contract by, as the f values are
divided by their respective weightings. This gives us new f values, which
result in the greatest geometric growth with respect to the intercorrelations
of the other market systems and their wcightings.

The greatest geometric growth is obtained by using that set of weightings
whose sum is unconstrained and whose arithmetic average HPR minus its

standard deviation in HPRs  squared (its variance) equals 1 [Equation
(‘i.O6c)].  Rather than being diluted (which only puts you farther left on the
unconstrained efficient frontier), as is the case with a static fractional f strat-
egy, this portfolio is traded full out with only a fraction of the funds in the
account. Such a technique is called a dynamic fractionalf  strategy. The
remaining funds, the inactive equity, are left untouched by the activity that
goes on in these active funds.

Since this active portion is being traded at the optimal levels, fluctuations
in this active equity will be swift. As a result, at some point on the upside or
downside in the equity fluctuations, or at some point in time, you will likely
find it necessary, even if only from an emotional standpoint, to reallocate
funds bchveen the active and inactive  portions. Four methods of doing so
have been explained, although other, possibly better, methods may exist:
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1. Investor Utility.

2. Scenario Planning.

3. Share Averaging.

4. Portfolio Insurance.

The fourth method, portfolio insurance or dynamic hedging, is inherent in
any dynamic fractional f strategy, but it can also be utilized as a reallocation
method.

LVc have further seen that to take the unconstrained geometric optimal
portfolio and apply it in real  time will most likely encounter a problem in
terms of the initial margin requirements. This problem can be alleviated by
determining an upper level limit for the ratio of active equity to total
account equity.

A P P L I C A T I O N  T O  S T O C K  T R A D I N G

The techniques that have been described in this book apply not only to
futures traders, but to traders in any market. Even someone trading a port-
folio of only blue chip stocks is not immune from the principles and the
consequences discussed in this book. You have seen that such a portfolio of
blue chip stocks has an optimal level of leverage where the ratio of potential
gains to potential losses in equity are maximized. At such a level, the dmw-
downs to be expected arc also quite severe, and therefore  the portfolio
ought to be diluted, preferably by way of a dynamic fractional f strategy.

The entire procedure can be performed exactly as though the stock
being traded were a commodity market system. For instance, suppose
Toxic0 were trading at $40 per share. The cost of 100 shares of Toxic0
would be $4,000. This loo-share  block of Toxic0  can be treated as 1 con-
tract of the Toxic0 market system. Thus, if we were operating in a cash
account, wc could replace the margin@  variable in Equation (8.08) with the
value of 100 shares of Toxic0  ($4,000 in this example). In so doing, we can
determine the upper limit on the fraction of f to use such that we never

have to even perform the procedure in a margin account. When you are

doing this type of exercise, remember that you are replicating a leveraged
situation, but there isn’t really any borrowing or lending going on.
Therefore, you should use an RFR of 0 in any calculations (such as the
Sharpe  ratio) that require an RFR.

On the other hand, if we perform the procedure in a margin account,
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and if initial margin levels are, say, SO%,  then we would use a value  of
$2,000 for the marginis  variable for Toxic0  in (8.08).

Traditionally, stock fund managers have used portfolios where the sum
of the weights is constrained to 1. Then they opt for that portfolio composi-
tion which gives the lowest variance for a given level of arithmetic return.
The resultant portfolio composition is expressed in the form of the weights,
or percentages of the trading account, to apply to each component of the
portfolio.

By lifting this sum of the weights constraint and opting for the single
portfolio that is geometric optimal, we get the optimal leveraged portfolio.
Here, the weights and quantities are completely different. We now divide
the optimal amount to finance I unit of each component by its respective
weighting; the result is the optimal leverage for each component in the
portfolio. Now, we can dilute this portfolio down by marrying it to the  risk-
free asset. We can dilute the portfolio to the point where there really isn’t
any leverage involved. That is, we are leveraging the active equity portion of
the  portfolio but the active equity portion is actually borrowing its own
money, interest-free, from the inactive equity portion. The result is a port-
folio and  a method of adding to and trimming back from positions as the
equity in the account changes that will result in the greatest geometric
growth. As such a method maximizes the potential geometric growth to the
potential loss and allows for the maximum loss acceptable to be essentially
specified at the outset, it can also be argued to be a superior means of man-
aging a stock portfolio.

The current generally accepted procedure for determining the efficient
frontier will not really yield the efficient frontier, much less the portfolio
that is geometric optimal (the geometric optimal portfolio always lies on the
efficient frontier). This can be derived only by incorporating the optimal f.
Further, the generally accepted procedure yields a portfolio that gets traded
on a static f basis rather than on a dynamic basis, the latter being asymptoti-
cally infinitely more powerful.

A CLOSING COMMENT

This is a very exciting time to be in this field, New concepts have been
emerging nearly continuously since the mid 1950s.  We have witnessed an
avalanche of great ideas from the academic community building upon the
E-V model. Among the ideas presented has been the E-S model. With the
E-S model the measure of risk is semivariance in lieu of variance.’

IMarkowitz,  Harry, ~ortfolfo  Selection: @dent  Dicersification  of Imestmnts.  &xv  York:
John Wiley,  1959.
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Semivariance is defined as the variation beneath some target level of return,
which could be the expected return, zero return, or any other futed  level of
return. When this target level of return equals the expected return and the
distribution of returns is symmetrical (without skew), the E-S efficient fron-
tier is the same as the E-V efficient frontier.

Other portfolio models have been presented using other measures for
risk than variance in returns. Still other portfolio models have been pre-
sented using moments of the distribution of returns beyond the first two
moments. Of particular interest in this regard have been the stochastic dam-
inance  approaches, which encompass the entire distribution of returns and
hence can be considered the limiting case of multidimensional portfolio
analysis as the number of moments incorporated approaches infinity.2 This
approach may be particularly useful when the variance in returns is infinite
or undefined.

Again, I am not a so-called academic. This is neither a boast nor an apol-
ogy. I am no more an academic than I am a ventriloquist or a TV wrestler.
Academics want a model to explain how the markets work. As a nonaca-
demic, I don’t care how they work. For example, many people in the aca-
demic community argue that the efficient market hypothesis is flawed
because there is no such thing as a rational investor. They argue that people
do not behave rationally, and therefore conventional portfolio models, such
as E-V theory (and its offshoots) and the Capital Asset Pricing model, are
poor models of how the markets operate. While I agree that people certainly
do not behave rationally, it does not mean that we shouldn’t behave ratio-
nally or that we cannot benefit by behaving rationally. When variance in
returns is finite, we can certainly benefit by being on the efficient frontier.

There has been much debate in recent years over the usefulness of cur-
rent portfolio models in light of the fact that the distribution of the logs of
price changes appear to be stable Paretian with infinite (or undefmed) vari-
ance. Yet many studies demonstrate that the markets in recent years have
seen a move toward Normality (therefore finite variance) and indepen-
dence, which the portfolio models being criticized assume.3 Further, the
portfolio models use the distribution of returns as input, not the distribution

sSee Quirk, J.  P., and Il.  Saposnik, “Admissibility and Measurable Utility Functions,” IIecieu  of
Economic Studies, 29(79):14&146,  February 1962. Also see Reilly, Frank K., Znoestrnent
Analysis  and PO@& Matmgement.  Hinsdale, IL: The Dryden  Press, 1979.

%ee  Helms, Billy P., and Terrence F. Martell,  “An Examination of the Distribution of
Commodity Price Changes,” Working Paper Series. New York: Columbia University Center
for the Study of Futures Markets, CFSM-i6,  April 1984. Also see Hudson, Michael A.,
Raymond M. Leuthold, and Cboroton F. Sarassorro,  “Commodity Futures Price Changes:
Distribution, Market EFficiency,  and Pricing Commodity Options,” Working Paper Series,
New York: Columbia University Center for the Shdy of Futures Markets, CFSM-127, June
1 9 8 6 .



330 RISK MANAGEMENT

of the logs of price changes. Whereas the distribution of returns is a truns-
form& distribution of the logs of price changes (transformed by techniques
such as cutting losses short and letting profits run), they are not necessarily
the same distribution, and the distribution of returns may not be a member
of the stable Paretian (which is why we modeled the distribution of trade
P&L’s in Chapter 4 with our adjustable distribution). Furthermore, there
are derivative products such as options that have finite semivariance (if
long) or finite variance altogether. For example, a vertical option spread put
on at a debit guarantees finite variance in returns.

I’m not defending against the attacks on the current portfolio models.
Rather, I am playing devil’s advocate here. The current portfolio models
can be employed provided we are aware of their shortcomings. We no
doubt need better portfolio models. It is not my contention that the current
portfolio models are adequate. Rather, it is my contention that the input to
the portfolio models, current and future for whatever portfolio models we
use, should be based on trading one unit at the optimal level-or what we
believe will be the optimal level for that item in the future, as though we
were trading only that item. For example, if we are employing E-V theory,
the Markowitz model, the inputs are the expected return, variance in
returns, and correlation of returns to other market systems. These inputs
must be determined from trading one unit on each market system at the
optimal f level. Portfolio models other than E-V may require different input
parameters. These parameters must be discerned based on trading one unit
of the market systems at their optimal f levels.

Portfolio models are but one facet of money management, but they are a
facet where debate is certain to rage for quite some time. This book could
not be definitive in that regard, as newer, better models are yet to be for-
mulated. We most likely will never have a mode1 we all agree upon as being
adequate. That should make for a healthy and stimulating environment.

APPENDIX A

The Chi-Square Test

There exist a number of statistical tests designed to determine if two sam-
ples come from the same population. Essentially, we want to know if two
distributions are different. Perhaps the most well known of these tests is the
chi-square test, devised by Karl Pearson around 1900. It is perhaps the most
popular of all statistical tests used to determine whether two distributions
are different.

The chi-square statistic, X2,  is computed as:

(A.O1) .NX2  =,~I’Oi  - Ei)  A  2/E,

where N = The total number of bins.

Oi  = The number of events observed in the ith bin.

Ei = The number of events expected in the ith bin.

A large value for the chi-square statistic indicates that it is unlikely that
the two distributions are the same (i.e., the two samples are not drawn from
the same population). Likewise, the smaller the value for the chi-square
statistic, the more likely it is that the two distributions are the same (i.e., the
two samples were drawn from the same population).

Note that the observed values, the Oi’s,  will always be integers. However,
t h e expected values, the Ei’s,  can be nonintegers. Equation (A.O1) gives the

3 3 1
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&i-square statistic when both the expected and observed values are inte-
gers. When the expected values, the Ei’s,  Lre permitted to be nonintegers,
we must use a different equation, known as Yates’ correction, to find the
chi-square statistic:

(A.02) X2  = i~~AB~(~i  - Ei) - .S) A  2/Ei

where N = The total number of bins.

Oi = The number of events observed in the ith bin.

E, = The number of events expected in the ith bin.

ABS(  ) = The absolute value function.

If we are comparing the number of events observed in a bin to what the
Normal Distribution dictates should be in that bin, we must employ Yates’
correction. That is because the number of events expected,’ the Ei’s,  are
nonintegers.

We now work through an example of the chi-square statistic for the data
corresponding to Figure 3-16. This is the 232 trades, converted to standard
units, placed in 10 bins from -2 to +2 sigma, and plotted versus what the
data would be if it were Normally distributed. Note that we must use Yates’
correction:

Bin # Observed Expected ((ABS(0 - E) - .5)  ’ 2)/E

1
2
3
4
5
6
7
8
9

IO

1 7
2 5
2 7
3 8
6 1
3 7
1 2

4
2

7.435423 4.738029
13.98273 .4531787
22.45426 .I863813
30.79172 .3518931
36.05795 .05767105
36.078 16.56843
30.7917 1.058229
22.45426 4.41285
13.98273 6.430941

7.435423 3.275994

x2  = 37.5336

We can convert a chi-square statistic such as 37.5336 to a significance
Zecel.  In the sense we are using here, a significance level is a number

IAs  detailed in Chapter 3, this is determined by the Normal Distribution per Equation (3.21)
for each boundary of the bin, taking the absolute value of the differences, and multiplying by
the total  number of  events .
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between 0, representing that the two distributions are different, and 1,
meaning that the two distributions are the same. We can never be 100%
certain that two distributions are the same (or different), but we can deter-
mine how alike or different two distributions are to a certain significance
level. There are two ways in which we can find the significance level. This
first and by far the simplest way is by using tables. The second way to con-
vert a chi-square statistic to a significance level is to perform the math your-
self (which is how the tables were drawn up in the first place). However, the
math requires the use of incomplete gamma functions, which, as was men-
tioned in the Introduction, will not be treated in this text. Interested readers
are referred to the Bibliography, in particular to Numerical Recipes.
However, most readers who would want to know how to calculate a signifi-
cance level from a given chi-square statistic would want to know this
because tables are rather awkward to use from a programming standpoint.
Therefore, what follows is a snippet of BASIC language code to convert
from a given chi-square statistic to a significance level.

1000 REM INPUT NOBINS%, THE NUMBER OF BINS AND CHISQ, THE
CHI-SQUARE STATISTIC
1010 REM OUTPUT IS CONF, THE CONFIDENCE LEVEL FOR A GIVEN
NOBINS%  AND CHISQ
1020 PRINT “CHI SQUARE STATISTIC AT”NOBINS%  - 3”DEGREES FREE-
DOM IS’CHISQ
1030 REM HERE WE CONVERT FROM A GIVEN CHISQR TO A
SIGNIFICANCE LEVEL, CONF
1040 Xl = 0:X2  = O:X3#  = 0:X4  = 0:X5  = 0:X6  = 0:CONF = 0
1050 IF CHISQ < 31 OR (NOBINS%-3) > 2 THEN X6 =
(NOBINS%  - 3)/2 - 1 :X1  = 1 ELSE CONF = 1 :GOTO 1110
1060 FOR X2 = 1 TO ((NOBlNS%  - 3)/2  - .5):X1  = Xl * X6:X6 = X6 - 1: NEXT
1070 IF (NOBINS%  - 3) MOD 2 c> 0 THEN Xi = X I* 1.77245374942627#
1080 X7 = 1:X4  = l:X3# = ((CHISQ/2)  n ((NOBINS%-3)/2)) * 2/(EXP(CHISQ/2)
* Xl * (NOBINS%-3)):X5 = NOBINS%  - 3 + 2
1090 X4 = X4 * CHISQ/X5:X7  = X7 + X4:X5 = X5 + 2:IF X4 > 0 THEN 1090
llOOCONF=l-X3#*X7
1110 PRINT “FOR A SIGNIFICANCE LEVEL OF “;USING  “.#########“;CONF

Whether you determine your significance levels via a table or calculate
them yourself, you will need two parameters to determine a significance
level. The first of these parameters is, of course, the chi-square statistic
itself. The second is the number of degrees offreedom. Generally, the num-
ber of degrees of freedom is equal to the number of bins minus 1 minus the
number of population parameters that have to be estimated for the sample
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statistics. Since there are ten bins in our example and we must use the arith-
metic mean and standard deviation of the sample to construct the Normal
curve, we must therefore subtract 3 degrees of freedom. Hence, we have 7
degrees of freedom.

The significance level of a chi-square statistic of 37.5336 at 7 degrees of
freedom is .OOOOO2419.  Since this significance level is so much closer to
zero than one, we can safely assume that our 232 trades from Chapter 3 are
not Normally distributed. What follows is a small table for converting
between chi-square values and degrees of freedom to significance levels.
More elaborate tables may be found in many of the statistics books men-
tioned in the Bibliography:

VALUES OF X2

Degrees of
Freedom

1
2
3
4
5

10
2 0

.20

1.6
3.2
4.6
6.0
7.3

13.4
25.0

Significance Level
.lO .05

2.7 3.8
4.6 6.0
6.3 7.8
7.8 9.5
9.2 11.1

16.0 18.3
28.4 31.4

.Ol

6 .6
9.2

11.3
13.3
15.1
23.2
37.6

You should be aware that the chi-square test can do a lot more than is
presented here. For instance, you can use the chi-square test on a 2 x 2
contingency table (actually on any N x M contingency table). If you are
interested in learning more about the chi-square test on such a table, con-
sult one of the statistics books mentioned in the Bibliography.

Finally, there is the problem of the arbitrary way we have chosen our
bins as regards both their number and their range. Recall that binning data
involves a certain loss of information about that data, but generally the pro-
file of the distribution remains relatively the same. If we choose to work
with only 3 bins, or if we choose to work with 30, we will likely get some-
what different results. It is often a helpful exercise to bin your data in sev-
eral different ways when conducting statistical tests that rely on binned
data. In so doing, you can be rather certain that the results obtained were
not due solely to the arbitrary nature of how you chose your bins.

In a purely statistical sense, in order for our number of degrees of free-
dom to be valid, it is necessary that the number of elements in each of the
expected bins, the Ei’s,  be at least five. When there is a bin with less than
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five expected elements in it, theoretically the number of bins should be
reduced until all of the bins have at least five expected elements in them.
Often, when only the lowest and/or highest bin has less than 5 expected ele-
ments in it, the adjustment can be made by making these groups “all less
than” and “all greater than” respectively.
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Other Common Distributions

This appendix covers many of the other common distributions aside from
the Normal. This text has shown how to find the optimal f and its by-prod-
ucts on any distribution. We have seen in Chapter 3 how to find the optimal
f and its by-products on the Normal distribution. We can use the same tech-
nique to find the optimal f on any other distribution where the cumulative
density function is known.

It matters not whether the distribution is continuous or discrete. When
the distribution is discrete, the equally spaced data points are simply the
discrete points along the cumulative density curve itself. When the distribu-
tion is continuous, we must contrive these equally spaced data points as we
did with the Normal Distribution in Chapter 3.

Further, it matters not whether the tails of the distribution go out to plus
and minus infinity or are bounded at some finite number. When the tails go
to plus and minus infinity we must determine the bounding parameters
(i.e., how far to the left extreme and right extreme we are going to operate
on the distribution). The farther out we go, the more accurate our results. If
the distribution is bounded on its tails at some finite point already, then
these points become the bounding parameters.

Finally, in Chapter 4 we learned a technique to find the optimal f and its
by-products for the area under any curve (not necessarily just our adjustable
distribution) when we do not know the cumulative density function, SO we
can find  the optimal f and it’s by products for any process regardless of the
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distribution. The hardest part is determining what the distribution in ques-
tion is for a particular process, what the cumulative density function is for
that process, and what parameter value(s) are best for our application.

One of the many hearts of this book is the broader concept of decision
making in environments characterized by geometric consequences. Optimal
f is the regulator of growth in such environments, and the by-products of
optimal f tell us a great deal about the growth rate of a given environment.
You may seek to apply the tools for finding the optimal f parametrically to
other fields where there are such environments. For this reason this
appendix has been included.

T H E  U N I F O R M  D I S T R I B U T I O N

The Uniform Distribution, sometimes referred to as the Rectangular
Distribution from its shape, occurs when all items in a population have
equal frequency. A good example is the 10 digits 0 through 9. If we were to
randomly select one of these digits, each possible selection has an equal
chance of occurrence. Thus, the Uniform Distribution is used to model
truly random events. A particular type of uniform distribution where A = 0
and B = 1 is called the Standard Uniform Distribution, and it is used exten-
sively in generating random numbers.

The Uniform Distribution is a continuous distribution. The probability
density function, N’(X), is described as:

(B.O1) N’(X) = l/(B  - A) forAc=Xc=B

else

N’(X) = 0

where B = The rightmost limit of the interval AB.

A = The leftmost limit of the interval AB.

The cumulative density of the Uniform is given by:

(B.02) N(X) = 0 forX<A

e l s e

N(X) = (X - A)/(B  - A) forA<=X<=B
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Figure B-1 Probability density functions for the Uniform Distribution
(A = 2, B = 7).
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Figure B-2 Cumulative probability functions for the Uniform
Distribution (A = 2, B = 7).

THE BERNOULLI DISTRIBUTION

else

N(X) = 1 forX> B

where B = The rightmost limit of the interval AB.

A = The leftmost limit of the interval AB.

3 3 9

Figures B-l and B-2 illustrate the probability density and cumulative prob-
ability (i.e., cdf)  respectively of the Uniform Distribution.

Other qualities of the Uniform Distribution are:

(B.03) Mean = (A + B)/2

(B.04) Variance = (B - A) h 2/12

where B = The rightmost limit of the interval AB.

A = The leftmost limit of the interval AB.

THE BERNOULLI DISTRIBUTION

Another simple, common distribution is the BernoulZi  Distribution. This is
the distribution when the random variable can have only two possible val-
ues. Examples of this are heads and tails, defective and nondefective arti-
cles, success or failure, hit or miss, and so on. Hence, we say that the
Bernoulli Distribution is a discrete distribution (as opposed to being a con-
tinuous distribution). The distribution is completely described by one
parameter, P, which is the probability of the first event occurring. The vari-
ance in the Bernoulli is:

(B.05)

where

Variance = P *  Q

(B.06) Q=P-1

Figures B-3 and B4 illustrate the probability density and cumulative prob-
ability (i.e., cdf)  respectively of the Bernoulli Distribution.
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Figure B-3 Probability density functions for the Bernoulli Distribution
(P = S).
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Figure B-4 Cumulative probability functions for the Bernoulli
Distribution (P = 5).
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THE BINOMIAL DISTRIBUTION

The Binomial Distribution arises naturally when sampling from a Bernoulli
Distribution. The probability density function, N’(X), of the Binomial (the
probability of X successes in N trials or X defects in N items or X heads in N
coin tosses, etc.) is:

(B.07) N’(X) = (N!/(X!  * (N  -Xl!)) * (P h X) * (Q A  (N -X))

where N = The number of trials.

X = The number of successes.

P = The probability of a success on a single trial.

Q =  1 - P .

It should be noted here that the exclamation point after a variable denotes
the factorial function:

(B.08a) X!=X*(X-1)*(X-2)*.  . .*l

which can be also written as:
X - l

(B.08b) X!=nX-J
J=O

Further, by convention:

(B.084 O! = 1

The cumulative density function for the Binomial is:

(B.09) N(X)  =joOWJ!  * W - JV)) * 0’ h J, * (Q * @’  -J))

where N = The number of trials.

X = The number of successes.

P = The probability of a success on a single trial.

Q =  1 - P .

Figures B-5 and B-6 illustrate the probability density and cumulative prob-
ability (i.e., cdf)  respectively of the Binomial Distribution.
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Figure B-5 Probability density functions for the Binomial Distribution
(N = 5, P = 5).
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Figure Ek-6 Cumulative probability functions for the Binomial
Distribution (N = 5, P = S).
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The Binomial is also a discrete distribution. Other properties of the
Binomial Distribution are:

(B.lO) Mean = N * P

(B.ll) Variance = N * P * Q

where N = The number of trials.

P = The probability of a success on a single trial.

Q =  1 - P .

As N becomes large, the Binomial tends to the Normal Distribution,
with the Normal being the limiting form of the Binomial. Generally, if N *
P and N * Q are both greater than 5, you could use the Normal in lieu of
the Binomial as an approximation.

The Binomial Distribution is often used to statistically validate a gam-
bling system. An example will illustrate. Suppose we have a gambling sys-
tem that has won 51% of the time. We want to determine what the winning
percentage would be if it performs in the future at a level of 3 standard
deviations worse. Thus, the variable of interest here, X, is equal to .51, the
probability of a winning trade. The variable of interest need not always be
for the probability of a win. It can be the probability of an event being in
one of h~o  mutually exclusive groups. We can now perform the first neces-
sary equation in the test:

(B.12) L = P-Z * ((P * (1 - P))/(N - 1)) h  .5

where L = The lower boundary for P to be at Z standard deviations.

P = The variable of interest representing the probability of
being in one of two mutually exclusive groups.

Z = The selected number of standard deviations.

N = The total number of events in the sample.

Suppose our sample consisted of 100 plays. Thus:

L = .51 - 3 * ((.51 * (1 - .51))/(100  - 1)) A  .5
= .51-  3 * ((.51 * .49)/99) A  .5
= .51 - 3 * (.2499/99)  A  .5
= .51- 3 * .0025242424  A  .5
= .51-  3 * .05024183938
= .51-  .1507255181
= .3592744819
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Based on our history of 100 plays which generated a 51% win rate, we
can state that it would take a 3-sigma event for the population of plays (the
future if we play an infinite number of times into the future) to have less
than 35.92744819 percent winners.

What kind of a confidence level does this represent? That is a function of
N, the total number of plays in the sample. We can determine the confl-
dence  level of achieving 35 or 36 wins in 100 tosses by Equation (B.09).
However, (B.09) is clumsy to work with as N gets large because of all of the
factorial functions in (B.09). Fortunately, the Normal distribution, Equation
(3.21) for l-tailed probabilities, can be used as a very close approximation
for the Binomial probabilities. In the case of our example, using Equation
(3.21), 3 standard deviations translates into a 99.865% confidence. Thus, if
we were to play this gambling system over an infinite number of times, we
could be 99.865% sure that the percentage of wins would be greater than or
equal to 35.92744819%.

This technique can also be used for statistical validation of trading sys-
tems. However, this method is only valid when the following assumptions
are true. First, the N events (trades) are a11  independent and randomly
selected. This can easily be verified for any trading system. Second, the N
events (trades) can all be classified into two mutually exclusive groups (wins
and losses, trades greater than or less than the median trade, etc.). This
assumption, too, can easily be satisfied. The third assumption is that the
probability of an event being classified into one of the two mutually exclu-
sive groups is constant from one event to the next. This is not necessarily
true in trading, and the technique becomes inaccurate to the degree that
this assumption is false, Be that as it may, the technique still can have value
for traders.

Not only can it be used to determine the confidence level for a certain
method being profitable, the technique can also be used to determine the
confidence level for a given market indicator. For instance, if you have an
indicator that will forecast the direction of the next day’s close, you then
have two mutually exclusive groups: correct forecasts, and incorrect fore-
casts. You can now express the reliability of your indicator to a certain confi-
dence level.

This technique can also be used to discern how many trials are necessary
for a system to be profitable to a given confidence level. For example, SUP-

pose we have a gambling system that wins 51% of the time on a game that
pays 1 to 1. We want to know how many trials we must observe to be certain
to a given confidence level that the system will be profitable in an asymp-
totic  sense. Thus we can restate the problem as, “If the system wins 51% of
the time, how many trials must I witness, and have it show a 51% win rate,
to know that it will be profitable to a given confidence level?”
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Since the payoff is l:l, the system must win in excess of 50% of the time
to be considered profitable. Let’s say we want the given confidence level to
again be 99.865, or 3 standard deviations (although we are using 3 standard
deviations in this discussion, we aren’t restricted to that amount; we can use
any number of standard deviations that we want). How many trials must we
now witness to be 99.865% confident that at least 51% of the trials will be
winners?

If .51 - X = .5, then X = .Ol. Th ere ore, the right factors of Equationf
(B.12), Z * ((P * (1 - P))/(N - 1)) h  .5, must equal .Ol.  Since Z = 3 in this
case, and .Ol/3  = .0033, then:

((P * (1 - P))/(N - 1)) h  .5 = .0033

We know that P equals .51, thus:

((.51 * (1 - .51))/(N - 1)) A  .5 = .0033

Squaring both sides gives us:

((.51 * (1- .51))/(N - 1)) = .00001111

To continue:

(.51 * .49)/(N - 1) = .00001111

.2499/(N - 1) = .00001111

.2499/.00001111  = N - 1

.2499/.00001111  + 1 = N

22,491 + 1 = N

N = 22,492

Thus, we need to witness a 51% win rate over 22,492 trials to be 99.865%
certain that we will see at least 51% wins.

THE GEOMETRIC DISTRIBUTION

Like the Binomial, the Geometric Distribution, also a discrete distribution,
occurs as a result of N independent Bernoulli trials. The Geometric
Distribution measures the number of trials before the first success (or fail-
ure). The probability density function, N’(X), is:

t
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(B.13) N’(X) = Q h (X- 1) * P

where P = The probability of success for a given trial.

Q = The probability of failure for a given trial.

In other words, N’(X) here measures the number of trials until the first
success. The cumulative density function for the Geometric is therefore:

(B.14) N(X)  =,f,Q  * CJ  - 1)  * P

where P = The probability of success for a given trial.

Q = The probability of failure for a given trial.

Figures B-7 and B-8 illustrate the probability density and cumulative prob-
ability (i.e., cdl) respectively of the Geometric Distribution.

Other properties of the Geometric are:

(B.15) Mean = l/P

(B.16) Variance = Q/P h 2

where P = The probability of success for a given trial.

Q = The probability of failure for a given trial.

b 1 2 3 4 5 6 7 8 9 1U

Figure B-7 Probability density functions for the Geometric
Distribution (P = .6).

THE HYPERGEOMETRIC DISTRIBUTION 347
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Figure B-8 Cumulative probability functions for the Geometric
Distribution (P = .6).

Suppose we are discussing tossing a single die. If we are talking about
having the outcome of 5, how many times will we have to toss the die, on
average, to achieve this outcome? The mean of the Geometric Distribution
tells us this. If we know the probability of throwing a 5 is l/6 (.1667)  then
the mean is l/.1667  = 6. Thus we would expect, on average, to toss a die six
times in order to get a 5. If we kept repeating this process and recorded
how many tosses it took until a 5 appeared, plotting these results would
yield the Geometric Distribution function formulated in (B.13).

THE HYPERGEOMETRIC DISTRIBUTION

Another type of discrete distribution related to the preceding distributions
is termed the Hypergeometric Distribution. Recall that in the Binomial
Distribution it is assumed that each draw in succession from the population
has the same probabilities. That is, suppose we have a deck of 52 cards. 26
of these cards are black and 26 are red. If we draw a card and record
whether it is black or red, we then put the card back into the deck for the
next draw. This “sampling with replacement” is what the Binomial
Distribution assumes. Now for the next draw, there is still a .5 (26/52) prob-
ability of the next card being black (or red).

The Hypergeometric Distribution assumes almost the same thing, except
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there is no replacement after sampling. Suppose we draw the first card and
it is red, and we clo not replace it back into the deck. Now, the probability of
the next draw being red is reduced to 25/51  or .4901960784.  In the
Hypergeometric Distribution there is dependency, in that the probabilities
of the next event are dependent on the outcome(s) of the prior event(s).
Contrast this to the Binomial Distribution, where an event is independent of
the outcome(s) of the prior event(s).

The basic functions N’(X) and N(X) of the Hypergeometric are the same
as those for the Binomial, (B.07) and (B.09) respectively, except that with
the Hypergeometric the variable P, the probability of success on a single
trial, changes from one trial  to the next.

It is interesting to note the relationship between the Hypergeometric
and Binomial Distributions. As N becomes larger, the differences between
the computed probabilities of the Hypergeometric and the Binomial draw
closer to each other. Thus we can state that as N approaches infinity, the
Hypergeometric approaches the Binomial as a limit.

If you want to use the Binomial probabilities as an approximation of the
Hypergeometric, as the Binomial is far easier to compute, how big must the
population be? It is not easy to state with any certainty, since the desired
accuracy of the result will determine whether the approximation is success-
ful or not. Generally, though, a population to sample size of 100 to 1 is usu-
ally sufficient to permit approximating the Hypergeometric with the
Binomial.

THE POISSON DISTRIBUTION

The Poisson Distribution is another important discrete distribution. This
distribution is used to model arrival distributions and other seemingly ran-
dom events that occur repeatedly yet haphazardly. These  events can occur
at points in time or at points along a wire or line (one dimension), along a
plane (two dimensions), or in any N-dimensional construct. Figure B-9
shows the arrival of events (the X’s) along a line, or in time.

The Poisson Distribution was originally developed to model incoming
telephone calls to a switchboard. Other typical situations that can be mod-
eled by the Poisson are the breakdown of a piece of equipment,  the com-
pletion of a repair job by a steadily working repairman, a typing error, the
growth of a colony of bacteria on a Petri plate, a defect in a long ribbon or
chain, and so on.

The main difference between the Poisson and the Binomial distributions
is that the Binomial is not appropriate for events that can occur more than
once within a given time frame. Such an example might be the probability
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of an automobile accident over the next 6 months. In the Binomial we
would be working with two distinct cases: Either an accident occurs, with
probability P, or it does not, with probability Q (i.e., 1 - P). However, in the
Poisson Distribution we can also account for the fact that more than one
accident can occur in this time period.

The probability density function of the Poisson, N’(X), is given by:

(B.17) N’(X) = (L h X * EXP(-L))/X!

where L = The parameter of the distribution.

EXP( ) = The exponential function.

Note that X must take discrete values.
Suppose that calls to a switchboard average four calls per minute (L = 4).

The probability of three calls (X = 3) arriving in the next minute are:

N’(3) = (4 A  3 * EXP(4))/3!
= (64 * EXP(4))/(3  * 2)
= (64 * .01831564)/6
= 1.17220096/6
= .1953668267
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So we can say there is about a 19.5% chance of getting 3 calls in the next
minute. Note that this is not cumulative-that is, this is not the probability
of getting 3 calls or fewer, it is the probability of getting exactly 3 calls. If we
wanted to know the probability of getting 3 calls or fewer we would have
had to use the N(3) formula [which is given in (B.20)].

Other properties of the Poisson Distribution are:

(B.18) Mean = L

(B.lO) Variance = L

where L = The parameter of the distribution.

In the Poisson Distribution, both the mean and the variance equal the
parameter L. Therefore, in our example case we can say that the mean is 4
calls and the variance is 4 calls (or, the standard deviation is 2 calls-the
square root of the variance, 4).

When this parameter, L, is small, the distribution is shaped like a
reversed J, and when L is large, the distribution is not dissimilar to the
Binomial. Actually, the Poisson is the limiting form of the Binomial as N
approaches infinity and P approaches 0. Figures B-10 through B-13 show
the Poisson Distribution with parameter values of .5 and 4.5.
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Figure B-l 0 Probability density functions for the Poisson Distribution
(L = S).
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Figure El 1 Cumulative probability functions for the Poisson
Distribution (L = .5).
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Figure B-i 2 Probability density functions for the Poisson Distribution
(L = 4.5).
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Figure 8-13 Cumulative probability functions for the Poisson
Distribution (L = 4.5).

The cumulative density function of the Poisson, N(X), is given by:

(B.20) N(X) =,$(L  h J * EXP(-L))/J!

where L = The parameter of the distribution.

EXP( ) = The exponential function.

THE EXPONENTIAL DISTRIBUTION

Related to the Poisson Distribution is a continuous distribution with a wide
utility called the Exponential Distribution, sometimes also referred to as
the Negative Exponential Distribution. This distribution is used to model
interarrival times in queuing systems, service times on equipment, and sud-
den, unexpected failures such as equipment failures due to manufacturing
defects, light bulbs burning out, the time that it takes for a radioactive par-
ticle to decay, and so on. (There is a very interesting relationship behveen
the Exponential and the Poisson distributions. The arrival of calls to a
queuing system follows a Poisson Distribution, with arrival rate L. The
interarrival distribution (the time betsveen  the arrivals) is Exponential with
parameter l/L.)
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The probability density function N’(X) for the Exponential Distribution
is given as:

(B.21) N’(X) = A * EXP(-A * X)

where A = The single parametric input, equal to l/L in the Poisson
Distribution. A must be greater than 0.

EXP() = The exponential function.

The integral of (B.21),  N(X), the cumulative density function for the
Exponential Distribution is given as:

(B.22) N(X) = 1 - EXP(-A * X)

where A = The single parametric input, equal to l/L  in the Poisson
Distribution. A must be greater than 0.

EXP() = The exponential function.

Figures B-14 and B-15 show the functions of the Exponential
Distribution. Note that once you know A, the distribution is completely
determined.
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Figure El4 Probability density functions for the Exponential
Distribution (A = 1).
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Figure El 5 Cumulative probability functions for the Exponential
Distribution (A = 1).

The mean and variance of the Exponential Distribution are:

(B.23)

(B.24)

Mean = l/A

Variance = 1/A A  2

Again A is the single parametric input, equal to l/L in the Poisson
Distribution, and must be greater than 0.

Another interesting quality about the Exponential Distribution is that it
has what is known as the “forgetfulness property.” In terms of a telephone
switchboard, this property states that the probability of a call in a given time
interval is not affected by the fact that no calls may have taken place in the
preceding interval(s).

T H E  C H I - S Q U A R E  D I S T R I B U T I O N

A distribution that is used extensively in goodness-of-fit testing is the Chi-
Square Distribution (pronounced ki  square, from the Greek letter X (chi)
and hence often represented as the X2  distribution). Appendix A shows how

to perform the chi-square test to determine how alike or unalike two differ-
ent distributions are.
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Assume that K is a standard normal random variable (i.e., it has mean 0
and variance 1). If we say that K equals the square root of J (J = K h 2), then
we know that K will be a continuous random variable. However, we know
that  K will not be less than zero, so its density function will differ from the
Normal. The Chi-Square Distribution gives us the density function of K:

(B.27) N’(K) = (K  h ((V/2) - 1) * EXP(-V/2))/(2  h (V/2) * GAM(V/2))

where K = The chi-square variable X2.

V = The number of degrees of freedom, which is the single
input parameter.

EXP() = The exponential function.

GAM() = The standard gamma function.

A few notes on the gamma function are in order. This function has the
following properties:

1. GAM(0) = 1

2. GAM( l/2)  = The square root of pi, or 1.772453851

3. GAM(N)  = (N - 1) * GAM(N  - 1); therefore, if N is an integer,
GAM(N) = (N - l)!

Notice in Equation (B.25) that the only input parameter is V, the num-
ber of degrees of freedom. Suppose that rather than just taking one inde-
pendent random variable squared (K A  2), we take M independent random
variables squared, and take their sum:

J,=K,“2+K2”2..  .K,“2

Now Jbf  is said to have the Chi-Square Distribution with M degrees of
freedom. It is the number of degrees of freedom that determines the shape
of a particular %-Square  Distribution. When there is one degree of free-
dom, the distribution is severely asymmetric and resembles the Exponential
Distribution (with A = 1). At two degrees of freedom the distribution begins
to look like a straight line going down and to the right, with just a slight con-
cavity to it. At three degrees of freedom, a convexity starts taking shape and
we begin to have a unimodal-shaped distribution. As the number of degrees
of freedom increases, the density function gradually becomes more and
more symmetric. AS the number of degrees of freedom becomes very large,
the %-Square  Distribution begins to resemble the Normal Distribution
per The Central Limit Theorem.
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T H E  S T U D E N T ’ S  D I S T R I B U T I O N

The Student’s Distribution, sometimes called the t Distribution or Student’s
t, is another important distribution used in hypothesis testing that is related
to the Norma! Distribution. When you are working with less than 30 sam-
ples of a near-Normally distributed population, the Normal Distribution
can no longer be accurately used. Instead, you must use the Student’s
Distribution. This is a symmetrical distribution with one parametric input,
again the degrees of freedom. The degrees of freedom usually equals the
number of elements in a sample minus one (N - 1).

The shape of this distribution closely resembles the Normal except that
the tails are thicker and the peak of the distribution is lower. As the number
of degrees of freedom approaches infinity, this distribution approaches the
Normal in that the tails lower and the peak increases to resemble the
Normal Distribution. When there is one degree of freedom, the tails are at
their thickest and the peak at its smallest. At this point, the distribution is
called Cauchy.

It is interesting that if there is only one degree of freedom, then the
mean of this distribution is said not to exist. If there is more than one
degree of freedom, then the mean does exist and is equal to zero, since the
distribution is symmetrical about zero. The variance of the Student’s
Distribution is infinite if there are fewer than three degrees of freedom.

The concept of infinite oariance is really quite simple. Suppose we mea-
sure the variance in daily closing prices for a particular stock for the last
month. We record that value. Now we measure the variance in daily closing
prices for that stock for the next year and record that value. Generally, it
will be greater than our first value, of simply last month’s variance. Now
let’s go back over the last 5 years and measure the variance in daily closing
prices. Again, the variance has gotten larger. The farther back we go-that
is, the more data we incorporate into our measurement of variance-the
greater the variance becomes. Thus, the variance increases without bound
as the size of the sample increases. This is infinite variance. The distribution
of the log of daily price changes appears to have infinite variance, and thus
the Student’s Distribution is sometimes used to model the log of price
changes. (That is, if CO is today’s close and Cl yesterday’s close, then
In(CO/Cl)  will g ive us a value symmetrical about 0. The distribution of these
values is sometimes modeled by the Student’s distribution).

If there are three or more degrees of freedom, then the variance is finite
and is equal to:

(B.26) Variance = V I (V - 2) forV  > 2
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(B.27) Mean = 0 forV  > 1

where V = The degrees of freedom.

Suppose we have two independent random variables. The first of these,
Z, is standard normal (mean of 0 and variance of 1). The second of these,
which we call J, is Chi-Square distributed with V degrees of freedom. We
can now say that the variable T, equal to ZI(JN),  is distributed according to
the Student’s Distribution. We can also say that the variable T will follow

the  Student’s Distribution with N - 1 degrees of freedom if:

T = N A  (l/2)  * ((X - U)/S)

where X = A sample mean.

S = A sample standard deviation,

N = The size of a sample.

U = The population mean.

The probability density function for the Student’s Distribution, N’(X), is
given as:

(B.28) N’(X) = (GAM((V + 1)/2)/(((V * P) A  (l/2))  * GAM(V/2))) *  ((1
+ ((X  h 2)/v))  h (-(V  + 1)/2))

where P = pi, or 3.1415926536.

V = The degrees of freedom.

GAM() = The standard gamma function.

The mathematics of the Student’s Distribution are related to the incom-
plete beta function. Since we aren’t going to plunge into functions of math-
ematical physics such as the incomplete beta function, we will leave the
Student’s Distribution at this point. Before we do, however, you still need to
know how to calculate probabilities associated with the Student’s
Distribution for a given number of standard units (Z score) and degrees of
freedom. You can use published tables to find these values. Yet, if you’re as
averse to tables as I am, you can simply use the following snippet of BASIC
code to discern the probabilities. You’ll  note that as the degrees of freedom
variable, DEGFDM, approaches infinity, the values returned, the probabili-
ties, converge to the Normal as given by Equation (3.22):
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1000 REM 2 TAIL PROBABILITIES ASSOCIATED WITH THE STUDENT’S T
DISTRIBUTION
1010 REM INPUT ZSCORE AND DEGFDM, OUTPUTS CF
1020 ST = ABS(ZSCORE):R8  = ATN(ST/SQR(DEGFDM)):RC8
= COS(RB):X8  = l:R28  = RC8 * RC8:RS8  = SIN(R8)
1030 IF DEGFDM MOD 2 = 0 THEN 1080
1040 IF DEGFDM = 1 THEN Y8 = R8:GOTO 1070
1050 Y8 = RC8:FOR Z8 = 3 TO (DEGFDM-2) STEP 2:X8
= X8 * R28 * (Z&l)/Z8:Y8  = Y8+X8  * RC8:NEXT
1060 Y8 = R8+RS8  * Y8
1070 CF = Y8 + .6366197723657157#:GOTO  1100
1080 Y8 = 1 :FOR Z8=2  TO (DEGFDM-2) STEP 2:X8 = X8 * R28
* (Z&l)/Z8:Y8  = YB+XB:NEXT
1090CF=Y8*RS8
1100 PRINT CF

Next we come to another distribution, related to the Chi-Square
Distribution, that also has important uses in statistics. The F Distribution,
sometimes referred to as Snedecor’s  Distribution or Snedecor’s  F, is useful
in hypothesis testing. Let A and B be independent chi-square random vari-
ables with degrees of freedom of M and N respectively. Now the random
variable:

F = (A/M)/(B/N)

can be said to have the F Distribution with M and N degrees of freedom.
The density function, N’(X), of the F Distribution is given as:

(B.29) N’(X) = (GAM((M + N)/2) * ((M/N) h (M/2)))/(GAM(M/2)
* GAM(N/2)  * ((1 + M/N) h ((M + N)/2)))

where M = The number of degrees of freedom of the first parameter.

N = The number of degrees of freedom of the second
parameter.

GAM(  ) = The standard gamma function.

THE MULTINOMIAL  DISTRIBUTION

The M&nor&l  Distribution is related to the Binomial, and likewise is a
discrete distribution. Unlike the Binomial, which assumes two possible out-
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comes for an event, the Multinomial assumes that there are M different
outcomes for each trial. The probability density function, N’(X), is given as:

(B.30) N’(X) = (N!/(,~~  Ni!)) *ids Pi A  Ni

where N = The total number of trials.

Ni  = The number of times the ith trial occurs.

Pi = The probability that outcome number i will be the result of
any one trial. The summation of all Pi’s equals 1.

M = The number of possible outcomes on each trial.

For example, consider a single die where there are 6 possible outcomes
on any given roll (M  = 6). What is the probability of rolling a 1 once, a 2
hvice,  and a 3 three times out of 10 rolls of a fair die? The probabilities of
rolling a 1, a 2 or a 3 are each l/6. We must consider a fourth alternative to
keep the sum of the probabilities equal to 1, and that is the probability of
not rolling a 1, 2, or 3, which is 3/6. Therefore, PI = P, = P, = l/6,  and P4 =
3/6. Also, N, = 1, Nz = 2, N,  = 3, and N,  = 10 - 3 - 2 - 1 = 4. Therefore,
Equation (B.30) can be worked through as:

N’(X) = (lO!/(  l! * 2! * 3! * 4!)) * (l/6)  h  1 * (l/6)  A  2 * (l/6)  A  3 *  (3/6) 4
= (3628800/(1  * 2 * 6 * 24)) * .1667 * .0278 * .00463 * .0625
= (3628800/288)  * .000001341
= 12600 * .000001341
= .0168966

Note that this is the probability of rolling exactly a 1 once, a 2 twice, and
a 3 three times, not the cumulative density. This is a type of distribution that
uses more than one random variable, hence its cumulative density cannot
be drawn out nicely and neatly in two dimensions as you could with the
other distributions discussed thus far. We will not be working with other
distributions that have more than one random variable, but you should be
aware that such distributions and their functions do exist.

THE STABLE PARETIAN DISTRIBUTION

The stable Purctian  Distribution is actually an entire class of distributions,
sometimes referred to as “Pareto-Levy” distributions. The probability den-
sity function N’(U) is given as:
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(B.31) In(N’(U)) = i * D * U - V * abs(U)  h  A *  Z

where U = The variable of the stable distribution.

A = The kurtosis parameter of the distribution.

B = The skewness parameter of the distribution.

D = The location parameter of the distribution.

V = This is also called the scale parameter.

i = The imaginary unit, -1 A (l/2)

Z = 1 -i * B * (U/ASS(U)) * tan(A  * 3.1415926536/2)  when
A >< 1 and 1 + i * B * (U/ASS(U)) * 2/3.1415926536
* Io~(ABS(U))  when A = I.

ABS(  ) = The absolute value function.

tan() = The tangent function.

ln(  ) = The natural logarithm function.

The limits on the parameters of Equation (B.31) are:

(B.32) O<A<=2

(B.33) -1 <= B <= 1

(B.34) oc=v

The four parameters of the distribution-A, B, D, and V-allow the distri-
bution to assume a great many different shapes.

The variable A measures the height of the tails of the distribution. Thus,
we can say that A represents the kurtosis variable of the distribution. A is
also called the characteristic exponent of the distribution. When A equals 2,
the distribution is Normal, and when A equals 1 the distribution is Cauchy.
For values of A that are less than 2, the tails of the distribution are higher
than with the Normal Distribution. The total probability in the tails
increases as A decreases. When A is less than 2, the variance is infinite. The
mean of the distribution exists only if A is greater than 1.

The variable B is the index of skewness. When B equals zero, the distri-
bution is perfectly symmetrical. The degree of skewness is larger the larger
the absolute value of B. Notice that when A equals 2, W(U,A)  equals 0,
hence B has no effect on the distribution. In this case, when A equals 2, no
matter what B is we still have the perfectly symmetrical Normal
Distribution. The scale  parameter, V, is sometimes written as a function of
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A, in that V = C h A, therefore C = V h (l/A). When A equals 2, V is one-
half the variance. When A equals 1, the Cauchy Distribution, V is equal to
the semi-interquartile range. D is the locution parumeter.  When A is equal
to 2, the arithmetic mean is an unbiased estimator of D; when A is equal to
1, the median is.

The cumulative density functions for the stable Paretian are not known
to exist in closed form. For this reason, evaluation of the parameters of this
distribution is complex, and work with this distribution is made more diffi-
cult. It is interesting to note that the stable Paretian parameters A, B, C, and
D correspond to the fourth, third, second, and first moments of the distri-
bution respectively. This gives the stable Paretian the power to model many
types of real-life distributions-in particular, those where the tails of the
distribution are thicker than they would be in the Normal, or those with
infinite variance (i.e., when A is less than 2). For these reasons, the stable
Paretian is an extremely powerful distribution with applications in eco-
nomics and the social sciences, where data distributions often have those
characteristics (fatter tails and infinite variance) that the stable Paretian
addresses.

This infinite variance characteristic makes the Central Limit Theorem
inapplicable to data that is distributed per the stable Paretian distribution
when A is less than 2. This is a very important fact if you plan on using the
Central Limit Theorem.

One of the major characteristics of the stable Paretian is that it is invari-
ant under addition. This means that the sum of independent stable variables
with characteristic exponent A will be stable, with approximately the same
characteristic exponent. Thus we have the Generalized Central Limit
Theorem, which is essentially the Central Limit Theorem, except that the
limiting form of the distribution is the stable Paretian rather than the
Normal, and the theorem applies even when the data has infinite variance
(i.e., A c 2), which is when the Central Limit Theorem does not apply. For
example, the heights of people have finite variance. Thus we could model
the heights of people with the Normal Distribution. The distribution of
people’s incomes, however, does not have finite variance and is therefore
modeled by the stable Paretian distribution rather than the Normal
Distribution.

It is because of this Generalized Central Limit Theorem that the stable
Paretian Distribution is believed by many to be representative of the distri-
bution of price changes.1

There are many more probability distributions that we could still cover

*Do  not confuse the stable Par&km  Distribution with our adjustable distribution discussed in
Chapter 4. The stable Paretian is a real  distribution because it models a probability phe-
nomenon. Our adjustable distribution does not. Rather, it models other (Z-dimensional)
probability distributions,  such as the stable Paretian.
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(Negative Binomial Distribution, Gamma Distribution, Beta Distribution,
etc.); however, they become increasingly more obscure as we continue from
here. The distributions we have covered thus far are, by and large, the main
common probability distributions.

Efforts have been made to catalogue the many known probability distri-
butions. Undeniably, one of the better efforts in this regard has been done
by Karl Pearson, but perhaps the most comprehensive work done on cata-
loguing the many known probability distributions has been presented by
Frank Haight.2 Haight’s “Index” covers almost all of the known distributions
on which information was published prior to January, 1958. Haight lists
most of the mathematical functions associated with most of the distribu-
tions. More important, references to books and articles are given so that a
user of the index can find  what publications to consult for more in-depth
matter on the particular distribution of interest. Haight’s index categorizes
distributions into ten basic types:

1 . Normal

2. Type III

3. Binomial

4. Discrete

5. Distributions on (A, B)

6. Distributions on (0, infinity)

7. Distributions on (-infinity, infinity)

8. Miscellaneous Univariate

9. Miscellaneous Bivariate

10. Miscellaneous Multivariate

Of the distributions we have covered in this Appendix, the Chi-Square
and Exponential (Negative Exponential) are categorized by Haight as Type
III. The Binomial, Geometric, and Bernoulli are categorized as Binomial.
The Poisson and Hypergeometric are categorized as Discrete. The
Kectangular  is under Distributions on (A, B), the F Distribution as well as
the Pareto are under Distributions on (0, infinity), the Student’s
Distribution is regarded as a Distribution on (-infinity, infinity), and the

2Haight,  F. A., “Index to the Distributions or Mathematical Statistics,“]oumal  of Research of
the  National Burencr  of Standards-B. Mathenwtic.s  and Mathematical Physics 650 No. 1, pp.
2.%-60,  JanuayMarch 1961.
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Multinomial as a Miscellaneous Multivariate. It should also be noted that
not all distributions fit cleanly into one of these ten categories, as some dis-
tributions can actually be considered subclasses of others. For instance, the
Student’s distribution is catalogued  as a Distribution on (-infinity, intlnity),
yet the Normal can be considered a subclass of the Student’s, and the
Normal is given its own category entirely. As you can see, there really isn’t
any “clean” way to categorize distributions. However, Haight’s index is quite
thorough. Readers interested in learning more about the different types of
distributions should consult Haight as a starting point.
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Further on Dependency: The
Turning Points and Phase
Length Tests

There exist statistical tests of dependence other than those mentioned in
Put-t$olio  Management Formulas and reiterated in Chapter 1. The turning
points test is an altogether different test for dependency. Going through the
stream of trades, a turning point is counted if a trade is for a greater P&L
value than both the trade before it and the trade after it. A trade can also be
counted as a turning point if it is for a lesser P&L value than both the trade
before it and the trade after it. Notice that we are using the individual
trades, not the equity curve (the cumulative values of the trades). The num-
ber of turning points is totaled up for the entire stream of trades. Note that
we must start with the second trade and end with the next to last trade, as
we need a trade on either side of the trade we are considering as a turning
point .

Consider now three values (1, 2, 3) in a random series, whereby each of
the six possible orderings are equally likely:

1,2,3 2,3, 1 1,3,2 3, L2 2, 173 3, 2, 1

Of these six, four will result in a turning point. Thus, for a random
stream of trades, the expected number of turning points is given as:
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(C.01) Expected number of turning points = 2/3  *  (N - 2)

where N = The total number of trades.

We can derive the variance in the number of turning points of a random
series as:

(C.02) Variance = (16 * N - 29)/90

The standard deviation is the square root of the variance. Taking the dif-
ference between the actual number of turning points counted in the stream
of trades and the expected number and then dividing the difference by the
standard deviation will give us a Z score, which is then expressed as a confi-
dence limit. The confidence limit is discerned from Equation (3.22) for 2-
tailed Normal probabilities. Thus, if our stream of trades is very far away
(very many standard deviations from the expected number), it is unlikely
that our stream of trades is random; rather, dependency is present. If
dependency appears to a high confidence limit (at least 95%) with the tum-
ing points test, you can determine from inspection whether like begets like
(if there are fewer actual turning points than expected) or whether like
begets unlike (if there are more actual turning points than-expected).

Another test for dependence is the phase Zength  test. This is a statistical
test similar to the turning points test. Rather than counting up the number
of turning points between (but not including) trade 1 and the last trade, the
phase length test looks at how many trades have elapsed between turning
points. A “phase” is the number of trades that elapse between a turning
point high and a turning point low, or a turning point low and a turning
point high. It doesn’t matter which occurs first, the high turning point or
the low turning point. Thus, if trade number 4 is a turning point (high or
low) and trade number 5 is a turning point (high or low, so long as it’s the
opposite of what the last turning point was), then the phase length is 1,
since the difference between 5 and 4 is 1.

With the phase length test you add up the number of phases of length 1,
2, and 3 or more. Therefore, you will have 3 categories: 1, 2, and 3+. Thus,
phase lengths of 4 or 5, and so on, are all totaled under the group of 3+. It
doesn’t matter if a phase goes from a high turning point to a low turning
point or from a low turning point to a high turning point; the only thing that
matters is how many trades the phase is comprised of. To figure the phase
length, simply take the trade number of the latter phase (what number it is
in sequence from 1 to N, where N is the total number of trades) and sub-
tract the trade number of the prior phase. For each of the three categories
you will have the total number of complete phases that occurred between
(but not including) the first and the last trades.
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Each of these three categories also has an expected number of trades for
that category. The expected number of trades-of phase length D is:

(C.03) E(D)=2*(N-D-2)*(DA2*3*D+1)/(D+3)!

where D = The length of the phase.

E(D) = The expected number of counts.

N = The total number of trades.

Once you have calculated the expected number of counts for the three
categories of phase length (1, 2, and 3+), you can perform the chi-square
test. According to Kendall and colleagues,’ you should use 2.5 degrees of
freedom here in determining the significance levels, as the lengths of the
phases are not independent. Remember that the phase length test doesn’t
tell you about the dependence (like begetting like, etc.), but rather whether
or not there is dependence or randomness.

Lastly, this discussion of dependence addresses converting a correlation
coefficient to a confidence limit. The technique employs what is known as
Fisher’s 2 transformation, which converts/a correlation coefficient, r, to a
Normally distributed variable:

(C.04) F = .5 * ln((l  + r)/(l  -r))

where F = The transformed variable, now Normally distributed.

r = The correlation coefficient of the sample.

ln() = The natural logarithm function.

The distribution of these transformed variables will have a variance of:

(C.05) V = l/(N  - 3)

where V = The variance of the transformed variables.

N = The number of elements  in the sample.

The mean of the distribution of these transformed variables is discerned
by Equation (C.O4),  only instead of being the correlation coeficient  of the

sample, r is the correlation coefficient of the population. Thus, since our
population has a correlation coefficient of 0 (which we assume, since we are

IKendall,  M.  G., A. Stuart, and J. K. Ord.  The Adoonced  Theory of Statistics, Vol. III. New
York: Hafner  Publishing, 1983.
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testing deviation from randomness) then Equation (C.04)  gives us a value of
0 for the mean of the population.

Now we can determine how many standard deviations the adjusted vari-
able is from the mean by dividing the adjusted variable by the square root of
the variance, Equation (C.05).  The result is the Z score associated with a
given correlation coefficient and sample size. For example, suppose we had
a correlation coefficient of .25, and this was discerned over 100 trades.
Thus, we can find our Z score as Equation (C.04)  divided by the square root
of Equation (C.O5),  or:

(C.06) Z = (.5 * ln((1 + r)/(l- r)))/(l/(N  -3)) A  .5

Which, for our example is:

Z = (.5 * ln((1 + .25)/(1-  .25)))/(1/(100  - 3)) A  .5
= (.5 * ln(1.25/.75))/(1/97)  A  .5
= (.5 * ln(1.6667))/.010309  * .5
= (.5 * .51085)/.1015346165
= .25541275/.1015346165
= 2.515523856

Now we can translate this into a confidence limit by using Equation
(3.22) for a Normal Distribution e-tailed confidence limit. For our example
this works out to a confidence limit in excess of 98.8%. If we had had 30
trades or less, we would have had to discern our confidence limit by using
the Student’s Distribution with N - 1 degrees of freedom.


