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“You must not be extending your empire while you are at war or run
into unnecessary dangers. I am more afraid of our own mistakes

than our enemies’ designs.”

—Pericles, in a speech to the Athenians during the Peloponnesian
War, as represented by Thucydides
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Preface

I t’s always back there, bubbling away. It seems I cannot shut off my
mind from it. Every conversation I ever have, with programmers and
traders, engineers and gamblers, Northfield Park Railbirds and War-

rensville Workhouse jailbirds—those equations that describe these very
things are cast in this book.

Let me say I am averse to gambling. I am averse to the notion of creating
risk where none need exist, averse to the idea of attempting to be rewarded
in the absence of creating or contributing something (or worse yet, taxing a
man’s labor!). Additionally, I find amorality in charging or collecting interest,
and the absence of this innate sense in others riles me.

This book starts out as a compilation, cleanup, and in some cases,
reformulation of the previous books I have written on this subject. I’m
standing on big shoulders here. The germ of the idea of those previous books
can trace its lineage to my good friend and past employer, Larry Williams. In
the dust cloud of his voracious research, was the study of the Kelly Criterion,
and how that might be applied to trading. What followed over the coming
years then was something of an explosion in that vein, culminating in a
better portfolio model than the one which is still currently practiced.

For years now I have been away from the markets—intentionally. In a
peculiar irony, it has sharpened my bird’s-eye view on the entire industry.
People still constantly seek me out, bend my ears, try to pick my hollow,
rancid pumpkin about the markets. It has all given me a truly gigantic field
of view, a dizzying phantasmagoria, on who is doing what, and how.

I’d like to share some of that with you here.
We are not going to violate anyone’s secrets here, realizing that most of

these folks work very hard to obtain what they know. What I will speak of
is generalizations and commonalities in what people are doing, so that we
can analyze, distinguish, compare, and, I hope, arrive at some well-founded
conclusions.

But I am not in the markets’ trenches anymore. My time has been spent
on software for parametric geometry generation of industrial componentry
and “smart” robots that understand natural language and can go out and do

xiii
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things like perform research for me, come back, draw inferences, and dis-
cuss their findings with me. These are wonderful endeavors for me, allowing
me to extend my litany of failures.

Speaking of which, in the final section of this text, we step into the near-
silent, blue-lit morgue of failure itself, dissecting it both in a mathematical
and abstract sense, as well as the real-world one. In this final chapter, the
two are indistinguishable.

When we speak of the real world, some may get the mistaken impression
that the material is easy. It is not. That has not been a criterion of mine here.
What has been a criterion is to address the real-world application of the
previous three books that this book incorporates. That means looking at the
previous material with regard to failure, with regard to drawdown. Money
managers and personal traders alike tend to have utility preference curves
that are incongruent with maximizing their returns. Further, I am aware of no
one, nor have I ever encountered any trader, fund manager, or institution,
who could even tell you what his or her utility preference function was.
This is a prime example of the chasm—the disconnect—between theory
and real-world application.

Historically, risk has been defined in theoretical terms as the variance
(or semivariance) in returns. This, too, is rarely (though in certain situations)
a desired proxy for risk. Risk is the chance of getting your head handed to
you. It is not, except in rare cases, variance in returns. It is not semivariance
in returns; it is not determined by a utility preference function. Risk is
the probability of being ruined. Ruin is touching or penetrating a lower
barrier on your equity. So we can say to most traders, fund managers, and
institutions that risk is the probability of touching a lower barrier on equity,
such that it would constitute ruin to someone. Even in the rare cases where
variance in returns is a concern, risk is still primarily a drawdown to a lower
absorbing barrier.

So what has been needed, and something I have had bubbling away for
the past decade or so, is a way to apply the optimal f framework within the
real-world constraints of this universally regarded definition of risk. That is,
how do we apply optimal f with regard to risk of ruin and its more familiar
and real-world-applicable-cousin, risk of drawdown?

Of course, the concepts are seemingly complicated—we’re seeking to
maximize return for a given level of drawdown, not merely juxtapose returns
and variance in returns. Do you want to maximize growth for a given level
of drawdown, or do you want to do something easier?

So this book is more than just a repackaging of previous books on
this subject. It incorporates new material, including a study of correlations
between pairwise components in a portfolio (and why that is such a bad
idea). Chapter 11 examines what portfolio managers have (not) been doing
with regards to the concepts presented in this book, and Chapter 12 takes
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the new Leverage Space Portfolio Model and juxtaposes it to the probability
of a given drawdown to provide a now-superior portfolio model, based on
the previous chapters in this book, and applicable to the real world.

I beg the reader to look at everything in this text—as merely my ar-
ticulation of something, and not an autocratic dictation. Not only am I not
infallible, but also my real aim here is to engage you in the study of some-
thing I find fascinating, and I want to share that very raw joy with you.
Because, you see, as I started out saying, it’s always back there, bubbling
away—my attraction to those equations on the markets, pertaining to allo-
cation and leverage. It’s not a preoccupation with the markets, though—to
me it could be the weather or any other dynamic system. It is the allure of
nailing masses and motions and relationships with an equation.

Rapture!
That is my motivation, and that is why I can never shut it off. It is that

very rapture that I seek to share, which augments that very rapture I find in
it. As stated earlier, I stand on big shoulders. My hope is that my shoulders
can support those who wish to go further with these concepts.

This book covers my thinking on these subjects for more than two and
a half decades. There are a lot of people to thank. I won’t mention them,
either—they know who they are, and I feel uneasy mentioning the names
of others here in one way or another, or others in the industry who wish to
remain nameless. I don’t know how they might take it.

There is one guilty party, however, whom I will mention—Rejeanne.
This one, finally, is for you.

RALPH VINCE

Chagrin Falls, Ohio

August 2006
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Introduction

This is a book in two distinct parts. Originally, my task was to distill the
previous three books on this subject into one book. In effect, Part I
comprises that text.

It’s been reorganized, rehashed, and reworked to resemble the original
texts while creating a contiguous path of reasoning, which takes us from the
basic gambling theory and statistics, through the introduction of the Kelly
criterion, optimal f , and finally onto the Leverage Space Portfolio Model
for multiple-simultaneous positions.

The Leverage Space Portfolio Model addresses allocations and leverage.
Often these are two distinct facets, but herein they refer to the same thing.
Allocation is the relative leverage between multiple portfolio components.
Thus, when we speak of leverage, we are also speaking of allocation, and
vice versa.

Likewise, money management and portfolio construction, as prac-
ticed, don’t necessarily refer to the same exercise, yet in this text, they
do. Collectively, whatever the endeavor of risk, be it a bond portfolio, a
commodities fund, or a team of blackjack players invading a casino, the
collective exercise will be herein referred to as allocation.

I have tried to keep the geometric perspective on these concepts, and
keep those notions about them intact. The first section is necessarily heavy
on math. The first section is purely conceptual. It is about allocation and
leverage to maximize returns without respect to anything else.

Everything in Part I was conjured up more than a decade or two ago. I
was younger then.

Since that time, I have repeatedly been approached with the question,
“How do you apply it?” I used to be baffled by this; the obvious (to me)
answer being, “As is.”

As used herein, a ln utility preference curve is one that is characteristic
of someone who acts so as to maximize the ratio of his or her returns to the
risk assumed to do so.

The notion that someone’s utility preference function could be any-
thing other than ln was evidence of both the person’s insanity and weakness.

xvii
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I saw it as a means for risk takers to enjoy the rush of their compulsive gam-
bling under the ruse of the academic justification of utility preference.

I’m older now (seemingly not tempered with age—you see, I still know
the guy who wrote those previous books), but I have been able to at least
accept the exercise—the rapture—of working to solve the dilemma of op-
timal allocations and leverage under the constraint of a utility preference
curve that is not ln.

By the definition of a ln utility preference curve, given a few paragraphs
ago, a sane1 person is therefore one who is levered up to the optimal f

level in a game favorable to him or minimizes his number of plays in a game
unfavorable to him. Anyone who goes to a casino and plunks down all he is
willing to lose on that trip in one play is not a compulsive gambler. But who
does that? Who has that self-control? Who has a utility preference curve
that is ln?

That takes us to Part II of the book, the part I call the real-world applica-

tion of the concepts illuminated in Part I, because people’s utility preference
curves are not ln.

So Part II attempts to tackle the mathematical puzzle posed by attempt-
ing to employ the concepts of Part I, given the weakness and insanity of
human beings. What could be more fun?

* * *

Many of the people who have approached me with the question of “How do
you apply it?” over the years have been professionals in the industry. Since,
ultimately, their clients are the very individuals whose utility preference
curves are not ln, I have found that these entities have utility preference
functions that mirror those of their clients (or they don’t have clients for
long).

Many of these entities have been successful for many years. Naturally,
their procedures pertaining to allocation, leverage, and trading implemen-
tation were of great interest to me.

Part II goes into this, into what these entities typically do. The best of
them, I find, have not employed the concepts of the last chapter except in
very rudimentary and primitive ways. There is a long way to go.

Often, I have been criticized as being “all theory—no practice.” Well,
Part I is indeed all theory, but it is exhaustive in that sense—not on portfolio
construction in general and all the multitude of ways of performing that,
but rather, on portfolio construction in terms of optimal position sizes (i.e.,
in the vein of an optimal f approach). Further, I did not want Part I to be

1Academics prefer the nomenclature “rational,” versus “sane.” The subtle difference
between the two is germane to this discussion.
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a mere republishing, almost verbatim, of the previous books. Therefore, I
have incorporated some new material into Part I. This is material that has
become evident to me in the years since the original material was published.

Part II is entirely new. I have been fortunate in that my first exposure to
the industry was as a margin clerk. I had an opportunity to observe a sizable
universe of ways people go about doing things in this business. Later, thanks
to my programming abilities, from which the other books germinated, I had
exposure to many professionals in the industry, and was often privy to how
they practiced things, or was in a position where I could reverse-engineer it. I
have had the good fortune of being on a course that has afforded me a bird’s-
eye view of the way people practice their allocation, leverage, and trading
implementations in this business. Part II is derived from that high-altitude
bird’s-eye view, and the desire to provide a real-world implementation of
the concepts of Part I—that is, to make them applicable to those people
whose utility preference functions are not ln.

* * *

Things I have written of in the past have received a good deal of criticism
over the years. I welcome it, and a chance to address it. To me, it says people
are thinking about these ideas, trying to mold them further, or remold those
areas where I may have been wrong (I’m not so much interested in being
“right” about any of this as I am about “this”). Though I have not consciously
intended that, this book, in many ways, answers some of those criticisms.

The main criticism was that it was too theoretical with no real-world
application. The criticism is well founded in the sense that drawdown was
all but ignored. For better or worse, people and institutions never seem to
have utility functions that are ln. Yet, nearly all utility functions of people
and institutions are ln within a drawdown constraint. That is, they seek to
maximize the ratio of returns to risk (drawdown) within a certain draw-
down. That disconnect between what I have written in the past has now,
more than a decade later, been resolved.

A second major criticism is that trading at optimal f is too wild for any
mere human. I know of no professional funds that have traded at the optimal
f levels. I have known people who have traded at optimal f , usually for short
periods of time, in only a single market, before panicking in a drawdown.
There it is again: drawdown. You see, it wasn’t so much this construct of
their utility preference curve (talk about too theoretical!) as it was their
drawdown that was incongruent with their trading at the optimal f level.

If you are getting the notion that we will be looking into the nature of
drawdown later on in this book, when we discuss what I have been doing
in terms of working on this material for the past decade-plus, you’re right.
We’re going to look at drawdown herein beyond what anyone has.
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Which takes us to the third major criticism, being that optimal f or the
Leverage Space Model allocates without respect to drawdown. This, too,
has now been addressed directly in Chapter 12. However, as we will see
in that chapter, drawdown is, in a sequence of independent trials, but one
permutation of many permutations. Thus, to address drawdown, one must
address it in those terms.

The last major criticism has been that regarding the complexity of cal-
culation. People desire a simple solution, a heuristic, something they could
perform by hand if need be.

Unfortunately, that was not the case, and that desire of others is now
something even more remote. In the final chapter, we can see that one must
perform millions of calculations (as a sample to billions of calculations!) in
order to derive certain answers.

However, such seemingly complex tasks can be made simple by pack-
aging them up as black-box computer applications. Once someone under-
stands what calculations are performed and why, the machine can do the
heavy lifting. Ultimately, that is even simpler than performing a simple cal-
culation by hand.

If one can put in the scenarios, their outcomes, and probability of
occurrence—their joint probabilities of occurrence with other scenarios
in other scenario spectrums—one can feed the machine and derive that
number which satisfies the ideal composition, the optimal allocations and
leverage among portfolio components to satisfy that ln utility preference
function within a certain drawdown constraint.

To be applicable to the real world, a book like this should, it would
seem, be about trading. This is not a book on how to trade the markets.
(This makes the real-world application section difficult.) It is about how
very basic, mathematical laws are working on us—you and me—when we
engage in a stream of risk-related outcomes wherein we don’t have control
over those outcomes. Rather, we have control only over the relative impacts
on us. In that sense, the mathematics applies to us in trading.

I don’t want to pretend to know a thing about trading, really. Just as I
am not an academic, I am also not a trader. I’ve been around and worked
for some amazing traders—but that doesn’t mean I am one.

That’s your domain—and why you are reading this book: To augment
the knowledge you have about trading vis-à-vis cross-pollination with these
outside formulas. And if they are too cumbersome, or too complicated,
please don’t blame me. I wish they were simply along the lines of 2 + 2. But
they are not.

This is not by my design. When you trade, you are somewhat trying to
intuitively carve your way along the paths of these equations, yet you are
oblivious to what the equations are. You are, for instance, trying to maximize
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your returns within a certain probability of a given drawdown over the next
period.

But you don’t really have the equations to do so. Now you do. Don’t
blame me if you find them to be too cumbersome. These formulas are
what we seek to know—and somehow use—as they apply to us in trading,
whether we acknowledge that or not. I have heard ample criticism about
the difficulties in applications. In this text, I will attempt to show you what
others are doing compared to using these formulas. However, these formu-
las are at work on everyone when they trade. It is in the disparity between
the two that your past criticisms of me lie; it is in that very disparity that
my criticisms of you lie.

When you step up to the service line and line up to serve to my backhand,
say, the fact that gravity operates with an acceleration of 9.8 meters per
second squared applies to you. It applies to your serve landing in the box
or not (among other things), whether you acknowledge this or not. It is an
explanation of how things work more so than how to work things. You are
trying to operate within a world defined by certain formulas. It does not
mean you can implement them in your work, or that, because you cannot,
they are therefore invalid. Perhaps you can implement them in your work.
Clearly, if you could, without expense to the other aspects of “your work,”
wouldn’t it be safe to say, then, that you certainly wouldn’t be worse off?

And so with the equations in the book. Perhaps you can implement
them—and if you can, without expense to the other aspects of your game,
then won’t you be better off? And if not, does it invalidate their truths any
more than a tennis pro who dishes up a first serve, oblivious to the 9.8 m/s2

at work?

* * *

This is, in its totality, what I know about allocations and leverage in trading.
It is the sum of all I have written of it in the past, and what I have savored
over the past decade-plus. As with many things, I truly love this stuff. I hope
my passion for it rings contagiously herein. However, it sits as dead and cold
as any inanimate abstraction. It is only your working with these concepts,
your application and your critiques of them, your volley back over the net,
that give them life.
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C H A P T E R 1

The Random
Process and

Gambling Theory

We will start with the simple coin-toss case. When you toss a coin in
the air there is no way to tell for certain whether it will land heads
or tails. Yet over many tosses the outcome can be reasonably pre-

dicted.
This, then, is where we begin our discussion.
Certain axioms will be developed as we discuss the random process.

The first of these is that the outcome of an individual event in a ran-

dom process cannot be predicted. However, we can reduce the possible

outcomes to a probability statement.
Pierre Simon Laplace (1749–1827) defined the probability of an event

as the ratio of the number of ways in which the event can happen to the
total possible number of events. Therefore, when a coin is tossed, the prob-
ability of getting tails is 1 (the number of tails on a coin) divided by 2 (the
number of possible events), for a probability of .5. In our coin-toss example,
we do not know whether the result will be heads or tails, but we do know
that the probability that it will be heads is .5 and the probability it will be
tails is .5. So, a probability statement is a number between 0 (there is no

chance of the event in question occurring) and 1 (the occurrence of the

event is certain).
Often you will have to convert from a probability statement to odds and

vice versa. The two are interchangeable, as the odds imply a probability,
and a probability likewise implies the odds. These conversions are given
now. The formula to convert to a probability statement, when you know
the given odds is:

Probability = odds for/(odds for + odds against) (1.01)

3
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If the odds on a horse, for example, are 4 to 1 (4:1), then the probability
of that horse winning, as implied by the odds, is:

Probability = 1/(1 + 4)

= 1/5

= .2

So a horse that is 4:1 can also be said to have a probability of winning
of .2. What if the odds were 5 to 2 (5:2)? In such a case the probability is:

Probability = 2/(2 + 5)

= 2/7

= .2857142857

The formula to convert from probability to odds is:

Odds (against, to one) = 1/probability − 1 (1.02)

So, for our coin-toss example, when there is a .5 probability of the
coin’s coming up heads, the odds on its coming up heads are given as:

Odds = 1/.5 − 1

= 2 − 1

= 1

This formula always gives you the odds “to one.” In this example, we would
say the odds on a coin’s coming up heads are 1 to 1.

How about our previous example, where we converted from odds of
5:2 to a probability of .2857142857? Let’s work the probability statement
back to the odds and see if it works out.

Odds = 1/.2857142857 − 1

= 3.5 − 1

= 2.5

Here we can say that the odds in this case are 2.5 to 1, which is the same as
saying that the odds are 5 to 2. So when someone speaks of odds, they are
speaking of a probability statement as well.

Most people can’t handle the uncertainty of a probability statement; it
just doesn’t sit well with them. We live in a world of exact sciences, and
human beings have an innate tendency to believe they do not understand
an event if it can only be reduced to a probability statement. The domain
of physics seemed to be a solid one prior to the emergence of quantum
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physics. We had equations to account for most processes we had observed.
These equations were real and provable. They repeated themselves over
and over and the outcome could be exactly calculated before the event
took place. With the emergence of quantum physics, suddenly a theretofore
exact science could only reduce a physical phenomenon to a probability
statement. Understandably, this disturbed many people.

I am not espousing the random walk concept of price action nor am I
asking you to accept anything about the markets as random. Not yet, any-
way. Like quantum physics, the idea that there is or is not randomness in
the markets is an emotional one. At this stage, let us simply concentrate
on the random process as it pertains to something we are certain is ran-
dom, such as coin tossing or most casino gambling. In so doing, we can
understand the process first, and later look at its applications. Whether the
random process is applicable to other areas such as the markets is an issue
that can be developed later.

Logically, the question must arise, “When does a random sequence be-
gin and when does it end?” It really doesn’t end. The blackjack table con-
tinues running even after you leave it. As you move from table to table in
a casino, the random process can be said to follow you around. If you take
a day off from the tables, the random process may be interrupted, but it
continues upon your return. So, when we speak of a random process of X
events in length we are arbitrarily choosing some finite length in order to
study the process.

INDEPENDENT VERSUS DEPENDENT
TRIALS PROCESSES

We can subdivide the random process into two categories. First are those
events for which the probability statement is constant from one event to
the next. These we will call independent trials processes or sampling with
replacement. A coin toss is an example of just such a process. Each toss
has a 50/50 probability regardless of the outcome of the prior toss. Even
if the last five flips of a coin were heads, the probability of this flip being
heads is unaffected, and remains .5.

Naturally, the other type of random process is one where the outcome
of prior events does affect the probability statement and, naturally, the
probability statement is not constant from one event to the next. These
types of events are called dependent trials processes or sampling without
replacement. Blackjack is an example of just such a process. Once a card is
played, the composition of the deck for the next draw of a card is different
from what it was for the previous draw. Suppose a new deck is shuffled
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and a card removed. Say it was the ace of diamonds. Prior to removing this
card the probability of drawing an ace was 4/52 or .07692307692. Now that
an ace has been drawn from the deck, and not replaced, the probability of
drawing an ace on the next draw is 3/51 or .05882352941.

Some people argue that dependent trials processes such as this are re-
ally not random events. For the purposes of our discussion, though, we
will assume they are—since the outcome still cannot be known before-
hand. The best that can be done is to reduce the outcome to a probability
statement. Try to think of the difference between independent and depen-
dent trials processes as simply whether the probability statement is fixed

(independent trials) or variable (dependent trials) from one event to the
next based on prior outcomes. This is in fact the only difference.

Everything can be reduced to a probability statement. Events where
the outcomes can be known prior to the fact differ from random events
mathematically only in that their probability statements equal 1. For ex-
ample, suppose that 51 cards have been removed from a deck of 52 cards
and you know what the cards are. Therefore, you know what the one re-
maining card is with a probability of 1 (certainty). For the time being, we
will deal with the independent trials process, particularly the simple coin
toss.

MATHEMATICAL EXPECTATION

At this point it is necessary to understand the concept of mathematical ex-
pectation, sometimes known as the player’s edge (if positive to the player)
or the house’s advantage (if negative to the player):

Mathematical Expectation = (1 + A) ∗ P − 1 (1.03)

where: P = Probability of winning.
A = Amount you can win/Amount you can lose.

So, if you are going to flip a coin and you will win $2 if it comes up heads,
but you will lose $1 if it comes up tails, the mathematical expectation per
flip is:

Mathematical Expectation = (1 + 2) ∗ .5 − 1

= 3 ∗ .5 − 1

= 1.5 − 1

= .5

In other words, you would expect to make 50 cents on average each flip.
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This formula just described will give us the mathematical expecta-
tion for an event that can have two possible outcomes. What about situa-
tions where there are more than two possible outcomes? The next formula
will give us the mathematical expectation for an unlimited number of out-
comes. It will also give us the mathematical expectation for an event with
only two possible outcomes such as the 2 for 1 coin toss just described.
Hence, it is the preferred formula.

Mathematical Expectation =
N∑

i=1

(Pi ∗ Ai) (1.03a)

where: P = Probability of winning or losing.
A = Amount won or lost.
N = Number of possible outcomes.

The mathematical expectation is computed by multiplying each possible
gain or loss by the probability of that gain or loss, and then summing those
products together.

Now look at the mathematical expectation for our 2 for 1 coin toss
under the newer, more complete formula:

Mathematical Expectation = .5 ∗ 2 + .5 ∗ (−1)

= 1 + (−.5)

= .5

In such an instance, of course, your mathematical expectation is to
win 50 cents per toss on average.

Suppose you are playing a game in which you must guess one of three
different numbers. Each number has the same probability of occurring
(.33), but if you guess one of the numbers you will lose $1, if you guess
another number you will lose $2, and if you guess the right number you
will win $3. Given such a case, the mathematical expectation (ME) is:

ME = .33 ∗ (−1) + .33 ∗ (−2) + .33 ∗ 3

= −.33 − .66 + .99

= 0

Consider betting on one number in roulette, where your mathematical
expectation is:

ME = 1/38 ∗ 35 + 37/38 ∗ (−1)

= .02631578947 ∗ 35 + .9736842105 ∗ (−1)

= .9210526315 + (−.9736842105)

= −.05263157903
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If you bet $1 on one number in roulette (American double-zero), you
would expect to lose, on average, 5.26 cents per roll. If you bet $5, you
would expect to lose, on average, 26.3 cents per roll. Notice how differ-

ent amounts bet have different mathematical expectations in terms of

amounts, but the expectation as a percent of the amount bet is always the

same.
The player’s expectation for a series of bets is the total of the ex-

pectations for the individual bets. So if you play $1 on a number in
roulette, then $10 on a number, then $5 on a number, your total expectation
is:

ME = (−.0526) ∗ 1 + (−.0526) ∗ 10 + (−.0526) ∗ 5

= −.0526 − .526 − .263

= −.8416

You would therefore expect to lose on average 84.16 cents.
This principle explains why systems that try to change the size of

their bets relative to how many wins or losses have been seen (assuming
an independent trials process) are doomed to fail. The sum of negative-
expectation bets is always a negative expectation!

EXACT SEQUENCES, POSSIBLE OUTCOMES,
AND THE NORMAL DISTRIBUTION

We have seen how flipping one coin gives us a probability statement with
two possible outcomes—heads or tails. Our mathematical expectation
would be the sum of these possible outcomes. Now let’s flip two coins.
Here the possible outcomes are:

Coin 1 Coin 2 Probability

H H .25
H T .25
T H .25
T T .25

This can also be expressed as there being a 25% chance of getting both
heads, a 25% chance of getting both tails, and a 50% chance of getting a
head and a tail. In tabular format:
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Combination Probability

H2 .25 *
T1H1 .50 **
T2 25 *

The asterisks to the right show how many different ways the combi-
nation can be made. For example in the above two-coin flip there are two
asterisks for T1H1, since there are two different ways to get this combina-
tion. Coin A could be heads and coin B tails, or the reverse, coin A tails
and coin B heads. The total number of asterisks in the table (four) is the to-
tal number of different combinations you can get when flipping that many
coins (two).

If we were to flip three coins, we would have:

Combination Probability

H3 .125 *
H2T1 375 ***
T2H1 .375 ***
T3 125 *

for four coins:

Combination Probability

H4 .0625 *
H3T1 .25 ****
H2T2 .375 ******
T3H1 .25 ****
T4 .0625 *

and for six coins:

Combination Probability

H6 .0156 *
H5T1 .0937 ******
H4T2 .2344 ***************
H3T3 .3125 ********************
T4H2 .2344 ***************
T5H1 .0937 ******
T6 .0156 *
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Notice here that if we were to plot the asterisks vertically we would
be developing into the familiar bell-shaped curve, also called the Normal
or Gaussian Distribution (see Figure 1.1).1

FIGURE 1.1 Normal probability function

1Actually, the coin toss does not conform to the Normal Probability Function in a
pure statistical sense, but rather belongs to a class of distributions called the Bi-
nomial Distribution (a.k.a. Bernoulli or Coin-Toss Distributions). However, as N
becomes large, the Binomial approaches the Normal Distribution as a limit (pro-
vided the probabilities involved are not close to 0 or 1). This is so because the
Normal Distribution is continuous from left to right, whereas the Binomial is not,
and the Normal is always symmetrical whereas the Binomial needn’t be. Since we
are treating a finite number of coin tosses and trying to make them representative
of the universe of coin tosses, and since the probabilities are always equal to .5,
we will treat the distributions of tosses as though they were Normal. As a further
note, the Normal Distribution can be used as an approximation of the Binomial if
both N times the probability of an event occurring and N times the complement of
the probability occurring are both greater than 5. In our coin-toss example, since
the probability of the event is .5 (for either heads or tails) and the complement is
.5, then so long as we are dealing with N of 11 or more we can use the Normal
Distribution as an approximation for the Binomial.
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Finally, for 10 coins:

Combination Probability

H10 .001 *
H9T1 .01 **********
H8T2 .044 *****(45 different ways)
H7T3 .117 *****(120 different ways)
H6T4 205 *****(210 different ways)
H5T5 .246 *****(252 different ways)
T6H4 .205 *****(210 different ways)
T7H3 .117 *****(120 different ways)
T8H2 .044 *****(45 different ways)
T9H1 .01 **********
T10 .001 *

Notice that as the number of coins increases, the probability of get-

ting all heads or all tails decreases. When we were using two coins, the
probability of getting all heads or all tails was .25. For three coins it was
.125, for four coins .0625; for six coins .0156, and for 10 coins it was .001.

POSSIBLE OUTCOMES AND
STANDARD DEVIATIONS

So a coin flipped four times has a total of 16 possible exact sequences:

1. H H H H
2. H H H T
3. H H T H
4. H H T T
5. H T H H
6. H T H T
7. H T T H
8. H T T T
9. T H H H

10. T H H T
11. T H T H
12. T H T T
13. T T H H
14. T T H T
15. T T T H
16. T T T T
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The term “exact sequence” here means the exact outcome of a random
process. The set of all possible exact sequences for a given situation is
called the sample space. Note that the four-coin flip just depicted can be
four coins all flipped at once, or it can be one coin flipped four times (i.e.,
it can be a chronological sequence).

If we examine the exact sequence T H H T and the sequence H H T T,
the outcome would be the same for a person flat-betting (i.e., betting 1 unit
on each instance). However, to a person not flat-betting, the end result of
these two exact sequences can be far different. To a flat bettor there are
only five possible outcomes to a four-flip sequence:

4 Heads

3 Heads and 1 Tail

2 Heads and 2 Tails

1 Head and 3 Tails

4 Tails

As we have seen, there are 16 possible exact sequences for a four-
coin flip. This fact would concern a person who is not flat-betting. We will
refer to people who are not flat-betting as “system” players, since that is
most likely what they are doing—betting variable amounts based on some
scheme they think they have worked out.

If you flip a coin four times, you will of course see only one of the
16 possible exact sequences. If you flip the coin another four times, you
will see another exact sequence (although you could, with a probability
of 1/16 = .0625, see the exact same sequence). If you go up to a gaming
table and watch a series of four plays, you will see only one of the 16 exact
sequences. You will also see one of the five possible end results. Each exact

sequence (permutation) has the same probability of occurring, that being
.0625. But each end result (combination) does not have equal probability

of occurring:

End Result Probability

4 Heads .0625
3 Heads and 1 Tail .25
2 Heads and 2 Tails .375
1 Head and 3 Tails .25
4 Tails .0625

Most people do not understand the difference between exact sequences

(permutation) and end results (combination) and as a result falsely con-

clude that exact sequences and end results are the same thing. This is a
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common misconception that can lead to a great deal of trouble. It is the

end results (not the exact sequences) that conform to the bell curve—the

Normal Distribution, which is a particular type of probability distribution.
An interesting characteristic of all probability distributions is a statistic
known as the standard deviation.

For the Normal Probability Distribution on a simple binomial game,
such as the one being used here for the end results of coin flips, the stan-
dard deviation (SD) is:

D = N ∗
√

P ∗ (1 − P)
N

(1.04)

where: P = Probability of the event (e.g., result of heads).
N = Number of trials.

For 10 coin tosses (i.e., N = 10):

SD = 10 ∗
√

.5 ∗ (1 − .5)/10

= 10 ∗
√

.5 ∗ .5/10

= 10 ∗
√

.25/10

= 10 ∗ .158113883

= 1.58113883

The center line of a distribution is the peak of the distribution. In the
case of the coin toss the peak is at an even number of heads and tails. So for
a 10-toss sequence, the center line would be at 5 heads and 5 tails. For the
Normal Probability Distribution, approximately 68.26% of the events will
be + or − 1 standard deviation from the center line, 95.45% between + and
− 2 standard deviations from the center line, and 99.73% between + and
− 3 standard deviations from the center line (see Figure 1.2). Continuing
with our 10-flip coin toss, 1 standard deviation equals approximately 1.58.
We can therefore say of our 10-coin flip that 68% of the time we can expect
to have our end result be composed of 3.42 (5 − 1.58) to 6.58 (5 + 1.58)
being heads (or tails). So if we have 7 heads (or tails), we would be beyond
1 standard deviation of the expected outcome (the expected outcome be-
ing 5 heads and 5 tails).

Here is another interesting phenomenon. Notice in our coin-toss exam-
ples that as the number of coins tossed increases, the probability of getting
an even number of heads and tails decreases. With two coins the probabil-
ity of getting H1T1 was .5. At four coins the probability of getting 50% heads
and 50% tails dropped to .375. At six coins it was .3125, and at 10 coins .246.
Therefore, we can state that as the number of events increases, the prob-

ability of the end result exactly equaling the expected value decreases.
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FIGURE 1.2 Normal probability function: Center line and 1 standard deviation in
either direction

The mathematical expectation is what we expect to gain or lose, on
average, each bet. However, it does not explain the fluctuations from bet to
bet. In our coin-toss example we know that there is a 50/50 probability of a
toss’s coming up heads or tails. We expect that after N trials approximately
1/2 * N of the tosses will be heads, and 1/2 * N of the tosses will be tails.
Assuming that we lose the same amount when we lose as we make when
we win, we can say we have a mathematical expectation of 0, regardless of
how large N is.

We also know that approximately 68% of the time we will be + or −
1 standard deviation away from our expected value. For 10 trials (N = 10)
this means our standard deviation is 1.58. For 100 trials (N = 100) this
means we have a standard deviation size of 5. At 1,000 (N = 1,000) trials the
standard deviation is approximately 15.81. For 10,000 trials (N = 10,000)
the standard deviation is 50.

N Std Dev Std Dev/N as%

10 1.58 15.8%
100 5 5.0%
1,000 15.81 1.581%
10,000 50 0.5%

Notice that as N increases, the standard deviation increases as well.
This means that contrary to popular belief, the longer you play, the
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FIGURE 1.3 The random process: Results of 60 coin tosses, with 1 and 2 stan-
dard deviations in either direction

further you will be from your expected value (in terms of units won or

lost). However, as N increases, the standard deviation as a percent of N de-
creases. This means that the longer you play, the closer to your expected

value you will be as a percent of the total action (N). This is the “Law of
Averages” presented in its mathematically correct form. In other words, if
you make a long series of bets, N, where T equals your total profit or loss
and E equals your expected profit or loss, then T/N tends towards E/N as N
increases. Also, the difference between E and T increases as N increases.

In Figure 1.3 we observe the random process in action with a 60-coin-
toss game. Also on this chart you will see the lines for + and − 1 and 2
standard deviations. Notice how they bend in, yet continue outward for-
ever. This conforms with what was just said about the Law of Averages.

THE HOUSE ADVANTAGE

Now let us examine what happens when there is a house advantage in-
volved. Again, refer to our coin-toss example. We last saw 60 trials at an
even or “fair” game. Let’s now see what happens if the house has a 5%
advantage. An example of such a game would be a coin toss where if we
win, we win $1, but if we lose, we lose $1.10.

Figure 1.4 shows the same 60-coin-toss game as we previously saw,
only this time there is the 5% house advantage involved. Notice how, in
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FIGURE 1.4 Results of 60 coin tosses with a 5% house advantage

this scenario, ruin is inevitable—as the upper standard deviations begin to
bend down (to eventually cross below zero).

Let’s examine what happens when we continue to play a game with a
negative mathematical expectation.

N Std Dev Expectation + or −1 SD

10 1.58 −.5 +1.08 to −2.08
100 5.00 −5 0 to − 10
1,000 15.81 −50 −34.19 to −65.81
10,000 50.00 −500 −450 to −550
100,000 158.11 −5,000 −4,842 to −5,158
1,000,000 500.00 −50,000 −49,500 to −50,500

The principle of ergodicity is at work here. It doesn’t matter if one
person goes to a casino and bets $1 one million times in succession or
if one million people come and bet $1 each all at once. The numbers are
the same. At one million bets, it would take more than 100 standard devia-
tions away from the expectation before the casino started to lose money!
Here is the Law of Averages at work. By the same account, if you were
to make one million $1 bets at a 5% house advantage, it would be equally
unlikely for you to make money. Many casino games have more than a
5% house advantage, as does most sports betting. Trading the markets
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is a zero-sum game. However, there is a small drain involved in the way
of commissions, fees, and slippage. Often these costs can run in excess
of 5%.

Next, let’s examine the statistics of a 100-coin-toss game with and with-
out a 5% house advantage:

Std. Deviations from
Center Fair 50/50 Game

5% House Advantage
Game

+3 +15 +10
+2 +10 +5
+1 +5 0

0 0 −5
−1 −5 −10
−2 −10 −15
−3 −15 −20

As can be seen, at 3 standard deviations, which we can expect to be
the outcome 99.73% of the time, we will win or lose between +15 and −15
units in a fair game. At a house advantage of 5%, we can expect our final
outcome to be between +10 and −20 units at the end of 100 trials. At 2
standard deviations, which we can expect to occur 95% of the time, we win
or lose within + or −10 in a fair game. At a 5% house advantage this is
+5 and −15 units. At 1 standard deviation, where we can expect the final
outcome to be with 68% probability, we win or lose up to 5 units in a fair
game. Yet in the game where the house has the 5% advantage we can ex-
pect the final outcome to be between winning nothing and losing 10 units!
Note that at a 5% house advantage it is not impossible to win money after
100 trials, but you would have to do better than 1 whole standard devia-
tion to do so. In the Normal Distribution, the probability of doing better
than 1 whole standard deviation, you will be surprised to learn, is only
.1587!

Notice in the previous example that at 0 standard deviations from the
center line (that is, at the center line itself), the amount lost is equal to
the house advantage. For the fair 50/50 game, this is equal to 0. You would
expect neither to win nor to lose anything. In the game where the house
has the 5% edge, you would expect to lose 5%, 5 units for every 100 trials,
at 0 standard deviations from the center line. So you can say that in flat-

betting situations involving an independent process, you will lose at the

rate of the house advantage.
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MATHEMATICAL EXPECTATION LESS THAN
ZERO SPELLS DISASTER

This brings us to another axiom, which can be stated as follows: In a neg-

ative expectancy game, there is no money management scheme that will

make you a winner. If you continue to bet, regardless of how you man-

age your money, it is almost certain that you will be a loser, losing your

entire stake regardless of how large it was to start.

This sounds like something to think about. Negative mathematical ex-
pectations (regardless of how negative) have broken apart families and
caused suicides and murders and all sorts of other things the bettors
weren’t bargaining for. I hope you can see what an incredibly losing propo-
sition it is to make bets where there is a negative expectancy, for even a
small negative expectancy will eventually take every cent you have. All at-
tempts to outsmart this process are mathematically futile. Don’t get this
idea confused with whether or not there is a dependent or independent tri-
als process involved; it doesn’t matter. If the sum of your bets is a negative
expectancy, you are in a losing proposition.

As an example, if you are in a dependent trials process where you have
an edge in 1 bet out of 10, then you must bet enough on the bet for which
you have an edge so that the sum of all 10 bets is a positive expectancy
situation. If you expect to lose 10 cents on average for 9 of the 10 bets,
but you expect to make 10 cents on the 1 out of 10 bets where you know
you have the edge, then you must bet more than 9 times as much on the
bet where you know you have the edge, just to have a net expectation of
coming out even. If you bet less than that, you are still in a negative ex-
pectancy situation, and complete ruin is all but certain if you continue to
play.

Many people have the mistaken impression that if they play a negative
expectancy game, they will lose a percentage of their capital relative to
the negative expectancy. For example, when most people realize that the
mathematical expectation in roulette is 5.26% they seem to think this means
that if they go to a casino and play roulette they can expect to lose, on
average, 5.26% of their stake. This is a dangerous misconception. The truth
is that they can expect to lose 5.26% of their total action, not of their entire
stake. Suppose they take $500 to play roulette. If they make 500 bets of
$20 each, their total action is $10,000, of which they can expect to lose
5.26%, or $526, more than their entire stake.

The only smart thing to do is bet only when you have a positive
expectancy. This is not so easily a winning proposition as negative ex-
pectancy betting is a losing proposition, as we shall see in a later chapter.
You must bet specific quantities, which will be discussed at length. For the
time being, though, resolve to bet only on positive expectancy situations.
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When it comes to casino gambling, though, the only time you can find a
positive expectancy situation is if you keep track of the cards in blackjack,
and then only if you are a very good player, and only if you bet your money
correctly. There are many good blackjack books available, so we won’t
delve any further into blackjack here.

BACCARAT

If you want to gamble at a casino but do not want to learn to play blackjack
correctly, then baccarat has the smallest negative expectancy of any other
casino game. In other words, you’ll lose your money at a slower rate. Here
are the probabilities in baccarat:

Banker wins 45.842% of the time.
Player wins 44.683% of the time.
A tie occurs 9.547% of the time.

Since a tie is treated as a push in baccarat (no money changes hands, the
net effect is the same as if the hand were never played) the probabilities,
when ties are eliminated become:

Banker wins 50.68% of the time.
Player wins 49.32% of the time.

Now let’s look at the mathematical expectations. For the player side:

ME = (.4932 ∗ 1) + ((1 − .4932) ∗ (−1))

= (.4932 ∗ 1) + (.5068 ∗ (−1))

= .4932 − .5068

= −.0136

In other words, the house advantage over the player is 1.36%.
Now for the banker side, bearing in mind that the banker side is

charged a 5% commission on wins only, the mathematical expectation is:

ME = (.5068 ∗ .95) + ((1 − .5068) ∗ (−1))

= (.5068 ∗ .95) + (.4932 ∗ (−1))

= .48146 − .4932

= −.01174
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In other words, the house has an advantage, once commissions on the
banker’s wins are accounted for, of 1.174%.

As you can see, it makes no sense to bet on the player since the player’s
negative expectancy is worse than the banker’s:

Player’s disadvantage −.0136
Banker’s disadvantage −.01174

————–
Banker’s edge over Player .00186

In other words, after about 538 hands (1/.00186) the banker will be 1 unit
ahead of the player. Again, the more hands that are played, the more certain
this edge is.

This is not to imply that the banker has a positive mathematical
expectation—he doesn’t. Both banker and player have negative expecta-
tions, but the banker’s is not as negative as the player’s. Betting 1 unit on
the banker on each hand, you can expect to lose 1 unit for approximately
every 85 hands (1/.01174); whereas betting 1 unit on the player on each
hand, you would expect to lose 1 unit every 74 hands (1/.0136). You will
lose your money at a slower rate, but not necessarily a slower pace. Most
baccarat tables have at least a $25 minimum bet. If you are betting banker,
1 unit per hand, after 85 hands you can expect to be down $25.

Let’s compare this to betting red/black at roulette, where you have a
mathematical expectation of −.0526, but a minimum bet size of at least $2.
After 85 spins you would expect to be down about $9 ($2 * 85 * .0526).
As you can see, mathematical expectation is also a function of the total
amount bet, the action. If, as in baccarat, we were betting $25 per spin in
red/black roulette, we would expect to be down $112 after 85 spins, com-
pared with baccarat’s expected loss of $25.

NUMBERS

Finally, let’s take a look at the probabilities involved in numbers. If bac-
carat is the game of the rich, numbers is the game of the poor. The proba-
bilities in the numbers game are absolutely pathetic. Here is a game where
a player chooses a three-digit number between 0 and 999 and bets $1 that
this number will be selected. The number that gets chosen as that day’s
number is usually some number that (a) cannot be rigged and (b) is well
publicized. An example would be to take the first three of the last five dig-
its of the daily stock market volume. If the player loses, then the $1 he bet
is lost. If the player should happen to win, then $700 is returned, for a net
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profit of $699. For numbers, the mathematical expectation is:

ME = (699 ∗ (1/1000)) + ((−1) ∗ (1 − (1/1000)))

= (699 ∗ .001) + ((−1) ∗ (1 − .001))

= (699 ∗ .001) + ((−1) ∗ .999)

= .699 + (−.999)

= −.3

In other words your mathematical expectation is to lose 30 cents for
every dollar of action. This is far worse than any casino game, including
keno. Bad as the probabilities are in a game like roulette, the mathematical
expectation in numbers is almost six times worse. The only gambling sit-
uations that are worse than this in terms of mathematical expectation are
most football pools and many of the state lotteries.

PARI-MUTUEL BETTING

The games that offer seemingly the worst mathematical expectation be-
long to a family of what are called pari-mutuel games. Pari-mutuel means
literally “to bet among ourselves.” Pari-mutuel betting was originated in
the 1700s by a French perfume manufacturer named Oller. Monsieur Oller,
doubling as a bookie, used his perfume bottles as ticket stubs for his pa-
trons while he booked their bets. Oller would take the bets, from this to-
tal pool he would take his cut, then he would distribute the remainder to
the winners. Today we have different types of games built on this same
pari-mutuel scheme, from state lotteries to football pools, from numbers
to horse racing. As you have seen, the mathematical expectations on most
pari-mutuel games are atrocious. Yet these very games also offer many sit-
uations that have a positive mathematical expectancy.

Let’s take numbers again, for example. We can approximate how much
money is bet in total by taking the average winning purse size and dividing
it by 1 minus the take. In numbers, as we have said, the take is 30%, so we
have 1 − .3, or .7. Dividing 1 by .7 yields 1.42857. If the average payout is,
say, $1,400, then we can approximate the total purse as 1,400 times 1.42857,
or roughly $2,000. So step one in finding positive mathematical expecta-
tions in pari-mutuel situations is to know or at least closely approximate
the total amount in the pool.

The next step is to take this total amount and divide it by the to-
tal number of possible combinations. This gives the average amount bet
per combination. In numbers there are 1,000 possible combinations, so in
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our example we divide the approximate total pool of $2,000 by 1,000, the
total number of combinations, to obtain an average bet per combination
of $2.

Now we figure the total amount bet on the number we want to play.
Here we would need inside information. The purpose here is not to show
how to win at numbers or any other gambling situation, but rather to show
how to think correctly in approaching a given risk/reward situation. This
will be made clearer as we continue with the illustration. For now, let’s just
assume we can get this information. Now, if we know what the average
dollar bet is on any number, and we know the total amount bet on the
number we want to play, we simply divide the average bet by the amount
bet on our number. This gives us the ratio of what our bet size is relative to
the average bet size.

Since the pool can be won by any number, and since the pool is really
the average bet times all possible combinations, it stands to reason that
naturally we want our bet to be relatively small compared to the average
bet. Therefore, if this ratio is 1.5, it means simply that the average bet on a
number is 1.5 times the amount bet on our number.

Now this can be converted into an actual mathematical expectation.
We take this ratio and multiply it by the quantity (1 − takeout) where the
takeout is the pari-mutuel vigorish (also known as the amount that the
house skims off the top, and out of the total pool). In the case of numbers,
where the takeout is 30%, then 1 minus the takeout equals .7. Multiplying
our ratio in our example of 1.5 times .7 gives us 1.05. As a final step, sub-
tracting 1 from the previous step’s answer will give us the mathematical
expectation, in percent. Since 1.05 − 1 is 5%, we can expect in our example
situation to make 5% on our money on average if we make this play over
and over.

Which brings us to an interesting proviso here. In numbers, we have
probabilities of 1/1000 or .001 of winning. So, in our example, if we bet
$1 for each of 1,000 plays, we would expect to be ahead by 5%, or $50, if
the given parameters as we just described were always present. Since it is
possible to play the number 1,000 times, the mathematical expectation is
possible, too.

But let’s say you try to do this on a state lottery with over 7 million
possible winning combinations. Unless you have a pool together or a lot of
money to cover more than one number on each drawing, it is unlikely you
will see over 7 million drawings in your lifetime. Since it will take (on aver-
age) 7 million drawings until you can mathematically expect your number
to have come up, your positive mathematical expectation as we described
it in the numbers example is meaningless. You most likely won’t be around
to collect!
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In order for the mathematical expectation to be meaningful (provided
it is positive) you must be able to get enough trials off in your lifetime (or
the pertinent time period you are considering) to have a fair mathematical
chance of winning. The average number of trials needed is the total num-
ber of possible combinations divided by the number of combinations you
are playing. Call this answer N. Now, if you multiply N by the length of
time it takes for 1 trial to occur, you can determine the average length of
time needed for you to be able to expect the mathematical expectation to
manifest itself. If your chances are 1 in 7 million and the drawing is once a
week, you must stick around for 7 million weeks (about 134,615 years) to
expect the mathematical expectation to come into play. If you bet 10,000
of those 7 million combinations, you must stick around about 700 weeks
(7 million divided by 10,000, or about 13 1

2 years) to expect the mathemati-
cal expectation to kick in, since that is about how long, on average, it would
take until one of those 10,000 numbers won.

The procedure just explained can be applied to other pari-mutuel gam-
bling situations in a similar manner. There is really no need for inside in-
formation on certain games. Consider horse racing, another classic pari-
mutuel situation. We must make one assumption here. We must assume
that the money bet on a horse to win divided by the total win pool is an
accurate reflection of the true probabilities of that horse winning. For in-
stance, if the total win pool is $25,000 and there is $2,500 bet on our horse
to win, we must assume that the probability of our horse’s winning is .10.
We must assume that if the same race were run 100 times with the same
horses on the same track conditions with the same jockeys, and so on, our
horse would win 10% of the time.

From that assumption we look now for opportunity by finding a situa-
tion where the horse’s proportion of the show or place pools is much less
than its proportion of the win pool. The opportunity is that if a horse has
a probability of X of winning the race, then the probability of the horse’s
coming in second or third should not be less than X (provided, as we al-
ready stated, that X is the real probability of that horse winning). If the
probability of the horse’s coming in second or third is less than the prob-
ability of the horse’s winning the race, an anomaly is created that we can
perhaps capitalize on.

The following formula reduces what we have spoken of here to a math-
ematical expectation for betting a particular horse to place or show, and
incorporates the track takeout. Theoretically, all we need to do is bet only
on racing situations that have a positive mathematical expectation. The
mathematical expectation of a show (or place) bet is given as:

(((Wi/�W)/(Si/�S)) ∗ (1 − takeout) − 1 (1.03b)
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where: Wi = Dollars bet on the ith horse to win.
�W = Total dollars in the win pool—i.e., total dollars bet on
all horses to win.
Si = Dollars bet on the ith horse to show (or place).
� S = Total dollars in the show (or place) pool—i.e., total dol-
lars on all horses to show (or place).
i = The horse of your choice.

If you’ve truly learned what is in this book you will use the Kelly for-
mula (more on this in Chapter 4) to maximize the rate of your money’s
growth. How much to bet, however, becomes an iterative problem, in
that the more you bet on a particular horse to show, the more you will
change the mathematical expectation and payout—but not the probabili-
ties, since they are dictated by (Wi/�W). Therefore, when you bet on the
horse to place, you alter the mathematical expectation of the bet and you
also alter the payout on that horse to place. Since the Kelly formula is af-
fected by the payout, you must be able to iterate to the correct amount to
bet.

As in all winning gambling or trading systems, employing the winning
formula just shown is far more difficult than you would think. Go to the
racetrack and try to apply this method, with the pools changing every
60 seconds or so while you try to figure your formula and stand in line
to make your bet and do it within seconds of the start of the race. The real-
time employment of any winning system is always more difficult than you
would think after seeing it on paper.

WINNING AND LOSING STREAKS IN THE
RANDOM PROCESS

We have already seen that in flat-betting situations involving an indepen-
dent trials process you will lose at the rate of the house advantage. To get
around this rule, many gamblers then try various betting schemes that will
allow them to win more during hot streaks than during losing streaks, or
will allow them to bet more when they think a losing streak is likely to end
and bet less when they think a winning streak is about to end. Yet another
important axiom comes into play here, which is that streaks are no more

predictable than the outcome of the next event (this is true whether we
are discussing dependent or independent events). In the long run, we can
predict approximately how many streaks of a given length can be expected
from a given number of chances.

Imagine that we flip a coin and it lands tails. We now have a streak of
one. If we flip the coin a second time, there is a 50% chance it will come up
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tails again, extending the streak to two events. There is also a 50% chance
it will come up heads, ending the streak at one. Going into the third flip we
face the same possibilities. Continuing with this logic we can construct the
following table, assuming we are going to flip a coin 1,024 times:

Length of Streak
No. of Streaks
Occurring

How Often
Compared to
Streak of One Probability

1 512 1 .50
2 256 1/2 .25
3 128 1/4 .125
4 64 1/8 .0625
5 32 1/16 .03125
6 16 1/32 .015625
7 8 1/64 .0078125
8 4 1/128 .00390625
9 2 1/256 .001953125

10 1 1/512 .0009765625
11+ 1 1/1024 .00048828125

The real pattern does not end at this point; rather it continues with
smaller and smaller numbers.

Remember that this is the expected pattern. The real-life pattern,
should you go out and record 1,024 coin flips, will resemble this, but most
likely it won’t resemble this exactly. This pattern of 1,024 coin tosses is for
a fair 50/50 game. In a game where the house has the edge, you can expect
the streaks to be skewed by the amount of the house advantage.

DETERMINING DEPENDENCY

As we have already explained, the coin toss is an independent trials pro-
cess. This can be deduced by inspection, in that we can calculate the exact
probability statement prior to each toss and it is always the same from
one toss to the next. There are other events, such as blackjack, that are
dependent trials processes. These, too, can be deduced by inspection, in
that we can calculate the exact probability statement prior to each draw of
a card, and it is not always the same from one draw to the next. For still
other events, dependence on prior outcomes cannot be determined upon
inspection. Such an event is the profit and loss stream of trades generated
by a trading system. For these types of problems we need more tools.
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Assume the following stream of coin flips where a plus (+) stands for
a win and a minus (−) stands for a loss:

+ + − − − − − − − + − + − + − − − + + + − + + + − + ++
There are 28 trades, 14 wins and 14 losses. Say there is $1 won on a win
and $1 lost on a losing flip. Hence, the net for this series is $0.

Now assume you possess the infant’s mind. You do not know if there
is dependency or not in the coin-toss situation (although there isn’t). Upon
seeing such a stream of outcomes you deduce the following rule, which
says, “Don’t bet after two losers; go to the sidelines and wait for a winner
to resume betting.” With this new rule, the previous sequence would have
been:

+ + − − − + − + − − + + − + + + − + ++
So, with this new rule the old sequence would have produced 12 winners
and 8 losers for a net of $4. You’re quite confident of your new rule. You
haven’t learned to differentiate an exact sequence (which is all that this
stream of trades is) from an end result (the end result being that this is a
break-even game).

There is a major problem here, though, and that is that you do not
know if there is dependency in the sequence of flips. Unless dependency

is proven, no attempt to improve performance based on the stream of

profits and losses alone is of any value, and quite possibly you may do

more harm than good.2 Let us continue with the illustration and we will
see why.

2A distinction must be drawn between a stationary and a nonstationary distribu-
tion. A stationary distribution is one where the probability distribution does not
change. An example would be a casino game such as roulette, where you are al-
ways at a .0526 disadvantage. A nonstationary distribution is one where the expec-
tation changes over time (in fact, the entire probability distribution may change
over time). Trading is just such a case. Trading is analogous in this respect to a
drunk wandering through a casino, going from game to game. First he plays roulette
with $5 chips (for a −.0526 mathematical expectation), then he wanders to a black-
jack table, where the deck happens to be running favorable to the player by 2%.
His distribution of outcomes curve moves around as he does; the mathematical
expectation and distribution of outcomes is dynamic. Contrast this to staying at
one table, at one game. In such a case the distribution of outcomes is static. We
say it is stationary. The outcomes of systems trading appear to be a nonstation-
ary distribution, which would imply that there is perhaps some technique that may
be employed to allow the trader to advantageously “trade his equity curve.” Such
techniques are, however, beyond the mathematical scope of this book and will not
be treated here. Therefore, we will not treat nonstationary distributions any differ-
ently than stationary ones in the text, but be advised that the two are profoundly
different.
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Since this was a coin toss, there was in fact no dependency in the
trials—that is, the outcome of each successive flip was independent of (un-
affected by) the previous flips. Therefore, this exact sequence of 28 flips
was totally random. (Remember, each exact sequence has an equal proba-
bility of occurring. It is the end results that follow the Normal Distribution,
with the peak of the distribution occurring at the mathematical expecta-
tion. The end result in this case, the mathematical expectation, is a net
profit/loss of zero.) The next exact sequence of 28 flips is going to appear
randomly, and there is an equal probability of the following sequence ap-
pearing as any other:

− − + − − + − − + − − + − − + − − + − − + + + + + + ++

Once again, the net of this sequence is nothing won and nothing lost. Ap-
plying your rule here, the outcome is:

− − − − − − − − − − − − − − + + + + + + +

Fourteen losses and seven wins for a net loss of $7.
As you can see, unless dependency is proven (in a stationary process),

no attempt to improve performance based on the stream of profits and
losses alone is of any value, and you may do more harm than good.

THE RUNS TEST, Z SCORES, AND
CONFIDENCE LIMITS

For certain events, such as the profit and loss stream of a system’s trades,
where dependency cannot be determined upon inspection, we have the
runs test. The runs test is essentially a matter of obtaining the Z scores for
the win and loss streaks of a system’s trades. Here’s how to do it. First,
you will need a minimum of 30 closed trades. There is a very valid statisti-
cal reason for this. Z scores assume a Normal Probability Distribution (of
streaks of wins and losses in this instance). Certain characteristics of the
Normal Distribution are no longer valid when the number of trials is less
than 30. This is because a minimum of 30 trials are necessary in order to
resolve the shape of the Normal Probability Distribution clearly enough to
make certain statistical measures valid.

The Z score is simply the number of standard deviations the data is
from the mean of the Normal Probability Distribution. For example, a Z
score of 1.00 would mean that the data you are testing is within 1 stan-
dard deviation from the mean. (Incidentally, this is perfectly normal.) The
Z score is then converted into a confidence limit, sometimes also called a
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degree of certainty. We have seen that the area under the curve of the Nor-
mal Probability Function at 1 standard deviation on either side of the mean
equals 68% of the total area under the curve. So we take our Z score and
convert it to a confidence limit, the relationship being that the Z score is
how many standard deviations and the confidence limit is the percentage
of area under the curve occupied at so many standard deviations.

Confidence Limit Z Score

99.73% 3.00
99% 2.58
98% 2.33
97% 2.17
96% 2.05
95.45% 2.00
95% 1.96
90% 1.64
85% 1.44
80% 1.28
75% 1.15
70% 1.04
68.27% 1.00
65% .94
60% .84
50% .67

With a minimum of 30 closed trades we can now compute our Z scores.
We are trying to determine how many streaks of wins/losses we can ex-
pect from a given system. Are the win/loss streaks of the system we are
testing in line with what we could expect? If not, is there a high enough
confidence limit that we can assume dependency exists between trades,
that is, the outcome of a trade dependent on the outcome of previous
trades?

Here, then, is how to perform the runs test, how to find a system’s
Z score:

1. You will need to compile the following data from your run of trades:

A. The total number of trades, hereafter called N.

B. The total number of winning trades and the total number of losing
trades. Now compute what we will call X. X = 2 * Total Number of
Wins * Total Number of Losses.

C. The total number of runs in a sequence. We’ll call this R.
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Let’s construct an example to follow along with. Assume the following
trades:

−3 + 2 + 7 − 4 + 1 − 1 + 1 + 6 − 1 0 − 2 + 1

The net profit is +7. The total number of trades is 12; therefore, N = 12
(we are violating the rule that there must be at least 30 trades only to
keep the example simple). Now we are not concerned here with how
big the wins and losses are, but rather how many wins and losses there
are and how many streaks. Therefore, we can reduce our run of trades
to a simple sequence of pluses and minuses. Note that a trade with a
profit and loss (P&L) of 0 is regarded as a loss. We now have:

− + + − + − + + − − − +
As can be seen, there are six profits and six losses. Therefore, X = 2

* 6 * 6 = 72. As can also be seen, there are eight runs in this sequence, so
R = 8. We will define a run as any time we encounter a sign change when
reading the sequence as shown above from left to right (i.e., chronolog-
ically). Assume also that we start at 1. Therefore, we would count this
sequence as follows:

− + + − + − + + − − − +
1 2 3 4 5 6 7 8

2. Solve for the equation:

N ∗ (R − .5) − X

For our example this would be:

12 ∗ (8 − .5) − 72

12 ∗ 7.5 − 72

90 − 72

18

3. Solve for the equation:

X ∗ (X − N)/(N − 1)

So for our example this would be:

72 ∗ (72 − 12)/(12 − 1)

72 ∗ 60/11

4,320/11

392.727272
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4. Take the square root of the answer in number 3. For our example this
would be:

√
392.727272 = 19.81734777

5. Divide the answer in number 2 by the answer in number 4. This is the Z
score. For our example this would be: 18/19.81734777 = .9082951063

6. Confidence Limit = 1 − (2 ∗ (X ∗ .31938153 − Y ∗ .356563782

+ (X ∗ Y ∗ 1.781477937 − Y2 ∗ 1.821255978

+ 1.821255978 + Y2 ∗ X ∗ 1.330274429) ∗ 1

/
√

EXP(Z2) ∗ 6.283185307))

where: X = 1.0/(((ABS(Z)) *.2316419) + 1.0).
Y = X ∧ 2.
Z = The Z score you are converting from.
EXP( ) = The exponential function.
ABS( ) = The absolute value function.

This will give you the confidence limit for the so-called “two-tailed”
test. To convert this to a confidence limit for a “one-tailed” test:

Confidence Limit = 1 − (1 − A)/2

where: A = The “two-tailed” confidence limit.

If the Z score is negative, simply convert it to positive (take the abso-
lute value) when finding your confidence limit. A negative Z score implies
positive dependency, meaning fewer streaks than the Normal Probability
Function would imply, and hence that wins beget wins and losses beget
losses. A positive Z score implies negative dependency, meaning more
streaks than the Normal Probability Function would imply, and hence that
wins beget losses and losses beget wins.

As long as the dependency is at an acceptable confidence limit, you
can alter your behavior accordingly to make better trading decisions, even
though you do not understand the underlying cause of the dependency.
Now, if you could know the cause, you could then better estimate when the
dependency was in effect and when it was not, as well as when a change in
the degree of dependency could be expected.

The runs test will tell you if your sequence of wins and losses con-
tains more or fewer streaks (of wins or losses) than would ordinarily be
expected in a truly random sequence, which has no dependence between
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trials. Since we are at such a relatively low confidence limit, we can assume
that there is no dependence between trials in this particular sequence.

What would be an acceptable confidence limit then? Dependency can
never be proved nor disproved beyond a shadow of a doubt in this test;
therefore, what constitutes an acceptable confidence limit is a personal
choice. Statisticians generally recommend selecting a confidence limit at
least in the high nineties. Some statisticians recommend a confidence limit
in excess of 99% in order to assume dependency; some recommend a less
stringent minimum of 95.45% (2 standard deviations).

Rarely, if ever, will you find a system that shows confidence limits in
excess of 95.45%. Most frequently, the confidence limits encountered are
less than 90%. Even if you find one between 90 and 95.45%, this is not ex-
actly a nugget of gold, either. You really need to exceed 95.45% as a bare
minimum to assume that there is dependency involved that can be capital-
ized upon to make a substantial difference.

For example, some time ago a broker friend of mine asked me to pro-
gram a money management idea of his that incorporated changes in the
equity curve. Before I even attempted to satisfy his request, I looked for
dependency between trades, since we all know now that unless depen-
dency is proven (in a stationary process) to a very high confidence limit,
all attempts to change your trading behavior based on changes in the eq-
uity curve are futile and may even be harmful.

Well, the Z score for this system (of 423 trades) clocked in at −1.9739!
This means that there is a confidence limit in excess of 95%, a very high
reading compared to most trading systems, but hardly an acceptable read-
ing for dependency in a statistical sense. The negative number meant that
wins beget wins and losses beget losses in this system. Now this was a great
system to start with. I immediately went to work having the system pass all
trades after a loss, and continue to pass trades until it passed what would
have been a winning trade, then to resume trading. Here are the results:

Before Rule After Rule

Total Profits $71,800 $71,890
Total Trades 423 360
Winning Trades 358 310
Winning Percentage$ 84.63% 86.11%
Average Trade $169.74 $199.69
Maximum Drawdown $4,194 $2,880
Max. Losers in Succession 4 2
4 losers in a row 2 0
3 losers in a row 1 0
2 losers in a row 7 4
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All of the above is calculated with $50 commissions and slippage taken
off of each trade. As you can see, this was a terrific system before this rule.
So good, in fact, that it was difficult to improve upon it in any way. Yet,
once the dependency was found and exploited, the system was materially
improved. It was with a confidence limit of slightly over 95%. It is rare to
find a confidence limit this high in futures trading systems. However, from a
statistical point of view, it is hardly high enough to assume that dependency
exists. Ideally, yet rarely you will find systems that have confidence limits
in the high nineties.

So far we have only looked at dependency from the point of view of
whether the last trade was a winner or a loser. We are trying to deter-
mine if the sequence of wins and losses exhibit dependency or not. The
runs test for dependency automatically takes the percentage of wins and
losses into account. However, in performing the runs test on runs of wins
and losses, we have accounted for the sequence of wins and losses but
not their size. For the system to be truly independent, not only must the
sequence of wins and losses be independent; the sizes of the wins and
losses within the sequence must also be independent. It is possible for the
wins and losses to be independent, while their sizes are dependent (or vice
versa).

One possible solution is to run the runs test on only the winning trades,
segregating the runs in some way (e.g., those that are greater than the me-
dian win versus those that are less). Then look for dependency among the
size of the winning trades; then do the same for the losing trades.

THE LINEAR CORRELATION COEFFICIENT

There is, however, a different, possibly better way to quantify this possible
dependency between the size of the wins and losses. The technique to be
discussed next looks at the sizes of wins and losses from an entirely dif-
ferent mathematical perspective than does the runs test, and when used in
conjunction with the latter, measures the relationship of trades with more
depth than the runs test alone could provide. This technique utilizes the
linear correlation coefficient, r, sometimes called Pearson’s r, to quantify
the dependency/independency relationship.

Look at Figure 1.5. It depicts two sequences that are perfectly corre-
lated with each other. We call this effect “positive” correlation.

Now look at Figure 1.6. It shows two sequences that are perfectly un-
correlated with each other. When one line is zigging, the other is zagging.
We call this effect “negative” correlation.

The formula for finding the linear correlation coefficient (r) between
two sequences, X and Y, follows. (A bar over the variable means the mean
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FIGURE 1.5 Perfect positive correlation (r = +1.00)

of the variables; for example, X = ((X1 + X2 + . . . Xn)/n.)

r =
∑

a(Xa − X) ∗ ∑
a(Ya − Y)√∑

a(Xa − X)2 ∗
√∑

a(Ya − Y)2
(1.05)

Here is how to perform the calculation as shown in the table on page 34:

1. Average the Xs and the Ys.

2. For each period, find the difference between each X and the average X
and each Y and the average Y.

FIGURE 1.6 Perfect negative correlation (r = −1.00)
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3. Now calculate the numerator. To do this, for each period, multiply the
answers from step 2. In other words, for each period, multiply the dif-
ference between that period’s X and the average X times the difference
between that period’s Y and the average Y.

4. Total up all of the answers to step 3 for all of the periods. This is the
numerator.

5. Now find the denominator. To do this, take the answers to step 2 for
each period, for both the X differences and the Y differences, and square
them (they will now all be positive numbers).

6. Sum up the squared X differences for all periods into one final total. Do
the same with the squared Y differences.

7. Take the square root of the sum of the squared X differences you just
found in step 7. Now do the same with the Ys by taking the square root
of the sum of the squared Y differences.

8. Multiply together the two answers you just found in step 7. That is, mul-
tiply the square root of the sum of the squared X differences by the
square root of the sum of the squared Y differences. This product is
your denominator.

9. Divide the numerator you found in step 4 by the denominator you found
in step 8. This is your linear correlation coefficient, r.

The value for r will always be between +1.00 and −1.00. A value of 0 indi-
cates no correlation whatsoever.

Look at Figure 1.7. It represents the following sequence of 21 trades:

1, 2, 1, −1, 3, 2, −1,−2,−3, 1, −2, 3, 1, 1, 2, 3, 3, −1, 2, −1, 3

Now, here is how we use the linear correlation coefficient to see if
there is any correlation between the previous trade and the current trade.
The idea is to treat the trade P&Ls as the X values in the formula for
r. Superimposed over that, we duplicate the same trade P&Ls, only this
time we skew them by one trade, and use these as the Y values in the
formula for r. In other words the Y value is the previous X value (see
Figure 1.8).

The averages are different because you average only those Xs and Ys
that have a corresponding X or Y value—that is, you average only those
values that overlap; therefore, the last Y value (3) is not figured in the Y
average, nor is the first X value (1) figured in the X average.

The numerator is the total of all entries in column E (.8). To find
the denominator we take the square root of the total in column F, which
is 8.555699, and we take the square root of the total in column G, which is
8.258329, and multiply them together to obtain a denominator of 70.65578.
Now we divide our numerator of .8 by our denominator of 70.65578 to
obtain 0.011322. This is our linear correlation coefficient, r. If you’re re-
ally on top of this, you would also compute your Z score on these trades,
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FIGURE 1.7 Individual outcomes of 21 bets/trades

which (if you want to check your work) is .5916 to four decimal places, or
less than a 50% confidence limit that like begets unlike (since the Z score
was positive).

The linear correlation coefficient of .011322 in this case is hardly in-
dicative of anything, but it is pretty much in the range you can expect
for most trading systems. A high correlation coefficient in futures trading
systems would be one that was greater than .25 to .30 on the positive side,
or less than −.25 to −.30 on the negative side. High positive correlation
generally suggests that big wins are seldom followed by big losses and

FIGURE 1.8 Individual outcomes of 21 bets/trades, skewed by 1 bet/trade
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A B C D E F G

col C col C col D

X Y X–X avg Y–Y avg times squared squared

col D

1
2 1 1.2 0.3 0.36 1.44 0.09
1 2 0.2 1.3 0.26 0.04 1.69

−1 1 −1.8 0.3 −0.54 3.24 0.09
3 −1 2.2 −1.7 −3.74 4.54 2.89
2 3 1.2 2.3 2.76 1.44 5.29

−1 2 −1.8 1.3 −2.34 3.24 1.69
−2 −1 −2.8 −1.7 4.76 7.84 2.89
−3 −2 −3.8 −2.7 10.26 14.44 7.29

1 −3 0.2 −3.7 −0.74 0.04 13.69
−2 1 −2.8 0.3 −0.84 7.84 0.09

3 −2 2.2 −2.7 −5.94 4.84 7.29
1 3 0.2 2.3 0.46 0.04 5.29
1 1 0.2 0.3 0.06 0.04 0.09
2 1 1.2 0.3 0.36 1.44 0.09
3 2 2.2 1.3 2.86 4.84 1.69
3 3 2.2 2.3 5.06 4.84 5.29

−1 3 −1.8 2.3 −4.14 3.24 5.29
2 −1 1.2 −1.7 −2.04 1.44 2.89

−1 2 −1.8 1.3 −2.34 3.24 1.69
3 −1 2.2 −1.7 −3.74 4.84 2.89

3
avg = 0.8 avg = 0.7 Totals = 0.8 73.2 68.2

vice versa. Negative correlation readings below −.25 to −.30 imply that big
losses tend to be followed by big wins and vice versa.

There are a couple of reasons why it is important to use both the runs
test and the linear correlation coefficient together in looking for depen-
dency/correlation between trades. The first is that futures trading system
trades (i.e., the profits and losses) do not necessarily conform to a Normal
Probability Distribution. Rather, they conform pretty much to whatever the
distribution is that futures prices conform to, which is as yet undetermined.
Since the runs test assumes a Normal Probability Distribution, the runs test
is only as accurate as the degree to which the system trade P&Ls conform
to the Normal Probability Distribution.

The second reason for using the linear correlation coefficient in con-
junction with the runs test is that the linear correlation coefficient is af-
fected by the size of the trades. It not only interprets to what degree like
begets like or like begets unlike, it also attempts to answer questions such
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as, “Are big winning trades generally followed by big losing trades?” “Are
big losing trades generally followed by little losing trades?” And so on.

Negative correlation is just as helpful as positive correlation. For ex-
ample, if there appears to be negative correlation, and the system has just
suffered a large loss, we can expect a large win, and would therefore have
more contracts on than ordinarily. Because of the negative correlation, if
the trade proves to be a loss, the loss will most likely not be large.

Finally, in determining dependency you should also consider out-of-
sample tests. That is, break your data segment into two or more parts. If
you see dependency in the first part, then see if that dependency also exists
in the second part, and so on. This will help eliminate cases where there
appears to be dependency when in fact no dependency exists.

Using these two tools (the runs test and the linear correlation coef-
ficient) can help answer many of these questions. However, they can an-
swer them only if you have a high enough confidence limit and/or a high
enough correlation coefficient (incidentally, the system we used earlier in
this chapter, which had a confidence limit greater than 95%, had a corre-
lation coefficient of only .0482). Most of the time, these tools are of little
help, since all too often the universe of futures system trades is dominated
by independence.

Recall the system mentioned in the discussion of Z scores that showed
dependency to the 95% confidence limit. Based upon this statistic, we were
able to improve this system by developing rules for passing trades. Now
here is an interesting but disturbing fact. That system had one optimize-
able parameter. When the system was run with a different value for that
parameter, the dependency vanished! Was this saying that the appearance
of dependency in our cited example was an illusion? Was it saying that
only if you keep the value of this parameter within certain bounds can you
have any dependency? If so, then isn’t it possible that the appearance of
dependency can be deceiving? To an extent this seems to be true.

Unfortunately, as traders, we most often must assume that dependency
does not exist in the marketplace for the majority of market systems. That
is, when trading a given market system, we will usually be operating in an
environment where the outcome of the next trade is not predicated upon
the outcome(s) of the preceding trade(s). This is not to say that there is
never dependency between trades for some market systems (because for
some market systems dependency does exist), only that we should act as
though dependency does not exist unless there is very strong evidence to
the contrary. Such would be the case if the Z score and the linear correla-
tion coefficient indicated dependency, and the dependency held up across
markets and across optimizeable parameter values. If we act as though
there is dependency when the evidence is not overwhelming, we may well
just be fooling ourselves and cause more self-inflicted harm than good.
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Even if a system showed dependency to a 95% confidence limit for all val-
ues of a parameter, that confidence limit is hardly high enough for us to
assume that dependency does in fact exist between the trades of a given
market/system.

Yet the confidence limits and linear correlation coefficients are tools
that should be used, because on rare occasions they may turn up a dia-
mond in the rough, which can then possibly be exploited. Furthermore,
and perhaps more importantly, they increase our understanding of the en-
vironment in which we are trying to operate.

On occasion, particularly in longer-term trading systems, you will en-
counter cases where the Z score and the linear correlation coefficient indi-
cate dependency, and the dependency holds up across markets and across
optimizeable parameter values. In such rare cases, you can take advantage
of this dependency by either passing certain trades or altering your com-
mitment on certain trades.

By studying these examples, you will better understand the subject
matter.

−10, 10, −1, 1
Linear Correlation = −.9172
Z score = 1.8371 or 90 to 95% confidence limit that like begets unlike.

10, − 1, 1, −10
Linear Correlation = .1796
Z score = 1.8371 or 90 to 95% confidence limit that like begets unlike.

10, −10, 10, −10
Linear Correlation = −1.0000
Z score = 1.8371 or 90 to 95% confidence limit that like begets unlike.

−1, 1, −1, 1
Linear Correlation = −1.0000
Z score = 1.8371 or 90 to 95% confidence limit that like begets unlike.

1, 1, −1, −1
Linear Correlation = .5000
Z score = −.6124 or less than 50% confidence limit that like begets like.

100, −1, 50, −100, 1, −50
Linear Correlation = −.2542
Z score = 2.2822 or more than 97% confidence limit that like begets unlike.

The turning points test is an altogether different test for dependency.
Going through the stream of trades, a turning point is counted if a trade
is for a greater P&L value than both the trade before it and the trade after
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it. A trade can also be counted as a turning point if it is for a lesser P&L
value than both the trade before it and the trade after it. Notice that we are
using the individual trades, not the equity curve (the cumulative values of
the trades). The number of turning points is totaled up for the entire stream
of trades. Note that we must start with the second trade and end with the
next to last trade, as we need a trade on either side of the trade we are
considering as a turning point.

Consider now three values (1, 2, 3) in a random series, whereby each
of the six possible orderings are equally likely:

1, 2, 3 2, 3, 1 1, 3, 2 3, 1, 2 2, 1, 3 3, 2, 1

Of these six, four will result in a turning point. Thus, for a random
stream of trades, the expected number of turning points is given as:

Expected number of turning points = 2/3 ∗ (N − 2) (1.06)

where: N = The total number of trades

We can derive the variance in the number of turning points of a random
series as:

Variance = (16 ∗ N − 29)/90 (1.07)

The standard deviation is the square root of the variance. Taking the
difference between the actual number of turning points counted in the
stream of trades and the expected number and then dividing the difference
by the standard deviation will give us a Z score, which is then expressed as
a confidence limit. The confidence limit is discerned from Equation (2.22)
for two-tailed Normal probabilities. Thus, if our stream of trades is very far
away (very many standard deviations from the expected number), it is un-
likely that our stream of trades is random; rather, dependency is present.
If dependency appears to a high confidence limit (at least 95%) with the
turning points test, you can determine from inspection whether like begets
like (if there are fewer actual turning points than expected) or whether like
begets unlike (if there are more actual turning points than expected).

Another test for dependence is the phase length test. This is a statistical
test similar to the turning points test. Rather than counting up the number
of turning points between (but not including) trade 1 and the last trade,
the phase length test looks at how many trades have elapsed between turn-
ing points. A “phase” is the number of trades that elapse between a turning
point high and a turning point low, or a turning point low and a turning
point high. It doesn’t matter which occurs first, the high turning point or
the low turning point. Thus, if trade number 4 is a turning point (high or
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low) and trade number 5 is a turning point (high or low, so long as it’s the
opposite of what the last turning point was), then the phase length is 1,
since the difference between 5 and 4 is 1.

With the phase length test you add up the number of phases of length
1, 2, and 3 or more. Therefore, you will have three categories: 1, 2, and 3+.
Thus, phase lengths of 4 or 5, and so on, are all totaled under the group
of 3+. It doesn’t matter if a phase goes from a high turning point to a low
turning point or from a low turning point to a high turning point; the only
thing that matters is how many trades the phase is comprised of. To figure
the phase length, simply take the trade number of the latter phase (what
number it is in sequence from 1 to N, where N is the total number of trades)
and subtract the trade number of the prior phase. For each of the three
categories you will have the total number of complete phases that occurred
between (but not including) the first and the last trades.

Each of these three categories also has an expected number of trades
for that category. The expected number of trades of phase length D is:

E(D) = 2 ∗ (N − D − 2) ∗ (D ∧ 2 ∗ 3 ∗ D + 1)/(D + 3)! (1.08)

where: D = The length of the phase.
E(D) = The expected number of counts.
N = The total number of trades.

Once you have calculated the expected number of counts for the three
categories of phase length (1, 2, and 3+), you can perform the chi-square
test. According to Kendall and colleagues,3 you should use 2.5 degrees of
freedom here in determining the significance levels, as the lengths of the
phases are not independent. Remember that the phase length test doesn’t
tell you about the dependence (like begetting like, etc.), but rather whether
or not there is dependence or randomness.

Lastly, this discussion of dependence addresses converting a correla-
tion coefficient to a confidence limit. The technique employs what is known
as Fisher’s Z transformation, which converts a correlation coefficient, r,
to a Normally distributed variable:

F = .5 ∗ ln(1 + r)/(1 − r)) (1.09)

where: F = The transformed variable, now Normally distributed.
r = The correlation coefficient of the sample.
ln( ) = The natural logarithm function.

3Kendall, M. G., A. Stuart, and J. K. Ord. The Advanced Theory of Statistics, Vol. III.
New York: Hafner Publishing, 1983.
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The distribution of these transformed variables will have a variance of:

V = 1/(N − 3) (1.10)

where: V = The variance of the transformed variables.
N = The number of elements in the sample.

The mean of the distribution of these transformed variables is dis-
cerned by Equation (1.09), only instead of being the correlation coefficient
of the sample, r is the correlation coefficient of the population. Thus, since
our population has a correlation coefficient of 0 (which we assume, since
we are testing deviation from randomness), then Equation (1.09) gives us
a value of 0 for the mean of the population.

Now we can determine how many standard deviations the adjusted
variable is from the mean by dividing the adjusted variable by the square
root of the variance, Equation (1.10). The result is the Z score associated
with a given correlation coefficient and sample size. For example, sup-
pose we had a correlation coefficient of .25, and this was discerned over
100 trades. Thus, we can find our Z score as Equation (1.9) divided by the
square root of Equation (1.10), or:

Z = .5 ∗ ln((1 + r)/(1 − r))/
√

1/(N − 3) (1.11)

Which, for our example, is:

Z = (.5 ∗ ln((1 + .25)/(1 − .25)))/(1/(100 − 3)) ∧ .5

= (.5 ∗ ln(1.25/.75))/(1/97) ∧ .5

= (.5 ∗ ln(1.6667))/.010309 ∧ .5

= (.5 ∗ .51085)/.1015346165

= .25541275/.1015346165

= 2.515523856

Now we can translate this into a confidence limit by using Equation (2.22)
for a Normal Distribution two-tailed confidence limit. For our example this
works out to a confidence limit in excess of 98.8%. If we had had 30 trades
or less, we would have had to discern our confidence limit by using the
Student’s Distribution with N −1 degrees of freedom.
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C H A P T E R 2

Probability
Distributions

THE BASICS OF PROBABILITY
DISTRIBUTIONS

Imagine if you will that you are at a racetrack and you want to keep a log
of the position in which the horses in a race finish. Specifically, you want
to record whether the horse in the pole position came in first, second, and
so on for each race of the day. You will record only 10 places. If the horse
came in worse than in tenth place, you will record it as a tenth-place finish.
If you do this for a number of days, you will have gathered enough data
to see the distribution of finishing positions for a horse starting out in the
pole position. Now you take your data and plot it on a graph. The horizontal
axis represents where the horse finished, with the far left being the worst
finishing position (tenth) and the far right being a win. The vertical axis
will record how many times the pole-position horse finished in the position
noted on the horizontal axis. You would begin to see a bell-shaped curve
develop.

Under this scenario, there are 10 possible finishing positions for each
race. We say that there are 10 bins in this distribution. What if, rather than
using 10 bins, we used five? The first bin would be for a first- or second-
place finish, the second bin for a third- or fourth-place finish, and so on.
What would have been the result?

Using fewer bins on the same set of data would have resulted in a prob-
ability distribution with the same profile as one determined on the same

43
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FIGURE 2.1 A continuous distribution is a series of infinitely thin bins

data with more bins. That is, they would look pretty much the same graph-
ically. However, using fewer bins does reduce the information content of a
distribution. Likewise, using more bins increases the information content
of a distribution. If, rather than recording the finishing position of the pole-
position horse in each race, we record the time the horse ran in, rounded to
the nearest second, we will get more than 10 bins, and thus the information
content of the distribution obtained will be greater.

If we recorded the exact finish time, rather than rounding finish times
to use the nearest second, we would be creating what is called a continu-

ous distribution. In a continuous distribution, there are no bins. Think of
a continuous distribution as a series of infinitely thin bins (see Figure 2.1).
A continuous distribution differs from a discrete distribution, the type we
discussed first, in that a discrete distribution is a binned distribution. Al-
though binning does reduce the information content of a distribution, in
real life it is often necessary to bin data. Therefore, in real life it is often
necessary to lose some of the information content of a distribution, while
keeping the profile of the distribution the same, so that you can process the
distribution. Finally, you should know that it is possible to take a continu-
ous distribution and make it discrete by binning it, but it is not possible to
take a discrete distribution and make it continuous.

When we are discussing the profits and losses of trades, we are essen-
tially discussing a continuous distribution. A trade can take a multitude of
values (although we could say that the data is binned to the nearest cent).
In order to work with such a distribution, you may find it necessary to bin
the data into, for example, $100-wide bins. Such a distribution would have
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a bin for trades that made nothing to $99.99, the next bin would be for
trades that made $100 to $199.99, and so on. There is a loss of information
content in binning this way, yet the profile of the distribution of the trade
profits and losses remains relatively unchanged.

DESCRIPTIVE MEASURES
OF DISTRIBUTIONS

Most people are familiar with the average, or more specifically the arith-

metic mean. This is simply the sum of the data points in a distribution
divided by the number of data points:

A =
(

N∑

i = 1

Xi

)/
N (2.01)

where: A = The arithmetic mean.

Xi = The ith data point.

N = The total number of data points in the distribution.

The arithmetic mean is the most common of the types of measures of
location, or central tendency of a body of data, a distribution. However,
you should be aware that the arithmetic mean is not the only available
measure of central tendency and often it is not the best. The arithmetic
mean tends to be a poor measure when a distribution has very broad tails.
Suppose you randomly select data points from a distribution and calcu-
late their mean. If you continue to do this, you will find that the arithmetic
means thus obtained converge poorly, if at all, when you are dealing with
a distribution with very broad tails.

Another important measure of location of a distribution is the median.

The median is described as the middle value when data are arranged in an
array according to size. The median divides a probability distribution into
two halves such that the area under the curve of one half is equal to the
area under the curve of the other half. The median is frequently a better
measure of central tendency than the arithmetic mean. Unlike the arith-
metic mean, the median is not distorted by extreme outlier values. Further,
the median can be calculated even for open-ended distributions. An open-
ended distribution is a distribution in which all of the values in excess of a
certain bin are thrown into one bin. An example of an open-ended distribu-
tion is the one we were compiling when we recorded the finishing position
in horse racing for the horse starting out in the pole position. Any finishes
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worse than tenth place were recorded as a tenth-place finish. Thus, we had
an open distribution.

The third measure of central tendency is the mode—the most frequent
occurrence. The mode is the peak of the distribution curve. In some distri-
butions there is no mode and sometimes there is more than one mode. Like
the median, the mode can often be regarded as a superior measure of cen-
tral tendency. The mode is completely independent of extreme outlier val-
ues, and it is more readily obtained than the arithmetic mean or the median.

We have seen how the median divides the distribution into two equal
areas. In the same way a distribution can be divided by three quartiles (to
give four areas of equal size or probability), or nine deciles (to give 10 areas
of equal size or probability) or 99 percentiles (to give 100 areas of equal
size or probability). The 50th percentile is the median, and along with the
25th and 75th percentiles give us the quartiles. Finally, another term you
should become familiar with is that of a quantile. A quantile is any of the
N −1 variate-values that divide the total frequency into N equal parts.

We now return to the mean. We have discussed the arithmetic mean
as a measure of central tendency of a distribution. You should be aware
that there are other types of means as well. These other means are less
common, but they do have significance in certain applications.

First is the geometric mean, which we saw how to calculate in the first
chapter. The geometric mean is simply the Nth root of all the data points
multiplied together.

G =
(

N∏

i = 1

Xi

)1/N

(2.02)

where: G = The geometric mean.

Xi = The ith data point.

N = The total number of data points in the distribution.

The geometric mean cannot be used if any of the variate-values is zero or
negative.

Another type of mean is the harmonic mean. This is the reciprocal of
the mean of the reciprocals of the data points.

1/H = 1/N
N∑

i = 1

1/Xi (2.03)

where: H = The harmonic mean.

Xi = The ith data point.

N = The total number of data points in the distribution.
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The final measure of central tendency is the quadratic mean or root

mean square.

R2 = 1/N
N∑

i = 1

X2
i (2.04)

where: R = The root mean square.

Xi = The ith data point.

N = The total number of data points in the distribution.

You should realize that the arithmetic mean (A) is always greater than
or equal to the geometric mean (G), and the geometric mean is always
greater than or equal to the harmonic mean (H):

H <= G <= A (2.05)

where: H = The harmonic mean.

G = The geometric mean.

G = The arithmetic mean.

MOMENTS OF A DISTRIBUTION

The central value or location of a distribution is often the first thing you
want to know about a group of data, and often the next thing you want
to know is the data’s variability or “width” around that central value. We
call the measures of a distribution’s central tendency the first moment of a
distribution. The variability of the data points around this central tendency
is called the second moment of a distribution. Hence, the second moment
measures a distribution’s dispersion about the first moment.

As with the measure of central tendency, many measures of dispersion
are available. We cover seven of them here, starting with the least common
measures and ending with the most common.

The range of a distribution is simply the difference between the largest
and smallest values in a distribution. Likewise, the 10–90 percentile range

is the difference between the 90th and 10th percentile points. These first
two measures of dispersion measure the spread from one extreme to the
other. The remaining five measures of dispersion measure the departure
from the central tendency (and hence measure the half-spread).

The semi-interquartile range or quartile deviation equals one half of
the distance between the first and third quartiles (the 25th and 75th per-
centiles). This is similar to the 10–90 percentile range, except that with this
measure the range is commonly divided by 2.
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The half-width is an even more frequently used measure of dispersion.
Here, we take the height of a distribution at its peak, the mode. If we find
the point halfway up this vertical measure and run a horizontal line through
it perpendicular to the vertical line, the horizontal line will touch the dis-
tribution at one point to the left and one point to the right. The distance
between these two points is called the half-width.

Next, the mean absolute deviation or mean deviation is the arithmetic
average of the absolute value of the difference between the data points
and the arithmetic average of the data points. In other words, as its name
implies, it is the average distance that a data point is from the mean. Ex-
pressed mathematically:

M = 1/N
N∑

i = 1

ABS(Xi − A) (2.06)

where: M = The mean absolute deviation.

N = The total number of data points.

Xi = The ith data point.

A = The arithmetic average of the data points.

ABS( ) = The absolute value function.

Equation (2.06) gives us what is known as the population mean abso-
lute deviation. You should know that the mean absolute deviation can also
be calculated as what is known as the sample mean absolute deviation.
To calculate the sample mean absolute deviation, replace the term 1/N in
Equation (2.06) with 1/(N − 1). You use the sample version when you are
making judgments about the population based on a sample of that popula-
tion.

The next two measures of dispersion, variance and standard deviation,
are the two most commonly used. Both are used extensively, so we cannot
say that one is more common than the other; suffice to say they are both the
most common. Like the mean absolute deviation, they can be calculated
two different ways, for a population as well as a sample. The population
version is shown, and again it can readily be altered to the sample version
by replacing the term 1/N with 1/(N − 1).

The variance is the same thing as the mean absolute deviation except
that we square each difference between a data point and the average of
the data points. As a result, we do not need to take the absolute value of
each difference, since multiplying each difference by itself makes the re-
sult positive whether the difference was positive or negative. Further, since
each distance is squared, extreme outliers will have a stronger effect on the
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variance than they would on the mean absolute deviation. Mathematically
expressed:

V = 1/N
N∑

i = 1

(Xi − A)2 (2.07)

where: V = The variance.

N = The total number of data points.

Xi = The ith data point.

A = The arithmetic average of the data points.

Finally, the standard deviation is related to the variance (and hence
the mean absolute deviation) in that the standard deviation is simply the

square root of the variance.
The third moment of a distribution is called skewness, and it describes

the extent of asymmetry about a distribution’s mean (Figure 2.2). Whereas
the first two moments of a distribution have values that can be considered
dimensional (i.e., having the same units as the measured quantities), skew-
ness is defined in such a way as to make it nondimensional. It is a pure
number that represents nothing more than the shape of the distribution.

A positive value for skewness means that the tails are thicker on the
positive side of the distribution and vice versa. A perfectly symmetrical
distribution has a skewness of 0.

FIGURE 2.2 Skewness
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FIGURE 2.3 Skewness alters location

In a symmetrical distribution the mean, median, and mode are all at
the same value. However, when a distribution has a nonzero value for
skewness, this changes as depicted in Figure 2.3. The relationship for a
skewed distribution (any distribution with a nonzero skewness) is:

Mean − Mode = 3 ∗ (Mean − Median) (2.08)

As with the first two moments of a distribution, there are numerous
measures for skewness, which most frequently will give different answers.
These measures now follow:

S = (Mean − Mode)/Standard Deviation (2.09)

S = (3 ∗ (Mean − Median))/Standard Deviation (2.10)

These last two equations, (2.09) and (2.10), are often referred to as
Pearson’s first and second coefficients of skewness, respectively. Skew-
ness is also commonly determined as:

S = 1/N
N∑

i = 1

((Xi − A)/D)3 (2.11)

where: S = The skewness.

N = The total number of data points.

Xi = The ith data point.

A = The arithmetic average of the data points.

D = The population standard deviation of the data points.
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FIGURE 2.4 Kurtosis

Finally, the fourth moment of a distribution, kurtosis (see Figure 2.4),
measures the peakedness or flatness of a distribution (relative to the Nor-
mal Distribution). Like skewness, it is a nondimensional quantity. A curve
less peaked than the Normal is said to be platykurtic (kurtosis will be neg-
ative), and a curve more peaked than the Normal is called leptokurtic (kur-
tosis will be positive). When the peak of the curve resembles the Normal
Distribution curve, kurtosis equals zero, and we call this type of peak on a
distribution mesokurtic.

Like the preceding moments, kurtosis has more than one measure. The
two most common are:

K = Q/P (2.12)

where: K = The kurtosis.

Q = The semi-interquartile range.

P = The 10–90 percentile range.

K =
(

1/N
N∑

i = 1

((Xi − A)/D)4

)
− 3 (2.13)

where: K = The kurtosis.

N = The total number of data points.

Xi = The ith data point.

A = The arithmetic average of the data points.

D = The population standard deviation of the data points.
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Finally, it should be pointed out there is a lot more “theory” behind
the moments of a distribution than is covered here. The depth of discus-
sion about the moments of a distribution presented here will be more than
adequate for our purposes throughout this text.

Thus far, we have covered data distributions in a general sense. Now
we will cover the specific distribution called the Normal Distribution.

THE NORMAL DISTRIBUTION

Frequently, the Normal Distribution is referred to as the Gaussian distri-
bution, or de Moivre’s distribution, after those who are believed to have
discovered it—Karl Friedrich Gauss (1777–1855) and, about a century ear-
lier and far more obscurely, Abraham de Moivre (1667–1754).

The Normal Distribution is considered to be the most useful distribu-
tion in modeling. This is due to the fact that the Normal Distribution ac-
curately models many phenomena. Generally speaking, we can measure
heights, weights, intelligence levels, and so on from a population, and these
will very closely resemble the Normal Distribution.

Let’s consider what is known as Galton’s board (Figure 2.5). This is a
vertically mounted board in the shape of an isosceles triangle. The board is
studded with pegs, one on the top row, two on the second, and so on. Each
row down has one more peg than the previous row. The pegs are arranged
in a triangular fashion such that when a ball is dropped in, it has a 50/50
probability of going right or left with each peg it encounters. At the base of
the board is a series of troughs to record the exit gate of each ball.

The balls falling through Galton’s board and arriving in the troughs
will begin to form a Normal Distribution. The “deeper” the board is (i.e.,
the more rows it has) and the more balls are dropped through, the more
closely the final result will resemble the Normal Distribution.

The Normal is useful in its own right, but also because it tends to be
the limiting form of many other types of distributions. For example, if X is
distributed binomially, then as N tends toward infinity, X tends to be Nor-
mally distributed. Further, the Normal Distribution is also the limiting form
of a number of other useful probability distributions such as the Poisson,
the Student’s, or the T distribution. In other words, as the data (N) used in
these other distributions increases, these distributions increasingly resem-
ble the Normal Distribution.

THE CENTRAL LIMIT THEOREM

One of the most important applications for statistical purposes involving
the Normal Distribution has to do with the distribution of averages. The
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FIGURE 2.5 Galton’s board

averages of samples of a given size, taken such that each sampled item is
selected independently of the others, will yield a distribution that is close
to Normal. This is an extremely powerful fact, for it means that you can
generalize about an actual random process from averages computed using
sample data.

Thus, we can state that if N random samples are drawn from a popu-

lation, then the sums (or averages) of the samples will be approximately

Normally distributed, regardless of the distribution of the population

from which the samples are drawn. The closeness to the Normal Dis-

tribution improves as N (the number of samples) increases.

As an example, consider the distribution of numbers from 1 to 100.
This is what is known as a uniform distribution: All elements (numbers
in this case) occur only once. The number 82 occurs once and only once,
as does 19, and so on. Suppose now that we take a sample of five elements
and we take the average of these five sampled elements (we can just as
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well take their sums). Now, we replace those five elements back into the
population, and we take another sample and calculate the sample mean.
If we keep on repeating this process, we will see that the sample means
are Normally distributed, even though the population from which they are
drawn is uniformly distributed.

Furthermore, this is true regardless of how the population is dis-
tributed! The Central Limit Theorem allows us to treat the distribution of
sample means as being Normal without having to know the distribution
of the population. This is an enormously convenient fact for many areas of
study.

If the population itself happens to be Normally distributed, then the
distribution of sample means will be exactly (not approximately) Normal.
This is true because how quickly the distribution of the sample means
approaches the Normal, as N increases, is a function of how close the
population is to Normal. As a general rule of thumb, if a population has
a unimodal distribution—any type of distribution where there is a con-
centration of frequency around a single mode, and diminishing frequencies
on either side of the mode (i.e., it is convex)—or is uniformly distributed,
using a value of 20 for N is considered sufficient, and a value of 10 for N
is considered probably sufficient. However, if the population is distributed
according to the Exponential Distribution (Figure 2.6), then it may be nec-
essary to use an N of 100 or so.

The Central Limit Theorem, this amazingly simple and beautiful fact,
validates the importance of the Normal Distribution.

WORKING WITH THE NORMAL DISTRIBUTION

In using the Normal Distribution, we most frequently want to find the per-
centage of area under the curve at a given point along the curve. In the
parlance of calculus this would be called the integral of the function for
the curve itself. Likewise, we could call the function for the curve itself
the derivative of the function for the area under the curve. Derivatives are
often noted with a prime after the variable for the function. Therefore, if
we have a function, N(X), that represents the percentage of area under the
curve at a given point, X, we can say that the derivative of this function,
N′(X) (called N prime of X), is the function for the curve itself at point X.

We will begin with the formula for the curve itself, N′(X). This function
is represented as:

N′(X) = 1/(S ∗
√

2 ∗ 3.1415926536

∗EXP(−(X − U)2/2 ∗ S2) (2.14)
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FIGURE 2.6 The Exponential Distribution and the Normal

where: U = The mean of the data.

S = The standard deviation of the data.

X = The observed data point.

EXP( ) = The exponential function.

This formula will give us the Y axis value, or the height of the curve if you
will, at any given X axis value.

Often, it is easier to refer to a point along the curve with reference to
its X coordinate in terms of how many standard deviations it is away from
the mean. Thus, a data point that was 1 standard deviation away from the
mean would be said to be one standard unit from the mean.

Further, it is often easier to subtract the mean from all of the data
points, which has the effect of shifting the distribution so that it is centered
over zero rather than over the mean. Therefore, a data point that was 1
standard deviation to the right of the mean would now have a value of 1 on
the X axis.

When we make these conversions, subtracting the mean from the
data points, then dividing the difference by the standard deviation of the
data points, we are converting the distribution to what is called the stan-

dardized normal, which is the Normal Distribution with mean = 0 and
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variance = 1. Now, N′(Z) will give us the Y axis value (the height of the
curve) for any value of Z:

N′(Z) = 1/
√

2 ∗ 3.1415926536 ∗ EXP(−(Z2/2))

= .398942 ∗ EXP(−(Z2/2)) (2.15a)

where: Z = (X − U)/S

and U = The mean of the data.

S = The standard deviation of the data.

X = The observed data point.

EXP ( ) = The exponential function.

Equation (2.16) gives us the number of standard units that the data
point corresponds to—in other words, how many standard deviations away
from the mean the data point is. When Equation (2.16) equals 1, it is called
the standard normal deviate. A standard deviation or a standard unit
is sometimes referred to as a sigma. Thus, when someone speaks of an
event’s being a “five sigma event,” they are referring to an event whose
probability of occurrence is the probability of being beyond 5 standard de-
viations.

Consider Figure 2.7, which shows this equation for the Normal curve.
Notice that the height of the standard Normal curve is .39894. From Equa-
tion (2.15a), the height is:

N′(Z) = .398942 ∗ EXP(−(Z2/2))

N′(0) = .398942 ∗ EXP(−(02/2))

N′(0) = .398942

Notice that the curve is continuous—that is, there are no “breaks” in
the curve as it runs from minus infinity on the left to positive infinity on the
right. Notice also that the curve is symmetrical, the side to the right of the
peak being the mirror image of the side to the left of the peak.

Suppose we had a group of data where the mean of the data was 11
and the standard deviation of the group of data was 20. To see where a data
point in that set would be located on the curve, we could first calculate it
as a standard unit. Suppose the data point in question had a value of −9. To
calculate how many standard units this is, we first must subtract the mean
from this data point:

−9 − 11 = −20
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FIGURE 2.7 The Normal Probability density function

Next, we need to divide the result by the standard deviation:

−20/20 = −1

We can therefore say that the number of standard units is −1, when the
data point equals −9, and the mean is 11, and the standard deviation is
20. In other words, we are 1 standard deviation away from the peak of the
curve, the mean, and since this value is negative we know that it means we
are 1 standard deviation to the left of the peak. To see where this places us
on the curve itself (i.e., how high the curve is at 1 standard deviation left of
center, or what the Y axis value of the curve is for a corresponding X axis
value of −1), we need to now plug this into Equation (2.15a):

N′(Z) = .398942 ∗ EXP(− (Z2/2))

= .398942 ∗ 2.7182818285(− (−12/2))

= .398942 ∗ 2.7182818285
−1/2

= .398942 ∗.6065307

= .2419705705
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Thus, we can say that the height of the curve at X = −1 is .2419705705.
The function N′(Z) is also often expressed as:

N′(Z) = EXP(−(Z2/2))/
√

8 ∗ ATN(1)

= EXP( − (Z2/2))/
√

8 ∗ .7853983 (2.15b)

= EXP( − (Z2/2))/2.506629

where: Z = (X − U)/S (2.16)

and ATN( ) = The arctangent function.

U = The mean of the data.

S = The standard deviation of the data.

X = The observed data point.

EXP ( ) = The exponential function.

Nonstatisticians often find the concept of the standard deviation (or
its square, variance) hard to envision. A remedy for this is to use what is
known as the mean absolute deviation and convert it to and from the stan-
dard deviation in these equations. The mean absolute deviation is exactly
what its name implies. The mean of the data is subtracted from each data
point. The absolute values of each of these differences are then summed,
and this sum is divided by the number of data points. What you end up
with is the average distance each data point is away from the mean. The
conversion for mean absolute deviation and standard deviation are given
now:

Mean Absolute Deviation = S ∗
√

2/3.1415926536

= S ∗ .7978845609 (2.17)

where: M = The mean absolute deviation.
S = The standard deviation.

Thus, we can say that in the Normal Distribution, the mean absolute
deviation equals the standard deviation times .7979. Likewise:

S = M ∗ 1/.7978845609

= M ∗ 1.253314137 (2.18)

where: S = The standard deviation.

M = The mean absolute deviation.

So we can also say that in the Normal Distribution the standard devi-
ation equals the mean absolute deviation times 1.2533. Since the variance
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is always the standard deviation squared (and standard deviation is always
the square root of variance), we can make the conversion between variance
and mean absolute deviation.

M =
√

V ∗
√

2/3.1415926536

=
√

V ∗ .7978845609 (2.19)

where: M = The mean absolute deviation.

V = The variance.

V = (M ∗ 1.253314137)2 (2.20)

where: V = The variance.

M = The mean absolute deviation.

Since the standard deviation in the standard normal curve equals 1, we
can state that the mean absolute deviation in the standard normal curve
equals .7979.

Further, in a bell-shaped curve like the Normal, the semi-interquartile
range equals approximately two-thirds of the standard deviation, and there-
fore the standard deviation equals about 1.5 times the semi-interquartile
range. This is true of most bell-shaped distributions, not just the Normal,
as are the conversions given for the mean absolute deviation and standard
deviation.

NORMAL PROBABILITIES

We now know how to convert our raw data to standard units and how
to form the curve N′(Z) itself (i.e., how to find the height of the curve, or
Y coordinate for a given standard unit) as well as N′(X) (Equation (2.14),
the curve itself without first converting to standard units). To really use
the Normal Probability Distribution, though, we want to know what the
probabilities of a certain outcome’s happening are. This is not given by the
height of the curve. Rather, the probabilities correspond to the area under
the curve. These areas are given by the integral of this N′(Z) function that
we have thus far studied. We will now concern ourselves with N(Z), the
integral to N′(Z), to find the areas under the curve (the probabilities).1

1The actual integral to the Normal probability density does not exist in closed form,
but it can very closely be approximated by Equation (2.21).
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N(Z) = 1 − N′(Z) ∗ ((1.330274429 ∗ Y ∧ 5) − (1.821255978 ∗ Y ∧ 4)

+ (1.781477937 ∗ Y ∧ 3) − (.356563782 ∗ Y ∧ 2)

+ (.31938153 ∗ Y)) (2.21)

If Z < 0, then N(Z) = 1 − N(Z). Now recall Equation (2.15a):

N′(Z) = .398942 ∗ EXP(−(Z2/2))

where: Y = 1/(1 + 2316419 * ABS(Z))

and ABS ( ) = The absolute value function.

EXP ( ) = The exponential function.

We will always convert our data to standard units when finding proba-
bilities under the curve. That is, we will not describe an N(X) function, but
rather we will use the N(Z) function where:

Z = (X − U)/S

and U = The mean of the data.

S = The standard deviation of the data.

X = The observed data point.

Refer now to Equation (2.21). Suppose we want to know what the prob-
ability is of an event’s not exceeding +2 standard units (Z = +2).

Y = 1/(1 + 2316419 ∗ ABS(+2))

= 1/1.4632838

= .68339443311

N′(Z) = .398942 ∗ EXP(−(Z2/2))

= .398942 ∗ EXP(−2)

= .398942 ∗ .1353353

= .05399093525

Notice that this tells us the height of the curve at −2 standard units.
Plugging these values for Y and N′(Z) into Equation (2.21) we can obtain
the probability of an event’s not exceeding +2 standard units:

N(Z) = 1 − N′(Z) ∗ ((1.330274429 ∗ Y ∧ 5) − (1.821255978 ∗ Y ∧ 4)

+(1.781477937 ∗ Y ∧ 3) − (.356563782 ∗ Y ∧ 2)

+(.31938153 ∗ Y))
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= 1 − .05399093525 ∗

⎛

⎜⎜⎜⎜⎝

1.330274429 ∗ .683394433115

−1.821255978 ∗ .683394433114

+1.781477937 ∗ .683394433113

−.356563782 ∗ .683394433112

+.31928153 ∗ .68339443311

⎞

⎟⎟⎟⎟⎠

= 1 − .05399093525 ∗

⎛

⎜⎜⎝

1.330274429 ∗ .1490587 − 1.821255978∗
.2181151 + 1.781477937 ∗ .3191643
−.356563782 ∗ .467028 + .31928153∗
.68339443311

⎞

⎟⎟⎠

= 1 − .05399093525 ∗ (.198299977 − .3972434298

+.5685841587 − .16652527 + .2182635596)

= 1 − .05399093525 ∗ .4213679955

= 1 − .02275005216

= .9772499478

Thus, we can say that we can expect 97.72% of the outcomes in a Nor-
mally distributed random process to fall shy of +2 standard units. This is
depicted in Figure 2.8.

If we wanted to know what the probabilities were for an event’s equal-
ing or exceeding a prescribed number of standard units (in this case +2),
we would simply amend Equation (2.21), taking out the 1− in the beginning
of the equation and doing away with the −Z provision (i.e., doing away with

FIGURE 2.8 Equation (2.21) showing probability with Z = +2
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FIGURE 2.9 Doing away with the 1− and −Z provision in Equation (2.21)

“If Z < 0 then N(Z) = 1 – N(Z)”). Therefore, the second to last line in the
last computation would be changed from

= 1 − .02275005216

to simply

.02275005216

We would therefore say that there is about a 2.275% chance that an
event in a Normally distributed random process would equal or exceed +2
standard units. This is shown in Figure 2.9.

Thus far we have looked at areas under the curve (probabilities) where
we are dealing only with what are known as “one-tailed” probabilities. That
is to say we have thus far looked to solve such questions as, “What are the
probabilities of an event’s being less (more) than such-and-such standard
units from the mean?” Suppose now we were to pose the question as, “What
are the probabilities of an event’s being within so many standard units of
the mean?” In other words, we wish to find out what the “2-tailed” proba-
bilities are.

Consider Figure 2.10. This represents the probabilities of being within
2 standard units of the mean. Unlike Figure 2.8, this probability compu-
tation does not include the extreme left tail area, the area of less than −2
standard units. To calculate the probability of being within Z standard units
of the mean, you must first calculate the one-tailed probability of the abso-
lute value of Z with Equation (2.21). This will be your input to the next
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FIGURE 2.10 A two-tailed probability of an event’s being + or −2 sigma

Equation, (2.22), which gives us the two-tailed probabilities (i.e., the prob-
abilities of being within ABS(Z) standard units of the mean):

Two-tailed probability = 1 − ((1 − N(ABS(Z))) ∗ 2) (2.22)

If we are considering what our probabilities of occurrence within 2
standard deviations are (Z = 2), then from Equation (2.21) we know that
N(2) = .9772499478, and using this as input to Equation (2.22):

Two-tailed probability = 1 − ((1 − .9772499478) ∗ 2)

= 1 − (.02275005216 ∗ 2)

= 1 − .04550010432

= .9544998957

Thus, we can state from this equation that the probability of an event in a
Normally distributed random process falling within 2 standard units of the
mean is about 95.45%.

Just as with Equation (2.21), we can eliminate the leading 1− in Equa-
tion (2.22) to obtain (1 – N(ABS(Z))) * 2, which represents the probabilities
of an event’s falling outside of ABS(Z) standard units of the mean. This is
depicted in Figure 2.11. For the example where Z = 2, we can state that the
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FIGURE 2.11 Two-tailed probability of an event’s being beyond 2 sigma

probabilities of an event in a Normally distributed random process falling
outside of 2 standard units is:

Two-tailed probability (outside) = (1 − .9772499478) ∗ 2

= .02275005216 ∗ 2

= .04550010432

Finally, we come to the case where we want to find what the
probabilities (areas under the N′(Z) curve) are for two different values
of Z.

Suppose we want to find the area under the N′(Z) curve between
−1 standard unit and +2 standard units. There are a couple of ways to
accomplish this. To begin with, we can compute the probability of not
exceeding +2 standard units with Equation (2.21), and from this we
can subtract the probability of not exceeding −1 standard units (see
Figure 2.12). This would give us:

.9772499478 − .1586552595 = .8185946883

Another way we could have performed this is to take the number 1,
representing the entire area under the curve, and then subtract the sum of
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FIGURE 2.12 The area between −1 and +2 standard units

the probability of not exceeding −1 standard unit and the probability of
exceeding 2 standard units:

= 1 − (.022750052 + .1586552595)

= 1 − .1814053117

= .8185946883

With the basic mathematical tools regarding the Normal Distribution
thus far covered in this chapter, you can now use your powers of reasoning
to figure any probabilities of occurrence for Normally distributed random
variables.

FURTHER DERIVATIVES OF THE NORMAL

Sometimes you may want to know the second derivative of the N(Z) func-
tion. Since the N(Z) function gives us the area under the curve at Z, and the
N′(Z) function gives us the height of the curve itself at Z, then the N′′(Z)
function gives us the instantaneous slope of the curve at a given Z:

N′′(Z) = −Z/2.506628274 ∗ EXP(−(Z2)/2) (2.23)

where: EXP( ) = The exponential function.
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FIGURE 2.13 N′ ′(Z) giving the slope of the line tangent tangent to N′(Z) at
Z = +2

To determine what the slope of the N′(Z) curve is at +2 standard units:

N′′(Z) = −2/2.506628274 ∗ EXP(− (22)/2)

= −2/2.506628274 ∗ EXP(−2)

= −2/2.506628274 ∗ .1353353

= −.1079968336

Therefore, we can state that the instantaneous rate of change in the
N′(Z) function when Z = +2 is −.1079968336. This represents rise/run, so
we can say that when Z = +2, the N′(Z) curve is rising −.1079968336 for
every 1 unit run in Z. This is depicted in Figure 2.13.

For the reader’s own reference, further derivatives are now given.
These will not be needed throughout the remainder of this text, but are
provided for the sake of completeness:

N′′′(Z) = (Z2 − 1)/2.506628274 ∗ EXP(−(Z2)/2)) (2.24)

N′′′′(Z) = ((3 ∗ Z) − Z3)/2.506628274 ∗ EXP(−(Z2)/2)) (2.25)

N′′′′′(Z) = (Z4 − (6 ∗ Z2) + 3)/2.506628274 ∗ EXP(−(Z2)/2)) (2.26)

As a final note regarding the Normal Distribution, you should be aware
that the distribution is nowhere near as “peaked” as the graphic examples
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FIGURE 2.14 The real shape of the Normal Distribution

presented in this chapter imply. The real shape of the Normal Distribution
is depicted in Figure 2.14.

Notice that here the scales of the two axes are the same, whereas in
the other graphic examples they differ so as to exaggerate the shape of the
distribution.

THE LOGNORMAL DISTRIBUTION

Many of the real-world applications in trading require a small but crucial
modification to the Normal Distribution. This modification takes the Nor-
mal, and changes it to what is known as the Lognormal Distribution.

Consider that the price of any freely traded item has zero as a lower
limit.2 Therefore, as the price of an item drops and approaches zero, it

2This idea that the lowest an item can trade for is zero is not always entirely true.
For instance, during the stock market crash of 1929 and the ensuing bear market,
the shareholders of many failed banks were held liable to the depositors in those
banks. Persons who owned stock in such banks not only lost their full investment,
they also realized liability beyond the amount of their investment. The point here
isn’t to say that such an event can or cannot happen again. Rather, we cannot al-
ways say that zero is the absolute low end of what a freely traded item can be priced
at, although it usually is.
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FIGURE 2.15 The Normal and Lognormal Distributions

should in theory become progressively more difficult for the item to get
lower. For example, consider the price of a hypothetical stock at $10 per
share. If the stock were to drop $5, to $5 per share, a 50% loss, then ac-
cording to the Normal Distribution it could just as easily drop from $5 to
$0. However, under the Lognormal, a similar drop of 50% from a price of
$5 per share to $2.50 per share would be about as probable as a drop from
$10 to $5 per share.

The Lognormal Distribution, Figure 2.15, works exactly like the Nor-
mal Distribution except that with the Lognormal we are dealing with per-
centage changes rather than absolute changes.

Consider now the upside. According to the Lognormal, a move from
$10 per share to $20 per share is about as likely as a move from $5 to
$10 per share, as both moves represent a 100% gain.

That isn’t to say that we won’t be using the Normal Distribution. The
purpose here is to introduce you to the Lognormal, show you its relation-
ship to the Normal (the Lognormal uses percentage price changes rather
than absolute price changes), and point out that it usually is used when
talking about price moves, or anytime that the Normal would apply but be
bounded on the low end at zero.
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To use the Lognormal Distribution, you simply convert the data you
are working with to natural logarithms.3 Now the converted data will be
Normally distributed if the raw data was Lognormally distributed.

For instance, if we are discussing the distribution of price changes as
being Lognormal, we can use the Normal distribution on it. First, we must
divide each closing price by the previous closing price. Suppose in this
instance we are looking at the distribution of monthly closing prices (we
could use any time period—hourly, daily, yearly, or whatever). Suppose we
now see $10, $5, $10, $10, then $20 per share as our first five months closing
prices. This would then equate to a loss of 50% going into the second month,
a gain of 100% going into the third month, a gain of 0% going into the fourth
month, and another gain of 100% into the fifth month. Respectively, then,
we have quotients of .5, 2, 1, and 2 for the monthly price changes of months
2 through 5. We must now convert to natural logarithms in order to study
their distribution under the math for the Normal Distribution. Thus, the
natural log of .5 is −.6931473, of 2 it is .6931471, and of 1 it is 0. We are now
able to apply the mathematics pertaining to the Normal Distribution to this
converted data.4

THE UNIFORM DISTRIBUTION

The Uniform Distribution, sometimes referred to as the Rectangular Dis-

tribution from its shape, occurs when all items in a population have equal
frequency. A good example is the 10 digits 0 through 9. If we were to
randomly select one of these digits, each possible selection has an equal
chance of occurrence. Thus, the Uniform Distribution is used to model
truly random events. A particular type of Uniform Distribution where
A = 0 and B = 1 is called the Standard Uniform Distribution, and it is
used extensively in generating random numbers.

3The distinction between common and natural logarithms is reiterated here. A com-
mon log is a log base 10, while a natural log is a log base e, where e = 2.7182818285.
The common log of X is referred to mathematically as log(X) while the natural log
is referred to as ln(X). The distinction gets blurred when we observe BASIC pro-
gramming code, which often utilizes a function LOG(X) to return the natural log.
4This is diametrically opposed to mathematical convention. BASIC does not have
a provision for common logs, but the natural log can be converted to the common
log by multiplying the natural log by .4342917. Likewise, we can convert common
logs to natural logs by multiplying the common log by 2.3026.
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FIGURE 2.16 Probability density functions for the Uniform Distribution (A = 2,
B = 7)

FIGURE 2.17 Cumulative probability functions for the Uniform Distribution
(A = 2, B = 7)
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The Uniform Distribution is a continuous distribution. The probability
density function, N′(X), is described as:

N′(X) = 1/(B − A) for A <= X <= B (2.27)

else

N′(X) = 0

where: B = The rightmost limit of the interval AB.

A = The leftmost limit of the interval AB.

The cumulative density of the Uniform is given by:

N(X) = 0 for X < A (2.28)

else

N(X) = (X − A)/(B − A) for A <= X <= B

else

N(X) = 1 for X > B

where: B = The rightmost limit of the interval AB.

A = The leftmost limit of the interval AB.

Figures 2.16 and 2.17 illustrate the probability density and cumulative
probability (i.e., cdf) respectively of the Uniform Distribution.

Other qualities of the Uniform Distribution are:

Mean = (A + B)/2 (2.29)

Variance = (B − A)2/12 (2.30)

where: B = The rightmost limit of the interval AB.

A = The leftmost limit of the interval AB.

THE BERNOULLI DISTRIBUTION

Another simple, common distribution is the Bernoulli Distribution. This
is the distribution when the random variable can have only two possible
values. Examples of this are heads and tails, defective and nondefective
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FIGURE 2.18 Probability density functions for the Binomial Distribution (P = .5)

articles, success or failure, hit or miss, and so on. Hence, we say that the
Bernoulli Distribution is a discrete distribution (as opposed to being a
continuous distribution). The distribution is completely described by one
parameter, P, which is the probability of the first event occurring. The vari-
ance in the Bernoulli is:

Variance = P ∗ Q (2.31)

where:

Q = P − 1 (2.32)

Figure 2.18 and 2.19 illustrate the probability density and cumulative prob-
ability (i.e., cdf) respectively of the Bernoulli Distribution.

THE BINOMIAL DISTRIBUTION

The Binomial Distribution arises naturally when sampling from a
Bernoulli Distribution. The probability density function, N′(X), of the Bi-
nomial (the probability of X successes in N trials or X defects in N items or
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FIGURE 2.19 Cumulative probability function of the Bernoulli Distribution
(P = .5)

X heads in N coin tosses, etc.) is:

N′(X) = (N!/(X! ∗ (N − X)!)) ∗ PX ∗ Q(N−X) (2.33)

where: N = The number of trials.

X = The number of successes.

P = The probability of a success on a single trial.

Q = 1 − P.

X! = X ∗ (X − 1) ∗ (X − 2) ∗ . . . ∗ 1 (2.34)

which can be also written as:

X! =
X − 1∏

J = 0

X − J (2.34a)

Further, by convention:

0! = 1 (2.34b)
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FIGURE 2.20 Probability density functions for the Binomial Distribution
(N = 5, P = .5)

The cumulative density function for the Binomial is:

N(X) =
X∑

J = 0

(N!/(J! ∗ (N − J)!)) ∗ P J ∗ Q(N−J) (2.35)

where: N = The number of trials.

X = The number of successes.

P = The probability of a success on a single trial.

Q = 1 − P.

Figures 2.20 and 2.21 illustrate the probability density and cumulative prob-
ability (i.e., cdf), respectively, of the Bionomial Distribution.

The Binomial is also a discrete distribution. Other properties of the
Binomial Distribution are:

Mean = N ∗ P (2.36)

Variance = N ∗ P ∗ Q (2.37)
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FIGURE 2.21 Cumulative probability functions for the Binomial Distribution
(N = 5, P = .5)

where: N = The number of trials.

P = The probability of a success on a single trial.

Q = 1 − P.

As N becomes large, the Binomial tends to the Normal Distribution,
with the Normal being the limiting form of the Binomial. Generally, if N * P
and N * Q are both greater than 5, you could use the Normal in lieu of the
Binomial as an approximation.

The Binomial Distribution is often used to statistically validate a gam-
bling system. An example will illustrate. Suppose we have a gambling sys-
tem that has won 51% of the time. We want to determine what the winning
percentage would be if it performs in the future at a level of 3 standard
deviations worse. Thus, the variable of interest here, X, is equal to .51, the
probability of a winning trade. The variable of interest need not always be
for the probability of a win. It can be the probability of an event being in
one of two mutually exclusive groups. We can now perform the first neces-
sary equation in the test:

L = P − Z ∗
√

(P ∗ (P − 1))/(N − 1) (2.38)
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where: L = The lower boundary for P to be at Z standard deviations.

P = The variable of interest representing the probability of be-
ing in one of two mutually exclusive groups.

Z = The selected number of standard deviations.

N = The total number of events in the sample.

Suppose our sample consisted of 100 plays. Thus:

L = .51 − 3 ∗
√

(.51 ∗ (1 − .51))/(100 − 1)

= .51 − 3 ∗
√

(.51 ∗ .49)/99

= .51 − 3 ∗
√

.2499/99

= .51 − 3 ∗
√

.0025242424

= .51 − 3 ∗ .05024183938

= .51 − .1507255181

= .3592744819

Based on our history of 100 plays which generated a 51% win rate, we
can state that it would take a three-sigma event for the population of plays
(the future if we play an infinite number of times into the future) to have
less than 35.92744819% winners.

What kind of a confidence level does this represent? That is a function
of N, the total number of plays in the sample. We can determine the con-
fidence level of achieving 35 or 36 wins in 100 tosses by Equation (2.35).
However, (2.35) is clumsy to work with as N gets large because of all
of the factorial functions in (2.35). Fortunately, the Normal distribution,
Equation (2.21) for one-tailed probabilities, can be used as a very close
approximation for the Binomial probabilities. In the case of our example,
using Equation (2.21), 3 standard deviations translates into a 99.865% con-
fidence. Thus, if we were to play this gambling system over an infinite num-
ber of times, we could be 99.865% sure that the percentage of wins would
be greater than or equal to 35.92744819%.

This technique can also be used for statistical validation of trading sys-
tems. However, this method is only valid when the following assumptions
are true. First, the N events (trades) are all independent and randomly se-
lected. This can easily be verified for any trading system. Second, the N
events (trades) can all be classified into two mutually exclusive groups
(wins and losses, trades greater than or less than the median trade, etc.).
This assumption, too, can easily be satisfied. The third assumption is that
the probability of an event being classified into one of the two mutually
exclusive groups is constant from one event to the next. This is not neces-
sarily true in trading, and the technique becomes inaccurate to the degree
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that this assumption is false. Be that as it may, the technique still can have
value for traders.

Not only can it be used to determine the confidence level for a certain
method’s being profitable; the technique can also be used to determine the
confidence level for a given market indicator. For instance, if you have
an indicator that will forecast the direction of the next day’s close, you
then have two mutually exclusive groups: correct forecasts and incorrect
forecasts. You can now express the reliability of your indicator to a certain
confidence level.

This technique can also be used to discern how many trials are neces-
sary for a system to be profitable to a given confidence level. For example,
suppose we have a gambling system that wins 51% of the time on a game
that pays 1 to 1. We want to know how many trials we must observe to
be certain to a given confidence level that the system will be profitable in
an asymptotic sense. Thus, we can restate the problem as, “If the system
wins 51% of the time, how many trials must I witness, and have it show
a 51% win rate, to know that it will be profitable to a given confidence
level?”

Since the payoff is 1:1, the system must win in excess of 50% of the
time to be considered profitable. Let’s say we want the given confidence
level to again be 99.865, or 3 standard deviations (although we are using
3 standard deviations in this discussion, we aren’t restricted to that
amount; we can use any number of standard deviations that we want). How
many trials must we now witness to be 99.865% confident that at least 51%
of the trials will be winners?

If .51 − X = .5, then X = .01. Therefore, the right factors of Equation
(2.38), Z ∗ √

P ∗ (P − 1)/(N − 1), must equal .01. Since Z = 3 in this case,
and .01/3 = .0033, then:

√
P ∗ (1 − P)/(N − 1)

We know that P equals .51, thus:

.51 ∗
√

(1 − .51)/(N − 1)

Squaring both sides gives us:

((.51 ∗ (1 − .51))/(N − 1)) = .00001111

To continue:

(.51 ∗ .49)/(N − 1) = .00001111

.2499/(N − 1) = .00001111
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.2499/.00001111 = N − 1

.2499/.00001111 + 1 = N

22, 491 + 1 = N

N = 22, 492

Thus, we need to witness a 51% win rate over 22,492 trials to be 99.865%
certain that we will see at least 51% wins.

THE GEOMETRIC DISTRIBUTION

Like the Binomial, the Geometric Distribution, also a discrete distribution,
occurs as a result of N independent Bernoulli trials. The Geometric Distri-
bution measures the number of trials before the first success (or failure).
The probability density function, N′(X), is:

N′(X) = Q(X−1) ∗ P (2.39)

where: P = The probability of success for a given trial.

Q = The probability of failure for a given trial.

In other words, N′(X) here measures the number of trials until the first
success. The cumulative density function for the Geometric is therefore:

N(X) =
X∑

J = 1

Q(J−1) ∗ P (2.40)

where: P = The probability of success for a given trial.

Q = The probability of failure for a given trial.

Figures 2.22 and 2.23 illustrate the probability density and cumulative
probability ability (i.e., cdf), respectively, of the Geometric Distribution.

Other properties of the Geometric are:

Mean = 1/P (2.41)

Variance = Q/P2 (2.42)

where: P = The probability of success for a given trial.

Q = The probability of failure for a given trial.
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FIGURE 2.22 Probability density functions for the Geometric Distribution
(P = .6)

FIGURE 2.23 Cumulative probability functions for the Geometric Distribution
(P = .6)
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Suppose we are discussing tossing a single die. If we are talking about
having the outcome of 5, how many times will we have to toss the die, on
average, to achieve this outcome? The mean of the Geometric Distribution
tells us this. If we know the probability of throwing a 5 is 1/6 (.1667), then
the mean is 1/.1667 = 6. Thus, we would expect, on average, to toss a die
six times in order to get a 5. If we kept repeating this process and recorded
how many tosses it took until a 5 appeared, plotting these results would
yield the Geometric Distribution function formulated in (2.39).

THE HYPERGEOMETRIC DISTRIBUTION

Another type of discrete distribution related to the preceding distributions
is termed the Hypergeometric Distribution. Recall that in the Binomial
Distribution it is assumed that each draw in succession from the popula-
tion has the same probabilities. That is, suppose we have a deck of 52 cards;
26 of these cards are black and 26 are red. If we draw a card and record
whether it is black or red, we then put the card back into the deck for the
next draw. This “sampling with replacement” is what the Binomial Distri-
bution assumes. Now, for the next draw, there is still a .5 (26/52) probability
of the next card’s being black (or red).

The Hypergeometric Distribution assumes almost the same thing, ex-
cept there is no replacement after sampling. Suppose we draw the first card
and it is red, and we do not replace it back into the deck. Now, the proba-
bility of the next draw’s being red is reduced to 25/51 or .4901960784. In the
Hypergeometric Distribution there is dependency, in that the probabilities
of the next event are dependent on the outcome(s) of the prior event(s).
Contrast this to the Binomial Distribution, where an event is independent

of the outcome(s) of the prior event(s).
The basic functions N′(X) and N′(X) of the Hypergeometric are the

same as those for the Binomial, (2.33) and (2.35), respectively, except that
with the Hypergeometric the variable P, the probability of success on a
single trial, changes from one trial to the next.

It is interesting to note the relationship between the Hypergeometric
and Binomial Distributions. As N becomes larger, the differences between
the computed probabilities of the Hypergeometric and the Binomial draw
closer to each other. Thus, we can state that as N approaches infinity, the
Hypergeometric approaches the Binomial as a limit.

If you want to use the Binomial probabilities as an approximation of
the Hypergeometric, as the Binomial is far easier to compute, how big
must the population be? It is not easy to state with any certainty, since the
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desired accuracy of the result will determine whether the approximation
is successful or not. Generally, though, a population to sample size of 100
to 1 is usually sufficient to permit approximating the Hypergeometric with
the Binomial.

THE POISSON DISTRIBUTION

The Poisson Distribution is another important discrete distribution. This
distribution is used to model arrival distributions and other seemingly ran-
dom events that occur repeatedly yet haphazardly. These events can occur
at points in time or at points along a wire or line (one dimension), along
a plane (two dimensions), or in any N-dimensional construct. Figure 2.24
shows the arrival of events (the Xs) along a line, or in time.

The Poisson Distribution was originally developed to model incoming
telephone calls to a switchboard. Other typical situations that can be mod-
eled by the Poisson are the breakdown of a piece of equipment, the com-
pletion of a repair job by a steadily working repairman, a typing error, the
growth of a colony of bacteria on a Petri plate, a defect in a long ribbon or
chain, and so on.

FIGURE 2.24 Sequence of haphazard events in time
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The main difference between the Poisson and the Binomial distribu-
tions is that the Binomial is not appropriate for events that can occur more
than once within a given time frame. Such an example might be the prob-
ability of an automobile accident over the next 6 months. In the Binomial
we would be working with two distinct cases: Either an accident occurs,
with probability P, or it does not, with probability Q (i.e., 1 – P). However,
in the Poisson Distribution we can also account for the fact that more than
one accident can occur in this time period.

The probability density function of the Poisson, N′(X), is given by:

N′(X) = (LX ∗ EXP(−L))/X! (2.43)

where: L = The parameter of the distribution.

EXP( ) = The exponential function.

Note that X must take discrete values.
Suppose that calls to a switchboard average four calls per minute

(L = 4). The probability of three calls (X = 3) arriving in the next minute
is:

N′(3) = (43 ∗ EXP(−4))/3!

= (64 ∗ EXP(−4))/(3 ∗ 2)

= (64 ∗ .01831564)/6

= 1.17220096/6

= .1953668267

So we can say there is about a 19.5% chance of getting three calls in
the next minute. Note that this is not cumulative—that is, this is not the
probability of getting three calls or fewer, it is the probability of getting
exactly three calls. If we wanted to know the probability of getting three
calls or fewer, we would have had to use the N(3) formula [which is given
in (2.46)].

Other properties of the Poisson Distribution are:

Mean = L (2.44)

Variance = L (2.45)

where: L = The parameter of the distribution.
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FIGURE 2.25 Probability density functions for the Poisson Distribution
(L = .5)

In the Poisson Distribution, both the mean and the variance equal the
parameter L. Therefore, in our example case we can say that the mean
is four calls and the variance is four calls (or, the standard deviation is 2
calls—the square root of the variance, 4).

When this parameter, L, is small, the distribution is shaped like a
reversed J, and when L is large, the distribution is not dissimilar to
the Binomial. Actually, the Poisson is the limiting form of the Bi-
nomial as N approaches infinity and P approaches O. Figures 2.25
through 2.28 show the Poisson Distribution with parameter values of .5
and 4.5.

The cumulative density function of the Poisson, N(X), is given by:

N(X) =
X∑

J = 0

(LJ ∗ EXP(−L))/J! (2.46)

where:
L = The parameter of the distribution.

EXP( ) = The exponential function.
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FIGURE 2.26 Cumulative probability functions for the Poisson Distribution
(L = .5)

FIGURE 2.27 Probability density functions for the Poisson Distribution (L = 4.5)
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FIGURE 2.28 Cumulative probability functions for the Poisson Distribution
(L = 4.5)

THE EXPONENTIAL DISTRIBUTION

Related to the Poisson Distribution is a continuous distribution with a wide
utility called the Exponential Distribution, sometimes also referred to as
the Negative Exponential Distribution. This distribution is used to model
interarrival times in queuing systems; service times on equipment; and sud-
den, unexpected failures such as equipment failures due to manufacturing
defects, light bulbs burning out, the time that it takes for a radioactive
particle to decay, and so on. (There is a very interesting relationship be-
tween the Exponential and the Poisson Distributions. The arrival of calls
to a queuing system follows a Poisson Distribution, with arrival rate L. The
interarrival distribution (the time between the arrivals) is Exponential with
parameter 1/L.)

The probability density function N′(X) for the Exponential Distribution
is given as:

N′(X) = A ∗ EXP(−A ∗ X) (2.47)

where: A = The single parametric input, equal to 1/L in the Poisson
Distribution. A must be greater than 0.

EXP( ) = The exponential function.
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FIGURE 2.29 Probability density functions for the Exponential Distribution
(A = 1)

The integral of (2.47), N(X), the cumulative density function for the
Exponential Distribution is given as:

N(X) = 1 − EXP(−A ∗ X) (2.48)

where: A = The single parametric input, equal to 1/L in the Poisson
Distribution. A must be greater than 0.

EXP( ) = The exponential function.

Figures 2.29 and 2.30 show the functions of the Exponential Distribu-
tion. Note that once you know A, the distribution is completely determined.

where: A = The single parametric input, equal to 1/L in the Poisson
Distribution. A must be greater than 0.

EXP( ) = The exponential function.

Figures 2.29 and 2.30 show the functions of the Exponential Distribu-
tion. Note that once you know A, the distribution is completely determined.

The mean and variance of the Exponential Distribution are:

Mean = 1/A (2.49)

Variance = 1/A2 (2.50)
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FIGURE 2.30 Cumulative probability functions for the Exponential Distribution
(A = 1)

Again A is the single parametric input, equal to 1/L in the Poisson Distribu-
tion, and must be greater than 0.

Another interesting quality about the Exponential Distribution is that it
has what is known as the “forgetfulness property.” In terms of a telephone
switchboard, this property states that the probability of a call in a given
time interval is not affected by the fact that no calls may have taken place
in the preceding interval(s).

THE CHI-SQUARE DISTRIBUTION

A distribution that is used extensively in goodness-of-fit testing is the Chi-

Square Distribution (pronounced ki square, from the Greek letter X (chi)
and hence often represented as the X2 distribution).

Assume that K is a standard normal random variable (i.e., it has mean
0 and variance 1). If we say that K equals the square root of J (J = K2) , then
we know that K will be a continuous random variable. However, we know
that K will not be less than zero, so its density function will differ from the
Normal. The Chi-Square Distribution gives us the density function of K:

N′(K) = KV/2−1 ∗ EXP(−V/2)/2V/2 ∗ GAM(V/2) (2.51)
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where: K = The chi-square variable X2.

V = The number of degrees of freedom, which is the
single input parameter.

EXP( ) = The exponential function.

GAM( ) = The standard gamma function.

A few notes on the gamma function are in order. This function has the
following properties:

1. GAM(O) �= 1

2. GAM(1/2) �= The square root of pi, or 1.772453851

3. GAM(N) �= (N – 1) * GAM(N – 1); therefore, if N is an integer,
GAM(N) = (N−1)!

Notice in Equation (2.51) that the only input parameter is V, the num-
ber of degrees of freedom. Suppose that rather than just taking one in-
dependent random variable squared (K2), we take M independent random
variables squared, and take their sum:

JM = K2
1 + K2

2 . . . K2
M

Now JM is said to have the Chi-Square Distribution with M degrees of
freedom. It is the number of degrees of freedom that determines the shape
of a particular Chi-Square Distribution. When there is one degree of free-
dom, the distribution is severely asymmetric and resembles the Exponen-
tial Distribution (with A = 1). At two degrees of freedom the distribution
begins to look like a straight line going down and to the right, with just a
slight concavity to it. At three degrees of freedom, a convexity starts taking
shape and we begin to have a unimodal-shaped distribution. As the number
of degrees of freedom increases, the density function gradually becomes
more and more symmetric. As the number of degrees of freedom becomes
very large, the Chi-Square Distribution begins to resemble the Normal Dis-
tribution per the Central Limit Theorem.

THE CHI-SQUARE “TEST”

Do not confuse the Chi-Square “Test” with the Chi-Square Distribution. The
former is a hypothesis testing procedure (one of many such procedures).
Mention is made of it here, but it should not be confused with the distribu-
tional form of the same name.

There exist a number of statistical tests designed to determine if two
samples come from the same population. Essentially, we want to know if
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two distributions are different. Perhaps the most well known of these tests
is the chi-square test, devised by Karl Pearson around 1900. It is perhaps
the most popular of all statistical tests used to determine whether two dis-
tributions are different.

The chi-square statistic, X2, is computed as:

X2 =
N∑

i = 1

(Oi − Ei)2/Ei (2.52)

where: N = The total number of bins.

Oi = The number of events observed in the ith bin.

Ei = The number of events expected in the ith bin.

A large value for the chi-square statistic indicates that it is unlikely that
the two distributions are the same (i.e., the two samples are not drawn from
the same population). Likewise, the smaller the value for the chi-square
statistic, the more likely it is that the two distributions are the same (i.e.,
the two samples were drawn from the same population).

Note that the observed values, the Oi’s, will always be integers. How-
ever, the expected values, the Ei’s, can be nonintegers. Equation (2.52)
gives the chi-square statistic when both the expected and observed val-
ues are integers. When the expected values, the Ei’s, are permitted to be
nonintegers, we must use a different equation, known as Yates’ correction,
to find the chi-square statistic:

X2 =
N∑

i = 1

(ABS (Oi − Ei) − .5)2/Ei (2.53)

where: N = The total number of bins.

Oi = The number of events observed in the ith bin.

Ei = The number of events expected in the ith bin.

ABS( ) = The absolute value function.

We can convert a chi-square statistic such as 37.5336 to a sigfinicance

level. In the sense we are using here, a significance level is a number be-
tween 0, representing that the two distributions are different, and 1, mean-
ing that the two distributions are the same. We can never be 100% certain
that two distributions are the same (or different), but we can determine
how alike or different two distributions are to a certain significance level.
There are two ways in which we can find the significance level. This first
and by far the simplest way is by using tables. The second way to convert
a chi-square statistic to a significance level is to perform the math yourself
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(which is how the tables were drawn up in the first place). However, the
math requires the use of incomplete gamma functions, not be treated in this
text. However, most readers who would want to know how to calculate a
significance level from a given chi-square statistic would want to know this
because tables are rather awkward to use from a programming standpoint.
Therefore, what follows is a snippet of Java code to convert from a given
chi-square statistic to a significance level.

Public void ChiSquareTest(int nmbrOfBins, double chiSquareStatistic){
double confidenceLevel = 1.0;

double a = 0.0, b = 0.0, c=1.0, d = 0.0, e = 0.0,

f = 1.0;

int nbins = nmbrOfBins -3;

System.out.println(“Chi-Square Statistic at ” + nbins + “degrees of

freedom is ”+chiSquareStatistic);

if(chiSquareStatistic < 31.0 || nbins > 2){
e = nbins/2 -1;

a = 1;

for(int i = 1;i <=nbons/2 - .5; i++){
a *=e;

e -=1.0;

}
if(nbins% 2 !=0){

a *= 1.77245374942627;

}
b = Math.pow((chiSquareStatistic/2.0), (double) (nbins/2)) * 2.0/

(Math.exp(chiSquareStatistic/2.0) * a * nbins);

d = nbins + 2;

do{
c *=chiSquareStatistic/d;

f+=c;

d+=2.0;

}while(c > 0.0);

confidenceLevel = 1.0 - b *f;

}
System.out.println(“For a Significance level of ”+confidenceLevel);

}
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Whether you determine your significance levels via a table or calculate
them yourself, you will need two parameters to determine a significance
level. The first of these parameters is, of course, the chi-square statistic
itself. The second is the number of degrees of freedom. Generally, the num-
ber of degrees of freedom is equal to the number of bins minus 1 minus the
number of population parameters that have to be estimated for the sample
statistics. What follows is a small table for converting between chi-square
values and degrees of freedom to significance levels:

Values of X2

Degrees of
Significance Level

Freedom .20 .10 .05 .01

1 1.6 2.7 3.8 6.6
2 3.2 4.6 6.0 9.2
3 4.6 6.3 7.8 11.3
4 6.0 7.8 9.5 13.3
5 7.3 9.2 11.1 15.1

10 13.4 16.0 18.3 23.2
20 25.0 28.4 31.4 37.6

You should be aware that the chi-square test can do a lot more than
is presented here. For instance, you can use the chi-square test on a 2 × 2
contingency table (actually on any N × M contingency table).

Finally, there is the problem of the arbitrary way we have chosen our
bins as regards both their number and their range. Recall that binning data
involves a certain loss of information about that data, but generally the
profile of the distribution remains relatively the same. If we choose to work
with only three bins, or if we choose to work with 30, we will likely get
somewhat different results. It is often a helpful exercise to bin your data in
several different ways when conducting statistical tests that rely on binned
data. In so doing, you can be rather certain that the results obtained were
not due solely to the arbitrary nature of how you chose your bins.

In a purely statistical sense, in order for our number of degrees of free-
dom to be valid, it is necessary that the number of elements in each of the
expected bins, the Ei’s, be at least five. When there is a bin with less than
five expected elements in it, theoretically the number of bins should be
reduced until all of the bins have at least five expected elements in them.
Often, when only the lowest and/or highest bin has less than five expected
elements in it, the adjustment can be made by making these groups “all less
than” and “all greater than” respectively.
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THE STUDENT’S DISTRIBUTION

The Student’s Distribution, sometimes called the t Distribution or Stu-

dent’s t, is another important distribution used in hypothesis testing that
is related to the Normal Distribution. When you are working with less than
30 samples of a near-Normally distributed population, the Normal Distribu-
tion can no longer be accurately used. Instead, you must use the Student’s
Distribution. This is a symmetrical distribution with one parametric input,
again the degrees of freedom. The degrees of freedom usually equals the
number of elements in a sample minus one (N – 1).

The shape of this distribution closely resembles the Normal except that
the tails are thicker and the peak of the distribution is lower. As the num-
ber of degrees of freedom approaches infinity, this distribution approaches
the Normal in that the tails lower and the peak increases to resemble the
Normal Distribution. When there is one degree of freedom, the tails are at
their thickest and the peak at its smallest. At this point, the distribution is
called Cauchy.

It is interesting that if there is only one degree of freedom, then the
mean of this distribution is said not to exist. If there is more than one de-
gree of freedom, then the mean does exist and is equal to zero, since the
distribution is symmetrical about zero. The variance of the Student’s Dis-
tribution is infinite if there are fewer than three degrees of freedom.

The concept of infinite variance is really quite simple. Suppose we
measure the variance in daily closing prices for a particular stock for the
last month. We record that value. Now we measure the variance in daily
closing prices for that stock for the next year and record that value. Gen-
erally, it will be greater than our first value, of simply last month’s vari-
ance. Now let’s go back over the last five years and measure the variance in
daily closing prices. Again, the variance has gotten larger. The farther back
we go—that is, the more data we incorporate into our measurement of
variance—the greater the variance becomes. Thus, the variance increases
without bound as the size of the sample increases. This is infinite variance.
The distribution of the log of daily price changes appears to have infinite
variance, and thus the Student’s Distribution is sometimes used to model
the log of price changes. (That is, if C0 is today’s close and C1 yesterday’s
close, then ln(C0/C1) will give us a value symmetrical about 0. The distribu-
tion of these values is sometimes modeled by the Student’s distribution).

If there are three or more degrees of freedom, then the variance is finite
and is equal to:

Variance = V/(V − 2) for V > 2 (2.54)

Mean = 0 for V > 1 (2.55)

where: V = The degrees of freedom.
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Suppose we have two independent random variables. The first of these,
Z, is standard normal (mean of 0 and variance of 1). The second of these,
which we call J, is Chi-Square distributed with V degrees of freedom. We
can now say that the variable T, equal to Z/(J/V), is distributed according
to the Student’s Distribution. We can also say that the variable T will follow
the Student’s Distribution with N – 1 degrees of freedom if:

T =
√

N ∗ (X − U)/S

where: X = A sample mean.

S = A sample standard deviation.

N = The size of a sample.

U = The population mean.

The probability density function for the Student’s Distribution, N′(X),
is given as:

N′(X) = GAM((V + 1)/2)√
V ∗ P ∗ GAM(V/2)

∗ (1 + X2/V)−(V+1)/2 (2.56)

where: P = pi, or 3.1415926536.

V = The degrees of freedom.

GAM( ) = The standard gamma function.

The mathematics of the Student’s Distribution are related to the in-
complete beta function. Since we aren’t going to plunge into functions of
mathematical physics such as the incomplete beta function, we will leave
the Student’s Distribution at this point. Before we do, however, you still
need to know how to calculate probabilities associated with the Student’s
Distribution for a given number of standard units (Z score) and degrees of
freedom. As the following snippet of java code to discern the probabilities.
You’ll note that as the degrees of freedom variable, DEGFDM, approaches
infinity, the values returned, the probabilities, converge to the Normal as
given by Equation (2.22):

public void StudentsT2TailProbs(double zScore, int degreesOfFreedom){
double confidenceLevel = 1.0;

double st = Math.abs(zScore);

double r8 = Math.atan(st/Math.sqrt((double)degreesOfFreedom));

double rc8 = Math.cos(r8);

double x8 = 1.0;
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double r28 = rc8 * rc8;

double rs8 = Math.sin(r8);

double y8 = r8;

double y8 = r8;

if(degreesOfFreedom %2 !=0 ){
if(degreesOfFreedom !=1){

y8 = rc8;

for(int i =3;i<=degreesOfFreedom - 2; i+=2){
x8 = x8 * r28 * (double)((i - 1)/i);

y8 = y8 + x8 * rc8;

}
y8 = r8 + rs8 * y8;

}
confidenceLevel = y8 * 0.6366197723657157;

}else{
y8=1.0;

for(int i =2;i <=degreesOfFreedom -2; i+=2){
x8 = x8 * r28 * (double)((i - 1)/i);

y8 += x8;

}
confidenceLevel = y8 *rs8;

}
System.out.println(“The two-tailed probabilities associated with

the T distribution for a Z score of ”+zScore+“ and ”+degreesOfFreedom+

“degrees freedom is ”+confidenceLevel);

}
Next, we come to another distribution, related to the Chi-Square Dis-

tribution, that also has important uses in statistics. The F Distribution,
sometimes referred to as Snedecor’s Distribution or Snedecor’s F , is use-
ful in hypothesis testing. Let A and B be independent chi-square random
variables with degrees of freedom of M and N, respectively. Now the ran-
dom variable:

F = (A/M)/(B/N)

can be said to have the F Distribution with M and N degrees of freedom.
The density function, N′(X), of the F Distribution is given as:
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N′(X) = GAM((M + N)/2) ∗ (M/N)M/2

(GAM(M/2) ∗ GAM(N/2) ∗ (1 + M/N))(M+N)/2
(2.57)

where: M = The number of degrees of freedom of the first parameter.

N = The number of degrees of freedom of the second
parameter.

GAM( ) = The standard gamma function.

THE MULTINOMIAL DISTRIBUTION

The Multinomial Distribution is related to the Binomial, and likewise is
a discrete distribution. Unlike the Binomial, which assumes two possible
outcomes for an event, the Multinomial assumes that there are M different
outcomes for each trial. The probability density function, N′(X), is given as:

N′(X) =
(

N!
/ M∏

i=1

Ni!

)
∗

M∏

i=1

PNi
i (2.58)

where: N = The total number of trials.

Ni = The number of times the ith trial occurs.

Pi = The probability that outcome number i will be the result
of any one trial. The summation of all Pi’s equals 1.

M = The number of possible outcomes on each trial.

For example, consider a single die where there are six possible out-
comes on any given roll (M = 6). What is the probability of rolling a 1 once,
a 2 twice, and a 3 three times out of 10 rolls of a fair die? The probabilities
of rolling a 1, a 2, or a 3 are each 1/6. We must consider a fourth alternative
to keep the sum of the probabilities equal to 1, and that is the probability
of not rolling a 1, 2, or 3, which is 3/6. Therefore, P1 = P2 = P3 = 1/6, and
P4 = 3/6. Also, N1 = 1, N2 = 2, N3 = 3, and N4 = 10 – 3 – 2 – 1 = 4. Therefore,
Equation (2.58) can be worked through as:

N′(X) = (10!/(1! ∗ 2! ∗ 3! ∗ 4!)) ∗ (1/6)1 ∗ (1/6)2 ∗ (1/6)3 ∗ (3/6)4

= (3628800/(1 ∗ 2 ∗ 6 ∗ 24)) ∗ .1667 ∗ .0278 ∗ .00463 ∗ .0625

= (3628800/288) ∗ .000001341

= 12600 ∗ .000001341

= .0168966 (2.58)
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Note that this is the probability of rolling exactly a 1 once, a 2 twice,
and a 3 three times, not the cumulative density. This is a type of distri-
bution that uses more than one random variable; hence, its cumulative
density cannot be drawn out nicely and neatly in two dimensions as you
could with the other distributions discussed thus far. We will not be work-
ing with other distributions that have more than one random variable, but
you should be aware that such distributions and their functions do exist.

THE STABLE PARETIAN DISTRIBUTION

The Stable Paretian Distribution is actually an entire class of distribu-
tions, sometimes referred to as “Pareto-Levy” distributions. The probability
density function N′(U) is given as:

ln(N′′(U)) = i ∗ D ∗ U − V ∗ ABS(U)A ∗ Z (2.59)

where: U = The variable of the stable distribution.

A = The kurtosis parameter of the distribution.

B = The skewness parameter of the distribution.

D = The location parameter of the distribution.

V = This is also called the scale parameter.

i = The imaginary unit,
√−1

Z = 1 − i * B * (U/ABS(U)) * tan(A * 3.1415926536/2) when
A > < 1 and 1 + i * B * (U/ABS(U)) * 2/3.1415926536 *
log(ABS(U)) when A = 1.

ABS( ) = The absolute value function.

tan( ) = The tangent function.

ln( ) = The natural logarithm function.

The limits on the parameters of Equation (2.59) are:

0 < A <= 2 (2.60)

−1 <= B <= 1 (2.61)

0 <= V (2.62)

The four parameters of the distribution—A, B, D, and V—allow the
distribution to assume a great many different shapes.

The variable A measures the height of the tails of the distribution.
Thus, we can say that A represents the kurtosis variable of the distribu-
tion. A is also called the characteristic exponent of the distribution. When
A equals 2, the distribution is Normal, and when A equals 1 the distribution
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is Cauchy. For values of A that are less than 2, the tails of the distribution
are higher than with the Normal Distribution. The total probability in the
tails increases as A decreases. When A is less than 2, the variance is infinite.
The mean of the distribution exists only if A is greater than 1.

The variable B is the index of skewness. When B equals zero, the dis-
tribution is perfectly symmetrical. The degree of skewness is larger the
larger the absolute value of B. Notice that when A equals 2, W(U,A) equals
0; hence, B has no effect on the distribution. In this case, when A equals
2, no matter what B is, we still have the perfectly symmetrical Normal Dis-
tribution. The scale parameter, V, is sometimes written as a function of
A, in that V = CA, therefore C = V1/A. When A equals 2, V is one-half the
variance. When A equals 1, the Cauchy Distribution, V is equal to the semi-
interquartile range. D is the location parameter. When A is equal to 2, the
arithmetic mean is an unbiased estimator of D; when A is equal to 1, the
median is.

The cumulative density functions for the stable Paretian are not known
to exist in closed form. For this reason, evaluation of the parameters of
this distribution is complex, and work with this distribution is made more
difficult. It is interesting to note that the stable Paretian parameters A, B,
C, and D correspond to the fourth, third, second, and first moments of the
distribution, respectively. This gives the stable Paretian the power to model
many types of real-life distributions—in particular, those where the tails of
the distribution are thicker than they would be in the Normal, or those with
infinite variance (i.e., when A is less than 2). For these reasons, the stable
Paretian is an extremely powerful distribution with applications in eco-
nomics and the social sciences, where data distributions often have those
characteristics (fatter tails and infinite variance) that the stable Paretian
addresses.

This infinite variance characteristic makes the Central Limit Theorem
inapplicable to data that is distributed per the stable Paretian distribution
when A is less than 2. This is a very important fact if you plan on using the
Central Limit Theorem.

One of the major characteristics of the stable Paretian is that it is in-
variant under addition. This means that the sum of independent stable vari-
ables with characteristic exponent A will be stable, with approximately the
same characteristic exponent. Thus, we have the Generalized Central Limit
Theorem, which is essentially the Central Limit Theorem, except that the
limiting form of the distribution is the stable Paretian rather than the Nor-
mal, and the theorem applies even when the data has infinite variance (i.e.,
A < 2), which is when the Central Limit Theorem does not apply. For ex-
ample, the heights of people have finite variance. Thus, we could model the
heights of people with the Normal Distribution. The distribution of people’s
incomes, however, does not have finite variance and is therefore modeled
by the stable Paretian distribution rather than the Normal Distribution.
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It is because of this Generalized Central Limit Theorem that the sta-
ble Paretian Distribution is believed by many to be representative of the
distribution of price changes.

There are many more probability distributions that we could still cover
(Negative Binomial Distribution, Gamma Distribution, Beta Distribution,
etc.); however, they become increasingly more obscure as we continue
from here. The distributions we have covered thus far are, by and large,
the main common probability distributions.

Efforts have been made to catalogue the many known probability dis-
tributions. Undeniably, one of the better efforts in this regard has been
done by Karl Pearson, but perhaps the most comprehensive work done on
cataloguing the many known probability distributions has been presented
by Frank Haight.5 Haight’s “Index” covers almost all of the known distri-
butions on which information was published prior to January, 1958. Haight
lists most of the mathematical functions associated with most of the distri-
butions. More important, references to books and articles are given so that
a user of the index can find what publications to consult for more in-depth
matter on the particular distribution of interest. Haight’s index categorizes
distributions into ten basic types: (1) Normal; (2) Type III; (3) Binomial;
(4) Discrete; (5) Distributions on (A, B); (6) Distributions on (0, infinity);
(7) Distributions on (–infinity, infinity); (8) Miscellaneous Univariate; (9)
Miscellaneous Bivariate; (10) Miscellaneous Multivariate.

Of the distributions we have covered in this Chapter, the Chi-Square
and Exponential (Negative Exponential) are categorized by Haight as Type
III. The Binomial, Geometric, and Bernoulli are categorized as Binomial.
The Poisson and Hypergeometric are categorized as Discrete. The Rect-
angular is under Distributions on (A, B), the F Distribution as well as the
Pareto are under Distributions on (0, infinity), the Student’s Distribution
is regarded as a Distribution on (–infinity, infinity), and the Multinomial as
a Miscellaneous Multivariate. It should also be noted that not all distribu-
tions fit cleanly into one of these ten categories, as some distributions can
actually be considered subclasses of others. For instance, the Student’s
distribution is catalogued as a Distribution on (–infinity, infinity), yet the
Normal can be considered a subclass of the Student’s, and the Normal is
given its own category entirely. As you can see, there really isn’t any “clean”
way to categorize distributions. However, Haight’s index is quite thorough.
Readers interested in learning more about the different types of distribu-
tions should consult Haight as a starting point.

5Haight, F. A., “Index to the Distributions of Mathematical Statistics,” Journal of

Research of the National Bureau of Standards-B. Mathematics and Mathematical

Physics 65B No. 1, pp. 23–60, January–March 1961.
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C H A P T E R 3

Reinvestment
of Returns and

Geometric
Growth Concepts

TO REINVEST TRADING PROFITS OR NOT

Let’s call the following system “System A.” In it we have two trades—the
first making 50%, the second losing 40%. Therefore, if we do not reinvest
our returns, we make 10%. If we do reinvest, the same sequence of trades
loses 10%.

System A

No Reinvestment With Reinvestment

Trade No. P&L Accum. P&L Accum.

100 100
1 50 150 50 150
2 −40 110 −60 90

Now let’s look at System B, a gain of 15% and a loss of 5%, which also
nets out 10% over two trades on a nonreinvestment basis, just like System
A. But look at the results of System B with reinvestment. Unlike System A,
it makes money.

99

Andrey
trading software col
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System B

No Reinvestment With Reinvestment

Trade No. P&L Accum. P&L Accum.

100 100
1 15 115 15 115
2 −5 110 −5.75 109.25

An important characteristic of trading with reinvestment that must be
realized is that reinvesting trading profits can turn a winning system

into a losing system but not vice versa! A winning system is turned into
a losing system in trading with reinvestment if the returns are not con-
sistent enough. Further, changing the order or sequence of trades does

not affect the final outcome. This is not only true on a nonreinvestment
basis, but also true on a reinvestment basis (contrary to most people’s
misconception).

System A

No Reinvestment With Reinvestment

Trade No. P&L Accum. P&L Accum.

100 100
1 −40 60 −40 60
2 50 110 30 90

System B

No Reinvestment With Reinvestment

Trade No. P&L Accum. P&L Accum.

100 100
1 −5 95 −5 95
2 15 110 14.25 109.25

This is not just an aberration caused by a two-trade example. Let’s take
system A and add two more trades and then examine the results under all
four possible sequences of trades.
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First Sequence
(System A)

No Reinvestment With Reinvestment

Trade No. P&L Accum. P&L Accum.

100 100
1 −40 60 −40 60
2 50 110 30 90
3 −40 70 −36 54
4 50 120 27 81

Second Sequence
(System A)

No Reinvestment With Reinvestment

Trade No. P&L Accum. P&L Accum.

100 100
1 50 150 50 150
2 −40 110 −60 90
3 50 160 45 135
4 −40 120 −54 81

Third Sequence
(System A)

No Reinvestment With Reinvestment

Trade No. P&L Accum. P&L Accum.

100 100
1 50 150 50 150
2 50 200 75 225
3 −40 160 −90 135
4 −40 120 −54 81

Fourth Sequence
(System A)

No Reinvestment With Reinvestment

Trade No. P&L Accum. P&L Accum.

100 100
1 −40 60 −40 60
2 −40 20 −24 36
3 50 70 18 54
4 50 120 27 81

101
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As can obviously be seen, the sequence of trades has no bearing on
the final outcome, whether viewed on a reinvestment or nonreinvestment
basis. What are affected, however, are the drawdowns. Listed next are the
drawdowns to each of the sequences of trades listed above.

First Sequence
No Reinvestment Reinvestment

100 to 60 = 40 (40%) 100 to 54 = 46 (46%)

Second Sequence
No Reinvestment Reinvestment

150 to 110 = 40 (27%) 150 to 81 = 69 (46%)

Third Sequence
No Reinvestment Reinvestment

200 to 120 = 80 (40%) 225 to 81 = 144 (64%)

Fourth Sequence
No Reinvestment Reinvestment

100 to 20 = 80 (80%) 100 to 36 = 64 (64%)

Reinvestment trading is never the best based on absolute drawdown.
One side benefit to trading on a reinvestment basis is that the drawdowns
tend to be buffered. As a system goes into and through a drawdown period,
each losing trade is followed by a trade with fewer and fewer contracts.
That is why drawdowns as a percent of account equity are always less with
reinvestment than with a nonreinvestment approach.

By inspection it would seem you are better off to trade on a non-
reinvestment basis rather than to reinvest. This would seem so, since your
probability of winning is greater. However, this is not a valid assumption,
because in the real world we do not withdraw all of our profits and make up
all of our losses by depositing new cash into an account. Further, the nature
of investment or trading is predicated upon the effects of compounding. If
we do away with compounding (as in the nonreinvestment plan), we can
plan on doing little better in the future than we can today, no matter how suc-
cessful our trading is between now and then. It is compounding that takes
the linear function of account growth and makes it a geometric function.

Refer back to the statement that under a reinvestment plan a winning
system can be turned into a losing system but not vice versa. Why, then,
reinvest our profits into our trading? The sole reason is that by reinvest-
ment, winning systems can be made to win far more than could ever be
accomplished on a nonreinvestment basis.

The reader may still be inclined to prefer the nonreinvestment ap-
proach since an account that may not be profitable on a reinvestment basis
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may be profitable on a nonreinvestment basis. However, if a system is good
enough, the profits generated on a reinvestment basis will be far greater
than on a nonreinvestment basis, and that gap will widen as time goes by.
If you have a system that can beat the market, it doesn’t make any sense to
trade it any other way than to increase your amount wagered as your stake
increases.

There is another phenomenon that lures traders away from
reinvestment-based trading. That phenomenon is that a losing trade, or
losing streak, is inevitable after a prolonged equity run-up. This is true by
inspection. The only way a streak of winning trades can end is by a losing
trade. The only way a streak of profitable months can end is with a losing
month. The problem with reinvestment-based trading is that when the in-
evitable losses come along you will have the most contracts on. Hence, the
losses will be bigger. Similarly, after a losing streak, the reinvestment-basis
trader will have fewer contracts on when the inevitable win comes along to
break the streak.

This is not to say that there is any statistical reason to assume that
winning streaks portend losing trades or vice versa. Rather, what is meant
is: If you trade long enough, you will eventually encounter a loss. If you
are trading on a reinvestment basis, that loss will be magnified, since, as a
result of your winning streak, you will have more contracts on when the
loss comes. Unfortunately, there is no way to avoid this—at least no way
based on statistical fact in a stationary distribution environment, unless we
are talking about a dependent trials process.

Therefore, assuming that the market system in question generates inde-
pendent trades, there is no way to avoid this phenomenon. It is unavoidable
when trading on a reinvestment basis, just as losses are unavoidable in trad-
ing under any basis. Losses are a part of the game. Since the goal of good
money management is to exploit a profitable system to its fullest poten-
tial, the intelligent trader should realize that this phenomenon is part of the
game and accept it as such to achieve the longer-term rewards that correct
money-management techniques provide for.

MEASURING A GOOD SYSTEM FOR
REINVESTMENT—THE GEOMETRIC MEAN

So far we have seen how a system can be sabotaged by not being consistent
enough from trade to trade. Does this mean we should close up and put our
money in the bank? Let’s go back to System A, with its first two trades. For
the sake of illustration we are going to add two winners of one point each.
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System A

No Reinvestment With Reinvestment

Trade No. P&L Accum. P&L Accum.

100 100
1 50 150 50 150
2 −40 110 −60 90
3 1 111 0.9 90.9
4 1 112 0.909 91.809

Percent Wins 0.75 0.75
Avg. Trade 3 −2.04775
Profit Factor 1.3 0.86
Std. Dev. 31.88 39.00
Avg. Trade/Std. Dev. 0.09 −0.05

Now let’s take System B and add two more losers of one point each.

System B

No Reinvestment With Reinvestment

Trade No. P&L Accum. P&L Accum.

100 100
1 15 115 15 115
2 −5 110 −5.75 109.25
3 −1 109 −1.0925 108.1575
4 −1 108 −1.08157 107.0759
Percent Wins 0.25 0.25
Avg. Trade 2 1.768981
Profit Factor 2.14 1.89
Std Dev. 7.68 7.87
Avg. Trade/Std. Dev. 0.26 0.22

Now, if consistency is what we’re really after, let’s look at a bank ac-
count, the perfectly consistent vehicle (relative to trading), paying 1 % per
period. We’ll call this series System C.

Notice that in reinvestment the standard deviation always goes up (and
hence the Avg. Trade/Std. Dev. tends to come down). Furthermore, the
Profit Factor1 measure is never higher in reinvestment than it is in non-
reinvestment trading.

1Profit Factor = Avg Win/Avg Loss × Percent Winners/(1-Percent Winners). (3.01)
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System C

No Reinvestment With Reinvestment

Trade No. P&L Accum. P&L Accum.

100 100
1 1 101 1 101
2 1 102 1.01 102.01
3 1 103 1.0201 103.0301
4 1 104 1.030301 104.0604

Percent Wins 1.00 1.00
Avg. Trade 1 1.015100
Profit Factor Infinite Infinite
Std. Dev. 0.00 0.01
Avg. Trade/Std. Dev. Infinite 89.89

Our aim is to maximize our profits under reinvestment trading. With
that as the goal, we can see that our best reinvestment sequence came
from System B. How can we have known that, given only information re-
garding nonreinvestment trading? By percent of winning trades? By to-
tal dollars? Average trade? The answer to these questions is no, since
that would have us trading System A (but this is the solution most fu-
tures traders opt for). What if we opted for most consistency (i.e., high-
est ratio of Avg. Trade/Std. Dev. or lowest standard deviation). How about
highest profit factor or lowest drawdown? This is not the answer, ei-
ther. If it were, we should put our money in the bank and forget about
trading.

System B has the right mix of profitability and consistency. Systems A
and C do not. That is why System B performs the best under reinvestment
trading. How best to measure this “right mix”? It turns out there is a for-
mula that will do just that: the geometric mean. This is simply the Nth root
of the Terminal Wealth Relative (TWR), where N is the number of periods
(trades). The TWR is simply what we’ve been computing when we figure
what the final cumulative amount is under reinvestment. In other words,
the TWRs for the three systems we just saw are:

SYSTEM TWR

System A 91.809
System B 107.0759
System C 104.0604
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Since there are four trades in each of these, we take the TWRs to the
fourth root to obtain the geometric mean:

SYSTEM GEO. MEAN

System A 0.978861
System B 1.017238
System C 1.009999

TWR =
N∏

i = 1

HPRi (3.02)

Geometric Mean = TWR1/N (3.03)

where: N = Total number of trades.
HPR = Holding period returns (equal to 1 plus the

rate of return).

For example, an HPR of 1.10 means a 10% return over a given pe-
riod/bet/trade. TWR shows the number of dollars of value at the end of
a run of periods/bets/trades per dollar of initial investment, assuming gains
and losses are allowed to compound. Here is another way of expressing
these variables:

TWR = Final stake / Starting stake

Geometric Mean = Your growth factor per play, or

Final stake / starting stake)1/number of plays.

or

Geometric Mean = exp((1/N) * log(TWR)) (3.03a)

where: N = Total number of trades.
log(TWR) = The log base 10 of the TWR.

exp = The exponential function.

Think of the geometric mean as the “growth factor” of your stake, per

play. The system or market with the highest geometric mean is the system

or market with the highest utility to the trader trading on a reinvestment

of returns basis. A geometric mean < 1 means that the system would have

lost money if you were trading it on a reinvestment basis. Furthermore,
it is vitally important that you use realistic slippage and commissions in
calculating geometric means in order to have realistic results.
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ESTIMATING THE GEOMETRIC MEAN

There exists a simple technique of finding the geometric mean, whereby
you do not have to take the product of all HPRs to the Nth root. The geo-
metric mean squared can be very closely approximated as the arithmetic
mean of the HPRs squared minus the population standard deviation of HPRs
squared. So the way to approximate the geometric mean is to square the
average HPR, then subtract the squared population standard deviation of
those HPRs. Now take the square root of this answer and that will be a very
close approximation of the actual geometric mean. As an example, assume
the following HPRs over four trades:

1.00
1.50
1.00

.60
Arithmetic Mean 1.025
Population Standard Deviation .3191786334
Estimated Geometric Mean .9740379869
Actual Geometric Mean .9740037464

Here is the formula for finding the estimated geometric mean (EGM):

EGM =
√

Arithmetic Mean2 − Pop. Std. Dev.2 (3.04)

The formula given in Chapter 1 to find the standard deviation of a Normal
Probability Function is not what you use here. If you already know how to
find a standard deviation, skip this section and go on to the next section
entitled “How Best to Reinvest.”

The standard deviation is simply the square root of the variance:

Variance = (1/(N − 1))
N∑

i = 1

(Xi − X̄)2

where: X̄ = The average of the data points.
Xi = The i’th data point.
N = The total number of data points.

This will give you what is called the sample variance. To find what
is called the population variance you simply substitute the term (N − 1)
with (N).

Notice that if we take the square root of the sample variance, we obtain
the sample standard deviation. If we take the square root of the population
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variance, we will obtain the population standard deviation. Now, let’s run
through an example using the four data points:

1.00

1.50

1.00

.60

1. Find the average of the data points. In our example this is:

X̄ = (1.00 + 1.50 + 1.00 + .6)/4

= 4.1/4

= 1.025

2. For each data point, take the difference between that data point and the
answer just found in step 1 (the average). For our example this would
be:

1.00 − 1.025 = −.025

1.50 − 1.025 = .475

1.00 − 1.025 = −.025

.60 − 1.025 = −.425

3. Square each answer just found in step 2. Note that this will make all
answers positive numbers:

−.025 * − .025 = .000625

.475 * .475 = .225625

−.025 * − .025 = .000625

−.425 * − .425 = .180625

4. Sum up all of the answers found in step 3. For our example:

.000625

.225625

.000625

+.180625
————

.4075

5. Multiply the answer just found in step 4 by (1/N). If we were looking to
find the sample variance, we would multiply the answer just found in
step 4 by (1/(N − 1)). Since we eventually want to find the population
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standard deviation of these four HPRs to find the estimated geometric
mean, we will therefore multiply our answer to step 4 by the quantity
(1/N).

Population Variance = (1/N) * (.4075)

= (1/4) * (.4075)

= .25 * .4075

= .101875

6. To go from variance to standard deviation, take the square root of the
answer just found in step 5. For our example:

Population Standard Deviation =
√

.101875

= .3191786334

Now, let’s suppose we want to figure our estimated geometric mean for our
example:

EGM =
√

Arithmetic Mean2 − Pop. Std. Dev.2

=
√

1.0252 − .31917863342

= √
1.050625 − .101875

=
√

.94875

= .9740379869

This compares to the actual geometric mean for our example data set of:

Geometric Mean = 4
√

1.00 * 1.50 * 1.00 * .6

= 4
√

.9

= .9740037464

As you can see, the estimated geometric mean is very close to the actual
geometric mean—so close, in fact, that we can use the two interchangeably
throughout the text.

HOW BEST TO REINVEST

Thus far, we have discussed reinvestment of returns in trading whereby we
reinvest 100% of our stake on all occasions. Although we know that in order
to maximize a potentially profitable situation we must use reinvestment, a
100% reinvestment is rarely the wisest thing to do.
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Take the case of a coin toss. Someone is willing to pay you $2 if you win
the toss, but will charge you $1 if you lose. You can figure what you should
make, on average, per toss by the mathematical expectation formula:

Mathematical Expectation =
N∑

i = 1

(Pi * Ai)

where: P = Probability of winning or losing.
A = Amount won or lost.
N = Number of possible outcomes.

In the given example of the coin toss:

Mathematical Expectation = (2 * .5) + (1 * (−.5))

= 1 − .5

= .5

In other words, you would expect to make 50 cents per toss, on average.
This is true of the first toss and all subsequent tosses, provided you do not
step up the amount you are wagering. But in an independent trials process,
that is exactly what you should do. As you win, you should commit more
and more to each trade.

At this point it is important to realize the keystone rule to money-
management systems, which states: In an independent trials process,

if the mathematical expectation is less than or equal to 0, no money-

management technique, betting scheme, or progression can turn it into

a positive expectation game.
This rule is applicable to trading one market system only. When you

begin trading more than one market system, you step into a strange envi-
ronment where it is possible to include a market system with a negative
mathematical expectation as one of the market being traded, and actu-
ally have a net mathematical expectation higher than the net mathematical
expectation of the group before the inclusion of the negative expectation
system! Further, it is possible that the net mathematical expectation for
the group with the inclusion of the negative mathematical expectation mar-
ket system can be higher than the mathematical expectation of any of the
individual market systems!

For the time being, we will consider only one market system at a time,
and therefore we must have a positive mathematical expectation in order
for the money-management techniques to work.

Refer again to the two-to-one coin-toss example (which is a positive
mathematical expectation game). Suppose you begin with an initial stake
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of $1. Now suppose you win the first toss and are paid $2. Since you had
your entire stake ($1) riding on the last bet, you bet your entire stake ($3
now) on the next toss as well. However, this next toss is a loser and your
entire $3 stake is gone. You have lost your original $1 plus the $2 you had
won. If you had won the last toss, it would have paid you $6, since you had
three full $1 bets on it. The point is that if you are betting 100% of your stake,
then as soon as you encounter a losing wager (an inevitable event), you’ll
be wiped out.

If you were to replay the previous scenario and bet on a non-
reinvestment basis (i.e., a constant bet size) you would make $2 on the
first bet and lose $1 on the second. You would now be ahead $1 and have a
total stake of $2. Somewhere between these two scenarios lies the optimal
betting approach.

Now, consider four desirable properties of a money-management strat-
egy. First, you want to make as much as mathematically possible, given a
favorable game. Second, the trade-off between the potential rate of growth
of your stake and its security should be considered as well (this may not
be possible given the first property, but it should at least be considered.2

Third, the likelihood of winning should be taken into consideration. Fourth
and finally, the amounts you can win and the amounts you can lose should
influence the bet size as well. If you know you have an edge over N bets, but
you do not know which of those N bets will be winners, or for how much,
and which will be losers, and for how much, you are best off (in the long
run) treating each bet exactly the same in terms of what percentage of your
total stake is at risk.

Let’s go back to the coin toss. Suppose we have an initial stake of $2.
We toss a coin three times; twice it comes up heads (whereby we win $1 per
$1 bet) and once it comes up tails (whereby we lose $1 per every $1 bet).
Also, assume this coin is flawed in that it always comes up heads two out
of three times and comes up tails one out of three times. Let’s further say
that this flawed coin can never come up HHH or TTT on any three-toss
sequence. Since we know that this coin is flawed in these ways, but do not
know where that loss will come in, how can we maximize this situation? The
three possible exact sequences (the sample space), because of the flaws, are:

H H T
H T H
T H H

2In the final sections of the text, where we look at real world implementation, this
vital caveat is addressed.



JWDD035-03 JWDD035-Vince February 10, 2007 21:20 Char Count= 0

112 THE HANDBOOK OF PORTFOLIO MATHEMATICS

Here is our dilemma: We know we will win 66% of the time, but we do not
know when we will lose, and we want to maximize what we make out of
this situation.

Suppose now that rather than bet an equal fraction of our stake—which
optimally is one-third of our stake on each bet (more on how to calculate this
later)—we arbitrarily bet $2 on the first bet and $1 on each bet thereafter.
Our $2 stake would grow to $4 at the end of both the HHT and the HTH
sequences. However, for the THH sequence we would have been tapped
out on the first bet. Since there are three exact sequences, and two of them
resulted in profits of $2 and one resulted in a complete loss, we can say that
the sum of all sequences was $4 gained (2 + 2 + 0). The average sequence
was therefore a gain of $1.33 (4/3).

You can try any other combination like this for yourself. Ultimately,
you will find that, since you do not know where the loss is due to crop up,
you are best to bet the same fraction of your stake on each bet. Optimally,
this fraction is one-third, or 33%, whereby you would make a profit of about
$1.41 on each sequence, regardless of sequence(!), for a sum of all sequences
of $4.23 gained (1.41 + 1.41 + 1.41). The average sequence was therefore a
gain of $1.41 (4.23/3).

Many “staking”systems have been created by gamblers throughout his-
tory. One, the martingale, has you double your bet after each loss until
ultimately, when a win does occur, you are ahead by one unit. However,
the martingale strategy can have you making enormous bets during a losing
streak. On the surface, this would appear to be the ultimate betting progres-
sion, as you will always come out ahead by one unit if you can follow the
progression to termination. Of course, if you have a positive mathematical
expectation, there is no need to use a scheme such as this. Yet it seems this
should work for an even-money game as well as for a game where you have
a small negative expectancy.

Yet, as we saw in Chapter 1, the sum of a series of negative expectancy
bets must be a negative expectation. Suppose you are betting à la martin-
gale. You lose the first 10 bets in succession. Going into the eleventh bet, you
are now betting 1,024 units. The probabilities of winning are again the same
as if you were betting one unit (assuming an independent trials process).
Your mathematical expectation therefore, as a percentage, is the same as in
the first bet, but in terms of units it is 1,024 times greater than the first bet. If
you are betting with any kind of a negative expectation, it is now multiplied
1,024 times over.

“It doesn’t matter,” you, the martingale bettor, reply, “since I’ll just dou-
ble up for the twelfth bet if I lose the eleventh, and eventually I will come out
ahead one unit.” What eventually stymies the martingale bettor is a ceiling
on the amount that may be bet, either by a house limit or inadequate capital
to continue the progression on the bettor’s part.
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Theoretically, if you are gambling in a situation with no house limit,
it would seem you could work this progression successfully if you had
unlimited capital. Yet who has unlimited capital?

Ultimately, the martingale bettor has a maximum bet size, imposed by
either the house (as in casino gambling) or his capitalization (as in the
markets). Eventually, the bettor will bet and lose this maximum bet size
and thus go bust. Furthermore, this will happen regardless of mathematical
expectation—that is why the martingale is completely foolish if you have
a positive mathematical expectation, and just futile if you have an even-
money game or a negative expectation. True, betting à la martingale you
will most often walk away from the tables a winner. However, when you
lose, it will be for an amount that will more than compensate the casino for
letting you walk away a winner the vast majority of the time.

It is not the maximum bet size that stymies the martingale as much as
it is the number of bets required to reach the maximum bet size (this is
also one of the reasons why there are house minimums). To overcome this,
gamblers have tried what is known as the small martingale—a somewhat
watered-down version of the martingale.

The small martingale tries to provide survival for the bettor by increas-
ing the number of bets required to reach the maximum bet size. Ultimately,
the small martingale tries to win one unit per cycle. Since the system rules
are easier to demonstrate than to describe, I will show this system through
the use of examples. In the small martingale you keep track of a “progres-
sion list,” and bet the amount that is the sum of the first and last values
on the list. When a win is encountered, you cross off the first and last val-
ues on the list, thus obtaining new first and last values, giving you a new
amount to wager on the next bet. The list starts at simply the number 1.
When a loss is encountered, the next number is added on to the end of
the list (i.e., 2, 3, 4, etc.). A cycle ends when one unit is won. If a list is
ever composed of just the number 2, then convert it to a list of 1, 1. The
following examples of four different cycles should make the progression
clear:

Bet Number List Bet Size Win/Loss
1 1 1 W

Bet Number List Bet Size Win/Loss
1 1 1 L
2 1, 1 2 W

Bet Number List Bet Size Win/Loss
1 1 1 L
2 1, 1 2 L
3 1, 1, 2 3 W
4 1 1 W
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Bet Number List Bet Size Win/Loss
1 1 1 L
2 1, 1 2 L
3 1, 1, 2 3 L
4 1, 1, 2, 3 4 W
5 1, 2 3 L
6 1, 2, 3 4 W
7 1, 1 2 L
8 1, 1, 2 . . . and continuing until the

bettor is ahead by 1 unit.

The small martingale is ultimately a loser, too, for the same reasons that the
martingale system is a loser. A sum of negative expectancy bets must have
a negative expectancy.

Another system, the antimartingale, is just the opposite of the martin-
gale (as its name implies). Here, you increase your bet size after each win.
The idea is to hit a streak of winning bets and maximize the gains from
that streak. Of course, just as the martingale ultimately makes one unit, the
antimartingale will ultimately lose all of its units (even in a positive math-
ematical expectation game) once a loss is incurred, if 100% of the stake is
placed on each bet.

Notice, however, that fixed fractional trading is actually a small anti-
martingale! Recall our flawed-coin example earlier in this chapter. In that
example we saw how our “best” strategy was the small antimartingale. In
the final analysis, fixed fractional trading, the small antimartingale, is the
optimal betting system—provided you have a positive mathematical expec-
tation.3

Another famous system is the reserve strategy. Here, you trade a base
bet plus a fraction of your winnings. However, in the reserve strategy, if the
last bet was a winner, then you bet the same amount on the next bet as you
did the last. Suppose you encounter the sequence of win $1, win $1, lose
$1, then win $1 for every $1 bet. If you are betting $1 plus 50% of winnings
(in the reserve strategy), you would bet $1 on the first bet. Since it was a
winner, you would still bet $1 on the second bet—which was also a winner,
boosting your total winnings to $2. Since the second bet was also a winner,
you would not increase your third bet; rather, you would still bet $1. The

3This is critical. Optimal fixed fractional trading therefore possesses those charac-
teristics, pro and con, of the small antimartingale. It will maximize growth, but it
will cause you to endure severe and protracted drawdowns. Just as the martingale
strategy has you leave the tables a winner most of the time, the antimartingale, and
to a lesser extent, the small antimartingale (i.e., “fixed fractional trading”) has you
leave the tables—or a performance period—a loser more frequently than you would
have betting on a constant-bet-size or martingale basis.
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third bet, being a loss of $1, lowers your total winnings to $1. Since you
encountered a loss, however, you recapitalize your bet size to the base bet
($1) plus 50% of your winnings (.5 * $1) and hence bet $1.50 on the fourth
bet. The fourth bet was a winner, paying 1 to 1, so you made $1.50 on the
fourth bet, bringing your total winnings to $2.50. Since this last bet was a
winner, you will not recapitalize (step up or down) your bet size into the
fifth bet; instead, you stay with a bet size of $1.50 into the fifth bet.

On the surface, the reserve strategy seems like an ideal staking system.
However, like all staking systems, its long-term performance falls short of
the simple fixed fraction (small antimartingale) approach. Another popular
idea of gamblers/traders has been the base bet plus square root strategy,
whereby you essentially are always betting the same amount you started
with plus the square root of any winnings. As you can see, the possibilities
of staking systems are endless.

Many people seem to be partial, for whatever reason, to adding con-
tracts after a losing trade, a streak of losing trades, or a drawdown. Over
and over again in computer simulations (by myself and others) this turns
out to be a very poor method of money management. It is akin to the martin-
gale and small martingale. Since we have determined that trading is largely
an independent trials process, the past trades have no effect on the present
trade. It doesn’t matter whether the last 20 trades were all winners or all
losers.

It is interesting to note that those computer tests that have been per-
formed all bear out the same thing. In an independent trials process where
you have an edge, you are better off to increase your bet size as your stake
increases, and the bet size optimally is a fixed fraction of your entire stake.
Time and again authors have performed studies that take a very long stream
of independent outcomes with a net positive result, and have applied vari-
ous staking systems to betting/trading on these outcomes. In a nutshell, the
outcomes of every study of this type reach the same conclusion: that you
are better off using a staking system that increases the size of the bet in
direct proportion to the size of the total stake.

In another study, William T. Ziemba demonstrated in the June 1987 issue
of Gambling Times magazine that proportional betting was superior to any
other staking strategy.4 Furthermore, Ziemba’s article demonstrated how
the optimal proportion (determined correctly by the Kelly formula in this
study) far outperforms any other proportion. The study simulated 1,000
seasons of betting on 700 horse races, starting you out with an initial stake
of $1,000. The test looked at such outcomes as how many seasons would

4Ziemba, William T., “A Betting Simulation, The Mathematics of Gambling and In-
vestment,” Gambling Times, pp. 46–47, 80, June 1987.



JWDD035-03 JWDD035-Vince February 10, 2007 21:20 Char Count= 0

116 THE HANDBOOK OF PORTFOLIO MATHEMATICS

have tapped you out, how many seasons were profitable, how many made
more than $5,000, $10,000, $100,000, and so on, as well as what the minimum,
maximum, mean, and median terminal amounts were. The results of this
test, too, were quite clear—betting a fixed fraction of your bankroll is far
and away the best staking system.

“Wait,” you say. “Aren’t staking systems foolish to begin with? Didn’t we
see in Chapter 1 that they do not overcome the house advantage; rather, all
they do is increase our total action?”

This is absolutely true for a situation with a negative mathematical
expectation. For a positive mathematical expectation it is a different story
altogether. In a positive expectancy situation the trader/gambler is posed
with the question of how best to exploit the positive expectation.
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OPTIMAL FIXED FRACTION

We have seen that in order to consider betting/trading a given situation/
system you must first determine if a positive mathematical expectation ex-
ists. We have seen in the previous chapter that what is seemingly a “good
bet” on a mathematical expectation basis (i.e., the mathematical expecta-
tion is positive) may in fact not be such a good bet when you consider
reinvestment of returns.1 Reinvesting returns never raises the mathemati-
cal expectation (as a percentage—although it can raise the mathematical
expectation in terms of dollars, which it does geometrically, which is why
we want to reinvest). If there is in fact a positive mathematical expectation,
however small, the next step is to exploit this positive expectation to its
fullest potential. This has been shown, for an independent trials process,
to be by reinvesting a fixed fraction of your total stake,2 which leads to the
following axiom: For any given independent trials situation where you

1If you are reinvesting too high a percentage of your winnings relative to the disper-
sion of outcomes of the system.
2For a dependent trials process the idea of betting a proportion of your total stake
also yields the greatest exploitation of a positive mathematical expectation, just like
an independent trials process. However, in a dependent trials process you optimally
bet a variable fraction of your total stake, the exact fraction for each individual bet
determined by the probabilities and payoffs involved for each individual bet.

117
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FIGURE 4.1 The curve of optimal f

have an edge (i.e., a positive mathematical expectation), there exists an

optimal fixed fraction (f) between 0 and 1 as a divisor of your biggest loss

to bet on each and every event.

Most people think that the optimal fixed fraction is the percentage of
your total stake to bet. Optimal f is not in itself the percentage of our total
stake to bet; it is the divisor of our biggest loss, the result of which we divide
our total stake by to know how many bets to make or contracts to have on.

You will also notice that margin has nothing to do whatsoever with

what is the mathematically optimal number of contracts to have on.

As you can see in Figure 4.1, f is a curve cupped downward from 0 to
1. The highest point for f is that fraction of your stake to bet on each and
every event (bet) to maximize your winnings.

Most people incorrectly believe that f is a straight-line function rising
up and to the right. They believe this because they think it would mean that
the more you are willing to risk, the more you stand to make. People reason
this way because they think that a positive mathematical expectation is just
the mirror image of a negative expectancy. They mistakenly believe that if
increasing your total action in a negative expectancy game results in losing
faster, then increasing your total action in a positive expectancy game will
result in winning faster. This is not true. At some point in a positive ex-
pectancy situation, to increase your total action further works against you.
That point is a function of both the system’s profitability and its consistency
(i.e., its geometric mean), since you are reinvesting the returns.

ASYMMETRICAL LEVERAGE

Recall that the amount required to recoup a loss increases geometrically

with the loss. We can show that the percentage gain to recoup a loss is:

Required Gain = (1/(1 − loss in percent)) − 1 (4.01)
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FIGURE 4.2 Asymmetrical leverage

A 20% loss requires a 25% gain afterwards to recoup. A 30% loss requires
a 42% gain afterwards to recoup. This is asymmetrical leverage. In fixed
fractional trading we have seen that the trader will tend to have on more
contracts when she takes a loss than when she has a win. This is what
amplifies the asymmetrical leverage. It is also what curves the f function,
since the peak of the f function represents that point where the trader has
the right amount of contracts on to go into the losses and come out of the
losses (with asymmetrical leverage) and achieve the maximum growth on
her money at the end of a sequence of trades (see Figure 4.2). The f value
(X axis) that corresponds to the peak of this f curve will be known as the
optimal f ( f is always in lowercase).

So f is a curved-line function, and this is due, in part, to the fact that
asymmetrical leverage is amplified when reinvesting profits.

And how do we find this optimal f ? Much work has been done in recent
decades on this topic in the gambling community, the most famous and
accurate of which is known as the Kelly Betting System. This is actually
an application of a mathematical idea developed in early 1956 by John L.
Kelly, Jr., and published in the July 1956 Bell System Technical Journal.3

3Kelly, J. L., Jr., “A New Interpretation of Information Rate,” Bell System Technical

Journal, pp. 917–926, July 1956.
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The Kelly criterion states that we should bet that fixed fraction of our stake
( f ) which maximizes the growth function G( f ):

G( f ) = P * ln(1 + B * f ) + (1 − P) * ln(1 − f ) (4.02)

where: f = The optimal fixed fraction.
P = The probability of a winning bet/trade.
B = The ratio of amount won on a winning bet to amount

lost on a losing bet.
ln( ) = The natural logarithm function to the base

e = 2.71828. . . .

As it turns out, for an event with two possible outcomes, this optimal
f can be found quite easily with the Kelly formulas.

KELLY

Beginning around the late 1940s, Bell System engineers were working on
the problem of data transmission over long distance lines. The problem fac-
ing them was that the lines were subject to seemingly random, unavoidable
“noise” that would interfere with the transmission. Some rather ingenious
solutions were proposed by engineers at Bell Labs. Oddly enough, there are
great similarities between this data communications problem and the prob-
lem of geometric growth as it pertains to gambling money management (as
both problems are the product of an environment of favorable uncertainty).
The Kelly formula is one of the outgrowths of these solutions.

The first equation here is:

f = 2 * P − 1 (4.03)

where: f = The optimal fixed fraction.
P = The probability of a winning bet/trade.

This formula will yield the correct answer for optimal f provided the
sizes of wins and losses are the same. As an example, consider the following
stream of bets:

−1, +1, +1, −1, −1, +1, +1, +1, +1, −1

There are 10 bets, 6 winners, hence:

f = (.6 * 2) − 1

= 1.2 − 1

= .2
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If the winners and losers were not all the same size, this formula would
not yield the correct answer. Such a case would be our two-to-one coin-toss
example, where all of the winners were for 2 units and all of the losers for
1 unit. For this situation the Kelly formula is:

f = ((B + 1) * P − 1)/B (4.04)

where: f = The optimal fixed fraction.
P = The probability of a winning bet/trade.
B = The ratio of amount won on a winning bet to amount

lost on a losing bet.

For the two-to-one coin toss:

f = ((2 + 1) * .5 − 1)/2

= (3 * .5 − 1)/2

= (1.5 − 1)/2

= .5/2

= .25

This formula will yield the correct answer for optimal f , provided all
wins are always for the same amount and all losses are always for the same
amount. If this condition is not met, the formula will not yield the correct
answer.

Consider the following sequence of bets/trades:

+9, +18, +7, +1, +10, −5, −3, −17, −7

Since all wins and all losses are of different amounts, the previous formula
does not apply. However, let’s try it anyway and see what we get.

Since five of the nine events are profitable, P = .555. Now let’s take
averages of the wins and losses to calculate B (here is where so many
traders go wrong). The average win is 9 and the average loss is 8. Therefore,
we will say that B = 1.125. Plugging in the values we obtain:

f = ((1.125 + 1) * .555 − 1)/1.125

= (2.125 * .555 − 1)/1.125

= (1.179375 − 1)/1.125

= .179375/1.125

= .159444444

So we say f = .16. We will see later in this chapter that this is not the
optimal f . The optimal f for this sequence of trades is .24. Applying Kelly
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when wins are not all for the same amount and/or losses are not all for the
same amount is a mistake. It will not yield the optimal f .

Notice that the numerator in this formula equals the mathematical ex-
pectation for an event with two possible outcomes as defined in Chapter 1.
Therefore, we can say that as long as all wins are for the same amount and
all losses are for the same amount (regardless of whether the amount that
can be won equals the amount that can be lost), the optimal f is:

f = Mathematical Expectation/B (4.05)

where: f = The optimal fixed fraction.
B = The ratio of amount won on a winning bet to amount

lost on a losing bet.

FINDING THE OPTIMAL f BY
THE GEOMETRIC MEAN

In trading we can count on our wins being for various amounts and our
losses being for various amounts. Therefore, the Kelly formula cannot give
us the correct optimal f . How then can we find the optimal f to tell us how
many contracts to have on and have it be mathematically correct?

As you will see later in this chapter, trading the correct quantities of
contracts/shares is a far bigger problem than was previously thought. Quan-
tity can mean the difference between winning and losing. All systems expe-
rience losing trades. All systems experience drawdown. These are givens,
facts of life. Yet if you can always have the right amount of contracts on (i.e.,
the mathematically correct amount), then there is consolation in the losses.

Now here is the solution. To begin with, we must amend our formula
for finding HPRs to incorporate f .

HPR = 1 + f * (− trade/biggest loss) (4.06)

And again, TWR is simply the geometric product of the HPRs and work-
ing from (3.03), geometric mean is simply the Nth root of the TWR.

TWR =
N∏

i = 1

(1 + f * (−tradei/biggest loss)) (4.07)

Geo. Mean =
(

N∏
i = 1

(1 + f * (− tradei/biggest loss))

)l/N

(4.08)

The geometric mean can also be calculated here by the procedure for
finding the estimated geometric mean by using the HPRs as formulated
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above, or by taking the TWR, as formulated above, as an input to the
equation:

Geo. Mean = exp((l/N) * log(TWR))

where: N = Total number of trades.
log(TWR) = The log base 10 of the TWR.

exp = The exponential function.

By looping through all values for f between .01 and 1, we can find

that value for f which results in the highest TWR. This is the value for
f that would provide us with the maximum return on our money using
fixed fraction. We can also state that the optimal f is the f that yields the
highest geometric mean. It matters not whether we look for highest TWR
or geometric mean, as both are maximized at the same value for f .

Doing this with a computer is easy. Simply loop from f = .01 to f = 1.0
by .01. As soon as you get a TWR that is less than the previous TWR, you
know that the f corresponding to the previous TWR is the optimal f . You
can also calculate this by hand, but that is a lot more tedious, especially as
the number of trades increases. A quicker way to do it is to use iteration
to solve for the optimal f (you can use the iterative approach whether
you are doing it by hand or by computer). Here, you are initially bounded
on f at f = 0 and f = 1.00. Pick a start value, say f = .10, and find the
corresponding TWR. Now step the f value up an arbitrary amount. The
example that follows steps it up by .10, but you can use any amount you
want to (so long as you do not have an f value greater than 1.00, the upper
bound). As long as your TWRs keep increasing, you must step up the f

value you are testing. Do this until f = .30, where your TWR is less than at
f = .20. Now, your f bounds are .20 and .30. Keep on repeating the process
until you zero in on the optimal f . The following illustration demonstrates
the iterative process as well as the calculations:

At f = .10
TRADE HPR

9 1.052941
18 1.105882 The HPRs are equal to 1 + ( f * (−trade/biggest loss))

7 1.041176
1 1.005882

10 1.058823
−5 0.970588
−3 0.982352

−17 0.9
−7 0.958823

TWR = 1.062409 The TWR is all of the HPRs multiplied together
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At f = .20
TRADE HPR

9 1.105882
18 1.211764

7 1.082352
1 1.011764

10 1.117647
−5 0.941176
−3 0.964705

−17 0.8
−7 0.917647

TWR = 1.093231

At f = .30
TRADE HPR

9 1.158823
18 1.317647

7 1.123529
1 1.017647

10 1.176470
−5 0.911764
−3 0.947058

−17 0.7
−7 0.876470

TWR = 1.088113

At f = .25
TRADE HPR

9 1.132352
18 1.264705

7 1.102941
1 1.014705

10 1.147058
−5 0.926470
−3 0.955882

−17 0.75
−7 0.897058

TWR = 1.095387
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At f = .23
TRADE HPR

9 1.121764
18 1.243529

7 1.094705
1 1.013529

10 1.135294
−5 0.932352
−3 0.959411

−17 0.77
−7 0.905294

TWR = 1.095634

At f = .24
TRADE HPR

9 1.127058
18 1.254117

7 1.098823
1 1.014117

10 1.141176
−5 0.929411
−3 0.957647

−17 0.76
−7 0.901176

TWR = 1.095698

TO SUMMARIZE THUS FAR

In the previous chapter we demonstrated that a good system is the one with
the highest geometric mean. Yet, to find the geometric mean you must know
f . Understandably, the reader must be confused. Here now is a summary
and clarification of the process:

1. Take the trade listing of a given market system.

2. Find the optimal f , either by testing various f values from 0 to 1 or
through iteration. The optimal f is that which yields the highest TWR.

3. Once you have found f you can take the Nth root of that TWR corre-
sponding to your f , where N is the total number of trades. This is your
geometric mean for this market system. You can now use this geometric
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mean to make apples-to-apples comparisons with other market systems,
as well as use the f to know how many contracts to trade for that par-
ticular market system.

Once the highest f is found, it can readily be turned into a dollar

amount by dividing the biggest loss by the negative optimal f. For example,
if our biggest loss is $100 and our optimal f is .25, then −$100/−.25 = $400.
In other words, we should bet one unit for every $400 we have in our stake.

In the sequence of bets that our coin-toss example would generate,
we find that the optimal f value for the sequence +2, −1 is .25. Since
our biggest loss is $1, 1/.25 = $4. In other words, we should bet $1 for
every $4 we have in our stake in order to make the most money out of this
game. To bet a higher number or a lower number will not result in a greater
gain! After 10 bets, for every $4 we started out with in our stake, we will
have $9.

This approach to finding the optimal f will yield the same result as:

f = ((B + 1) * P − 1)/B

You obtain the same result, of course, when losses are all for the same
amount and wins are all for the same amount. In such a case, either technique
is correct. When both wins and losses are for the same amount, you can
use any of the three methods—the Kelly formula just shown, the f that
corresponds to the highest TWR, or:

f = 2 * P − 1

Any of the three methods will give you the same answer when all wins and
losses are for the same amount.

All three methods for finding the optimal f meet the four desirable
properties of a money-management strategy outlined earlier, given the con-
straints of the two formulas (i.e., all wins being for the same amount and
all losses being for the same amount, or all wins and losses being for the
same amount). Regardless of constraints, the optimal f via the highest TWR
will always meet the four desirable properties of a money-management
strategy.

If you’re having trouble with some of these concepts, try thinking in
terms of betting in units, not dollars (e.g., one $5 chip or one futures con-
tract or one 100-share unit of stock). The amount of dollars you allocate to
each unit is calculated by figuring your largest loss divided by the negative
optimal f .

The optimal f is a result of the balance between a system’s profit-making
ability (on a constant one-unit basis) and its risk (on a constant one-unit
basis). Notice that margin doesn’t matter, because the size of individual
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profits and losses are not the product of the amount of money put up as
margin (they would be the same whatever the size of the margin). Rather,
the profits and losses are the product of the exposure of one unit (one
futures contract). The amount put up as margin is further made meaningless
in a money-management sense, since the size of the loss is not limited to the
margin.

HOW TO FIGURE THE GEOMETRIC MEAN
USING SPREADSHEET LOGIC

Here is an example of how to use a spreadsheet like to calculate the geo-
metric mean and TWR when you know the optimal f or want to test a value
for f .

(Assume f = .5, biggest loss = −50)

col col col col col
A B C D E

row 1 1
row 2 15 0.3 0.15 1.15 1.15
row 3 −5 −0.1 −0.05 0.95 1.0925

cell(s) explanation

A1 through D1 are blank.
E1 Set equal to 1 to begin with.
A2 down These are the individual trade P&Ls.
B2 down = A2/abs value of (biggest loss)
C2 down = B2/f
D2 down = C2 + 1
E2 down = E1 * D2

When you get to the end of the trades (the last row), your last value in
column E is your TWR. Now take the Nth root of this TWR (N is the total
number of trades); that is your geometric mean. In the above example, your
TWR (cell E3) raised to the power 1/2 (there are a total of two trades here) =
1.045227. That is your geometric mean.

GEOMETRIC AVERAGE TRADE

At this point you may be interested in figuring your geometric average trade.
That is, what is the average garnered per contract per trade, assuming
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profits are always reinvested and fractional contracts can be purchased.
In effect, this is the mathematical expectation when you are trading on
a fixed fractional basis. This figure shows you what effect there is from

losers occurring when you have many contracts on and winners occur-

ring when you have fewer contracts on. In effect, this approximates how

a system would have fared per contract per trade doing fixed fraction.

(Actually, the geometric average trade is your mathematical expectation
in dollars per contract per trade. The geometric mean minus 1 is your
percent mathematical expectation per trade—e.g., a geometric mean of,
say, 1.025 represents a mathematical expectation of 2.5% per trade, irre-
spective of size.) So many traders look simply at the average trade of a
market system to see if it is high enough to justify trading the system. How-
ever, in making their decision, they should be looking at the geometric
average trade (which is never greater than the average trade) as well as at
the PRR.

Geo. Avg. Trade = G * (biggest loss/− f ) (4.09)

where: G = Geometric mean −1.
f = Optimal fixed fraction.
(And, of course, our biggest loss is always a negative number.)

For example, suppose a system has a geometric mean of 1.017238, the
biggest loss is $8,000, and the optimal f is .31. Our geometric average trade
would equal:

Geo. Avg. Trade = (1.017238 − 1) * (− 8,000/− .31)

= .017238 * 25,806.45

= $444.85

A SIMPLER METHOD FOR FINDING
THE OPTIMAL f

There are numerous ways to arrive at the optimal value for f . The tech-
nique for finding the optimal f that has been presented thus far in this
chapter is perhaps the most mathematically logical. That is to say, it is ob-
vious upon inspection that this technique will yield the optimal f . It makes
more intuitive sense when you can see the HPRs laid out than does the
next and somewhat easier method. So here is another way for calculating
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the optimal f , one that some readers may find simpler and more to their
liking. It will give the same answer for optimal f as the technique previously
described.

Under this method we still need to loop through different test values
for f to see which value for f results in the highest TWR. However, we
calculate our TWR without having to calculate the HPRs. Let’s assume the
following stream of profits and losses from a given system:

+$100
−$500

+$1500
−$600

Again, we must isolate the largest losing trade. This is −$600.
Now we want to obtain the TWR for a given test value for f . Our first

step is to calculate what we’ll call the starting value. To begin with, take the
largest loss and divide it by the test value for f . Let’s start out by testing a
value of .01 for f . So we will divide the largest loss, –$600, by .01. This yields
an answer of –$60,000. Now we make it a positive value. Therefore, our
starting value for this example sequence of a .01 test value for f is $60,000.

For each trade we must now calculate a working value. To do this, for
each trade we must take the previous working value and divide it by the
starting value. (For the first trade, the answer will be 1, since the previous
working value is the same as the starting value.) Next, we multiply the
answer by the current trade amount. Finally, we add this answer and the
previous working value to obtain the current working value.

P&L WORKING VALUE

60000 ←−−−−−−−−− This is the starting value
+100 60100
−500 59599.166667
+1500 61089.14583
−600 60478.25437

Our TWR is obtained simply by taking the last entry in the working value
column and dividing it by our starting value. In this instance:

TWR = 60478.25437/60000

= 1.007970906

Now we repeat the process, only we must increment our test value for
f . This time through, rather than dividing the absolute value of the largest
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loss of −$600 by .01 we will divide it by .02. Therefore, we will begin this
next pass through with a starting value of 600/.02 = 30000.

P&L WORKING VALUE
30000

+100 30100 ((30000/30000) *100) + 30000
−500 29598.33 ((30100/30000) *−500) + 30100
+1500 31078.2465 ((29598.33/30000) *1500) + 29598.33
−600 30456.68157 ((31078.2465/30000) *−600) + 31078.2465

Here the TWR = 30456.68157/30000 = 1.015222719

We keep on repeating the procedure until we obtain the value for f that
results in the highest TWR. The answers we obtain for TWRs, as well as
for the optimal f , will be the same with this technique as with the previous
technique using the HPRs.

THE VIRTUES OF THE OPTIMAL f

It is a mathematical fact that when two people face the same sequence of fa-
vorable betting/trading opportunities, if one uses the optimal f and the other
uses any different money-management system, then the ratio of the optimal
f bettor’s stake to the other person’s stake will increase as time goes on,
with higher and higher probability. In the long run, the optimal f bettor will
have infinitely greater wealth than any other money-management-system
bettor with a probability approaching one.

Furthermore, if a bettor has the goal of reaching a prespecified for-
tune, and is facing a series of favorable betting/trading opportunities, the
expected time needed to reach the fortune will be less with optimal f than
with any other betting system.

Obviously, the optimal f strategy satisfies desirable property number
1 for money management, as it makes the most amount of money that is
mathematically possible using a fixed fractional betting strategy on a game
where you have the edge. Since optimal f incorporates the probability of
winning as well as the amounts won and lost, it also satisfies desirable
property numbers 3 and 4. Not much has been discussed about desirable
property number 2, the security aspect, but this will be treated in the closing
chapters.

Let’s go back and reconsider the following sequence of bets/trades:

+9, +18, +7, +1, +10, −5, −3, −17, −7
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Recall that we determined earlier in this chapter that the Kelly formula did
not apply to this sequence, since wins were not all for the same amount and
losses were not all for the same amount. We also decided to average the
wins and average the losses and take these averages as our values into the
Kelly formula (as many traders mistakenly do). Doing this we arrived at an
f value of .16. It was stated that this is an incorrect application of Kelly, that
it would not yield the optimal f . The Kelly formula must be specific to a
single bet. We cannot average our wins and losses from trading and obtain
the true optimal f using the Kelly formula.

Our highest TWR on this sequence of bets/trades is obtained at .24, or
betting $1 for every $71 in our stake. That is the optimal geometric growth we
can squeeze out of this sequence of bets/trades trading fixed fraction. Let’s
look at the TWRs at different points along 100 loops through this sequence
of bets.

At one loop through, nine bets/trades, the TWR for f = .16 is 1.085;
for f = .24 it is 1.096. This means that for one pass through this sequence
of bets an f = .16 made 99% of what an f = .24 would have made. To
continue:

Passes Total TWR for TWR for Percentage

Through Bets/Trades f =.24 f = .16 Difference

1 9 1.096 1.085 1%
10 90 2.494 2.261 9.4%
40 360 38.694 26.132 32.5%

100 900 9313.312 3490.761 62.5%

As can be seen, using an f value that we mistakenly figured from Kelly
made only 37.5% as much as our optimal f of .24 after 900 bets/trades
(100 cycles through the series of nine outcomes). In other words, our optimal
f of .24 (which is only .08 more than .16) made almost 267% the profit that
f = .16 did after 900 bets!

Let’s go another 11 cycles through this sequence of trades, so we have
a total of 999 trades. Now our TWR for f = .16 is 8563.302 (not even what it
was for f = .24 at 900 trades) and our TWR for f = .24 is 25,451.045. At 999
trades f = .16 is only 33.6% of f = .24, or f = .24 is 297% of f = .16! Here
you can see that using the Kelly formula does not yield the true optimal f

for trading.
As can be seen from the above, using the optimal f does not appear to

offer much advantage over the short run, but over the long run it becomes
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more and more important to use the optimal f. The point is you must give

the program time when trading at the optimal f and not expect miracles in

the short run. The more time (i.e., bets/trades) that elapses, the greater the

difference between using the optimal f and any other money-management

strategy.

WHY YOU MUST KNOW YOUR OPTIMAL f

Figures 4.3 through 4.6 demonstrate the importance of using optimal f in
fixed fractional trading. The graphs are constructed by plotting the f values
from 0 to 1.0 along the X axis and the respective TWRs along the Y axis.
Values are plotted at intervals of .05.

Each graph has a corresponding spreadsheet. Each column heading in
the spreadsheet has a different f value. Under each f value is the corre-
sponding start value, figured as the biggest loss divided by the negative f

value. For every unit of start value you have in your stake, you bet one
unit. Along the far left is the sequence of 40 bets. This sequence is the only
difference between the various spreadsheets and graphs.

As you go down through the sequence of trades you will notice that each
cell equals the previous cell divided by that cell’s starting value. This result is
then multiplied by the outcome of the current bet, and the product added to
the original value of the previous cell, to obtain the value of the current cell.
When you reach the end of the column you can figure your TWR as the last
value of the column divided by the start value of the column (i.e., the biggest
loss divided by negative f ). This is the alternative and somewhat easier way
to figure your TWRs. Both methods shown thus far make the calculations
non-quantum. In other words, you do not need an integer amount to multiply
the current bet result by; you can use a decimal amount of the starting value
as well. An example may help clarify.

In the +1.2, −1 sequence (Figure 4.3), for an f value of .05, we have a
starting value of 20:

− 1 /− .05 = 20

In other words, we will bet one unit for every 20 units in our stake. With
the first bet, a gain of 1.2, we now have 21.2 units in our stake. (Since we
had 20 units in our stake prior to this bet and we bet one unit for every
20 in our stake, we bet only one unit on this bet.) Now the next bet is a
loss of one unit. The question now is, “How many units were we betting on
this one?”



JWDD035-04 JWDD035-Vince February 22, 2007 17:29 Char Count= 0

Optimal f 133

We could argue that we were betting only one unit, since 21.20 (our
stake prior to the bet) divided by 20 (the starting value) = 1.06. Since
most bets must be in integer form—that is, no fractional bets (chips
are not divisible and neither are futures contracts)—we could bet only
one unit in real life in this situation. However, in these simulations the
fractional bet is allowed. The reasoning here behind allowing the frac-
tional bet is to keep the outcome consistent regardless of the start-
ing stake. Notice that each simulation starts with only enough stake to
make one full bet. What if each simulation started with more than that?
Say each simulation started with enough to make 1.99 bets. If we were
only allowing integer bets, our outcomes (TWRs) would be altogether
different.

Further, the larger the amount we begin trading with is, relative to the
starting value (biggest loss/ − optimal f ), the closer the integer bet will be
to the fractional bet. Again, clarity is provided by way of an example. What
if we began trading with 400 units in the previous example? After the first
bet our stake would have been:

Stake = 400 + ((400/20) * 1.2)

= 400 + (20 * 1.2)

= 400 + 24

= 424

For the next bet, we would wager 21.2 units (424/20), or the integer
amount of 21 units. Note that the percentage difference between the frac-
tional and the integer bet here is only .952381% versus a 6.0% difference, had
the amount we began trading with been only one starting value, 20 units.
The following axiom can now be drawn: The greater the ratio of the amount

you have as a stake to begin trading relative to the starting value (biggest

loss/ − optimal f ), the more the percentage difference will tend to zero

between integer and fractional betting.
By allowing fractional bets, making the process nonquantum, we obtain

a more realistic assessment of the relationship of f values to TWRs. The

fractional bets represent the average (of all possible values of the size

of initial bankrolls) of the integer bets. So the argument that we cannot
make fractional bets in real life does not apply, since the fractional bet
represents the average integer bet. If we made graphs of the TWRs at each
f value for the +2, −1 coin toss, and used integer bets, we would have to
make a different graph for each different initial bankroll. If we did this and
then averaged the graphs to create a composite graph of the TWRs at each
f value, we would have a graph of the fractional bet situation exactly as
shown.
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20 TRIALS
f VALUES −−−−→

EVENT 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

START VALUES −−−−→ 20.00 10.00 6.67 5.00 4.00 3.33 2.86 2.50 2.22
1.2 21.20 11.20 7.87 6.20 5.20 4.53 4.06 3.70 3.42
−1 20.14 10.08 6.69 4.96 3.90 3.17 2.64 2.22 1.88
1.2 21.35 11.29 7.89 6.15 5.07 4.32 3.74 3.29 2.90
−1 20.28 10.16 6.71 4.92 3.80 3.02 2.43 1.97 1.59
1.2 21.50 11.38 7.91 6.10 4.94 4.11 3.46 2.92 2.46
−1 20.42 10.24 6.73 4.88 3.71 2.88 2.25 1.75 1.35
1.2 21.65 11.47 7.94 6.05 4.82 3.91 3.19 2.59 2.08
−1 20.57 10.32 6.75 4.84 3.61 2.74 2.07 1.55 1.14
1.2 21.80 11.56 7.96 6.00 4.70 3.72 2.94 2.30 1.76
−1 20.71 10.41 6.77 4.80 3.52 2.61 1.91 1.38 0.97
1.2 21.95 11.66 7.99 5.96 4.58 3.54 2.72 2.04 1.49
−1 20.85 10.49 6.79 4.76 3.44 2.48 1.77 1.23 0.82
1.2 22.11 11.75 8.01 5.91 4.47 3.37 2.51 1.81 1.26
−1 21.00 10.57 6.81 4.73 3.35 2.36 1.63 1.09 0.69
1.2 22.26 11.84 8.03 5.86 4.36 3.21 2.32 1.61 1.07
−1 21.15 10.66 6.83 4.69 3.27 2.25 1.51 0.97 0.59
1.2 22.42 11.94 8.06 5.81 4.25 3.06 2.14 1.43 0.91
−1 21.30 10.74 6.85 4.65 3.18 2.14 1.39 0.86 0.50
1.2 22.57 12.03 8.08 5.77 4.14 2.91 1.97 1.27 0.77
−1 21.44 10.83 6.87 4.61 3.11 2.04 1.28 0.76 0.42
1.2 22.73 12.13 8.11 5.72 4.04 2.77 1.82 1.13 0.65
−1 21.60 10.92 6.89 4.58 3.03 1.94 1.18 0.68 0.36
1.2 22.89 12.23 8.13 5.68 3.94 2.64 1.68 1.00 0.55
−1 21.75 11.00 6.91 4.54 2.95 1.85 1.09 0.60 0.30
1.2 23.05 12.32 8.15 5.63 3.84 2.51 1.55 0.89 0.47
−1 21.90 11.09 6.93 4.50 2.88 1.76 1.01 0.53 0.26
1.2 23.21 12.42 8.18 5.59 3.74 2.39 1.43 0.79 0.40
−1 22.05 11.18 6.95 4.47 2.81 1.67 0.93 0.47 0.22
1.2 23.37 12.52 8.20 5.54 3.65 2.28 1.32 0.70 0.33
−1 22.21 11.27 6.97 4.43 2.74 1.59 0.86 0.42 0.18
1.2 23.54 12.62 8.23 5.50 3.56 2.17 1.22 0.62 0.28
−1 22.36 11.36 6.99 4.40 2.67 1.52 0.79 0.37 0.16
1.2 23.70 12.72 8.25 5.43 3.47 2.06 1.13 0.55 0.24
−1 22.52 11.45 7.01 4.36 2.60 1.44 0.73 0.33 0.13
1.2 23.87 12.82 8.28 5.41 3.38 1.96 1.04 0.49 0.20
−1 22.68 11.54 7.04 4.33 2.54 1.38 0.68 0.29 0.11
1.2 24.04 12.93 8.30 5.37 3.30 1.87 0.96 0.44 0.17
−1 22.83 11.63 7.06 4.29 2.47 1.31 0.62 0.26 0.09
1.2 24.20 13.03 8.33 5.32 3.21 1.78 0.89 0.39 0.15
−1 22.99 11.73 7.08 4.26 2.41 1.25 0.58 0.23 0.08

TWR −−−−−−−−−→ 1.15 1.17 1.06 0.85 0.60 0.37 0.20 0.09 0.04

FIGURE 4.3 Values of f for 20 sequences at +1.2, −1
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0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2 00 1.82 1.67 1.54 1.43 1.33 1.25 1.18 1.11 1.05 1.00
3.20 3.02 2.87 2.74 2.63 2.53 2.45 2.38 2.31 2.25 2.20
1.60 1.36 1.15 0.96 0.79 0.63 0.49 0.36 0.23 0.11 0.00
2.56 2.25 1.97 1.71 1.45 1.20 0.96 0.72 0.48 0.24 0.00
1.28 1.01 0.79 0.60 0.44 0.30 0.19 0.11 0.05 0.01 0.00
2.05 1.68 1.36 1.06 0.80 0.57 0.38 0.22 0.10 0.03 0.00
1.02 0.76 0.54 0.37 0.24 0.14 0.08 0.03 0.01 .00 0.00
1.64 1.26 0.93 0.66 0.44 0.27 0.15 0.07 0.02 .00 0.00
0.82 0.57 0.37 0.23 0.13 0.07 0.03 0.01 .00 .00 0.00
1.31 0.94 0.64 0.41 0.24 0.13 0.06 0.02 .00 .00 0.00
0.66 0.42 0.26 0.14 0.07 0.03 0.01 .00 .00 .00 0.00
1.05 0.70 0.44 0.26 0.13 0.06 0.02 0.01 .00 .00 0.00
0.52 0.32 0.18 0.09 0.04 0.02 .00 .00 .00 .00 0.00
0.84 0.52 0.30 0.16 0.07 0.03 0.01 .00 .00 .00 0.00
0.42 0.24 0.12 0.06 0.02 0.01 .00 .00 .00 .00 0.00
0.67 0.39 0.21 0.10 0.04 0.01 .00 .00 .00 .00 0.00
0.34 0.18 0.08 0.03 0.01 .00 .00 .00 .00 .00 0.00
0.54 0.29 0.14 0.06 0.02 0.01 .00 .00 .00 .00 0.00
0.27 0.13 0.06 0.02 0.01 .00 .00 .00 .00 .00 0.00
0.43 0.22 0.10 0.04 0.01 .00 .00 .00 .00 .00 0.00
0.21 0.10 0.04 0.01 .00 .00 .00 .00 .00 .00 0.00
0.34 0.16 0.07 0.02 0.01 .00 .00 .00 .00 .00 0.00
0.17 0.07 0.03 0.01 .00 .00 .00 .00 .00 .00 0.00
0.27 0.12 0.05 0.02 .00 .00 .00 .00 .00 .00 0.00
0.14 0.05 0.02 0.01 .00 .00 .00 .00 .00 .00 0.00
0.22 0.09 0.03 0.01 .00 .00 .00 .00 .00 .00 0.00
0.11 0.04 0.01 .00 .00 .00 .00 .00 .00 .00 0.00
0.18 0.07 0.02 0.01 .00 .00 .00 .00 .00 .00 0.00
0.09 0.03 0.01 .00 .00 .00 .00 .00 .00 .00 0.00
0.14 0.05 0.02 .00 .00 .00 .00 .00 .00 .00 0.00
0.07 0.02 0.01 .00 .00 .00 .00 .00 .00 .00 0.00
0.11 0.04 0.01 .00 .00 .00 .00 .00 .00 .00 0.00
0.06 0.02 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.09 0.03 0.01 .00 .00 .00 .00 .00 .00 .00 0.00
0.05 0.01 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.07 0.02 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.04 0.01 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.06 0.02 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.03 0.01 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.05 0.01 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.02 0.01 .00 .00 .00 .00 .00 .00 .00 .00 0.00

0.01 .00 .00 .00 .00 .00 .00 .00 .00 .00 0.00

This is not a contention that the fractional bet situation is the same as the
real-life integer-bet situation. Rather, the contention is that for the purposes
of studying these functions we are better off considering the fractional bet,
since it represents the universe of integer bets. The fractional bet situation
is what we can expect in real life in an asymptotic sense (i.e., in the long
run).

This discussion leads to another interesting point that is true in a fixed
fractional betting situation where fractional bets are allowed (think of frac-
tional bets as the average outcome of all integer bets at different initial
bankroll values, since that is what fractional betting represents here). This
point is that the TWR is the same regardless of the starting value. In the
examples just cited, if we have an initial stake of one starting value, 20 units,
our TWR (ending stake divided by initial stake) is 1.15. If we have an initial
stake of 400 units, 20 starting values, our TWR is still 1.15.

Figure 4.4 shows the f curve for 20 sequences of the +1.5, −1.
Refer now to the +2, −1 graph (Figure 4.5). Notice that here the optimal

f is .25 where the TWR is 10.55 after 40 bets (20 sequences of +2, −1). Now
look what happens if you bet only 15% away from the optimal .25 f . At an f
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20 TRIALS
f VALVES −−−−→

EVENT 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

START VALUES −−−−→ 20.00 10.00 6.67 5.00 4.00 3.33 2.86 2.50 2.22
1.5 21.50 11.50 8.17 6.50 5.50 4.83 4.36 4.00 3.72
−1 20.43 10.35 6.94 5.20 4.13 3.38 2.83 2.40 2.05
1.5 21.96 11.90 8.50 6.76 5.67 4.91 4.32 3.84 3.43
−1 20.86 10.71 7.23 5.41 4.25 3.43 2.81 2.30 1.89
1.5 22.42 12.32 8.85 7.03 5.85 4.98 4.28 3.69 3.16
−1 21.30 11.09 7.53 5.62 4.39 3.49 2.78 2.21 1.74
1.5 22.90 12.75 9.22 7.31 6.03 5.05 4.24 3.54 2.91
−1 21.75 11.48 7.84 5.85 4.52 3.54 2.76 2.12 1.60
1.5 23.39 13.20 9.60 7.60 6.22 5.13 4.21 3.40 2.68
−1 22.22 11.88 8.16 6.08 4.67 3.59 2.73 2.04 1.47
1.5 23.88 13.66 10.00 7.91 6.41 5.21 4.17 3.26 2.47
−1 22.69 12.29 8.50 6.33 4.81 3.64 2.71 1.96 1.36
1.5 24.39 14.14 10.41 8.22 6.62 5.28 4.13 3.13 2.28
−1 23.17 12.72 8.85 6.58 4.96 3.70 2.69 1.88 1.25
1.5 24.91 14.63 10.84 8.55 6.82 5.36 4.10 3.01 2.10
−1 23.66 13.17 9.21 6.84 5.12 3.75 2.66 1.80 1.15
1.5 25.44 15.14 11.28 8.90 7.04 5.44 4.06 2.89 1.93
−1 24.17 13.63 9.59 7.12 5.28 3.81 2.64 1.73 1.06
1.5 25.98 15.67 11.75 9.25 7.26 5.53 4.03 2.77 1.78
−1 24.68 14.11 9.99 7.40 5.44 3.87 2.62 1.66 0.98
1.5 26.53 16.22 12.23 9.62 7.48 5.61 3.99 2.66 1.64
−1 25.20 14. 60 10.40 7.70 5.61 3.93 2.59 1.60 0.90
1.5 27.10 16.79 12.74 10.01 7.72 5.69 3.96 2.55 1.51
−1 25.74 15.11 10.83 8.01 5.79 3.99 2.57 1.53 0.83
1.5 27.67 17.38 13.26 10.41 7.96 5.78 3.92 2.45 1.39
−1 26.29 15.64 11.28 8.33 5.97 4.05 2.55 1.47 0.77
1.5 28.26 17.99 13.81 10.82 8.21 5.87 3.89 2.35 1.28
−1 26.85 16.19 11.74 8.66 6.15 4.11 2.53 1.41 0.70
1.5 28.86 18.61 14.38 11.26 8.46 5.95 3.85 2.26 1.18
−1 27.42 16.75 12.22 9.00 6.35 4.17 2.50 1.36 0.65
1.5 29.47 19.27 14.98 11.71 8.73 6.04 3.82 2.17 1.09
−1 28.00 17.34 12.73 9.36 6.54 4.23 2.48 1.30 0.60
1.5 30.10 19.94 15.59 12.17 9.00 6.13 3.79 2.08 1.00
−1 28.59 17.95 13.25 9.74 6.75 4.29 2.46 1.25 0.55
1.5 30.74 20.64 16.24 12.66 9.28 6.23 3.75 2.00 0.92
−1 29.20 18.57 13.80 10.13 6.96 4.36 2.44 1.20 0.51
1.5 31.39 21.36 16.91 13.17 9.57 6.32 3.72 1.92 0.85
−1 29.82 19.23 14.37 10.53 7.18 4.42 2.42 1.15 0.47
1.5 32.06 22.11 17.60 13.69 9.87 6.41 3.69 1.84 0.78
−1 30.46 19.90 14.96 10.96 7.40 4.49 2.40 1.11 0.43

TWR −−−−→ 1.52 1.99 2.24 2.19 1.85 1.35 0.84 0.44 0.19

FIGURE 4.4 Values of f for 20 sequences at +1.5, −1
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0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2.00 1.82 1.67 1.54 1.43 1.33 1.25 1.18 1.11 1.05 1.00
3.50 3.32 3.17 3.04 2.93 2.83 2.75 2.68 2.61 2.55 2.50
1.75 1.49 1.27 1.06 0.88 0.71 0.55 0.40 0.26 0.13 0.00
3.06 2.73 2.41 2.10 l.80 1.51 1.21 0.91 0.61 0.31 0.00
1.53 1.23 0.96 0.74 0.54 0.38 0.24 0.14 0.06 0.02 0.00
2.68 2.24 1.83 1.45 1.11 0.80 0.53 0.31 0.14 0.04 0.00
1.34 1.01 0.73 0.51 0.33 0.20 0.11 0.05 0.01 .00 0.00
2.34 1.84 1.39 1.00 0.68 0.42 0.23 0.11 0.03 .00 0.00
1.17 0.83 0.56 0.35 0.20 0.11 0.05 0.02 .00 .00 0.00
2.05 1.51 1.06 0.69 0.42 0.23 0.10 0.04 0.01 .00 0.00
1.03 0.68 0.42 0.24 0.13 0.06 0.02 0.01 .00 .00 0.00
1.80 1.24 0.80 0.48 0.26 0.12 0.05 0.01 .00 .00 0.00
0.90 0.56 0.32 0.17 0.08 0 03 0.01 .00 .00 .00 0.00
1.57 1.02 0.61 0.33 0.16 0.06 0.02 .00 .00 .00 0.00
0.79 0.46 0.24 0.12 0.05 0.02 .00 .00 .00 .00 0.00
0.69 0.38 0.19 0.08 0.03 0.01 .00 .00 .00 .00 0.00
1.20 0.69 0.35 0.16 0.06 0.02 .00 .00 .00 .00 0.00
0.60 0.31 0.14 0.06 0.02 .00 .00 .00 .00 .00 0.00
1.05 0.56 0.27 0.11 0.04 0.01 .00 .00 .00 .00 0.00
0.53 0.25 0.11 0.04 0 01 .00 .00 .00 .00 .00 0.00
0.92 0.46 0.20 0.08 0.02 0.01 .00 .00 .00 .00 0.00
0.46 0.21 0.08 0.03 0.01 .00 .00 .00 .00 .00 0.00
0.81 0.38 0.15 0.05 0.01 .00 .00 .00 .00 .00 0.00
0.40 0.17 0.06 0.02 .00 .00 .00 .00 .00 .00 0.00
0.70 0.31 0.12 0.04 0.01 .00 .00 .00 .00 .00 0.00
0.35 0.14 0.05 0.01 .00 .00 .00 .00 .00 .00 0.00
0.62 0.26 0.09 0.02 0.01 .00 .00 .00 .00 .00 0.00
0.31 0.12 0.04 0.01 .00 .00 .00 .00 .00 .00 0.00
0.54 0.21 0.07 0.02 .00 .00 .00 .00 .00 .00 0.00
0.27 0.09 0.03 0.01 .00 .00 .00 .00 .00 .00 0.00
0 47 0.17 0.05 0.01 .00 .00 .00 .00 .00 .00 0.00
0.24 0.08 0.02 .00 .00 .00 .00 .00 .00 .00 0.00
0.41 0.14 0.04 0.01 .00 .00 .00 .00 .00 .00 0.00
0 21 0.06 0.02 .00 .00 .00 .00 .00 .00 .00 0.00
0.36 0.12 0.03 0.01 .00 .00 .00 .00 .00 .00 0.00
0.18 0.05 0.01 .00 .00 .00 .00 .00 .00 .00 0.00
0.32 0.10 0.02 .00 .00 .00 .00 .00 .00 .00 0.00
0.16 0.04 0.01 .00 .00 .00 .00 .00 .00 .00 0.00
0.28 0.08 0.02 .00 .00 .00 .00 .00 .00 .00 0.00
0.14 0.04 0.01 .00 .00 .00 .00 .00 .00 .00 0.00

0.07 0.02 .00 .00 .00 .00 .00 .00 .00 .00 0.00

of .1 or .4 your TWR is 4.66. This is not even half of what it is at .25, yet you
are only 15% away from the optimal and only 40 bets have elapsed! What
does this mean in terms of dollars? At f = .1, you would be making one
bet for every $10 in your stake. At f = .4 you would be making one bet for
every $2.50 in your stake. Both make the same amount, with a TWR of 4.66.
At f = .25, you are making one bet for every $4 in your stake. Notice that if
you make one bet for every $4 in your stake, you will make more than twice
as much as you would if you were making one bet for every $2.50 in your
stake! Clearly, it does not pay to overbet. At one bet for every $10 in your
stake you make the same amount as if you had bet four times that amount,
one bet for every $2.50 in your stake! Notice that in a 50/50 game where
you win twice the amount that you lose, at an f of .5 you are only breaking
even! That means you are only breaking even if you made one bet for every
$2 in your stake. At an f greater than .5 you are losing in this game, and it
is simply a matter of time until you are completely tapped out!

Now let’s increase the winning payout from two units to five units, as
is demonstrated in the data in Figure 4.6. Here your optimal f is .4, or bet
$1 for every $2.50 in your stake. After 20 sequences of +5, −1, 40 bets, your
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20 TRIALS
f VALUES −−−−→

EVENT 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

START VALUES −−−−→ 20.00 10.00 6.67 5.00 4.00 3.33 2.86 2.50 2.22
2 22.00 12.00 8.67 7.00 6.00 5.33 4.86 4.50 4.22

−1 20.90 10.80 7.37 5.60 4.50 3.73 3.16 2.70 2.32
2 22.99 12.96 9.58 7.84 6.75 5.97 5.37 4.86 4.41

−1 21.84 11.66 8.14 6.27 5.06 4.18 3.49 2.92 2.43
2 24.02 14.00 10.59 8.78 7.59 6.69 5.93 5.25 4.61

−1 22.82 12.60 8.99 7.02 5.70 4.68 3.85 3.15 2.54
2 25.11 15.12 11.69 9.83 8.54 7.49 6.55 5.67 4.82

−1 23 85 13.60 9.94 7.87 6.41 5.25 4.26 3.40 2.65
2 26.24 16.33 12.92 11.01 9.61 8.39 7.24 6.12 5.04

−1 24.92 14.69 10.98 8.81 7.21 5.87 4.71 3.67 2.77
2 27.42 17.63 14.28 12.34 10.81 9.40 8.00 6.61 5.26

−1 26.05 15.87 12.14 9.87 8.11 6.58 5.20 3.97 2.89
2 28.65 19.04 15.78 13.82 12.16 10.53 8.84 7.14 5.50

−1 27.22 17.14 13.41 l.05 9.12 7.37 5.75 4.28 3.02
2 29.94 20.57 17.43 15.47 13.68 11.79 9.77 7.71 5.75

−1 28.44 18.51 14.82 12.38 10.26 8.25 6.35 4.63 3.16
2 31.29 22.21 19.26 17.33 15.39 13.21 10.80 8.33 6.00

−1 29.72 19.99 16.37 13.87 11.55 9.24 7.02 5.00 3.30
2 32.69 23.99 21.29 19.41 17.32 14.79 11.93 9.00 6.27

−1 31.06 21.59 18.09 15.53 12.99 10.35 7.75 5.40 3.45
2 34.17 25.91 23.52 21.74 19.48 16.56 13.18 9.72 6.56

−1 32.46 23.32 19.99 17.39 14.61 11.60 8.57 5.83 3.61
2 35.70 27.98 25.99 24.35 21.92 18.55 14.57 10.49 6.85

−1 33.92 25.18 22.09 19.48 16.44 12.99 9.47 6.30 3.77
2 37.31 30.22 28.72 27.27 24.66 20.78 16.10 11.33 7.16

−1 35.44 27.20 24.41 21.82 18.49 14.54 10.46 6.80 3.94
2 38.99 32.64 31.74 30.54 27.74 23.27 17.79 12.24 7.48

−1 37.04 29.37 26.98 24.44 20.81 16.29 11.56 7.34 4.12
2 40.74 35.25 35.07 34.21 31.21 26.06 19.65 13.22 7.82

−1 38.71 31.72 29.81 27.37 23.41 18.25 12.78 7.93 4.30
2 42.58 38.07 38.75 38.31 35.11 29.19 21.72 14.27 8.17

−1 40.45 34.26 32.94 30.65 26.33 20.43 14.12 0.56 4.49
2 44.49 41.11 42.82 42.91 39.50 32.70 24.00 15.42 8.54

−1 42.27 37.00 36.40 34.33 29.62 22.89 15.60 9.25 4.70
2 46.49 44.40 47.32 40.06 44.44 36.62 26.52 16.65 8.92

−1 44.17 39.96 40.22 38.45 33.33 25.63 17.24 9.99 4.91
2 46.59 47.95 52.28 53.83 49.99 41.01 29.30 17.98 9.32

−1 46.16 43.16 44.44 43.06 37.49 21.71 19.05 10.79 5.13
2 50.77 51.79 57.77 60.29 56.24 45.93 32.38 19.42 9.74

−1 48.23 46.61 49.11 48.23 42.18 32.15 21.05 11.65 5.36

TUR −−−−→ 2.41 4.66 7.37 9.65 10.55 9.65 7.37 4.66 2.41

FIGURE 4.5 Values of f for 20 sequences at +2, −1
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Optimal f 139

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2.00 1.82 1.67 1.54 1.43 1.33 1.25 1.18 1.11 1.05 1.00
4.00 3.82 3.67 3.54 3.43 3.33 3.25 3.18 3.11 3.05 3.00
2.00 1.72 1.47 1.24 1.03 0.83 0.65 0.48 0.31 0.15 0.00
4.00 3.61 3.23 2.85 2.47 2.08 1.69 1.29 0.87 0.44 0.00
2.00 1.62 1.29 1.00 0.74 0.52 0.34 0.19 0.09 0.02 0.00
4.00 3.41 2.84 2.29 1.78 1.30 0.88 0.52 0.24 0.06 0.00
2.00 1.53 1.14 0.80 0.53 0.33 0.18 0.08 0.02 .00 0.00
4.00 3.22 2.50 1.85 1.28 0.81 0.46 0.21 0.07 0.01 0.00
2.00 1.45 1.00 0.65 0.38 0.20 0.09 0.03 0.01 .00 0.00
4.00 3.04 .20 1.49 0.92 0.51 0.24 0.09 0.02 .00 0.00
2.00 1.37 0.88 0.52 0.28 0.13 0.05 0.01 .00 .00 0.00
4.00 2.88 1.94 1.20 0.66 0.32 0.12 0.03 0.01 .00 0.00
2.00 1.29 0.77 0.42 0.20 0.08 0.02 0.01 .00 .00 0.00
4.00 2.72 1.70 0.96 0.48 0.20 0.06 0.01 .00 .00 0.00
2.00 1.22 0.68 0.34 0.14 0.05 0.01 .00 .00 .00 0.00
4.00 2.57 1.50 0.78 0.34 0.12 0.03 0.01 .00 .00 0.00
2.00 1.16 0.60 0.25 0.08 0.03 0.01 .00 .00 .00 0.00
4.00 2.43 1.32 0.62 0.25 0.08 0.02 .00 .00 .00 0.00
2.00 1.09 0.53 0.22 0.07 0.02 0.02 .00 .00 .00 0.00
4.00 2.29 1.16 0.50 0.18 0.05 0.01 .00 .00 .00 0.00
2.00 1.03 0.46 0.18 0.05 0.01 .00 .00 .00 .00 0.00
4.00 2.17 1.02 0.40 0.13 0.03 .00 .00 .00 .00 0.00
2.00 0.98 0.41 0.14 0.04 0.01 .00 .00 .00 .00 0.00
4.00 2.05 0.90 0.33 0.09 0.02 .00 .00 .00 .00 0.00
2.00 0.92 0.36 0.11 0.03 .00 .00 .00 .00 .00 0.00
4.00 1.94 0.79 0.26 0.07 0.01 .00 .00 .00 .00 0.00
2.00 0.87 0.32 0.09 0.02 .00 .00 .00 .00 .00 0.00
4.00 1.83 0.70 0.21 0.05 0.01 .00 .00 .00 .00 0.00
2.00 0.82 0.21 0.07 0.01 .00 .00 .00 .00 .00 0.00
4.00 1.73 0.61 0.17 0.03 .00 .00 .00 .00 .00 0.00
2.00 0.78 0.24 0.06 0.01 .00 .00 .00 .00 .00 0.00
4.00 1.63 0.54 0.14 0.02 .00 .00 .00 .00 .00 0.00
2.00 0.74 0.22 0.05 0.01 .00 .00 .00 .00 .00 0.00
4.00 1.54 0.47 0.11 0.02 .00 .00 .00 .00 .00 0.00
2.00 0.69 0.19 0.04 0.01 .00 .00 .00 .00 .00 0.00
4.00 1.46 0.42 0.09 0.01 .00 .00 .00 .00 .00 0.00
2.00 0.66 0.17 0.03 .00 .00 .00 .00 .00 .00 0.00
4.00 1.38 0.37 0.07 0.01 .00 .00 .00 .00 .00 0.00
2.00 0.62 0.19 0.02 .00 .00 .00 .00 .00 .00 0.00
4.00 1.30 0.32 0.06 0.01 .00 .00 .00 .00 .00 0.00
2.00 0.59 0.13 0.02 .00 .00 .00 .00 .00 .00 0.00

1.00 0.32 0.08 0.01 .00 .00 .00 .00 .00 .00 0.00

$2.50 stake has grown to $127,482, thanks to optimal f . Now look what
happens in this extremely favorable situation if you miss the optimal f by
20%. At f values of .6 and .2 you don’t make one-tenth as much as you do
at .4 in this case! This particular situation, a 50/50 bet paying 5 to 1, has a
mathematical expectation of (5 * .5) + (1 * (−.5)) = 2. Yet if you bet using
an f value greater than .8, you lose money in this situation. Clearly, the
question of what is the correct quantity to bet or trade has been terribly
underrated.

The graphs bear out a few more interesting points. The first is that
at no other fixed fraction will you make more money than optimal f. In
other words, it does not pay to bet $1 for every $2 in your stake in the
above example of +5, −1. In such a case, you would make less money
than if you bet $1 for every $2.50 in your stake. It does not pay to risk

more than the optimal f—in fact, you pay a price to do so! Notice in
Figure 4.7 that you make less at f = .55 than at f = .5. The second interesting
point to notice is how important the biggest loss is in the calculations.
Traders may be incorrectly inclined to use maximum drawdown rather than
biggest loss.
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20 TRIALS
f VALUES −−−−→

EVENT 0.06 0.1 0.15 0.2 0.29 0.3 0.35 0.4 0.45

START VALUES −−−−→ 20.00 10.00 6.67 5.00 4.00 3.33 2.86 2.90 2.22
5 25.00 15.00 11.67 10.00 9.00 8.33 7.86 7.5O 7.22

−1 23.75 13.50 3.92 8.00 6.75 5.83 5.11 4.50 3.97
5 29.89 20.25 17.35 16.00 15.19 14.58 14.04 13.50 12.91

−1 28.20 18.23 14.75 12.80 11.39 10.21 9.13 8.10 7.10
5 35.25 27.34 25.81 25.60 25.63 25.52 25.10 24.30 23.08

−1 33.49 24.60 21.94 20.48 19.22 17.86 16.32 14.50 12.69
5 41.66 36.91 38.40 40.96 43.25 44.66 44.87 43.74 41.25

−1 39.77 33.22 32.64 32.77 32.44 31.26 29.17 26.24 22.69
5 49.71 49.82 57.12 65.54 72.98 78.16 80.21 78.73 73.73

−1 47.23 44.84 48.55 52.43 54.74 54.71 52.14 47.24 40.55
5 59.03 67.26 84.96 104.86 123.16 136.78 143.38 141.72 131.80

−1 56.08 60.53 72.22 83.89 92.37 96.74 93.20 85.03 72.49
5 70.10 90.80 126.38 167.77 207.83 239.36 256.30 255.09 230.58

−1 66.60 81.72 107.43 134.22 155.87 167.55 166.59 153.06 129.57
5 83.25 122.58 187.99 268.44 350.71 418.88 458.13 459.17 421.11

−1 79.09 110.32 199.80 214.75 263.03 293.21 297.78 275.50 231.61
5 98.86 165.49 279.64 429.50 591.82 733.03 818.90 826.50 752.73

−1 93.91 148.94 237.70 343.60 443.87 513.12 532.29 496.90 414.00
5 117.39 223.41 415.97 687.19 998.70 1282.81 1463.79 1487.69 1345.50

−1 111.52 201.07 353.57 549.76 749.03 897.96 951.46 892.62 740.03
5 139.40 301.60 618.75 1099.51 1685.31 2244.91 2616.53 2677.85 2405.09

−1 132.43 271.44 525.94 879.61 1263.98 1571.44 1700.74 1606.71 1322.60
5 165.54 407.16 920.39 1759.22 2843.96 3928.60 4677.04 4820.13 4299.10

−1 157.27 366.44 782.33 1407.37 2132.97 2750.02 3040.08 2892.08 2364.50
5 196.58 549.66 1369.09 2814.75 4799.19 6875.04 8360.21 8676.24 7684.64

−1 186.75 494.70 1163.72 2251.80 3599.39 4812.53 5434.14 5205.74 4226.55
5 233.44 742.05 2036.51 4503.60 8098.63 12031.32 14943.88 15617.22 13736.29

−1 221.77 667.84 1731.04 3602.88 6073.97 9421.93 9713.52 9370.33 7554.96
5 277.21 1001.76 3029.31 7205.76 13666.44 21054.82 26712.18 2811.00 24553.62

−1 263.35 901.58 2574.92 5764.61 10249.83 14738.37 17362.92 16866.60 13504.49
5 329.19 1352.38 4506.11 11529.22 23062.12 36845.93 47748.02 50599.80 43889.60

−1 312.73 1217.14 3830.19 9223.37 17296.59 25792.15 31036.22 30359.88 24139.28
5 390.91 1825.71 6702.83 18446.74 38917.33 64480.37 85349.59 91079.65 78452.66

−1 371.37 1643.14 5697.41 14757.40 29188.00 45136.26 55477.24 54647.79 43148.96
5 464.21 2464.71 9970.46 29514.79 65672.99 112840.65 152562.40 163943.37 140234.12

−1 441.00 2218.24 8474.89 23611.83 49254.74 78988.46 99165.56 98366.02 77128.77
5 551.25 3327.35 14831.06 47723.66 110823.17 197471.14 272705.29 295098.06 250668.50

−1 523.68 2994.62 12606.40 37778.93 83117.38 138229.80 177258.44 177058.84 137867.67
5 654.60 4491.93 22061.21 75557.86 187014.10 345574.49 487460.70 531176.51 448069.94

−1 621.87 4042.74 18752.03 60446.29 140260.58 241902.14 316849.46 318705.91 246438.47

TWR −−−−→ 31.09 404.27 2812.80 12089.26 35065.14 72570.64 110897.31 127482.36 110897.31

FIGURE 4.6 Values of f for 20 sequences at +5, −1



JWDD035-04 JWDD035-Vince February 22, 2007 17:29 Char Count= 0

Optimal f 141

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2.00 1.82 1.67 1.54 1.43 1.33 1.25 1.18 1.11 1.05 1.00
7.00 6.82 6.67 6.54 6.43 6.33 6.25 6.18 6.11 6.05 6.00
3.50 3.07 2.67 2.29 1.93 1.59 1.25 0.93 0.61 0.30 0.00

12.25 11.51 10.67 9.73 8.68 7.52 6.25 4.86 3.36 1.74 0.00
6.13 5.18 4.27 3.40 2.60 1.88 1.25 0.73 0.34 0.09 0.00

21.44 19.42 17.07 14.47 11.72 8.93 6.25 3.83 1.85 0.50 0.00
10.72 8.74 6.83 5.06 3.51 2.23 1.25 0.57 0.18 0.03 0.00
37.52 32.76 27.31 21.52 15.82 10.61 6.25 3.02 1.02 0.14 0.00
18.76 14.74 10.92 7.53 4.75 2.65 1.25 0.45 0.10 0.01 0.00
65.65 55.29 43.69 32.01 21.35 12.59 6.25 2.38 0.56 0.04 0.00
32.83 24.88 17.48 11.20 6.41 3.15 1.25 0.36 0.06 .00 0.00

114.89 93.30 69.91 47.62 28.83 14.96 6.25 1.87 0.31 0.01 0.00
57.45 41.99 27.96 16.67 8.65 3.74 1.25 0.28 0.03 .00 0.00

201.06 157.45 111.85 70.83 38.92 17.76 6.25 1.47 0.17 .00 0.00
100.53 70.85 44.74 24.79 11.67 4.44 1.25 0.22 0.02 .00 0.00
351.86 265.69 178.96 105.36 52.54 21.09 6.25 1.16 0.09 .00 0.00
175.93 119.56 71.58 36.88 15.76 5.27 1.25 0.17 0.01 .00 0.00
615.75 448.35 286.33 156.72 70.92 25.04 6.25 0.91 0.05 .00 0.00
307.87 201.76 114.53 54.85 21.28 6.26 1.25 0.14 0.01 .00 0.00

1077.56 756.59 458.13 233.12 95.75 29.74 6.25 0.72 0.03 .00 0.00
538.78 340.47 183.25 81.59 28.72 7.43 1.25 0.11 .00 .00 0.00

1885.73 1276.75 733.01 346.77 129.26 35.32 6.25 0.57 0.02 .00 0.00
942.86 574.54 293.20 121.37 38.78 8.83 1.25 0.08 .00 .00 0.00

3300.02 2154.52 1172.81 515.82 174.50 41.94 6.25 0.45 0.01 .00 0.00
1650.01 969.53 469.12 180.54 52.35 10.48 1.25 0.07 .00 .00 0.00
5775.04 3635.75 1876.50 767.29 235.57 49.80 6.25 0.35 .00 .00 0.00
2887.52 1636.09 750.60 268.55 70.67 12.45 1.25 0.05 .00 .00 0.00

10106.31 6135.33 3002.40 1141.34 318.02 59.14 6.25 0.28 .00 .00 0.00
5053.16 2760.90 1200.96 399.47 95.41 14.78 1.25 0.04 .00 .00 0.00

17686.04 10353.36 4803.84 1697.75 429.33 70.23 6.25 0.22 .00 .00 0.00
8843.02 4659.01 1921.54 594.21 128.80 17.56 1.25 0.03 .00 .00 0.00

30950.58 17471.30 7686.14 2525.40 579.59 83.39 6.25 0.17 .00 .00 0.00
15475.29 7862.09 3074.46 883.89 173.88 20.85 1.25 0.03 .00 .00 0.00
54163.51 29482.82 12297.83 3756.53 782.45 99.03 6.25 0.14 .00 .00 0.00
27081.76 13267.27 4919.13 1314.79 234.73 24.76 1.25 0.02 .00 .00 0.00
94786.15 49752.27 19676.53 5587.84 1056.30 117.60 6.25 0.11 .00 .00 0.00
47393.07 22388.52 7870.61 1955.74 316.89 29.40 1.25 0.02 .00 .00 0.00

165875.76 83956.95 31482.44 8311.92 1426.01 139.65 6.25 0.08 .00 .00 0.00
82937.88 37780.63 12592.98 2909.17 427.80 34.91 1.25 0.01 .00 .00 0.00

290282.57 141677.35 50371.91 12363.97 1925.11 165.83 6.25 0.07 .00 .00 0.00
145141.29 63754.81 20148.76 4327.39 577.53 41.46 1.25 0.01 .00 .00 0.00

72570.64 35065.14 12089.26 2812.80 404.27 31.09 1.00 0.01 .00 .00 0.00

DRAWDOWN AND LARGEST LOSS WITH f

First, if you have f = 1.00, then as soon as the biggest loss is encountered,
you would be tapped out. This is as it should be. You want f to be bounded
at 0 (nothing at stake) and 1 (the lowest amount at stake where you would
lose 100%).

Second, in an independent trials process the sequence of trades that
results in the drawdown is, in effect, arbitrary (as a result of the indepen-
dence). Suppose we toss a coin six times, and we get heads three times and
tails three times. Suppose that we win $1 every time heads comes up and
lose $1 every time tails comes up. Considering all possible sequences here
our drawdown could be $1, $2, or $3, the extreme case where all losses
bunch together. If we went through this exercise once and came up with
a $2 drawdown, it wouldn’t mean anything. Since drawdown is an extreme

case situation, and we are speaking of exact sequences of trades that are
independent, we have to assume that the extreme case can be all losses
bunching together in a row (the extreme worst case in the sample space).
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20 TRIALS
f VALUES −−−−→

EVENT 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

START VALUES −−−−→ 20.00 10.00 6.67 5.00 4.00 3.33 2.86 2.50 2.22
-1 19.00 9.00 5.67 4.00 3.00 2.33 1.86 1.50 1.22
-1 18.05 8.10 4.82 3.20 2.25 1.63 1.21 0.90 1.67
-1 17.15 7.29 4.09 2.56 1.69 1.14 0.78 0.54 0.37
-1 16.29 6.56 3.48 2.05 1.27 0.80 0.51 0.32 0.20
-1 15.48 5.90 2.96 1.64 0.95 0.56 0.33 0.19 0.11
-1 14.70 5.31 2.51 1.31 0.71 0.39 0.22 0.12 0.06
-1 13.97 4.78 2.14 1.05 0.53 0.27 0.14 0.07 0.03
-1 13.27 4.30 1.82 0.84 0.40 0.19 0.09 0.04 0.02
-1 12.60 3.87 1.54 0.67 0.30 0.13 0.06 0.03 0.01
-1 11.97 3.49 1.31 0.54 0.23 0.09 0.04 0.02 0.01
-1 12.57 3.84 1.51 0.64 0.28 0.12 0.05 0.02 0.01
-1 13.20 4.22 1.74 0.77 0.35 0.16 0.07 0.03 0.01
1 13.86 4.64 2.00 0.93 0.44 0.21 0.09 0.04 0.02
1 14.56 5.11 2.30 1.11 0.55 0.27 0.13 0.06 0.02
1 15.28 5.62 2.64 1.34 0.69 0.35 0.17 0.08 0.04
1 16.05 6.18 3.04 1.60 0.86 0.45 0.23 0.11 0.05
1 16.05 6.79 3.49 1.92 1.07 0.59 0.31 0.16 0.05
1 17.69 7.47 4.01 2.31 1.34 0.77 0.42 0.22 0.11
1 18.58 8.22 4.62 2.77 1.68 1.00 0.57 0.31 0.16
1 19.51 9.04 5.31 3.32 2.10 1.30 0.77 0.44 0.23
1 20.48 9.95 6.11 3.99 2.62 1.69 1.04 0.61 0.34
1 21.50 10.94 7.02 4.79 3.28 2.19 1.41 0.86 0.49
1 22.58 12.04 8.08 5.74 4.10 2.85 1.90 1.20 0.71
1 23.71 13.24 9.29 6.89 5.12 3.71 2.57 1.68 1.02
1 24.89 14.57 10.68 8.27 6.40 4.82 3.47 2.35 1.48
1 26.14 16.02 12.28 9.93 8.00 6.27 4.68 3.29 2.15
1 27.45 17.62 14.12 11.91 10.00 8.15 6.32 4.61 3.12
1 28.82 19.39 16.24 14.29 12.50 10.59 8.53 6.45 4.52
1 30.26 21.32 18.68 17.15 15.63 13.77 11.52 9.03 6.55
1 31.77 23.46 21.48 20.58 19.54 17.89 15.55 12.65 9.50
1 33.36 25.80 24.70 24.70 24.42 23.26 20.99 17.71 13.78
1 35.03 28.38 28.41 29.64 30.53 30.24 28.34 24.79 19.98
1 36.79 31.22 32.67 35.57 38.16 39.31 38.26 34.71 28.97
1 38.62 34.34 34.57 42.68 47.70 51.11 51.65 48.59 42.00
1 40.55 37.78 43.21 51.22 59.62 66.44 69.73 68.02 60.90
1 42.58 41.56 49.69 61.46 74.53 86.37 94.13 95.23 80.30
1 44.71 45.71 57.14 73.75 93.16 112.29 127.08 133.32 128.04
1 46.94 50.28 65.71 88.50 116.45 145.97 171.56 186.65 185.66
1 49.29 55.31 75.57 106.20 145.57 189.77 231.32 261.32 269.21
1 51.75 60.84 86.90 127.44 181.96 246.69 312.66 365.84 390.35

TWR −−−−→ 2.59 6.08 13.04 25.49 45.49 74.01 109.43 146.34 175.66

FIGURE 4.7 Values of f for 10 sequences at −1, 30 at +1
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0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2.00 1.82 1.67 1.54 1.43 1.33 1.25 1.18 1.11 1.05 1.00
1.00 0.82 0.67 0.54 0.43 0.33 0.25 0.18 0.11 0.05 0.00
0.50 0.37 0.27 0.19 0.13 0.08 0.05 0.03 0.01 .00 0.00
0.25 0.17 0.11 0.07 0.04 0.02 0.01 .00 .00 .00 0.00
0.13 0.07 0.04 0.02 0.01 0.01 .00 .00 .00 .00 0.00
0.06 0.03 0.02 0.01 .00 .00 .00 .00 .00 .00 0.00
0.03 0.02 0.01 .00 .00 .00 .00 .00 .00 .00 0.00
0.02 0.01 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.01 .00 .00 .00 .00 .00 .00 .00 .00 .00 0.00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 0.00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 0.00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 0.00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.01 .00 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.01 .00 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.01 0.01 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.02 0.01 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.03 0.01 .00 .00 .00 .00 .00 .00 .00 .00 0.00
0.05 0.02 0.01 .00 .00 .00 .00 .00 .00 .00 0.00
0.08 0.03 0.01 .00 .00 .00 .00 .00 .00 .00 0.00
0.11 0.05 0.02 0.01 .00 .00 .00 .00 .00 .00 0.00
0.17 0.08 0.03 0.01 .00 .00 .00 .00 .00 .00 0.00
0.25 0.12 0.05 0.02 .00 .00 .00 .00 .00 .00 0.00
0.38 0.18 0.08 0.03 0.01 .00 .00 .00 .00 .00 0.00
0.57 0.29 0.13 0.05 0.01 .00 .00 .00 .00 .00 0.00
0.86 0.44 0.20 0.08 0.02 0.01 .00 .00 .00 .00 0.00
1.28 0.69 0.32 0.13 0.04 0.01 .00 .00 .00 .00 0.00
1.92 1.07 0.52 0.21 0.07 0.02 .00 .00 .00 .00 0.00
2.89 1.65 0.83 0.35 0.12 0.03 0.01 .00 .00 .00 0.00
4.33 2.56 1.32 0.58 0.20 0.05 0.01 .00 .00 .00 0.00
6.49 3.97 2.11 0.95 0.34 0.09 0.02 .00 .00 .00 0.00
9.74 6.15 3.38 1.57 0.58 0.16 0.03 .00 .00 .00 0.00

14.61 9.53 5.41 2.58 0.99 0.28 0.05 0.01 .00 .00 0.00
21.92 14.77 8.65 4.26 1.68 0.49 0.10 0.01 .00 .00 0.00
32.88 22.89 13.85 7.04 2.86 0.87 0.17 0.02 .00 .00 0.00
49.32 35.49 22.15 11.61 4.87 1.51 8.31 0.03 .00 .00 0.00
73.98 55.00 35.45 19.16 8.28 2.65 0.56 0.06 .00 .00 0.00

110.97 85.25 56.71 31.61 14.07 4.64 1.00 0.11 .00 .00 0.00
166.45 132.14 90.74 52.16 23.92 8.12 1.80 0.21 0.01 .00 0.00
249.68 204.82 145.19 86.06 40.66 14.21 3.24 0.38 0.01 .00 0.00
374.51 317.48 232.30 142.00 69.12 24.86 5.83 0.70 0.03 .00 0.00

187.26 174.61 139.38 92.30 48.38 18.64 4.66 0.60 0.02 .00 0.00

Just because we experienced one exact sequence of six coin flips wherein
the drawdown was $2 doesn’t mean we can use that as any kind of a mean-
ingful benchmark, since the next exact sequence is equally likely to be any
other possible sequence as it is to be the sequence we are basing this draw-
down figure on.

Return to the coin toss, whereby if we win, we win $1, and if we lose,
we lose $1. Suppose 20 tosses have gone by and you have experienced a
drawdown of $5 at one point. What does this mean? Does this mean that we
can expect “about” a $5 drawdown on the next 20 tosses? Since coin tossing
is an independent trials process (as trading is for the most part), the answer
to all of these questions is no. The only estimating we can perform here is
one based on the losing streaks involved. With a 20-coin toss we can figure
probabilities of getting 20 tosses against us, 19 tosses, and so on. But what
we are talking about with drawdown is absolute worst case—an extreme.
What we are looking for is an answer to the question, “How far out on the
tails of the distribution, to the adverse side, is the limit?” The answer is that
there is no limit—all future coin tosses, the next 20 tosses and all sequences
of 20 tosses, could go against us. It’s highly unlikely, but it could happen. To
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assume that there is a maximum drawdown that we can expect is simply an
illusion. The idea is propagated for a trader’s peace of mind. Statistically,
it has no significance. If we are trading on a fixed fractional basis (where
the drawdown is also a function of when it happens—i.e., how big the
account was when the drawdown started), then drawdown is absolutely
meaningless.

Third, the drawdown under fixed fraction is not the drawdown we
would encounter on a constant contract basis (i.e., nonreinvestment). This
was demonstrated in the previous chapter. Fourth and finally, in this exer-
cise we are trying to discern only how much to commit to the next trade, not
the next sequence of trades. Drawdown is a sequence of trades—should the
maximum drawdown occur on one trade, then that one trade would also be
the biggest losing trade.

If you want to measure the downside of a system, then you should
look at the biggest losing trade, since drawdown is arbitrary and, in effect,
meaningless. This becomes even more so when you are considering fixed
fractional (i.e., reinvestment of returns) trading. Many traders try to “limit
their drawdown” either consciously (as when they are designing trading
systems) or subconsciously. This is understandable, as drawdown is the
trader’s nemesis. Yet we see that, as a result of its arbitrary nature, draw-
down is uncontrollable. What is controllable, at least to an extent, is the
largest loss. As you have seen, optimal f is a function of the largest loss.
It is possible to control your largest loss by many techniques, such as only
day-trading, using options, and so on. The point here is that you can control
your largest loss as well as your frequency of large losses (at least to some
extent).

It is important to note at this point that the drawdown you can expect
with fixed fractional trading, as a percentage retracement of your account
equity, historically would have been at least as much as f percent. In other
words, if f is .55, then your drawdown would have been at least 55% of your
equity (leaving you with 45% at one point). This is so because if you are trad-
ing at the optimal f, as soon as your biggest loss is hit, you would experience
the drawdown equivalent to f. Again, assuming f for a system is .55, and
assuming that translates into trading one contract for every $10,000, your
biggest loss would be $5,500. As should by now be obvious, when the biggest
loss was encountered (again we’re speaking historically, i.e., about what
would have happened), you would have lost $5,500 for each contract you had
on, and you would have had one contract on for every $10,000 in the account.
Therefore, at that point your drawdown would have been 55% of equity. How-
ever, it is possible that the drawdown would continue, that the next trade or
series of trades would draw your account down even more. Therefore, the
better a system, the higher the f . The higher the f , generally the higher the
drawdown, since the drawdown (as a percentage) can never be any less than
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the f . There is a paradox involved here, in that if a system is good enough
to generate an optimal f that is a high percentage, then the drawdown for
such a good system will also be quite high. While optimal f allows you to
experience the greatest geometric growth, it also gives you enough rope to
hang yourself.

CONSEQUENCES OF STRAYING TOO FAR
FROM THE OPTIMAL f

The fact that the difference between being at the optimal value for f and
being at any other value increases geometrically over time is particularly
important to gamblers. Time in this sense is synonymous with action. For
years, a simple system for blackjack has been to simply keep track of how
many fives have fallen from the deck. The fewer the fives contained in
the remaining deck, the greater is the player’s advantage over the casino.
Depending on the rules of the casino, this advantage could range to almost
as high as 3.6% for a deck with no remaining fives. Roughly, then, the optimal
f for this strategy would range from 0 to about .075 to .08 for each hand,
depending on how many fives had fallen (i.e., you would use a different
f value for each different number of remaining fives in a deck. This is a
dependent trials process, and therefore your optimal betting strategy would
be to trade variable fraction based on the optimal f for each scenario of
the ratio of fives left in the deck). If you go into the casino and play through
only one deck, you will not be penalized for deviating from the optimal f

(as you would if you were to play 1,000 hands). It is incorrect to think that if
you have an edge on a particular hand, you should simply increase the size
of your wager. How much you increase it by is paramount.

To illustrate, if you have a stake of $500 and start playing at a table
where $5 is the minimum bet, your minimum bet is therefore 1% of your
stake. If you encounter, during the course of the deck, a situation where all
fives are depleted from the deck, you then have an edge of anywhere from
3 to 3.6%, depending on the house rules. Say your optimal f now is .08, or
one bet per every $62.50 in your stake ($5, the maximum possible loss on
the next hand, divided by .08).

Suppose you had been breaking even to this point in the game and
still had $500 in your stake. You would then bet $40 on the next hand
($500/$62.50 * $5). If you were to bet $45, you could expect a decrease
in performance. There is no benefit to betting the extra $5 unit. This de-
crease in performance grows geometrically over time. If you calculate your
optimal f on each hand, and slightly over- or underbet, you can expect a
decrease in performance geometrically proportional to the length of the
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game (the action). If you were to bet, say, $100, on the situation described
above, you would be at an f factor way out to the right of the optimal f. You
wouldn’t stand a chance over time—no matter how good a card counter
you were! If you are too far to the right of the optimal f, even if you know
exactly what cards remain in the deck, you are in a losing situation!

Next are four more charts, which, if you still do not see, drive home
the importance of being near the optimal f. These are equity curve charts.
An equity curve is simply the total equity of an account (plotted on the Y
axis) over a period of time or series of trades (the X axis). On these four
charts, we assume an account starts out with 10 units. Then the following
sequence of 21 trades/bets is encountered:

1, 2, 1, −1, 3, 2, −1, −2, −3, 1, −2, 3, 1, 1, 2, 3, 3, −1, 2, −1, 3

If you have done the calculations yourself, you will find that the optimal f

is .6, or bet one unit for every five in your stake (since the biggest losing
trade is for three units).

The first equity curve (Figure 4.8) shows this sequence on a constant
one-contract basis. Nice consistency. No roller-coaster drawdowns. No ge-
ometric growth, either.

Next comes an equity curve with f at .3, or bet one unit for every 10
units in your stake (Figure 4.9). Makes a little more than constant contract.

On the third equity curve graph you see the sequence at the optimal f

value of .6, or one bet for every five in your stake (Figure 4.10). Notice how
much more it has made than at f = .3.

The final equity curve shows the sequence of bets at f = .9, or one
bet for every 31/3 units in your stake (Figure 4.11). Notice how quickly the
equity took off until it hit the drawdown periods (7 through 12). When f is
too high, the market systems get beaten down so low during a drawdown
that it takes far longer to come out of them, if ever, than at the optimal
values.

Even at the optimal values, the drawdowns can be quite severe for any
market/system. It is not unusual for a market system trading one contract
under optimal f to see 80 to 95% of its equity erased in the bad drawdowns.
But notice how at the optimal values the equity curve is able to recover in
short order and go on to higher ground. These four charts have all traded
the same sequence of trades, yet look at how using the optimal f affects
performance, particularly after drawdowns.

Obviously, the greater an account’s capitalization, the more accurately
its traders can stick to optimal f, as the dollars per single contract required
are a smaller percentage of the total equity. For example, suppose optimal
f for a given market system dictates we trade one contract for every $5,000
in an account. If an account starts out with $10,000 equity, then it can gain
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(or lose) 50% before a quantity adjustment is necessary. Contrast this to a
$500,000 account, where there would be a contract adjustment for every 1%
change in equity. Clearly, the larger account can take advantage of the bene-
fits provided by optimal f better than a smaller account can. Theoretically,
optimal f assumes you can trade in infinitely divisible quantities, which is
not the case in real life, where the smallest quantity you can trade in is a
single contract. In the asymptotic sense this does not matter. In the real-life
integer-bet scenario, a good case could be presented for trading a market
system that requires as small a percentage of the account equity as possi-
ble, especially for smaller accounts. But there is a trade-off here as well.
Since we are striving to trade in markets that would require us to trade in
greater multiples, we will be paying greater commissions, execution costs,
and slippage. Bear in mind that the amount required per contract in real
life is the greater of the initial margin requirement or the dollar amount per
contract dictated by the optimal f.

As the charts bear out, you pay a substantial penalty for deviating from
the optimal fixed dollar fraction. Being at the right value for f is more

important than how good your trading system is (provided of course that
the system is profitable on a single-contract basis)! Therefore, the finer you
can cut it (i.e., the more frequently you adjust the size of the positions you
are trading, so as to align yourself with what the optimal f dictates), the
better off you are. Most accounts, therefore, would be better off trading
the smaller markets. Corn may not seem like a very exciting market to you
compared to the S&Ps. Yet, for most people, the corn market can get awfully
exciting if they have a few hundred contracts on.

Throughout the text, we refigure the amount of contracts you should
have on for the next trade based on the dictates of the optimal f for a
given market system. However, the finer you can cut it, the better. If you
refigure how many contracts you should have on every day as opposed to
simply every week, you will be that much better off. If you refigure how many
contracts you should have on every hour as opposed to every day, you will be
even better off. However, there is the old trade-off of commissions, slippage,
and fees, not to mention the cost of mistakes, which will be more likely the
more frequently you realign yourself with the dictates of the optimal f. Bear
in mind that realigning yourself on every trade is not the only way to do it,
and the finer (more frequently) you can cut it—the more often you realign
yourself with the dictates of the optimal f —the more the benefits of the
optimal f will work for you. Ideally, you will realign yourself with optimal
f on as close to a continuous basis as possible with respect to the trade-offs
of commissions, fees, slippage, and the costs of human error.

It is doubtful whether anyone in the history of the markets has been
able to religiously stick to trading on a constant contract basis. If someone
quadrupled their money, would they still stick to trading in the same exact
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FIGURE 4.8 Equity curve for 21 trades on a constant contract basis

FIGURE 4.9 Equity curve for 21 trades with f = .30, or 1 contract for every 10
units in the stake
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FIGURE 4.10 Equity curve for 21 trades with f = .60, or 1 contract for every
5 units in the stake

FIGURE 4.11 Equity curve for 21 trades with f = .90, or 1 contract for every 3.33
units in the stake
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size? Conversely, would someone trading 10 contracts on every trade who
was suddenly cut down to trading less than 10 contracts inject enough
capital into the account to margin 10 contracts again on the next trade?
It’s quite unlikely. Any time a trader trading on a constant contract basis
deviates from always trading the same constant contract size, the problem
of what quantities to trade in arises. This is so whether the trader recognizes
this problem or not. As you have seen demonstrated in this chapter, this is a
problem for the trader. Constant contract trading is not the solution, because
you can never experience geometric growth trading constant contract. So,
like it or not, the question of what quantity to take on the next trade is
inevitable for everyone. To simply select an arbitrary quantity is a costly
mistake. Optimal f is factual; it is mathematically correct.

Are there traders out there who aren’t planning on reinvesting their
profits? Unless we’re looking at optimal f via the highest TWR, we wouldn’t
know a good market system.

If a system is good enough, it is often possible to have a value for f that
implies applying a dollar amount per contract that is less than the initial
margin. Remember that f gives us the peak of the curve; to go off to the
right of the peak (take on more contracts) provides no benefit. But the trader
need not use that value for f that puts him at the peak; he may want to go
to the left of the peak (i.e., apply more dollars in equity to each contract he
puts on). You could, for instance, divide your account into two equal parts
and resolve to keep one part cash and one part as dollars to apply to trading
positions and use f on that half. This in effect would amount to a half f or
fractional f strategy.

By now it should be obvious that we have a working range for usable
values of f, that range being from zero to the optimal value. The higher
you go within this range, the greater the return (up to but not beyond the
optimal f ) and the greater the risk (the greater the expected drawdowns in
size—not, however, in frequency). The lower you go in this range, the less the
risk (again in terms of extent but not frequency of drawdowns), and the less
the potential returns. However, as you move down this range toward zero,
the greater the probability is that an account will be profitable (remember
that a constant-contract-based account has a greater probability of being
profitable than a fractional f one). Ziemba’s Gambling Times articles on
Kelly demonstrated that at smaller profit targets the half Kelly was more

apt to reach these levels before halving than was a full Kelly bet. In other

words, the fractional Kelly (fractional f) bet is safer—it has less variance

in the final outcome after X bets. This ability to choose a fraction of the

optimal f (choosing a value between 0 and the optimal f) allows you to

have any desired risk/return trade-off that you like.

Referring back to our four equity curve charts where the optimal f = .60,
notice how nice and smooth the half f chart of f = .30 is. Half f makes for
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a much smoother equity curve than does full f. Of course, the trade-off is
less return—again, a difference that grows as time passes.

Here, a word of caution is in order. Just as there is a price to be paid (in
reduced return and greater drawdowns) for being too far to the right of the
peak of the f curve (i.e., too many contracts on), there is also a price to be
paid for being to the left of the peak of the f curve (i.e., too few contracts
on). This price is not as steep as being too far to the right, so if you must
err, err to the left.

As you move to the left of the peak of the curve (i.e., allocate more

dollars per contract) you reduce your drawdowns arithmetically. How-

ever, you also reduce your returns geometrically. Reducing your returns
geometrically is the price you pay for being to the left of the optimal f

on the f curve. However, using the fractional f still makes good sense in
many cases. When viewed from the perspective of time required to reach a
specific goal (as opposed to absolute gain), the fractional f strategy makes
a great deal of sense. Very often, a fractional f strategy will not take much
longer to reach a specific goal than will the full f (the height of the goal and
what specific fraction of f you choose will determine how much longer).
If minimizing the time required to reach a specific goal times the potential
drawdown as a percentage of equity retracement is your priority, then the
fractional f strategy is most likely for you.

Aside from, or in addition to, diluting the optimal f by using a percent-
age or fraction of the optimal f, you could diversify into other markets and
systems (as was just done by putting 50% of the account into cash, as if cash
were another market or system).

EQUALIZING OPTIMAL f

Optimal f will yield the greatest geometric growth on a stream of out-
comes. This is a mathematical fact. Consider the hypothetical stream of
outcomes:

+2, −3, +10, −5

This is a stream from which we can determine our optimal f as .17, or
to bet one unit for every $29.41 in equity. Doing so on such a stream will
yield the greatest growth on our equity.

Consider for a moment that this stream represents the trade profits and
losses (P&Ls) on one share of stock. Optimally, we should buy one share
of stock for every $29.41 that we have in account equity, regardless of what
the current stock price is. But suppose the current stock price is $100 per
share. Further, suppose the stock was $20 per share when the first two
trades occurred and was $50 per share when the last two trades occurred.
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Recall that with optimal f we are using the stream of past trade P&Ls
as a proxy for the distribution of expected trade P&Ls currently. Therefore,
we can preprocess the trade P&L data to reflect this by converting the past
trade P&L data to reflect a commensurate percentage gain or loss based
upon the current price.

For our first two trades, which occurred at a stock price of $20 per share,
the $2 gain corresponds to a 10% gain and the $3 loss corresponds to a 15%
loss. For the last two trades, taken at a stock price of $50 per share, the $10
gain corresponds to a 20% gain and the $5 loss corresponds to a 10% loss.

The formulas to convert raw trade P&Ls to percentage gains and losses
for longs and shorts are as follows:

P&L% = Exit Price/Entry Price −1 (for longs) (4.10a)

P&L% = Entry Price/Exit Price −1 (for shorts) (4.10b)

or we can use the following formula to convert both longs and shorts:

P&L% = P&L in Points/Entry Price (4.11)

Thus, for our four hypothetical trades, we now have the following
stream of percentage gains and losses (assuming all trades are long trades):

+.1, −.15, +.2, −.1

We call this new stream of translated P&Ls the equalized data, because
it is equalized to the price of the underlying instrument when the trade
occurred.

To account for commissions and slippage, you must adjust the exit
price downward in Equation (4.10a) for an amount commensurate with the
amount of the commissions and slippage. Likewise, you should adjust the
exit price upward in (4.10b). If you are using (4.11), you must deduct the
amount of the commissions and slippage (in points again) from the numer-
ator P&L in Points.

Next, we determine our optimal f on these percentage gains and losses.
The f that is optimal is .09. We must now convert this optimal f of .09 into
a dollar amount based upon the current stock price. This is accomplished
by the following formula:

f $ = Biggest % Loss * Current Price * $per Point/− f (4.12)

Thus, since our biggest percentage loss was −.15, the current price is
$100 per share, and the number of dollars per full point is 1 (since we are
dealing with buying only one share), we can determine our f $ as:

f $ = −.15 * 100 * 1/−.09

= −15/−.09

= 166.67
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Thus, we would optimally buy one share for every $166.67 in account
equity. If we used 100 shares as our unit size, the only variable affected would
have been the number of dollars per full point, which would have been 100.
The resulting f $ would have been $16,666.67 in equity for every 100 shares.

Suppose now that the stock went down to $3 per share. Our f $ equation
would be exactly the same except for the current price variable, which
would now be 3. Thus, the amount to finance one share by becomes:

f $ = −.15 * 3 * 1/−.09

= −.45/−.09

= 5

We optimally would buy one share for every $5 we had in account equity.
Notice that the optimal f does not change with the current price of

the stock. It remains at .09. However, the f $ changes continuously as the
price of the stock changes. This doesn’t mean that you must alter a position
you are already in on a daily basis, but it does make it more likely to be
beneficial that you do so. As an example, if you are long a given stock and it
declines, the dollars that you should allocate to one unit (100 shares in this
case) of this stock will decline as well, with the optimal f determined off
of equalized data. If your optimal f is determined off of the raw trade P&L
data, it will not decline. In both cases, your daily equity is declining. Using
the equalized optimal f makes it more likely that adjusting your position
size daily will be beneficial.

Equalizing the data for your optimal f necessitates changes in the by-
products. We have already seen that both the optimal f and the geometric
mean (and hence the TWR) change. The arithmetic average trade changes
because now it, too, must be based on the idea that all trades in the past
must be adjusted as if they had occurred from the current price. Thus, in
our hypothetical example of outcomes on one share of +2, −3, +10, and
−5, we have an average trade of $1. When we take our percentage gains and
losses of +.1, −15, +.2, and −.1, we have an average trade (in percent) of
+.5. At $100 per share, this translates into an average trade of 100 * .05 or
$5 per trade. At $3 per share, the average trade becomes $.15(3 * .05).

The geometric average trade changes as well.

GAT = G * (Biggest Loss/− f )

where: G = Geometric mean − 1.
f = Optimal fixed fraction.

(and, of course, our biggest loss is always a negative number). This equation
is the equivalent of:

GAT = (geometric mean − 1) * f $
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We have already obtained a new geometric mean by equalizing the past
data. The f $ variable, which is constant when we do not equalize the past
data, now changes continuously, as it is a function of the current underlying
price. Hence, our geometric average trade changes continuously as the price
of the underlying instrument changes.

Our threshold to the geometric also must be changed to reflect the
equalized data.

T = AAT/GAT * Biggest Loss/− f (4.13)

where: T = The threshold to the geometric.
AAT = The arithmetic average trade.
GAT = The geometric average trade.

f = The optimal f (0 to 1).

This equation can also be rewritten as:

T = AAT/GAT * f $ (4.13a)

Now, not only do the AAT and GAT variables change continuously as
the price of the underlying changes, so too does the f $ variable.

Finally, when putting together a portfolio of market systems we must
figure daily HPRs. These too are a function of f $:

Daily HPR = D$/ f $ + 1 (4.14)

where: D$ = The dollar gain or loss on 1 unit from the previous day.
This is equal to (Tonight’s Close – Last Night’s Close) *
Dollars per Point.

f $ = The current optimal f in dollars, calculated from
Equation (4.12). Here, however, the current price variable
is last night’s close.

For example, suppose a stock tonight closed at $99 per share. Last night it
was $102 per share. Our biggest percentage loss is −15. If our f is .09, then
our f $ is:

f $ = −.15 * 102 * 1/−.09
= −15.3/−.09
= 170

Since we are dealing with only 1 share, our dollars per point value is $1. We
can now determine our daily HPR for today as:

Daily HPR = (99 − 102) * 1/170 + 1
= −3/170 + 1
= −.01764705882 + 1
= .9823529412
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Return now to what was said at the outset of this discussion. Given
a stream of trade P&Ls, the optimal f will make the greatest geometric
growth on that stream (provided it has a positive arithmetic mathematical
expectation). We use the stream of trade P&Ls as a proxy for the distribution
of possible outcomes on the next trade. Along this line of reasoning, it may be
advantageous for us to equalize the stream of past trade profits and losses
to be what they would be if they were performed at the current market
price. In so doing, we may obtain a more realistic proxy of the distribution
of potential trade profits and losses on the next trade. Therefore, we should
figure our optimal f from this adjusted distribution of trade profits and
losses.

This does not mean that we would have made more by using the optimal
f off of the equalized data. We would not have, as the following demonstra-
tion shows:

Underlying Number of

P&L Percentage Price f $ Shares Cumulative

At f = .09, trading the equalized method: $10,000

+2 .1 20 $33.33 300 $10,600
−3 −.15 20 $33.33 318 $9,646

+10 .2 50 $83.33 115.752 $10,803.52
−5 −.1 50 $83.33 129.642 $10,155.31

Underlying Number of

P&L Percentage Price f $ Shares Cumulative

At f = .17, trading the nonequalized method: $10,000

+2 .1 20 $29.41 340.02 $10,680.04
−3 −.15 20 $29.41 363.14 $9,590.61

+10 .2 50 $29.41 326.1 $12,851.61
−5 −.1 50 $29.41 436.98 $10,666.71

However, if all of the trades were figured off of the current price (say
$100 per share), the equalized optimal f would have made more than the
raw optimal f .

Which, then, is the better to use? Should we equalize our data and
determine our optimal f (and its by-products), or should we just run ev-
erything as it is? This is more a matter of your beliefs than it is mathe-
matical fact. It is a matter of what is more pertinent in the item you are
trading, percentage changes or absolute changes. Is a $2 move in a $20
stock the same as a $10 move in a $100 stock? What if we are discussing
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dollars and euros? Is a .30-point move at .4500 the same as a .40-point move
at .6000?

My personal opinion is that you are probably better off with the equal-
ized data. Often, the matter is moot, in that if a stock has moved from $20
per share to $100 per share and we want to determine the optimal f , we
want to use current data. The trades that occurred at $20 per share may not
be representative of the way the stock is presently trading, regardless of
whether they are equalized or not.

Generally, then, you are better off not using data where the underly-
ing was at a dramatically different price than it presently is, as the char-
acteristics of the way the item trades may have changed as well. In that
sense, the optimal f off of the raw data and the optimal f off of the equal-
ized data will be identical if all trades occurred at the same underlying
price.

So we can state that if it does matter a great deal whether you equalize
your data or not, then you’re probably using too much data anyway. You’ve
gone so far into the past that the trades generated back then probably
are not very representative of the next trade. In short, we can say that
it doesn’t much matter whether you use equalized data or not, and if it does,
there’s probably a problem. If there isn’t a problem, and there is a difference
between using the equalized data and the raw data, you should opt for the
equalized data. This does not mean that the optimal f figured off of the
equalized data would have been optimal in the past. It would not have been.
The optimal f figured off of the raw data would have been the optimal in the
past. However, in terms of determining the as-yet-unknown answer to the
question of what will be the optimal f (or closer to it tomorrow), the optimal
f figured off of the equalized data makes better sense, as the equalized data
is a fairer representation of the distribution of possible outcomes on the
next trade.

Equations (4.10a) through (4.11) will give different answers depend-
ing upon whether the trade was initiated as a long or a short. For exam-
ple, if a stock is bought at 80 and sold at 100, the percentage gain is 25.
However, if a stock is sold short at 100 and covered at 80, the gain is
only 20%. In both cases, the stock was bought at 80 and sold at 100, but
the sequence—the chronology of these transactions—must be accounted
for. As the chronology of transactions affects the distribution of percent-
age gains and losses, we assume that the chronology of transactions in
the future will be more like the chronology in the past than not. Thus,
Equations (4.10a) through (4.11) will give different answers for longs and
shorts.

Of course, we could ignore the chronology of the trades (using 4.01c for
longs and using the exit price in the denominator of 4.01c for shorts), but
to do so would be to reduce the information content of the trade’s history.
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Further, the risk involved with a trade is a function of the chronology of the
trade, a fact we would be forced to ignore.

FINDING OPTIMAL f VIA PARABOLIC
INTERPOLATION

Originally, I had hoped to find a method of finding the optimal f by way
of a single equation like the Kelly formula. In finding the optimal f we are
looking for that value for f which generates the highest TWR in the domain
0 to 1.0 for f. Since f is the only variable we have to maximize the TWR for,
we say that we are maximizing in one dimension.

We can use another technique to iterate to the optimal f with a little
more style than the brute methods already described. Recall that in the
iterative technique we bracket an intermediate point (A, B); test a point
within the bracket (X); and obtain a new, smaller bracketing interval (either
A, X or X, B). This process continues until the answer is converged upon.
This is still brutish, but not so brutish as the simple 0 to 1 by .01 loop
method.

The best (i.e., fastest and most elegant) way to find a maximum in
one dimension, when you are certain that only one maximum exists, that
each successive point to the left of the maximum lessens, and that each
successive point to the right of the maximum lessens (as is the case
with the shape of the f curve), is to use parabolic interpolation. When
there is only one local extreme (be it a maximum or a minimum) in the
range you are searching, parabolic interpolation will work. If there is more
than one local extreme, parabolic interpolation will not work (see Fig-
ure 4.12).

With this technique we simply input three coordinate points. The axes
of these points are the TWRs (Y axis) and the f values (X axis). We can find
the abscissa (the X axis, or f value corresponding to the peak of a parabola)
by the following formula, given the three coordinates:

ABSCISSA =
X2 − .5 *

(X2 − X1)2 * (Y2 − Y3) − (X2 − X3)2 * (Y2 − Y1)
(X2 − X1) * (Y2 − Y3) − (X2 − X3) * (Y2 − Y1)

(4.15)

The result returned by this equation is the value for f (or X if you will)
that corresponds to the abscissa of a parabola where the three coordinates
(X1, Y1), (X2, Y2), (X3, Y3) lie on the parabola.

The object now is to superimpose a parabola over the f curve, change
one of the input coordinates to draw an amended parabola, and keep on
doing this until the abscissa of the most recent parabola converges with the
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FIGURE 4.12 A function with two local extremes

previous parabola’s abscissa. Convergence is determined when the absolute
value of the difference between two abscissas is less than a prescribed
amount called the tolerance, or TOL for short. This amount should be chosen
with respect to how accurate you want your f to be. Generally, I use a value
of .005 for TOL. This gives the same accuracy in searching for the optimal
f as the brute force techniques described earlier.

We can start with two of the three coordinate points as (0, 0), (1.0, 0).
The third coordinate point must be a point that lies on the actual f curve
itself. Let us choose the X value here to be 1 – TOL, or .995. To make
sure that the coordinate lies on the f curve, we determine our Y value
by finding what the TWR is at f = .995. Assume we are looking for the
optimal f for the four-trade example −1, −3, 3, 5. For these four trades
the TWR at f = .995 is .017722. Now we have the three coordinates: (0, 0),
(.995, .017722), (1.0, 0). We plug them into the above described equation
to find the abscissa of a parabola that contains these three points, and our
result is .5.

Now we compute the TWR corresponding to this abscissa; this equals
1.145833. Since the X value here now (.5) is to the left of the value for X2 pre-
viously (.995), we move our three points over to the left, and compute a new
abscissa to the parabola that contains the three points (0, 0), (.5, 1.145833),
(.995, .017722).
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This abscissa is at .499439. The TWR corresponding to this f value is
1.146363. When we encounter a difference in abscissas that is less than or
equal to TOL, we will have converged to the optimal f .

Shown here are the full seven passes and the values used in each pass
so that you may better understand this technique.

PARABOLIC INTERPOLATION

Pass# x1 y1 x2 y2 x3 y3 abscissa

1 0 0 0.995 0.017722 1 0 0.5
2 0 0 0.5 1.145833 0.995 0.017722 0.499439
3 0 0 0.499439 1.146363 0.5 1.145833 0.426923
4 0 0 0.426923 1.200415 0.499439 1.146363 0.410853
5 0 0 0.410853 1.208586 0.426923 1.200415 0.387431
6 0 0 0.387431 1.218059 0.410853 1.208586 0.375727
7 0 0 0.375727 1.22172 0.387431 1.218059 0.364581
8 0 0 0.364581 1.224547 0.375727 1.22172 0.356964
9 0 0 0.356964 1.226111 0.364581 1.224547 0.350489

Convergence is extremely rapid. Typically, the more peaked the curve
for the TWR (i.e., the more plays which comprise the TWR) the faster con-
vergence is attained.

Refer now to Figure 4.13. This graphically shows the parabolic interpo-
lation process for the coin-toss example with a 2:1 payoff, where the optimal
f is .25. On the graph, notice the familiar f curve, which peaks out at .25.
The first step here is to draw a parabola through three points: A, B, and C.
The coordinates for A are (0, 0). For C the coordinates are (1, 0). For point
B we now pick a point whose coordinates lie on the f curve itself. Once
parabola ABC is drawn, we obtain its abscissa (the f value correspond-
ing to the peak of the parabola ABC). We find what the TWR is for this f

value. This gives us coordinates for point D. We repeat the process, this
time drawing a parabola through points A, B, and D. Once the abscissa to
parabola ABD is found, we can find the TWR that corresponds to an f value
of the abscissa of parabola ABD. These coordinates ( f value, TWR) give us
point E.

Notice how quickly we are converging to the peak of the f curve at
f = .25. If we were to continue with the exercise in Figure 4.12, we would
next draw a parabola through points E, B, and D, and continue until we
converged upon the peak of the f curve.

One potential problem with this technique from a computer standpoint
is that the denominator in the equation that solves for the abscissa might
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FIGURE 4.13 Parabolic interpolation performed on TWRs of 20 sequences of
+2, −1

equal zero while running. One possible solution is the following fast and
dirty patch in Java:

dm = (x2 − x1) * (y2 − y3) − (x2 − x3) * (y2 − y1);

If (dm == 0.0)

dm = .00001;

abscissa = x2 − 0.5 * (((x2 − x1) * (x2 − x1) * (y2 − y3) − (x2 − x3)

(x2 − x3) * (y2 − y1)/dm;

This patch will not detract from the integrity of the results.
Note that this method can be used to find a local maximum for a given

function, provided only one maximum exists within the range. The same
technique could be used to find a local minimum for a function that opened
upward (for example, the function Y equals X squared is such a function).
Again, the technique will work provided there is only one local minimum
(as is the case with our example). The only change from looking for a local
maximum is in the equation for finding the abscissa:

ABSCISSA =
X2 + .5 *

(X2 − X1)2 * (Y2 − Y3) − (X2 − X3)2 * (Y2 − Y1)
(X2 − X1) * (Y2 − Y3) − (X2 − X3) * (Y2 − Y1)
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Note that here, for a local minimum, the first operator is a plus (+) sign, not
a minus (−) sign as when we were looking for a local maximum.

THE NEXT STEP

The real problem with the formula to this point is that it makes the assump-
tion that all HPRs have an equal probability of occurrence. What is needed
is a new formula that allows for different probabilities associated with dif-
ferent HPRs. Such a formula would allow you to find an optimal f given a
description of a probability distribution of HPRs. To accommodate this, we
need to rework (4.06) to:

HPR =
⎛⎝1 +

⎛⎝ A(
W

f

)
⎞⎠⎞⎠P

(4.16)

where A = outcome of the scenario
P = probability of the scenario
W = worst outcome of all n scenarios
f = value for f which we are testing

Now, we obtain the terminal wealth relative, or TWR4, originally given
by (3.03) and (4.07) to:

TWR =
T∏

i= 1

HPRi

or

TWR =
T∏

i= 1

⎛⎝1 +
⎛⎝ Ai(

W

f

)
⎞⎠⎞⎠Pi

(4.17)

Finally, if we take Equation (4.18) to the �pi
root, we can find our

average compound growth per play, also called the geometric mean HPR,
and replace that given in (4.08) which will become more important later on:

G = TWR1/�pi (4.18)

4In this formulation, unlike the 1990 formulations, the TWR has no special meaning.
In this instance, it is simply an interim value used to find G, and it does not represent
the multiple made on our starting stake. The variable named “TWR” is maintained
solely for consistency’s sake.
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or

G =
⎛⎝ T∏

i= 1

⎛⎝(
1 +

(
Ai

W

f

))Pi

⎞⎠⎞⎠1/�Pi

(4.18a)

where: T = Number of different scenarios.
TWR = Terminal wealth relative.
HPRi = Holding period return of the ith scenario.

Ai = Outcome of the ith scenario.
Pi = Probability of the ith scenario.
W = Worst outcome of all n scenarios.
f = Value for f which we are testing.

Just as you could use Equation (4.04) to solve Equation (4.03), like-
wise you can use Equation (4.18a) to solve any optimal f problem. It will
yield the same answers as the Kelly formulas when the data correctly has
a Bernoulli distribution. It will yield the same answers as previously men-
tioned formulas if you pump a distribution of trades through it (where the
probability of each trade is 1/T). This formula can be used to maximize the
expected value of the logarithm of any starting quantity of anything when
there is exponential growth involved. We will now see how to employ this
formula in the context of scenario planning.

SCENARIO PLANNING

People who forecast for a living, be they economists, stock market fore-
casters, meteorologists, government agencies, or the like, have a notorious
history for incorrect forecasts. Most decisions anyone must make in life
usually require that the individual make a forecast about the future.

There are a couple of pitfalls that immediately crop up. To begin with,
people generally make more optimistic assumptions about the future than
the actual probabilities. Most people feel that they are far more likely to
win the lottery this month than they are to die in an auto accident, even
though the probabilities of the latter are greater. This is true not only on
the level of the individual; it is even more pronounced at the group level.
When people work together, they tend to see a favorable outcome as the
most likely result.

The second pitfall—and the more harmful—is that people make
straight-line forecasts into the future. People predict what the price of a
gallon of gas will be two years from now; they predict what will happen
with their jobs, who the next president will be, what the next styles will
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be, and on and on. Whenever we think of the future, we tend to think in
terms of a single most likely outcome. As a result, whenever we must make
decisions, whether as an individual or a group, we tend to make these de-
cisions based on what we think will be the single most likely outcome in
the future. As a consequence, we are extremely vulnerable to unpleasant
surprises.

Scenario planning is a partial solution to this problem. A scenario is
simply a possible forecast, a story about one way that the future might
unfold. Scenario planning is a collection of scenarios, to cover the spectrum
of possibilities. Of course, the complete spectrum can never be covered, but
the scenario planner wants to cover as many possibilities as he or she can.
By acting in this manner, as opposed to using a straight-line forecast of the
most likely outcome, the scenario planner can prepare for the future as it
unfolds. Furthermore, scenario planning allows the planner to be prepared
for what might otherwise be an unexpected event. Scenario planning is
tuned to reality in that it recognizes that certainty is an illusion.

Suppose you are in a position where you are involved in the long-run
planning for your company. Let’s say you make a particular product. Rather
than making a single most likely straight-line forecast, you decide to exercise
scenario planning. You will need to sit down with the other planners and
brainstorm for possible scenarios. What if you cannot get enough of the raw
materials to make your product? What if one of your competitors fails? What
if a new competitor emerges? What if you have severely underestimated
demand for this product? What if a war breaks out on such and such a
continent? What if it is a nuclear war?

Because each scenario is only one of several possible, each scenario
can be considered seriously. But what do you do once you have defined
these scenarios?

To begin with, you must determine what goal you would like to achieve
for each given scenario. Depending upon the scenario, the goal need not be
a positive one. For instance, under a bleak scenario, your goal may simply
be damage control. Once you have defined a goal for a given scenario, you
then need to draw up the contingency plans pertaining to that scenario to
achieve the desired goal. For instance, in the rather unlikely bleak scenario
where your goal is damage control, you need to have plans to go to should
this scenario manifest itself so that you can minimize the damage. Scenario
planning, above all else, provides the planner with a course of action to take
should a certain scenario develop. It forces you to make plans before the
fact; it forces you to be prepared for the unexpected.

Scenario planning, however, can do a lot more. There is a hand-in-
glove fit between scenario planning and optimal f. Optimal f allows us
to determine the optimal quantity to allocate to a given set of possible
scenarios. Our existence limits us to existing in only one scenario at a
time, even though we are planning for multiple futures, multiple scenarios.
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Therefore, oftentimes, scenario planning puts us in a position where we
must make a decision regarding how much of a resource to allocate today,
given the possible scenarios of tomorrow. This is the true heart of scenario
planning: quantifying it.

First, we must define each unique scenario. Second, we must assign a
probability of that scenario’s occurrence. Being a probability means that this
number is between 0 and 1. We need not consider any further scenarios with
a probability of 0. Note that these probabilities are not cumulative. In other
words, the probability assigned to a given scenario is unique to that scenario.
Suppose we are decision makers for XYZ Manufacturing Corporation. Two
of the many scenarios we have are as follows. In one scenario, we have the
probability of XYZ Manufacturing filing for bankruptcy with a probability
of .15, and, in another scenario, we have XYZ being put out of business by
intense foreign competition with a probability of .07. Now, we must ask
if the first scenario, filing for bankruptcy, includes filing for bankruptcy
due to the second scenario, intense foreign competition. If it does, then
the probabilities in the first scenario must not take the probabilities of the
second scenario into account, and we must amend the probabilities of the
first scenario to be.08 (.15 − .07).

Just as important as the uniqueness of each probability to each scenario
is that the sum of the probabilities of all of the scenarios we are considering
must equal 1 exactly. They must equal not 1.01 nor .99, but 1.

For each scenario, we now have a probability of just that scenario
assigned. We must now also assign an outcome result. This is a numerical
value. It can be dollars made or lost as a result of a scenario’s manifesting
itself; it can be units of utility or medication or anything. However, our
output is going to be in the same units that we put in.

You must have at least one scenario with a negative outcome in order
to use this technique. This is mandatory.

A last prerequisite to using this technique is that the arithmetic math-
ematical expectation, the sum of all of the outcome results times their re-
spective probabilities [Equation (1.01a)], must be greater than zero. If the
arithmetic mathematical expectation equals zero or is negative, the follow-
ing technique cannot be used.5 That is not to say that scenario planning
itself cannot be used. It can and should. However, optimal f can be incor-
porated with scenario planning only when there is a positive, mathematical
expectation.

Lastly, you must try to cover as much of the spectrum of outcomes as
possible. In other words, you really want to account for 99% of the possible
outcomes. This may sound nearly impossible, but many scenarios can be

5However, later in the text we will be using scenario planning for portfolios, and,
therein, a negative arithmetic mathematical expectation will be allowed and can
possibly benefit the portfolio as a whole.
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made broader so that you don’t need 10,000 scenarios to cover 99% of the
spectrum.

In making your scenarios broader, you must avoid the common pitfall
of three scenarios: an optimistic one, a pessimistic one, and a third in which
things remain the same. This is too simple, and the answers derived there-
from are often too crude to be of any value. Would you want to find your
optimal f for a trading system based on only three trades?

So, even though there may be an unknowably large number of scenarios
to cover the entire spectrum, we can cover what we believe to be about
99% of the spectrum of outcomes. If this makes for an unmanageably large
number of scenarios, we can make the scenarios broader to trim down
their number. However, by trimming down their number, we lose a certain
amount of information. When we trim down the number of scenarios (by
broadening them) to only three (a common pitfall), we have effectively
eliminated so much information that the effectiveness of this technique is
severely hampered.

What, then, is a good number of scenarios to have? As many as you can
and still manage them.

Think of the two-to-one coin toss as a spectrum of two scenarios. Each
has a probability, and that probability is .5 for each scenario, labeled heads
and tails. Each has an outcome, +2 and −1, respectively:

Scenario Probability Outcome

Heads .5 2
Tails .5 −1

Assume again that we are decision making for XYZ. We are looking
at marketing a new product of ours in a primitive, remote little country.
Assume we have five possible scenarios we are looking at (in reality, you
would have many more than this, but we’ll use five for the sake of simplicity).
These five scenarios portray what we perceive as possible futures for this
primitive remote country, their probabilities of occurrence, and the gain or
loss of investing there.

Scenario Probability Result

War .1 −$500,000
Trouble .2 −$200,000
Stagnation .2 0
Peace .45 $500,000
Prosperity .05 $1,000,000

Sum 1.00
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The sum of our probabilities equals 1. We have at least one scenario with a
negative result, and our mathematical expectation is positive:

(.1 * −500,000) + (.2 * −200,000) + . . . etc. = 185,000

We can, therefore, use the technique on this set of scenarios.
Notice first, however, that if we used the single most likely outcome

method, we would conclude that peace will be the future of this country,
and we would then act as though peace were to occur, as though it were a
certainty, only vaguely remaining aware of the other possibilities.

Returning to the technique, we must determine the optimal f. The op-
timal f is that value for f (between zero and one) which maximizes the
geometric mean, using Equations (4.16 to 4.18). Now, we obtain the terminal
wealth relative, or TWR using Equation (4.17). Finally, if we take Equation
(4.17) to the �pi

root, we can find our average compound growth per play,
also called the geometric mean HPR, which will become more important
later on. We use Equation (4.18) for this.

Here is how to perform these equations. To begin with, we must decide
on an optimization scheme, a way of searching through the f values to
find that f which maximizes our equation. Again, we can do this with a
straight loop with f from .01 to 1, through iteration, or through parabolic
interpolation.

Next, we must determine the worst possible result for a scenario among
all of the scenarios we are looking at, regardless of how small the probability
of that scenario’s occurrence are. In the example of XYZ Corporation, this
is −$500,000.

Now, for each possible scenario, we must first divide the worst possible
outcome by negative f. In our XYZ Corporation example, we will assume
that we are going to loop through f values from .01 to 1. Therefore, we start
out with an f value of .01. Now, if we divide the worst possible outcome of
the scenarios under consideration by the negative value for f , we get the
following:

−$500,000
−.01

= 50,000,000

Notice how negative values divided by negative values yield positive
results, and vice versa. Therefore, our result in this case is positive. Now,
as we go through each scenario, we will divide the outcome of the scenario
by the result just obtained. Since the outcome to the first scenario is also
the worst scenario—a loss of $500,000—we now have:

−$500,000
50,000,000

= −.01
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The next step is to add this value to 1. This gives us:

1 + (−.01) = .99

Last, we take this answer to the power of the probability of its occurrence,
which in our example is .1:

.99.1 = .9989954713

Next, we go to the next scenario labeled Trouble, where there is a .2
loss of $200,000. Our worst-case result is still −$500,000. The f value we are
working on is still .01, so the value we want to divide this scenario’s result
by is still 50 million:

−200,000
50,000,000

= −.004

Working through the rest of the steps to obtain our HPR:

1 + (−.004) = .996

.996.2 = .9991987169

If we continue through the scenarios for this test value of .01 for f , we
will find the three HPRs corresponding to the last three scenarios:

Stagnation 1.0
Peace 1.004487689
Prosperity 1.000990622

Once we have turned each scenario into an HPR for the given f value,
we must multiply these HPRs together:

.9989954713
* .9991987169
* 1.0
* 1.004487689
* 1.000990622

1.003667853

This gives us the interim TWR, which in this case is 1.003667853. Our next
step is to take this to the power of 1 divided by the sum of the probabili-
ties. Since the sum of the probabilities will always equal 1 the way we are
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calculating this, we can state that we must raise the TWR to the power of
1 to give us the geometric mean. Since anything raised to the power of 1
equals itself, we can say that, in this case, our geometric mean equals the
TWR. We therefore have a geometric mean of 1.003667853.

The answer we have just obtained in our example is our geometric
mean corresponding to an f value of .01. Now we move on to an f value of
.02, and repeat the whole process until we have found the geometric mean
corresponding to an f value of .02. We will proceed as such until we arrive
at that value for f which yields the highest geometric mean.

In the case of our example, we find that the highest geometric mean is
obtained at an f value of .57, which yields a geometric mean of 1.1106. Di-
viding our worst possible outcome to a scenario (−500,000) by the negative
optimal f yields a result of $877,192.35. In other words, if XYZ Corporation
wants to commit to marketing this new product in this remote country, they
will optimally commit this amount to this venture at this time. As time goes
by and things develop, the scenarios, their resultant outcomes, and proba-
bilities will likewise change. This f amount will then change as well. The
more XYZ Corporation keeps abreast of these changing scenarios, as well
as the more accurate the scenarios they develop as input are, the more ac-
curate their decisions will be. Note that if XYZ Corporation cannot commit
this $877,192.35 to this undertaking at this time, then they are too far beyond
the peak of the f curve. It is the equivalent of the guy who has too many
commodity contracts with respect to what the optimal f says he should
have. If XYZ Corporation commits more than this amount to this project at
this time, the situation would be analogous to a commodity trader with too
few contracts.

There is an important point to note about scenarios and trading. What
you use for a scenario can be any of a number of things:

1. It can be, as in the previous example, the outcomes that a given trade
may take. This is useful if you are trading only one item. However, when
you trade a portfolio of items, you violate the rule that all holding period
lengths must be uniform.

2. If you know what the distribution of price outcomes will be, you can
use that for scenarios. For example, suppose you have reason to be-
lieve that prices for the next day for a given item are normally dis-
tributed. Therefore, you can discern your scenarios based on the nor-
mal distribution. For example, in the normal distribution, 97.72% of the
time, prices will not exceed 2 standard deviations to the upside, and
99.86% of the time they will not exceed 3 standard deviations to the up-
side. Therefore, as one scenario, you can have as the result something
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between 2 and 3 standard deviations in price to the upside (whatever dol-
lar amount that would be to you trading one unit over the next day, hold-
ing period), whose probability would be .9986 − .9772 = .0214, or 2.14%
probability.

3. You can use the distributions of possible monetary outcomes for trading
one unit with the given market approach over the next holding period.
This is my preferred method, and it lends itself well to portfolio con-
struction under the new framework.

Although I strongly recommend using the third item from the preceding
list, whichever method you use, remember that you want to be constantly

updating your scenarios, their outcomes, and the probability of occur-

rences as conditions change. Then, you always want to go into the next

holding period with what the formulas presently tell you is optimal. The
situation is analogous to that of a blackjack player. As the composition of
the deck changes with each card drawn, so, too, do the player’s probabil-
ities. However, he must always adjust to what the probabilities currently
dictate.

Although the quantity discussed here is a quantity of money, it can be a
quantity of anything and the technique is just as valid.

If you create different scenarios for the stock market, the optimal f

derived from this methodology will give you the correct percentage to be
invested in the stock market at any given time. For instance, if the f returned
is .65, then that means that 65% of your equity should be in the stock market,
with the remaining 35% in, say, cash. This approach will provide you with the
greatest geometric growth of your capital in a long-run sense. Of course,
again, the output is only as accurate as the input you have provided the
system with in terms of scenarios, their probabilities of occurrence, and
resultant payoffs and costs.

This same process can be used as an alternative parametric technique
for determining the optimal f for a given trade. Suppose you are making
your trading decisions based on fundamentals. You could, if you wanted,
outline the different scenarios that the trade may take. The more scenar-
ios, and the more accurate the scenarios, the more accurate your results
would be. Let’s say you are looking to buy a municipal bond for income,
but you’re not planning on holding the bond to maturity. You could outline
numerous different scenarios of how the future might unfold. Now, you can
use these scenarios to determine how much to invest in this particular bond
issue.

Suppose a trader is presented with a decision to buy soybeans. He may
be using Elliot Wave, he may be using weather forecasts, but whatever he
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is using, let’s say he can discern the following scenarios for this potential
trade:

Scenario Probability Result

Best-case outcome .05 150/cent bushel (profit)
Quite likely .4 10/cent bushel (profit)
Typical .45 −5/cent bushel (loss)
Not good .05 −30/cent bushel (loss)
Disastrous .05 −150/cent bushel (loss)

Now, when our Elliot Wave soybean trader (or weather forecaster soy-
bean trader) paints this set of scenarios, this set of possible outcomes to
this trade, and, in order to maximize his long-run growth (and survival),
assumes that he must make this same trading decision an infinite number
of times into the future, he will find, using this scenario planning approach,
that optimally he should bet .02 (2%) of his stake on this trade. This trans-
lates into putting on one soybean contract for every $375,000 in equity, since
the scenario with the largest loss, −150/cent bushel, divided by the optimal
f for this scenario set, .02, results in $7,500/.02 = $375,000. Thus, at one
contract for every $375,000 in equity, the trader can be said to be risking 2%
of his stake on the next trade.

For each trade, regardless of the basis the trader uses for making the
trade (i.e., Elliot Wave, weather, etc.), the scenario parameters may change.
Yet the trader must maximize the long-run geometric growth of his account
by assuming that the same scenario parameters will be infinitely repeated.
Otherwise, the trader pays a severe price. Notice in our soybean trader
example, if the trader were to go to the right of the peak of the f curve (that
is, have slightly too many contracts), he gains no benefit. In other words,
if our soybean trader were to put on one contract for every $300,000 in
account equity, he would actually make less money in the long run than
putting on one contract for every $375,000.

When we are presented with a decision in which there is a different set
of scenarios for each facet of the decision, selecting the scenario whose
geometric mean corresponding to its optimal f is greatest will maximize
our decision in an asymptotic sense.

For example, suppose we are presented with a decision that involves
two possible choices. It could have many possible choices, but for the sake
of simplicity we will say it has two possible choices, which we will call
“white” and “black.” If we choose the decision labeled white, we determine
that it will present the possible future scenarios to us:
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Scenario Probability Result

A .3 −20
B .4 0
C .3 30

Mathematical expectation = $3.00
Optimal f= .17
Geometric mean = 1.0123

It doesn’t matter what these scenarios are, they can be anything. To
further illustrate this, they will simply be assigned letters, A, B, C in this
discussion. Further, it doesn’t matter what the result is; it can be just about
anything.

Our analysis determines that the black decision will present the follow-
ing scenarios:

Scenario Probability Result

A .3 −10
B .4 5
C .15 6
D .15 20

Mathematical expectation = $2.90
Optimal f = .31
Geometric mean = 1.0453

Many people would opt for the white decision, since it is the decision
with the higher mathematical expectation. With the white decision, you can
expect, on average, a $3.00 gain versus black’s $2.90 gain. Yet the black deci-
sion is actually the correct decision because it results in a greater geometric
mean. With the black decision, you would expect to make 4.53% (1.0453 – 1)
on average as opposed to white’s 1.23% gain. When you consider the effects
of reinvestment, the black decision makes more than three times as much,
on average, as does the white decision!

The reader may protest at this point that, “We’re not doing this thing
over again; we’re only doing it once. We’re not reinvesting back into the
same future scenarios here. Won’t we come out ahead if we always select
the highest arithmetic mathematical expectation for each set of decisions
that present themselves to us?”

The only time we want to be making decisions based on greatest arith-
metic mathematical expectation is if we are planning on not reinvesting
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the money risked on the decision at hand. Since, in almost every case, the
money risked on an event today will be risked again on a different event in
the future, and money made or lost in the past affects what we have avail-
able to risk today, we should decide, based on geometric mean, to maximize
the long-run growth of our money. Even though the scenarios that present
themselves tomorrow won’t be the same as those today, by always deciding
based on greatest geometric mean, we are maximizing our decisions. It is
analogous to a dependent trials process, like a game of blackjack. In each
hand, the probabilities change and, therefore, the optimal fraction to bet
changes as well. By always betting what is optimal for that hand, however,
we maximize our long-run growth. Remember that, to maximize long-run
growth, we must look at the current contest as one that expands infinitely
into the future. In other words, we must look at each individual event as
though we were to play it an infinite number of times if we wanted to max-
imize growth over many plays of different contests.

As a generalization, whenever the outcome of an event has an effect
on the outcome(s) of subsequent event(s), we are better off to maximize
for greatest geometric expectation. In the rare cases where the outcome
of an event has no effect on subsequent events, we are then better off to
maximize for greatest arithmetic expectation.

Mathematical expectation (arithmetic) does not take the dispersion
between the outcomes of the different scenarios into account and, therefore,
can lead to incorrect decisions when reinvestment is considered.

Using this method of scenario planning gets you quantitatively posi-
tioned with respect to the possible scenarios, their outcomes, and the like-
lihood of their occurrence. The method is inherently more conservative than
positioning yourself per the greatest arithmetic mathematical expectation.
The geometric mean of a data set is never greater than the arithmetic mean.
Likewise, this method can never have you position yourself (have a greater
commitment) otherwise than selecting by the greatest arithmetic mathe-
matical expectation would. In the asymptotic sense (the long-run sense),
this is not only the superior method of positioning yourself as it achieves
greatest geometric growth; it is also a more conservative one than position-
ing yourself per the greatest arithmetic mathematical expectation.

Since reinvestment is almost always a fact of life (except on the day
before you retire)—that is, you reuse the money that you are using today—
we must make today’s decision under the assumption that the same decision
will present itself a thousand times over, in order to maximize the results of
our decision. We must make our decisions and position ourselves in order
to maximize geometric expectation. Further, since the outcomes of most
events do, in fact, have an effect on the outcomes of subsequent events,
we should make our decisions and position ourselves based on maximum
geometric expectation. This tends to lead to decisions and positions that
are not always obvious.
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Note that we have created our own binned distribution in creating our
scenarios here. Similarly, if we know the distributional form of the data,
we can use that and the probabilities associated, with that distribution with
this technique for finding the optimal f. Such techniques we call “paramet-
ric techniques,” as opposed to the “Empirical Techniques” described prior
to this section in the text. The Scenario Planning Approach, as described
here, where we create the data bins from empirical data, being therefore
a hybrid approach between an empirical means of determining optimal f

and a parametric one.

SCENARIO SPECTRUMS

We now must become familiar with the notion of a scenario spectrum. A
scenario spectrum is a set of scenarios, aligned in succession, left to right,
from worst outcome to best, which range in probability from 0% to 100%. For
example, consider the scenario spectrum for a simple coin toss whereby we
lose on heads and win on tails, and both have a .5 probability of occurrence
(Figure 4.14).

A scenario spectrum can have more than two scenarios—you can have
as many scenarios as you like (see Figure 4.15).

This scenario spectrum corresponds to the following scenarios, taken
from the previous section pertaining to XYZ Manufacturing Corporation’s
assessment of marketing a new product in a remote little country:

Scenario Probability Result Prob × Result

War .1 −$500,000 −$50,000
Trouble .2 −$200,000 −$40,000
Stagnation .2 $0 $0
Peace .45 $500,000 $225,000
Prosperity .05 $1,000,000 $50,000

Sum 1.00 Expectation $185,000

FIGURE 4.14 Scenario spectrum for a simple coin toss in which tails wins
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FIGURE 4.15 Scenario spectrum with multiple scenarios

Notice that this is a valid scenario spectrum since:

A. There is at least one scenario with a negative result.
B. The sum of the probabilities equals 1.00.
C. The scenarios within the spectrum do not overlap.

For example the stagnation scenario implies peace. However, the stagnation
scenario implies peace with zero economic growth. The peace scenario is
separate and apart from this, and implies peace with at least some economic
growth. In other words, the stagnation scenario is not encapsulated in the
peace scenario, nor is any scenario encapsulated in another.

One last point about scenario spectrums, and this is very important:
All scenarios within a given spectrum must pertain to outcomes of a given
holding period. Again, the length of the holding period can be any length you
choose—it can be one day, one week, quarter, month, year, whatever, but
the holding period must be decided upon. Once decided upon, all scenarios
in a given spectrum must pertain to possible outcomes over the next holding
period, and all scenario spectrums must be for the same length holding pe-
riod. This is critical. Thus, if you decide upon one day for the holding period
length, then all of your scenarios in all of your scenario spectrums must
pertain to possible outcomes for the next day.
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Characteristics
of Optimal f

OPTIMAL f FOR SMALL TRADERS
JUST STARTING OUT

How does a very small account, an account that is going to start out trading
one contract, use the optimal f approach? One suggestion is that such an
account start out by trading one contract not for every optimal f amount in
dollars (biggest loss/− f ), but rather that the drawdown and margin must
be considered in the initial phase. The amount of funds allocated toward
the first contract should be the greater of the optimal f amount in dollars or
the margin plus the maximum historic drawdown (on a one-unit basis):

A = MAX {(Biggest Loss/− f ), (Margin + ABS(Drawdown))} (5.01)

where: A = The dollar amount to allocate to the first contract.
f = The optimal f (0 to 1).

Margin = The initial speculative margin for the given contract.
Drawdown = The historic maximum drawdown.

MAX{ } = The maximum value of the bracketed values.
ABS( ) = The absolute value function.

With this procedure an account can experience the maximum drawdown
again and still have enough funds to cover the initial margin on another

175



JWDD035-05 JWDD035-Vince February 10, 2007 21:31 Char Count= 0

176 THE HANDBOOK OF PORTFOLIO MATHEMATICS

trade. Although we cannot expect the worst-case drawdown in the future
not to exceed the worst-case drawdown historically, it is rather unlikely
that we will start trading right at the beginning of a new historic drawdown.

A trader utilizing this idea will then subtract the amount in Equation
(5.01) from his or her equity each day. With the remainder, he or she will
then divide by (Biggest Loss/− f ). The answer obtained will be rounded
down to the integer, and 1 will be added. The result is how many contracts
to trade.

An example may help clarify. Suppose we have a system where the op-
timal f is .4, the biggest historical loss is −$3,000, the maximum drawdown
was −$6,000, and the margin is $2,500. Employing Equation (5.01) then:

A = MAX{(−$3,000/−.4), ($2,500 + ABS(−$6,000))}
= MAX{($7,500), ($2,500 + $6,000)}
= MAX{$7,500, $8,500)}
= $8,500

We would thus allocate $8,500 for the first contract. Now suppose we
are dealing with $22,500 in account equity. We therefore subtract this first
contract allocation from the equity:

$22,500 − $8,500 = $14,000

We then divide this amount by the optimal f in dollars:

$14,000/$7,500 = 1.867

Then we take this result down to the integer:

INT(1.867) = 1

and add 1 to the result (the one contract represented by the $8,500 we have
subtracted from our equity):

1 + 1 = 2

We therefore would trade two contracts. If we were just trading at the
optimal f level of one contract for every $7,500 in account equity, we would
have traded three contracts ($22,500/$7,500). As you can see, this technique
can be utilized no matter how large an account’s equity is (yet the larger the
equity, the closer the two answers will be). Further, the larger the equity,
the less likely it is that we will eventually experience a drawdown that will
have us eventually trading only one contract. For smaller accounts, or for
accounts just starting out, this is a good idea to employ.
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THRESHOLD TO GEOMETRIC

Here is another good idea for accounts just starting out, one that may not
be possible if you are employing the technique just mentioned. This tech-
nique makes use of another by-product calculation of optimal f called the
threshold to geometric. The by-products of the optimal f calculation include
calculations, such as the TWR, the geometric mean, and so on, that were
derived in obtaining the optimal f, and that tell us something about the
system. The threshold to the geometric is another of these by-product cal-
culations. Essentially, the threshold to geometric tells us at what point we

should switch over to fixed fractional trading, assuming we are starting

out constant-contract trading.

Refer back to the example of a coin toss where we win $2 if the toss
comes up heads and we lose $1 if the toss comes up tails. We know that
our optimal f is .25, or to make one bet for every $4 we have in account
equity. If we are starting out trading on a constant-contract basis, we know
we will average $.50 per unit per play. However, if we start trading on a
fixed fractional basis, we can expect to make the geometric average trade
of $.2428 per unit per play.

Assume we start out with an initial stake of $4, and therefore we are
making one bet per play. Eventually, when we get to $8, the optimal f would
have us step up to making two bets per play. However, two bets times
the geometric average trade of $.2428 is $.4856. Wouldn’t we be better off
sticking with one bet at the equity level of $8, whereby our expectation per
play would still be $.50? The answer is “Yes.” The reason is that the optimal
f is figured on the basis of contracts that are infinitely divisible, which may
not be the case in real life.

We can find that point where we should move up to trading two contracts
by the formula for the threshold to the geometric, T:

T = AAT/GAT ∗ Biggest Loss/−f (5.02)

where: T = The threshold to the geometric.
AAT = The arithmetic average trade.
GAT = The geometric average trade.

f = The optimal f (0 to 1).

In our example of the 2-to-1 coin toss:

T = .50/.2428 ∗ −1/−.25

= 8.24

Therefore, we are better off switching up to trading two contracts when
our equity gets to $8.24 rather than $8. Figure 5.1 shows the threshold to the
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FIGURE 5.1 Threshold to the geometric for 2:1 coin toss

geometric for a game with a 50% chance of winning $2 and a 50% chance of
losing $1.

Notice that the trough of the threshold to the geometric curve occurs
at the optimal f. This means that since the threshold to the geometric is
the optimal level of equity to go to trading two units, you go to two units
at the lowest level of equity, optimally, when incorporating the threshold to
the geometric at the optimal f.

Now the question is, “Can we use a similar approach to know when to
go from two cars to three cars?” Also, “Why can’t the unit size be 100 cars
starting out, assuming you are starting out with a large account, rather than
simply a small account starting out with one car?” To answer the second
question first, it is valid to use this technique when starting out with a unit
size greater than one. However, it is valid only if you do not trim back units
on the downside before switching into the geometric mode. The reason
is that before you switch into the geometric mode you are assumed to be
trading in a constant-unit size.

Assume you start out with a stake of 400 units in our 2-to-1 coin-toss
game. Your optimal f in dollars is to trade one contract (make one bet)
for every $4 in equity. Therefore, you will start out trading 100 contracts
(making 100 bets) on the first trade. Your threshold to the geometric is
at $8.24, and therefore you would start trading 101 contracts at an equity
level of $404.24. You can convert your threshold to the geometric, which is
computed on the basis of advancing from one contract to two, as:

Converted T = EQ + T − (Biggest Loss/−f) (5.02a)
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where: EQ = The starting account equity level.
T = The threshold to the geometric for going from one car

to two.
f = The optimal f (0 to 1).

Therefore, since your starting account equity is $400, your T is $8.24,
your biggest loss −$1, and your f is .25:

Converted T = 400 + 8.24 − (−1/−.25)

= 400 + 8.24 − 4

= 404.24

Thus, you would progress to trading 101 contracts (making 101 bets) if
and when your account equity reached $404.24. We will assume you are trad-
ing in a constant-contract mode until your account equity reaches $404.24,
at which point you will begin the geometric mode. Therefore, until your
account equity reaches $404.24, you will trade 100 contracts on the next
trade regardless of the remaining equity in your account. If, after you cross
the geometric threshold (that is, after your account equity hits $404.24), you
suffer a loss and your equity drops below $404.24, you will go back to trad-
ing on a constant 100-contract basis if and when you cross the geometric
threshold again.

This inability to trim back contracts on the downside when you are
below the geometric threshold is the drawback to using this procedure when
you are at an equity level of trading more than two contacts. If you are only
trading one contract, the geometric threshold is a very valid technique for
determining at what equity level to start trading two contracts (since you
cannot trim back any further than one contract should you experience an
equity decline). However, it is not a valid technique for advancing from two
contracts to three, because the technique is predicated upon the fact that
you are currently trading on a constant-contract basis. That is, if you are
trading two contracts, unless you are willing not to trim back to one contract
if you suffer an equity decline, the technique is not valid, and likewise if you
start out trading 100 contracts. You could do just that (not trim back the
number of contracts you are presently trading if you experience an equity
decline), in which case the threshold to the geometric, or its converted
version in Equation (5.02a), would be the valid equity point to add the next
contract. The problem with doing this (not trimming back on the downside)
is that you will make less (your TWR will be less) in an asymptotic sense.
You will not make as much as if you simply traded the full optimal f. Further,
your drawdowns will be greater and your risk of ruin higher. Therefore, the
threshold to the geometric is beneficial only if you are starting out in the
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lowest denomination of bet size (one contract) and advancing to two, and
it is a benefit only if the arithmetic average trade is more than twice the
size of the geometric average trade. Furthermore, it is beneficial to use only
when you cannot trade fractional units. In Chapter 10 we will see that the
concept of a “Threshold” to the geometric is a precursor to the larger notion
of Continuous Dominance.

ONE COMBINED BANKROLL VERSUS
SEPARATE BANKROLLS

Some very important points regarding fixed fractional trading must be cov-
ered before we discuss the parametric techniques. First, when trading more
than one market system simultaneously, you will generally do better in an
asymptotic sense using only one combined bankroll from which to figure
your contract sizes, rather than separate bankrolls for each.

It is for this reason that we “recapitalize” the subaccounts on a daily
basis as the equity in an account fluctuates. What follows is a run of two
similar systems, System A and System B. Both have a 50% chance of winning,
and both have a payoff ratio of 2:1. Therefore, the optimal f dictates that
we bet $1 for every $4 units in equity. The first run we see shows these
two systems with positive correlation to each other. We start out with $100,
splitting it into two subaccount units of $50 each. After a trade is registered,
it affects only the cumulative column for that system, as each system has its
own separate bankroll. The size of each system’s separate bankroll is used
to determine bet size on the subsequent play:

System A System B

Trade P&L Cumulative Trade P&L Cumulative

50.00 50.00
2 25.00 75.00 2 25.00 75.00

−1 −18.75 56.25 −1 −18.75 56.25
2 28.13 84.38 2 28.13 84.38

−1 −21.09 63.28 −1 −21.09 63.28
2 31.64 94.92 2 31.64 94.92

−1 −23.73 71.19 −1 −23.73 71.19
−50.00 −50.00

Net Profit 21.19140 21.19140

Total net profit of the two banks = $42.38
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Now we will see the same thing, only this time we will operate from
a combined bank starting at 100 units. Rather than betting $1 for every $4
in the combined stake for each system, we will bet $1 for every $8 in the
combined bank. Each trade for either system affects the combined bank, and
it is the combined bank that is used to determine bet size on the subsequent
play:

System A System B

Trade P&L Trade P&L Combined Bank

100.00
2 25.00 2 25.00 150.00

−1 −18.75 −1 −18.75 112.50
2 28.13 2 28.13 168.75

−1 −21.09 −1 −21.09 126.56
2 31.64 2 31.64 189.84

−1 −23.73 −1 −23.73 142.38
−100.00

Total net profit of the combined bank = $42.38

Notice that using either a combined bank or a separate bank in the
preceding example shows a profit on the $100 of $42.38. Yet what was
shown is the case where there is positive correlation between the two
systems. Now we will look at negative correlation between the same
two systems, first with both systems operating from their own separate
bankrolls:

System A System B

Trade P&L Cumulative Trade P&L Cumulative

50.00 50.00
2 25.00 75.00 −1 −12.50 37.50

−1 −18.75 56.25 2 18.75 56.25
2 28.13 84.38 −1 −14.06 42.19

−1 −21.09 63.28 2 21.09 63.28
2 31.64 94.92 −1 −15.82 47.46

−1 −23.73 71.19 2 23.73 71.19
−50.00 −50.00

Net Profit 21.19140 21.19140

Total net profit of the two banks = $42.38
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As you can see, when operating from separate bankrolls, both systems
net out making the same amount regardless of correlation. However, with
the combined bank:

System A System B

Trade P&L Trade P&L Combined Bank

100.00
2 25.00 −1 −12.50 112.50

−1 −14.06 2 28.12 126.56
2 31.64 −1 −15.82 142.38

−1 −17.80 2 35.59 160.18
2 40.05 −1 −20.02 180.20

−1 −22.53 2 45.00 202.73
−100.00

Total net profit of the combined bank = $102.73

With the combined bank, the results are dramatically improved. When

using fixed fractional trading you are best off operating from a single

combined bank.

TREAT EACH PLAY AS
IF INFINITELY REPEATED

The next axiom of fixed fractional trading regards maximizing the current
event as though it were to be performed an infinite number of times in
the future. We have determined that for an independent trials process,
you should always bet that f which is optimal (and constant) and like-
wise when there is dependency involved, only with dependency f is not
constant.

Suppose we have a system where there is dependency in like begetting
like, and suppose that this is one of those rare gems where the confidence
limit is at an acceptable level for us, that we feel we can safely assume
that there really is dependency here. For the sake of simplicity we will use
a payoff ratio of 2:1. Our system has shown that, historically, if the last
play was a win, then the next play has a 55% chance of being a win. If
the last play was a loss, our system has a 45% chance of the next play’s
being a loss. Thus, if the last play was a win, then from the Kelly formula,
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Equation (4.03), for finding the optimal f (since the payoff ratio is Bernoulli
distributed):

f = ((2 + 1) ∗ .55 − 1)/2

= (3 ∗ .55 − 1)/2

= .65/2

= .325

After a losing play, our optimal f is:

f = ((2 + 1) ∗ .45 − 1)/2

= (3 ∗ .45 − 1)/2

= .35/2

= .175

Now dividing our biggest losses (−1) by these negative optimal fs dic-
tates that we make one bet for every 3.076923077 units in our stake after
a win, and make one bet for every 5.714285714 units in our stake after a
loss. In so doing we will maximize the growth over the long run. Notice that
we treat each individual play as though it were to be performed an infinite
number of times.

Notice in this example that betting after both the wins and the losses still
has a positive mathematical expectation individually. What if, after a loss,
the probability of a win was .3? In such a case, the mathematical expectation
is negative, hence there is no optimal f and as a result you shouldn’t take
this play:

ME = (.3 ∗ 2) + (.7 ∗ −1)

= .6 − .7

= −.1

In such circumstances, you would bet the optimal amount only after a win,
and you would not bet after a loss. If there is dependency present, you must
segregate the trades of the market system based upon the dependency and
treat the segregated trades as separate market systems.

The same principle, namely that asymptotic growth is maximized if

each play is considered to be performed an infinite number of times into

the future, also applies to simultaneous wagering (or trading a portfolio).
Consider two betting systems, A and B. Both have a 2:1 payoff ratio, and
both win 50% of the time. We will assume that the correlation coefficient
between the two systems is zero, but that is not relevant to the point being
illuminated here. The optimal fs for both systems (if they were being traded
alone, rather than simultaneously) are .25, or to make one bet for every
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four units in equity. The optimal fs for trading both systems simultaneously
are .23, or one bet for every 4.347826087 units in account equity.1 System B
trades only two-thirds of the time, so some trades will be done when the two
systems are not trading simultaneously. This first sequence is demonstrated
with a starting combined bank of 1,000 units, and each bet for each system
is performed with an optimal f of one bet per every 4.347826087 units:

A B Combined Bank

1,000.00
−1 −230.00 770.00

2 354.20 −1 −177.10 947.10
−1 −217.83 2 435.67 1,164.93

2 535.87 1,700.80
−1 −391.18 −1 −391.18 918.43

2 422.48 2 422.48 1,763.39

Next, we see the same exact thing, the only difference being that when
A is betting alone (i.e., when B does not have a bet at the same time as A), we
make one bet for every four units in the combined bank for System A, since
that is the optimal f on the single, individual play. On the plays where the
bets are simultaneous, we are still betting one unit for every 4.347826087
units in account equity for both A and B. Notice that in so doing we are
taking each bet, whether it is individual or simultaneous, and applying that
optimal f which would maximize the play as though it were to be performed
an infinite number of times in the future.

A B Combined Bank

1,000.00
−1 −250.00 750.00

2 345.00 −1 −172.50 922.50
−1 −212.17 2 424.35 1,134.67

2 567.34 1,702.01
−1 −391.46 −1 −391.46 919.09

2 422.78 2 422.78 1,764.65

As can be seen, there is a slight gain to be obtained by doing this and
the more trades that elapse, the greater the gain. Although we are not yet

1The method we are using here to arrive at these optimal bet sizes is described later
in the text in Chapter 9.
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discussing multiple simultaneous plays (i.e., “portfolios”), we invoke them
here to illuminate the point. The same principle applies to trading a portfolio
where not all components of the portfolio are in the market all the time.
You should trade at the optimal levels for the combination of components
(or single component) that results in the optimal growth as though that
combination of components (or single component) were to be traded an
infinite number of times in the future.

EFFICIENCY LOSS IN SIMULTANEOUS
WAGERING OR PORTFOLIO TRADING

Let’s again return to our 2:1 coin-toss game. Let’s again assume that we are
going to play two of these games, which we’ll call System A and System B,
simultaneously and that there is zero correlation between the outcomes of
the two games. We can determine our optimal fs for such a case as betting
one unit for every 4.347826 in account equity when the games are played
simultaneously. When starting with a bank of 100 units, notice that we finish
with a bank of 156.86 units:

System A System B

Trade P&L Trade P&L Bank

Optimal f is 1 unit for every
4.347826 in equity:

100.00

−1 −23.00 −1 −23.00 54.00

2 24.84 −1 −12.42 66.42

−1 −15.28 2 30.55 81.70

2 37.58 2 37.58 156.86

Now let’s consider System C. This would be the same as Systems A and
B, only we’re going to play this game alone, without another game going
simultaneously. We’re also going to play it for eight plays—as opposed to
the previous endeavor, where we played two games for four simultaneous
plays. Now our optimal f is to bet one unit for every four units in equity.
What we have is the same eight outcomes as before, but a different, better
end result:
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System C

Trade P&L Bank

Optimal f is 1 unit for
every 4.00 in equity:

100.00
−1 −25.00 75.00

2 37.50 112.50
−1 −28.13 84.38

2 42.19 126.56
2 63.28 189.84
2 94.92 284.77

−1 −71.19 213.57
−1 −53.39 160.18

The end result here is better not because the optimal fs differ slightly
(both are at their respective optimal levels), but because there is a small
efficiency loss involved with simultaneous wagering. This inefficiency is

the result of not being able to recapitalize your account after every single

wager as you could betting only one market system. In the simultaneous
two-bet case, you can recapitalize only three times, whereas in the single
eight-bet case you recapitalize seven times. Hence, the efficiency loss in
simultaneous wagering (or in trading a portfolio of market systems).

We just witnessed the case where the simultaneous bets were not cor-
related. Let’s look at what happens when we deal with positive (+1.00)
correlation:

System A System B

Trade P&L Trade P&L Bank

Optimal f is 1 unit for every
8.00 in equity:

100.00

−1 −12.50 −1 −12.50 75.00

2 18.75 2 18.75 112.50

−1 −14.06 −1 −14.06 84.38

2 21.09 2 21.09 126.56

Notice that after four simultaneous plays where the correlation between
the market systems employed is +1.00, the result is a gain of 126.56 on a
starting stake of 100 units. This equates to a TWR of 1.2656, or a geometric
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mean, a growth factor per play (even though these are combined plays) of
1.2656 ∧ (1/4) = 1.06066.

Now refer back to the single-bet case. Notice here that after four plays,
the outcome is 126.56, again on a starting stake of 100 units. Thus, the
geometric mean of 1.06066. This demonstrates that the rate of growth is the
same when trading at the optimal fractions for perfectly correlated markets.
As soon as the correlation coefficient comes down below +1.00, the rate of
growth increases. Thus, we can state that when combining market systems,

your rate of growth will never be any less than with the single-bet case,

no matter how high the correlations are, provided that the market system

being added has a positive arithmetic mathematical expectation.

Recall the first example in this section, where there were two market
systems that had a zero correlation coefficient between them. This market
system made 156.86 on 100 units after four plays, for a geometric mean of
(156.86/100) ∧ (1/4) = 1.119. Let’s now look at a case where the correlation
coefficients are −1.00. Since there is never a losing play under the following
scenario, the optimal amount to bet is an infinitely high amount (in other
words, bet one unit for every infinitely small amount of account equity).
But, rather than getting that greedy, we’ll just make one bet for every four
units in our stake so that we can make the illustration here:

System A System B

Trade P&L Trade P&L Bank

Optimal f is 1 unit for every
0.00 in equity (shown is 1
for every 4):

100.00
−1 −12.50 2 25.00 112.50

2 28.13 −1 −14.06 126.56
−1 −15.82 2 31.64 142.38

2 35.60 −1 −17.80 160.18

There are two main points to glean from this section. The first is that
there is a small efficiency loss with simultaneous betting or portfolio trading,
a loss caused by the inability to recapitalize after every individual play.
The second point is that combining market systems, provided they have a
positive mathematical expectation, and even if they have perfect positive
correlation, never decreases your total growth per time period. However,
as you continue to add more and more market systems, the efficiency loss
becomes considerably greater. If you have, say, 10 market systems and they
all suffer a loss simultaneously, that loss could be terminal to the account,
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since you have not been able to trim back size for each loss as you would
have had the trades occurred sequentially.

Therefore, we can say that there is a gain from adding each new market
system to the portfolio provided that the market system has a correlation
coefficient less than one and a positive mathematical expectation, or a neg-
ative expectation but a low enough correlation to the other components in
the portfolio to more than compensate for the negative expectation. There
is a marginally decreasing benefit to the geometric mean for each market
system added. That is, each new market system benefits the geometric mean
to a lesser and lesser degree. Further, as you add each new market system,
there is a greater and greater efficiency loss caused as a result of simultane-
ous rather than sequential outcomes. At some point, to add another market
system may do more harm then good.

TIME REQUIRED TO REACH A SPECIFIED
GOAL AND THE TROUBLE WITH
FRACTIONAL f

Suppose we are given the arithmetic average HPR and the geometric average
HPR for a given system. We can determine the standard deviation (SD) in
HPRs from the formula for estimated geometric mean:

EGM =
√

AHPR2 − SD2

where: AHPR = The arithmetic mean HPR.
SD = The population standard deviation in HPRs.

Therefore, we can estimate the SD as:

SD2 = AHPR2 − EGM2

Returning to our 2:1 coin-toss game, we have a mathematical expecta-
tion of $.50, and an optimal f of betting $1 for every $4 in equity, which yields
a geometric mean of 1.06066. We can use Equation (5.03) to determine our
arithmetic average HPR:

AHPR = 1 + (ME/f$ ) (5.03)

where: AHPR = The arithmetic average HPR.
ME = The arithmetic mathematical expectation in units.

f$ = The biggest loss/−f.
f = The optimal f (0 to 1).
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Thus, we would have an arithmetic average HPR of:

AHPR = 1 + (.5/(−1/−.25))
= 1 + (.5/4)
= 1 + .125
= 1.125

Now, since we have our AHPR and our EGM, we can employ Equation
(5.04) to determine the estimated SD in the HPRs:

SD2 = AHPR2 − EGM2

= 1.1252 − 1.060662

= 1.265625 − 1.124999636
= .140625364

Thus, SD ∧ 2, which is the variance in HPRs, is .140625364. Taking the
square root of this yields an SD in these HPRs of .140625364 ∧ (1/2) =
.3750004853. You should note that this is the estimated SD because it uses
the estimated geometric mean as input. It is probably not completely exact,
but it is close enough for our purposes.

However, suppose we want to convert these values for the SD (or
variance), arithmetic, and geometric mean HPRs to reflect trading at the
fractional f. These conversions are now given:

FAHPR = (AHPR − 1) * FRAC + 1 (5.04)

FSD = SD * FRAC (5.05)

FGHPR =
√

FAHPR2 − FSD2 (5.06)

where: FRAC = The fraction of optimal f we are solving for.
AHPR = The arithmetic average HPR at the optimal f.

SD = The standard deviation in HPRs at the optimal f.
FAHPR = The arithmetic average HPR at the fractional f.

FSD = The standard deviation in HPRs at the fractional f.
FGHPR = The geometric average HPR at the fractional f.

For example, suppose we want to see what values we would have for
FAHPR, FGHPR, and FSD at half the optimal f (FRAC = .5) in our 2:1 coin-
toss game. Here, we know our AHPR is 1.125 and our SD is .3750004853.
Thus:

FAHPR = (AHPR − 1) * FRAC + 1
= (1.125 − 1) * .5 + 1
= .125 * .5 + 1
= .0625 + 1
= 1.0625



JWDD035-05 JWDD035-Vince February 10, 2007 21:31 Char Count= 0

190 THE HANDBOOK OF PORTFOLIO MATHEMATICS

FSD = SD * FRAC

= .3750004853 * .5

= .1875002427

FGHPR =
√

FAHPR2 − FSD2

=
√

1.0652 − .18750024272

= √
1.12890625 − .03515634101

=
√

1.093749909

= 1.04582499

Thus, for an optimal f of .25, or making one bet for every $4 in equity, we
have values of 1.125, 1.06066, and .3750004853 for the arithmetic average,
geometric average, and SD of HPRs, respectively. Now we have solved for a
fractional (.5) f of .125 or making one bet for every $8 in our stake, yielding
values of 1.0625, 1.04582499, and .1875002427 for the arithmetic average,
geometric average, and SD of HPRs, respectively.

We can now take a look at what happens when we practice a fractional
f strategy. We have already determined that under fractional f we will make
geometrically less money than under optimal f. Further, we have determined
that the drawdowns and variance in returns will be less with fractional f.
What about time required to reach a specific goal?

We can quantify the expected number of trades required to reach a
specific goal. This is not the same thing as the expected time required to
reach a specific goal, but since our measurement is in trades we will use
the two notions of time and trades elapsed interchangeably here:

T = ln(Goal) / ln(Geometric Mean) (5.07)

where: T = The expected number of trades to reach a
specific goal.

Goal = The goal in terms of a multiple on our starting stake,
a TWR.

ln() = The natural logarithm function.

or:

T = LogGeometric Mean Goal

(i.e. The ‘Log base Geoemetric Mean’ of the Goal) (5.07a)

Returning to our 2:1 coin-toss example, at optimal f we have a geomet-
ric mean of 1.06066, and at half f this is 1.04582499. Now let’s calculate
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the expected number of trades required to double our stake (goal = 2). At
full f:

T = ln(2)/ln(1.06066)

= .6931471/.05889134

= 11.76993

Thus, at the full f amount in this 2:1 coin-toss game, we anticipate it will
take us 11.76993 plays (trades) to double our stake.

Now, at the half f amount:

T = ln(2)/ln(1.04582499)

= .6931471/.04480602

= 15.46996

Thus, at the half f amount, we anticipate it will take us 15.46996 trades to
double our stake. In other words, trading half f in this case will take us
31.44% longer to reach our goal.

Well, that doesn’t sound too bad. By being more patient, allowing 31.44%
longer to reach our goal, we eliminate our drawdown by half and our vari-
ance in the trades by half. Half f is a seemingly attractive way to go. The
smaller the fraction of optimal f that you use, the smoother the equity
curve, and hence the less time you can expect to be in the worst-case draw-
down.

Now, let’s look at it in another light. Suppose you open two accounts,
one to trade the full f and one to trade the half f. After 12 plays, your full
f account will have more than doubled to 2.02728259 (1.0606612) times
your starting stake. After 12 trades your half f account will have grown
to 1.712017427 (1.0458249912) times your starting stake. This half f ac-
count will double at 16 trades to a multiple of 2.048067384 (1.0458249916)
times your starting stake. So, by waiting about one-third longer, you have
achieved the same goal as with full optimal f, only with half the com-
motion. However, by trade 16 the full f account is now at a multiple of
2.565777865 (1.0606616) times your starting stake. Full f will continue to
pull out and away. By trade 100, your half f account should be at a multiple
of 88.28796546 times your starting stake, but the full f will be at a multiple of
361.093016!

So anyone who claims that the only thing you sacrifice with trading at a
fractional versus full f is time required to reach a specific goal is completely
correct. Yet time is what it’s all about. We can put our money in Treasury
bills and they will reach a specific goal in a certain time with an absolute
minimum of drawdown and variance! Time truly is of the essence.
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COMPARING TRADING SYSTEMS

We have seen that two trading systems can be compared on the basis of
their geometric means at their respective optimal fs. Further, we can com-
pare systems based on how high their optimal fs themselves are, with the
higher optimal f being the riskier system. This is because the least the draw-
down may have been is at least an f percent equity retracement. So, there
are two basic measures for comparing systems, the geometric means at
the optimal fs, with the higher geometric mean being the superior system,
and the optimal fs themselves, with the lower optimal f being the supe-
rior system. Thus, rather than having a single, one-dimensional measure
of system performance, we see that performance must be measured on
a two-dimensional plane, one axis being the geometric mean, the other
being the value for f itself. The higher the geometric mean at the opti-

mal f, the better the system. Also, the lower the optimal f, the better the

system.

Geometric mean does not imply anything regarding drawdown. That
is, a higher geometric mean does not mean a higher (or lower) drawdown.
The geometric mean pertains only to return. The optimal f is the measure of
minimum expected historical drawdown as a percentage of equity retrace-
ment. A higher optimal f does not mean a higher (or lower) return. We can
also use these benchmarks to compare a given system at a fractional f value
and another given system at its full optimal f value.

Therefore, when looking at systems, you should look at them in terms
of how high their geometric means are and what their optimal fs are. For
example, suppose we have System A, which has a 1.05 geometric mean and
an optimal f of .8. Also, we have System B, which has a geometric mean of
1.025 and an optimal f of .4. System A at the half f level will have the same
minimum historical worst-case equity retracement (drawdown) of 40%, just
as System B’s at full f , but System A’s geometric mean at half f will still be
higher than System B’s at the full f amount. Therefore, System A is superior
to System B.

“Wait a minute,” you say. “I thought the only thing that mattered was
that we had a geometric mean greater than one, that the system need be
only marginally profitable, that we can make all the money we want through
money management!” That’s still true. However, the rate at which you will
make the money is still a function of the geometric mean at the f level you
are employing. The expected variability will be a function of how high the
f you are using is. So, although it’s true that you must have a system with
a geometric mean at the optimal f that is greater than one (i.e., a positive
mathematical expectation) and that you can still make virtually an unlimited
amount with such a system after enough trades, the rate of growth (the
number of trades required to reach a specific goal) is dependent upon the



JWDD035-05 JWDD035-Vince February 10, 2007 21:31 Char Count= 0

Characteristics of Optimal f 193

geometric mean at the f value employed. The variability en route to that
goal is also a function of the f value employed.

Yet these considerations, the degree of the geometric mean and the f

employed, are secondary to the fact that you must have a positive math-
ematical expectation, although they are useful in comparing two systems
or techniques that have positive mathematical expectations and an equal
confidence of their working in the future.

TOO MUCH SENSITIVITY
TO THE BIGGEST LOSS

A recurring criticism with the entire approach of optimal f is that it is too
dependent on the biggest losing trade. This seems to be rather disturbing
to many traders. They argue that the amount of contracts you put on today
should not be so much a function of a single bad trade in the past.

Numerous different algorithms have been worked up by people to al-
leviate this apparent oversensitivity to the largest loss. Many of these al-
gorithms work by adjusting the largest loss upward or downward to make
the largest loss be a function of the current volatility in the market. The
relationship seems to be a quadratic one. That is, the absolute value of the
largest loss seems to get bigger at a faster rate than the volatility. (Volatility
is usually defined by these practitioners as the average daily range of the last
few weeks, or average absolute value of the daily net change of the last few
weeks, or any of the other conventional measures of volatility.) However,
this is not a deterministic relationship. That is, just because the volatility is
X today does not mean that our largest loss will be XY. It simply means that
it usually is somewhere near XY.

If we could determine in advance what the largest possible loss would
be going into today, we could then have a much better handle on our money
management.2 Here again is a case where we must consider the worst-case

2This is where using options in a trading strategy is so useful. Either buying a put or
call outright in opposition to the underlying position to limit the loss to the strike
price of the options, or simply buying options outright in lieu of the underlying,
gives you a floor, an absolute maximum loss. Knowing this is extremely handy from a
money-management, particularly an optimal f, standpoint. Futher, if you know what
your maximum possible loss is in advance (e.g., a day trade), then you can always
determine what the f is in dollars perfectly for any trade by the relation dollars at
risk per unit/optimal f. For example, suppose a day trader knew his optimal f was
.4. His stop today, on a one-unit basis, is going to be $900. He will therefore optimally
trade one unit for every $2,250 ($900/.4) in account equity.
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scenario and build from there. The problem is that we do not know exactly
what our largest loss can be going into today. An algorithm that can predict
this is really not very useful to us because of the one time that it fails.

Consider, for instance, the possibility of an exogenous shock occurring
in a market overnight. Suppose the volatility were quite low prior to this
overnight shock, and the market then went locked-limit against you for the
next few days. Or suppose that there were no price limits, and the market
just opened an enormous amount against you the next day. These types
of events are as old as commodity and stock trading itself. They can and
do happen, and they are not always telegraphed in advance by increased
volatility.

Generally, then, you are better off not to “shrink” your largest historical
loss to reflect a current low-volatility marketplace. Furthermore, there is

the concrete possibility of experiencing a loss larger in the future than

what was the historically largest loss. There is no mandate that the largest
loss seen in the past is the largest loss you can experience today. This is
true regardless of the current volatility coming into today.

The problem is that, empirically, the f that has been optimal in the past
is a function of the largest loss of the past. There’s no getting around this.
However, as you shall see when we get into the parametric techniques, you
can budget for a greater loss in the future. In so doing, you will be prepared
if the almost inevitable larger loss comes along. Rather than trying to adjust
the largest loss to the current climate of a given market so that your empirical
optimal f reflects the current climate, you will be much better off learning
the parametric techniques.

The scenario planning techniques, which are a parametric technique,
are a possible solution to this problem, and it can be applied whether
we are deriving our optimal f empirically or, as we shall learn later,
parametrically.

THE ARC SINE LAWS AND RANDOM WALKS

Now we turn the discussion toward drawdowns. First, however, we need
to study a little bit of theory in the way of the first and second arc sine
laws. These are principles that pertain to random walks. The stream of
trade profits and losses (P&Ls) that you are dealing with may not be truly
random. The degree to which the stream of P&Ls you are using differs from
being purely random is the degree to which this discussion will not pertain
to your stream of P&Ls. Generally, though, most streams of trade P&Ls are
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nearly random as determined by the runs test and the linear correlation
coefficient (serial correlation).

Furthermore, not only do the arc sine laws assume that you know in
advance the amount you can win or lose; they also assume that the amount
you can win is equal to the amount you can lose, and that this is always
a constant amount. In our discussion, we will assume that the amount
you can win or lose is $1 on each play. The arc sine laws also assume
that you have a 50% chance of winning and a 50% chance of losing. Thus,
the arc sine laws assume a game where the mathematical expectation is
zero.

These caveats make for a game that is considerably different, and con-
siderably simpler, than trading is. However, the first and second arc sine
laws are exact for the game just described. To the degree that trading dif-
fers from the game just described, the arc sine laws do not apply. For the
sake of learning the theory, however, we will not let these differences con-
cern us for the moment.

Imagine a truly random sequence such as coin tossing3 where we win
one unit when we win and we lose one unit when we lose. If we were to
plot out our equity curve over X tosses, we could refer to a specific point
(X,Y), where X represented the Xth toss and Y our cumulative gain or loss
as of that toss.

We define positive territory as anytime the equity curve is above the
X axis or on the X axis when the previous point was above the X axis.
Likewise, we define negative territory as anytime the equity curve is be-
low the X axis or on the X axis when the previous point was below the X
axis. We would expect the total number of points in positive territory to be
close to the total number of points in negative territory. But this is not the
case.

If you were to toss the coin N times, your probability (Prob) of spending
K of the events in positive territory is:

Prob ∼ 1/π *
√

K *
√

(N − K) (5.08)

The symbol ∼ means that both sides tend to equality in the limit. In this case,
as either K or (N – K) approaches infinity, the two sides of the equation will
tend toward equality.

3Although empirical tests show that coin tossing is not a truly random sequence due
to slight imperfections in the coin used, we will assume here, and elsewhere in the
text when referring to coin tossing, that we are tossing an ideal coin with exactly a
.5 chance of landing heads or tails.
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Thus, if we were to toss a coin 10 times (N = 10) we would have the
following probabilities of being in positive territory for K of the tosses:

K Probability4

0 .14795
1 .1061
2 .0796
3 .0695
4 .065
5 .0637
6 .065
7 .0695
8 .0796
9 .1061

10 .14795

You would expect to be in positive territory for 5 of the 10 tosses, yet
that is the least likely outcome! In fact, the most likely outcome is that you
will be in positive territory for all of the tosses or for none of them!

This principle is formally detailed in the first arc sine law, which states:

For a Fixed A (0 < A < 1) and as N approaches infinity, the probability that
K/N spent on the positive side is < A tends to:

Prob{(K/N) < A} = 2/π * sin−1
√

A (5.09)

Even with N as small as 20, you obtain a very close approximation for the
probability.

Equation (5.09), the first arc sine law, tells us that with probability .1,
we can expect to see 99.4% of the time spent on one side of the origin, and
with probability .2, the equity curve will spend 97.6% of the time on the same
side of the origin! With a probability of .5, we can expect the equity curve
to spend in excess of 85.35% of the time on the same side of the origin. That
is just how perverse the equity curve of a fair coin is!

4Note that since neither K nor N may equal 0 in Equation (5.08) (as you would then
be dividing by 0), we can discern the probabilities corresponding to K = 0 and K =
N by summing the probabilities from K = 1 to K = N – 1 and subtracting this sum
from 1. Dividing this difference by 2 will give us the probabilities associated with
K = 0 and K = N.
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Now here is the second arc sine law, which also uses Equation (5.09)
and hence has the same probabilities as the first arc sine law, but applies
to an altogether different incident, the maximum or minimum of the equity
curve. The second arc sine law states that the maximum (or minimum) point
of an equity curve will most likely occur at the endpoints, and least likely at
the center. The distribution is exactly the same as the amount of time spent
on one side of the origin!

If you were to toss the coin N times, your probability of achieving the
maximum (or minimum) at point K in the equity curve is also given by
Equation (5.08):

Prob ∼ 1/π *
√

K *
√

(N − K)

Thus, if you were to toss a coin 10 times (N = 10), you would have the
following probabilities of the maximum (or minimum) occurring on the Kth
toss:

K Probability

0 .14795
1 .1061
2 .0796
3 .0695
4 .065
5 .0637
6 .065
7 .0695
8 .0796
9 .1061

10 .14795

In a nutshell, the second arc sine law states that the maximum or mini-
mum is most likely to occur near the endpoints of the equity curve and least
likely to occur in the center.

TIME SPENT IN A DRAWDOWN

Recall the caveats involved with the arc sine laws. That is, the arc sine laws
assume a 50% chance of winning and a 50% chance of losing. Further, they
assume that you win or lose the exact same amounts and that the generating
stream is purely random. Trading is considerably more complicated than
this. Thus, the arc sine laws don’t apply in a pure sense, but they do apply
in spirit.
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Consider that the arc sine laws worked on an arithmetic mathematical
expectation of zero. Thus, with the first law, we can interpret the percentage
of time on either side of the zero line as the percentage of time on either
side of the arithmetic mathematical expectation. Likewise with the second
law, where, rather than looking for an absolute maximum and minimum,
we were looking for a maximum above the mathematical expectation and
a minimum below it. The minimum below the mathematical expectation
could be greater than the maximum above it if the minimum happened later
and the arithmetic mathematical expectation was a rising line (as in trading)
rather than a horizontal line at zero.

However we can interpret the spirit of the arc sine laws as applying to
trading in the following ways. First, each trade, regardless of the amount
won or lost, must be considered as winning one unit or losing one unit
respectively. Thus, we now therefore have a line whose slope is the ratio of
the difference between the number of wins and losses, and the sum of the
number of wins and number of losses, rather than the horizontal line whose
slope is zero in the arc sine laws.

For example, suppose I had four trades, three of which were winning
trades. The slope of my line therefore equals (3 − 1)/(3 + 1) = 2/4 = .5.
This is our slope and our mathematical expectation (given that all wins are
figured as +1, all losses as −1).

We can interpret the first arc sine law as stating that we should expect to
be on one side of the mathematical expectation line for far more trades than
we spend on the other side of the mathematical expectation line. Regarding
the second arc sine law, we should expect the maximum deviations from
the mathematical expectation line, either above or below it, as being most
likely to occur near the beginning or the end of the equity curve graph and
least likely near the center of it.

THE ESTIMATED GEOMETRIC MEAN (OR
HOW THE DISPERSION OF OUTCOMES
AFFECTS GEOMETRIC GROWTH)

This discussion will use a gambling illustration for the sake of simplicity.
Let’s consider two systems: System A, which wins 10% of the time and has
a twenty-eight-to-one win/loss ratio, and System B, which wins 70% of the
time and has a one-to-one ratio. Our mathematical expectation, per unit
bet, for A is 1.9 and for B is .4. Therefore, we can say that for every unit
bet, System A will return, on average, 4.75 times as much as System B. But
let’s examine this under fixed fractional trading. We can find our optimal
f s by dividing the mathematical expectations by the win/loss ratios [per
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Equation (4.05)]. This gives us an optimal f of .0678 for A and .4 for B. The
geometric means for each system at their optimal f levels are then:

A = 1.044176755

B = 1.0857629

System % Wins Win:Loss ME f Geomean

A .1 28:1 1.9 .0678 1.0441768
B .7 1:1 .4 .4 1.0857629

As you can see, System B, although less than one-fourth the mathe-
matical expectation of A, makes almost twice as much per bet (returning
8.57629% of your entire stake per bet, on average, when reinvesting at the
optimal f levels) as does A (returning 4.4176755% of your entire stake per
bet, on average, when reinvesting at the optimal f levels).

Now, assuming a 50% drawdown on equity will require a 100% gain to
recoup, then:

1.044177 to the power of x is equal to 2.0 at approximately x equals 16.5,
or more than 16 trades to recoup from a 50% drawdown for System A.
Contrast this to System B, where 1.0857629 to the power of x is equal to
2.0 at approximately x equals 9, or nine trades for System B to recoup
from a 50% drawdown.

What’s going on here? Is this because System B has a higher percentage
of winning trades? The reason B is outperforming A has to do with the
dispersion of outcomes and its effect on the growth function. Most people
have the mistaken impression that the growth function, the TWR, is:

TWR = (1 + R)T

where: R = Interest rate per period, e.g., 7% = .07.
T = Number of periods.

Since 1 + R is the same thing as an HPR, we can say that most people
have the mistaken impression that the growth function,5 the TWR, is:

TWR = HPRT

5Many people mistakenly use the arithmetic average HPR in the equation for HPRT .
As is demonstrated here, this will not give the true TWR after T plays. What you must
use is the geometric average HPR, rather than the arithmetic in HPRT . This will give
you the true TWR. If the standard deviation in HPRs is 0, then the arithmetic average
HPR and the geometric average HPR are equivalent, and it matters not which you
use, arithmetic or geometric average HPR, in such a case.
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This function is true only when the return (i.e., the HPR) is constant, which
is not the case in trading.

The real growth function in trading (or any event where the HPR is not
constant) is the multiplicative product of the HPRs. Assume we are trading
coffee, and our optimal f is one contract for every $21,000 in equity, and
we have two trades, a loss of $210 and a gain of $210, for HPRs of .99 and
1.01, respectively. In this example, our TWR would be:

TWR = 1.01 * .99

= .9999

An insight can be gained by using the estimated geometric mean (EGM),
which very closely approximates the geometric mean:

G =
√

A2 − S2

or:

G =
√

A2 − V

where: G = geometric mean HPR
A = arithmetic mean HPR
S = standard deviation in HPRs
V = variance in HPRs

Now we take Equations (4.18) and (3.04) to the power of n to estimate
the TWR. This will very closely approximate the multiplicative growth
function, the actual TWR, of Equation (4.17):

TWR = (
√

A2 − S2)T (5.10)

where: T = Number of periods.
A = Arithmetic mean HPR.
S = Population standard deviation in HPRs.

The insight gained is that we can see, mathematically, the trade-off
between an increase in the arithmetic average trade (the HPR) versus the
dispersion in the HPRs (the standard deviations or the variance), hence the
reason that the 70% one-to-one system did better than the 10% twenty-eight-
to-one system.

Our goal should be to maximize the coefficient of this function, to max-
imize Equation (3.04): Expressed literally, to maximize the square root of

the quantity HPR squared minus the variance in HPRs.
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FIGURE 5.2 Pythagorean Theorem in money management

The exponent of the estimated TWR, T , will take care of itself. That is
to say that increasing T is not a problem, as we can increase the number
of markets we are following, trading more short-term types of systems, and
so on.

We can rewrite Equation [3.04] to appear as:

A2 = G2 + S2

This brings us to the point where we can envision exactly what the
relationships are. Notice that this equation is the familiar Pythagorean The-
orem: The hypotenuse of a right-angle triangle squared equals the sum of
the squares of its sides (Figure 5.2). But here, the hypotenuse is A, and we
want to maximize one of the legs, G.

In maximizing G, any increase in S will require an increase in A to offset.
When S equals zero, then A equals G, thus conforming to the misconstrued
growth function TWR = (1 + R)T .

So, in terms of their relative effect on G, we can state that an increase
in A is equal to a decrease of the same amount in S, and vice versa. Thus,
any amount by which the dispersion in trades is reduced (in terms of re-
ducing the standard deviation) is equivalent to an increase in the arithmetic
average HPR. This is true regardless of whether or not you are trading at
optimal f!

If a trader is trading on a fixed fractional basis, then he wants to maxi-
mize G, not necessarily A. In maximizing G, the trader should realize that
the standard deviation, S, affects G in directly the same proportion as does
A, per the Pythagorean Theorem! Thus, when the trader reduces the stan-
dard deviation (S) of his trades, it is equivalent to an equal increase in the
arithmetic average HPR (A), and vice versa!
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THE FUNDAMENTAL EQUATION OF TRADING

We can glean a lot more than just how trimming the size of our losses, or
reducing our dispersion in trades, improves our bottom line. Return now to
Equation (5.10), the estimated TWR. Since (XY)Z = X(Y * Z), we can further
simplify the exponents in the equation, thus simplifying Equation (5.10) to:

TWR = (A2 − S2)T/2 (5.10a)

This last equation, the simplification for the estimated TWR, we will call
the fundamental equation for trading, since it describes how the different
factors, A, S, and T , affect our bottom line in trading.

There are a few things that are readily apparent. The first of these is that
if A is less than or equal to one, then regardless of the other two variables,
S and T , our result can be no greater than one. If A is less than one, then as
T approaches infinity, A approaches zero. This means that if A is less than
or equal to one (mathematical expectation less than or equal to zero since
mathematical expectation = A − 1), we do not stand a chance at making
profits. In fact, if A is less than one, it is simply a matter of time until we go
broke.

Provided that A is greater than one, we can see that increasing T in-
creases our total profits. For each increase of one trade, the coefficient is
further multiplied by its square root.

Each time we can increase T by one, we increase our TWR by a factor
equivalent to the square root of the coefficient (which is the geometric
mean). Thus, each time a trade occurs or an HPR elapses, each time T is
increased by one, the coefficient is multiplied by the geometric mean.

An important point to note about the fundamental trading equation is
that it shows that if you reduce your standard deviation to a greater extent
than you reduce your arithmetic average HPR, you are better off. It stands
to reason, therefore, that cutting your losses short, if possible, benefits you.
But the equation demonstrates that at some point you no longer benefit by
cutting your losses short. That is the point where you would be getting out
of too many trades with a small loss that later would have turned profitable,
thus reducing your A to a greater extent than your S.

Along these same lines, reducing big winning trades can help your pro-
gram if it reduces your S greater than it reduces your A. This can be accom-
plished, in many cases, by incorporating options into your trading program.
Having an option position that goes against your position in the underlying
(either by buying long an option or writing an option) can possibly help.

As you can see, the fundamental trading equation can be utilized to
dictate many changes in our trading. These changes may be in the way
of tightening (or loosening) our stops, setting targets, and the like. These
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changes are the result of inefficiencies in the way we are carrying out our
trading, as well as inefficiencies in our trading program or methodology.

WHY IS f OPTIMAL?

To see that f is optimal in the sense of maximizing wealth:

since G =
(

T∏
i= 1

HPRi

)1/T

and

(
T∏

i= 1

HPRi

)1/T

= exp

⎛⎜⎜⎜⎝
T∑

i= 1
In (HPRi)

T

⎞⎟⎟⎟⎠
Then, if one acts to maximize the geometric mean at every holding period,
if the trial is sufficiently long, by applying either the weaker law of large
numbers or the Central Limit Theorem to the sum of independent variables
(i.e., the numerator on the right side of this equation), almost certainly
higher terminal wealth will result than from using any other decision rule.

Furthermore, we can also apply Rolle’s Theorem to the problem of the
proof of f s optimality. Recall that we are defining optimal here as meaning
that which will result in the greatest geometric growth as the number of trials
increases. The TWR is the measure of average geometric growth; thus, we
wish to prove that there is a value for f that results in the greatest TWR.

Rolle’s Theorem states that if a continuous function crosses a line par-
allel to the X-axis at two points, a and b, and the function is continuous
throughout the interval a,b, then there exists at least one point in the interval
where the first derivative equals zero (i.e., at least one relative extremum).

Given that all functions with a positive arithmetic mathematical expec-
tation cross the X-axis twice6 (the X being the f axis), at f = 0 and at that
point to the right where f results in computed HPRs where the variance in
those HPRs exceeds the difference of the arithmetic mean of those HPRs
minus one, we have our a,b interval on X, respectively. Furthermore, the

6Actually, at f = 0, the TWR = 0, and thus we cannot say that it crosses 0 to the
upside here. Instead, we can say that at an f value which is an infinitesimally small
amount beyond 0, the TWR crosses a line an infinitesimally small amount above 0.
Likewise to the right but in reverse, the line, the f curve, the TWR, crosses this line
which is an infinitesimally small amount above the X-axis as it comes back down to
the X-axis.
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first derivative of the fundamental equation of trading (i.e., the estimated
TWR) is continuous for all f within the interval, since f results in AHPRs
and variances in those HPRs, within the interval, which are differentiable in
the function in that interval; thus, the function, the estimated TWR, is con-
tinuous within the interval. Per Rolle’s Theorem, it must, therefore, have at
least one relative extremum in the interval, and since the interval is positive,
that is, above the X-axis, the interval must contain at least one maximum.

In fact, there can be only one maximum in the interval given that the
change in the geometric mean HPR (a transformation of the TWR, given that
the geometric mean HPR is the Tth root of the TWR) is a direct function of
the change in the AHPR and the variance, both of which vary in opposite

directions to each other as f varies, per the Pythagorean theorem. This
guarantees that there can be only one peak. Thus, there must be a peak in
the interval, and there can be only one peak. There is an f that is optimal
at only one value for f , where the first derivative of the TWR with respect
to f equals zero.

Let us go back to Equation (4.07). Now, we again consider our two-to-
one coin toss. There are two trades, two possible scenarios. If we take the
first derivative of (4.07) with respect to f , we obtain:

dTWR
df

=
((

1 + f *
( −trade1

biggest loss

))
*

( −trade2

biggest loss

))
+

(( −trade1

biggest loss

)
*

(
1 + f *

( −trade2

biggest loss

)))
(5.11)

If there were more than two trades, the same basic form could be used,
only it would grow monstrously large in short order, so we’ll use only two
trades for the sake of simplicity. Thus, for the sequence +2,−1 at f = .25:

dTWR
df

=
((

1 + .25 *

( −2
−1

) )
*

( −1
−1

))
+

((−2
−1

)
*

(
1 + .25 *

( −1
−1

)))
dTWR

df
= ((1 + .25 * 2) * − 1) + (2 * (1 + .25 * − 1))

dTWR
df

= ((1 + .5) * − 1) + (2 * (1 − .25))

dTWR
df

= (1.5 * − 1) + (2 * .75)

dTWR
df

= −1.5 + 1.5 = 0



JWDD035-05 JWDD035-Vince February 10, 2007 21:31 Char Count= 0

Characteristics of Optimal f 205

And we see that the function peaks at .25, where the slope of the tangent
is zero, exactly at the optimal f , and no other local extremum can exist
because of the restriction caused by the Pythagorean Theorem.

Lastly, we will see that optimal f is indifferent to T . We can take the
first derivative of the estimated TWR, Equation (5.10a) with respect to T as:

dTWR
dT

= (
A2 − S2)T/2

* ln
(
A2 − S2) (5.12)

Since ln(1) = 0, then if A2 − S2 = 1, that is, A2 − 1 = S2 (or variance),
the function peaks out and the single optimal maximum TWR is found with
respect to f. Notice, though, that both A, the arithmetic average HPR, and
S, the standard deviation in those HPRs, are not functions of T. Instead,
they are indifferent to T ; thus, (5.10a) is indifferent to T at the optimal f.

The f that is optimal in the sense of maximizing the estimated TWR will
always be the same value regardless of T.
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C H A P T E R 6

Laws of Growth,
Utility, and

Finite Streams

S ince this book deals with the mathematics involving growth, we must
discuss the laws of growth. When dealing with growth in mathemat-
ical terms, we can discuss it in terms of growth functions or of the

corresponding growth rates.
We can speak of growth functions as falling into three distinct cate-

gories, where each category is associated with a growth rate. Figure 6.1
portrays these three categories as lines B, C, and D, and their growth rates
as A, B, and C, respectively. Each growth function has its growth rate im-
mediately to its left.

Thus, for growth function B, the linear growth function, its growth rate
is line A. Further, although B is a growth function itself, it also represents
the growth rate for function C, the exponential growth rate.

Notice that there are three growth functions, linear, exponential, and
hyperbolic. Thus, the hyperbolic growth function has an exponential growth
rate, the exponential growth function has a linear growth rate, and the linear
growth function has a flat-line growth rate.

The X and Y-axes are important here. If we are discussing growth
functions (B, C, or D), the Y-axis represents quantity and the X-axis repre-
sents time. If we are discussing growth rates, the Y-axis represents quantity
change with respect to time, and the X-axis represents quantity.

When we speak of growth rates and functions in general, we often speak
of the growth of a population of something. The first of the three major
growth functions is the linear growth function, line B, and its rate, line A.
Members of a population characterized by linear growth tend to easily find
a level of coexistence.

207
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FIGURE 6.1 The three growth functions

Next, we have the exponential growth function, line C, and its growth
rate, which is linear, line B. Here, we find competition among the members
of the population and a survival-of-the-fittest principle setting in. In the ex-
ponential growth function, however, it is possible for a mutation to appear,
which has a selective advantage, and establish itself.

Finally, in the hyperbolic growth function, line D, and its (exponential)
growth rate, line C, we find a different story. Unlike the exponential growth
function, which has a linear growth rate, this one’s growth rate is itself
exponential. That is, the greater the quantity, the faster the growth rate!
Thus, the hyperbolic function, unlike the exponential function, reaches a
point that we call a singularity. That is, it reaches a point where it becomes
infinitely large, a vertical asymptote. This is not true of the exponential
growth function, which simply becomes larger and larger. In the hyperbolic
function, we also find competition among the members of the population,
and a survival-of-the-fittest characteristic. However, at a certain point in
the evolution of a hyperbolic function, it becomes nearly impossible for a
mutation with a selective advantage to establish itself, since the rest of the
population is growing at such a rapid rate.

In either the exponential or hyperbolic growth functions, if there are
functional links between the competing species within the population, it
can cause any of the following:

1. Increased competition among the partners; or

2. Mutual stabilization among the partners; or

3. Extinction of all members of the population.

The notion of populations is also a recurring theme throughout this
book, and it is nearly impossible to discuss the mathematics of growth
without discussing populations. The mathematics of growth is the corpus
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callosum between population growth and the new framework presented in
this book.

Trading is exponential, not hyperbolic. However, if you had some-
one who would give you money to trade if your performance came in as
promised, and that person had virtually unlimited funds, then your trading
would be hyperbolic. This sounds like managed money. The problem faced
by money managers is the caveat laid on the money manager by the individ-
ual of unlimited wealth: if your performance comes in as promised. In the
later chapters in this book, we will discuss techniques to address this caveat.

MAXIMIZING EXPECTED AVERAGE
COMPOUND GROWTH

Thus far, in this book, we have looked at finding a value for f that was
asymptotically dominant. That is, we have sought a single value for f for a
given market system, which, if there truly was independence between the
trades, would maximize geometric growth with certainty as the number of
trades (or holding periods) approached infinity. That is, we would end up
with greater wealth in the very long run, with a probability that approached
certainty, than we would using any other money management strategy.

Recall that if we have only one play, we maximize growth by maximizing
the arithmetic average holding period return (i.e., f = 1). If we have an
infinite number of plays, we maximize growth by maximizing the geometric
average holding period return (i.e., f = optimal f). However, the f that is

truly optimal is a function of the length of time—the number of finite

holding period returns—that we are going to play.
For one holding period return, the optimal f will always be 1.0 for a

positive arithmetic mathematical expectation game. If we bet at any value
for f other than 1.0, and quit after only one holding period, we will not have
maximized our expected average geometric growth. What we regard as the
optimal f would be optimal only if you were to play for an infinite number
of holding periods. The f that is truly optimal starts at one for a positive
arithmetic mathematical expectation game, and converges toward what we
call the optimal f as the number of holding periods approaches infinity.

To see this, consider again our two-to-one coin-toss game, where we
have determined the optimal f to be .25. That is, if the coin tosses are inde-
pendent of previous tosses, by betting 25% of our stake on each and every
play, we will maximize our geometric growth with certainty as the length
of this game, the number of tosses (i.e., the number of holding periods)
approaches infinity. That is, our expected average geometric growth—what
we would expect to end up with, as an expected value, given every possible
combination of outcomes—would be greatest if we bet 25% per play.
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Consider the first toss. There is a 50% probability of winning $2 and a 50%
probability of losing $2. At the second toss, there is a 25% chance of winning
$2 on the first toss and winning $2 on the second, a 25% chance of winning $2
on the first and losing $1 on the second, a 25% chance of losing $1 on the first
and winning $2 on the second, and a 25% chance of losing $1 on the first and
losing $1 on the second (we know these probabilities to be true because
we have already stated the prerequisite that these events are independent).
The combinations bloom out in time in a tree-like fashion. Since we had
only two scenarios (heads and tails) in this scenario spectrum, there are
only two branches off of each node in the tree. If we had more scenarios in
this spectrum, there would be that many more branches off of each node in
this tree:

Toss#

1 2 3

Heads
Heads

Tails
Heads

Heads
Tails

Tails
Heads

Heads
Tails

Tails
Heads

Tails
Tails

If we bet 25% of our stake on the first toss and quit, we will not have
maximized our expected average compound growth (EACG).

What if we quit after the second toss? What, then, should we optimally
bet, knowing that we maximize our expected average compound gain by
betting at f = 1 when we are going to quit after one play, and betting at the
optimal f if we are going to play for an infinite length of time?

If we go back and optimize f, allowing there to be a different f value used
for the first play as well as the second play, with the intent of maximizing
what our average geometric mean HPR would be at the end of the second
play, we would find the following: First, the optimal f for quitting after two
plays in this game approaches the asymptotic optimal, going from 1.0 if we
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quit after one play to .5 for both the first play and the second. That is, if we
were to quit after the second play, we should optimally bet .5 on both the first
and second plays to maximize growth. (Remember, we allowed for the first
play to be an f value different from the second, yet they both came out the
same: .5 in this case. It is a fact that if you are looking to maximize growth,
the f that is optimal—for finite as well as infinite streams—is uniform.)

We can see this if we take the first two possible combinations of tosses:

Toss#

1 2

Heads
Heads

Tails
Heads

Tails
Tails

Which can be represented by the following outcomes:

Toss#

1 2

2
2

−1
2

−1
−1

These outcomes can be expressed as holding period returns for various f

values. In the following, it is shown for an f of .5 for the first toss, as well as
for an f of .5 for the second:

Toss#

1 2

2
2

.5
2

.5
.5
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Now, we can express all tosses subsequent to the first toss as TWRs by
multiplying by the subsequent tosses on the tree. The numbers following
the last toss on the tree (the numbers in parentheses) are the last TWRs
taken to the root of 1/n, where n equals the number of HPRs, or tosses—in
this case two—and represents the geometric mean HPR for that terminal
node on the tree:

Toss#

1 2

4 (2.0)
2

1 (1.0)
1 (1.0)

.5
.25 (.5)

Now, if we total up the geometric mean HPRs and take their arithmetic
average, we obtain the expected average compound growth, in this case:

2.0
1.0
1.0
.5

——
4.5

—— = 1.125
4

Thus, if we were to quit after two plays, and yet do this same thing over
an infinite number of times (i.e., quit after two plays), we would optimally
bet .5 of our stake on each and every play, thus maximizing our EACG.

Notice that we did not bet with an f of 1.0 on the first play, even though
that is what would have maximized our EACG if we had quit at one play.
Instead, if we are planning on quitting after two plays, we maximize our
EACG growth by betting at .5 on both the first play and the second play.

Notice that the f that is optimal in order to maximize growth is uniform
for all plays, yet it is a function of how long you will play. If you are to quit
after only one play, the f that is optimal is the f that maximizes the arithmetic
mean HPR (which is always an f of 1.0 for a positive expectation game, 0.0
for a negative expectation game). If you are playing a positive expectation
game, the f that is optimal continues to decrease as the length of time after
which you quit grows, and, asymptotically, if you play for an infinitely long
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time, the f that is optimal is that which maximizes the geometric mean HPR.
In a negative expectation game, the f that is optimal simply stays at zero.

However, the f that you use to maximize growth is always uniform, and
that uniform amount is a function of where you intend to quit the game. If
you are playing the two-to-one coin-toss game, and you intend to quit after
one play, you have an f value that provides for optimal growth of 1.0. If you
intend to quit after two plays, you have an f that is optimal for maximizing
growth of .5 on the first toss and .5 on the second. Notice that you do not bet
1.0 on the first toss if you are planning on maximizing the EACG by quitting
at the end of the second play. Likewise, if you are planning on playing for an
infinitely long period of time, you would optimally bet .25 on the first toss
and .25 on each subsequent toss.

Note the key word there is infinitely, not indefinitely. All streams are
finite—we are all going to die eventually. Therefore, when we speak of the
optimal f as the f that maximizes expected average compound return, we
are speaking of that value which maximizes it if played for an infinitely long
period of time. Actually, it is slightly suboptimal because none of us will be
able to play for an infinitely long time. And, the f that will maximize EACG
will be slightly above—will have us take slightly heavier positions—than
what we are calling the optimal f.

What if we were to quit after three tosses? Shouldn’t the f which then
maximizes expected average compound growth be lower still than the .5 it
is when quitting after two plays, yet still be greater than the .25 optimal for
an infinitely long game?

Let’s examine the tree of combinations here:

Toss#

1 2 3

Heads
Heads

Tails
Heads

Heads
Tails

Tails
Heads

Heads
Tails

Tails
Heads

Tails
Tails
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Converting these to outcomes yields:

Toss#

1 2 3

2
2

−1
2

2
−1

−1
2

2
−1

−1
2

−1
−1

If we go back with a computer and iterate to that value for f which
maximizes expected average compound growth when quitting after three
tosses, we find it to be .37868. Therefore, converting the outcomes to HPRs
based upon a .37868 value for f at each toss yields:

Toss#

1 2 3

1.757369
1.757369

.621316
1.757369

1.757369
.621316

.621316
1.757369

1.757369
.621316

.621316
1.757369

.621316
.621316

Now we can express all tosses subsequent to the first toss as TWRs by
multiplying by the subsequent tosses on the tree. The numbers following
the last toss on the tree (the numbers in parentheses) are the last TWRs
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taken to the root of 1/n, where n equals the number of HPRs, or tosses, in
this case three, and represent the geometric mean HPR for that terminal
node on the tree:

Toss#

1 2 3

5.427324 (1.757365)
3.088329

1.918831 (1.242641)
1.757369

1.918848 (1.242644)
1.09188

.678409 (.87868)
1.918824 (1.242639)

1.091875
.678401 (.878676)

.621316
.678406 (.878678)

.386036
.239851 (.621318)
——————————————

8.742641
——————————————= 1.09283 is the expected

8 average compound
growth (EACG)

If you are the slightest bit skeptical of this, I suggest you go back over
the last few examples, either with pen and pencil or computer, and find a
value for f that results in a greater EACG than the values presented. Allow
yourself the liberty of a nonuniform f—that is, an f that is allowed to change
at each play. You’ll find that you get the same answers as we have, and that
f is uniform, although a function of the length of the game.

From this, we can summarize the following conclusions:

1. To maximize the EACG, we always end up with a uniform f. That is, the
value for f is uniform from one play to the next.

2. The f that is optimal in terms of maximizing the EACG is a function
of the length of the game. For positive expectation games, it starts at 1.0,
the value that maximizes the arithmetic mean HPR, diminishes slightly
each play, and asymptotically approaches that value which maximizes
the geometric mean HPR (which we have been calling—and will call
throughout the sequel—the optimal f).
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3. Since all streams are finite in length, regardless of how long, we will al-
ways be ever-so-slightly suboptimal by trading at what we call the optimal
f, regardless of how long we trade. Yet, the difference diminishes with
each holding period. Ultimately, we are to the left of the peak of what
was truly optimal. This is not to say that everything mentioned about the
n + 1 dimensional landscape of leverage space, to be discussed later in
the text—the penalties and payoffs of where you are with respect to the
optimal f for each market system—aren’t true. It is true, however, that
the landscape is a function of the number of holding periods at which
you quit. The landscape we project with the techniques in this book is the
asymptotic altitudes—what the landscape approaches as we continue to
play.

To see this, let’s continue with our two-to-one coin toss. In the graph
(Figure 6.2), we can see the value for f, which optimally maximizes our
EACG for quitting at one play through eight plays. Notice how it approaches
the optimal f of .25, the value that maximizes growth asymptotically, as the
number of holding periods approaches infinity.

Two-to-One Coin-Toss Game

Quitting after

HPR # f that Maximizes EACG

1 1.0
2 .5
3 .37868
4 .33626
5 .3148
6 .3019
7 .2932
8 .2871
. .
. .
. .
Infinity .25 (this is the value we refer to as the optimal f )

In reality, if we trade with what we are calling in this text the optimal
f, we will always be slightly suboptimal, the degree of which diminishes
as more and more holding periods elapse. If we knew exactly how many
holding periods we were going to trade for, we could then use that value
for f which maximizes EACG (which would be slightly greater than the
optimal f) and be truly optimal. Unfortunately, we rarely know exactly how
many holding periods we are going to play for, and there is consolation in
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FIGURE 6.2 Optimal f as an asymptote

the fact that what we are calling the optimal f approaches what would be
optimal to maximize EACG as more holding periods elapse. Later we will
see the continuous dominance techniques, which allow us to approximate
the notion of maximizing EACG when there is an active/inactive equity split
(i.e., anytime someone is trading less aggressively than optimal f).

Note that none of these notions is addressed or even alluded to in the
older mean-variance, risk-return models, which are next to be discussed in
the beginning of the following chapter. The older models disregard leverage
and its workings almost entirely. This is one more reason to opt for the new
model of portfolio construction to be mentioned later in the text.

UTILITY THEORY

The discussion of utility theory is brought up in this book since, oftentimes,
geometric mean maximizers are criticized for being able to maximize only
the ln case of utility; that is, they seek to maximize only wealth, not investor
satisfaction. This book attempts to show that geometric mean maximization
can be applicable, regardless of one’s utility preference function. Therefore,
we must, at this point, discuss utility theory, in general, as a foundation.

Utility theory is often attacked as being an ivory-tower, academic con-
struct to explain investor behavior. Unfortunately, most of these attacks
come from people who have made the a priori assumption that all investor
utility functions are ln; that is, they seek to maximize wealth. While this au-
thor is not a great proponent of utility theory, I accept it for lack of a better
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explanation for investor preferences. However, I strongly feel that if an in-
vestor’s utility function is other than ln, the markets, and investing in general,
are poor places to deal with this or to try to maximize one’s utility—you’re
on the n + 1 dimensional landscape to be discussed in Chapter 9 regardless
of your utility preference curve, and you will pay the consequences in real
currency for being suboptimal. In short, the markets are a bad place to find
out you are not a wealth maximizer. The psychiatrist’s couch may be a more
gentle environment in which to deal with that.

THE EXPECTED UTILITY THEOREM

A guy in an airport has $500, but needs $600 for a ticket he must have. He is
offered a bet with a 50% probability of winning $100 and a 50% probability
of losing $500. Is this a good bet? In this instance, where we assume it to be
a life-and-death situation where he must have the ticket, it is a good bet.

The mathematical expectation of utility is vastly different in this in-
stance than the mathematical expectation of wealth. Since, if we subscribe
to utility theory, we determine good bets based on their mathematical ex-
pectation of utility rather than wealth, we assume that the mathematical
expectation of utility in this instance is positive, even though wealth is not.
Think of the words utility and satisfaction as meaning the same thing in
this discussion.

Thus, we have what is called the Expected Utility Theorem, which
states that investors possess a utility-of-wealth function, U(x), where x
is wealth, that they will seek to maximize. Thus, investors will opt for

those investment decisions that maximize their utility-of-wealth func-

tion. Only when the utility preference function U(x) = ln x, that is, when
the utility, or satisfaction, of wealth equals the wealth, will the expected
utility theorem yield the same selection as wealth maximization.

CHARACTERISTICS OF UTILITY
PREFERENCE FUNCTIONS

There are five main characteristics of utility preference functions:

1. Utility functions are unique up to a positive linear transformation. Thus,
a utility preference function, such as the preceding one, ln x, will lead
to the same investments being selected as a utility function of 25 +
ln x, as it would be a utility function of 7l* ln x or one of the form
(ln x)/1.453456. That is, a utility function that is affected by a positive
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constant (added, subtracted, multiplied, or divided) will result in the
same investments being selected. Thus, it will lead to the same set of
investments maximizing utility as before the positive constant affects
the function.

2. More is preferred to less. In economic literature, this is often referred to
as nonsatiation. In other words, a utility function must never result in a
choice for less wealth over more wealth when the outcomes are certain or
their probabilities equal. Since utility must, therefore, increase as wealth
increases, the first derivative of utility, with respect to wealth, must be
positive. That is:

U ′(x) > = 0 (6.01)

Given utility as the vertical axis and wealth as the horizontal axis, then
the utility preference curve must never have a negative slope.

The ln x case of utility preference functions shows a first derivative
of x−1.

3. There are three possible assumptions regarding an investor’s feelings
toward risk, also called his risk aversion. He is either averse to, neutral
to, or seeks risk. These can all be defined in terms of a fair gamble. If we
assume a fair game, such as coin tossing, winning $1 on heads and losing
$1 on tails, we can see that the arithmetic expectation of wealth is zero.
A risk-averse individual would not accept this bet, whereas a risk seeker
would accept it. The investor who is risk-neutral would be indifferent to
accepting this bet.

Risk aversion pertains to the second derivative of the utility pref-
erence function, or U ′′(x). A risk-averse individual will show a negative
second derivative, a risk seeker a positive second derivative, and one who
is risk-neutral will show a zero second derivative of the utility preference
function.

Figure 6.3 depicts the three basic types of utility preference func-
tions, based on U′′(x), the investor’s level of risk aversion. The ln x case
of utility preference functions shows neutral risk aversion. The investor
is indifferent to a fair gamble.1 The ln x case of utility preference func-
tions shows a second derivative of −x−2.

1Actually, investors should reject a fair gamble. Since the amount of money an
investor has to work with is finite, there is a lower absorbing barrier. It can be
shown that if an investor accepts fair gambles repeatedly, it is simply a matter of
time before the lower absorbing barrier is met. That is, if you keep on accepting fair
gambles, eventually you will go broke with a probability approaching certainty.



JWDD035-06 JWDD035-Vince February 10, 2007 21:51 Char Count= 0

220 THE HANDBOOK OF PORTFOLIO MATHEMATICS

FIGURE 6.3 Three basic types of utility functions

4. The fourth characteristic of utility preference functions pertains to how
an investor’s levels of risk aversion change with changes in wealth. This
is referred to as absolute risk aversion. Again, there are three possi-
ble categories. First is the individual who exhibits increasing absolute
risk aversion. As wealth increases, he holds fewer dollars in risky as-
sets. Next is the individual with constant absolute risk aversion. As his
wealth increases, he holds the same dollar amount in risk assets. Last
is the individual who displays decreasing absolute risk aversion. As this
individual’s wealth increases, he is willing to hold more dollars in risky
assets.

The mathematical formulation for defining absolute risk aversion,
A(x), is as follows:

A(x) = −U ′′(x)
U ′(x)

(6.02)

Now, if we want to see how absolute risk aversion changes with
a change in wealth, we would take the first derivative of A(x) with re-
spect to x (wealth), obtaining A′(x). Thus, an individual with increas-
ing absolute risk aversion would have A′(x) > 0, constant absolute risk
aversion would see A′(x) = 0, and decreasing absolute risk aversion has
A′(x) < 0.

The ln x case of utility preference functions shows decreasing abso-
lute risk aversion. For the ln x case:

A(x) = −(−x−2)
x−1

= x−1 and A′(x) = −x−2 < 0
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5. The fifth characteristic of utility preference functions pertains to how
the percentage of wealth invested in risky assets changes with changes
in wealth. This is referred to as relative risk aversion. That is, this per-
tains to how your percentages in risky assets change, rather than how
your dollar amounts change, with respect to changes in wealth. Again,
there are three possible categories: increasing, constant, and decreas-
ing relative risk aversion, where the percentages invested in risky assets
increase, stay the same, or decline, respectively.

The mathematical formulation for defining relative risk aversion,
R(x), is as follows:

R(x) = (−x * U ′′(x))
U ′(x)

= x * A(x) (6.03)

Therefore, R′(x), the first derivative of relative risk aversion, indicates
how relative risk aversion changes with respect to changes in wealth. So,
individuals who show increasing, constant, or decreasing relative risk
aversion will then show positive, zero, and negative R′(x), respectively.

The ln x case of utility preference functions shows constant relative
risk aversion. For the ln x case:

R(x) = (−x*(−x−2))
x−1

= 1 and R′(x) = 0

ALTERNATE ARGUMENTS TO CLASSICAL
UTILITY THEORY

Readers should be aware that utility theory, although broadly accepted, is
not universally accepted as an explanation of investor behavior. For ex-
ample, R. C. Wentworth contends, with reference to the Expected Utility
Theorem, that the use of the mean is an ad hoc, unjustified assumption.
His theory is that players assume that the mode, rather than the mean, will
prevail, and will act to maximize this.

I personally find Wentworth’s work in this area particularly interest-
ing.2 There are some rather interesting aspects to these papers. First, clas-
sical utility theory is directly attacked, which automatically alienates ev-
ery professor in every management science department in the world. The
theoretical foundation paradigm of the nonlinear utility-of-wealth func-
tion is sacred to these people. Wentworth draws parallels between mode

2See “Utility, Survival, and Time: Decision Strategies under Favorable Uncertainty,”
and “A Theory of Risk Management under Favorable Uncertainty,” both by R. C.
Wentworth, unpublished. 8072 Broadway Terrace, Oakland, CA 94611.
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maximizers and evolution; hence, Wentworth calls his the survival hy-

pothesis. A thumbnail sketch of the comparison with classical utility theory
would appear as:

Utility Theory

“One-shot,” risky Nonlinear utility- Observed
decision making of-wealth function behavior

+ = >

Survival Hypothesis

“One-shot,” risky Expansion into Identical
decision making equivalent time series observed behavior

+ = >

Furthermore, there are some interesting experiments in biology that
tend to support Wentworth’s ideas, which ask the question why, for instance,
should bumblebees search for nectar, in a controlled experiment, according
to the dictates of classical utility theory?

So, why mention classical utility theory at all? It is not the purpose of this
book to presuppose anything regarding utility theory. However, there is an
interrelationship between utility and this new framework in asset allocation,
and if one does subscribe to a utility framework notion, then they will be
shown how this applies. This portion of the book is directed toward those
readers unfamiliar with the notion of utility preference curves. However, it
does not take a position on the validity of utility functions, and the reader
should be made aware that there are other non-utility-based criteria that
may explain investor behavior.

FINDING YOUR UTILITY PREFERENCE CURVE

Whether one subscribes to classical utility theory, considering that it is bet-
ter to know yourself than not know yourself, we will now detail a technique
for determining your own utility preference function. What follows is an
adaptation from The Commodity Futures Game, Who Wins? Who Loses?

Why? by Tewles, Harlow, and Stone.3

To begin with, you should determine two extreme values, one positive
and the other negative, which should represent extreme trade outcomes.
Typically, you should make this value be three to five times greater than the
largest amounts you would typically expect to win or lose on the next trade.

3Richard J. Tewles, Charles V. Harlow, and Herbert L. Stone, The Commodity Futures

Game, Who Wins? Who Loses? Why? New York: McGraw-Hill Book Company, 1977.
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Let’s suppose you expect, in the best case, to win $5,000 on a trade, and
lose $3,000. Thus, we can make our extremes $20,000 on the upside and
−$10,000 on the downside.

Next, set up a table as follows, with a leftmost column called Probabil-

ities of Best Outcome, and give it 10 rows with values progressing from 1.0
to 0 by increments of .1. Your next column should be called Probabilities of

Worst Outcome, and those probabilities are simply 1 minus the probabilities
of the best outcome on that row. The third column will be labeled Certainty

Equivalent. In the first row, you will put the value of the best outcome, and
in the last row, the value of the worst outcome. Thus, your table should look
like this:

P P Certainty Computed

(Best Outcome) (Worst Outcome) Equivalent Utility

1.0 0 $20,000
.9 .1
.8 .2
.7 .3
.6 .4
.5 .5
.4 .6
.3 .7
.2 .8
.1 .9
0 1.0 −$10,000

Now, we introduce the notion of certainty equivalents. A certainty
equivalent is an amount you would accept in lieu of a trading opportunity
or an amount you might pay to sidestep a trade opportunity.

You should now fill in column three, the certainty equivalents. For the
first row, the one where we entered $20,000, this simply means you would
accept $20,000 in cash right now, rather than take a trade with a 100%
probability of winning $20,000. Likewise, with the last row where we have
filled in $10,000, this simply means you would be willing to pay $10,000 not
to have to take a trade with a 100% chance of losing $10,000.

Now, on the second row, you must determine a certainty equivalent for
a trade with a 90% chance of winning $20,000 and a 10% chance of losing
$10,000. What would you be willing to accept in cash instead of taking
this trade? Remember, this is real money with real buying power, and the
rewards or consequences of this transaction will be immediate and in cash.
Let’s suppose it’s worth $15,000 to you. That is, for $15,000 in cash, handed
to you right now, you will forego this opportunity of a 90% chance of winning
$20,000 and 10% chance of losing $10,000.
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You should complete the table for the certainty equivalent columns. For
instance, when you are on the second to last row, you are, in effect, asking
yourself how much you would be willing to pay not to have to accept a 10 %
chance of winning $20,000 with a 90% chance of losing $10,000. Since you
are willing to pay, you should enter this certainty equivalent as a negative
amount.

When you have completed the third column, you must now calculate the
fourth column, the Computed Utility column. The formula for computed
utility is simply:

Computed Utility = U * P(best outcome) + V * P(worst outcome)
(6.04)

where: U = Given constant, equal to 1.0 in this instance.
V = Given constant, equal to −1.0 in this instance.

Thus, for the second row in the table:

Computed utility = 1 * .9 − 1 * .1
= .9 − .1
= .8

When you are finished calculating the computed utility columns, your
table might look like this:

P P Certainty Computed

(Best Outcome) (Worst Outcome) Equivalent Utility

1.0 0 20,000 1.0
.9 .1 15,000 .8
.8 .2 10,000 .6
.7 .3 7,500 .4
.6 .4 5,000 .2
.5 .5 2,500 0
.4 .6 800 −.2
.3 .7 −1,500 −.4
.2 .8 −3,000 −.6
.1 .9 −4,000 −.8
0 1.0 −10,000 −1.0

You then graphically plot the certainty equivalents as the X-axis and the
computed utilities as the Y-axis. Our completed utility function looks as is
shown in Figure 6.4.

Now you should repeat the test, only with different best and worst out-
comes. Select a certainty equivalent from the preceding table to act as best
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FIGURE 6.4 Example utility function

outcome, and one for worst outcome as well. Suppose we choose $10,000
and −$4,000. Notice that the computed utilities associated with certainty
equivalents are .6 with $10,000 and −.8 with −$4,000. Thus, U and V, in
determining computed utilities in this next table, will be .6 and −.8, respec-
tively. Again, assign certainty equivalents and calculate the corresponding
computed utilities:

P P Certainty Computed

(Best Outcome) (Worst Outcome) Equivalent Utility

1.0 0 10,000 .6
.9 .1 8,000 .46
.8 .2 6,000 .32
.7 .3 5,000 .18
.6 .4 4,000 .04
.5 .5 2,500 −.10
.4 .6 500 −.24
.3 .7 −1,000 −.38
.2 .8 −2,000 −.52
.1 .9 −3,000 −.66
0 1.0 −4,000 −.80

And, again, you should plot these values. You should repeat the process
a few times, and keep plotting all the values on the same chart. What you
will probably begin to see is some scattering to the values; that is, they
will not all neatly fit on the same line. The scattering of these values reveals
information about yourself, in that the scattering represents inconsistencies
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in your decisions. Usually, scattering is more pronounced near the extremes
(left and right) of the chart. This is normal and simply indicates areas where
you have probably not had a lot of experience winning and losing money.

The shape of the curve is also important, and should be looked at with
respect to the earlier section entitled “Characteristics of Utility Preference
Functions.” It is not at all uncommon for the curve to be imperfect, not sim-
ply the textbook concave-up, concave-down, or straight-line shape. Again,
this reveals information about yourself, and warrants careful analysis.

Ultimately, the most conducive form of utility preference function for
maximizing wealth is a straight line pointing upwards, decreasing absolute
risk aversion, constant relative risk aversion, and near indifference to a
fair gamble; i.e., we are indifferent to a gamble with anything less than the
very slightest positive arithmetic mathematical expectation. If your line is
anything less than this, then this may be the time for you to reflect upon what
you want as well as why, and perhaps make necessary personal changes.

UTILITY AND THE NEW FRAMEWORK

This book does not take a stand regarding utility theory, other than this:
Regardless of your utility preference curve, you are somewhere in the

leverage space, described later in the text, of Figure 9.2 for individual

games, and somewhere in the n + 1 dimensional leverage space for mul-

tiple simultaneous games, and you reap the benefits of this as well as pay

the consequences no matter what your utility preference.
Oftentimes, the geometric mean criterion is criticized as it only strives

to maximize wealth, and it maximizes utility only for the ln function.
Actually, if someone does not subscribe to an ln utility preference func-

tion, they can still maximize utility much as we are maximizing wealth with
optimal f, except they will have a different value for optimal f at each hold-
ing period. That is, if someone’s utility preference function is other than ln
(wealth maximization), then their optimal f to (asymptotically) maximize
utility is uniform, while at the same time, their optimal f to maximize wealth
is nonuniform. In other words, if, as you make more money, your utility is
such that you are willing to risk less, then your optimal f will decrease as
each holding period elapses.

Do not get this confused with the notion, presented earlier, that the
f that is optimal for maximizing expected average compound growth is a
function of the number of holding periods at which you quit. It still is, but
the idea presented here is that the f that is optimal to maximize utility is
not uniform throughout the time period. For example, we have seen in
our two-to-one coin toss game that if we were planning on quitting after
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three plays, three holding periods, we would maximize growth by betting
.37868 on each and every play. That is, we uniformly bet .37868 for all three
plays.

Now, if we’re looking to maximize utility, and our utility function were
other than that of maximizing wealth, we would not have a uniform f value
to bet on each and every play. Rather, we would have a different f value to
bet on each and every play.

Thus, it is possible to maximize utility with the given approach (for
utility preference functions other than ln), provided you use a nonuni-

form value for f from one holding period to the next. When utility pref-
erence is ln—that is, when one prefers wealth maximization—the f that
is optimal is always uniform. Thus, the optimal f is the same from one
play to the next. When utility preference is other than ln, wealth maximiza-
tion, a nonuniform optimal f value from one holding period to the next is
called for.

Like maximizing wealth, utility can also be maximized in the very same
fashion that we are maximizing wealth. This can be accomplished by assign-
ing utils, rather than a dollar value for the outcomes to each scenario. A util
is simply a unit of satisfaction. The scenario set must also contain negative
util scenarios, just as in wealth maximization, you must have a scenario that
encompasses losing money. Also, the (arithmetic) mathematical expecta-
tion of the scenario set must be positive in terms of utils, or negative if it
improves the overall mix of components.

But, how do you determine the nonuniform value for f as you go through
holding periods when your utility preference curve is other than ln? As each
new holding period is encountered, and you update the outcome values
(specified in utils) as your account equity itself changes, you will get a new
optimal f value, which, divided by the largest losing scenario (specified in
utils), yields an optimal f $ value (also specified in utils), and you will know
how many contracts to trade. The process is simple; you simply substitute
utils in lieu of dollars. The only other thing you need to do is keep track of
your account’s cumulative utils (i.e., the surrogate for equity). Notice that,
if you do this and your utility preference function is other than ln, you will
actually end up with a nonuniform optimal f, in terms of dollars, from one
holding period to the next.

For example, if we are again faced with a coin-toss game that offers
us $2 on heads being tossed, and a loss of $1 if tails is tossed, how much
should we bet? We know that if we want to maximize wealth, and we are
going to play this game repeatedly, and we have to play each subsequent
play with money that we started the game with, we should optimally bet 25%
of our stake on each and every play. Not only would this maximize wealth;
it would also maximize utility if we determined that a win of $2 were twice
as valuable to us as a loss of $1.
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But what if a win of $2 were only one-and-a-half times as valuable to
us as a loss of $1? To determine how to maximize utility then, we assign a
util value of −1 to the losing scenario, the tails scenario, and a utils value
of 1.5 to the winning scenario, the heads scenario. Now, we determine the
optimal f based upon these utils rather than dollars, and we find it to be
.166666, or to bet 162/3% on each and every play to maximize our geometric
average utility. That means we divide our total cumulative utils to this point
by .166666 to determine the number of contracts.

We can then translate this into how many contracts we have per dollars
in our account, and, from there, figure what the f value (between zero and
one) is that we are really using (based on dollars, not utils).

If we do this, then the original two-to-one coin-toss curve of wealth
maximization, which peaks at .25 (Figure 9.2), still applies, and we are at
the .166666 f abscissa.Thus, we pay the consequences of being suboptimal in
terms of f on our wealth. However, there is a second f curve—one based on
our utility—which peaks at .166666, and we are at the optimal f on this curve.
Notice that, if we were to accept the .25 optimal f on this curve, we would
be way right of the peak and would pay the concomitant consequences of
being right of the peak with respect to our utility.

Now, suppose we were profitable in this holding period, and we go in
and update the outcomes of the scenarios based on utils, only this time,
since we have more wealth, the utility of a winning scenario in the next
holding period is only 1.4 utils. Again, we would find our optimal f based
on utils. Again, once we determined how many units to trade in the next
holding period based on our cumulative utils, we could translate it into
what the f (between zero and one) is for dollars, and we would find it to be
nonuniform from the previous holding period.

The example shown is one in which we assume a sequence of more than
one play, where we are reusing the same money we started with. If there
was only one play, one holding period, or we received new money to play at
each holding period, maximizing the arithmetic expected utility would be
the optimal strategy. However, in most cases we must reuse the money on the
next play, the next holding period, that we have used on this last play, and,
therefore, we must strive to maximize geometric expected growth. To some,
this might mean maximizing the geometric expected growth of wealth; to
others, the geometric expected growth of utility. The mathematics is the
same for both. Both have two curves in n + 1 space: a wealth maximization
curve and a utility maximization curve. For those maximizing the expected
growth of wealth, the two are the same.

If the reader has a different utility preference curve other than ln (wealth
maximization), he may apply the techniques herein, provided he substitutes
a utils quantity for the outcome of each scenario rather than a monetary
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value, which will then yield a nonuniform optimal f value (one whose value
changes from one holding period to the next).

Such readers are forewarned, however, that they will still pay the con-
sequences, in terms of their wealth, for being suboptimal in the n + 1 di-
mensional leverage space of wealth maximization. Again, this is so be-
cause, regardless of your utility preference curve, you are somewhere in the
leverage space of Figure 9.2 for individual games, and somewhere in the
n + 1 dimensional leverage space for multiple simultaneous games. You
reap the benefits of this, as well as pay the consequences, no matter what
your utility preference function. Ideally, you will have a utility preference
function and it will be ln.
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C H A P T E R 7

Classical
Portfolio

Construction

MODERN PORTFOLIO THEORY

Recall from Chapter 4 the paradox of the optimal f and a market system’s
drawdown. The better a market system is, the higher the value for f. Yet the
drawdown (historically), if you are trading the optimal f, can never be lower
than f. Generally speaking, then, the better the market system, the greater
the drawdown will be as a percent of account equity (if you are trading
optimal f ). That is, if you want to have the greatest geometric growth in an
account, then you can count on severe drawdowns along the way.

Diversification among other market systems is an effective way to buffer
this drawdown while still staying close to the peak of the f curve (i.e., without
having to trim back to half f, and so on). When one market system goes into
a drawdown, another one that is being traded in the account will come
on strong, thus canceling the drawdown of the other. This also provides
for a catalytic effect on the entire account. The market system that just
experienced the drawdown (and now is getting back to performing well)
will have no less funds to start with than it did when the drawdown began
(thanks to the other market system canceling out the drawdown).

Given a group of market systems and their respective optimal f ’s, a
quantifiable, optimal portfolio mix does exist. Although we cannot be cer-
tain that what was the optimal portfolio mix in the past will be optimal in
the future, it is more likely to be optimal or near optimal than is the case
for the optimal system parameters of the past. Whereas optimal system

231
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parameters change quite quickly from one time period to another, optimal
portfolio mixes change very slowly (as do optimal f values). Generally, the
correlations between market systems tend to remain constant. This is good
news to a trader who has found the optimal portfolio mix, the optimal di-
versification among market systems.

THE MARKOWITZ MODEL

The basic concepts of modern portfolio theory emanate from a monograph
written by Dr. Harry Markowitz.1 Essentially, Markowitz proposed that
sound portfolio management has to do with composition, not individual
stock selection.

Markowitz argued that diversification is effective only to the extent that
the correlation coefficient between the markets involved is negative. Recall
the linear correlation coefficient from Chapter 1. If we have a portfolio
composed of one stock, our best diversification is obtained if we choose
another stock such that the correlation between the two stock prices is
as low as possible. The net result would be that the portfolio, as a whole
(composed of these two stocks with negative correlation), would have less
variation in price than either one of the stocks alone (see Figure 7.1).

The portfolio shown in Figure 7.1 (the combination of Market Systems
A and B) will have variance at least as high as the individual market systems
since the market systems have a correlation of +1.00 to each other.

The portfolio shown in Figure 7.2 (the combination of Market Systems
A and C) will have less variance than either Market System A or Market
System C since there is a negative correlation between Market Systems A
and C.

Markowitz proposed that investors act in a rational manner and, given
the choice, would opt for a portfolio with the same return as the one they
have, but with less risk, or opt for a portfolio with a higher return than the
one they have but with the same risk. Further, for a given level of risk there is
an optimal portfolio with the highest yield; likewise, for a given yield there
is an optimal portfolio with the lowest risk. Investors with portfolios where
the yield could be increased with no resultant increase in risk or investors
with portfolios where the risk could be lowered with no resultant decrease
in yield are said to have inefficient portfolios.

1Markowitz, Harry. Portfolio Selection—Efficient Diversification of Investments.
New Haven, CT: Yale University Press, 1959.
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FIGURE 7.1 A portfolio of two positively correlated market systems—a poor
choice

FIGURE 7.2 A portfolio of two negatively correlated market systems—a good
choice
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FIGURE 7.3 Risk/reward relationships for various portfolios according to modern
portfolio theory

Figure 7.3 shows all of the available portfolios under a given study. If
you hold Portfolio C, you would be better off with Portfolio A, as you would
have the same return with less risk, or Portfolio B, where you would have
more return with the same risk.

In describing this, Markowitz described what is called the efficient fron-

tier. This is the set of portfolios that lie on the upper and left sides of the
graph. These are portfolios where the yield can no longer be increased
without increasing the risk and the risk cannot be lowered without lower-
ing the yield. Portfolios lying on the efficient frontier are said to be efficient

portfolios.
Portfolios lying high up and off to the right and low down and to the left

are generally not very well diversified among very many issues. Portfolios
lying in the middle of the efficient frontier are usually very well diversified.
Which portfolio a particular investor chooses is a function of the investor’s
risk aversion, his willingness to assume risk. In the Markowitz model, any
portfolio that lies upon the efficient frontier is said to be a good portfolio
choice; where on the efficient frontier is a matter of personal preference
(later on, we’ll see that there is an exact optimal spot on the efficient
frontier).
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In Markowitz’s work, risk was quantified for the first time. He described
risk as the variation in a portfolio’s returns, a definition many people have
challenged.

DEFINITION OF THE PROBLEM

For the moment we are dropping the entire idea of optimal f; it will catch
up with us later. It is easier to understand the derivation of the efficient
frontier if we begin from the assumption that we are discussing a portfolio
of stocks. These stocks are in a cash account and are paid for completely.
That is, they are not on margin.

Under such a circumstance, we derive the efficient frontier of portfo-
lios.2 That is, for given stocks we want to find those with the lowest level
of expected risk for a given level of expected gain, the given levels being
determined by the particular investor’s aversion to risk. Hence, this basic
theory of Markowitz (aside from the general reference to it as Modern Port-
folio Theory) is often referred to as E–V theory (Expected return – Variance
of return). Note that the inputs are based on returns. That is, the inputs to
the derivation of the efficient frontier are the returns we would expect on a
given stock and the variance we would expect of those returns. Generally,
returns on stocks can be defined as the dividends expected over a given
period of time plus the capital appreciation (or minus depreciation) over
that period of time, expressed as a percentage gain (or loss).

Consider four potential investments, three of which are stocks and one a
savings account paying 8 1/2% per year. Notice that we are defining the length

2In this chapter, an important assumption is made regarding these techniques. The
assumption is that the generating distributions (the distribution of returns) have
finite variance. These techniques are effective only to the extent that the input data
used has finite variance. For more on this, see Fama, Eugene F., “Portfolio Analysis
in a Stable Paretian Market,” Management Science 11, pp. 404–419, 1965. Fama has
demonstrated techniques for finding the efficient frontier parametrically for stably
distributed securities possessing the same characteristic exponent, A, when the re-
turns of the components all depend upon a single underlying market index. Readers
should be aware that other work has been done on determining the efficient frontier
when there is infinite variance in the returns of the components in the portfolio.
These techniques are not covered here other than to refer interested readers to per-
tinent articles. For more on the stable Paretian distribution, see Chapter 2. For a
discussion of infinite variance, see “The Student’s Distribution” in Chapter 2.
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of a holding period, the period we measure returns and their variances, as
one year in this example:

Expected Variance

Investment Expected Return of Return

Toxico 9.5% 10%
Incubeast Corp. 13% 25%
LA Garb 21% 40%
Savings Account 8.5% 0%

We can express expected returns as HPRs by adding 1 to them. Also, we
can express expected variance of return as expected standard deviation of
return by taking the square root of the variance. In so doing, we transform
our table to:

Expected Return Expected Standard

Investment as an HPR Deviation of Return

Toxico 1.095 .316227766
Incubeast Corp. 1.13 .5
LA Garb 1.21 .632455532
Savings Account 1.085 0

The time horizon involved is irrelevant so long as it is consistent for
all components under consideration. That is, when we discuss expected
return, it doesn’t matter if we mean over the next year, quarter, five years,
or day, as long as the expected returns and standard deviations for all of
the components under consideration all have the same time frame. (That
is, they must all be for the next year, or they must all be for the next day,
and so on.)

Expected return is synonymous with potential gains, while variance (or
standard deviation) in those expected returns is synonymous with potential

risk. Note that the model is two-dimensional. In other words, we can say that
the model can be represented on the upper right quadrant of the Cartesian
plane (see Figure 7.4) by placing expected return along one axis (generally
the vertical or Y axis) and expected variance or standard deviation of returns
along the other axis (generally the horizontal or X axis).

There are other aspects to potential risk, such as potential risk of (prob-
ability of) a catastrophic loss, which E–V theory does not differentiate from

Andrey
trading software col
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FIGURE 7.4 The upper-right quadrant of the Cartesian plane

variance of returns in regards to defining potential risk. While this may very
well be true, we will not address this concept any further in this chapter so
as to discuss E–V theory in its classic sense. However, Markowitz himself
clearly stated that a portfolio derived from E–V theory is optimal only if the
utility, the “satisfaction,” of the investor is a function of expected return and
variance in expected return only. Markowitz indicated that investor utility
may very well encompass moments of the distribution higher than the first
two (which are what E–V theory addresses), such as skewness and kurtosis
of expected returns.

Potential risk is still a far broader and more nebulous thing than what
we have tried to define it as. Whether potential risk is simply variance on
a contrived sample, or is represented on a multidimensional hypercube,
or incorporates further moments of the distribution, we try to define po-
tential risk to account for our inability to really put our finger on it. That
said, we will go forward defining potential risk as the variance in expected
returns. However, we must not delude ourselves into thinking that risk
is simply defined as such. Risk is far broader, and its definition far more
elusive. There will be more on this in Chapter 12.

So the first step that an investor wishing to employ E–V theory must
make is to quantify his or her beliefs regarding the expected returns and
variance in returns of the securities under consideration for a certain time
horizon (holding period) specified by the investor. These parameters can
be arrived at empirically. That is, the investor can examine the past history
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of the securities under consideration and calculate the returns and their
variances over the specified holding periods. Again the term returns means
not only the dividends in the underlying security, but any gains in the value
of the security as well. This is then specified as a percentage. Variance is the
statistical variance of the percentage returns. A user of this approach would
often perform a linear regression on the past returns to determine the return
(the expected return) in the next holding period. The variance portion of the
input would then be determined by calculating the variance of each past data
point from what would have been predicted for that past data point (and
not from the regression line calculated to predict the next expected return).
Rather than gathering these figures empirically, the investor can also simply
estimate what he or she believes will be the future returns and variances
in those returns. Perhaps the best way to arrive at these parameters is to
use a combination of the two. The investor should gather the information
empirically, then, if need be, interject his or her beliefs about the future of
those expected returns and their variances.

The next parameters the investor must gather in order to use this tech-
nique are the linear correlation coefficients of the returns. Again, these
figures can be arrived at empirically, by estimation, or by a combination of
the two.

In determining the correlation coefficients, it is important to use data
points of the same time frame as was used to determine the expected returns
and variance in returns. In other words, if you are using yearly data to
determine the expected returns and variance in returns (on a yearly basis),
then you should use yearly data in determining the correlation coefficients.
If you are using daily data to determine the expected returns and variance
in returns (on a daily basis), then you should use daily data in determining
the correlation coefficients.

It is also very important to realize that we are determining the correla-
tion coefficients of returns (gains in the stock price plus dividends), not of
the underlying price of the stocks in question.

Consider our example of four alternative investments—Toxico, In-
cubeast Corp., LA Carb, and a savings account. We designate these with
the symbols T, I, L, and S, respectively. Next, we construct a grid of the
linear correlation coefficients as follows:

I L S

T −.15 .05 0
I .25 0
L 0
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From the parameters the investor has input, we can calculate the co-

variance between any two securities as:

COVa,b = Ra,b ∗ Sa ∗ Sb (7.01)

where: COVa,b = The covariance between the ath security and the
bth one.

Ra,b = The linear correlation coefficient between a and b.
Sa = The standard deviation of the ath security.
Sb = The standard deviation of the bth security.

The standard deviations, Sa and Sb, are obtained by taking the square root
of the variances in expected returns for securities a and b.

Returning to our example, we can determine the covariance between
Toxico (T) and Incubeast (I) as:

COVT,I = √−.15 ∗ .10 *
√

.25

= −.15 ∗ .316227766 ∗ .5

= −.02371708245

Thus, given a covariance and the comprising standard deviations, we can
calculate the linear correlation coefficient as:

Ra,b = COVa,b/(Sa ∗ Sb) (7.02)

where: COVa,b = The covariance between the ath security and the
bth one.

Ra,b = The linear correlation coefficient between a and b.
Sa = The standard deviation of the ath security.
Sb = The standard deviation of the bth security.

Notice that the covariance of a security to itself is the variance, since
the linear correlation coefficient of a security to itself is 1:

COVx,x = 1 ∗ Sx ∗ Sx

= 1 ∗ S2
x

= S2
x

= Vx

(7.03)

where: COVx,x = The covariance of a security to itself.
Sx = The standard deviation of a security.
Vx = The variance of a security.
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We can now create a table of covariances for our example of four in-
vestment alternatives:

T I L S

T .1 −.0237 .01 0
I −.0237 .25 .079 0
L .01 .079 .4 0
S 0 0 0 0

We now have compiled the basic parametric information, and we can
begin to state the basic problem formally. First, the sum of the weights of
the securities comprising the portfolio must be equal to 1, since this is being
done in a cash account and each security is paid for in full:

N∑
i = 1

Xi = 1 (7.04)

where: N = The number of securities comprising the portfolio.
Xi = The percentage weighting of the ith security.

It is important to note that in Equation (7.04) each Xi must be nonnegative.
That is, each Xi must be zero or positive.

The next equation defining what we are trying to do regards the ex-
pected return of the entire portfolio. This is the E in E–V theory. Essentially,
what it says is that the expected return of the portfolio is the sum of the
returns of its components times their respective weightings:

N∑
i = 1

Ui ∗ Xi = E (7.05)

where: E = The expected return of the portfolio.
N = The number of securities comprising the portfolio.
Xi = The percentage weighting of the ith security.
Ui = The expected return of the ith security.

Finally, we come to the V portion of E–V theory, the variance in expected
returns. This is the sum of the variances contributed by each security in the
portfolio plus the sum of all the possible covariances in the portfolio:

V =
N∑

i = 1

N∑
j = 1

Xi ∗ Xj ∗ COVi,j (7.06a)
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V =
N∑

i = 1

N∑
j = 1

Xi ∗ Xj ∗ Ri,j ∗ Si ∗ Sj (7.06b)

V =
(

N∑
i = 1

Xi
∧ 2 ∗ Si

∧ 2

)
+ 2 ∗

N∑
i = 1

N∑
j = 1+1

Xi ∗ Xj ∗ COVi,j (7.06c)

V =
(

N∑
i = 1

Xi
∧ 2 ∗ Si

∧ 2

)
+ 2 ∗

N∑
i = 1

N∑
j = 1+1

Xi ∗ Xj ∗ Ri,j ∗ Si ∗ Sj (7.06d)

where: V = The variance in the expected returns of the portfolio.
N = The number of securities comprising the portfolio.
Xi = The percentage weighting of the ith security.
Si = The standard deviation of expected returns of the ith

security.
COVi,j = The covariance of expected returns between the ith

security and the jth security.
Ri,j = The linear correlation coefficient of expected returns

between the ith security and the jth security.

All four forms of Equation (7.06) are equivalent. The final answer to Equation
(7.06) is always expressed as a positive number.

We can now consider that our goal is to find those values of Xi that, when
summed, equal 1, and result in the lowest value of V for a given value of E.
When confronted with a problem such as trying to maximize (or minimize) a
function, H(X,Y), subject to another condition or constraint, such as G(X,Y),
one approach is to use the method of Lagrange.

To do this, we must form the Lagrangian function, F(X,Y,L):

F(X,Y,L) = H(X,Y) + L ∗ G(X,Y) (7.07)

Note the form of Equation (7.07). It states that the new function we have
created, F(X,Y,L), is equal to the Lagrangian multiplier, L—a slack variable
whose value is as yet undetermined—multiplied by the constraint function
G(X,Y). This result is added to the original function H(X,Y), whose extreme
we seek to find.

Now, the simultaneous solution to the three equations will yield those
points (X1,Y1) of relative extreme:

FX(X,Y,L) = 0

FY(X,Y,L) = 0

FL(X,Y,L) = 0
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For example, suppose we seek to maximize the product of two numbers,
given that their sum is 20. We will let the variables X and Y be the two
numbers. Therefore, H(X,Y) = X ∗ Y is the function to be maximized given
the constraining function G(X,Y) = X + Y − 20 = 0. We must form the
Lagrangian function:

F(X,Y,L) = X ∗ Y + L ∗ (X + Y − 20)

FX(X,Y,L) = Y + L

FY(X,Y,L) = X + L

FL(X,Y,L) = X + Y − 20

Now we set FX(X,Y,L) and FY(X,Y,L) both equal to zero and solve each for L:

Y + L = 0

Y = −L

and

X + L = 0

X = −L

Now setting FL(X,Y,L) = 0 we obtain X + Y − 20 = 0. Lastly, we replace X
and Y by their equivalent expressions in terms of L:

(−L) + (−L) − 20 = 0

2 ∗ −L = 20

L = −10
Since Y equals −L, we can state that Y equals 10, and likewise with X. The
maximum product is 10 ∗ 10 = 100.

The method of Lagrangian multipliers has been demonstrated here for
two variables and one constraint function. The method can also be applied
when there are more than two variables and more than one constraint func-
tion. For instance, the following is the form for finding the extreme when
there are three variables and two constraint functions:

F(X,Y,Z,L1,L2) = H(X,Y,Z) + L1 ∗ G1(X,Y,Z) + L2 ∗ G2(X,Y,Z) (7.08)

In this case, you would have to find the simultaneous solution for five equa-
tions in five unknowns in order to solve for the points of relative extreme.
We will cover how to do that a little later on.

We can restate the problem here as one where we must minimize V, the
variance of the entire portfolio, subject to the two constraints that:(

N∑
i = 1

Xi ∗ Ui

)
− E = 0 (7.09)
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and (
N∑

i = 1

Xi

)
− 1 = 0 (7.10)

where: N = The number of securities comprising the portfolio.
E = The expected return of the portfolio.
Xi = The percentage weighting of the ith security.
Ui = The expected return of the ith security.

The minimization of a restricted multivariable function can be han-
dled by introducing these Lagrangian multipliers and differentiating par-
tially with respect to each variable. Therefore, we express our problem in
terms of a Lagrangian function, which we call T. Let:

T = V + L1 ∗
((

N∑
i = 1

Xi ∗ Ui

)
− E

)
+ L2 ∗

((
N∑

i = 1

Xi

)
− 1

)
(7.11)

where: V = The variance in the expected returns of the portfolio, from
Equation (7.06).

N = The number of securities comprising the portfolio.
E = The expected return of the portfolio.
Xi = The percentage weighting of the ith security.
Ui = The expected return of the ith security.
L1 = The first Lagrangian multiplier.
L2 = The second Lagrangian multiplier.

The minimum variance (risk) portfolio is found by setting the first-order
partial derivatives of T with respect to all variables equal to zero.

Let us again assume that we are looking at four possible investment
alternatives: Toxico, Incubeast Corp., LA Garb, and a savings account. If we
take the first-order partial derivative of T with respect to X1 we obtain:

∂T/∂X1 = 2 ∗ X1 ∗ COV1,1 + 2 ∗ X2 ∗ COV1,2 + 2 ∗ X3 ∗ COV1,3

+2 ∗ X4 ∗ COV1,4 + L1 ∗ U1 + L2 (7.12)

Setting this equation equal to zero and dividing both sides by 2 yields:

X1 ∗ COV1,1 + X2 ∗ COV1,2 + X3 ∗ COV1,3 + X4 ∗ COV1,4 + .5 ∗ L1

∗ U1 + .5 ∗ L2 = 0
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Likewise:

∂T/∂X2 = X1 ∗ COV2,1 + X2 ∗ COV2,2 + X3 ∗ COV2,3 + X4 ∗ COV2,4

+.5 ∗ L1 ∗ U2 + .5 ∗ L2 = 0

∂T/∂X3 = X1 ∗ COV3,1 + X2 ∗ COV3,2 + X3 ∗ COV3,3 + X4 ∗ COV3,4

+.5 ∗ L1 ∗ U3 + .5 ∗ L2 = 0

∂T/∂X4 = X1 ∗ COV4,1 + X2 ∗ COV4,2 + X3 ∗ COV4,3 + X4 ∗ COV4,4

+.5 ∗ L1 ∗ U4 + .5 ∗ L2 = 0

And we already have ∂T/∂L1 as Equation (7.09) and ∂T/∂L2 as Equation
(7.10).

Thus, the problem of minimizing V for a given E can be expressed in
the N-component case as N + 2 equations involving N + 2 unknowns. For
the four-component case, the generalized form is:

X1 ∗ U1 + X2 ∗ U2 + X3 ∗ U3 + X4 ∗ U4 = E
X1 + X2 + X3 + X4 = 1
X1 ∗ COV1,1 + X2 ∗ COV1,2 + X3 ∗ COV1,3 + X4 ∗ COV1,4 + .5 ∗ L1 ∗ U1 + .5 ∗ L2 = 0
X1 ∗ COV2,1 + X2 ∗ COV2,2 + X3 ∗ COV2,3 + X4 ∗ COV2,4 + .5 ∗ L1 ∗ U2 + .5 ∗ L2 = 0
X1 ∗ COV3,1 + X2 ∗ COV3,2 + X3 ∗ COV3,3 + X4 ∗ COV3,4 + .5 ∗ L1 ∗ U3 + .5 ∗ L2 = 0
X1 ∗ COV4,1 + X2 ∗ COV4,2 + X3 ∗ COV4,3 + X4 ∗ COV4,4 + .5 ∗ L1 ∗ U4 + .5 ∗ L2 = 0

where: E = The expected return of the portfolio.
Xi = The percentege weighting of the ith security.
Ui = The expected return of the ith security.

COVA,B = The covariance between securities A and B.
L1 = The first Lagrangian multiplier.
L2 = The second Lagrangian multiplier.

This is the generalized form, and you use this basic form for any number
of components. For example, if we were working with the case of three
components (i.e., N = 3), the generalized form would be:

X1 ∗ U1 + X2 ∗ U2 + X3 ∗ U3 = E
X1 + X2 + X3 = 1
X1 ∗ COV1,1 + X2 ∗ COV1,2 + X3 ∗ COV1,3 + .5 ∗ L1 ∗ U1 + .5 ∗ L2 = 0
X1 ∗ COV2,1 + X2 ∗ COV2,2 + X3 ∗ COV2,3 + .5 ∗ L1 ∗ U2 + .5 ∗ L2 = 0
X1 ∗ COV3,1 + X2 ∗ COV3,2 + X3 ∗ COV3,3 + .5 ∗ L1 ∗ U3 + .5 ∗ L2 = 0

You need to decide on a level of expected return (E) to solve for, and your
solution will be that combination of weightings which yields that E with the
least variance. Once you have decided on E, you now have all of the input
variables needed to construct the coefficients matrix.
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The E on the right-hand side of the first equation is the E you have
decided you want to solve for (i.e., it is a given by you). The first line simply
states that the sum of all of the expected returns times their weightings
must equal the given E. The second line simply states that the sum of the
weights must equal 1. Shown here is the matrix for a three-security case,
but you can use the general form when solving for N securities. However,
these first two lines are always the same. The next N lines then follow the
prescribed form.

Now, using our expected returns and covariances (from the covariance
table we constructed earlier), we plug the coefficients into the generalized
form. We thus create a matrix that represents the coefficients of the gen-
eralized form. In our four-component case (N = 4), we thus have six rows
(N + 2):

X1 X2 X3 X4 L1 L2 | Answer

.095 .13 .21 .085 | E
1 1 1 1 | 1

.1 −.0237 .01 0 .095 1 | 0
−.0237 .25 .079 0 .13 1 | 0

.01 .079 .4 0 .21 1 | 0
0 0 0 0 .085 1 | 0

Note that the expected returns are not expressed in the matrix as HPRs;
rather, they are expressed in their “raw” decimal state.

Notice that we also have six columns of coefficients. Adding the answer
portion of each equation onto the right, and separating it from the coeffi-
cients with a | creates what is known as an augmented matrix, which is
constructed by fusing the coefficients matrix and the answer column, which
is also known as the right-hand side vector.

Notice that the coefficients in the matrix correspond to our generalized
form of the problem:

X1 ∗ U1 + X2 ∗ U2 + X3 ∗ U3 + X4 ∗ U4 = E
X1 + X2 + X3 + X4 = 1
X1 ∗ COV1,1 + X2 ∗ COV1,2 + X3 ∗ COV1,3 + X4 ∗ COV1,4 + .5 ∗ L1 ∗ U1 + .5 ∗ L2 = 0
X1 ∗ COV2,1 + X2 ∗ COV2,2 + X3 ∗ COV2,3 + X4 ∗ COV2,4 + .5 ∗ L1 ∗ U2 + .5 ∗ L2 = 0
X1 ∗ COV3,1 + X2 ∗ COV3,2 + X3 ∗ COV3,3 + X4 ∗ COV3,4 + .5 ∗ L1 ∗ U3 + .5 ∗ L2 = 0
X1 ∗ COV4,1 + X2 ∗ COV4,2 + X3 ∗ COV4,3 + X4 ∗ COV4,4 + .5 ∗ L1 ∗ U4 + .5 ∗ L2 = 0

The matrix is simply a representation of these equations. To solve for the
matrix, you must decide upon a level for E that you want to solve for. Once
the matrix is solved, the resultant answers will be the optimal weightings
required to minimize the variance in the portfolio as a whole for our specified
level of E.
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Suppose we wish to solve for E = .14, which represents an expected
return of 14%. Plugging .14 into the matrix for E and putting in zeros for the
variables L1 and L2 in the first two rows to complete the matrix gives us a
matrix of:

X1 X2 X3 X4 L1 L2 | Answer

.095 .13 .21 .085 0 0 | .14
1 1 1 1 0 0 | 1

.1 −.0237 .01 0 .095 1 | 0
−.0237 .25 .079 0 .13 1 | 0

.01 .079 .4 0 .21 1 | 0
0 0 0 0 .085 1 | 0

By solving the matrix we will solve the N + 2 unknowns in the N + 2
equations.

SOLUTIONS OF LINEAR SYSTEMS USING
ROW-EQUIVALENT MATRICES

A polynomial is an algebraic expression that is the sum of one or more
terms. A polynomial with only one term is called a monomial; with two
terms a binomial; with three terms a trinomial. Polynomials with more
than three terms are simply called polynomials. The expression 4 ∗ A3+ A2 +
A + 2 is a polynomial having four terms. The terms are separated by a plus
(+) sign.

Polynomials come in different degrees. The degree of a polynomial is
the value of the highest degree of any of the terms. The degree of a term
is the sum of the exponents on the variables contained in the term. Our
example is a third-degree polynomial since the term 4 ∗ A3 is raised to the
power of 3, and that is a higher power than any of the other terms in the
polynomial are raised to. If this term read 4 ∗ A3 ∗ B2 ∗ C, we would have a
sixth-degree polynomial since the sum of the exponents of the variables (3
+ 2 + 1) equals 6.

A first-degree polynomial is also called a linear equation, and it graphs
as a straight line. A second-degree polynomial is called a quadratic, and it
graphs as a parabola. Third-, fourth-, and fifth-degree polynomials are also
called cubics, quartics, and quintics, respectively. Beyond that there aren’t
any special names for higher-degree polynomials. The graphs of polynomials
greater than second degree are rather unpredictable. Polynomials can have
any number of terms and can be of any degree. Fortunately, we will be
working only with linear equations, first-degree polynomials here.
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When we have more than one linear equation that must be solved simul-
taneously we can use what is called the method of row-equivalent matrices.

This technique is also often referred to as the Gauss-Jordan procedure or
the Gaussian elimination method.

To perform the technique, we first create the augmented matrix of the
problem by combining the coefficients matrix with the right-hand side vec-
tor as we have done. Next, we want to use what are called elementary trans-

formations to obtain what is known as the identity matrix. An elementary
transformation is a method of processing a matrix to obtain a different but
equivalent matrix. Elementary transformations are accomplished by what
are called row operations. (We will cover row operations in a moment.)

An identity matrix is a square coefficients matrix where all of the el-
ements are zeros except for a diagonal line of ones starting in the upper
left corner. For a six-by-six coefficients matrix such as we are using in our
example, the identity matrix would appear as:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

This type of matrix, where the number of rows is equal to the number of
columns, is called a square matrix. Fortunately, due to the generalized form
of our problem of minimizing V for a given E, we are always dealing with a
square coefficients matrix.

Once an identity matrix is obtained through row operations, it can be re-
garded as equivalent to the starting coefficients matrix. The answers then are
read from the right-hand-side vector. That is, in the first row of the identity
matrix, the 1 corresponds to the variable X1, so the answer in the right-hand
side vector for the first row is the answer for X1. Likewise, the second row
of the right-hand side vector contains the answer for X2, since the 1 in the
second row corresponds to X2. By using row operations we can make ele-
mentary transformations to our original matrix until we obtain the identity
matrix. From the identity matrix, we can discern the answers, the weights
X1, . . ., XN, for the components in a portfolio. These weights will produce
the portfolio with the minimum variance, V, for a given level of expected
return, E.3

3That is, these weights will produce the portfolio with a minimum V for a given E only
to the extent that our inputs of E and V for each component and the linear correlation
coefficient of every possible pair of components are accurate and variance in returns
finite.
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Three types of row operations can be performed:

1. Any two rows may be interchanged.

2. Any row may be multiplied by any nonzero constant.

3. Any row may be multiplied by any nonzero constant and added to the
corresponding entries of any other row.

Using these three operations, we seek to transform the coefficients
matrix to an identity matrix, which we do in a very prescribed manner.

The first step, of course, is to simply start out by creating the augmented
matrix. Next, we perform the first elementary transformation by invoking
row operations rule 2. Here, we take the value in the first row, first column,
which is .095, and we want to convert it to the number 1. To do so, we
multiply each value in the first row by the constant 1/.095. Since any number
times 1 divided by that number yields 1, we have obtained a 1 in the first
row, first column. We have also multiplied every entry in the first row by
this constant, 1/.095, as specified by row operations rule 2. Thus, we have
obtained elementary transformation number 1.

Our next step is to invoke row operations rule 3 for all rows except the
one we have just used rule 2 on. Here, for each row, we take the value of that
row corresponding to the column we just invoked rule 2 on. In elementary
transformation number 2, for row 2, we will use the value of 1, since that is
the value of row 2, column 1, and we just performed rule 2 on column 1. We
now make this value negative (or positive if it is already negative). Since
our value is 1, we make it −1. We now multiply by the corresponding entry
(i.e., same column) of the row we just performed rule 2 on. Since we just
performed rule 2 on row 1, we will multiply this −1 by the value of row 1,
column 1, which is 1, thus obtaining −1. Now we add this value back to the
value of the cell we are working on, which is 1, and obtain 0.

Now on row 2, column 2, we take the value of that row corresponding to
the column we just invoked rule 2 on. Again we will use the value of 1, since
that is the value of row 2, column 1, and we just performed rule 2 on column
1. We again make this value negative (or positive if it is already negative).
Since our value is 1, we make it −1. Now multiply by the corresponding
entry (i.e., same column) of the row we just performed rule 2 on. Since we
just performed rule 2 on row 1, we will multiply this −1 by the value of row 1,
column 2, which is 1.3684, thus obtaining −1.3684. Again, we add this value
back to the value of the cell we are working on, row 2, column 2, which is 1,
obtaining 1+ (−1.3684)=−.3684. We proceed likewise for the value of every
cell in row 2, including the value of the right-hand side vector of row 2. Then
we do the same for all other rows until the column we are concerned with,
column 1 here, is all zeros. Notice that we need not invoke row operations
rule 3 for the last row, since that already has a value of zero for column 1.



JWDD035-07 JWDD035-Vince February 22, 2007 17:30 Char Count= 0

Classical Portfolio Construction 249

When we are finished, we will have obtained elementary transformation
number 2. Now the first column is already that of the identity matrix. Now we
proceed with this pattern, and in elementary transformation 3 we invoke row
operations rule 2 to convert the value in the second row, second column to a
1. In elementary transformation number 4, we invoke row operations rule 3
to convert the remainder of the rows to zeros for the column corresponding
to the column we just invoked row operations rule 2 on.

We proceed likewise, converting the values along the diagonals to ones
per row operations rule 2, then converting the remaining values in that
column to zeros per row operations rule 3 until we have obtained the identity
matrix on the left. The right-hand side vector will then be our solution
set.

Starting Augmented Matrix

X1 X2 X3 X4 L1 L2 | Answer Explanation

0.095 0.13 0.21 0.085 0 0 | 0.14
1 1 1 1 0 0 | 1
0.1 −0.023 0.01 0 0.095 1 | 0

−0.023 0.25 0.079 0 0.13 1 | 0
0.01 0.079 0.4 0 0.21 1 | 0
0 0 0 0 0.085 1 | 0

Elementary Transformation Number 1

1 1.3684 2.2105 0.8947 0 0 | 1.47368 row 1 ∗ (1/.095)
1 1 1 1 0 0 | 1
0.1 −0.023 0.01 0 0.095 1 | 0

−0.023 0.25 0.079 0 0.13 1 | 0
0.01 0.079 0.4 0 0.21 1 | 0
0 0 0 0 0.085 1 | 0

Elementary Transformation Number 2

X1 X2 X3 X4 L1 L2 | Answer Explanation

1 1.3684 2.2105 0.8947 0 0 | 1.47368
0 −0.368 −1.210 0.1052 0 0 | −0.4736 row 2 + (−1 ∗ row 1)
0 −0.160 −0.211 −0.089 0.095 1 | −0.1473 row 3 + (−.1 ∗ row 1)
0 0.2824 0.1313 0.0212 0.13 1 | .03492 row 4 + (.0237 ∗ row 1)
0 0.0653 0.3778 −0.008 0.21 1 | −0.0147 row 5 + (−.01 ∗ row 1)
0 0 0 0 0.085 1 | 0
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Elementary Transformation Number 3

1 1.3684 2.2105 0.8947 0 0 | 1.47368
0 1 3.2857 −0.285 0 0 | 1.28571 row 2 ∗ (1/−.36842)
0 −0.160 −0.211 −0.089 0.095 1 | −0.1473
0 0.2824 0.1313 0.0212 0.13 1 | 0.03492
0 0.0653 0.3778 −0.008 0.21 1 | −0.0147
0 0 0 0 0.085 1 | 0

Elementary Transformation Number 4

1 0 −2.285 1.2857 0 0 | −0.2857 row 1 + (−1.368421
∗ row 2)

0 1 3.2857 −0.285 0 0 | 1.28571
0 0 0.3164 −0.135 0.095 1 | 0.05904 row 3 + (.16054

∗ row 2)
0 0 −0.796 0.1019 0.13 1 | −0.3282 row 4 + (−.282431

∗ row 2)
0 0 0.1632 0.0097 0.21 1 | −0.0987 row 5 + (−.065315

∗ row 2)
0 0 0 0 0.085 1 | 0

Elementary Transformation Number 5

X1 X2 X3 X4 L1 L2 | Answer Explanation

1 0 −2.285 1.2857 0 0 | −0.2857
0 1 3.2857 −0.285 0 0 | 1.28571
0 0 1 −0.427 0.3002 3.1602 | 0.18658 row 3 ∗ (1/.31643)
0 0 −0.796 0.1019 0.13 1 | −0.3282
0 0 0.1632 0.0097 0.21 1 | −0.0987
0 0 0 0 0.085 1 | 0

Elementary Transformation Number 6

1 0 0 0.3080 0.6862 7.2233 | 0.14075 row 1 + (2.2857
∗ row 3)

0 1 0 1.1196 −0.986 −10.38 | 0.67265 row 2 + (−3.28571
∗ row 3)

0 0 1 −0.427 0.3002 3.1602 | 0.18658
0 0 0 −0.238 0.3691 3.5174 | −0.1795 row 4 + (.7966

∗ row 3)
0 0 0 0.0795 0.1609 0.4839 | −0.1291 row 5 + (−.16328

∗ row 3)
0 0 0 0 0.085 1 | 0
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Elementary Transformation Number 7

1 0 0 0.3080 0.6862 7.2233 | 0.14075
0 1 0 1.1196 −0.986 −10.38 | 0.67265
0 0 1 −0.427 0.3002 3.1602 | 0.18658
0 0 0 1 −1.545 −14.72 | 0.75192 row 4 ∗ (1/−.23881)
0 0 0 0.0795 0.1609 0.4839 | −0.1291
0 0 0 0 0.085 1 | 0

Elementary Transformation Number 8

X1 X2 X3 X4 L1 L2 | Answer Explanation

1 0 0 0 1.1624 11.760 | −0.0908 row 1 + (−.30806
∗ row 4)

0 1 0 0 0.7443 6.1080 | −0.1692 row 2 + (−1.119669
∗ row 4)

0 0 1 0 −0.360 −3.139 | 0.50819 row 3 + (.42772
∗ row 4)

0 0 0 1 −1.545 −14.72 | 0.75192
0 0 0 0 0.2839 1.6557 | −0.1889 row 5 + (−.079551

∗ row 4)
0 0 0 0 0.085 1 | 0

Elementary Transformation Number 9

1 0 0 0 1.1624 11.761 | −0.0909
0 1 0 0 0.7445 6.1098 | −0.1693
0 0 1 0 −0.361 −3.140 | 0.50823
0 0 0 1 −1.545 −14.72 | 0.75192
0 0 0 0 1 5.8307 | −0.6655 row 5 ∗ (1/.28396)
0 0 0 0 0.085 1 | 0

Elementary Transformation Number 10

1 0 0 0 0 4.9831 | 0.68280 row 1 + (−1.16248
∗ row 5)

0 1 0 0 0 1.7685 | 0.32620 row 2 + (−.74455
∗ row 5)

0 0 1 0 0 −1.035 | 0.26796 row 3 + (.3610
∗ row 5)

0 0.0000 −0.000 1.0000 −0.000 −5.715 | −0.2769 row 4 + (1.5458
∗ row 5)

0 0 0 0 1 5.8312 | −0.6655
0 0 0 0 0 0.5043 | 0.05657 row 6 + (−.085

∗ row 5)
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Elementary Transformation Number 11

X1 X2 X3 X4 L1 L2 | Answer Explanation

1 0 0 0 0 4.9826 | 0.68283
0 1 0 0 0 1.7682 | 0.32622
0 0 1 0 0 −1.035 | 0.26795
0 0.0000 −0.000 1.0000 −0.000 −5.715 | −0.2769
0 0 0 0 1 5.8312 | −0.6655
0 0 0 0 0 1 | 0.11217 row 6 ∗ (1/.50434)

Elementary Transformation Number 12

1 0 0 0 0 0 | 0.12391 row 1 + (−4.98265 ∗ row 6)
0 1 0 0 0 0 | 0.12787 row 2 + (−1.76821 ∗ row 6)
0 0 1 0 0 0 | 0.38407 row 3 + (1.0352 ∗ row 6)
0 0 0 1 0 0 | 0.36424 row 4 + (5.7158 ∗ row 6)
0 0 0 0 1 0 | −1.3197 row 5 + (−5.83123 ∗ row 6)
0 0 0 0 0 1 | 0.11217

Identity Matrix Obtained

1 0 0 0 0 0 | 0.12391 = X1

0 1 0 0 0 0 | 0.12787 = X2

0 0 1 0 0 0 | 0.38407 = X3

0 0 0 1 0 0 | 0.36424 = X4

0 0 0 0 1 0 | −1.3197/.5 = −2.6394 = L1

0 0 0 0 0 1 | 0.11217/.5 = .22434 = L2

INTERPRETING THE RESULTS

Once we have obtained the identity matrix, we can interpret its meaning.
Here, given the inputs of expected returns and expected variance in returns
for all of the components under consideration, and given the linear corre-
lation coefficients of each possible pair of components, for an expected
yield of 14% this solution set is optimal. Optimal, as used here, means
that this solution set will yield the lowest variance for a 14% yield. In a
moment, we will determine the variance, but first we must interpret the
results.
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The first four values, the values for X1 through X4, tell us the weights
(the percentages of investable funds) that should be allocated to these in-
vestments to achieve this optimal portfolio with a 14% expected return.
Hence, we should invest 12.391% in Toxico, 12.787% in Incubeast, 38.407%
in LA Garb, and 36.424% in the savings account. If we are looking at investing
$50,000 per this portfolio mix:

Stock Percentage ( ∗ 50,000 = ) Dollars to Invest

Toxico .12391 $6,195.50
Incubeast .12787 $6,393.50
LA Garb .38407 $19,203.50
Savings .36424 $18,212.00

Thus, for Incubeast, we would invest $6,393.50. Now assume that In-
cubeast sells for $20 a share. We would optimally buy 319.675 shares
(6393.5/20). However, in the real world we cannot run out and buy frac-
tional shares, so we would say that optimally we would buy either 319
or 320 shares. Now, the odd lot, the 19 or 20 shares remaining after we
purchased the first 300, we would have to pay up for. Odd lots are usu-
ally marked up a small fraction of a point, so we would have to pay extra
for those 19 or 20 shares, which in turn would affect the expected return
on our Incubeast holdings, which in turn would affect the optimal port-
folio mix. We are often better off to just buy the round lot—in this case,
300 shares. As you can see, more slop creeps into the mechanics of this.
Whereas we can identify what the optimal portfolio is down to the fraction
of a share, the real-life implementation requires again that we allow for
slop.

Furthermore, the larger the equity you are employing, the more closely
the real-life implementation of the approach will resemble the theoretical
optimal. Suppose, rather than looking at $50,000 to invest, you were running
a fund of $5 million. You would be looking to invest 12.787% in Incubeast (if
we were only considering these four investment alternatives), and would
therefore be investing 5,000,000 ∗ .12787 = $639,350. Therefore, at $20 a
share, you would buy 639,350/20 = 31,967.5 shares. Again, if you restricted
it down to the round lot, you would buy 31,900 shares, deviating from the
optimal number of shares by about 0.2%. Contrast this to the case where
you have $50,000 to invest and buy 300 shares versus the optimal of 319.675.
There you are deviating from the optimal by about 6.5%.

The Lagrangian multipliers have an interesting interpretation. To begin
with, the Lagrangians we are using here must be divided by .5 after the
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identity matrix is obtained before we can interpret them. This is in accor-
dance with the generalized form of our problem. The L1 variable equals
−δV/δE. This means that L1 represents the marginal variance in expected
returns. In the case of our example, where L1 = −2.6394, we can state that
V is changing at a rate of −L1, or −(−2.6394), or 2.6394 units for every unit
in E instantaneously at E = .14.

To interpret the L2 variable requires that the problem first be restated.
Rather than having �i = 1, we will state that �i = M, where M equals
the dollar amount of funds to be invested. Then L2 = δV/δM. In other
words, L2 represents the marginal risk of increased or decreased invest-
ment.

Returning now to what the variance of the entire portfolio is, we can
use Equation (7.06) to discern the variance. Although we could use any
variation of Equation (7.06a) through (7.06d), here we will use variation a:

V =
N∑

i = 1

N∑
j = 1

Xi ∗ Xj ∗ COVi,j

Plugging in the values and performing Equation (7.06a) gives:

Xi Xj COVi,j

0.12391 ∗ 0.12391 ∗ 0.1 = 0.0015353688
0.12391 ∗ 0.12787 ∗ −0.0237 = −0.0003755116
0.12391 ∗ 0.38407 ∗ 0.01 = 0.0004759011
0.12391 ∗ 0.36424 ∗ 0 = 0
0.12787 ∗ 0.12391 ∗ −0.0237 = −0.0003755116
0.12787 ∗ 0.12787 ∗ 0.25 = 0.0040876842
0.12787 ∗ 0.38407 ∗ 0.079 = 0.0038797714
0.12787 ∗ 0.36424 ∗ 0 = 0
0.38407 ∗ 0.12391 ∗ 0.01 = 0.0004759011
0.38407 ∗ 0.12787 ∗ 0.079 = 0.0038797714
0.38407 ∗ 0.38407 ∗ 0.4 = 0.059003906
0.38407 ∗ 0.36424 ∗ 0 = 0
0.36424 ∗ 0.12391 ∗ 0 = 0
0.36424 ∗ 0.12787 ∗ 0 = 0
0.36424 ∗ 0.38407 ∗ 0 = 0
0.36424 ∗ 0.36424 ∗ 0 = 0

.0725872809

Thus, we see that at the value of E = .14, the lowest value for V is
obtained at V = .0725872809.
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Now suppose we decided to input a value of E = .18. Again, we begin
with the augmented matrix, which is exactly the same as in the last example
of E = .14, only the upper rightmost cell, that is the first cell in the right-
hand-side vector, is changed to reflect this new E of .18:

Starting Augmented Matrix

X1 X2 X3 X4 L1 L2 | Answer

0.095 0.13 0.21 0.085 0 0 | 0.18
1 1 1 1 0 0 | 1
0.1 −0.023 0.01 0 0.095 1 | 0

−0.023 0.25 0.079 0 0.13 1 | 0
0.01 0.079 0.4 0 0.21 1 | 0
0 0 0 0 0.085 1 | 0

Through the use of row operations . . . the identity matrix is obtained:

1 0 0 0 0 0 | 0.21401 = X1

0 1 0 0 0 0 | 0.22106 = X2

0 0 1 0 0 0 | 0.66334 = X3

0 0 0 1 0 0 | −.0981 = X4

0 0 0 0 1 0 | −1.3197/.5 = −2.639 = L1

0 0 0 0 0 1 | 0.11217/.5 = .22434 = L2

We then go about solving the matrix exactly as before, only this time we
get a negative answer in the fourth cell down of the right-hand-side vector.
Meaning, we should allocate a negative proportion, a disinvestment of 9.81%
in the savings account.

To account for this, whenever we get a negative answer for any of the
Xi’s—which means if any of the first N rows of the right-hand-side vector is
less than or equal to zero—we must pull that row + 2 and that column out
of the starting augmented matrix, and solve for the new augmented matrix.
If either of the last two rows of the right-hand-side vector are less than or
equal to zero, we don’t need to do this. These last two entries in the right-
hand-side vector always pertain to the Lagrangians, no matter how many or
how few components there are in total in the matrix. The Lagrangians are
allowed to be negative.

Since the variable returning with the negative answer corresponds to
the weighting of the fourth component, we pull out the fourth column
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and the sixth row from the starting augmented matrix. We then use row
operations to perform elementary transformations until, again, the identity
matrix is obtained:

Starting Augmented Matrix

X1 X2 X3 L1 L2 | Answer

0.095 0.13 0.21 0 0 | 0.18
1 1 1 0 0 | 1
0.1 −0.023 0.01 0.095 1 | 0

−0.023 0.25 0.079 0.13 1 | 0
0.01 0.079 0.4 0.21 1 | 0

Through the use of row operations . . . the identity matrix is obtained:

1 0 0 0 0 | 0.1283688 = X1

0 1 0 0 0 | 0.1904699 = X2

0 0 1 0 0 | 0.6811613 = X3

0 0 0 1 0 | −2.38/.5 = −4.76 = L1

0 0 0 0 1 | 0.210944/.5 = .4219 = L2

When you must pull out a row and column like this, it is important that
you remember what rows correspond to what variables, especially when
you have more than one row and column to pull. Again, using an example to
illustrate, suppose we want to solve for E = .1965. The first identity matrix
we arrive at will show negative values for the weighting of Toxico, X1, and
the savings account, X4. Therefore, we return to our starting augmented
matrix:

Starting Augmented Matrix

X1 X2 X3 X4 L1 L2 | Answer Pertains to

0.095 0.13 0.21 0.085 0 0 | 0.1965 Toxico
1 1 1 1 0 0 | 1 Incubeast
0.1 −0.023 0.01 0 0.095 1 | 0 LA Garb

−0.023 0.25 0.079 0 0.13 1 | 0 Savings
0.01 0.079 0.4 0 0.21 1 | 0 L1

0 0 0 0 0.085 1 | 0 L2
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Now we pull out row three and column one, the ones that pertain to
Toxico, and also pull row six and column four, the ones that pertain to the
savings account:

Starting Augmented Matrix

X2 X3 L1 L2 | Answer Pertains to

0.13 0.21 0 0 | 0.1965 Incubeast
1 1 0 0 | 1 LA Garb

0.25 0.079 0.13 1 | 0 L1

0.079 0.4 0.21 1 | 0 L2

So we will be working with the following matrix:

Starting Augmented Matrix

X2 X3 L1 L2 | Answer Pertains to

0.13 0.21 0 0 | 0.1965 Incubeast
1 1 0 0 | 1 LA Garb
0.25 0.079 0.13 1 | 0 L1

0.079 0.4 0.21 1 | 0 L2

Through the use of row operations . . . the identity matrix is obtained:

1 0 0 0 | .169 Incubeast
1 1 0 0 | .831 LA Garb
0 0 1 0 | −2.97/.5 = −5.94 L1

0 0 0 1 | .2779695/.5 = .555939 L2

Another method we can use to solve for the matrix is to use the inverse

of the coefficients matrix. An inverse matrix is a matrix that, when multiplied
by the original matrix, yields the identity matrix. This technique will be
explained without discussing the details of matrix multiplication.

In matrix algebra, a matrix is often denoted with a boldface capital letter.
For example, we can denote our coefficients matrix as C. The inverse to a
matrix is denoted as superscripting −1 to it. The inverse matrix to C then
is C−1.
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To use this method, we need to first discern the inverse matrix to our co-
efficients matrix. To do this, rather than start by augmenting the right-hand-
side vector onto the coefficients matrix, we augment the identity matrix
itself onto the coefficients matrix. For our four-stock example:

Starting Augmented Matrix

X1 X2 X3 X4 L1 L2 | Identity Matrix

0.095 0.13 0.21 0.085 0 0 | 1 0 0 0 0 0
1 1 1 1 0 0 | 0 1 0 0 0 0
0.1 −0.023 0.01 0 0.095 1 | 0 0 1 0 0 0

−0.023 0.25 0.079 0 0.13 1 | 0 0 0 1 0 0
0.01 0.079 0.4 0 0.21 1 | 0 0 0 0 1 0
0 0 0 0 0.085 1 | 0 0 0 0 0 1

Now we proceed using row operations to transform the coefficients
matrix to an identity matrix. In the process, since every row operation per-
formed on the left is also performed on the right, we will have transformed
the identity matrix on the right-hand side into the inverse matrix C−1, of
the coefficients matrix C. In our example, the result of the row operations
yields:

C | C−1

1 0 0 0 0 0 | 2.2527 −0.1915 10.1049 0.9127 −1.1370 −9.8806
0 1 0 0 0 0 | 2.3248 −0.1976 0.9127 4.1654 −1.5726 −3.5056
0 0 1 0 0 0 | 6.9829 −0.5935 −1.1370 −1.5726 0.6571 2.0524
0 0 0 1 0 0 | −11.5603 1.9826 −9.8806 −3.5056 2.0524 11.3337
0 0 0 0 1 0 | −23.9957 2.0396 2.2526 2.3248 6.9829 −11.5603
0 0 0 0 0 1 | 2.0396 −0.1734 −0.1915 −0.1976 −0.5935 1.9826

Now we can take the inverse matrix, C−1, and multiply it by our original
right-hand-side vector. Recall that our right-hand-side vector is:

E
S
0
0
0
0
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Whenever we multiply a matrix by a columnar vector (such as this) we
multiply all elements in the first column of the matrix by the first element in
the vector, all elements in the second column of the matrix by the second
element in the vector, and so on. If our vector were a row vector, we would
multiply all elements in the first row of the matrix by the first element in the
vector, all elements in the second row of the matrix by the second element
in the vector, and so on. Since our vector is columnar, and since the last four
elements are zeros, we need only multiply the first column of the inverse
matrix by E (the expected return for the portfolio) and the second column
of the inverse matrix by S, the sum of the weights. This yields the following
set of equations, which we can plug values for E and S into and obtain the
optimal weightings. In our example, this yields:

E ∗ 2.2527 + S ∗ −0.1915 = Optimal weight for first stock
E ∗ 2.3248 + S ∗ −0.1976 = Optimal weight for second stock
E ∗ 6.9829 + S ∗ −0.5935 = Optimal weight for third stock
E ∗ −11.5603 + S ∗ 1.9826 = Optimal weight for fourth stock
E ∗ −23.9957 + S ∗ 2.0396 = .5 of first Lagrangian
E ∗ 2.0396 + S ∗ −0.1734 = .5 of second Lagrangian

Thus, to solve for an expected return of 14% (E = .14) with the sum of
the weights equal to 1:

.14 ∗ 2.2527 + 1 ∗ −0.1915 = .315378 − .1915 = .1239 Toxico

.14 ∗ 2.3248 + 1 ∗ −0.1976 = .325472 − .1976 = .1279 Incubeast

.14 ∗ 6.9829 + 1 ∗ −0.5935 = .977606 − .5935 = .3841 LA Garb

.14 ∗ −11.5603 + 1 ∗ 1.9826 = −1.618442 + 1.9826 = .3641 Savings

.14 ∗ −23.9957 + 1 ∗ 2.0396 = −3.359398 + 2.0396 = −1.319798 ∗ 2
= −2.6395 L1

.14 ∗ 2.0396 + 1 ∗ −0.1734 = .285544 − .1734 = .1121144 ∗ 2
= .2243 L2

Once you have obtained the inverse to the coefficients matrix, you can
quickly solve for any value of E provided that your answers, the optimal
weights, are all positive. If not, again you must create the coefficients matrix
without that item, and obtain a new inverse matrix.

Thus far we have looked at investing in stocks from the long side only.
How can we consider short sale candidates in our analysis?

To begin with, you would be looking to sell short a stock if you expected
it would decline. Recall that the term “returns” means not only the dividends
in the underlying security, but any gains in the value of the security as well.
This figure is then specified as a percentage. Thus, in determining the returns
of a short position, you would have to estimate what percentage gain you
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would expect to make on the declining stock, and from that you would then
need to subtract the dividend (however many dividends go ex-date over
the holding period you are calculating your E and V on) as a percentage.4

Lastly, any linear correlation coefficients of which the stock you are looking
to short is a member must be multiplied by −1. Therefore, since the linear
correlation coefficient between Toxico and Incubeast is −.15, if you were
looking to short Toxico, you would multiply this by −1. In such a case
you would use −.15 ∗ −1 = .15 as the linear correlation coefficient. If you
were looking to short both of these stocks, the linear correlation coefficient
between the two would be −.15 ∗ −1 ∗ – 1 = −.15. In other words, if you
are looking to short both stocks, the linear correlation coefficient between
them remains unchanged, as it would if you were looking to go long both
stocks.

Thus far we have sought to obtain the optimal portfolio, and its variance,
V, when we know the expected return, E, that we seek. We can also solve
for E when we know V. The simplest way to do this is by iteration using the
techniques discussed thus far in this chapter.

There is much more to matrix algebra than is presented in this chap-

ter. There are other matrix algebra techniques to solve systems of lin-

ear equations. Often, you will encounter reference to techniques such

as Cramer’s Rule, the Simplex Method, or the Simplex Tableau. These

are techniques similar to the ones described in this chapter, although

more involved. There are a multitude of applications in business and

science for matrix algebra, and the topic is considerably involved.

We have only etched the surface, just enough for what we need to ac-

complish. For a more detailed discussion of matrix algebra and its

applications in business and science, the reader is referred to Sets,
Matrices, and Linear Programming, by Robert L. Childress.

4In this chapter we are assuming that all transactions are performed in a cash ac-
count. Thus, even though a short position is required to be performed in a margin
account as opposed to a cash account, we will not calculate interest on the margin.
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The Geometry of
Mean Variance

Portfolios

W
e have now covered how to find the optimal fs for a given market

system from a number of different standpoints. Also, we have

seen how to derive the efficient frontier. In this chapter we show

how to combine the two notions of optimal f and classical portfolio theory.

Furthermore, we will delve into an analytical study of the geometry of

portfolio construction.

THE CAPITAL MARKET LINES (CMLs)

We can improve upon the performance of any given portfolio by combin-
ing a certain percentage of the portfolio with cash. Figure 8.1 shows this
relationship graphically.

In Figure 8.1, point A represents the return on the risk-free asset. This
would usually be the return on 91-day Treasury bills. Since the risk, the
standard deviation in returns, is regarded as nonexistent, point A is at zero
on the horizontal axis.

Point B represents the tangent portfolio. It is the only portfolio lying
upon the efficient frontier that would be touched by a line drawn from the
risk-free rate of return on the vertical axis and zero on the horizontal axis.
Any point along line segment AB will be composed of the portfolio at Point B
and the risk-free asset. At point B, all of the assets would be in the portfolio,
and at point A all of the assets would be in the risk-free asset. Anywhere in
between points A and B represents having a portion of the assets in both the
portfolio and the risk-free asset. Notice that any portfolio along line segment

261
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FIGURE 8.1 Enhancing returns with the risk-free asset

AB dominates any portfolio on the efficient frontier at the same risk level,
since being on the line segment AB has a higher return for the same risk.
Thus, an investor who wanted a portfolio less risky than portfolio B would
be better off to put a portion of his or her investable funds in portfolio B and
a portion in the risk-free asset, as opposed to owning 100% of a portfolio on
the efficient frontier at a point less risky than portfolio B.

The line emanating from point A, the risk-free rate on the vertical axis
and zero on the horizontal axis, and emanating to the right, tangent to one
point on the efficient frontier, is called the capital market line (CML). To
the right of point B, the CML line represents portfolios where the investor
has gone out and borrowed more money to invest further in portfolio B.
Notice that an investor who wanted a portfolio with a greater return than
portfolio B would be better off to do this, as being on the CML line right of
point B dominates (has higher return than) those portfolios on the efficient
frontier with the same level of risk.

Usually, point B will be a very well-diversified portfolio. Most portfo-
lios high up and to the right and low down and to the left on the efficient
frontier have very few components. Those in the middle of the efficient
frontier, where the tangent point to the risk-free rate is, usually are very
well diversified.

It has traditionally been assumed that all rational investors will want to
get the greatest return for a given risk and take on the lowest risk for a given
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return. Thus, all investors would want to be somewhere on the CML line.
In other words, all investors would want to own the same portfolio, only
with differing degrees of leverage. This distinction between the investment
decision and the financing decision is known as the Separation Theorem.1

We assume now that the vertical scale, the E in E–V theory, represents
the arithmetic average HPR (AHPR) for the portfolios and the horizontal, or
V, scale represents the standard deviation in the HPRs. For a given risk-free
rate, we can determine where this tangent point portfolio on our efficient
frontier is, as the coordinates (AHPR, V) that maximize the following func-
tion are:

Tangent Portfolio = MAX{(AHPR − (1 + RFR))/SD} (8.01)

where: MAX{} = The maximum value.
AHPR = The arithmetic average HPR. This is the E

coordinate of a given portfolio on the efficient
frontier.

SD = The standard deviation in HPRs. This is the V
coordinate of a given portfolio on the efficient
frontier.

RFR = The risk-free rate.

In Equation (8.01), the formula inside the braces ({}) is known as the
Sharpe ratio, a measurement of risk-adjusted returns. Expressed literally,
the Sharpe ratio for a portfolio is a measure of the ratio of the expected
excess returns to the standard deviation. The portfolio with the highest
Sharpe ratio, therefore, is the portfolio where the CML line is tangent to the
efficient frontier for a given RFR.

The Sharpe ratio, when multiplied by the square root of the number
of periods over which it was derived, equals the t statistic. From the re-
sulting t statistic it is possible to obtain a confidence level that the AHPR
exceeds the RFR by more than chance alone, assuming finite variance in the
returns.

The following table shows how to use Equation (8.01) and demonstrates
the entire process discussed thus far. The first two columns represent the
coordinates of different portfolios on the efficient frontier. The coordinates
are given in (AHPR, SD) format, which corresponds to the Y and X axes
of Figure 8.1. The third column is the answer obtained for Equation (8.01)
assuming a 1.5% risk-free rate (equating to an AHPR of 1.015. We assume
that the HPRs here are quarterly HPRs; thus, a 1.5% risk-free rate for the

1See Tobin, James, “Liquidity Preference as Behavior Towards Risk,” Review of

Economic Studies 25, pp. 65–85, February 1958.
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quarter equates to roughly a 6% risk-free rate for the year.). Thus, to work
out (8.01a) for the third set of coordinates (.00013, 1.002):

(AHPR − (1 + RFR))/SD = (1.002 − (1 + .015))/.00013

= (1.002 − 1.015)/.00013

= −.013/.00013

= −100

The process is completed for each point along the efficient frontier.
Equation (8.01) peaks out at .502265, which is at the coordinates (02986,
1.03). These coordinates are the point where the CML line is tangent to the
efficient frontier, corresponding to point B in Figure 8.1. This tangent point
is a certain portfolio along the efficient frontier. The Sharpe ratio is the slope
of the CML, with the steepest slope being the tangent line to the efficient
frontier.

Efficient Frontier CML line

AHPR SD Eq. (8.1a) Percentage AHPR

RFR = .015
1.00000 0.00000 0 0.00% 1.0150
1.00100 0.00003 −421.902 0.11% 1.0150
1.00200 0.00013 −100.000 0.44% 1.0151
1.00300 0.00030 −40.1812 1.00% 1.0152
1.00400 0.00053 −20.7184 1.78% 1.0153
1.00500 0.00083 −12.0543 2.78% 1.0154
1.00600 0.00119 −7.53397 4.00% 1.0156
1.00700 0.00163 −4.92014 5.45% 1.0158
1.00800 0.00212 −3.29611 7.11% 1.0161
1.00900 0.00269 −2.23228 9.00% 1.0164
1.01000 0.00332 −1.50679 11.11% 1.0167
1.01100 0.00402 −0.99622 13.45% 1.0170
1.01200 0.00478 −0.62783 16.00% 1.0174
1.01300 0.00561 −0.35663 18.78% 1.0178
1.01400 0.00650 −0.15375 21.78% 1.0183
1.01500 0.00747 0 25.00% 1.0188
1.01600 0.00849 0.117718 28.45% 1.0193
1.01700 0.00959 0.208552 32.12% 1.0198
1.01800 0.01075 0.279036 36.01% 1.0204
1.01900 0.01198 0.333916 40.12% 1.0210
1.02000 0.01327 0.376698 44.45% 1.0217
1.02100 0.01463 0.410012 49.01% 1.0224
1.02200 0.01606 0.435850 53.79% 1.0231
1.02300 0.01755 0.455741 58.79% 1.0238
1.02400 0.01911 0.470873 64.01% 1.0246
1.02500 0.02074 0.482174 69.46% 1.0254
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Efficient Frontier CML line

AHPR SD Eq. (8.1a) Percentage AHPR

1.02600 0.02243 0.490377 75.12% 1.0263
1.02700 0.02419 0.496064 81.01% 1.0272
1.02800 0.02602 0.499702 87.12% 1.0281
1.02900 0.02791 0.501667 93.46% 1.0290
1.03000 0.02986 0.502265 (peak) 100.02% 1.0300
1.03100 0.03189 0.501742 106.79% 1.0310
1.03200 0.03398 0.500303 113.80% 1.0321
1.03300 0.03614 0.498114 121.02% 1.0332
1.03400 0.03836 0.495313 128.46% 1.0343
1.03500 0.04065 0.492014 136.13% 1.0354
1.03600 0.04301 0.488313 144.02% 1.0366
1.03700 0.04543 0.484287 152.13% 1.0378
1.03800 0.04792 0.480004 160.47% 1.0391
1.03900 0.05047 0.475517 169.03% 1.0404
1.04000 0.05309 0.470873 177.81% 1.0417
1.04100 0.05578 0.466111 186.81% 1.0430
1.04200 0.05853 0.461264 196.03% 1.0444
1.04300 0.06136 0.456357 205.48% 1.0458
1.04400 0.06424 0.451416 215.14% 1.0473
1.04500 0.06720 0.446458 225.04% 1.0488
1.04600 0.07022 0.441499 235.15% 1.0503
1.04700 0.07330 0.436554 245.48% 1.0518
1.04800 0.07645 0.431634 256.04% 1.0534
1.04900 0.07967 0.426747 266.82% 1.0550
1.05000 0.08296 0.421902 277.82% 1.0567

The next column over, “percentage,” represents what percentage of
your assets must be invested in the tangent portfolio if you are at the CML
line for that standard deviation coordinate. In other words, for the last entry
in the table to be on the CML line at the .08296 standard deviation level
corresponds to having 277.82% of your assets in the tangent portfolio (i.e.,
being fully invested and borrowing another $1.7782 for every dollar already
invested to invest further). This percentage value is calculated from the
standard deviation of the tangent portfolio as:

P = SX/ST (8.02)

where: SX = The standard deviation coordinate for a particular point
on the CML line.

ST = The standard deviation coordinate of the tangent
portfolio.

P = The percentage of your assets that must be invested in
the tangent portfolio to be on the CML line for a given SX.
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Thus, the CML line at the standard deviation coordinate .08296, the last
entry in the table, is divided by the standard deviation coordinate of the
tangent portfolio, .02986, yielding 2.7782, or 277.82%.

The last column in the table, the CML line AHPR, is the AHPR of the
CML line at the given standard deviation coordinate. This is figured as:

ACML = (AT * P) + ((1 + RFR) * (1 − P)) (8.03)

where: ACML = The AHPR of the CML line at a given risk coordinate,
or a corresponding percentage figured from (8.02).

AT = The AHPR at the tangent point, figured from (8.01a).
P = The percentage in the tangent portfolio, figured from

(8.02).
RFR = The risk-free rate.

On occasion you may want to know the standard deviation of a certain
point on the CML line for a given AHPR. This linear relationship can be
obtained as:

SD = P * ST (8.04)

where: SD = The standard deviation at a given point on the CML line
corresponding to a certain percentage, P, corresponding
to a certain AHPR.

P = The percentage in the tangent portfolio, figured from
(8.02).

ST = The standard deviation coordinate of the tangent
portfolio.

THE GEOMETRIC EFFICIENT FRONTIER

The problem with Figure 8.1 is that it shows the arithmetic average HPR.
When we are reinvesting profits back into the program we must look at the
geometric average HPR for the vertical axis of the efficient frontier. This
changes things considerably. The formula to convert a point on the efficient
frontier from an arithmetic HPR to a geometric is:

GHPR =
√

AHPR2 − V)

where: GHPR = The geometric average HPR.
AHPR = The arithmetic average HPR.

V = The variance coordinate. (This is equal to the
standard deviation coordinate squared.)
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FIGURE 8.2 The efficient frontier with/without reinvestment

In Figure 8.2 you can see the efficient frontier corresponding to the
arithmetic average HPRs as well as that corresponding to the geometric
average HPRs. You can see what happens to the efficient frontier when
reinvestment is involved.

By graphing your GHPR line, you can see which portfolio is the ge-
ometric optimal (the highest point on the GHPR line). You could also
determine this portfolio by converting the AHPRs and Vs of each port-
folio along the AHPR efficient frontier into GHPRs per Equation (3.04)
and see which had the highest GHPR. Again, that would be the geo-
metric optimal. However, given the AHPRs and the Vs of the portfolios
lying along the AHPR efficient frontier, we can readily discern which
portfolio would be geometric optimal—the one that solves the following
equality:

AHPR − 1 − V = 0 (8.05a)

where: AHPR = The arithmetic average HPRs. This is the E
coordinate of a given portfolio on the efficient
frontier.

V = The variance in HPR. This is the V coordinate of a
given portfolio on the efficient frontier. This is equal
to the standard deviation squared.
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Equation (8.06a) can also be written as any one of the following three
forms:

AHPR − 1 = V (8.05b)

AHPR − V = 1 (8.05c)

AHPR = V + 1 (8.05d)

A brief note on the geometric optimal portfolio is in order here. Variance
in a portfolio is generally directly and positively correlated to drawdown
in that higher variance is generally indicative of a portfolio with higher
drawdown. Since the geometric optimal portfolio is that portfolio for which
E and V are equal (with E = AHPR − 1), then we can assume that the
geometric optimal portfolio will see high drawdowns. In fact, the greater
the GHPR of the geometric optimal portfolio—that is, the more the portfolio
makes—the greater will be its drawdown in terms of equity retracements,
since the GHPR is directly positively correlated with the AHPR. Here again is
a paradox. We want to be at the geometric optimal portfolio. Yet, the higher
the geometric mean of a portfolio, the greater will be the drawdowns in
terms of percentage equity retracements generally. Hence, when we perform
the exercise of diversification, we should view it as an exercise to obtain the
highest geometric mean rather than the lowest drawdown, as the two tend to
pull in opposite directions! The geometrical optimal portfolio is one where
a line drawn from (0,0), with slope 1, intersects the AHPR efficient frontier.

Figure 8.2 demonstrates the efficient frontiers on a one-trade basis. That
is, it shows what you can expect on a one-trade basis. We can convert the
geometric average HPR to a TWR by the equation:

GTWR = GHPRN

where: GTWR = The vertical axis corresponding to a given GHPR
after N trades.

GHPR = The geometric average HPR.
N = The number of trades we desire to observe.

Thus, after 50 trades a GHPR of 1.0154 would be a GTWR of 1.015450 =
2.15. In other words, after 50 trades we would expect our stake to have
grown by a multiple of 2.15.

We can likewise project the efficient frontier of the arithmetic average
HPRs into ATWRs as:

ATWR = 1 + N * (AHPR − 1)

where: ATWR = The vertical axis corresponding to a given AHPR
after N trades.

AHPR = The arithmetic average HPR.
N = The number of trades we desire to observe.
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FIGURE 8.3 The efficient frontier with/without reinvestment

Thus, after 50 trades, an arithmetic average HPR of 1.03 would have
made 1 + 50 * (1.03 − 1) = 1 + 50 * .03 = 1 + 1.5 = 2.5 times our starting
stake. Note that this shows what happens when we do not reinvest our
winnings back into the trading program. Equation (3.06) is the TWR you
can expect when constant-contract trading.

Just as Figure 8.2 shows the TWRs, both arithmetic and geometric,
for one trade, Figure 8.3 shows them for a few trades later. Notice that
the GTWR line is approaching the ATWR line. At some point for N, the
geometric TWR will overtake the arithmetic TWR. Figure 8.4 shows the
arithmetic and geometric TWRs after more trades have elapsed. Notice that
the geometric has overtaken the arithmetic. If we were to continue with
more and more trades, the geometric TWR would continue to outpace the
arithmetic. Eventually, the geometric TWR becomes infinitely greater than
the arithmetic.

The logical question is, “How many trades must elapse until the geo-
metric TWR surpasses the arithmetic?” See the following equation, which
tells us the number of trades required to reach a specific goal:

T = ln(Goal)/ln(Geometric Mean)

where: T = The expected number of trades to reach a specific goal.
Goal = The goal in terms of a multiple on our starting stake, a

TWR.
ln( ) = The natural logarithm function.
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FIGURE 8.4 The efficient frontier with/without reinvestment

We let the AHPR at the same V as our geometric optimal portfolio be
our goal and use the geometric mean of our geometric optimal portfolio in
the denominator of the equation just mentioned. We can now discern how
many trades are required to make our geometric optimal portfolio match
one trade in the corresponding arithmetic portfolio. Thus:

T = ln(1.031)/ ln(1.01542) (8.06)

= .035294/.0153023

= 1.995075

We would thus expect 1.995075, or roughly 2, trades for the optimal
GHPR to be as high up as the corresponding (same V) AHPR after one
trade.

The problem is that the ATWR needs to reflect the fact that two trades
have elapsed. In other words, as the GTWR approaches the ATWR, the ATWR
is also moving upward, albeit at a constant rate (compared to the GTWR,
which is accelerating). We can relate this problem to Equations (8.07) and
(8.06), the geometric and arithmetic TWRs respectively, and express it math-
ematically:

GHPRN =>1 + N * (AHPR − 1) (8.07)
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Since we know that when N = 1, G will be less than A, we can rephrase
the question to “At how many N will G equal A?” Mathematically this is:

GHPRN = 1 + N * (AHPR − 1) (8.08a)

which can be written as:

1 + N * (AHPR − 1) − GHPRN = 0 (8.08b)

or

1 + N * AHPR − N − GHPRN = 0 (8.08c)

or

N = (GHPR * N − 1)/(AHPR − 1) (8.08d)

The N that solves (8.08a) through (8.08d) is the N that is required for the
geometric HPR to equal the arithmetic. All three equations are equivalent.
The solution must be arrived at by iteration. Taking our geometric optimal
portfolio of a GHPR of 1.01542 and a corresponding AHPR of 1.031, if we
were to solve for any of Equations (8.10a) through (8.10d), we would find
the solution to these equations at N = 83.49894. That is, at 83.49894 elapsed
trades, the geometric TWR will overtake the arithmetic TWR for those TWRs
corresponding to a variance coordinate of the geometric optimal portfolio.

Just as the AHPR has a CML line, so too does the GHPR. Figure 8.5
shows both the AHPR and the GHPR with a CML line for both calculated
from the same risk-free rate.

The CML for the GHPR is calculated from the CML for the AHPR by the
following equation:

CMLG =
√

CMLA2 − VT * P (8.09)

where: CMLG = The E coordinate (vertical) to the CML line to the
GHPR for a given V coordinate corresponding to P.

CMLA = The E coordinate (vertical) to the CML line to the
AHPR for a given V coordinate corresponding to P.

P = The percentage in the tangent portfolio, figured from
(8.02).

VT = The variance coordinate of the tangent portfolio.

You should know that, for any given risk-free rate, the tangent portfolio
and the geometric optimal portfolio are not necessarily (and usually are
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FIGURE 8.5 AHPR, GHPR, and their CML lines

not) the same. The only time that these portfolios will be the same is when
the following equation is satisfied:

RFR = GHPROPT − 1 (8.10)

where: RFR = The risk-free rate.
GHPROPT = The geometric average HPR of the geometric

optimal portfolio. This is the E coordinate of the
portfolio on the efficient frontier.

Only when the GHPR of the geometric optimal portfolio minus 1 is equal
to the risk-free rate will the geometric optimal portfolio and the portfolio
tangent to the CML line be the same. If RFR > GHPROPT − 1, then the
geometric optimal portfolio will be to the left of (have less variance than)
the tangent portfolio. If RFR < GHPROPT − 1, then the tangent portfolio will
be to the left of (have less variance than) the geometric optimal portfolio. In
all cases, though, the tangent portfolio will, of course, never have a higher
GHPR than the geometric optimal portfolio.

Note also that the point of tangency for the CML to the GHPR and for
the CML to the AHPR is at the same SD coordinate. We could use Equation
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(8.01) to find the tangent portfolio of the GHPR line by substituting the
AHPR in (8.11) with GHPR. The resultant equation is:

Tangent Portfolio = MAX{(GHPR − (1 + RFR))/SD} (8.11)

where: MAX{} = The maximum value.
GHPR = The geometric average HPRs. This is the E

coordinate of a given portfolio on the efficient
frontier.

SD = The standard deviation in HPRs. This is the SD
coordinate of a given portfolio on the efficient
frontier.

RFR = The risk-free rate.

UNCONSTRAINED PORTFOLIOS

Now we will see how to enhance returns beyond the GCML line by lift-
ing the sum of the weights constraint. Let us return to geometric optimal
portfolios. If we look for the geometric optimal portfolio among our four
market systems—Toxico, Incubeast, LA Garb, and a savings account—we
find it at E equal to .1688965 and V equal to .1688965, thus conforming with
Equations (8.05a) through (8.05d). The geometric mean of such a portfolio
would therefore be 1.094268, and the portfolio’s composition would be:

Toxico 18.89891%
Incubeast 19.50386%
LA Garb 58.58387%
Savings Account .03014%

In using Equations (8.05a) through (8.05d), you must iterate to the so-
lution. That is, you try a test value for E (halfway between the highest and
the lowest AHPRs; −1 is a good starting point) and solve the matrix for
that E. If your variance is higher than E, it means the tested for value of
E was too high, and you should lower it for the next attempt. Conversely,
if your variance is less than E, you should raise E for the next pass. You
keep on repeating the process until whichever of Equations (8.05a) through
(8.05d) you choose to use, is solved. Then you will have arrived at your
geometric optimal portfolio. (Note that all of the portfolios discussed thus
far, whether on the AHPR efficient frontier or the GHPR efficient frontier,
are determined by constraining the sum of the percentages, the weights, to
100% or 1.00.)
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See the equation used in the starting augmented matrix to find the opti-
mal weights in a portfolio. This equation dictates that the sum of the weights
equal 1: (

N∑
i = 1

Xi

)
− 1 = 0

where: N = The number of securities comprising the portfolio.
Xi = The percentage weighting of the ith security.

The equation can also be written as:(
N∑

i = 1

Xi

)
− 1

By allowing the left side of this equation to be greater than 1, we can
find the unconstrained optimal portfolio. The easiest way to do this is to add
another market system, called non-interest-bearing cash (NIC), into the
starting augmented matrix. This market system, NIC, will have an arithmetic
average daily HPR of 1.0 and a population standard deviation (as well as
variance and covariances) in those daily HPRs of 0. What this means is that
each day the HPR for NIC will be 1.0. The correlation coefficients for NIC
to any other market system are always 0.

Now we set the sum of the weights constraint to some arbitrarily high
number, greater than 1. A good initial value is three times the number of
market systems (without NIC) that you are using. Since we have four market
systems (when not counting NIC) we should set this sum of the weights
constraint to 4 * 3 = 12. Note that we are not really lifting the constraint
that the sum of the weights be below some number, we are just setting
this constraint at an arbitrarily high value. The difference between this
arbitrarily high value and what the sum of the weights actually comes out
to be will be the weight assigned to NIC.

We are not going to really invest in NIC, though. It’s just a null entry that
we are pumping through the matrix to arrive at the unconstrained weights
of our market systems. Now, let’s take the parameters of our four market
systems from Chapter 7 and add NIC as well:

Expected Return Expected Standard

Investment as an HPR Deviation of Return

Toxico 1.095 .316227766
Incubeast Corp. 1.13 .5
LA Garb 1.21 .632455532
Savings Account 1.085 0
NIC 1.00 0



JWDD035-08 JWDD035-Vince February 11, 2007 8:33 Char Count= 0

The Geometry of Mean Variance Portfolios 275

The covariances among the market systems, with NIC included, are as fol-
lows:

T I L S N

T .1 −.0237 .01 0 0
I −.0237 .25 .079 0 0
L .01 .079 .4 0 0
S 0 0 0 0 0
N 0 0 0 0 0

Thus, when we include NIC, we are now dealing with five market sys-
tems; therefore, the generalized form of the starting augmented matrix is:

X1 * U1 +X2 * U2 +X3 * U3 +X4 * U4 X5 * U5 = E
X1 +X2 +X3 +X4 X5 = S

X1 * COV1,1 + X2 * COV1,2 + X3 * COV1,3 + X4 * COV1,4 + X5

* COV1,5 + .5 * L1 * U1 + .5 * L2 = 0

X1 * COV2,1 + X2 * COV2,2 + X3 * COV2,3 + X4 * COV2,4 + X5

* COV2,5 + .5 * L1 * U2 + .5 * L2 = 0

X1 * COV3,1 + X2 * COV3,2 + X3 * COV3,3 + X4 * COV3,4 + X5

* COV3,5 + .5 * L1 * U3 + .5 * L2 = 0

X1 * COV4,1 + X2 * COV4,2 + X3 * COV4,3 + X4 * COV4,4 + X5

* COV4,5 + .5 * L1 * U4 + .5 * L2 = 0

X1 * COV5,1 + X2 * COV5,2 + X3 * COV5,3 + X4 * COV5,4 + X5

* COV5,5 + .5 * L1 * U5 + .5 * L2 = 0

where: E = The expected return of the portfolio.
S = The sum of the weights constraint.

COVA,B = The covariance between securities A and B.
Xi = The percentage weighting of the ith security.
Ui = The expected return of the ith security.
L1 = The first Lagrangian multiplier.
L2 = The second Lagrangian multiplier.
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Thus, once we have included NIC, our starting augmented matrix ap-
pears as follows:

X1 X2 X3 X4 X5 L1 L2 Answer

.095 .13 .21 .085 0 E
1 1 1 1 0 12

.1 −.0237 .01 0 0 .095 1 0
−.0237 .25 .079 0 0 .13 1 0

.01 .079 .4 0 0 .21 1 0
0 0 0 0 0 .085 1 0
0 0 0 0 0 0 1 0

Note that the answer column of the second row, the sum of the weights
constraint, is 12, as we determined it to be by multiplying the number of
market systems (not including NIC) by 3.

When you are using NIC, it is important that you include it as the last, the
Nth market system of N market systems, in the starting augmented matrix.

Now, the object is to obtain the identity matrix by using row opera-
tions to produce elementary transformations, as was detailed in Chapter 7.
You can now create an unconstrained AHPR efficient frontier and an uncon-
strained GHPR efficient frontier. The unconstrained AHPR efficient frontier
represents using leverage but not reinvesting.

The GHPR efficient frontier represents using leverage and reinvesting
the profits. Ideally, we want to find the unconstrained geometric optimal
portfolio. This is the portfolio that will result in the greatest geometric
growth for us. We can use Equations (8.05a) through (8.05d) to solve for
which of the portfolios along the efficient frontier is geometric optimal. In
so doing, we find that no matter what value we try to solve E for (the value in
the answer column of the first row), we get the same portfolio—comprised
of only the savings account levered up to give us whatever value for E we
want. This results in giving us our answer; we get the lowest V (in this case
zero) for any given E.

What we must do, then, is take the savings account out of the ma-
trix and start over. This time we will try to solve for only four market
systems—Toxico, Incubeast, LA Garb, and NIC—and we set our sum of
the weights constraint to nine. Whenever you have a component in the ma-
trix with zero variance and an AHPR greater than one, you’ll end up with
the optimal portfolio as that component levered up to meet the required E.

Now, solving the matrix, we find Equations (8.05a) through (8.05d) sat-
isfied at E equals .2457. Since this is the geometric optimal portfolio, V is
also equal to .2457. The resultant geometric mean is 1.142833. The portfolio
is:



JWDD035-08 JWDD035-Vince February 11, 2007 8:33 Char Count= 0

The Geometry of Mean Variance Portfolios 277

Toxico 102.5982%
Incubeast 49.00558%
LA Garb 40.24979%
NIC 708.14643%

“Wait,” you say. “How can you invest over 100% in certain components?” We
will return to this in a moment.

If NIC is not one of the components in the geometric optimal portfolio,
then you must make your sum of the weights constraint, S, higher. You must
keep on making it higher until NIC becomes one of the components of the
geometric optimal portfolio. Recall that if there are only two components in
a portfolio, if the correlation coefficient between them is−1, and if both have
positive mathematical expectation, you will be required to finance an infi-
nite number of contracts. This is so because such a portfolio would never
have a losing period. Now, the lower the correlation coefficients are be-
tween the components in the portfolio, the higher the percentage required to
be invested in those components is going to be. The difference between the
percentages invested and the sum of the weights constraint, S, must be
filled by NIC. If NIC doesn’t show up in the percentage allocations for the
geometric optimal portfolio, it means that the portfolio is running into a
constraint at S and is therefore not the unconstrained geometric optimal.
Since you are not going to be actually investing in NIC, it doesn’t matter
how high a percentage it commands, as long as it is listed as part of the
geometric optimal portfolio.

HOW OPTIMAL f FITS IN

In Chapter 7 we saw that we must determine an expected return (as a
percentage) and an expected variance in returns for each component in
a portfolio. Generally, the expected returns (and the variances) are deter-
mined from the current price of the stock. An optimal percentage (weight-
ing) is then determined for each component. The equity of the account
is then multiplied by a components weighting to determine the number
of dollars to allocate to that component, and this dollar allocation is then
divided by the current price per share to determine how many shares to have
on.

That generally is how portfolio strategies are currently practiced. But
it is not optimal. Rather than determining the expected return and variance
in expected return from the current price of the component, the expected
return and variance in returns should be determined from the optimal f,
in dollars, for the component. In other words, as input you should use the
arithmetic average HPR and the variance in the HPRs. Here, the HPRs used
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should be not of trades, but of a fixed time length such as days, weeks,
months, quarters, or years—as we did in Equation (4.14):

Daily HPR = (A/B) + 1

where: A = Dollars made or lost that day.
B = Optimal f in dollars.

We need not necessarily use days. We can use any time length we like
so long as it is the same time length for all components in the portfolio (and
the same time length is used for determining the correlation coefficients
between these HPRs of the different components). Say the market system
with an optimal f of $2,000 made $100 on a given day. Then the HPR for that
market system for that day is 1.05.

If you are figuring your optimal f based on equalized data, you must use
the following equation in order to obtain your daily HPRs:

Daily HPR = D$/f$ + 1

where: D$ = The dollar gain or loss on 1 unit from the previous day.
This is equal to
(Tonight’s Close − Last Night’s Close) * Dollars per Point

f$ = The current optimal f in dollars. Here, however, the
current price variable is last night’s close.

In other words, once you have determined the optimal f in dollars for
one unit of a component, you then take the daily equity changes on a one-
unit basis and convert them to HPRs just mentioned—or, if you are using
equalized data, you can use the equation just mentioned. When you are
combining market systems in a portfolio, all the market systems should be
the same in terms of whether their data, and hence their optimal fs and
by-products, has been equalized or not.

Then we take the arithmetic average of the HPRs. Subtracting 1 from
the arithmetic average will give us the expected return to use for that
component. Taking the variance of the daily (weekly, monthly, etc.) HPRs
will give the variance input into the matrix. Lastly, we determine the corre-
lation coefficients between the daily HPRs for each pair of market systems
under consideration.

Now here is the critical point. Portfolios whose parameters (expected

returns, variance in expected returns, and correlation coefficients of the

expected returns) are selected based on the current price of the component

will not yield truly optimal portfolios. To discern the truly optimal port-

folio you must derive the input parameters based on trading one unit at

the optimal f for each component. You cannot be more at the peak of the
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optimal f curve than optimal f itself. To base the parameters on the current

market price of the component is to base your parameters arbitrarily—

and, as a consequence, not necessarily optimally.

Now let’s return to the question of how you can invest more than 100%
in a certain component. One of the basic premises here is that weight and
quantity are not the same thing. The weighting that you derive from solving
for a geometric optimal portfolio must be reflected back into the optimal fs
of the portfolio’s components. The way to do this is to divide the optimal
fs for each component by its corresponding weight. Assume we have the
following optimal fs (in dollars):

Toxico $2,500
Incubeast $4,750
LA Garb $5,000

(Note that, if you are equalizing your data, and hence obtaining an equal-
ized optimal f and by-products, then your optimal fs in dollars will change
each day based upon the previous day’s closing price and Equation [2.11].)

We now divide these fs by their respective weightings:

Toxico $2,500/1.025982 = $2,436.69
Incubeast $4,750/.4900558 = $9,692.77
LA Garb $5,000/.4024979 = $12,422.43

Thus, by trading in these new “adjusted” f values, we will be at the

geometric optimal portfolio in the classical portfolio sense. In other words,
suppose Toxico represents a certain market system. By trading one contract
under this market system for every $2,436.69 in equity (and doing the same
with the other market systems at their new adjusted f values) we will be
at the geometric optimal unconstrained portfolio. Likewise, if Toxico is a
stock, and we regard 100 shares as “one contract,” we will trade 100 shares
of Toxico for every $2,436.69 in account equity. For the moment, disregard
margin completely. Later in the text we will address the potential problem
of margin requirements.

“Wait a minute,” you protest. “If you take an optimal portfolio and
change it by using optimal f, you have to prove that it is still optimal. But
if you treat the new values as a different portfolio, it must fall somewhere
else on the return coordinate, not necessarily on the efficient frontier. In
other words, if you keep reevaluating f, you cannot stay optimal, can you?”

We are not changing the f values. That is, our f values (the number of
units put on for so many dollars in equity) are still the same. We are simply
performing a shortcut through the calculations, which makes it appear as
though we are “adjusting” our f values. We derive our optimal portfolios
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based on the expected returns and variance in returns of trading one unit of
each of the components, as well as on the correlation coefficients. We thus
derive optimal weights (optimal percentages of the account to trade each
component with). Thus, if a market system had an optimal f of $2,000, and
an optimal portfolio weight of .5, we would trade 50% of our account at the
full optimal f level of $2,000 for this market system. This is exactly the same
as if we said we will trade 100% of our account at the optimal f divided by
the optimal weighting ($2,000/.5) of $4000. In other words, we are going to
trade the optimal f of $2,000 per unit on 50% of our equity, which in turn is
exactly the same as saying we are going to trade the adjusted f of $4,000 on
100% of our equity.

The AHPRs and SDs that you input into the matrix are determined
from the optimal f values in dollars. If you are doing this on stocks, you
can compute your values for AHPR, SD, and optimal f on a one-share or
a 100-share basis (or any other basis you like). You dictate the size of one
unit.

In a nonleveraged situation, such as a portfolio of stocks that are not on
margin, weighting and quantity are synonymous. Yet in a leveraged situation,
such as a portfolio of futures market systems, weighting and quantity are
different indeed. You can now see the idea that optimal quantities are what
we seek to know, and that this is a function of optimal weightings.

When we figure the correlation coefficients on the HPRs of two market
systems, both with a positive arithmetic mathematical expectation, we find
a slight tendency toward positive correlation. This is because the equity
curves (the cumulative running sum of daily equity changes) both tend
to rise up and to the right. This can be bothersome to some people. One
solution is to determine a least squares regression line to each equity curve
and then take the difference at each point in time on the equity curve and
its regression line. Next, convert this now detrended equity curve back
to simple daily equity changes (noncumulative, i.e., the daily change in
the detrended equity curve). Lastly, you figure your correlations on this
processed data.

This technique is valid so long as you are using the correlations of daily
equity changes and not prices. If you use prices, you may do yourself more
harm than good. Very often, prices and daily equity changes are linked.
An example would be a long-term moving average crossover system. This
detrending technique must always be used with caution. Also, the daily
AHPR and standard deviation in HPRs must always be figured off of non-
detrended data.

A final problem that happens when you detrend your data occurs with
systems that trade infrequently. Imagine two day-trading systems that give
one trade per week, both on different days. The correlation coefficient be-
tween them may be only slightly positive. Yet when we detrend their data,
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we get very high positive correlation. This mistakenly happens because
their regression lines are rising a little each day. Yet on most days the equity
change is zero. Therefore, the difference is negative. The preponderance of
slightly negative days with both market systems, then, mistakenly results
in high positive correlation.

COMPLETING THE LOOP

One thing you will readily notice about unconstrained portfolios (portfolios
for which the sum of the weights is greater than 1 and NIC shows up as a
market system in the portfolio) is that the portfolio is exactly the same for
any given level of E—the only difference being the degree of leverage. (This
is not true for portfolios lying along the efficient frontier(s) when the sum
of the weights is constrained). In other words, the ratios of the weightings
of the different market systems to each other are always the same for any
point along the unconstrained efficient frontiers (AHPR or GHPR).

For example, the ratios of the different weightings between the differ-
ent market systems in the geometric optimal portfolio can be calculated.
The ratio of Toxico to Incubeast is 102.5982% divided by 49.00558%, which
equals 2.0936. We can thus determine the ratios of all the components in
this portfolio to one another:

Toxico/Incubeast = 2.0936
Toxico/LA Garb = 2.5490
Incubeast/LA Garb = 1.2175

Now, we can go back to the unconstrained portfolio and solve for differ-
ent values for E. What follows are the weightings for the components of the
unconstrained portfolios that have the lowest variances for the given values
of E. You will notice that the ratios of the weightings of the components are
exactly the same:

E = .1 E = .3

Toxico .4175733 1.252726
Incubeast .1994545 .5983566
LA Garb .1638171 .49145

Thus, we can state that the unconstrained efficient frontiers are the

same portfolio at different levels of leverage. This portfolio, the one that
gets levered up and down with E when the sum of the weights constraint
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is lifted, is the portfolio that has a value of zero for the second Lagrangian
multiplier when the sum of the weights equals 1.

Therefore, we can readily determine what our unconstrained geometric
optimal portfolio will be. First, we find the portfolio that has a value of
zero for the second Lagrangian multiplier when the sum of the weights is
constrained to 1.00. One way to find this is through iteration. The resultant
portfolio will be that portfolio which gets levered up (or down) to satisfy
any given E in the unconstrained portfolio. That value for E which satisfies
any of Equations (8.05a) through (8.05d) will be the value for E that yields
the unconstrained geometric optimal portfolio.

Another equation that we can use to solve for which portfolio along
the unconstrained AHPR efficient frontier is geometric optimal is to use
the first Lagrangian multiplier that results in determining a portfolio along
any particular point on the unconstrained AHPR efficient frontier. Recall
from the previous chapter that one of the by-products in determining the
composition of a portfolio by the method of row-equivalent matrices is
the first Lagrangian multiplier. The first Lagrangian multiplier represents the
instantaneous rate of change in variance with respect to expected return,
sign reversed. A first Lagrangian multiplier equal to −2 means that at that
point the variance was changing at that rate (−2) opposite the expected
return, sign reversed. This would result in a portfolio that was geometric
optimal.

L1 = −2 (8.12)

where: L1 = The first Lagrangian multiplier of a given portfolio along
the unconstrained AHPR efficient frontier.2

Now it gets interesting as we tie these concepts together. The portfolio

that gets levered up and down the unconstrained efficient frontiers (arith-

metic or geometric) is the portfolio tangent to the CML line emanating

from an RFR of 0 when the sum of the weights is constrained to 1.00 and

NIC is not employed.

Therefore, we can also find the unconstrained geometric optimal port-
folio by first finding the tangent portfolio to an RFR equal to 0 where the
sum of the weights is constrained to 1.00, then levering this portfolio up to
the point where it is the geometric optimal. But how can we determine how
much to lever this constrained portfolio up to make it the equivalent of the
unconstrained geometric optimal portfolio?

2Thus, we can state that the geometric optimal portfolio is that portfolio which, when
the sum of the weights is constrained to 1, has a second Lagrangian multiplier equal
to 0, and when unconstrained has a first Lagrangian multiplier of −2. Such a portfolio
will also have a second Lagrangian multiplier equal to 0 when unconstrained.
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Recall that the tangent portfolio is found by taking the portfolio along
the constrained efficient frontier (arithmetic or geometric) that has the
highest Sharpe ratio, which is Equation (8.01). Now we lever this portfolio
up, and we multiply the weights of each of its components by a variable
named q, which can be approximated by:

q = (E − RFR)/V (8.13)

where: E = The expected return (arithmetic) of the tangent
portfolio.

RFR = The risk-free rate at which we assume you can borrow
or loan.

V = The variance in the tangent portfolio.

Equation (8.13) actually is a very close approximation for the actual
optimal q.

An example may help illustrate the role of optimal q. Recall that our
unconstrained geometric optimal portfolio is as follows:

Component Weight

Toxico 1.025955
Incubeast .4900436
LA Garb .4024874

This portfolio, we found, has an AHPR of 1.245694 and variance of
.2456941. Throughout the remainder of this discussion we will assume for
simplicity’s sake an RFR of zero. (Incidentally, the Sharpe ratio of this port-
folio, (AHPR − (1 + RFR))/SD, is .49568.)

Now, if we were to input the same returns, variances, and correlation co-
efficients of these components into the matrix and solve for which portfolio
was tangent to an RFR of zero when the sum of the weights is constrained
to 1.00 and we do not include NIC, we would obtain the following portfolio:

Component Weight

Toxico .5344908
Incubeast .2552975
LA Garb .2102117

This particular portfolio has an AHPR of 1.128, a variance of .066683,
and a Sharpe ratio of .49568. It is interesting to note that the Sharpe ratio
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of the tangent portfolio, a portfolio for which the sum of the weights is

constrained to 1.00 and we do not include NIC, is exactly the same as the

Sharpe ratio for our unconstrained geometric optimal portfolio.

Subtracting 1 from our AHPRs gives us the arithmetic average return
of the portfolio. Doing so we notice that in order to obtain the same return
for the constrained tangent portfolio as for the unconstrained geometric
optimal portfolio, we must multiply the former by 1.9195.

.245694/.128 = 1.9195

Now if we multiply each of the weights of the constrained tangent port-
folio, the portfolio we obtain is virtually identical to the unconstrained ge-
ometric optimal portfolio:

Component Weight * 1.9195 = Weight

Toxico .5344908 1.025955
Incubeast .2552975 .4900436
LA Garb .2102117 .4035013

The factor 1.9195 was arrived at by dividing the return on the uncon-
strained geometric optimal portfolio by the return on the constrained tan-
gent portfolio. Usually, though, we will want to find the unconstrained ge-
ometric optimal portfolio knowing only the constrained tangent portfolio.
This is where optimal q comes in.3 If we assume an RFR of zero, we can
determine the optimal q on our constrained tangent portfolio as:

q = (E − RFR)/V

= (.128 − 0)/.066683

= 1.919529715

A few notes on the RFR. To begin with, we should always assume an
RFR of zero when we are dealing with futures contracts. Since we are not
actually borrowing or lending funds to lever our portfolio up or down, there
is effectively an RFR of zero. With stocks, however, it is a different story. The
RFR you use should be determined with this fact in mind. Quite possibly,
the leverage you employ does not require you to use an RFR other than
zero.

You will often be using AHPRs and variances for portfolios that were
determined by using daily HPRs of the components. In such cases, you

3Latane, Henry, and Donald Tuttle, “Criteria for Portfolio Building,” Journal of Fi-

nance 22, September 1967, pp. 362–363.
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must adjust the RFR from an annual rate to a daily one. This is quite easy
to accomplish. First, you must be certain that this annual rate is what is
called the effective annual interest rate. Interest rates are typically stated
as annual percentages, but frequently these annual percentages are what
is referred to as the nominal annual interest rate. When interest is com-
pounded semiannually, quarterly, monthly, and so on, the interest earned
during a year is greater than if compounded annually (the nominal rate is
based on compounding annually). When interest is compounded more fre-
quently than annually, an effective annual interest rate can be determined
from the nominal interest rate. It is the effective annual interest rate that
concerns us and that we will use in our calculations. To convert the nominal
rate to an effective rate we can use:

E = (1 + R/M)M − 1 (8.14)

where: E = The effective annual interest rate.
R = The nominal annual interest rate.
M = The number of compounding periods per year.

Assume that the nominal annual interest rate is 9%, and suppose that
it is compounded monthly. Therefore, the corresponding effective annual
interest rate is:

E = (1 + .09/12)12 − 1

= (1 + .0075)12 − 1

= 1.007512 − 1

= 1.093806898 − 1

= .093806898

Therefore, our effective annual interest rate is a little over 9.38%. Now
if we figure our HPRs on the basis of weekdays, we can state that there
are 365.2425/7 * 5 = 260.8875 weekdays, on average, in a year. Dividing
.093806898 by 260.8875 gives us a daily RFR of .0003595683887.

If we determine that we are actually paying interest to lever our port-
folio up, and we want to determine from the constrained tangent portfolio
what the unconstrained geometric optimal portfolio is, we simply input the
value for the RFR into the Sharpe ratio, Equation (8.01), and the optimal q,
Equation (8.13).

Now to close the loop. Suppose you determine that the RFR for your
portfolio is not zero, and you want to find the geometric optimal portfolio
without first having to find the constrained portfolio tangent to your appli-
cable RFR. Can you just go straight to the matrix, set the sum of the weights
to some arbitrarily high number, include NIC, and find the unconstrained
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geometric optimal portfolio when the RFR is greater than zero? Yes, this
is easily accomplished by subtracting the RFR from the expected returns
of each of the components, but not from NIC (i.e., the expected return for
NIC remains at zero, or an arithmetic average HPR of 1.00). Now, solving
the matrix will yield the unconstrained geometric optimal portfolio when
the RFR is greater than zero.

Since the unconstrained efficient frontier is the same portfolio at dif-
ferent levels of leverage, you cannot put a CML line on the unconstrained
efficient frontier. You can only put CML lines on the AHPR or GHPR efficient
frontiers if they are constrained (i.e., if the sum of the weights equals 1). It is
not logical to put CML lines on the AHPR or GHPR unconstrained efficient
frontiers.
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C H A P T E R 9

The Leverage
Space Model

S ince the 1950s, when formal portfolio construction was put forth, peo-
ple have sought to discern optimal portfolios as a function of two com-
peting entities, risk and return. The objective was to maximize return

and minimize risk. This is the old paradigm. It’s how we have been taught to
think.

Quoting from Kuhn,1 “Acquisition of a paradigm and of the more eso-
teric type of research it permits is a sign of maturity in the development of
any given scientific field.”

This is precisely what happened. Portfolio construction, after the sec-
ond world war, acquired a mathematical rigor that had been missing prior
thereto. Earlier, it was, as in so many other fields, the fact-gathering phase
where each bit of data seemed equally relevant. However, with the paradigm
presented as the so-called Modern Portfolio Theory (a.k.a. E-V Theory or

mean-variance model), the more esoteric type of research emerged.
Particularly troubling with this earlier paradigm was the fact that the

unwanted entity, risk, was never adequately defined. Initially, it was argued
that risk was the variance in returns. Later, as the arguments that the vari-
ance in returns may be infinite or undefined, and that the dispersion in
returns wasn’t really risk, calamitous loss was risk, the definitions of risk
became ever more muddled.

Overcoming ignorance often requires a new and different way of looking
at things.

1Thomas S. Kuhn, The Structure of Scientific Reduction, The University of Chicago
Press, 1962.
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FIGURE 9.1 Conceptual view of the old framework, left, with the new, right

WHY THIS NEW FRAMEWORK IS BETTER

For nearly four decades, portfolio construction was envisioned in a two-
dimensional plane, where return made up the vertical axis, and risk—
actually, some surrogate measure of risk—was the horizontal axis. The basic
notion was to get as great a return for a given level of risk, or as low a level
of risk for a given level of return, as was possible on this two-dimensional
plane (see Figure 9.1).

The new framework to be presented is an altogether new way of view-
ing portfolio construction, different than looking at portfolios in a two-
dimensional, risk-competing-with-return sense.2 There are a number of rea-
sons to opt for the new framework over the old.

The new approach is superior because the inputs are no longer along
the lines of expected returns and (the rather nebulous) variance in expected
returns, or some other ersatz measure of risk. The inputs to this new model
are different scenarios of different outcomes that the investments may take
(a more accurate approximation for the real distribution of returns). Now,
rather than estimating things like expected returns and variance in those
expected returns, the inputs are much closer to what the investment man-
ager may be thinking (e.g., a y % chance of an x % gain or loss, etc.). Now,

2In Chapter 12 we will see, however, how to take the portfolio constructed from the
methods outlined in this chapter, juxtaposed to its respective drawdown and thus
truly maximize return for a given level of “risk.”
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the investment manager can even account for the far-out, slim-probability
scenarios as inputs to the new model.

What the investment manager uses as inputs to the new model are
spectrums of scenarios for each market or market system (a given market
traded with a given approach). The new model discerns optimal allocations
to each scenario spectrum based on trading multiple, simultaneously traded
scenario spectrums.

As we have seen, the old model not only used returns and variance in
those returns as inputs to the model, but also used the correlation coeffi-
cients of the pairwise combinations of those streams of returns.

This last parameter, the correlation coefficients of the pairwise com-

binations of the streams in returns, is critical. Consider again the case of
our two-to-one coin toss. If we are playing that particular game alone, our
optimal f is .25.

If, however, we play a second and simultaneous game (and, for the sake
of simplicity, we say it is the same game—a second two-to-one coin toss),
the optimal f values now become a function of the correlation between
those two games.

If the correlation is +1.0, we can show that, optimally, we bet (.25 − x)
on one game, and x on the other (where x > =0 and x < =.25). Thus, in total,
when the correlation is 1.0, we never have more than optimal f exposure in
total (i.e., in cases of perfect, positive correlation, the total exposure does
not exceed the exposure of the single game).

If the correlation were −1.0, the optimal f then goes to .5 for each game,
for a net exposure of 1.0 (100%) since, at such a value of the correlation
coefficient, a losing sequence of such simultaneous games is impossible for
even one play.

If the correlation is zero, we can determine that the optimal bet size be-
tween these two games now is .23 on each game, for a total exposure of .46
per play. Note that this exceeds the total exposure of .25 for a single game.
Interestingly, when one manages the bankroll for optimal growth, diversi-

fication clearly does not reduce risk; rather, it increases it, as evident here
if the one-in-four chance of both simultaneous plays were to go against the
bettor, a 46% drawdown on equity would immediately occur.

Typically, correlations as they approach zero only see the optimal f

buffered by a small fraction, as evidenced in this illustration of two simul-
taneously played two-in-one coin tosses.

Here, we are measuring the correlation of binomially distributed out-
comes (heads or tails), and the outcomes are random, not generated by
human emotions. In other types of environments, such as market prices,
correlation coefficients begin to exhibit a very dangerous characteristic.

When a large move occurs in one component of the pairwise combina-
tion, there is a tendency for correlation to increase, often very dramatically.
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Additionally, since I am speaking here of, say, market A making the large
move, and its correlation to B, then too can I expect A and C to see an
increase in their correlation coefficient in those time periods of the large
move, and hence between B and C during those periods where I see a large
move in A.

In short, when the big moves come, things tend to line up and move
together (to a far greater degree than the correlation coefficient implies).
In incidental time periods, which are most time periods, the correlation
coefficients tend back toward zero.

To see this, consider the following study. Here, I tried to choose ran-
dom and disparate markets. Surely, everyone may have picked a different
basket than the random one I drew here, but this basket will illustrate the
effect as well as any other. I took three commodities—crude oil (CL), gold
(GC), and corn (C)—using continuous back-adjusted contracts, the use of
which I devised while working with Bruce Babcock in 1985. I also put in the
S&P 500 Cash Stock Index (SPX) and the prices of four individual stocks,
Exxon (XOM), Ford (F), Microsoft (MSFT), and Pfizer (PFE). The data
used were from the beginning of January 1986 through May 2006—nearly
20 years.

I used daily data, which required some alignment for days where some
exchanges were closed and others were not. Particularly troublesome here
was the mid-September 2001 period.

However, despite this unavoidable slop (which, ultimately, has little
bearing on these results), the study bears out this dangerous characteris-
tic of using correlation coefficients for market-traded pairwise price se-
quences.

Each market was reduced to a daily percentage of the previous day
merely by converting the daily prices for each day as divided by the price
of that item on the previous day. Afterward, for each market, I calculated
the standard deviation in these daily price percentage changes.

Taking these eight different markets, I first ran their correlation coeffi-
cients over the daily percentage price data in question. This is shown in the
“All days,” section, and is the benchmark, as it is typically what would be
used in constructing the classical portfolio of these components.

Next, I took each component and ran a study wherein the correlations
of all components in the portfolio were looked at, but only on those days
where the distinguishing component moved beyond 3 standard deviations
that day. This was also done for days where the distinguishing component
moved less than one standard deviation that day (the “Incidental days”).

This can be seen as follows. The section titled “CL beyond 3 sigma”
shows the correlation of all components in the study period on those days
where crude oil had a move in excess of 3 standard deviations.
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Similarly, the section that follows, where we see “CL within 1 sigma,”
shows the correlation of all components in the study period on those days
where crude oil had a move of less than 1 standard deviation.

Consider now the correlation for crude oil and gold, which shows for
“All days” as 0.18168298092886612.When crude oil has had a move in excess
of 3 standard deviations, gold has moved much more lockstep in the same
direction, now exhibiting a correlation of 0.6060715468257946.

On those more “Incidental days,” where crude oil has moved less than
1 standard deviation, gold has moved nearly randomly with respect to it,
now showing a correlation coefficient of 0.08754532513257751.

Of note on the method of calculation used in determining the means
of the percentage price changes, which are used to discern standard de-
viations in the percentage price changes, as well as the standard devia-
tions themselves, I did not calculate these simply over the entire data set.
To do so would have been to have committed the error of perfect fore-
knowledge. Rather, at each date through the chronology of the data used,
the means and standard deviations were calculated only up to that date,
as a rolling 200-day window. Thus, I calculated rolling 200-day standard
deviations so as to avoid the fore-knowledge trap. Thus, the actual start-
ing date, after the 200-day required data buildup period, was (ironically)
October 19, 1987 (and therefore yields a total of 4,682 trading days in this
study).

This study is replete with example after example of this effect of large
moves in one market portending corresponding large moves in other mar-
kets, and vice versa. As the effect of correlation is magnified, the conditions
become more extreme For example, look at Ford (F) and Pfizer (PFE). On
all days, the correlation between these two stocks is 0.15208857952056634,
yet, when the S&P 500 Index (SPX) moves greater than 3 standard devi-
ations, the Ford-Pfizer correlation becomes 0.7466939906546621. On days
where the S&P 500 Index moves less than 1 standard deviation, the corre-
lation between Ford and Pfizer shrinks to a mere 0.0253249911811074.

Take a look at corn (C) and Microsoft (MSFT). On all days the cor-
relation in the study between these two disparate, tradable items was
0.022097632770092066. Yet, when gold (GC) moved more than 3 stan-
dard deviations, the correlation between corn and Microsoft rose to
0.24606355445287773. When gold was within 1 standard deviation, this
shrinks to 0.011571945077398543.

Sometimes, the exaggeration occurs in a negative sense. Consider
gold and the S&P. On all days, the correlation is −0.140572093416518. On
days where crude oil moves more than 3 standard deviations, this rises to
−0.49033570418986916, and when crude oil’s move is less than 1 standard
deviation, it retracts in to −0.10905863263068859.
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All days

(4682 of 4682 data points)

CL GC 0.18168298092886612

CL C 0.06008614529554469

CL SPX −0.06337343876830624

CL XOM 0.12237528928675677

CL F −0.056071166990844516

CL MSFT −0.008336837297919815

CL PFE −0.03971512674407262

GC C 0.07558861340485105

GC SPX −0.140572093416518

GC XOM −0.03185944850989464

GC F −0.07649165457662757

GC MSFT −0.06175684105762799

GC PFE −0.06573632473755334

C SPX 0.03147493683616401

C XOM 0.02623205260520187

C F 0.030704335620653868

C MSFT 0.022097632770092066

C PFE 0.013735926438934488

SPX XOM 0.4463700373245729

SPX F 0.44747978695133384

SPX MSFT 0.4644715701985205

SPX PFE 0.39712431335046133

XOM F 0.18406887477828698

XOM MSFT 0.17555859825807965

XOM PFE 0.17985680973424692

F MSFT 0.19472214174383298

F PFE 0.15208857952056634

MSFT PFE 0.15655275607502264

CL beyond 3 sigma

(57 of 4682 data points)

CL GC 0.6060715468257946

CL C 0.16773966461586043

CL SPX −0.4889254290079874

CL XOM 0.30834231052418093

CL F −0.4057990096591226

CL MSFT −0.043298612614148003

CL PFE −0.2862619588205237

GC C 0.2136979555796156

GC SPX −0.49033570418986916

GC XOM −0.04638590060660794

GC F −0.34101700944373253

GC MSFT −0.04792818652129692

GC PFE −0.23339206379967778

C SPX −0.13498070111097166

C XOM 0.1282166452534864

C F −0.07574638268565898

C MSFT −0.046367278697754616

C PFE 0.02171787217124139

SPX XOM 0.3720220077411345

SPX F 0.7508447148878216

SPX MSFT 0.26583237333985554

SPX PFE 0.5576012125272648

XOM F 0.19597328384286486

XOM MSFT 0.2817265916572091

XOM PFE 0.14847216371343516

F MSFT 0.24795671036100472

F PFE 0.45818973137924285

MSFT PFE 0.09703388355674258

CL within 1 sigma

(3355 of 4682 data points)

CL GC 0.08754532513257751

CL C 0.0257566754226136

CL SPX 0.018864830486201915

CL XOM 0.07275446285160611

CL F −0.006035919250607675

CL MSFT 0.0039040541983706815

CL PFE −6.725739893499835E-4

GC C 0.07071392644936346

GC SPX −0.10905863263068859

GC XOM −0.038050306091619565

GC F −0.046995783946869804

GC MSFT −0.035463714683264834

GC PFE −0.06020481387795751

C SPX 0.028262511037748024

C XOM 0.017421211262930312

C F 0.027058713971227104

C MSFT 0.023756786611237552

C PFE 0.014823926818879715

SPX XOM 0.41388474915130574

SPX F 0.4175520920293062

SPX MSFT 0.4157760485443937

SPX PFE 0.36192135400550934

XOM F 0.16278071355175439

XOM MSFT 0.1319530034838986

XOM PFE 0.1477015704953524

F MSFT 0.16753417657993877

F PFE 0.12522622923381158

MSFT PFE 0.12969188109495833
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GC beyond 3 sigma

(49 of 4682 data points)

CL GC 0.37610799881628454

CL C −0.013505453061135679

CL SPX −0.4663766105812081

CL XOM −0.1236757784439896

CL F −0.26893323996770363

CL MSFT −0.25074947066586095

CL PFE −0.34522609666192644

GC C 0.12339691398398928

GC SPX −0.2256870226039319

GC XOM −0.17825193598720657

GC F −0.2932885892847866

GC MSFT −0.0942827495583651

GC PFE −0.08178972441698702

C SPX 0.2589426127779489

C XOM 0.324334753787739

C F 0.17993600277237867

C MSFT 0.24606355445287773

C PFE 0.0632678902662783

SPX XOM 0.6106538927488477

SPX F 0.7418500480107237

SPX MSFT 0.814073269082298

SPX PFE 0.6333158417738232

XOM F 0.3731941584747982

XOM MSFT 0.29680898662233957

XOM PFE 0.5191106683884512

F MSFT 0.5875623837594202

F PFE 0.35514526049741935

MSFT PFE 0.46225966739620467

C beyond 3 sigma

(63 of 4682 data points)

CL GC 0.09340139862063926

CL C 0.15937424801870365

CL SPX −0.034836945862889324

CL XOM 0.31262202861570143

CL F −0.0015035928633431528

CL MSFT −0.035100428463551

CL PFE −0.042790208990554315

GC C −0.07554730971707264

GC SPX −0.09770624459871546

GC XOM −0.1178996789974603

GC F −0.1580599457490364

GC MSFT −0.017408456343824652

GC PFE −0.05711641234541667

C SPX −0.12610050901450232

C XOM −0.06491379177062588

C F 0.13713180201552985

C MSFT 0.1184669909561641

C PFE 0.07365117745748967

SPX XOM 0.6379868873961733

SPX F 0.6386287499447472

SPX MSFT 0.3141265015844073

SPX PFE 0.07148466884745952

XOM F 0.352541750183325

XOM MSFT 0.15822517152455984

XOM PFE −0.01714503647656309

F MSFT 0.2515504291514764

F PFE −0.17915715988166248

MSFT PFE 4.0302517044280364E-4

GC within 1 sigma

(3413 of 4682 data points)

CL GC 0.08685001387886367

CL C 0.03626120508953206

CL SPX −0.026042510508209223

CL XOM 0.12444488722949365

CL F −0.03218089855875674

CL MSFT −0.0015484284736459364

CL PFE −0.023185426431743598

GC C 0.036165047559364234

GC SPX −0.1187633862400288

GC XOM −4.506758967026326E-5

GC F −0.05680170397975439

GC MSFT −0.04749027255821666

GC PFE −0.05546821106288489

C SPX 0.020548509330959506

C XOM 0.009891493444709805

C F 0.03164457405193553

C MSFT 0.011571945077398543

C PFE 0.021658621577528698

SPX XOM 0.38127728674269895

SPX F 0.45590091052598297

SPX MSFT 0.4658428532832456

SPX PFE 0.34733314433363616

XOM F 0.15700577420431003

XOM MSFT 0.12789055576102093

XOM PFE 0.1226203887798495

F MSFT 0.19737706075000538

F PFE 0.11755272888079606

MSFT PFE 0.13784745249948008

C within 1 sigma

(3391 of 4682 data points)

CL GC 0.17533527416024455

CL C 0.026858830610224073

CL SPX −0.0732811159519982

CL XOM 0.1028138088787534

CL F −0.05102926721840804

CL MSFT −0.01099110090227016

CL PFE −0.047128710608280625

GC C 0.05773910871663286

GC SPX −0.1360779110437837

GC XOM −0.02099718827227882

GC F −0.06222113210658744

GC MSFT −0.04966940059247658

GC PFE −0.07413097933730392

C SPX −0.00883286682481027

C XOM −4.4357501736777734E-4

C F −0.003482794137395384

C MSFT 0.0011277030286577093

C PFE 0.006559218632362692

SPX XOM 0.3825048808789464

SPX F 0.41829697072918165

SPX MSFT 0.4395087414084105

SPX PFE 0.49804329260547564

XOM F 0.1475733885968429

XOM MSFT 0.13663720618579042

XOM PFE 0.21209220175136173

F MSFT 0.16502841838609542

F PFE 0.188267473055017

MSFT PFE 0.1868337356456869
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SPX beyond 3 sigma

(37 of 4682 data points)

CL GC 0.262180235243967

CL C 0.2282732831599413

CL SPX 0.09510759900263809

CL XOM 0.15585802115704978

CL F 0.03830267479460007

CL MSFT 0.11346892107581757

CL PFE 0.014716269207474146

GC C −0.2149326327219606

GC SPX −0.2724333717672031

GC XOM −0.20973685485328555

GC F −0.5133205870466547

GC MSFT −0.2718742251789026

GC PFE −0.15372156278838536

C SPX 0.27252943570443455

C XOM 0.28696147861064464

C F 0.28903764586090686

C MSFT 0.2682496194114376

C PFE 0.1575739360953595

SPX XOM 0.8804915455367398

SPX F 0.8854422072373676

SPX MSFT 0.9353021184213065

SPX PFE 0.8785677290825313

XOM F 0.7720878305603963

XOM MSFT 0.8107472671261666

XOM PFE 0.8581109151100405

F MSFT 0.867848932613579

F PFE 0.7466939906546621

MSFT PFE 0.8244864622745551

XOM beyond 3 sigma

(31 of 4682 data points)

CL GC 0.08619386913767751

CL C 0.12281769759782755

CL SPX 0.1598136682243572

CL XOM 0.19657554427842094

CL F 0.20764047880440853

CL MSFT 0.20143983941373977

CL PFE 0.06491145921791507

GC C −0.3440263176542505

GC SPX −0.6127703828515739

GC XOM −0.21647163055987845

GC F −0.5586655697340519

GC MSFT −0.49757437569583096

GC PFE −0.6574499556463053

C SPX 0.46950837936435447

C XOM 0.10204725109291456

C F 0.5528812200193067

C MSFT 0.3962060773300878

C PFE 0.4835629447364572

SPX XOM 0.26560300433620926

SPX F 0.9513940647043279

SPX MSFT 0.951627088342409

SPX PFE 0.939838119184664

XOM F 0.2073529344817686

XOM MSFT 0.23527599847538386

XOM PFE 0.1587269337304879

F MSFT 0.9093988443935644

F PFE 0.8974023710639419

MSFT PFE 0.8661556879321936

SPX within 1 sigma

(3366 of 4682 data points)

CL GC 0.1411703426148108

CL C 0.07065326135001565

CL SPX −0.04672042595452156

CL XOM 0.1369231929185177

CL F −0.03833898351928496

CL MSFT 0.008249795822319618

CL PFE −0.039824997750446386

GC C 0.07487815673746215

GC SPX −0.098702234833124

GC XOM 0.0126749627781548

GC F −0.025504778030182328

GC MSFT −0.007650115919919071

GC PFE −0.03409826874750128

C SPX −0.0037085243318329152

C XOM 0.007681382976920977

C F 0.012302593393623804

C MSFT 0.023440459199345766

C PFE 0.020051710510815043

SPX XOM 0.24274905226797128

SPX F 0.25706355236368167

SPX MSFT 0.23491561078843676

SPX PFE 0.22050509324437187

XOM F 0.051567190213371944

XOM MSFT 0.011930867235937883

XOM PFE 0.03903218211997973

F MSFT 0.049167377717242194

F PFE 0.0253249911811074

MSFT PFE 0.01813554953465995

XOM within 1 sigma

(3469 of 4682 data points)

CL GC 0.1626123169907851

CL C 0.06385666453921195

CL SPX −0.10197617432497605

CL XOM 0.10671051194661867

CL F −0.06561037074518512

CL MSFT −0.03369575980606431

CL PFE −0.049704601320327516

GC C 0.0699568184904768

GC SPX −0.14448139178331096

GC XOM −0.02183888080921421

GC F −0.07949839243937246

GC MSFT −0.06427915157699021

GC PFE −0.056426779255276956

C SPX 0.002666843180930068

C XOM 0.008152806548151075

C F 0.02130372788477299

C MSFT 0.02696846819596459

C PFE 0.023479323154123974

SPX XOM 0.4439456452926861

SPX F 0.410255598243555

SPX MSFT 0.40962971140985116

SPX PFE 0.3337542998608116

XOM F 0.16171670346660708

XOM MSFT 0.1522471847121916

XOM PFE 0.14027113549516057

F MSFT 0.15954186850809635

F PFE 0.09692360471545824

MSFT PFE 0.11103574324620878
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F beyond 3 sigma

(43 of 4682 data points)

CL GC 0.27427702981787166

CL C −0.036710270159938795

CL SPX −0.05122250042406012

CL XOM 0.019879344178947128

CL F −0.1619398623288661

CL MSFT 0.06113040620102775

CL PFE −0.03052373880511025

GC C −0.2105245502328284

GC SPX −0.39275282180603993

GC XOM −0.2660521070959948

GC F −0.07998977703405707

GC MSFT −0.39045981709259187

GC PFE −0.15655811237828485

C SPX 0.4394625985396639

C XOM 0.5111084269242103

C F 0.05517927015323412

C MSFT 0.418713605628322

C PFE 0.4114006944120061

SPX XOM 0.8858315365005958

SPX F 0.32710966702049354

SPX MSFT 0.9438851500634157

SPX PFE 0.842765820623699

XOM F 0.23769276790825533

XOM MSFT 0.8786892436047334

XOM PFE 0.7950187695417785

F MSFT 0.26860165851836737

F PFE 0.2978173791782456

MSFT PFE 0.8111631403849762

MSFT beyond 3 sigma

(39 of 4682 data points)

CL GC 0.05288220924874525

CL C 0.03238866347529909

CL SPX 0.23409424184528582

CL XOM 0.27655163811605127

CL F 0.21291573296289484

CL MSFT 0.2347395935937538

CL PFE 0.22620918949312924

GC C 0.17132011394477453

GC SPX −0.27621216630360723

GC XOM −0.31742556492355695

GC F −0.39376436665709946

GC MSFT 0.03872797470182633

GC PFE −0.34653065475607997

C SPX 0.2841344985841967

C XOM 0.2722771622858543

C F 0.1930254456039821

C MSFT 0.10837798889022507

C PFE 0.24059844829500385

SPX XOM 0.9370778598925431

SPX F 0.9173970725342884

SPX MSFT 0.21910290988946773

SPX PFE 0.8750562187811304

XOM F 0.852903525597108

XOM MSFT 0.28329029115636173

XOM PFE 0.8689912705869133

F MSFT 0.1224603844278996

F PFE 0.7914349481572399

MSFT PFE 0.08342580014726039

F within 1 sigma

(3513 of 4682 data points)

CL GC 0.14512911921800759

CL C 0.047640657886711776

CL SPX −0.038662740379307635

CL XOM 0.13475499739302577

CL F −0.02779741081029594

CL MSFT 0.002124836307259393

CL PFE −0.0346544213095382

GC C 0.07406272080516503

GC SPX −0.08216193364828302

GC XOM 0.0018927626451161

GC F −0.04189153921839398

GC MSFT −0.017773478113621854

GC PFE −0.03394532760699087

C SPX 0.00863250682585783

C XOM −0.0024652908939917476

C F 0.03824383087240428

C MSFT 0.026328712743665918

C PFE −0.009582466225759407

SPX XOM 0.3300910692705658

SPX F 0.3879282004829515

SPX MSFT 0.37619527832248406

SPX PFE 0.3522133339947073

XOM F 0.12461137390050991

XOM MSFT 0.08511094562657419

XOM PFE 0.11899749055724199

F MSFT 0.1291334261723857

F PFE 0.09432105016323611

MSFT PFE 0.10326939903567782

MSFT within 1 sigma

(3788 of 4682 data points)

CL GC 0.1780064461248614

CL C 0.05816017421928696

CL SPX −0.08387058206522074

CL XOM 0.11404112460697703

CL F −0.0581086900122653

CL MSFT −0.04785934015162996

CL PFE −0.04252837463155788

GC C 0.06971353618749605

GC SPX −0.10854537254629587

GC XOM −0.02305369375053341

GC F −0.0433322968281354

GC MSFT −0.05714331580093729

GC PFE −0.04492680308546143

C SPX 0.01597033368734557

C XOM 0.01678577953312174

C F 0.019585474298717553

C MSFT 0.021226325810089326

C PFE 0.01121828967048508

SPX XOM 0.35173508501967765

SPX F 0.3788577061068169

SPX MSFT 0.510722761985027

SPX PFE 0.3308252244568856

XOM F 0.12245205070590215

XOM MSFT 0.11855012193953615

XOM PFE 0.1127871934860319

F MSFT 0.18490175993452032

F PFE 0.1035829207843917

MSFT PFE 0.16958846505571112
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The point is evident throughout this study: Big moves in one market
amplify the correlation between other markets, and vice versa. Some ex-
planations can be offered to partially account for this tendency; for one,
these markets are all USD denominated, yet, these elements can only par-
tially account as the cause of this. Regardless of its cause, even the fact that
this characteristic exists warns us that the correlation parameter fails us
at those very times when we are counting on it the most.

What we are working with in using correlation is a composite of the
incidental time periods and time periods with considerably more volatility
and movement. Clearly, it is misleading to use the correlation coefficient as
a single parameter for the joint movement of pairwise components.

Additionally, considering that in a normal distribution, 68.26894921371%
of the data points will fall within one sigma either side of the mean. Given
4,682 data points, we would expect therefore to typically have 3196.352 data
points be within one sigma. But we repeatedly see more than that. We would
also expect, given the Normal distribution, for 99.73002039367% of the data
points to be within three sigma, thus, 1 − .99730020393 = 0.002699797 prob-
ability of being beyond three sigma. Given 4,682 data points, we would there-
fore expect 4,682 * 0.002699797 = 12.64045 data points to be beyond three
sigma. Yet again, we see far more than this in every case, in every market in
this study. These findings are consistent with the “fat tails,” notion of price
distributions.

If more data points than expected fall within one sigma, and more than
expected fall outside of three sigma, then the shortfall must be made up with
fewer data points than would be expected between |1| and |2| sigma. What
is germane to the discussion here, however, is that days when correlations
tend more toward randomness occur far more frequently than would be
expected if prices were normally distributed, but, in a manner fatal to the
conventional models, the critical days where things move more lockstep
occur far more often as well.

Consider again our simultaneous two-to-one coin toss example. We
have seen that at a correlation coefficient of zero, we optimally bet .23 on
each component. Yet, what if we later learned we were deluded about that
correlation coefficient, that, rather than being zero, it was, instead +1.0?

In such a circumstance we would have been betting .46 per play, where
the optimal was .25. In short, we would have been far to the right of the
peak of the f curve.

By relying on the correlation coefficient alone, we delude ourselves.
The new model disregards correlation as a solitary parameter of pairwise
component movement. Rather, the new model addresses this principle as
it must be addressed. We are concerned in the new model with the joint
probabilities of two scenarios occurring, one from each of the pairwise
components, simultaneously, as the history of price data dictates we do.
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Furthermore, and perhaps far more importantly, the new model holds
for any distribution of returns! The earlier portfolio models most often as-
sumed a normal distribution in estimating the various outcomes the invest-
ments may have realized. Thus, the tails—the very positive or very negative
outcomes—were much thinner than they would be in a non-normal, real-
world distribution. That is, the very good and very bad outcomes that invest-
ments can witness tended to be underaccounted for in the earlier models.
With the new model, various scenarios comprise the tails of the distribu-
tion of outcomes, and you can assign them any probability you wish. Even
the mysterious Stable Paretian Distribution of returns can be characterized
by various scenarios, and an optimal portfolio discerned from such. Any
distribution can be modeled as a scenario spectrum; scenario spectrums
can assume any probability density shape desired, and they are easy to do.
You needn’t ask yourself, “What is the probability of being x distance from
the mode of this distribution?” but rather, “What is the probability of these
scenarios occurring?”

So the new framework can be applied to any distribution of returns,
not simply the normal. Thus, the real-world fat-tails distribution can be
utilized, as a scenario spectrum is another way of drawing a distribu-
tion.

Most importantly, the new framework, unlike its predecessors, is not
one so much of composition but rather of progression. It is about leverage,
and it is also about how you progress your quantity through time, as the
equity in the account changes.

Interestingly, these are different manifestations of the same thing.

That is, leverage (how much you borrow), and how you progress your

quantity through time are really the same thing.

Typically, leverage is thought of as “How much do I borrow to own a
certain asset?” For example, if I want to own 100 shares of XYZ Corporation,
and it costs $50 a share, then it costs $5,000 for 100 shares. Thus, if I have
less than $5,000 in my account, how many shares should I put on? This is
the conventional notion of leverage.

But leverage also applies to borrowing your own money. Let’s suppose
I have $1 million in my account. I buy 100 shares of XYZ. Now, suppose
XYZ goes up, and I have a profit on my 100 shares. I now want to own 200
shares, although the profit on my 100 shares is not yet $5,000 (i.e., XYZ has
not yet gotten to $100). However, I buy another 100 shares anyhow. The
schedule upon which I base my future buys (or sells) of XYZ (or any other
stock while I own XYZ) is leverage—whether I borrow money to perform
these transactions, or whether I use my own money. It is the schedule,
the progressions, that constitutes leverage in this sense. If you understand
this concept, you are well down the line toward understanding the new
framework in asset allocation.
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So, we see that leverage is a term that refers to either the degree to which
we borrow money to take a position in an asset, or the schedule upon which
we take further positions in assets (whether we borrow to do this or not).

That said, since the focus of the new framework is on leverage, we can
easily see that it applies to speculative vehicles in the sense that leverage
refers to the level of borrowing to take a position in a (speculative) asset.
However, the new framework, in focusing on leverage, applies to all assets,
including the most conservative, in the sense that leverage also refers to the
progression, the schedule upon which we take (or remove) further positions
in an asset. Ultimately, leverage in both senses is every bit as important as
market timing. That is, the progression of asset accumulation and removal
in even a very conservative bond fund is every bit as important as the bond
market timing or the bond selection process.

Thus, the entire notion of optimal f not only applies to futures and
option traders as well, but to any asset allocation scheme, and not just
allocating among investment vehicles.

The trading world is vastly different today than just a few decades ago as
a result of the proliferation of derivatives trading. Most frequently, a major
characteristic with many derivatives is the leverage they bring to bear on an
account. The old framework, the old two-dimensional E-V framework, was
ill-equipped to handle problems of this sort. The modern environment de-

mands a new asset allocation framework focused on the effects of leverage.
The framework presented herein addresses exactly this.

This focus on leverage, more than any other explanation, is the main
reason why the new framework is superior to its predecessors. Like the
old framework, the new framework tells us optimal relative allocations
among assets. But the new framework does far more. The new framework is
dynamic—it tells us the immense consequences and payoffs of our schedule
of taking (and removing) assets through time, giving us a framework, a map,
of what consequences and rewards we can expect by following such-and-
such a schedule. Certain points on the map may be more appealing than
others to different individuals with different needs and desires. What may
be optimal to one person may not be optimal to another. Yet this map

allows us to see what we get and give up by progressing according to a
certain schedule—something the earlier frameworks did not. This feature,
this map of leverage space (and remember, leverage has two meanings here),
distinguishes the new framework from its predecessors in many ways, and
it alone makes the new framework superior.

Lastly, the new framework is superior to the old in that the user of the
new framework can more readily see the consequences of his or her actions.
Under the old framework, “So what if I have a little more V for a given E?”
Under the new framework, you can see exactly what altitude that puts you at
on the landscape, that is, exactly what multiple you make on your starting
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stake (versus the peak of the landscape) for operating at different levels
of leverage (remember, leverage has two meanings throughout this book),
or exactly what kind of a minimum drawdown to expect for operating at
different levels of leverage. Under the new framework, you can more readily
see how important the asset allocation function is to your bottom line and
your pain threshold.

To summarize, the new framework is superior to the older, two-
dimensional, risk-competing-with-return frameworks primarily because the
focus is on the dynamics of leverage. Secondarily, it is superior because
the input is more straightforward, using scenarios (i.e., actual distributions
that are “binned”) unperverted by the misuse of the delusional correlation
coefficient parameter, and because it will work on any distribution of re-
turns. Lastly, users of the new framework will more readily be able to see
the rewards and consequences of their actions.

MULTIPLE SIMULTANEOUS PLAYS

Refer to Figure 9.2 for our two-to-one coin-toss game. Now suppose you
are going to play two of these very same games simultaneously. Each coin
will be used in a separate game similar to the first game. Now what quantity
should be bet? The answer depends upon the relationship of the two games.
If the two games are not correlated to each other, then optimally you would
bet 23% on each game (Figure 9.3). However, if there is perfect positive
correlation, then you would bet 12.5% on each game. If you bet 25% or more

FIGURE 9.2 Two-to-one coin toss game, 40 plays. Ending multiple of starting
stake betting different percentages of stake on each play
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FIGURE 9.3 Two-to-one coin toss—one play

on each game, you will now go broke, with a probability that approaches
certainty as the length of the game increases.

When you begin trading more than one market system, you no longer
reside on a line that has a peak; instead, you reside in an n + 1 (where
n = the number of market systems you are trading) dimensional terrain
that has a single peak! In our single-coin-toss example, we had a peak on
the line at 25%. Here we have one game (n = 1) and thus a two (i.e., n + 1)
dimensional landscape (the line) with a single peak. When we play two of
these games simultaneously, we now have a three-dimensional landscape
(i.e., n + 1) within leverage space with a single peak. If the correlation
coefficient between the coins is zero, then the peak is at 23% for the first
game and 23% for the second as well. Notice that there is still only one peak,
even though the dimensions of the landscape have increased!

When we are playing two games simultaneously, we are faced with a
three-dimensional landscape, where we must find the highest point. If we
were playing three games simultaneously, we would be looking for the peak
in a four-dimensional landscape. The dimensions of the topography within
which we must find a peak are equal to the number of games (markets and
systems) we are playing plus one.
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FIGURE 9.4 Two-to-one coin toss—10 plays

Notice, that as the number of plays increases, the peak gets higher and
higher, and the difference between the peak and any other point on the
landscape gets greater and greater (see Figures 9.3, 9.4, and 9.5). Thus, as
more plays elapse, the difference between being at the peak and any other
point increases. This is true regardless of how many markets or systems we
are trading, even if we are trading only one.

To miss the peak is to pay a steep price. Recall in the simple single-coin-
toss game the consequences of missing the peak. These consequences are
no less when multiple simultaneous plays are involved. In fact, when you
miss the peak in the n + 1-dimensional landscape, you will go broke faster
than you would in the single game!

Whether or not we acknowledge these concepts, it does not affect the
fact that they are at work on us. Remember, we can assign an f value to
any trader in any market with any method at any time. If we are trading a
single market system and we miss the peak of the f curve for that market
system, we might, if we are lucky, make a fraction of the profits we should
have made, while we will very likely endure greater drawdowns than we
should have. If we are unlucky, we will go broke with certainty even with

an extremely profitable system!
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FIGURE 9.5 Two-to-one coin toss—40 plays

When we trade a portfolio of markets and/or systems, we simply mag-
nify the effect of missing the peak of the curve in n + 1 space.

A COMPARISON TO THE OLD FRAMEWORKS

Let’s take a look at a simple comparison of the results generated by this
new framework versus those of the old E-V framework.

Suppose, for the sake of simplicity, we are going to play two simultane-
ous games. Each game will be the now-familiar two-to-one coin toss. Further
assume that all of the pairwise correlations are zero. The new framework
tells us that the optimal point, the peak in the three-dimensional (n + 1)
landscape is at 23% for both games.

The old framework, in addition to the zero values for the pairwise corre-
lations, has .5 as the E value, the mean, and 2.25 as the V value, the variance.
The result of this, through the old framework, generates .5 for both games.

This means that one-half of your account should be allocated toward
each game. But what does this mean in terms of leverage? How much is a
game? If a game is $1, the most I can lose, then .5 is way beyond the optimal
of .23. How do I progress my stake as I go on? The correct answer, the
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mathematically optimal answer with respect to leverage (including how I
progress my stake as I go on), would be .5 of .46 of the account. But the old
mean variance models do not tell me that. They are not attuned to the use of
leverage (with both of its meanings). The answers tell me nothing of where
I am in the n + 1 dimensional landscape. Also, there are important points
within the n + 1 dimensional landscape other than the peak. For instance,
as we will see in the next chapter, the points of inflection in the landscape
are also very important. The old E-V models tell us nothing about any of
this.

In fact, the old models simply tell us that allocating one-half of our
stake to each of these games will be optimal in that you will get the greatest
return for a given level of variance, or the lowest variance for a given level
of return. How much you want to lever it is a matter of your utility—your
personal preference.

In reality, though, there is an optimal point of leverage, an optimal
place in the n + 1 dimensional landscape. There are also other important
points in this landscape. When you trade, you automatically reside some-
where in this landscape (again, just because you do not acknowledge it does
not mean it does not apply to you). The old models were oblivious to this.
This new framework addresses this problem and has the users aware of the
use/misuse of leverage within an optimal portfolio in a foremost sense. In
short, the new framework simply yields more and more useful information
than its predecessors.

Again, if a trader is utilizing two market systems simultaneously, then
where he resides on the three-dimensional landscape is everything. Where
he resides on it is every bit as important as his market systems, his timing,
or his trading ability.

MATHEMATICAL OPTIMIZATION

Mathematical optimization is an exercise in finding a maximum or mini-
mum value of an objective function for a given parameter(s). The objective
function is, thus, something that can be solved only through an iterative
procedure.

For example, the process of finding the optimal f for a single market
system, or a single scenario spectrum, is an exercise in mathematical opti-
mization. Here, the mathematical optimization technique can be something
quite brutish like trying all f values from 0 to 1.0 by .01. The objective func-
tion can be one of the functions presented in Chapter 4 for finding the
geometric mean HPR for a given value of f under different conditions. The
parameter is that value for f being tried between 0 and 1.
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The answer returned by the objective function, along with the parame-
ters pumped into the objective function, gives us our coordinates at a certain
point in n + 1 space. In the case of simply finding the optimal f for a single
market system or a single scenario spectrum, n is 1, so we are getting coor-
dinates in two-dimensional space. One of the coordinates is the f value sent
to the objective function, and the other coordinate is the value returned by
the objective function for the f value passed to it.

Since it is a little difficult for us to mentally picture any more than
three dimensions, we will think in terms of a value of 2 for n (thus, we
are dealing with the three-dimensional, i.e., n + 1, landscape). Since, for
simplicity’s sake, we are using a value of 2 for n, the objective function
gives us the height or altitude in a three-dimensional landscape. We can
think of the north-south coordinates as corresponding to the f value asso-
ciated with one scenario spectrum, and the east-west coordinates as the
f value associated with another scenario spectrum. Each scenario spec-
trum pertains to the possible outcomes for a given market system. Thus,
we could say, for example, that the north-south coordinates pertain to the
f value for such-and-such a market under such-and-such a system, and
the east-west coordinates pertain to the f values of trading a different
market and/or a different system, when both market systems are traded
simultaneously.

The objective function gives us the altitude for a given set of f values.
That is, the objective function gives us the altitude corresponding to a single
east-west coordinate and a single north-south coordinate. That is, a single
point where the length and depth are given by the f values we are pumping
into the objective function, and the height at that point is the value returned
by the objective function.

Once we have the coordinates for a single point (its length, depth, and
height), we need a search procedure, a mathematical optimization tech-
nique, to alter the f values being pumped into the objective function in such
a way so as to get us to the peak of the landscape as quickly and easily as
possible.

What we are doing is trying to map out the terrain in the n + 1-
dimensional landscape, because the coordinates corresponding to the peak
in that landscape give us the optimal f values to use for each market system.

Many mathematical optimization techniques have been worked out over
the years and many are quite elaborate and efficient. We have a number of
these techniques to choose from. The burning question for us is, “Upon
what objective function shall we apply these mathematical optimization
techniques?” under this new framework. The objective function is the heart
of this new framework in asset allocation, and we will discuss it and show
examples of how to use it before looking at optimization techniques.
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THE OBJECTIVE FUNCTION

The objective function we wish to maximize is the geometric mean HPR,
simply called G:

G( f1 . . . fn) =
(

m∏
k = 1

HPRk

)(
1
/ m∑

k = 1
Probk

)
(9.01)

where: n = The number of scenario spectrums (market systems or
portfolio components).

m = The possible number of combinations of outcomes
between the various scenario spectrums (market
systems) based on how many scenarios are in each set.
m = The number of scenarios in the first spectrum * the
number of scenarios in the second spectrum * . . . * the
number of scenarios in the nth spectrum.

Prob = The sum of probabilities of all m of the HPRs for a given
set of f values. Probk is the sum of the values in
brackets {} in Equation (9.02) for all m values of a given
set of f values.

HPR = The holding period return of each k. This is given as:

HPRk =
(

1 +
( n∑

i= 1

( fi * (−PLk,i/BLi))
))Probk

(9.02)

where: n = The number of components (scenario spectrums, i.e.,
market systems) in the portfolio.

fi = The f value being used for component i.
fi must be > 0, and can be infinitely high (i.e., can
be greater than 1.0).

PLk,i = The outcome profit or loss for the ith component (i.e.,
scenario spectrum or market system) associated with the
kth combination of scenarios.

BLi = The worst outcome of scenario spectrum (market
system) i.

We can estimate Probk in the earlier equation for G as:

Probk =
(

n− 1∏
i= 1

(
n∏

j = i+ 1

P(ik| jk)

))(1/(n− l))

(9.03)
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The expression P(ik| jk) is simply the joint probability of the scenario in
the ith spectrum and the jth spectrum, corresponding to the kth combination
of scenarios. For example, if we have three coins, each coin represents
a scenario spectrum, represented by the variable n, and each spectrum
contains two scenarios: heads and tails. Thus, there are eight (2 * 2 * 2)
possible combinations, represented by the variable m.

In Equation (9.01), the variable k proceeds from 1 to m, in odometric

fashion:

Coin 1 Coin 2 Coin 3 k

t t t 1
t t h 2
t h t 3
t h h 4
h t t 5
h t h 6
h h t 7
h h h 8

That is, initially all spectrums are set to their worst (leftmost) values. Then,
the rightmost scenario spectrum cycles through all of its values, after which
the second rightmost scenario spectrum increments to the next (next right)
scenario. You proceed as such again, with the rightmost scenario spectrum
cycling through all of its scenarios, and when the second rightmost scenario
spectrum has cycled through all of its values, the third rightmost scenario
spectrum increments to its next scenario. The process is exactly the same
as an odometer on a car, hence the term odometrically.

So in the expression P(ik| jk), if k were at the value 3 above (i.e., k = 3),
and i was 1 and j was 3, we would be looking for the joint probability of coin
1 (coming up tails and coin 3) coming up tails. Equation (9.03) helps us in es-
timating the joint probabilities of particular individual scenarios occurring
in n spectrums simultaneously. To put it simply, if I have two scenario spec-
trums, at any given k I will have only one joint probability to incorporate. If
I have three scenario spectrums, I will have three joint probabilities to in-
corporate (spectrums 1 and 2, spectrums 1 and 3, and spectrums 2 and 3). If
four scenario spectrums, I will have six joint probabilities to compute using
(9.03); if five scenario spectrums, then I have 10 joint probabilities to com-
pute using (9.03). Quite simply, in (9.03) the number of joint probabilities
you will have to incorporate at any P(i) is:

n!/(n − 2)!/2 = number of joint probabilities required as input

to (9.03)
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To demonstrate (9.03) in a simple manner, if I have three scenario spec-
trums (called A, B, and C), and each has two possible outcomes, H and
T, then I want to find the multiplicative product of the probabilities of a
given outcome of all three at each i, across all values of i (of which there
are q).

So, if I have n = 3, then, at k = 1, I have the tails scenario (with a
probability of .5) in all three scenario spectrums. Thus, to find the probability
of this spectrum, I need to multiply the probability of ((AT |BT ) × (AT |CT )
× (BT |CT ))∧(1/(n– 1))

= (.25 × .25 × .25)) ∧ (1/(3 − 1))

= .015625 ∧ (1/2) = .125

Note that this is a simple example. Our joint probabilities between any
two scenarios from any of the three different scenario spectrums was always
.25 in this case. In the real world, however, such conveniences are rare
coincidences.

Equation (9.03) is merely an estimate, which makes a major assumption
(that all elements move randomly with respect to all other elements, i.e. if
we were to take a correlation coefficient of any pairwise elements, it would
be zero). Note that we are constructing a Probk here using (9.03); we are
attempting to actually composite a joint probability of n events occurring
simultaneously, knowing only the probabilities of pairwise occurrences of
those events (at two scenario spectrums, this assumption is, in fact, not

an assumption). In truth, this is an attempt to approximate the actual joint
probability

For example, say I have three conditions called A, B, and C. A and B
occur with .5 probability. A and C occur with .6 probability. B and C occur
with .1 probability.

However, that probability of .1 of B and C’s occurring may be 0 if A and B
occur. It may be any value between 0 and 1 in fact. In order to determine then,
what the probability of A, B, and C’s occurring simultaneously is, I would
have to look at when those three conditions actually did occur. I cannot
infer the probability of all three events occurring simultaneously given the
probabilities of their pairwise joint probabilities unless I am dealing with
less than three elements or their pairwise correlations were all zero.

We need to derive the actual joint probability via empirical data, or ac-
curately approximate the joint probabilities of occurrence among three or
more simultaneous events. Equation (9.03) is invalid if there are more than
two joint probabilities or the correlation coefficients between any pairwise
elements is not 0. However, in the examples that follow in this chapter, we
will use (9.03) merely as a proxy for whatever the actual joint probabilities
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may be, for sake of illustration. We can create one complete objective func-
tion. Thus, we wish to maximize G as:

G( fi . . . fn) =
⎛⎝ m∏

k = 1

⎛⎝(
1 +

n∑
i= 1

(
fi *

(−PLk,i

BLi

)))Probk

⎞⎠⎞⎠
(

1/
m∑

k = 1
Probk

)

(9.04)

This is the objective function, the equation we wish to maximize. It is the
equation or mathematical expression of this new framework in asset allo-
cation. It gives you the altitude, the geometric mean HPR, in n + 1 space
for the coordinates, the values of f used. It is exact, regardless of how many
scenarios or scenario spectrums are used as input. It is the objective func-

tion of the leverage space model.

Although Equation (9.04) may look a little daunting, there isn’t any
reason to fear it. As you can see, Equation (9.04) is a lot easier to work with
in the compressed form, expressed earlier in Equation (9.01).

Returning to our three coin example, suppose we win $2 on heads and
lose $1 on tails. We have three scenario spectrums, three market systems,
named Coin 1, Coin 2, and Coin 3. Two scenarios, heads and tails, comprise
each coin, each scenario spectrum. We will assume, for the sake of simplic-
ity, that the correlation coefficients of all three scenario spectrums (coins)
to each other are zero.

We must therefore find three different f values. We are seeking an op-
timal f value for Coin 1, Coin 2, and Coin 3, as f1, f2, and f3, respectively,
that results in the greatest growth—that is, the combination of the three f

values that results in the greatest geometric mean HPR [Equation (9.01) or
(9.04)].

For the moment, we are not paying any attention to the optimization
technique selected. The purpose here is to show how to perform the objec-
tive function. Since optimization techniques usually assign an initial value
to the parameters, we will arbitrarily select .1 as the initial value for all three
values of f.

We will use Equation (9.01) in lieu of (9.04) for the sake of simplicity.
Equation (9.01) has us begin by cycling through all scenario set combi-
nations, all values of k between 1 and m, compute the HPR of the sce-
nario set combination per Equation (9.02), and multiply all of these HPRs
together. When we perform Equation (9.02) each time, we must keep
track of the Probk values, because we will need the sum of these values
later.

Thus, we start at k = 1, where scenario spectrum 1 (Coin 1) is tails, as
are the other two scenario spectrums (coins).
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We can rewrite Equation (9.02) as:

HPRk = (1 + C)x

C =
n∑

i= 1

( fi ∗ (−PLk,i/BLi))

x =
(

n− 1∏
k = 1

(
n∏

j = i+ 1

P(ik| jk)

))(1/(n− 1))

Notice that the exponent in Equation (9.02), which we must keep track of,
is expressed as the variable x in Equation (9.02a). This is also expressed in
Equation (9.03).

So, to obtain C, we simply go through each scenario spectrum, taking the
outcome of the scenario currently being used in that spectrum as dictated
by k, dividing its negative by the scenario in that spectrum with the worst
outcome, and multiplying this quotient by the f value being used with that
scenario spectrum. As we go through all of the scenario spectrums, we total
these values.

The variable i is the scenario spectrum we are looking at. The biggest
loss in scenario spectrum 1 is tails, which sees a loss of one dollar (i.e., −1).
Thus, BL1 is −1 (as will be BL2 and BL3 since the biggest loss in each of the
other two scenario spectrums—the other two coins—is −1). The associated
PL, that is, the outcome of the scenario in spectrum i corresponding to the
scenario in that spectrum that k points to, is −1 in scenario spectrum 1 (as
it is in the other two spectrums). The f value is currently .1 (as it also is now
in the other two spectrums). Thus:

C =
n∑

i= 1

(
fi *

(−PLk,i

BLi

))
C =

(
.1 *

(−−1
−1

))
+

(
.1 *

(−−1
−1

))
+

(
−1 *

(−−1
−1

))
C = (.1 * −1) + (.1 * −1) + (.1 * −1)

C = −.1 + −.1 + −.1 = −.3

Notice that the PLs are negative and, since PL has a minus sign in front
of it, that makes them positive.

Now we take the value for C in Equation (9.02) above and add 1 to it,
obtaining .7 (since 1 + −.3 = .7). Now we must figure the exponent, the
variable x in Equation (9.02) above.

P(ik| jk) means, simply, the joint probability of the scenario in spectrum
i pointed to by k, and the scenario in spectrum j pointed to by k. Since k is
presently 1, it points to tails in all three scenario spectrums. To find x, we
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simply take the sum of the joint probabilities of the scenarios in spectrum 1
and 2 times the joint probability of the scenarios in spectrum 1 and 3, times
the joint probabilities of the scenarios in spectrums 2 and 3. Expressed
differently:

i j

1 2
1 3
2 3

If there were four spectrums, we would take the product of all the joint
probabilities as:

i j

1 2
1 3
1 4
2 3
2 4
3 4

Since all of our joint probabilities are .25, we get for x:

x =
(

n− 1∏
i= 1

(
n∏

j = i+ 1

P(ik| jk)

))(1/(n− 1))

x = (.25 * .25)(1/(n− 1))

x = (.015625)1/(3 − 1)

x = (.015625)1/2

x = .125

Thus, x equals .125, which represents the joint probability of the kth
combination of scenarios. (Note that we are going to determine a joint
probability of three random variables by using joint probabilities of two
random variables!)

Thus, HPRk = .7.125 = .9563949076 when k = 1. Per Equation (9.02),
we must figure this for all values of k from 1 through m (in this case, m

equals 8). Doing this, we obtain:
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k HPRk Probk

1 0.956395 0.125
2 1 0.125
3 1 0.125
4 1.033339 0.125
5 1 0.125
6 1.033339 0.125
7 1.033339 0.125
8 1.060511 0.125

Summing up all the Probk, given by Equation (9.03), per Equation (9.04),
we get 1. Now, taking the product of all of the HPRs, per Equations (9.01)
and (9.04), we obtain 1.119131. Performing Equation (9.01), then, we get a
value of G of 1.119131 which corresponds to the f values .1, .1, .1 for f1, f2,
and f3, respectively.

G(.1, .1, .1) =
(

m∏
k = 1

HPRk

)(
1
/ m∑

k = 1
Probk

)

G(.1, .1, .1) = (.956395 * 1 * .1 * 1.033339 * 1 * 1.033339

* 1.033339 * 1.0605011)(1/(.125+.125+.125+.125+.125+.125+.125+.125))

G(.1, .1, .1) = (1.119131)(1/1)

G(.1, .1, .1) = 1.119131

Now, depending upon what mathematical optimization method we were
using, we would alter our f values. Eventually, we would find our optimal f

values at .21, .21, .21 for f1, f2, and f3, respectively. This would give us:

k HPRk Probk

1 0.883131 0.125
2 1 0.125
3 1 0.125
4 1.062976 0.125
5 1 0.125
6 1.062976 0.125
7 1.062976 0.125
8 1.107296 0.125
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Thus, Equation (9.01) gives us:

G(.21, .21, .21) =
(

m∏
k = 1

HPRk

)(
1
/ m∑

k = 1
Probk

)

G(.21, .21, .21) = (.883131 * 1 * .1 * 1.062976 * 1 * 1.062976 * 1.062976

* 1.107296)(1/(.125 +.125 +.125 +.125 +.125 +.125 +.125 +.125))

G(.21, .21, .21) = 1.174516(1/1)

G(.21, .21, .21) = 1.174516

This is the f value combination that results in the greatest G for these
scenario spectrums. Since this is a very simplified case, that is, all scenario
spectrums were identical, and all had correlation of zero between them,
we ended up with the same f value for all three scenario spectrums of .21.
Usually, this will not be the case, and you will have a different f value for
each scenario spectrum.

Now that we know the optimal f values for each scenario spectrum,
we can determine how much those decimal f values are, in currency, by
dividing the largest loss scenario in each of the spectrums by the negative
optimal f for each of those spectrums. For example, for the first scenario
spectrum, Coin 1, we had a largest loss of −1. Dividing −1 by the negative
optimal f, −.21, we obtain 4.761904762 as f $ for Coin 1.

To summarize the procedure, then:

1. Start with an f value set for f1 . . . fn where n is the number of components
in the portfolio, that is, market systems or scenario spectrums. This initial
f value set is given by the optimization technique selected.

2. Go through the combinations of scenario sets k from 1 to m, odomet-
rically, and calculate an HPR for each k, multiplying them all together.
While doing so, keep a running sum of the exponents of the HPRs.

3. When k equals m, and you have computed the last HPR, the final product
must be taken to the power of 1, divided by the sum of the exponents
(probabilities) of all the HPRs, to get G, the geometric mean HPR.

4. This geometric mean HPR gives us one altitude in n + 1 space. We wish
to find the peak in this space, so we must now select a new set of f values
to test to help us find the peak. This is the mathematical optimization
process.

MATHEMATICAL OPTIMIZATION VERSUS
ROOT FINDING

Equations have a left and a right side. Subtracting the two makes the equa-
tion equal to 0. In root finding, you want to know what values of the
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independent variable(s) make the answer of this equation equal to 0 (these
are the roots). There are traditional root-finding techniques, such as the
Newton-Rapheson method, to do this.

It would seem that root finding is related to mathematical optimiza-
tion in that the first derivative of an optimized function (i.e., extremum
located) will equal 0. Thus, you would assume that traditional root-finding
techniques, such as the Newton-Rapheson method, could be used to solve
optimization problems (careful to use what is regarded as an optimization
technique to solve for the roots of an equation can lead to a Pandora’s box
of problems).

However, our discussion will concern only optimization techniques and
not root finding techniques per se. The single best source for a listing of
these techniques is Numerical Recipes and much of the following section
on optimization techniques is referenced therefrom.3

OPTIMIZATION TECHNIQUES

Mathematical optimization, in short, can be described as follows: You have a
function (we call it G), the objective function, which depends on one or more
independent variables (which we call fl . . . fn). You want to find the value(s)
of the independent variable(s) that results in a minimum (or sometimes,
as in our case, a maximum) of the objective function. Maximization or
minimization is essentially the same thing (that is one person’s G is another
person’s −G).

In the crudest case, you can optimize as follows: Take every combina-
tion of parameters, run them through the objective function, and see which
produce the best results. For example, suppose we want to find the optimal
f for two coins tossed simultaneously, and we want the answer to be precise
to .01. We could, therefore, test Coin 1 at the 0.0 level, while testing Coin 2
at the 0.01 level, then .01, .02, and proceed until we have tested Coin 2 at the
1.0 level. Then, we could go back and test with Coin 1 at the .01 level, and
cycle Coin 2 through all of its possible values while holding Coin 1 at the
.01 level. We proceed until both levels are at their maximum, that is, both
values equal 1.0. Since each variable in this case has 101 possible values (0
through 1.0 by .01 inclusive), there are 101 * 101 combinations which must
be tried, or 10,201 times the objective function must be evaluated.

We could, if we wanted, demand precision greater than .01. Suppose
we wanted precision to the .001 level. Then we would have 1,001 * 1,001

3William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Nu-

merical Recipes: The Art of Scientific Computing, New York: Cambridge University
Press, 1986.
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combinations that we would need to try, or 1,002,001 times the objective
function would have to be calculated. If we were then to include three
variables rather than just two, and demand .001 precision this way, we
would then have to evaluate the objective function 1001 * 1001 * 1001, or
1,003,003,001; that is, we would have to evaluate the objective function in
excess of one billion times. We are using only three variables and we are
demanding precision to only .001!

Although this crude case of optimizing has the advantage of being the
most robust of all optimization techniques, it is also has the dubious dis-
tinction of being too slow to apply to most problems.

Why not cycle through all variables for the first variable and get its
optimal; then cycle through all variables for the second while holding the
first at its optimal; get the second variable’s optimal, so that you now have
the optimal for the first two parameters; go find the optimal for the third
while setting the first two to their optimal, and so on, until you have solved
the problem?

The problem with this second approach is that it is often impossible to
find the optimum parameter set this way. Notice that by the time we get to the
third variable, the first two variables equal their optimum as if there were no
other variables. Thus, when the third variable is optimized, with the first two
variables set to their optimums, they interfere with the solution of the third
optimum. What you would end up with is not the optimum parameter set
of the three variables, but, rather, an optimum value for the first parameter,
an optimum for the second when the first is set to its optimum, an optimum
for the third when the first is set to its optimum, and the second set to a
suboptimum, but optimum given the interference of the first, and so on.
It may be possible to keep cycling through the variables and eventually
resolve to the optimum parameter set, but with more than three variables,
it becomes more and more lengthy, if at all possible, given the interference
of the other variables.

There exist superior techniques that have been devised, rather than
the two crude methods described, for mathematical optimization. This is a
fascinating branch of modern mathematics, and I strongly urge you to study
it, simply in the hope that you derive a fraction of the satisfaction from the
study as I have.

An extremum, that is the maximum or minimum, can be either global

(truly the highest or lowest value) or local (the highest or lowest value in
the immediate neighborhood). To truly know a global extremum is nearly
impossible, since you do not know the range of values of the independent
variables. If you do not know the range, then you have simply found a local
extremum. Therefore, oftentimes, when people speak of a global extremum,
they are really referring to a local extremum over a very wide range of values
for the independent variables.
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There are a number of techniques for finding the maximum or min-
imum in such cases. Usually, in any type of mathematical optimization,
there are constraints placed on the variables, which must be met with
respect to the extremum. For example, in our case, there are the con-
straints that all independent variables (the f values) must be greater than
or equal to zero. Oftentimes, there are constraining functions that must
be met [i.e., other functions involving the variable(s) used which must
be above/below or equal to certain values]. Linear programming, includ-
ing the simplex algorithm, is one very well developed area of this type
of constrained optimization, but will work only where the function to be
optimized and the constraint functions are linear functions (first-degree
polynomials).

Generally, the different methods for mathematical optimization can be
broken down by the following categories, and the appropriate technique
selected:

1. Single-variable (two-dimensional) vs. multivariable (three- or more di-
mensional) objective functions.

2. Linear methods vs. nonlinear methods. That is, as previously mentioned,
if the function to be optimized and the constraint functions are linear
functions (i.e., do not have exponents greater than one to any of the terms
in the functions), there are a number of very well developed techniques
for solving for extrema.

3. Derivatives. Some methods require computation of the first derivative of
the objective function. In the multivariable case, the first derivative is a
vector quantity called the gradient.

4. Computational efficiency. That is, you want to find the extremum as
quickly (i.e., with as few computations) and easily (something to consider
with those techniques which require calculation of the derivative) as
possible, using as little computer storage as possible.

5. Robustness. Remember, you want to find the extremum that is local
to a very wide range of parameter values, to act as a surrogate global
extremum. Therefore, if there is more than one extremum in this range,
you do not want to get hung up on the less extreme extremum.

In our discussion, we are concerned only with the multidimensional
case. That is, we concern ourselves only with those optimization algorithms
that pertain to two or more variables (i.e., more than one scenario set). In

searching for a single f value, that is, in finding the f of one market system

or one scenario set, parabolic interpolation, as detailed in Chapter 4,
Portfolio Management Formulas, will generally be the quickest and most

efficient technique.
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In the multidimensional case, there are many good algorithms, yet there
is no perfect algorithm. Some methods work better than others for certain
types of problems. Generally, personal preference is the main determinant
in selecting a multidimensional optimization technique (provided one has
the computer hardware necessary for the chosen technique).

Multidimensional techniques can be classified according to five broad
categories.

First are the hill-climbing simplex methods. These are perhaps the least
efficient of all, if the computational burden gets a little heavy. However,
they are often easy to implement and do not require the calculation of
partial first derivatives. Unfortunately, they tend to be slow and their storage
requirements are on the order of n2.

The second family are the direction set methods, also known as the
line minimization methods or conjugate direction methods. Most notable
among these are the various methods of Powell. These are more efficient,
in terms of speed, than the hill-climbing simplex methods (not to be con-
fused with the simplex algorithm for linear functions mentioned earlier),
do not require the calculation of partial first derivatives, yet the storage
requirements are still on the order of n2.

The third family is the conjugate gradient methods. Notable among
these are the Fletcher-Reeves method and the closely related Polak-Ribiere
method. These tend to be among the most efficient of all methods in terms
of speed and storage (requiring storage on the order of n times x), yet they
do require calculations of partial first derivatives.

The fourth family of multidimensional optimization techniques are the
quasi-Newton, or variable metric methods. These include the Davidson-
Fletcher-Powell (DFP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithms. Like the conjugate gradient methods, these require calculation
of partial first derivatives, tend to rapidly converge to an extremum, yet
these require greater storage, on the order of n2. However, the tradeoff to
the conjugate gradient methods is that these have been around longer, are
in more widespread use, and have greater documentation.

The fifth family is the natural simulation family of multidimensional
optimization techniques. These are by far the most fascinating, as they seek
extrema by simulating processes found in nature, where nature herself is
thought to seek extrema. Among these techniques are the genetic algorithm

method, which seeks extrema through a survival-of-the-fittest process, and
simulated annealing, a technique which simulates crystallization, a process
whereby a system finds its minimum energy state. These techniques tend to
be the most robust of all methods, nearly immune to local extrema, and can
solve problems of gigantic complexity. However, they are not necessarily
the quickest, and, in most cases, will not be. These techniques are still so
new that very little is known about them yet.
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Although you can use any of the aforementioned multidimensional op-
timization algorithms, I have opted for the genetic algorithm because it is
perhaps the single most robust mathematical optimization technique, aside
from the very crude technique of attempting every variable combination.

It is a general optimization and search method that has been applied
to many problems. Often it is used in neural networks, since it has the
characteristic of scaling well to noisy or large nonlinear problems. Since the
technique does not require gradient information, it can also be applied to
discontinuous functions, as well as empirical functions, just as it is applied
to analytic functions.

The algorithm, although frequently used in neural networks, is not lim-
ited solely to them. Here, we can use it as a technique for finding the optimal
point in the n + 1 dimensional landscape.

THE GENETIC ALGORITHM

In a nutshell, the algorithm works by examining many possible candidate
solutions and ranking them on how well their value output, by whatever ob-
jective function, is used. Then, like the theory of natural selection, the most
fit survive and reproduce a new generation of candidate solutions, which
inherit characteristics of both parent solutions of the earlier generation.
The average fitness of the population will increase over many generations
and approach an optimum.

The main drawback to the algorithm is the large amount of processing
overhead required to evaluate and maintain the candidate solutions. How-
ever, due to its robust nature and effective implementation to the gamut
of optimization problems, however large, nonlinear, or noisy, it is this au-
thor’s contention that it will become the de facto optimization technique
of choice in the future (excepting the emergence of a better algorithm
which possesses these desirable characteristics). As computers become
ever more powerful and inexpensive, the processing overhead required of
the genetic algorithm becomes less of a concern. Truly, if processing speed
were zero, if speed were not a factor, the genetic algorithm would be the
optimization method of choice for nearly all mathematical optimization
problems.

The basic steps involved in the algorithm are as follows:
1. Gene length. You must determine the length of a gene. A gene is

the binary representation of one member of the population of candidate
solutions, and each member of this population carries a value for each
variable (i.e., an f value for each scenario spectrum). Thus, if we allow a
gene length of 12 times the number of scenario spectrums, we have 12 bits
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assigned to each variable (i.e., f value). Twelve bits allows for values in the
range of 0 to 4095. This is figured as:

20 + 21 + 22 + . . . + 211 = 4095

Simply take 2 to the 0th power plus 2 to the next power, until you reach
the power of the number of bits minus 1 (i.e., 11 in this case). If there are,
say, three scenario spectrums, and we are using a length of 12 bits per
scenario spectrum, then the length of a gene for each candidate solution
is 12 * 3 = 36 bits. That is, the gene in this case is a string of 36 bits of 1s
and 0s.

Notice that this method of encoding the bit strings only allows for in-
teger values. We can have it allow for floating-point values as well by using
a uniform divisor. Thus, if we select a uniform divisor of, say, 1,000, then
we can store values of 0/1000 to 4095/1000, or 0 to 4.095, and get precision
down to .001.

What we need then is a routine to convert the candidate solutions to
encoded binary strings and back again.

2. Initialization. A starting population is required—that is, a popu-
lation of candidate solutions. The bit strings of this first generation are
encoded randomly. Larger population sizes make it more likely that we will
find a good solution, but they require more processing time.

3. Objective function evaluation. The bit strings are decoded to their
decimal equivalents, and are used to evaluate the objective function. (The
objective function, for example, if we are looking at two scenario spec-
trums, gives us the Z coordinate value, the altitude of the three-dimensional
terrain, assuming the f values of the respective scenario spectrums are the X

and Y coordinates.) This is performed for all candidate solutions, and their
objective functions are saved. (Important: Objective function values must
be non-negative!)

4. Reproduction

a. Scaling based upon fitness. The objective functions are now scaled.
This is accomplished by first determining the lowest objective func-
tion of all the candidate solutions, and subtracting this value from all
candidate solutions. The results of this are summed up. Then, each
objective function has the smallest objective function subtracted
from it, and the result is divided by the sum of these, to obtain a
fitness score between 0 and 1. The sums of the fitness scores of all
candidate solutions will then be 1.0.

b. Random selection based upon fitness. The scaled objective func-
tions are now aligned as follows. If, say, the first objective function
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has a scaled fitness score of .05, the second has one of .1, and the
third .08, then they are set up in a selection scheme as follows:

First candidate 0 to .05
Second candidate .05 to .15
Third candidate .15 to .23

This continues until the last candidate has its upper limit at 1.0.
Now, two random numbers are generated between 0 and 1, with

the random numbers determining from the preceding selection
scheme who the two parents will be. Two parents must now be
selected for each candidate solution of the next generation.

c. Crossover. Go through each bit of the child, the new population
candidate. Start by copying the first bit of the first parent to the
first bit of the child. At each bit carryover, you must also generate
a random number. If the random number is less than or equal to
(probability of crossover/gene length), then switch to copying the
bits over from the other parent. Thus, if we have three scenario
spectrums and 12 bits per each variable, then the gene length is 36.
If we use a probability of crossover of .6, then the random number
generated at any bit must be less than .6/36, or less than .01667, in
order to switch to copying the other parent’s code for subsequent
bits. Continue until all the bits are copied to the child. This must be
performed for all new population candidates.

Typically, probabilities of crossover are in the range .6 to .9. Thus,
a .9 probability of crossover means there is a 90% chance, on average,
that there will be crossover to the child, that is, a 10% chance the
child will be an exact replicant of one of the parents.

d. Mutation. While copying over each bit from parent to child, gener-
ate a second random number. If this random number is less than
or equal to the probability of mutation, then toggle that bit. Thus, a
bit which is 0 in the parent becomes 1 in the child and vice versa.
Mutation helps maintain diversity in the population. The probability
of mutation should generally be some small value (i.e., <=.001); oth-
erwise the algorithm tends to deteriorate into a random search. As
the algorithm approaches an optimum, however, mutation becomes
more and more important, since crossover cannot maintain genetic
diversity in such a localized space in the n + 1 terrain.

Now you can go back to step three and perform the process for the next
generation. Along the way, you must keep track of the highest objective
function returned and its corresponding gene. Keep repeating the process
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until you have reached X unimproved generations, that is, X generations
where the best objective function value has not been exceeded. You then
quit, at that point, and use the gene corresponding to that best objective
function value as your solution set.

For an example of implementing the genetic algorithm, suppose our
objective function is one of the form:

Y = 1500 − (X − 15)2

For the sake of simplicity in illustration, we will have only a single
variable; thus, each population member carries only the binary code for
that one variable.

Upon inspection, we can see that the optimal value for X is 15, which
would result in a Y value of 1500. However, rarely will we know what the
optimal values for the variables are, but for the sake of this simple illustra-
tion, it will help if we know the optimal so that we can see how the algorithm
takes us there.

Assume a starting population of three members, each with the variable
values encoded in five-bit strings, and each initially random:

First Generation

Individual # X Binary X Y Fitness Score

1 10 01010 1475 .4751
2 0 00000 1275 0
3 13 01101 1496 .5249

Now, through random selection based on fitness, Individual 1 for the
second generation draws Parents 1 and 3 from the first generation (note
that Parent 2, with a fitness of 0, has died and will not pass on its genetic
characteristics). Assume that random crossover occurs after the fourth bit,
so that Individual 1 in the second generation inherits the first four bits from
Individual 1 of the first generation, and the last bit from Individual 3 of the
first generation, producing 01011 for Individual 1 of the second generation.

Assume Individual 2 for the second generation also draws the same
parents; crossover occurs only after the first and third bits. Thus, it inherits
bit 0 from Individual 1 in the first generation, bit 11 as the second and
third bits from the third individual in the first generation, and the last two
bits from the first individual of the first generation, producing 01110 as the
genetic code for the second individual in the second generation.

Now, assume that the third individual of the second generation draws
Individual 1 as its first parent as well as its second. Thus, the third individual
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in the second generation ends up with exactly the same genetic material as
the first individual in the first generation, or 01010.

Second Generation

Individual # X Binary X

1 11 01011
2 14 01110
3 10 01010

Now, through random mutation, the third bit of the first individual is
flipped, and the resulting values are used to evaluate the objective function:

Second Generation

Individual # X Binary X Y Fitness Score

1 15 01111 1500 .5102
2 14 01110 1499 .4898
3 10 01010 1475 0

Notice how the average Y score has gone up, or evolved, after two genera-
tions.

IMPORTANT NOTES

It is often advantageous to carry the strongest individual’s code to the next
generation in its entirety. By so doing, good solution sets are certain to be
maintained, and this has the effect of expediting the algorithm. Then, you
can work to aggressively maintain genetic diversity by increasing the values
used for the probability of crossover and the probability of mutation. I have
found that you can work with a probability of crossover of 2, a probability
of mutation of .05, and converge to solutions quicker, provided you retain
the code of the most fit individual from one generation to the next, which
keeps the algorithm from deteriorating to a random search.

As population size approaches infinity, that is, as you use a larger and
larger value for the population size, the answer converged upon is exact.
Likewise, with the unimproved generations parameter, as it approaches
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infinity—that is, as you use a larger and larger value for unimproved
generations—the answer converged upon is exact. However, both of these
parameter increases are at the expense of extra computing time.

The algorithm can be time intensive. As the number of scenario sets
increases, and the number of scenarios increases, the processing time grows
geometrically. Depending upon your time constraints, you may wish to keep
your scenario sets and the quantity of scenarios to a manageable number.
The genetic algorithm is particularly appropriate as we shall see by Chapter
12, where we find the landscape of leverage space to be discontinuous for
our purposes.

Once you have found the optimal portfolio, that is, once you have f

values, you simply divide those f values by the largest loss scenario of
the respective scenario spectrums to determine the f $ for that particular
scenario spectrum. This is exactly as we did in the previous chapter for
determining how many contracts to trade in an optimal portfolio.
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Leverage Space

Portfolios

Just as everyone is at a value for f whether they acknowledge it or not,
so too therefore is everyone in leverage space, at some point on the
terrain therein, whether they acknowledge it or not. The consequences

they must pay for this are not exorcised by their ignorance to this.

DILUTION

If we are trading a portfolio at the full optimal allocations, we can
expect tremendous drawdowns on the entire portfolio in terms of equity
retracement.

Even a portfolio of blue chip stocks, if traded at their geometric optimal
portfolio levels, will show tremendous drawdowns. Yet, these blue chip
stocks must be traded at these levels, as these levels maximize potential
geometric gain relative to dispersion (risk), and also provide for attaining
a goal in the least possible time. When viewed from such a perspective,
trading blue chip stocks is no more risky than trading pork bellies, and pork
bellies are no less conservative than blue chip stocks. The same can be said
of a portfolio of commodity trading systems and a portfolio of bonds.

Typically, investors practice dilution, whether inadvertent or not. That
is, if, optimally, one should trade a certain component in a portfolio at the
f$ level of, say, $2,500, they may be trading it consciously at an f $ level
of, say, $5,000, in a conscious effort to smooth out the equity curve and
buffer drawdowns, or, unconsciously, at such a half-optimal f level, since

323
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all positions can be assigned an f value as detailed in earlier chapters.
Often, people practice asset allocation is by splitting their equity into two
subaccounts, an active subaccount and an inactive subaccount. These are
not two separate accounts; rather, in theory, they are a way of splitting a
single account.

The technique works as follows. First, you must decide upon an initial
fractional level. Let’s suppose that, initially, you want to emulate an account
at the half f level. Therefore, your initial fractional level is .5 (the initial frac-
tional level must be greater than 0 and less than 1). This means you will split
your account, with .5 of the equity in your account going into the inactive
subaccount and .5 going into the active subaccount. Let’s assume we are
starting out with a $100,000 account. Therefore, $50,000 is initially in the
inactive subaccount and $50,000 is in the active subaccount. It is the equity
in the active subaccount that you use to determine how many units to trade.
These subaccounts are not real; they are a hypothetical construct you are
creating in order to manage your money more effectively. You always use the
full optimal fs with this technique. Any equity changes are reflected in the
active portion of the account. Therefore, each day, you must look at the ac-
count’s total equity (closed equity plus open equity, marking open positions
to the market) and subtract the inactive amount (which will remain con-
stant from day to day). The difference is your active equity, and it is on this
difference that you will calculate how many units to trade at the full f levels.

Let’s suppose that the optimal f for market system A is to trade one
contract for every $2,500 in account equity. You come into the first day with
$50,000 in active equity and, therefore, you will look to trade 20 units. If
you were using the straight half f strategy, you would end up with the same
number of units on day one. At half f, you would trade one contract for every
$5,000 in account equity ($2,500/.5) and you would use the full $100,000
account equity to figure how many units to trade. Therefore, under the half
f strategy, you would trade 20 units on this day as well.

However, as soon as the equity in the account changes, the number of
units you will trade changes as well. Let’s assume that you make $5,000 this
next day, thus pushing the total equity in the account up to $105,000. Under
the half f strategy, you will now be trading 21 units. However, under the
split equity technique, you must subtract the now-constant inactive amount
of $50,000 from your total equity of $105,000. This leaves an active equity
portion of $55,000, from which you will figure your contract size at the
optimal f level of one contract for every $2,500 in equity. Therefore, under
the split equity technique, you will now look to trade 22 units.

The procedure works the same on the downside of the equity curve as
well, with the split equity technique peeling off units at a faster rate than
the fractional f strategy. Suppose we lost $5,000 on the first day of trading,
putting the total account equity at $95,000. Under the fractional f strategy,
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you would now look to trade 19 units ($95,000/$5,000). However, under the
split equity technique you are now left with $45,000 of active equity and,
thus, you will look to trade 18 units ($45,000/$2,500).

Notice that with the split equity technique, the exact fraction of optimal
f that we are using changes with the equity changes. We specify the fraction
we want to start with. In our example, we used an initial fraction of .5.
When the equity increases, this fraction of the optimal f increases, too,
approaching 1 as a limit as the account equity approaches infinity. On the
downside, this fraction approaches 0 as a limit at the level where the total
equity in the account equals the inactive portion. This fact, that there is
built-in portfolio insurance with the split equity technique, is a tremendous
benefit and will be discussed at length later in this chapter.

Because the split equity technique has a fraction for f that moves, we
will refer to it as a dynamic fractional f strategy, as opposed to the straight
fractional f (which we will call a static fractional f ) strategy.

Using the dynamic fractional f technique is analogous to trading an
account full out at the optimal f levels, where the initial size of the account
is the active equity portion.

So, we see that there are two ways to dilute an account down from
the full geometric optimal portfolio. We can trade a static fractional or a
dynamic fractional f. Although the two techniques are related, they also
differ. Which is best?

To begin with, we need to be able to determine the arithmetic average
HPR for trading n given scenario spectrums simultaneously, as well as the
variance in those HPRs for those n simultaneously traded scenario spec-
trums, for given f values ( f1 . . . fn) operating on those scenario spectrums.
These are given now as:

AHPR ( f1 . . . fn) =

m∑
k=1

[(
1 +

n∑
i=1

(
fi∗

(−PLk,i

BLi

)))
∗ Probk

]
m∑

k=1
Probk

(10.01)

where: n = The number of scenario spectrums (market systems or
portfolio components).

m = The possible number of combinations of outcomes
between the various scenario spectrums (market
systems) based on how many scenarios are in each
set. m = The number of scenarios in the first spectrum
* the number of scenarios in the second spectrum *. . . *
the number of scenarios in the nth spectrum.
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Prob = The sum of probabilities of all m of the HPRs for a given
set of f values. Probk is the sum of the values in
brackets {} in the numerator, for all m values of a
given set of f values.

fi = The f value being used for component i. fi must be greater
than 0, and can be infinitely high (i.e., it can be greater
than 1.0).

PLk, j = The outcome profit or loss for the ith component
(i.e., scenario spectrum or market system) associated
with the kth combination of scenarios.

BLi = The worst outcome of scenario spectrum
(market system) i.

Thus, Probk in the equation is equal to Equation (9.03)
Equation (10.01) simply takes the coefficient of each HPR times its

probability and sums these. The resultant sum is then divided by the sum
of the probabilities.

The variance in the HPRs for a given set of multiple simultaneous sce-
nario spectrums being traded at given f values can be determined by first
taking the raw coefficient of the HPRs, the rawcoef:

rawcoefk = 1 +
n∑

i= 1

(
fi ∗

(−PLk,i

BLi

))
(10.02)

Then, these raw coefficients are averaged for all values of k between 1 and
m, to obtain arimeanrawcoef:

arimeanrawcoef =

(
m∑

k = 1
rawcoefk

)
m

(10.03)

Now, the variance V can be determined as:

V =

m∑
k = 1

(rawcoefk − arimeanrawcoef)2 ∗ Probk

m∑
k = 1

Probk

(10.04)

Where again, Probk is determined by Equation (9.03).
If we know what the AHPR is, and the variance at a given f level (say

the optimal f level for argument’s sake), we can convert these numbers into
what they would be trading at a level of dilution we’ll call FRAC. And, since
we are able to figure out the two legs of the right triangle, we can also
figure the estimated geometric mean HPR at the diluted level. The formulas
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are now given for the diluted AHPR, called FAHPR, the diluted standard
deviation (which is simply the square root of variance), called FSD, and the
diluted geometric mean HPR, called FGHPR here:

FAHPR = (AHPR − 1) * FRAC + 1

FSD = SD * FRAC

FGHPR =
√

FAHPR2 − FSD2

where: FRAC = The fraction of optimal f we are solving for.
AHPR = The arithmetic average HPR at the optimal f.

SD = The standard deviation in HPRs at the optimal f.
FAHPR = The arithmetic average HPR at the fractional f.

FSD = The standard deviation in HPRs at the fractional f.
FGHPR = The geometric average HPR at the fractional f.

Let’s assume we have a system where the AHPR is 1.0265. The standard
deviation in these HPRs is .1211 (i.e., this is the square root of the variance
given by Equation (10.04)); therefore, the estimated geometric mean is 1.019.
Now, we will look at the numbers for a .2 static fractional f and a .1 static
fractional f. The results, then, are:

Full f .2 f .1 f

AHPR 1.0265 1.0053 1.00265
SD .1211 .02422 .01211
GHPR 1.01933 1.005 1.002577

Here is what will also prove to be a useful equation, the time expected
to reach a specific goal:

T = ln(goal)
ln(geometric mean)

where: T = The expected number of holding periods to reach
a specific goal.

goal = The goal in terms of a multiple on our starting stake,
a TWR.

ln ( ) = The natural logarithm function.

Now, we will compare trading at the .2 static fractional f strategy, with
a geometric mean of 1.005, to the .2 dynamic fractional f strategy (20%
as initial active equity) with a daily geometric mean of 1.01933. The time
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(number of days, since the geometric means are daily) required to double
the static fractional f is given by Equation (5.07) as:

ln(2)
ln(1.005)

= 138.9751

To double the dynamic fractional f requires setting the goal to 6. This
is because, if you initially have 20% of the equity at work, and you start out
with a $100,000 account, then you initially have $20,000 at work. The goal is
to make the active equity equal $120,000. Since the inactive equity remains
at $80,000, you will have a total of $200,000 on your account that started
at $100,000. Thus, to make a $20,000 account grow to $120,000 means you
need to achieve a TWR of 6. Therefore, the goal is 6 in order to double a .2
dynamic fractional f :

ln(6)
ln(1.01933)

= 93.58634

Notice how it took 93 days for the dynamic fractional f versus 138 days for
the static fractional f.

Now let’s look at the .1 fraction. The number of days expected in order
for the static technique to double is expected as:

ln(2)
ln(1.002577)

= 269.3404

If we compare this to doubling a dynamic fractional f that is initially set
to .1 active, you need to achieve a TWR of 11. Hence, the number of days
required for the comparative dynamic fractional f strategy is:

ln(11)
ln(1.01933)

= 125.2458

To double the account equity, at the .1 level of fractional f is, therefore,
269 days for our static example, compared to 125 days for the dynamic. The
lower the fraction for f , the faster the dynamic will outperform the static
technique.

Let’s take a look at tripling the .2 fractional f. The number of days
expected by static technique to triple is:

ln(3)
ln(1.005)

= 220.2704

This compares to its dynamic counterpart, which requires:

ln(11)
ln(1.01933)

= 125.2458
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To make 400% profit (i.e., a goal or TWR, of 5) requires of the .2 static
technique:

ln(5)
ln(1.005)

= 322.6902

Which compares to its dynamic counterpart:

ln(21)
ln(1.01933)

= 1590201

It takes the dynamic almost half the time it takes the static to reach the
goal of 400% in this example. However, if you look out in time 322.6902 days
to where the static technique doubled, the dynamic technique would be at
a TWR of:

= .8 + 1.01933322.6902 ∗ .2

= .8 + 482.0659576 ∗ .2

= 97.21319

This represents making over 9,600% in the time it took the static to make
400%.

We can now amend Equation (5.07) to accommodate both the static and
fractional dynamic f strategies to determine the expected length required
to achieve a specific goal as a TWR. To begin with, for the static fractional
f , we can create Equation (5.07b):

T = ln(goal)
ln(FGHPR)

where: T = The expected number of holding periods to reach
a specific goal.

goal = The goal in terms of a multiple on our starting stake,
a TWR.

FGHPR = The adjusted geometric mean. This is the geometric
mean, run through Equation (5.06) to determine
the geometric mean for a given static fractional f.

ln( ) = The natural logarithm function.

For a dynamic fractional f , we have Equation (5.07c):

T =
ln

((
(goal−1)

FRAC

)
+ 1

)
ln(geometric mean)
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where: T = The expected number of holding periods
to reach a specific goal.

goal = The goal in terms of a multiple on our starting
stake, a TWR.

FRAC = The initial active equity percentage.
geometric mean = the raw geometric mean HPR at the

optimal f ; there is no adjustment performed
on it as there is in Equation (5.07b)

ln( ) = The natural logarithm function.

Thus, to illustrate the use of Equation (5.07c), suppose we want to
determine how long it will take an account to double (i.e., TWR = 2) at .1
active equity and a geometric mean of 1.01933:

T =
ln

((
(goal − 1)

FRAC

)
+ 1

)
ln(geometric mean)

=
ln

((
(2 − 1)

.1

)
+ 1

)
ln(1.01933)

=
ln

(
(1)
.1 + 1

)
ln(1.01933)

= ln (10 + 1)

ln(1.01933)

= ln(11)
ln(1.01933)

= 2.397895273
.01914554872

= 125.2455758

Thus, if our geometric means are determined off scenarios which have
a daily holding period basis, we can expect about 1251/4 days to double.
If our scenarios used months as holding period lengths, we would have to
expect about 1251/4 months to double.

As long as you are dealing with a T large enough that Equation (5.07c)
is greater than Equation (5.07b), then you are benefiting from dynamic frac-
tional f trading. This can, likewise, be expressed as Equation (10.05):

FGHPRT < = geometric meanT ∗ FRAC + 1 − FRAC (10.05)

Thus, you must iterate to that value of T where the right side of the
equation exceeds the left side—that is, the value for T (the number of holding
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periods) at which you should wait before reallocating; otherwise, you are
better off to trade the static fractional f counterpart.

Figure 10.1 illustrates this graphically. The arrow is that value for T at
which the left-hand side of Equation (10.05) is equal to the right-hand side.

Thus, if we are using an active equity percentage of 20% (i.e., FRAC =
.2), then FGHPR must be figured on the basis of a .2f. Thus, for the case
where our geometric mean at full optimal f is 1.01933, and the .2 f (FGHPR)
is 1.005, we want a value for T that satisfies the following:

1.005T < = 1.01933T ∗ .2 + 1 − .2

We figured our geometric mean for optimal f and, therefore, our geo-
metric mean for the fractional f (FGHPR) on a daily basis, and we want to
see if one quarter is enough time. Since there are about 63 trading days per
quarter, we want to see if a T of 63 is enough time to benefit by dynamic
fractional f. Therefore, we check Equation (10.05) at a value of 63 for T:

1.00563 <= 1.0193363 ∗ .2 + 1 − .2

1.369184237 <= 3.340663933 ∗ .2 + 1 − .2

1.369184237 <= .6681327866 + 1 − .2

1.369184237 <= 1.6681327866 − .2

1.369184237 <= 1.4681327866

The equation is satisfied, since the left side is less than or equal to the
right side of the equation. Thus, we can reallocate on a quarterly basis under
the given values and benefit from using dynamic fractional f.

Figure 10.1 demonstrates the relationship between trading at a static
versus a dynamic fractional f strategy over a period of time.

This chart shows a 20% initial active equity, traded on both a static and
a dynamic basis. Since they both start out trading the same number of units,
that very same number of units is shown being traded straight through as
a constant contract. The geometric mean HPR, at full f used in this chart,
was 1.01933; therefore, the geometric mean at the .2 static fractional f was
1.005, and the arithmetic average HPR at full f was 1.0265.

All of this leads to a couple of important points, that the dynamic

fractional f will outpace the static fractional f faster, the lower the fraction

and the higher the geometric mean. That is, using an initial active equity
percentage of .1 (for both dynamic and static) means that the dynamic
will overtake the static faster than if you used a .5 fraction for both. Thus,
generally, the dynamic fractional f will overtake its static counterpart faster,
the lower the portion of initial active equity. In other words, a portfolio
with an initial active equity of .1 will overcome its static counterpart faster
than a portfolio with an initial active equity allocation of .2 will overtake
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FIGURE 10.1 Percent growth per period for constant contract, static, and dy-
namic f

its static counterpart. At an initial active equity allocation of 100% (1.0),
the dynamic never overtakes the static fractional f (rather, they grow at
the same rate). Also affecting the rate at which the dynamic fractional f

overtakes its static counterpart is the geometric mean of the portfolio itself.
The higher the geometric mean, the sooner the dynamic will overtake its
static counterpart. At a geometric mean of 1.0, the dynamic never overtakes
its static counterpart.

The more time that elapses, the greater the difference between the
static fractional f and the dynamic fractional f strategy. Asymptotically,
the dynamic fractional f strategy has infinitely greater wealth than its static
counterpart.

One last important point about Figure 10.1. The constant contract line
crosses the other two lines before they cross over each other.

In the long run, you are better off to practice asset allocation with a
dynamic fractional f technique. That is, you determine an initial level—a
percentage—to allocate as active equity. The remainder is inactive equity.
The day-to-day equity changes are reflected in the active portion only. The
inactive dollar amount remains constant. Therefore, each day you subtract
the constant inactive dollar amount from your total account equity. This
difference is the active portion, and it is on this active portion that you will
figure your quantities to trade in, based on the optimal f levels.

Now, when the margin requirement is calculated for the positions, it
will not be exactly the same as your active equity. It can be more or less;
it doesn’t matter. Thus, unless your margin requirement is for 100% of the
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equity in the account, you will have some unused cash in the account on any
given holding period. Thus, you are almost always inadvertently allocating
something to cash (or cash equivalents). So you can see that there isn’t any
need for a scenario spectrum for cash or cash equivalents—they already
get their proper allocation when you do the active and inactive equity split.

REALLOCATION

Notice in Figure 10.1 that, trading at a dynamic fractional f , eventually the
active portion of your equity will dwarf the inactive portion, and you will be
faced with a portfolio that is far too aggressive for your blood—the same
situation you faced in the beginning when you looked at trading the portfolio
at the full optimal f amount. Thus, at some point in time in the future, you
will want to reallocate back to some level of initial active equity.

For instance, you start out at a 10% initial active equity on a $100,000
account. You, therefore, have $10,000 active equity—equity that you are
trading full out at the optimal f level. Each day, you will subtract $90,000
from the equity on the account. The difference is the active equity, and it is
on the active equity that you trade at the full optimal f levels.

Now, assume that this account got up to $1 million equity. Thus, sub-
tracting the constant dollar inactive amount of $90,000 leaves you at an
active equity of $910,000, which means you are now at 91% active equity.
Thus, you face those gigantic drawdowns that you sought to avoid initially,
when you diluted f and started trading at a 10% initial active equity.

Consider the case of reallocating after every trade or every day. Such
is the case with static fractional f trading. Recall again Equation (10.08a),
the time required to reach a specific goal.

Let’s return to our system that we are trading with a .2 active portion
and a geometric mean of 1.01933. We will compare this to trading at the
static fractional .2 f , where the resultant geometric mean is 1.005. Now, if
we are starting out with a $100,000 account, and we want to reallocate at
$110,000 total equity, the number of days (since our geometric means here
are on a per-day basis) required by the static fractional .2 f is:

ln(1.1)
ln(1.005)

= 19.10956

This compares to using $20,000 of the $100,000 total equity at the full f

amount, and trying to get the total account up to $110,000. This would
represent a goal of 1.5 times the $20,000:

ln(1.5)
ln(1.01933)

= 21.17807
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At lower goals, the static fractional f strategy grows faster than its
corresponding dynamic fractional f counterpart. As time elapses, the dy-
namic overtakes the static until, eventually, the dynamic is infinitely further
ahead. Figure 10.1 graphically displays this relationship between the static
and dynamic fractional f ’s.

If you reallocate too frequently, you are only shooting yourself in the
foot, as the technique would be inferior to its static fractional f counterpart.
Therefore, since you are better off, in the long run, to use the dynamic frac-
tional f approach to asset allocation, you are also better off to reallocate
funds between the active and inactive subaccounts as infrequently as pos-
sible. Ideally, you will only make this division between active and inactive
equity once, at the outset of the program.

It is not beneficial to reallocate too frequently. Ideally, you will never
reallocate. Ideally, you will let the fraction of optimal f you are using keep
approaching 1 as your account equity grows. In reality, however, you most
likely will reallocate at some point in time. Hopefully, you will not reallocate
so frequently that it becomes a problem.

Reallocation seems to do just the opposite of what we want to do,
in that reallocation trims back after a run up in equity, or adds more eq-
uity to the active portion after a period in which the equity has been run
down.

Reallocation is a compromise. It is a compromise between the theoret-
ical ideal and the real-life implementation. The techniques discussed allow
us to make the most of this compromise. Ideally, you would never reallo-
cate. Your humble little $10,000 account, when it grew to $10 million, would
never go through reallocation. Ideally, you would sit through the drawdown
which took your account down to $50,000 from the $10 million mark be-
fore it shot up to $20 million. Ideally, if your active equity were depleted
down to one dollar, you would still be able to trade a fractional contract (a
microcontract?). In an ideal world, all of these things would be possible.
In real life, you are going to reallocate at some point on the upside or the
downside. Given that you are going to do this, you might as well do it in a
systematic, beneficial way.

In reallocating—compromising—you reset things back to a state where
you would be if you were starting the program all over again, only at a dif-
ferent equity level. Then, you let the outcome of the trading dictate where
the fraction of f floats to by using a dynamic fractional f in between re-
allocations. Things can get levered up awfully fast, even when starting out
with an active equity allocation of only 5%. Remember, you are using the
full optimal f on this 5%, and if your program does modestly well, you’ll be
trading in substantial quantities relative to the total equity in the account in
short order.
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The first, and perhaps most important, thing to realize about reallo-
cation, can be seen in Figure 10.1. Note the arrow in the figure, which is
identified as that T where Equation (10.09) is equal. This amount of time, T,
is critical. If you reallocate before T, you are doing yourself harm in trading
the dynamic, rather than the static, fractional f.

The next critical thing to realize about reallocation is that you have
some control over the maximum drawdown in terms of percentage equity
retracements. Notice that you are trading the active portion of an account
as though it were an account of exactly that size, full out at the optimal
levels. Since you should expect to see nearly 100% equity retracements
when trading at the full optimal f levels, you should expect to see 100% of
the active equity portion wiped out at any one time.

Further, many traders who have been using the fractional dynamic f

approach over the last couple of years relate what appears to be a very good
rule of thumb: Set your initial active equity at one half of the maximum

drawdown you can tolerate. Thus, if you can take up to a 20% drawdown,
set your initial active equity at 10% (however, if the account is profitable and
your active equity begins to exceed 20%, you are very susceptible to seeing
drawdowns in excess of 20%).

There is a more accurate implementation of this very notion. Notice, that
for portfolios, you must use the sum of all f in determining exposure. That
is, you must sum the f values up across the components. This is important
in that, suppose you have a portfolio of three components with f values
determined, respectively, of .5, .7, and .69. The total of these is 1.89. That
is the f you are working with in the portfolio, as a whole. Now, if each of
these components saw the worst-case scenario manifest, the account would
see a 189% drawdown on active equity! When working with portfolios, you
should be very careful to be ever-vigilant for such an event, and to bear this
in mind when determining initial active equity allocations.

The third important notion about reallocation pertains to the concept
of portfolio insurance and its relationship to optimal f.

PORTFOLIO INSURANCE AND OPTIMAL f

Assume for a moment that you are managing a stock fund. Figure 10.2 de-
picts a typical portfolio insurance strategy, also known as dynamic hedging.
The floor in this example is the current portfolio value of 100 (dollars per
share). The typical portfolio will follow the equity market one for one. This
is represented by the unbroken line. The insured portfolio is depicted by
the dotted line. You will note that the dotted line is below the unbroken
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FIGURE 10.2 Portfolio insurance

line when the portfolio is at its initial value (100) or greater. This difference
represents the cost of performing the portfolio insurance. Otherwise, as the
portfolio falls in value, portfolio insurance provides a floor on the value of
the portfolio at a desired level (in this case, the present value of 100) minus
the cost of performing the strategy.

In a nutshell, portfolio insurance is akin to buying a put option on the
portfolio. Let’s suppose that the fund you are managing consists of only one
stock, which is currently priced at $100. Buying a put option on this stock,
with a strike price of $100, at a cost of $10, would replicate the dotted line
in Figure 10.2. The worst that could happen to your portfolio of one stock
and a put option on it is that you could exercise the put, which sells your
stock at $100, and you lose the value of the put, $10. Thus, the worst that this
portfolio can be worth is $90, regardless of how far down the underlying
stock goes.

On the upside, your insured portfolio suffers somewhat, in that the
value of the portfolio is always reduced by the cost of the put.

Now, consider that being long a call option will give you the same profile
as being long the underlying and long a put option with the same strike price
and expiration date as the call option. When we speak of the same profile,
we mean an equivalent position in terms of the risk/reward characteristics
at different values for the underlying. Thus, the dotted line in Figure 10.2
can also represent a portfolio composed of simply being long the $100 call
option at expiration.

Here is how dynamic hedging works to provide portfolio insurance.
Suppose you buy 100 shares of this single stock for your fund, at a price
of $100 per share. Now, you will replicate the call option by using this
underlying stock. The way you will do this is by determining an initial floor
for the stock. The floor you choose is, say, 100. You also determine an
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expiration date for this hypothetical option which you are going to create.
Let’s say that the expiration date you choose is the date on which this quarter
ends.

Now, you will figure the delta (the instantaneous rate of change in the
price of a call option relative to the change in price of the underlying instru-
ment) for this 100 call option with the chosen expiration date. Suppose the
delta is .5. This means that you should be 50% invested in the given stock.
Thus, you would have only 50 shares of stock rather than the 100 shares
you would have if you were not practicing portfolio insurance. As the value
of the stock increases, so, too, will the delta, and likewise the number of
shares you hold. The upside limit is a delta at 1, where you would be 100%
invested. In our example, at a delta of 1, you would have 100 shares.

As the stock decreases, so, too, does the delta, and likewise the size of
the position in the stock decreases. The downside limit is at a delta of 0,
where you wouldn’t have any position in the stock.

Operationally, stock fund managers have used noninvasive methods of
dynamic hedging. Such a technique involves not having to trade the cash
portfolio. Rather, the portfolio as a whole is adjusted to what the current
delta should be, as dictated by the model by using stock index futures, and,
sometimes, put options. One benefit of a technique using futures is that
futures have low transactions cost.

Selling short futures against the portfolio is equivalent to selling off part
of the portfolio and putting it into cash. As the portfolio falls, more futures
are sold, and as it rises, these short positions are covered. The loss to the
portfolio, as it goes up and the short futures positions are covered, is what
accounts for the portfolio insurance cost, the cost of the replicated put op-
tions. Dynamic hedging, though, has the benefit of allowing us to closely
estimate this cost at the outset. To managers trying to implement such a
strategy, it allows the portfolio to remain untouched, while the appropriate
asset allocation shifts are performed through futures trades. This noninva-
sive technique of using futures permits the separation of asset allocation
and active portfolio management.

To someone implementing portfolio insurance, you must continuously
adjust the portfolio to the appropriate delta. This means that, say, each
day, you must input into the option pricing model the current portfolio
value, time until expiration, interest rate levels, and portfolio volatility, to
determine the delta of the put option you are trying to replicate. Adding
this delta (which is a number between 0 and −1) to 1 will give you the
corresponding call’s delta. This is the hedge ratio, the percentage that you
should be investing in the fund.

Suppose your hedge ratio for the present moment is .46. Let’s say that
the size of the fund you are managing is the equivalent of 50 S&P futures
units. Since you want to be only 46% invested, it means you want to be
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54% disinvested. Fifty-four percent of 50 units is 27 units. Therefore, at the
present price level of the fund at this point in time, for the given interest
rate and volatility levels, the fund should be short 27 S&P units along with
its long position in cash stocks.

Because the delta needs to be recomputed on an ongoing basis, and
portfolio adjustments must be constantly monitored, the strategy is called
a dynamic hedging strategy.

One problem with using futures in the strategy is that the futures mar-
ket does not exactly track the cash market. Further, the portfolio you are
selling futures against may not exactly follow the cash index upon which
the futures market is traded. These tracking errors can add to the expense
of a portfolio insurance program. Furthermore, when the option being repli-
cated gets very near to expiration, and the portfolio value is near the strike
price, the gamma of the replicated option goes up astronomically. Gamma is
the instantaneous rate of change of the delta or hedge ratio. In other words,
gamma is the delta of the delta. If the delta is changing very rapidly (i.e., if
the replicated option has a high gamma), portfolio insurance becomes in-
creasingly more cumbersome to perform. There are numerous ways to work
around this problem, some of which are very sophisticated. One of the sim-
plest involves the concept of a perpetual option. For instance, you can
always assume that the option you are trying to replicate expires in, say,
three months. Each day you will move the replicated option’s expiration
date ahead by a day. Again, this high gamma usually becomes a problem
only when expiration draws near and the portfolio value and the replicated
option’s strike price are very close.

There is a very interesting relationship between optimal f and portfolio
insurance. When you enter a position, you can state that f percent of your
funds are invested. For example, consider a gambling game where your
optimal f is .5, biggest loss −1, and bankroll is $10,000. In such a case,
you would bet one dollar for every two dollars in your stake since −1, the
biggest loss, divided by −.5, the negative optimal f, is 2. Dividing $10,000 by
2 yields $5,000. You would, therefore, bet $5,000 on the next bet, which is
f percent (50%) of your bankroll. Had we multiplied our bankroll of $10,000
by f (.5), we would have arrived at the same $5,000 result. Hence, we have
bet f percent of our bankroll.

Likewise, if our biggest loss were $250 and everything else the same,
we would be making one bet for every $500 in our bankroll since −$250/−.5
= $500. Dividing $10,000 by $500 means that we would make twenty bets.
Since the most we can lose on any one bet is $250, we have thus risked f

percent, 50% of our stake in risking $5,000 ($250 ∗ 20).
Therefore, we can state that f equals the percentage of our funds at

risk, or f equals the hedge ratio. Remember, when discussing portfolios,
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we are discussing the sum of the f values of the components. Since f is
only applied on the active portion of our portfolio in a dynamic fractional f

strategy, we can state that the hedge ratio of the portfolio, H, equals:

H =
(

n∑
i= 1

fi

)
∗ active$

total equity
(10.06a)

where: H = The hedge ratio of the portfolio.
fi = The f value of the ith component in the portfolio.

active$ = The active portion of funds in an account.

Equation (10.06a) gives us the hedge ratio for a portfolio being traded
on a dynamic fractional f strategy. Portfolio insurance is also at work in a
static fractional f strategy, only the quotient active$/total equity equals 1,
and the value for f (the optimal f) is multiplied by whatever value we are
using for the fraction of f . Thus, in a static fractional f strategy, the hedge
ratio is:

H =
(

n∑
i= 1

fi

)
∗ FRAC (10.06b)

We can state that in trading an account on a dynamic fractional f basis,
we are performing portfolio insurance. Here, the floor is known in advance
and is equal to the initial inactive equity plus the cost of performing the
insurance. However, it is often simpler to refer to the floor of a dynamic
fractional f strategy as the initial inactive equity of an account.

We can state that Equation (10.06a) or (10.06b) equals the delta of the
call option of the terms used in portfolio insurance. Further, we find that this
delta changes much the way a call option, which is deep out of the money
and very far from expiration, changes. Thus, by using a constant inactive
dollar amount, trading an account on a dynamic fractional f strategy is
equivalent to owning a put option on the portfolio which is deep in the
money and very far out in time. Equivalently, we can state that trading a
dynamic fractional f strategy is the same as owning a call option on the
portfolio which doesn’t expire for a very long time and is very far out of the
money.

However, it is also possible to use portfolio insurance as a reallocation
technique to steer performance somewhat. This steering may be analogous
to trying to steer a tanker with a rowboat oar, but this is a valid reallocation
technique. The method initially involves setting parameters for the program.
First, you must determine a floor value. Once chosen, you must decide
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upon an expiration date, volatility level, and other input parameters to the
particular option model you intend to use. These inputs will give you the
option’s delta at any given point in time. Once the delta is known, you can
determine what your active equity should be. Since the delta for the account,
the variable H in Equation (10.06a), must equal the delta for the call option
being replicated:

H =
(

n∑
i= 1

fi

)
∗ active$

total equity

Therefore:

H
n∑

i= 1
fi

= active$
total equity

if H <

n∑
i= 1

fi (10.07)

Otherwise:

H = active$
total equity

= 1

Since active$/total equity is equal to the percentage of active equity, we
can state that the percentage of funds we should have in active equity, of
the total account equity, is equal to the delta on the call option divided by
the sum of the f values of the components. However, you will note that if
H is greater than the sum of these f values, then it is suggesting that you
allocate greater than 100% of an account’s equity as active. Since this is not
possible, there is an upper limit of 100% of the account’s equity that can be
used as active equity.

Portfolio insurance is great in theory, but poor in practice. As witnessed
in the 1987 stock market crash, the problem with portfolio insurance is
that, when prices plunge, there isn’t any liquidity at any price. This does not
concern us here, however, since we are looking at the relationship between
active and inactive equity, and how this is mathematically similar to portfolio
insurance.

The problem with implementing portfolio insurance as a realloca-

tion technique, as detailed here, is that reallocation is taking place con-

stantly. This detracts from the fact that a dynamic fractional f strategy

will asymptotically dominate a static fractional f strategy. As a result,

trying to steer performance by way of portfolio insurance as a dynamic

fractional f reallocation strategy probably isn’t such a good idea. How-

ever, anytime you use fractional f, static or dynamic, you are employing

a form of portfolio insurance.
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UPSIDE LIMIT ON ACTIVE EQUITY
AND THE MARGIN CONSTRAINT

Even if you are trading only one market system, margin considerations can
often be a problem. Consider that the optimal f in dollars is very often less
than the initial margin requirement for a given market. Now, depending on
what fraction of f you are using at the moment, whether you are using a
static or dynamic fractional f strategy, you will encounter a margin call if
the fraction is too high.

When you trade a portfolio of market systems, the problem of a margin
call becomes even more likely.

What is needed is a way to reconcile how to create an optimal portfolio
within the bounds of the margin requirements on the components in the
portfolio. This can very easily be found. The way to accomplish this is to
find what fraction of f you can use as an upper limit. This upper limit, L, is
given by Equation (10.08):

L =
n

MAX
i= 1

( fi$)

n∑
k = 1

(( n

MAX
i= 1

( fi$)/ fk$
)

∗ margink

) (10.08)

where: L = The upside fraction of f . At this particular fraction of f ,
you are trading the optimal portfolio as aggressively
as possible without incurring an initial margin call.

f k$ = The optimal f in dollars for the kth market system.
margink$ = The initial margin requirement of the kth market system.

n = The total number of market systems in the portfolio.

Equation (10.08) is really much simpler than it appears. For starters,
in both the numerator and the denominator, we find the expression

n

MAX
i= 1

,

which simply means to take the greatest f $ of all of the components in the
portfolio.

Let’s assume a two-component portfolio, which we’ll call Spectrums A
and B. We can arrange the necessary information for determining the upside
limit on active equity in a table as follows:

Component f $ Margin Greatest f $/f $

Spectrum A $2,500 $11,000 2500/2500 = 1
Spectrum B $1,500 $2,000 2500/1500 = 1.67
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Now we can plug these values into Equation (10.08). Notice that
n

MAX
i= 1

is
$2,500, since the only other f $ is $1,500, which is less. Thus:

L = 2500
1 ∗ 11000 + 1.67 ∗ 2000

= 2500
11000 + 3340

= 2500
14,340

= 17.43375174%

This tells us that 17.434% should be our maximum upside percentage.
Now, suppose we had a $100,000 account. If we were at 17.434% active

equity, we would have $17,434 in active equity. Thus, assuming we can trade
in fractional units for the moment, we would buy 6.9736 (17,434/2,500) of
Spectrum A and 11.623 (17,434/1,500) of Spectrum B. The margin require-
ments on this would then be:

6.9726 ∗ 11,000 = 76,698.60

11.623 ∗ 2,000 = 23,245.33
−−−−−−−−

Total Margin Requirement = $99,943.93

If, however, we are still employing a static fractional f strategy (despite
this author’s protestations), then the highest you should set that fraction is
17.434%. This will result in the same margin call as above.

Notice that using Equation (10.08) yields the highest fraction for f with-
out incurring an initial margin call that gives you the same ratios of the
different market systems to one another.

Earlier in the text we saw that adding more and more market systems
(scenario spectrums) results in higher and higher geometric means for the
portfolio as a whole. However, there is a trade-off in that each market sys-
tem adds marginally less benefit to the geometric mean, but marginally more
detriment in the way of efficiency loss due to simultaneous rather than se-
quential outcomes. Therefore, we have seen that you do not want to trade
an infinitely high number of scenario spectrums. What’s more, theoretically
optimal portfolios run into the real-life application problem of margin con-
straints. In other words, you are usually better off to trade three scenario
spectrums at the full optimal f levels than to trade 10 at dramatically re-
duced levels as a result of Equation (10.08). Usually, you will find that the
optimal number of scenario spectrums to trade in, particularly when you
have many orders to place and the potential for mistakes, is but a handful.

f SHIFT AND CONSTRUCTING A
ROBUST PORTFOLIO

There is a polymorphic nature to the n + 1 dimensional landscape; that is, the
landscape is undulating—the peak in the landscape tends to move around
as the markets and techniques we use to trade them change in character.
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This f shift is doubtless a problem to all traders. Oftentimes, if the f shift is
toward zero for many axes—that is, as the scenario spectrums weaken—it
can cause what would otherwise be a winning method on a constant unit
basis to be a losing program because the trader is beyond the peak of the f

curve (to the right of the peak) to an extent that he is in a losing position.
f shift exists in all markets and approaches. It frequently occurs to the

point at which many scenario spectrums get allocations in one period in
an optimal portfolio construction, then no allocations in the period imme-
diately following. This tells us that the performance, out of sample, tends
to greatly diminish. The reverse is also true. Markets that appear as poor
candidates in one period where an optimal portfolio is determined, then
come on strong in the period immediately following, since the scenarios do
not measure up.

When constructing scenarios and scenario sets, you should pay partic-
ular attention to this characteristic: Markets that have been performing well
will tend to underperform in the next period and vice versa. Bearing this in
mind when constructing your scenarios and scenario spectrums will help
you to develop more robust portfolios, and help alleviate f shift.

TAILORING A TRADING PROGRAM
THROUGH REALLOCATION

Often, money managers may opt for the dynamic f , as opposed to the static,
even when the number of holding periods is less than that specified by Equa-
tion (10.05) simply because the dynamic provides a better implementation
of portfolio insurance.

In such cases, it is important that the money manager not reallocate
until Equation (10.05) is satisfied—that is, until enough holding periods
elapse that the dynamic can begin to outperform the static counterpart.

A real key to tailoring trading programs to fit the money manager’s goals
in these instances is by reallocating on the upside. That is, at some upside
point in active equity, you should reallocate to achieve a certain goal, yet
that point is beyond some minimum point in time (i.e., number of elapsed
holding periods).

Returning to Figure 10.1, Equation (10.05) gives us T, or where the
crossing of the static f line by the dynamic f line occurs with respect to
the horizontal coordinate. That is the point, in terms of number of elapsed
holding periods, at which we obtain more benefit from trading the dynamic
f rather than the static f . However, once we know T from Equation (10.05),
we can figure the Y, or vertical, axis where the points cross as:

Y = FRAC ∗ Geometric MeanT − FRAC (10.09)
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where: T = The variable T derived from Equation (10.05).
FRAC = The initial active portion of funds in an account.

Geometric Mean = The raw geometric mean HPR; there is no
adjustment performed on it as there is in
Equation (5.07b).

Example:

Initial Active Equity Percentage = 5% (i.e., .05)

Geomean HPR per period = 1.004171

T = 316

We know at 316 periods, on average, the dynamic will begin to out-
perform the corresponding static f for the same value of f , per Equation
(10.05). This is the same as saying that, starting at an initial active equity of
5%, when the account is up by 13.63% (.05 * 1.004171316 − .05), the dynamic
will begin to outperform the corresponding static f for the same value of f .

So, we can see that there is a minimum number of holding periods
which must elapse in order for the dynamic fractional f to overtake its static
counterpart (prior to which, reallocation is harmful if implementing the

dynamic fractional f, and, after which, it is harmful to trade the static

fractional f), which can also be converted from a horizontal point to a
vertical one. That is, rather than a minimum number of holding periods, a
minimum profit objective can be used.

Reallocating when the equity equals or exceeds this target of active eq-
uity will generally result in a much smoother equity curve than reallocating
based on T, the horizontal axis. That is, most money managers will find it
advantageous to reallocate based on upside progress rather than elapsed
holding periods.

What is most interesting here is that for a given level of initial active

equity, the upside target will always be the same, regardless of what values

you are using for the geometric mean HPR or T ! Thus, a 5% initial active

equity level will always see the dynamic overtake the static at a 13.63%

profit on the account!

Since we have an optimal upside target, we can state that there is, as
well, an optimal delta on the portfolio on the upside. So, what is the formula
for the optimal upside delta? This can be discerned by Equations (10.06a)
and (10.06b), where FRAC equals that fraction of active equity which would
be seen by satisfying Equation (10.09). This is given as:

FRAC = (Initial Active Equity + Upside Target)
1 + Upside Target

(10.10)
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Thus, if we start out with an initial active equity of 5%, then 13.63% is the
upside point where the dynamic would be expected to overtake the static,
and we would use the following for FRAC in Equations (10.10a) and (10.10b)
in determining the hedge ratio at the upside point, Y, dictated by Equation
(10.13):

FRAC = (0.5 + 1.363)
(1 + .1363)

= .1863
1.1363

= .1639531814

Thus, when we have an account which is up 13.63%, and we start with a 5%
initial active equity, we know that the active equity is then 16.39531814%.

GRADIENT TRADING AND
CONTINUOUS DOMINANCE

We have seen throughout this text, that trading at the optimal f for a
given market system or scenario spectrum (or the set of optimal f s for
multiple simultaneous scenario spectrums or market systems) will yield
the greatest growth asymptotically, that is, in the long run, as the number
of holding periods we trade for gets greater and greater. However, we have
seen in Chapter 5, with “Threshold to Geometric,” and in Chapter 6, that if
we have a finite number of holding periods and we know how many holding
periods we are going to trade for, what is truly optimal is somewhat more
aggressive even than the optimal f values; that is, it is those values for f

which maximize expected average compound growth (EACG).
Ultimately, each of us can only trade a finite number of holding

periods—none of us will live forever. Yet, in all but the rarest cases, we
do not know the exact length of that finite number of holding periods, so
we use the asymptotic limit as the next best approximation.

Now you will see, however, a technique that can be used in this case of
an unknown, but finite, number of holding periods over which you are going
to trade at the asymptotic limit (i.e., the optimal f values), which, if you are
trading any kind of a diluted f (static or dynamic), allows for dominance
not only asymptotically, but for any given holding period in the future.

That is, we will now introduce a technique for a diluted f (which

nearly all money managers must use in order to satisfy the real-

world demands of clients pertaining to drawdowns) that not only en-

sures that an account will be at the highest equity in the very long
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FIGURE 10.3 Points where one method overtakes another can be viewed with
respect to time or return

run sense, but ensures that it will be at the highest equity at any

point in time, however near or far into the future that is! No longer

must someone adhering to optimal f (or, in a broader sense, this new

framework) reconcile themselves with the notion that it will be domi-

nant in the long run. Rather, the techniques about to be illustrated seek

dominance at all points in time!

Everyone is at an f value whether they acknowledge it or not. Since
nearly everyone is diluting what their optimal f values are—either intention-
ally or unintentionally through ignorance—these techniques always maxi-
mize the profitability of an account in cases of diluted f values, not just, as
has always been the case with geometric mean maximization, in the very
long run.

Again, we must turn our attention to growth functions and rates. Look
at Figure 10.3 where growth (the growth functions) is represented as a
percentage of our starting stake. Now consider Figure 10.4, which shows
the growth rate as a percentage of our stake.

Again, these charts show a 20% initial active equity, traded on both
a static and a dynamic basis. Since they both start out trading the same
number of units, that very same number of units is shown being traded
straight through as a constant contract. The geometric mean HPR (at full f )
used in this chart was 1.01933; therefore, the geometric mean at the .2 static
fractional f was 1.005, and the arithmetic average HPR at full f was 1.0265.

Notice that by always trading that technique which has the highest
gradient at the moment, we ensure the probability of the account being
at its greatest equity at any point in time. Thus, we start out trading on a



JWDD035-10 JWDD035-Vince February 10, 2007 22:13 Char Count= 0

The Geometry of Leverage Space Portfolios 347

FIGURE 10.4 Growth rate as a percentage of stake

constant contract basis, with the number of units being determined as that
number which would be traded initially if we were trading a fractional f .

Next, the static f gradient dominates, at which point in time (or on
the upside in equity) we switch to trading the static f Finally, the dynamic
gradient dominates, at which point we switch to trading on a dynamic f

basis, Notice that by always trading that technique which has the highest
gradient at that moment means you will be on the highest of the three lines
in Figure 10.3.

The growth function, Y, for the constant contract technique is now given
as:

∗

Y = 1 + (AHPR − 1) ∗ FRAC ∗ T (10.11)

∗
Just as Equation (10.05) gave us that point where the dynamic overtakes the static

with respect to the horizontal axis T, we can determine from Equations (10.11) and
(10.12) where the static overtakes a constant contract as that value of T where
Equation (10.12) equals Equation (10.11).

1 + (AHPR − 1) ∗ FRAC ∗ T => FGHPRT

Likewise, this can be expressed in terms of the Y coordinate, to tell us at what
percentage of profit, on the total equity in the account, we should switch from a
constant contract to static f trading:

Y = FGHPRT − 1

The value for T used in the preceding equation is derived from the one above it.
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The growth functions are taken from Equation (10.05). Thus, the static
f growth function is the left side of (10.05) and the dynamic f is the right
side. Thus, the growth function for static f is:

Y = FGHPRT (10.12)

And for dynamic f , it is:

Y = geometric meanT ∗ FRAC + 1 − FRAC (10.13)

Equations (10.11) through (10.13) give us the growth function as a mul-
tiple of our starting stake, at a given number of elapsed holding periods, T.
Thus, by subtracting 1 from Equations (10.11) through (10.13), we obtain
the percent growth as depicted in Figure 10.3.

The gradients, depicted in Figure 10.4, are simply the first derivatives
of Y with respect to T, for Equations (10.11) through (10.13). Thus, the
gradients are given by the following.

For constant contract trading:

dY

dT
= ((AHPR − 1) ∗ FRAC)

(1 + AHPR−) ∗ FRAC ∗ T
(10.14)

For static fractional f :

dY

dT
= FGHPRT ∗ ln(FGHPR) (10.15)

And finally for dynamic fractional f :

dY

dT
= geometric meanT ∗ ln(geometric mean) ∗ FRAC (10.16)

where: T = The number of holding periods.
FRAC = The initial active equity percentage.

geometric mean = The raw geometric mean HPR at the optimal f.
AHPR = The arithmetic average HPR at full optimal f.

FGHPR = The fractional f geometric mean HPR given by
Equation (5.06).

ln( ) = The natural logarithm function.

The way to implement these equations, especially as your scenarios
(scenario spectrums) and joint probabilities change from holding period to
holding period, is as follows. Recall that just before each holding period we
must determine the optimal allocations. In the exercise of doing that, we
derive all of the necessary information to get the values for the variables
listed above (for FRAC, geometric mean, AHPR, and the inputs to Equation
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(5.06) to determine the FGHPR) Next we plug these values into Equations
(10.14), (10.15), and (10.16). Whichever of these three equations results in
the greatest value is the technique we go with.

To illustrate by way of an example, we now return to our familiar two-to-
one coin toss. Let’s assume that this is our only scenario set, comprising the
two scenarios heads and tails. Further, suppose we are going to trade it at a
.2 fraction (i.e., one-fifth optimal f ). Thus, FRAC is .2, the geometric mean is
1.06066, and the AHPR is 1.125. To figure the FGHPR, from Equation (5.06)
we already have FRAC and AHPR; we need only SD, the standard deviation
in HPRs, which is .375. Thus, the FGHPR is:

1.022252415 =
(√

((1.125 − 1) ∗ .2 + 1)2 − (.375 ∗ .2)2
)

Plugging these values into the three gradient functions, Equations
(10.14) through (10.16), gives us the following table:

Eq. (10.14) Eq. (10.15) Eq. (10.16)

T Constant Contract Static f Dynamic f

1 0.024390244 0.022498184 0.012492741
2 0.023809524 0.022998823 0.013250551
3 0.023255814 0.023510602 0.014054329
4 0.022727273 0.02403377 0.014906865
5 0.022222222 0.024568579 0.015811115
6 0.02173913 0.025115289 0.016770217
7 0.021276596 0.025674165 0.017787499
8 0.020833333 0.026245477 0.018866489
9 0.020408163 0.026829503 0.02001093

10 0.02 0.027426524 0.021224793
11 0.019607843 0.02803683 0.022512289
12 0.019230769 0.028660717 0.023877884
13 0.018867925 0.029298488 0.025326317
14 0.018518519 0.02995045 0.026862611
15 0.018181818 0.030616919 0.028492097
16 0.017857143 0.03129822 0.030220427
17 0.01754386 0.031994681 0.032053599
18 0.017241379 0.03270664 0.03399797
19 0.016949153 0.033434441 0.036060287
20 0.016666667 0.034178439 0.038247704

We find that we are at the greatest gradient for the first two holding
periods by trading on a constant contract basis, and that on the third period,
we should switch to static f . On the seventeenth period, we should switch
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FIGURE 10.5 Continuous dominance vs. dynamic f

to dynamic f . If we were to do this, Figure 10.5 shows how much better
we would have fared, on average, over the first 20 plays or holding periods,
than by simply trading a dynamic fractional f strategy:

Notice that, at every period, an account traded this way has a higher
expected value than even the dynamic fractional f . Further, from period 17
on, where we switched from static to dynamic, both lines are forevermore
on the same gradient. That is, the dynamic line will never be able to catch up
to the continuous dominance line. Thus, the principle of always trading the
highest gradient to achieve continuous dominance helps a money manager
maximize where an account will be at any point in the future, not just in an
asymptotic sense.

To clarify by carrying the example further, suppose we play this two-to-
one coin-toss game, and we start out with an account of $200. Our optimal
f is .25, and a .2 f , one-fifth of this, means we are trading an f value of
.05, or we bet $1 for every $20 in our stake. Therefore, on the first play we
bet $10. Since we are trading constant contract, regardless of where the
account equity is thereafter, we bet $10 on each subsequent play until we
switch over to static f . This occurs on the third play. So, on the third bet,
we take where our stake is and bet $1 for every $20 we have in equity. We
proceed as such through play 16, where, going into the seventeenth play,
we will switch over to dynamic. Thus, as we go into every play, from play 3
through play 16, we divide our total equity by $20 and bet that many dollars,
thus performing a static fractional f .

So, assume that after the second play we have $210 in our stake. We
would now bet $10 on the next play (since 210/20 = 10.5, and we must round
down to the integer). We keep doing this going into each play through the
sixteenth play.



JWDD035-10 JWDD035-Vince February 10, 2007 22:13 Char Count= 0

The Geometry of Leverage Space Portfolios 351

On the seventeenth play, we can see that the dynamic f gradient over-
takes the others, so we must now switch over to trading on a dynamic f

basis. Here is how. When we started, we decided that we were going to
trade a 20% active equity, in effect (because we decided to trade at one-fifth
the full optimal f ). Since our starting stake was $200, then it means we
would have started out, going into play 1, with $40 active equity. We would
therefore have $160 inactive equity.

So, going into play 17, where we want to switch over to dynamic, we
subtract $160 from whatever is our equity. The difference we then divide
by $4, the optimal f $, and that is how many bets we make on play 17. We
proceed by doing this before each play, ad infinitum.

Therefore, let’s assume our stake stood at $292 after the sixteenth play.
We subtract $160 from this, leaving us with $132, which we then divide by
the optimal f $, which is $4, for a result of 33. We would thus make 33 bets
on the seventeenth play (i.e., bet $33).

If you prefer, you can also figure these continuous dominance break-
points as an upside percentage gain which must be made before switching
to the next level. This is the preferred way. Just as Equation (10.09) gives us
the vertical, or Y, coordinate corresponding to Equation (10.05)’s horizon-
tal coordinate, we can determine the vertical coordinates corresponding to
Equations (10.14) through (10.16). Since you move from a constant contract
to static f at that value of T whereby Equation (10.15) is greater than Equa-
tion (10.14), you can then plug that T into Equation (10.12) and subtract 1
from the answer. This is the percentage gain on your starting equity required
to switch from a constant contract to static f .

Since you move to dynamic f from static f at that value of T whereby
Equation (10.16) is greater than Equation (10.15), you can then plug that
value for T into Equation (10.13), subtract 1 from the answer, and that is the
percentage profit from your starting equity to move to trading on a dynamic
f basis.

IMPORTANT POINTS TO THE LEFT OF THE PEAK
IN THE n + 1-DIMENSIONAL LANDSCAPE

We continue this discussion that is directed towards most money managers,
who will trade a diluted f set (whether they know it or not), that is, they will
trade at less aggressive levels than optimal for the different scenario spec-
trums or market systems they are employing. We refer to this as being to the
left, a term which comes from the idea that, if we were looking at trading one
scenario spectrum, we would have one curve drawn out in two-dimensional
space, where being to the left of the peak corresponds to having less units
on a trade than is optimal. If we are trading two scenario spectrurms, we
have a topographical map in three-dimensional space, where such money
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managers would restrict themselves to that real estate which is to the left
of the peak when looking from south to north at the landscape, and left of
the peak when looking from east to west at the landscape. We could carry
the thought into more dimensions, but the term to the left, is irrespective
of the number of dimensions; it simply means at less than full optimal with
respect to each axis (scenario spectrum).

Money managers are not wealth maximizers. That is, their utility func-
tion or, rather, the utility functions imposed on them by their clients and
their industry, their U′′(x), is less than zero. They are, therefore, to the left
of the peaks of their optimal fs.

Thus, given the real-world constraints of smoother equity curves than
full optimal calls for, as well as the realization that a not-so-typical draw-
down at the optimal level will surely cause a money manager’s clients to flee,
we are faced with the prospect of where, to the left, is an opportune point
(to satisfy their U′′(x))? Once this opportune point is found, we can then
exercise continuous dominance. In so doing, we will be ensuring that by
trading at this opportune point to the left, we will have the highest expected
value for the account at any point thereafter. It does not mean, however,
that it will outpace an account traded at the full optimal f set. It will not.

Now we actually begin to work with this new framework. Hence, the
point of this section is twofold: first, to point out that there are possible
advantageous points to the left, and, second, but more importantly, to show
you, by way of examples, how the new framework can be used.

There are a number of advantageous points to the left of the peak, and
what follows is not exhaustive. Rather, it is a starting place for you.

The first point of interest to the left pertains to constant contract trading,
that is, always trading in the same unit size regardless of where equity runs
up or shrinks. This should not be dismissed as overly simplistic by candidate
money managers for the following reason: Increasing your bet size after

a loss maximizes the probability of an account being profitable at any

arbitrary future point. Varying the trading quantity relative to account

equity attempts to maximize the profitability (yet it does not maximize

the probability of being profitable).
The problem with trading the same constant quantity is that it not only

puts you to the left of the peak, but, as the account equity grows, you are
actually migrating toward zero on the various f axes.

For instance, let’s assume we are playing the two-to-one coin toss game.
The peak is at f = .25, or making one bet for every $4 in account equity.
Let’s say we have a twenty dollar account, and we plan to always make two
bets, that is, to always bet $2 regardless of where the equity goes. Thus,
we start out (fortunately, this is a two-dimensional case since we are only
discussing one scenario spectrum) trading at an f $ of $10, which is an f of
.1, since f $ = −BL/ f , it follows that f = − BL/ f $. Now, let us assume that
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we continue to always bet $2; that if the account were to get to $30 total
equity, our f , given that we are still only betting $2, corresponding to an f $
of $15, has migrated to .067. As the account continues to make money, the f

we are employing would continues to migrate left. However, it also works
in reverse—that, if we are losing money, the f we are employing migrates
right, and at some point may actually round over the peak of the landscape.
Thus, the peak represents where a constant contract trader should stop
constant contract trading on the downside. Thus, the f is migrating around,
passing through other points in the landscape, some of which are still to be
discussed.

Another approach is to begin by defining the worst case drawdown the
money manager can afford, in terms of percentage equity retracements, and
use that in lieu of the optimal f in determining f $.

f $ = abs(Biggest Loss Scenario)
Maximum Drawdown Percent

(10.17a)

Thus, if the maximum tolerable drawdown to a money manager is 20%,
and the worst-case scenario calls for a loss of −$1,000:

f $ = $1,000
.2

= $5,000

He should thus use $5,000 for his f $. In doing so, he still does not
restrict his worst-case drawdown to 20% retracement on equity. Rather,
what he has accomplished is that the drawdown to be experienced with the
manifestation of the single catastrophic event is defined in advance.

Note that in using this technique, the money manager must make certain
that the maximum drawdown percent is not greater than the optimal f , or
this technique will put him to the right of the peak. For instance, if the
optimal f is actually .1, but the money manager uses this technique with a
.2 value for maximum drawdown percentage, he will then be trading an f $
of $5,000 when he should be trading an f $ of $10,000 at the optimal level!
Trouble is certain to befall him.

Further, the example given only shows for trading one scenario spec-
trum. If you are trading more than one scenario spectrum, you must change
your denominator to reflect this, dividing the maximum drawdown percent
by n, the number of scenario spectrums:

f $ = abs(Biggest Loss Scenarion)(
Maximum Drawdown Percent

n

) (10.17b)

where: n = The number of components (scenario spectrums or
market systems) in the portfolio.
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FIGURE 10.6 Two-to-one coin toss, GRR at T = 1

Notice that by doing this, if each scenario spectrum realizes its worst-case
scenario simultaneously, you will still have defined the maximum drawdown
percent for the entire portfolio.

Next, we move on to another important point to the left, which may be
of importance to certain money managers: the growth risk ratio, or GRR
(Figure 10.6). If we take the TWR as the growth, the numerator, and the f

used (or the sum of the f values used for portfolios) as representing risk,
since it represents the percentage of your stake you would lose if the worst
case scenarios(s) manifest, then we can write the growth risk ratio as:

GRRT = TWRT

n∑
i=1

fi

(10.18)

This ratio is exactly what its name implies, the ratio of growth (TWRT ,
the expected multiple on our stake after T plays) to risk (sum of the f

values, which represent the total percentage of our stake risked). If TWR is
a function of T, then too is the GRR. That is, as T increases, the GRR moves
from that point where it is an infinitesimally small value for f , towards the
optimal f (see Figure 10.7). At infinite T, the GRR equals the optimal f. Much
like the EACG, you can trade at the f value to maximize the GRR if you
know, a priori, what value for T you are trying to maximize for.

The migration from an infinitesimally small value for f at T = 1 to
the optimal f at T = infinity happens with respect to all axes, although in
Figures 10.6 and 10.7 it is shown for trading one scenario spectrum. If you
were trading two scenario spectrums simultaneously, the peak of the GRR
would migrate through the three-dimensional landscape as T increased,
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FIGURE 10.7 Two-to-one coin toss, GRR at T = 30

from nearly 0,0 for both values of f, to the optimal values for f (at .23,.23
in the two-to-one coin toss).

Discerning the GRR for more than one scenario spectrum traded si-
multaneously is simple, using Equation (10.18), regardless of how many
multiple simultaneous scenario spectrums we are looking at.

The next and final point to be covered to the left, which may be quite
advantageous for many money managers, is the point of inflection in the
TWR with respect to f .

Refer again to Figure 9.2 in Chapter 9. Notice that as we approach the
peak in the optimal f from the left, starting at 0, we gain TWR (vertical)
at an ever-increasing rate, up to a point. We are thus getting greater and
greater benefit for a linear increase in risk. However, at a certain point,
the TWR curve gains, but at a slower and slower rate for every increase in
f . This point of changeover, called inflection, because it represents where
the function goes from concave up to concave down, is another important
point to the left for the money manager. The point of inflection represents
the point where the marginal increase in gain stops increasing and actually
starts to diminish for every marginal increase in risk. Thus, it may be an
extremely important point for a money manager, and may even, in some
cases, be optimal in the eyes of the money manager in the sense of what it
does in fact, maximize.

However, recall that Figure 9.2 represents the TWR after 40 plays. Let’s
look at the TWR after one play for the two-to-one coin loss, also simply
called the geometric mean HPR, as shown in Figure 10.8.

Interestingly, there isn’t any point here where the function goes from
concave up to concave down, or vice versa. There aren’t any points of
inflection. The whole thing is concave down.
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FIGURE 10.8 Geometric mean HPR two-to-one coin toss (= TWR at T = 1)

For a positive arithmetic expectation, the geometric mean does not
have any points of inflection. However, the TWR, if T > 1, has two points of
inflection, one to the left of the peak and one to the right. The one which
concerns us is, of course, the one to the left of the peak.

The left point of inflection is nonexistent at T = 1 and, as T increases,
it approaches the optimal f from the left (Figures 10.9 and 10.10). When T

is infinite, the point of inflection converges upon optimal f .
Unfortunately, the left point of inflection migrates toward optimal f as

T approaches infinity, just like with the GRR. Again, just like EACG, if you

FIGURE 10.9 d TWR/df for 40 plays (T = 40) of the two-to-one coin toss. The peak
to the left and the trough to the right are the points of inflection
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FIGURE 10.10 d TWR/df for 800 plays (T = 800) of the two-to-one coin toss. The
peak to the left and the trough to the right are the points of inflection. The left peak
is at f = .23

knew how many finite T you were to trade before you started trading, you
could maximize the left point of inflection.

∗

To recap how the left point of inflection migrates towards optimal f,
the following table depicts the numbers for the two-to-one coin-toss game:

2:1 Coin Toss

# plays (T) f inflection left

1 0
30 .12
40 .13
80 .17

800 .23

Thus, we again see that, as more time elapses, as T increases, miss-
ing the optimal f carries with it a steep penalty. Asymptotically, nearly
everything is maximized, whether it is EACG, GRR, or the left point of
inflection. As T increases, they all converge on optimal f . Thus, as T

∗
Interestingly, though, if you were trying to maximize the EACG for a given T, you

would be seeking a point to the right of the peak of the f curve, as the f value which
maximizes EACG migrates toward the optimal f as T approaches infinity from the
right.
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increases, the distance between these advantageous points and optimal f

diminishes.
Suppose a money manager uses daily HPRs and wants to be optimal

(with respect to inflection or GRR) over the course of the current quarter
(63 days). He would use a value of 63 for T and set himself at those coordi-
nates to be optimal for each quarter.

When we begin working in more than two dimensions, that is, when we
are dealing with more than one scenario spectrum, we enter an altogether
more complicated problem.

The solution can be expressed mathematically as that point where the
second partial derivatives of the TWR [Equation (9.04), raised to the power
of T, the number of holding periods at which we are seeking the points of
inflection] with respect to a each particular f equals zero, and each point is
to the left (on its axis) of the peak. This becomes ever more complicated in
that such a point, where the second partials of the TWR with respect to each
f equaling zero may not, depending upon the parameters of the scenario
spectrums themselves and how high or low T is, exist. If T equals one, the
TWR equals the geometric mean HPR, which is upside down parabolic—
it doesn’t have any points of inflection! Yet as T approaches infinity, the
point(s) of inflection approach the optimal f(s)! Shy of infinite T, there may
not be in most cases, such a conveniently common point of inflection with
respect to all axes.

∗

All of this brings us right back to the notion of the n + 1 dimensional
terrain in leverage space, if you will, the axes of which correspond to the f

values of the different scenario sets, is to act as a framework for analyzing
portfolio construction and quantity determination through time. There is
so much more to be done in working with this new framework. This chap-
ter is not the end-all on the subject. Rather, it is a mere introduction to
an altogether new and, I believe, better way of determining asset alloca-
tion. Almost certainly, portfolio strategists, applied mathematicians, asset
allocators, and programmers have much new fertile ground to work. Truly,
there is a great deal to be done in analyzing, working with, and adding to
this new framework, the rewards of which cannot yet even be determined.
More importantly, whether one attempts to actively employ the Leverage
Space Model, the tenets of The New Framework, as expressed here, are at
work and apply to him regardless.

∗
Remember that the primary thing gained by diversification, that is, trading more

than one scenario spectrum, or working in more than two dimensions, is that you
increase T, the number of holding periods in a given period of time—you do not
reduce risk. In light of this, someone looking to maximize the marginal increase in
gain to a marginal increase in risk, may well opt to trade only one scenario spectrum.
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DRAWDOWN MANAGEMENT AND
THE NEW FRAMEWORK

Drawdowns occur from one of three means. The first of these, the most
common, is a cataclysmic loss on one trade. I started in this business as
a margin clerk where my job was to oversee hundreds of accounts. I have
worked as a programmer and consultant to many of the largest traders in
the world. I have been trading and working around the trading arena for my
entire adult life, often with a bird’s-eye view of the way people operate in
and around the markets. I have witnessed many people being obliterated
over the course of a single trade. I have plenty of firsthand experience in
getting destroyed on a single trade as well.

The common denominator of every single occasion when this has

happened has been a lack of liquidity in the market. The importance of
liquidity cannot be overemphasized. Liquidity is not something I have been
able to quantify. It isn’t simply a function of open interest and volume.
Further, liquidity need not dry up for long periods of time in order to do
tremendous harm. The U.S. Treasury Bond futures were the most liquid
contract in the world in 1987. Yet, that, too, was a very arid place for a few
days in October of 1987. You must be ever vigilant regarding liquidity.

The second way people experience great drawdowns is the common,
yet even more tragic, means of not knowing their position until the market
has moved ferociously against them. This is tragic because, in all cases, this
can be avoided. Yet it is a common occurrence. You must always know your
position in every market.

The third cause of drawdowns is the most feared, although the conse-
quences are the same as with the first two causes. This type of drawdown
is characterized by a protracted losing streak, maybe with some occasional
winning trades interspersed between many losers. This is the type of draw-
down most traders live in eternal fear of. It is this type of drawdown that
makes systems traders question whether or not their systems are still work-
ing. However, this is exactly the type of drawdown that can be managed and
greatly buffered through the new framework.

The new framework in asset allocation concerns itself with growth
optimality. However, the money management community, as a general rule,
holds growth optimality as a secondary concern. The primary concern for
the money management community is capital preservation.

This is true not only of money managers, but of most investors as well.
Capital preservation is predicated upon reducing drawdowns. The new
framework presented allows us for the first time to reduce the activity of
drawdown minimization to a mathematical exercise. This is one of the many
fortuitous consequences of—and the great irony of—the new framework.
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Everything I have written of in the past and in this book pertains to
growth optimality. Yet, in constructing a framework for viewing things in a
growth optimal sense, we are able to view things in a drawdown optimal
sense within the same framework. The conclusions derived therefrom are
conclusions which otherwise would not have been arrived at.

The notion of optimal f, which has evolved into this new framework
in asset allocation, can now go beyond the theoretical formulations and
concepts and into the real-world implementation to achieve the goals of
money managers and individual investors alike.

The older mean-variance models were ill-equipped to handle the notion
of drawdown management. The first reason for this is that risk is reduced
to the simplified notion that dispersion in returns constitutes risk. It is pos-
sible, in fact quite common, to reduce dispersion in returns yet not reduce
drawdowns.

Imagine two components that have a correlation to each other that
is negative. Component 1 is up on Monday and Wednesday, but down on
Tuesday and Thursday. Component 2 is exactly the opposite, being down
on Monday and Wednesday, but up on Tuesday and Thursday. On Friday,
both components are down. Trading both components together reduces the
dispersion in returns, yet on Friday the drawdown experienced can actually
be worse than just trading one of the two components alone. Ultimately,

all correlations reduce to one. The mean variance model does not address
drawdowns, and simply minimizing the dispersion in returns, although it
may buffer many of the drawdowns, still leaves you open to severe draw-
downs.

To view drawdowns under the new framework, however, will give us
some very useful information. Consider for a moment that drawdown is
minimized by not trading (i.e., at f = 0). Thus, if we are considering two si-
multaneous coin-toss games, each paying two-to-one, growth is maximized
at an f value of .23 for each game, while drawdown is minimized at an f

value of zero for both games.
The first important point to recognize about drawdown optimality (i.e.,

minimizing drawdowns) is that it can be approached in trading. The optimal
point, unlike the optimal growth point, cannot be achieved unless we do
not trade; however, it can be approached. Thus, to minimize drawdowns,
that is, to approach drawdown optimality, requires that we use as small a
value for f , for each component, as possible. In other words, to approach
drawdown optimality, you must hunker down in the corner of the landscape
where all f values are near zero.

In something like the two-to-one coin-toss games, depicted in Figure
10.11, the peak does not move around. It is a theoretical ideal, and, in itself,
can be used as a superior portfolio model to the conventional models.
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FIGURE 10.11 Drawdown optimality is approached at a different point on the
landscape than the growth optimal point

However, as was mentioned earlier in this text, in the real world of
trading, the markets do not conform so neatly to the theoretical ideal. The
problem is that, unlike the two-to-one coin-toss games shown, the distri-
bution of returns changes through time as market conditions change. The
landscape is polymorphic, moving around as market conditions change. The
closer you are to where the peak is, the more dramatic the negative effects
will be on you when it moves, simply because the landscape is the steepest
in the areas nearest the peak. If we were to draw a landscape map, such
as the one in Figure 10.11, but only incorporating data over a period when
both systems were losing, the landscape (the altitude or TWR) would be at
1.0 at the f coordinates 0,0, and then it would slide off, parabolically, from
there.

We approach drawdown optimality by hunkering down in those f values
near zero for all components. In Figure 10.11 we would want to be tucked
down in the upper-left corner, near zero for all f values. The reason for this
is that, as the landscape undulates, as the peak moves around, the negative
effects on those in that corner are very minimal. In other words, as market
conditions change, the effect on a trader down in this corner is minimized.

The seeming problem, then, is that growth is sacrificed and this sacrifice
in growth occurs with an exponential difference. However, the solution to
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this problem can be found by the fundamental equation for trading. Since
growth—that is, TWR—is the geometric mean holding period return to the
power T, the number of plays is given by:

TWR = GT (10.19)

By hiding out in the corner, we have a much smaller G. However, by
increasing T, that is, the number of trades, the effect of an exponential
decrease in growth is countered, by itself an exponential function.

In short, if a trader must minimize drawdowns, he or she is far better
off to trade at a very low f value and get off many more holding periods in
the same span of time.

For example, consider playing only one of the two-to-one coin-toss
games. After 40 holding periods, at the optimal f value of .25, the geometric
mean HPR is 1.060660172, and the TWR is 10.55. If we were to play this same
game with an f value of .01, our geometric mean HPR would be 1.004888053,
which crosses 10.55 when raised to the power of 484. Thus, if you can get
off 484 plays (holding periods) in the same time it would take you to get
off 40 plays, you would see equivalent growth, with a dramatic reduction in
drawdowns. Further, you would have insulated yourself tremendously from
changes in the landscape. That is, you would also have insulated yourself a
great deal from changing market conditions.

It may appear that you want to trade more than one component (i.e., sce-
nario spectrum) simultaneously. That is, to increase T, you want to trade
many more components simultaneously. This is counter to the idea pre-
sented earlier in discussing the points of inflection that you may be better
off to trade only one component. However, by increasing the number of
components traded simultaneously, you increase the composite f of the
portfolio. For example, if you were to trade 20 scenario spectrums simulta-
neously, each with a .005 value of f, you would have a composite f of the
entire portfolio of 0.1. At such a level, if the worstcase scenarios were to
manifest simultaneously, you would experience a 10% drawdown on equity.
By contrast, you are better off to trade only one scenario spectrum whereby
you can get off the equivalent of 20 holding periods in the same spame of
time. This may not be possible, but it is the direction you want to be working
in to minimize drawdowns.

Finally, when a trader seeks to approach drawdown minimization, he
or she can use the continuous dominance notion in doing so. Continuous
dominance is great in the theoretical ideal model. However, it is extremely
sensitive to changes in the landscape. That is, as the scenarios used as input
change to accommodate changing market characteristics, continuous dom-
inance begins to run into trouble. In a gambling game where the conditions
do not change from one period to the next, continuous dominance is ideal.
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In the real world of trading, you must insulate yourself from the undulations
in the landscape. Thus, drawdown minimization under the new framework
lends itself very well to implementing continuous dominance.

So we have now gone full circle, from discerning the landscape of lever-
age space and finding the growth optimal point on it to retreating away from
that point to approach the real-world primary constraint of drawdown min-
imization and capital preservation. By simply increasing the exponent, by
whatever means available to us, we achieve growth. We can possibly achieve
equivalent growth if we can get a high enough T, a high enough exponent.
Since the exponent is the number of holding periods in a given span of time,
we want to get as many holding periods in a given span of time as possible.
This does not necessarily mean, however, to trade as many components as
possible. All correlations revert to one. Further, we must always assume
that worst-case scenarios will manifest simultaneously for all components
traded. We must consider that the composite f , the sum of the f values for
all components being simultaneously traded, is a drawdown that we will,
therefore, experience. This suggests that, in seeking to approach drawdown
optimality, yet still striving for equivalent growth as at the growth optimal
point, we trade as few components as possible, with as small an f for each
component as possible, while managing to get as many holding periods in
a given span of time as possible.

The growth optimal point is a dangerous place to be. However, if we hit
it just right, that is, if we are at the place where the peak will be, we can see
tremendous growth. Even so, we will endure severe drawdowns. However,
the leverage space framework allows us to formulate a plan, a place to be
on the map of leverage space, to achieve drawdown minimization. It further
allows us an alternate avenue to achieve growth, by increasing T, the expo-
nent, by whatever means necessary. This strategy is not so mathematically
obvious when viewed under the earlier frameworks.

This is but one means, and a very crude one at that, for mitigating
drawdowns in the Leverage Space Model. In Chapter 12, we will see how the
terrain of leverage space is “pock-marked,” by “holes,” where the probability
of a given drawdown is too high for an investor’s utility preference.

When viewed in the sense to be presented in Chapter 12, the drawdown
mitigation technique just mentioned, virtually insures the investor will not
be within a pock-marked-out area of the terrain. However, he pays a steep
price here for being way to the left of the peak of all curves in leverage
space. In Chapter 12, we will see that, although the 0, . . . 0 edge point in
leverage space is never pock-marked out, we can determine other, far more
favorable areas in the terrain.
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Practice
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C H A P T E R 11

What the
Professionals

Have Done

In this chapter we examine those common denominators, in terms of
portfolio and systems management, that seem to be shared among the
more successful commodities funds.
In looking at the real world now, versus the theoretical one in which

we have been mired thus far in the text, we will now consider those fund
managers regarded as the long-term trend followers, and not some of the
more novelty acts.

We’re looking at the successful long-term trend followers here. That is,
we are focusing on those who manage the most money in the CTA business,
have for a number of years, and, over those years, have had considerable
success both in the markets with these funds as well as raising investment
money in the funds. These are all quite recognizable names as of this writing.

Why pick them? First, they manage the largest amounts that are in-
vested in futures speculation. In fact, I would venture to say that as of this
writing, and for decades preceding it, well over half of the money in man-
aged futures has been under the control of what might be termed long-term

trend following.
Second, the larger investors—that is, the institutions that now allocate

a small portion of their enormous funds to futures and alternative-type
investments—have been attracted by these funds. Therefore, from a busi-
ness standpoint, the funds have been unquestionably successful, and it is
exactly that type of success that so many fund managers covet.

Lastly, exactly because there is this enormous chasm between what
these successful funds and individuals do, versus the optimal f/Leverage
Space Model framework, as discussed to this point, it bears discussion.

367
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Here are the main, common tactics that most of these successful long-
term trend-following funds are following:

COMMONALITIES

1. Most everyone is risking x percent per trade on a given market system.
Typically, this is in the neighborhood of 0 to 2 % per trade. This risk is
essentially determined by where the stop out is on the given trade, and
the money at risk in the account. Thus, if the risk is 1% per trade, and
there is $10 million in the account, the percentage of risk on the trade
is $100,000. If the stop-out point on this trade was $1,000 from the entry,
there would be 100 contracts put on.

2. The stop-out points are almost always a function of recent volatility in one
fashion or another—often, the stop-out being a multiplier of the previous
X bar’s average range (times something, usually a constant value like 3) ,
or something along the lines of “the lowest low in the past X bars” (which,
too, is a function of recent volatility). There is always seemingly a recent

volatility metric that is employed in the quantity calculation. Thus, the
more volatile the market, the less the quantity traded will come out to
be, and vice versa.

3. Trend-following funds have typically shown virtually no concern for cor-
relation, though stock traders do. In other words, a manager who trades,
among other things, dollar yen, sterling, and dollar euro may have a 1%
position concurrently in all three markets, lined up on the same side of
the dollar, while at other times will have only one such position on, for
a net risk of 1% versus the dollar. This is not at all uncommon to see in
the real world of successful fund managers, the rationale being that if,
say, in this example, all three are making a good run, and you are trading
all three as separate market systems, then that dictates you should take
this 3% risk versus the dollar at this time.

Of course, if you were risking 20% per position, you might not follow this
rule and have 60% of the equity on the line against the dollar! The luxury of
being able to nearly disregard correlation is a function of not being anywhere
near what would otherwise be the optimal f on these positions. Again, this
is a major divergence between theory and practice.

DIFFERENCES

The main differences between these funds, then, aside from where their
stops are, is the markets they trade (this is the biggest difference between
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most of them). Essentially, long-term trend-following systems will be long
a raging bull market in whatever tradable you’re looking at. However, the
major differences are the stops. The different philosophies are:

1. Always in a market. This is a two-phase approach (“long/short”) versus
a three-phase (“long/flat/short”) approach. Often, these two approaches
are combined and netted out. However, a two-phase approach in a long-
term trend-following system will typically have stops much farther away
than a three-phase system. Since the distance the stop is away from
the market will dictate the quantity, very often the two-phased types of
systems will have on considerably less quantity.

2. Markets traded. Typically, most managers of the successful long-term
trend-following systems (I’m speaking of the larger fund managers here)
trade about 20 markets, give or take half a dozen. These typically are the
markets that are liquid enough to facilitate the quantity they are trading
in. This is where a lot of guys are fooling themselves by selecting a handful
of lucky markets. However, though they may trade client money in only
those markets, they will often trade their own money in ALL markets.

Some managers do trade all markets—rough rice, rapeseed, etc.—with
the thought that there are going to be giant trends somewhere, and the only
way to participate in them is to be in those markets.

Of course, there are the novelty acts that trade only grains or only cur-
rencies, for example, but these are of no real interest to us in this discussion.

FURTHER CHARACTERISTICS OF
LONG-TERM TREND FOLLOWERS

There is also the decision of how frequently the size of a position is altered.
The answer to this could have fallen under either the “Commonalities” sec-
tion or the “Differences” section.

Typically, when you speak with these fund managers, they will almost
unanimously tell you that if there were no costs to doing so, they would alter
their position sizes as frequently as possible—in fact, if it were possible, they
would adjust them continuously. This is indicative of someone practicing
portfolio insurance of some sort—that is, replicating an option, where their
size is the option’s delta percent of what it would be if it were very profitable
(i.e., the systems equity curve were deep in the money). In other words, they
replicate an option on that market system’s equity curve.

Yet, in application, managers differ wildly from this. One of the most
successful (who always has a position in a given market) will alter his size
only on every rollover occurrence.
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There is also the practice of staggering entries and exits. That is, most
of these funds are so large that if they are required to execute a trade at a
particular price, rather than moving the market in a big way at that particular
price, they may break up that sizable order into numerous smaller orders
and execute them at various prices near the price that was supposed to be
the actual order price. Some fund managers practice this; others do not.
Surprisingly, the deciding factor does not seem to be a function of the size
of the fund! Some funds will throw an enormous order at a single, given
price.

This same notion of staggered entries and exits is sometimes practiced
in the context of multiple systems on the same market. As a simplified
example, suppose I am a fund manager and I have a system that has a single
parameter, and that system for today calls for me to enter a particular market
at a price of 100.

Rather than operate in this fashion, it is often common to have differ-
ent parameters, in effect creating different “systems,” as it were, causing a
staggering of entries and exits. This is a fairly easy process.

So, whereas intentional staggering of entries and exits to mitigate slip-
page is not universally employed, the notion of inadvertently doing this, or
staggering entries and exits as a fortunate by-product of using numerous
parameters on the same market system, is quite pervasive and accepted.

The concept of using an array of parameter values is also rather widely
thought to help alleviate the problems of what parameter values to use in
the future, based on historical testing. The thinking is that it is difficult to
try to pinpoint what the very best parameter will be in the future. Since
most of these systems are robust in terms of giving some level of positive
performance against a wide spectrum of parameter values, by using an
array of parameter values, fund managers hope to avoid selecting what in
the future will be an outlier parameter value in terms of poor return. By
using an array of parameter values, they tend to come in more toward what
the typical parameter performance was in the past—which is acceptable
performance.

Parameter optimization tends to be fraught with lots of questions at
all levels. Though the concept of parameter optimization is, in effect, in-
escapable in this business, my experience as an observer here is that there
is not much to it. Essentially, most people optimize over the entire data set
they can get their hands on, and look at the results for parameter values over
this period with an eye toward robustness and trying to pick that parameter
value that, though not necessarily the peak one, is the one in a range of
parameter values where all have performed reasonably well. Additionally,
they tend to break down the long history of these runs into thirds, some-
times fourths. For example, if they have a 28-year history, they will look
at things in 7-year increments—again, with the same criteria. Of note here
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is the question of whether they use the same parameter values from one
market to another. Typically, they do not, using a different set of parameter
values for different markets, though this is not universal.

Additionally, as for how frequently they optimize and reestablish param-
eters, this too seems to be all over the board. Some do so annually, some
do it considerably more frequently than that. Ultimately, this divergence in
operations also seems to have little effect on performance or correlation
with one another.

There has been a trend in recent years to capture the characteristics of
each individual market’s prices, then use those characteristics to generate
new, fictitious data for these markets based on those characteristics. This
is an area that seems to hold great promise.

The notion of adding to a winning position, or pyramiding, is almost
completely unseen among the larger fund managers. That is, there just don’t
seem to be any large funds out there that add to winning positions accord-
ing to some schedule as a trade progresses. However, this is occluded, as
many funds that employ multiple trend-following systems and/or an array
of parameter values for a given market system will inadvertently add to
positions. Aside from that, the concept of pyramiding is virtually unseen.

Almost as rare is the notion of taking profits. Rarely do any of these
funds have a set target where they will exit a trade. Rather, there is almost
always a trailing stop, whereby the position is either exited or flipped.1

Related to the notion of exiting a trade at a specified target is the entire
concept of trying to smooth out the equity curve. These techniques have
been employed with varying and, in most cases, none-too-stellar success.

Attempts to do this are often along the lines of so-called anti-trending

systems, that is, systems that tend to profit in flat markets. Again, since
these successful funds profit when there are trends, they tend to suffer in
the absence of such trends. Hence the emergence of anti-trending systems
along the lines of option writing (covered or uncovered, often with spreads
of the butterfly type—essentially anything that takes premium at the es-
tablishment of the position), or convertible-type arbitrage, etc. (The list of
anti-trending types of systems is nearly endless and unbelievably creative!
There is a long list of anti-trending types of systems devised in recent years.)

1There are individual traders, however, who have had great success with taking
profits on trades and are far more short-term oriented, particularly those of the
bailout-type exits. The reason for this is that by being able to convert many losing
trades—as well as diminishing what otherwise might be large winning trades, to ef-
fectively a scratch, the standard deviation in returns from trade to trade is tightened
up. Per the Pythagorean Theorem, from previous chapters, this is effectively the
same as increasing the arithmetic average trade in terms of growth on an account.
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Ideally, managers would like to have trend-following systems that are
uncorrelated or even perhaps negatively correlated. However, these don’t
seem to exist, and, quite likely if something was spotted that exhibited this
characteristic, in the absence of a causal factor for the correlation, it might
well be ready to turn and perform in an opposite manner.

The idea of trading anti-trending systems has been to both mitigate
drawdown by attempting to smooth out the equity curve and to provide a
somewhat regular return on a fund, an attempt to give a certain buoyancy to
its performance.2 There has been a prevailing trend in the industry that the
only way you can interest the larger institutions to invest with you is if you
can produce 1 to 1.5% returns per month with limited drawdowns. Fund
managers have attempted to incorporate these convergent, anti-trending
types of systems into the process with that goal in mind. Ultimately, how-
ever, very little (aside from the increase in automation) has changed in the
way successful funds operate in terms of their market strategies. Attempts
to incorporate convergent, or anti-trending, systems have shown limited
success thus far.

* * *

In 1984, a group of well-trained and highly screened individuals, who were
at the time nontraders, and who were subsequently dubbed the Turtles,

laid out a lot of these basic commonalities regarding successful long-term
trading when they began opening up about their training. This was the group
Richard Dennis founded in a dispute with his colleague William Eckhardt
over whether successful trading skills could be taught.

Since that time, supposedly, some of the original Turtles have seen
great success; others, failure. The distinguishing characteristics, though
speculated upon by many, aren’t really known (by me anyhow). However,
it should be mentioned at this point that failure, usually in a system that,
in the long run, shows a profit, is solely the result of where one stops in
the equity cycle. Clearly, even at a very modest level for f , the drawdowns
to be expected are extreme. In a system that will, say, at the end of five
years, be wildly profitable, very likely that system has had some hair-curling,
greater-than-anticipated drawdowns. Quitting in such a drawdown, then, is
considered failure.

2As of this writing, interest rates of any duration are and have been near their
lows of four decades. In addition to protracted, multiyear drawdowns that many of
these funds are experiencing as of this writing, the low interest rates seem to have
created an atmosphere that may have promoted the idea of further incorporating
anti-trending types of systems.
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Put another way, if you own a casino, and an individual comes in, has
a few plays that break in his favor, and you quit the casino business at that
point, having lost money at it for the duration of being in the casino business,
then, yes, you are, by definition, a failure in the casino business.

As of this writing, February 2006, the long-term trend followers are in
the midst of a protracted multiyear drawdown, with many funds down well
over 50%. People are saying, “Long-term trend following is dead.”

As you will see in the next chapter, “The Leverage Space Portfolio Model
in the Real World,” this type of drawdown is absolutely expected and normal.
In fact, it may well get worse before it gets any better.

* * *

Given these basic building blocks of allocation, however seemingly crude,
one could (and many, in fact, have) create successful commodity funds.
Merely by risking 1% of an account’s capital on 20 seemingly disparate mar-
kets (or not so disparate, even, given how few markets are available for
some funds because of their liquidity constraints as dictated by their size),
some funds have seen wild success over the years by any measure; and,
peculiarly, with no concern for correlations.3

One very large, very successful fund that has been around for a gener-
ation has operated that very way since inception and is known for coming
through with nice returns over time, with rather small, perfectly digestible-
to-most drawdowns. Another long-term, successful fund with roughly USD
1 billion currently trades only about a dozen markets with a single model
and three parameter sets per market.

By contrast, one of their close competitors with a similar amount un-
der management, and funds highly correlated to the one just mentioned,
use six to eight models with dozens of parameter sets for each market
and a basket of over 60 markets! As would be expected, their returns
have historically been smoother, but not relatively to the extent one might
expect.

With the majority of the commodity funds, however, that 20% figure
could be 5% or it could be 50%, but at 20% you’ll be right in the mainstream,
right in or near the fattest part of the curve. As for the stop-out amount,
typically this would be the lesser of 2% of an account’s equity or the per-
centage allocated to trading (again, 20% putting you in the fat part of the
curve), divided by the number of markets traded.

3This may not be such a bad approach. Given that correlations do not seem to
maintain consistency with the magnitude of swings, when all cut against you, in
such an allocation model, you are looking at a 20 % loss.
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Does this mean that mean-variance models are not employed? Though
a gross generalization, in terms of the individual funds, it most often is
not. However, with the larger pools and fund of funds, it tends to be. So
the general rule out there seems to be that if it is a solitary fund, a single
market system, say, across markets, mean-variance is not employed most
of the time, whereas, if it is a conglomeration of funds—or market systems,
it tends to be used more.

This is not to say that individual funds are not looking to pair uncorre-
lated items together, or are not working to smooth out their equity curves
via a mean-variance approach. However, and particularly more recently,
the individual large funds appear to be looking more toward a value-at-risk

means of allocation, and more toward the notion of trying to get the biggest
bang they can out of their funds within the constraint of “acceptable” draw-
downs.

Sometimes, they are looking at individual markets and their individual
drawdowns, then the drawdowns of the portfolio as a whole. Most larger
funds appear to allocate an equal amount of risk to each market and then
scale the whole portfolio up to the acceptable level of risk to see what the
return is.

Still others do each market individually, so in the markets that have
performed better, the percentage of equity to risk on each trade in an attempt
to achieve an x percent chance of a y percent drawdown is higher. Then
these different percentages for each market are tested together, obtaining
a single portfolio, which is then further scaled up or down to retain that x

percent chance of a y percent drawdown for the entire portfolio. Note that
under this method, a market that was twice as profitable will end up getting
twice as much allocated to it.

The interesting aspect of this approach (versus merely allocating an
equal amount of risk to each market, then scaling the portfolio up or down as
a whole to achieve the desired risk level)—that is, of preprocessing by each
individual market, thus, when you subsequently scale the whole portfolio,
achieving different allocations to different market systems—is, in effect,
you have employed mean variance indirectly. Thus, such an approach can
be said to combine mean variance with value at risk.

This type of an approach is typically employed in the following manner.
Let’s suppose you have 25 years of historical data. For each market, then,
you look through all the data, seeking to obtain that percentage of equity
to risk in each market such that there are no more than 25 × 12 = 300
months × 1% = 3 months, where the loss was greater than 20%. This is
typically regarded as the standard way to obtain value at risk from a trading
study. Once you have obtained this percentage of equity to risk for this
particular market system, you must decide if the return over that period
justifies including it in the portfolio.
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Once you have settled on the components of the portfolio and their
relative percentages of risk, you then perform step 2, which is to look at
the portfolio as a whole, to determine a scaling factor by which to multiply
all the component risk percentages. Funds that allocate a same risk level to
each market system perform only step 2 of this analysis.

In implementation, before a trade is to be initiated, the stop on the trade
on a per-contract basis is determined. Now, the portfolio value (some use
the current value; some, the value as of last night; others, the value at the
beginning of the month) is divided by the portfolio scaling factor adjusted
risk percentage for this market, and that number is then divided by the risk
per contract on this trade, to determine the number of contracts to allocate.

So, if we have a $1 million account, and our stop-out on a one-contract
basis on this trade is $5,000, the relative percentage of risk is 4 % (the number
that gave us no more than an x percent chance of a y percent drawdown
over the 25 years of past data for this market), and our portfolio scaling
factor is .7 (the number that gave us no more than an x percent chance of
a y percent drawdown over the 25 years of past data for the portfolio as a
whole). We then have:

1,000,000 × .04 × .7/5,000 = 5.6 contracts

Note the .04 here, for most funds, is typically a constant from one market
system to the next, but again, there are some funds that do derive this
number individually for each market system.

Of note here too is the .7 portfolio scaling factor. If all markets were
perfectly correlated, then this number would equal 1 divided by the number
of market systems in the portfolio. Therefore, the higher you can get this
number, the less correlated the constituent market systems are. If you had
only two components and there was a negative correlation, your portfolio
scaling factor would actually be greater than 1.

However, it may not be a bad bet to expect worst months among market
systems to cluster together in the future, and therefore, may not be a bad
bet to simply say that your portfolio scaling factor is to be 1 divided by the
number of market systems in the portfolio.

* * *

These concepts aren’t altogether complicated as applied in the crude ways
they are being employed in the real world as outlined here. What is hard
is getting software that can do this, keep track of the equity, perform the
rollovers for the raw futures data rather than continuous contracts, and so
on. The concepts as expressed here are actually pretty easy, but getting the
tools to do it accurately is not.
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Furthermore, as we are yet to see in this text, the way detailed here is
far from an accurate assessment of what these fund managers are seeking to
discern. The techniques shown in this chapter will give an overly optimistic
assessment of the potential risk.

We’ve gone into greater detail here than what we really were looking for,
that is the disparity between optimal f/ Leverage Space Model framework
and what these successful and long-standing funds do. However, we also
see that they are trying to fit a mean-variance approach and a value-at-risk
approach to meet the dictates placed upon managed futures of a utility
preference curve that is anything but ln.

Chapter 8 explored the relationship between mean variance and optimal
f . In Chapter 12, we will show how the notions of mean variance, value at
risk, and the Leverage Space Model are interrelated, and how, in fact, they
all work together to achieve what the fund manager seeks. It is precisely
this process that is the focus of the final chapter.
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C H A P T E R 12

The Leverage
Space Portfolio

Model in the
Real World

n.b. The balance of this text attempts to show a vi-

able means for applying the theories in Part I of

the text, “The Optimal f Framework,” and the resul-

tant portfolio model of Chapter 10, “The Leverage

Space Model.” As such, terminologies used will re-

flect the new model. Rather than speak of market
systems, we will refer to scenario spectrums. Rather

than speak of trades or plays, or results over a cer-
tain period, we will speak of scenarios. However, the

reader is alerted of the interchangeability of these

terms.

In applying the concepts of the Leverage Space Model in the real world,
the problems can be twofold. First, there is the computational aspect.
Fortunately, this can be overcome with computer power and good soft-

ware. There is no reason, from a computational standpoint, to not employ
the Leverage Space Portfolio Model. The discernment of the scenario spec-
trums, their constituent scenarios, and the joint probabilities between them
are no more incalculable than, say, a stock’s beta or a correlation coefficient.

The second impediment to employing these concepts in the real world
has been that people’s utility preference curves are not ln. People do not
act to maximize their returns. Rather, they act to maximize returns within
an acceptable level of risk.

This chapter shows how to maximize returns within a given level of risk.
This is a far more real-world approach than the conventionally practiced
mean-variance models. Further, risk, as used in this chapter, rather than

377
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being the ersatz risk metric of “variance (or semivariance) in returns,” as in
classical portfolio construction, is addressed here as being risk of ruin or
risk of drawdown to a certain degree. Thus, the Leverage Space Model has,
as its risk metric, drawdown itself—seeking to provide the maximum gain
for a given probability of a given level of drawdown.

Let us first consider the “Classical Gambler’s Ruin Problem,” according
to Feller.1 Assume a gambler wins or loses one unit with probability p and
(1 − p), respectively. His initial capital is zand he is playing against an oppo-
nent whose initial capital is u − z, so that the combined capital of the two is u.

The game continues until our gambler whose initial capital is z sees
it grow to u, or diminish to 0, in which case we say he is ruined. It is the
probability of this ruin that we are interested in, and this is given by Feller
as follows:

RR =
(

(1 − p)/
p

)u

−
(

(1 − p)/
p

)z

(
(1 − p)/

p

)u

−1
(12.01)

This equation holds if (1 − p) �= p (which would cause a division by 0).
In those cases where (1 − p) and p are equal:

RR = 1 − z

u
(12.01a)

The following table provides results of this formula according to Feller,
where RR is the risk of ruin. Therefore, 1 − RR is the probability of success.2

Row p (1 − p) z u RR P (Success)

1 0.5 0.5 9 10 0.1 0.9
2 0.5 0.5 90 100 0.1 0.9
3 0.5 0.5 900 1000 0.1 0.9
4 0.5 0.5 950 1000 0.05 0.95
5 0.5 0.5 8000 10000 0.2 0.8

1William Feller, “An Introduction to Probability Theory and Its Applications,”
Volume 1 (New York: John Wiley & Sons, 1950), pp. 313–314.
2I have altered the variable names in some of Feller’s formulas here to be consistent
with the variable names I shall be using throughout this chapter, for the sake of
consistency.
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Row p (1 − p) z u RR P (Success)

6 0.45 0.55 9 10 0.210 0.790
7 0.45 0.55 90 100 0.866 0.134
8 0.45 0.55 99 100 0.182 0.818
9 0.4 0.6 90 100 0.983 0.017

10 0.4 0.6 99 100 0.333 0.667

11 0.55 0.45 9 10 0.035 0.965
12 0.55 0.45 90 100 0.000 1.000
13 0.55 0.45 99 100 0.000 1.000
14 0.6 0.4 90 100 0.000 1.000
15 0.6 0.4 99 100 0.000 1.000

Note in the table above the difference between row 2, in an even money
game, and the corresponding row 7, where the probabilities turn slightly
against the gambler. Note how the risk of ruin, RR, shoots upward.

Likewise, consider what happens in row 6, where, compared to row 7,
the probabilities p and (1 − p) have not changed, but the size of the stake
and the target have changed (z and u—in effect, going from row 7 to row 6
is the same as if we were betting 10 units instead of 1 unit on each play!).
Note that now the risk of ruin has been cut to less than a quarter of what it
was on row 7. Clearly, in a seemingly negative expectation game, one wants
to trade in higher amounts and quit sooner. According to Feller,

In a game with constant stakes, the gambler therefore minimizes

the probability of ruin by selecting the stake as large as consistent

with his goal of gaining an amount fixed in advance. The empirical

validity of this conclusion has been challenged, usually by people

who contend that every “unfair” bet is unreasonable. If this were to

be taken seriously, it would mean the end of all insurance business,

for the careful driver who insures against liability obviously plays a

game that is technically unfair. Actually there exists no theorem in

probability to discourage such a driver from taking insurance.3

For our purposes, however, we are dealing with situations considerably
more complicated than the simple dual-scenario case of a gambling illustra-
tion, and as such we will begin to derive formulas for the more complicated
situation. As we leave the classical ruin problem according to Feller, keep
in mind that these same principles are at work in investing as well, although
the formulations do get considerably more involved.

3Feller, p. 316
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Let’s consider now what we are confronted with, mathematically, when
there are various outcomes involved, and those outcomes are a function of
a stake that is multiplicative across outcomes as the sequence of outcomes
is progressed through.

Consider again our two-to-one coin toss with f = .25:

+2, −1 (Stream)

1.5, .75 (HPRs)

There are four possible chronological permutations of these two scenarios,
as follows, and the terminal wealth relatives (TWRs) that result:

1.5 × 1.5 = 2.25

1.5 × .75 = 1.125

.75 × 1.5 = 1.125

.75 × .75 = .5625

Note that the expansion of all possible scenarios into the future is like
that put forth in Chapter 6.

Now let’s assume we are going to consider that we are ruined if we
have only 60% (b = .6) of our initial stake. I will attempt to present this so
that you can recognize how intuitively obvious this is. Take your time here.
(Originally, I had considered this chapter as the entire text—there is a lot to
cover here. The concepts of ruin and drawdown will be covered in detail.)
Looking at the four outcomes, only one of them ever has your TWR dip
to or below the absorbing barrier of .6, that being the fourth sequence of
.75 × .75. So we can state that in this instance, the risk of ruin of .6 equity
left at any time is 1

/
4:

RR(.6) = 1
/

4 = .25

Thus, there is a 25% chance of drawing down to 60% or less on our initial
equity in this simple case.

Any time the interim product <= RR(b), we consider that ruin has
occurred.

So in the above example:

RR(.8) = 2
/

4 = 50%

In other words, at an f value of .25 in our two-to-one coin-toss scenario
spectrum, half of the possible arrangements of HPRs leave you with 80% or
less on your initial stake (i.e., the last two sequences shown see 80% or less
at one point or another in the sequential run of scenario outcomes).



JWDD035-12 JWDD035-Vince February 10, 2007 22:19 Char Count= 0

The Leverage Space Portfolio Model in the Real World 381

Expressed mathematically, we can say that at any i in (12.02) if the
interim value for (12.02) <= 0, then ruin has occurred:

q∑
i= 1

((
i− 1∏
t = 0

HPRt

)
* HPRi − b

)
(12.02)

where: HPR0 = 1.0
q = The number of scenarios in multiplicative sequence

(in this case 2, the same as n).4

b = That multiple on our stake, as a lower barrier, where
we determine ruin to occur (0 <= b <= 1).

Again, if at any arbitrary q, we have a value <= 0, we can conclude that
ruin has occurred.

One way of expressing this mathematically would be:

int

⎛⎜⎜⎜⎝
q∑

i= 1

((
i− 1∏
t = 0

HPRt

)
* HPRi − b

)
q∑

i= 1

∣∣∣∣((
i− 1∏
t = 0

HPRt

)
* HPRi − b

)∣∣∣∣

⎞⎟⎟⎟⎠ = β (12.03)

where: HPR0 = 1.0
q = The number of scenarios in multiplicative sequence.

q∑
i= 1

∣∣∣∣∣
((

i− 1∏
t = 0

HPRt

)
* HPRi − b

)∣∣∣∣∣ �= 0

In (12.03) note that β can take only one of two values, either 1 (ruin has
not occurred) or 0 (ruin has occurred).

There is the possibility that the denominator in (12.03) equals 0, in which
case β should be set to 0.

We digress for purpose of clarity now. Suppose we have a stream of
HPRs. Let us suppose we have the five separate HPRs of:

.9
1.05

.7

.85
1.4

4For the moment, consider q the same as n. Later in this chapter, they become two
distinct variables.
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Further, let us suppose we determine b, that multiple on our stake, as
a lower barrier, where we determine ruin to occur, as .6. The table below
then demonstrates (12.03) and we can thus see that ruin has occurred at
q = 4. Therefore, we conclude that this stream of HPRs resulted in ruin
(even though ruin did not occur at the final point, the fact that it occurs at
all, at any arbitrary point, is enough to determine that the sequence ruins).

q 1 2 3 4 5

HPR 0.9 1.05 0.7 0.85 1.4
TWR 1 0.9 0.945 0.6615 0.562275 0.787185
TWR − .6 0.3 0.345 0.0615 −0.03773 0.187185
TWR − .6/[TWR − .6] 1 1 1 −1 1

Using the mathematical sleight-of-hand, taking the integer of the quan-
tity a sum divided by the sum of its absolute values (12.03), we derive a
value of β = int

(
3
/

5

) = int(.6) = 0. If the value in column 4 in the last row
is 1, then β = 1.

Note that in (12.03) the HPRs appear to be taken in order; that is, they
appear in a single, ordered sequence. Yet, we have four sequences in our
example, so we are calculating β for each sequence. Recall that in deter-
mining optimal f , sequence does not matter, so we can use any arbitrary
sequence of HPRs.

However, in risk-of-ruin calculations, order does matter(!) and we must
therefore consider all permutations in the sequence of HPRs. Some permu-
tations at a given set (b, HPR1 . . . HPRn) will see β = 0, while others will see
β = 1. Further, note that for n HPRs, that is, for HPR1 . . . HPRn, there are nn

permutations.
Therefore, β must be calculated for all permutations of n things taken

n at a time. The symbology for this is expressed as:

∀nPn (12.04)

More frequently, this is referred to as “for all permutations of n things
taken q at a time,” and appears as:

∀nPq (12.04a)

This is the case even though, for the moment in our discussion, n = q.
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Notice that for n things taken q at a time, the total number of permuta-
tions is therefore nq .

We can take the sum of these β values for all permutations (of n things
taken q at a time, and again here, n = q for the moment), and divide by
the number of permutations to obtain a real probability of ruin, with ruin

defined as dropping to b of our starting stake, as RR(b):

RR (b, q) =
∀nPq

nq∑
k=1

βk

nq
(12.05)

This is what we are doing in discerning the probability of ruin to a
given b, RR(b). If there are two HPRs. There are 2 × 2 = 4 permutations,
from which we are going to determine a β value for each [using RR(.6)].
Summing these β values and dividing by the number of permutations, 4,
gives us our probability of ruin.

Note the input parameters. We have a value for b in RR(b)—that is,
the percentage of our starting stake left. Various values for b, of course,
will yield various results. Additionally, we are using HPRs, implying we
have an f value here. Different f values will give different HPRs will give
different values for β. Thus, what we are ultimately concerned with here—
and the reader is advised at this point not to lose sight of this—is that we
are essentially looking to hold b constant in our analysis and are concerned
with those f values that yield an acceptable RR(b). That is, we want to
find those f values that give us an acceptable probability for a given risk of
ruin.

Again we digress now for purposes of clarifying. For the moment, let us
suspend the notion of each play’s being a multiple on our stake. That is, let
us suspend thinking of these streams in terms of HPRs and TWRs. Rather,
let us simply contemplate the case of being presented with the prospect
of three consecutive coin tosses. We can therefore say that there are eight
separate streams, eight permutations, that the sequence which H and T may
comprise (∀2 P3).

H H H
H H T
H T H
H T T (ruin)*
T H H
T H T
T T H (ruin)
T T T (ruin)
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Now let us say that if tails occurs in two consecutive tosses, we are
ruined. Thus, we are trying to determine how many of those eight streams
see two consecutive tails. That number, divided by eight (the number of
permutuations) is therefore our “Probability of Ruin.”

The situation becomes more complex when we add in the concept of
multiples now. For example, in the previous example it may be that if the
first toss is heads, then two subsequent tosses of tails would not result in ruin
as the first play resulted in enough gain to avert ruin in the two subsequent
tosses of tails*.

We return now to assigning HPRs to our coin tosses at an optimal f

value of .25 and b of .6.
Note what happens as we increase the number of plays—in this case,

from two plays (i.e., q = 2) to three plays (q = 3):

∀2 P3 =
1.5 × 1.5 × 1.5 = 3.375

1.5 × 1.5 × .75 = 1.6875

1.5 × .75 × 1.5 = 1.6875

1.5 × .75 × .75 = .84375

.75 × 1.5 × 1.5 = 1.6875

.75 × 1.5 × .75 = .84375

.75 × .75 × 1.5 = .84375 (ruin)

.75 × .75 × .75 = .421875 (ruin)

Only the last two sequences saw our stake drop to .6 or less at any time.

RR(.6) = 2/8 = .25

Now for four plays:

∀2 P4 =
1.5 × 1.5 × 1.5 × 1.5 = 5.0625

1.5 × 1.5 × 1.5 × .75 = 2.53125

1.5 × 1.5 × .75 × 1.5 = 2.53125

1.5 × 1.5 × .75 × .75 = 1.265625

1.5 × .75 × 1.5 × 1.5 = 2.53125

1.5 × .75 × 1.5 × .75 = 2.53125

1.5 × .75 × .75 × 1.5 = 1.265625

1.5 × .75 × .75 × .75 = .6328125

.75 × 1.5 × 1.5 × 1.5 = 2.53125

.75 × 1.5 × 1.5 × .75 = 1.265625
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.75 × 1.5 × .75 × 1.5 = 1.265625

.75 × 1.5 × .75 × .75 = .6328125

.75 × .75 × 1.5 × 1.5 = 1.265625 (ruin)

.75 × .75 × 1.5 × .75 = .6328125 (ruin)

.75 × .75 × .75 × 1.5 = .6328125 (ruin)

.75 × .75 × .75 × .75 = .31640625 (ruin)

Here, only the last four saw our stake drop to .6 or lower of initial equity
at any time.

RR(.6) = 4/16 = .25

And now for five plays:

∀2 P5 =
1.5 × 1.5 × 1.5 × 1.5 × 1.5 = 7.59375

1.5 × 1.5 × 1.5 × 1.5 × 0.75 = 3.796875

1.5 × 1.5 × 1.5 × 0.75 × 1.5 = 3.796875

1.5 × 1.5 × 1.5 × 0.75 × 0.75 = 1.8984375

1.5 × 1.5 × 0.75 × 1.5 × 1.5 = 3.796875

1.5 × 1.5 × 0.75 × 1.5 × 0.75 = 1.8984375

1.5 × 1.5 × 0.75 × 0.75 × 1.5 = 1.8984375

1.5 × 1.5 × 0.75 × 0.75 × 0.75 = 0.94921875

1.5 × 0.75 × 1.5 × 1.5 × 1.5 = 3.796875

1.5 × 0.75 × 1.5 × 1.5 × 0.75 = 1.8984375

1.5 × 0.75 × 1.5 × 0.75 × 1.5 = 1.8984375

1.5 × 0.75 × 1.5 × 0.75 × 0.75 = 0.94921875

1.5 × 0.75 × 0.75 × 1.5 × 1.5 = 1.8984375

1.5 × 0.75 × 0.75 × 1.5 × 0.75 = 0.94921875

1.5 × 0.75 × 0.75 × 0.75 × 1.5 = 0.94921875

1.5 × 0.75 × 0.75 × 0.75 × 0.75 = 0.474609375 (ruin)

0.75 × 1.5 × 1.5 × 1.5 × 1.5 = 3.796875

0.75 × 1.5 × 1.5 × 1.5 × 0.75 = 1.8984375

0.75 × 1.5 × 1.5 × 0.75 × 1.5 = 1.8984375

0.75 × 1.5 × 1.5 × 0.75 × 0.75 = 0.94921875

0.75 × 1.5 × 0.75 × 1.5 × 1.5 = 1.8984375

0.75 × 1.5 × 0.75 × 1.5 × 0.75 = 0.94921875

0.75 × 1.5 × 0.75 × 0.75 × 1.5 = 0.94921875

0.75 × 1.5 × 0.75 × 0.75 × 0.75 = 0.474609375 (ruin)
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0.75 × 0.75 × 1.5 × 1.5 × 1.5 = 1.8984375 (ruin)

0.75 × 0.75 × 1.5 × 1.5 × 0.75 = 0.94921875 (ruin)

0.75 × 0.75 × 1.5 × 0.75 × 1.5 = 0.94921875 (ruin)

0.75 × 0.75 × 1.5 × 0.75 × 0.75 = 0.474609375 (ruin)

0.75 × 0.75 × 0.75 × 1.5 × 1.5 = 0.94921875 (ruin)

0.75 × 0.75 × 0.75 × 1.5 × 0.75 = 0.474609375 (ruin)

0.75 × 0.75 × 0.75 × 0.75 × 1.5 = 0.474609375 (ruin)

0.75 × 0.75 × 0.75 × 0.75 × 0.75 = 0.237304688 (ruin)

Now my probability of ruin has risen to 10/32, or .3125. This is very dis-
concerting in that the probability of ruin increases the longer you continue
to play.

Fortunately, this probability has an asymptote. In this two-to-one coin-
toss game, at the optimal f value of .25 per play, it is shown the table below:

Play # RR(.6)

2 0.25
3 0.25
4 0.25
5 0.3125
6 0.3125
7 0.367188
8 0.367188
9 0.367188

10 0.389648
11 0.389648
12 0.413818
13 0.413818
14 0.436829
15 0.436829
16 0.436829
17 0.447441
18 0.447441
19 0.459791
20 0.459791
21 0.459791
22 0.466089
23 0.466089
24 0.47383
25 0.47383
26 0.482092
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FIGURE 12.1 RR(.6) for two-to-one coin toss at f = .25

From this data, in methods to be detailed later in the text, we can
determine that the asymptote, that is, the risk of ruin (defined as 60% of our
initial equity left in this instance) is .48406 in the long-run sense—that is,

if we continue to play indefinitely.

As shown in Figure 12.1, as q approaches infinity, RR(b) approaches
a horizontal asymptote. That is, RR(b) can be determined in the long-run
sense.

Additionally, it is perfectly acceptable to begin the analysis at q = 1,
rather than q = n. Doing so aids in resolving the line and hence its asymp-
tote.

Note that near the end of the previous chapter, a method employed in
one form or another by a good deal of the larger, more successful trend-
following funds, which “can be said to combine mean-variance with value
at risk” was presented. Note that in the method presented—that is, in the
way it is currently employed—it is akin to doing simply one run through
the data, horizontally, with n = q and solely for one value of k. Note that it
would be if we only looked at the history of two tosses of our coin; there
is no way we can approach or discern the asymptote through such a crude
analysis.

Remember a very important caveat in this analysis: As demonstrated
thus far it is assumed that there is no statistical dependency in the sequence
of scenario outcomes across time. That is, we are looking at the stream of
scenario outcomes across time in a pure sample with replacement manner;
the past scenario outcome(s) do not influence the current one.

And what about more than a single scenario spectrum? This is easily
handled by considering that the HPRs of the different scenario spectrums
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cover the same time period. That is, we may have our scenarios derived
such that they are the scenarios of outcomes for the next month—or the
next day, and so on.

We therefore consider each combination of scenarios for each scenario
spectrum. Thus, if we are looking at two scenario spectrums of our two-to-
one coin toss, we would then have the following four outcomes:

Game 1 +2 +2 −1 −1
Game 2 +2 −1 +2 −1

The reason we have four outcomes is that we have two scenario spec-
trums with two scenarios in each. Thus, n in this case will equal 4.

When you have more than one scenario spectrum:

n =
m∏

i= 1

# scenariosi (12.06)

where: m= The number of scenario spectrums you are including.

In other words, n is the product of all the scenario spectrums we are
considering.

And in our example here, since there are two scenario spectrums
(m = 2), each with two scenarios, we have n = 4.

The HPRs then for these four outcomes are the arithmetic average HPRs
across scenario spectrums. The arithmetic average is used simply because
an HPR represents the effect of trading one unit at a given value of f on the
entire account.

So, if we assume we are going to trade at f values of .25,.25 in our
example, we then have the following:

Game 1 +2 +2 −1 −1
Game 2 +2 −1 +2 −1

Converted to HPRs at .25,.25:

Game 1 1.5 1.5 .75 .75
Game 2 1.5 .75 1.5 .75

Arithmetic mean:

1.5 1.125 1.125 .75

Thus, we have n = 4, and the four values are (1.5, 1.125, 1.125, .75),
which we would then use in our analysis.
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We digress now. To this point, we have been discussing the probabil-
ity of ruin, for an aggregate of one or more market systems or scenario
spectrums. Risk of ruin, RR(b) represents the probability of hitting or pen-
etrating the lower absorbing barrier of b× initial stake. Thus, this lower
absorbing barrier does not migrate upward, as equity may increase. If an
account therefore increases twofold, this barrier does not move. For ex-
ample, if b = .6, on a $1 million account, then the lower absorbing barrier
is at $600,000. If the account doubles now, to $2 million, then the lower
absorbing barrier is still at $600,000.

This might be what many want to use in determining their relative f

values across components—that is, their allocations.
However, far more frequently we want to know the probabilities of

touching a lower absorbing barrier from today—actually, from our highest
equity point. In other words, we are concerned with risk of drawdown,
far more so in most cases than risk of ruin. If our account doubles to
$2 million now, rather than being concerned with its going back and touch-
ing or penetrating $600,000, we are concerned with its coming down or
penetrating double that, or of its coming down to $1.2 million.

This is so much the case that in most instances, for most traders, fund
managers, or anyone responsible in a field exposed to risk, it is the de-facto
and organically derived5 definition of risk itself: “The probability of draw-
down,” or more precisely, the probability of a 1 − b percentage regression
from equity highs [referred to herein now as RD(b)].

Again, fortunately, risk of drawdown [RD(b)] is very closely linked to
risk of ruin [RR(b)], so much so that we can slide the two in and out of our
discussion merely by changing Equation (12.03) to reflect risk of drawdown
instead of risk of ruin:

int

⎛⎜⎜⎜⎝
q∑

i= 1

(
min

(
1.0,

(
i− 1∏
t = 0

HPRt

))
* HPRi − b

)
q∑

i= 1

∣∣∣∣(min
(

1.0,
(

i− 1∏
t = 0

HPRt

))
* HPRi − b

)∣∣∣∣

⎞⎟⎟⎟⎠ = β (12.03a)

where: HPR0 = 1.0.

q∑
i= 1

∣∣∣∣∣
(

min

(
1.0,

(
i− 1∏
t = 0

HPRt

))
* HPRi − b

)∣∣∣∣∣ �= 0

5All too often, the definition of risk in literature pertaining to it has ignored the fact
that this is exactly what practitioners in the field define risk to be! Rather than the
tail wagging the dog here, we opt to accept this real-world definition for risk.
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Calculating in β in subsequent equations by (12.03a) will give you risk
of drawdown, as opposed to mere risk of ruin.

The main difference in the mechanics of (12.03a) over (12.03) is that at
any time in the running product of HPRs, if the running product is greater
than 1.0, then the value 1.0 is replaced for the running product at that point.

Herein is some very bare-bones Java code for calculating equation
(12.05) for one or more scenario spectrums, for determining either risk
of ruin [RR(b)] or risk of drawdown [RD(b)]:

import java.awt.*;
import java.io.*;
import java.util.*;

public class MaxTWR4VAR{
String lines [];
String msnames [];
double f [];
double b;
boolean usedrawdowninsteadofruin;
double plays[][];
double hprs [][];
double hpr [];//the composite (arithmetic average per
time period) of the hprs
int N; //the number of plays.Capital used to correspond
to variables in the book
long NL;// N as a long to avoid many casts
public MaxTWR4VAR(String[] args){

try{
b=Double.parseDouble(args[1]);

}catch(NumberFormatException e){
System.out.println(”Command Line format:

MaxTWR4VAR inputfile riskofdrawdown(0.0..1.0)
calculateRD(true/false)”);

return;
}
if(args.length>2){

usedrawdowninsteadofruin=Boolean.valueOf (args[2])
.booleanValue();
}
getinputdata(args[0]);
createHPRs();
control();

}
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public static void main(String[] args){
MaxTWR4VAR maxTWR4VAR = new MaxTWR4VAR(args);

}

protected void getinputdata(String fileName){
String filetext = readInputFile(fileName);
lines = getArgs(filetext,”\r\n”);
N=lines.length-2;
NL=(long)N;
plays=new double[N][];
for(int i=0;i<lines.length;i++){

System.out.println(”line ”+i+” : ”+lines[i]);
if(i==0){

msnames = getArgs(lines[i],”,”);
}else if(i==1){

f =
convertStringArrayToDouble(getArgs(lines[i],”,”));

}else{
plays[i-2]=

convertStringArrayToDouble(getArgs(lines[i],”,”));
}

}
System.out.println(”b : ”+b);
if(usedrawdowninsteadofruin){

System.out.println(”pr of : drawdown”);
}else{

System.out.println(”pr of : ruin”);
}

}

protected void createHPRs(){
//first find the biggest loss
double biggestLoss[] = new double [N];
hprs = new double [plays[0].length][N];
Arrays.fill(biggestLoss,Double.MAX VALUE);
for(int j=0;j<msnames.length;j++){

for(int i=0;i<N;i++){
if(plays[i][j]<biggestLoss[j]){

biggestLoss[j]=plays[i][j];
}

}
}
//fing the hpr for each msnames for each associated

f
for(int j=0;j<msnames.length;j++){
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for(int i=0;i<N;i++){
hprs[j][i]= 1.0 + f[j] (-plays[i][j] /

biggestLoss[j]);
}

}
//take the arithmetic average of the hprs
hpr = new double[N];
for(int i=0;i<N;i++){//go through each play

for(int j=0;j<msnames.length;j++){ //go through
each msnames

hpr[i] += hprs[j][i];
}

}
for(int i=0;i<N;i++){

hpr[i] /= (double)msnames.length;
}

}

protected String readInputFile(String fileName){
FileInputStream fis = null;
String str = null;
try {

fis = new FileInputStream(fileName);
int size = fis.available();
byte[] bytes = new byte [size];
fis.read(bytes);
str = new String(bytes);

} catch (IOException e) {
} finally {

try {
fis.close();

} catch (IOException e2) {
}

}
return str;

}

protected String[] getArgs(String parameter, String
delimiter){

String args[];
int nextItem=0;
StringTokenizer stoke=new

StringTokenizer(parameter,delimiter);
args=new String[stoke.countTokens()];
while(stoke.hasMoreTokens()){

args[nextItem]=stoke.nextToken();
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nextItem=(nextItem+1)%args.length;
}
return args;

}

protected double [] convertStringArrayToDouble(String
[] s){

double [] d = new double[s.length];
for(int i = 0; i<s.length; i++){

try{
d[i]=Double.parseDouble(s[i]);

}catch(NumberFormatException e){
d[i]=0.0;

}
}
return d;

}

protected int B(double [] hprset,boolean drawdown){
double interimHPR=1.0;
double previnterimHPR=1.0;
double numerator=0.0;
double denominator=0.0;
for(int i=0;i<hprset.length;i++){

double useinvalue = previnterimHPR;
if(drawdown && previnterimHPR>1.0)

useinvalue = 1.0;

interimHPR = useinvalue x hprset[i];
//interimHPR = previnterimHPR x hprset[i];
double value = interimHPR - b;
numerator += value;
denominator += Math.abs(value);
previnterimHPR = interimHPR;

}
if(denominator==0.0){

return 0;
}else{

double x = (numerator/denominator);
if(x>=0){

return (int)x;
}else{

return 0;
}

}
}
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//n things taken q at a time where q>=n
//we really cannot use this as we get OutOfMemoryError
early on
//because we try to save the whole array. Instead, use
nPq i()
protected double[][] nPq(int nopermutations, int q){

double hprpermutation[][]=new
double[nopermutations][q];

for(int column=0;column<q;column++){ // go
through column x column

for(int pn=0;pn<nopermutations;pn++){ // go
through permutation x permutation

if(column==0){
hprpermutation[pn][column] = hpr[pn %

N];
}else{

hprpermutation[pn][column] =
hpr[(pn/(int)(Math.pow((double)N,(double)column))) % N];

}
}

}
return hprpermutation;

}

//n things taken q at a time where q>=n to return the
i’th item
protected double[] nPq i(int q, long pn){

double hprpermutation[]=new double[q];
int x = 0;
for(int column=0;column<q;column++){ // go through

column x column
if(column==0){

x = (int)(pn % NL);
}else{

x =
(int)((pn/(long)(Math.pow((double)N,(double)column))) %
NL);

}
hprpermutation[q-1-column] = hpr[x];

}
return hprpermutation;

}

protected void control(){
int counter=1;
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while(1==1){
long passed=0;
long nopermutations = (long)

Math.pow((double)hpr.length,(double)counter);
for(long pn=0;pn<nopermutations;pn++){

double hprpermutation[]=nPq i(counter,pn);

passed+=(long)B(hprpermutation,usedrawdowninsteadofruin);
}
double result=1.0-

(double)passed/(double)nopermutations;
System.out.println(counter+” = ”+result);
counter++;

}
}

}

The code is presented “as-is,” with no warranties whatsoever. Use it as
you see fit. It is merely a bare-bones implementation of Equation (12.05).
I wrote it in as generic a flavor of Java as possible, intentionally avoided
using an object-oriented approach, and intentionally kept it in the lowest-
common-denominator syntax across languages, so that you can transport
it to other languages more easily. The code can be made far more efficient
than what is presented here. This is presented merely to give programmers
of this concept a starting reference point.

Note that the input file format must be formatted as follows: a straight
ASCII text file, wherein the first line is the scenario spectrum name, the
second line is the f value to be used on that scenario spectrum, and all
subsequent lines are the simple stream of individual scenario outcomes.
For example:

Coin Toss 1
.25
−1
2

This shows the scenario spectrum “Coin Toss 1,” at an f of .25 with two
outcomes, one of –1 and the other of +2.

For situations of multiple scenario spectrums, again the first line is
the scenario spectrum names, comma-delimited is the second line; the re-
spective f values, comma delimited; and each line after that represents a
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simultaneous outcome for both scenario spectrums, wherein each combi-
nation of scenarios from both scenario spectrums occur.

Coin Toss 1,Coin Toss 2
.25,.25
2,2
2,−1
−1,2
−1,−1

So in this file, the first outcome sees both scenario spectrums gaining
two units. The next outcome sees Coin Toss 1 gaining two units, while Coin
Toss 2 loses one unit (–1). Then Coin Toss 1 loses one unit (–1) and Coin
Toss 2 gains two units. For the last outcome, they both lose one unit (–1).
(Thus, n = 4 in this file. In all data files, therefore, since the first two lines are
scenario spectrum name(s) and respective f value(s), n equals the number
of lines in the file minus 2.)

To this point, we have not alluded to the probabilities of the scenario
outcomes. Rather, as if the scenario outcomes were like a stream of trades,
or a stream of coin toss results, we have quietly assumed for simplicity’s sake
that there has been an equal probability of occurrence with each scenario
outcome. In other words, we have been inexplicitly saying to this point that
for each scenario (or individual combinations of scenarios from multiple
spectrums occurring simultaneously), the probability of the kth outcome
among the nq outcomes is:

pk = 1/
nq (12.07)

Usually, however, we do not have the luxury of the convenience of all
scenarios having the same probability of occurrence.6

To address this, we return now to Equation (12.05). We will discuss
first the case of a single scenario spectrum. In this case, we not only have
outcomes for each scenario [which comprise the HPRs used in Equation

6Note, however, that if we were talking about scenarios made up of individual coin
tosses, or of results of trading a given market system over a given day, or if we did
use purely empirical data in discerning our scenario spectrums and probabilities,
we could use Equation (12.07) for the said probabilities. In other words, if, say, we
used the last 24 trading months and examined the prices of stock ABC, we could
conceivably create a scenario spectrum of 24 bins, each with an outcome of those
months, each with a probability given in (12.07).
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(12.03) or (12.03a) for β], but we also have a probability of its occurrence, p.

RX(b, q) =
∀nPq

nq∑
k = 1

(βk ∗ pk)

∀nPq
nq∑

k = 1
pk

(12.05a)

where: β = The value given in (12.03) or (12.02).
pk = The probability of the kth occurrence.

For each k, this is the product of the probabilities for that k. That is,
you can think of it as the horizontal product of the probabilities from 1
to q for that k. For each k, you calculate a β . Each βk, as you can see in
(12.03) or (12.03a), cycles through from i = 1 to q HPRs. Each HPRi has a
probability associated with it (Probk,i). Multiplying these probabilities along
as you cycle through from i = 1 to q in (12.03) or (12.03a) as you discern
βk will give you pk in the single scenario case. For example, in a coin toss,
where the probabilities are always .5 for each scenario, then however the
permutation of scenarios in (12.03) or (12.03a), pk will be .5 ×.5 = .25 when
q = 2 in discerning βk, for each k, it will equal .25 × .25 ×.25 = .015625
when q = 3, ad infinitum for the single scenario set case.

pk =
q∏

i= 1

Probk,i (12.07a)

To help dispel confusion, let’s return to our simple single coin toss and
examine the nomenclature of our variables:� There is one scenario spectrum: m = 1.� This scenario spectrum has two scenarios: n = 2 [per (12.06)].� We are expanding out in this example to three sequential outcomes,

q = 3. We traverse this, “Horizontally,” as i = 1 to q (as in [12.02])� Therefore we have nq = 23 = 8 sequential outcome possibilities. We
traverse this, “vertically,” as k = 1 to nq (as in [12.04])

As we get into multiple scenarios, calculating the individual Probk,i’s
gets a little trickier. The matter of joint probabilities pertaining to given
outcomes at i, for m spectrums was covered in Chapter 9 and the reader is
referred back to that discussion for discerning Probk,i’s when m > 1.

Thus, of note, there is a probability at a particular i of the manifesta-
tions of each individual scenario occurring in m spectrums together (this
is a Probk,i). Thus, on a particular i in multiplicative run from 1 to q, in a
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particular horizontal run of k from 1 to nq , we have a probability Probk,i.
Now multiplying these Probk,i’s together in the horizontal run for i from 1
to q will give the pk for this k.

Prob1,1 * Prob1,2 * · · · * Prob1,q = p1

. . .

Probn
q

,1 * Probn
q

,2 * · · · * Probn
q

,q = pn
q

n.b. Now, when dependency is present in the stream

of outcomes, the pk values are necessarily affected.

For example, in the simplistic binomial outcome case of a coin toss,
where I have two possible outcomes (n = 2), heads and tails, with outcomes
+2 and −1, respectively, and I look at flipping the coin two times (q = 2), I
have the following four (nq) possible outcomes:

pk

Outcome 1 (k = 1) H H .25
Outcome 2 (k = 2) H T .25
Outcome 3 (k = 3) T H .25
Outcome 4 (k = 4) T T .25

Now let us assume there is perfect negative correlation involved—that
is, winners always beget losers, and vice versa. In this idealized case, we
then have the following:

pk

Outcome 1 (k = 1) H H 0
Outcome 2 (k = 2) H T .5
Outcome 3 (k = 3) T H .5
Outcome 4 (k = 4) T T 0

Unfortunately, when serial dependency seems to exist, it is never at
such an idealized value as 1.0, as shown here. Fortunately, however, serial
dependency rarely exists, and its appearance of existence in small amounts
is usually, and typically, incidental, and can thus be worked with as being
zero. However, if the pk values are deemed to be more than merely “inci-
dental,” then they can, and in fact, must, be accounted for as they are used
in the equations given in this chapter.

Additionally, the incorporation of rules to address dependency when it
seems present, of the type like, “Don’t trade after two consecutive losers,
etc,” could in this analysis be turned into the familiar tails, or T in the
following stream:

H H T H T T H H
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The dependency rules would transform the stream to:

H H T H T T H

Such a stream could therefore be incorporated into these equations,
amended as such, with the same probabilities.

Note the nomenclature in (12.05a) RX(b, q), referring to the fact that this
equation can be used for either risk of ruin, RR(b, q) or risk of drawdown,
RD(b, q).

Additionally, note that the denominator in this case is simply the sum of
the probabilities. Typically, this should equal 1, excepting for floating point
round-off error. However, this is often not the case when we get into some
of the shortcut methods listed later, so (12.05a) will not be rewritten here
with a denominator of 1.

The full equation, then, for determining risk of drawdown at a given q

is then given as:

RD(b, q) =

∀nPq
nq∑

k = 1

⎛⎝int

⎛⎝ q∑
i= 1

(
min

(
1.0,

(
i− 1∏
t = 0

HPRt

))
* HPRi−b

)
q∑

i= 1

∣∣∣∣(min
(

1.0,
(

i− 1∏
t = 0

HPRt

))
* HPRi−b

)∣∣∣∣
⎞⎠

k

*
q∏

i= 1
Probk,i

⎞⎠
∀nPq

nq∑
k = 1

(
q∏

i= 1
Probk,i

)
(12.05a)

where: HPR0 = 1.0.

q∑
i= 1

∣∣∣∣∣
(

min

(
1.0,

(
i− 1∏
t = 0

HPRt

))
* HPRi − b

)∣∣∣∣∣ �= 0

That’s it. There is your equation. Solving (12.05b) will give you the prob-
ability of drawdown. Though it looks daunting, the only inputs required to
calculate it are a given level of drawdown (expressed as 1 − b; thus, if I
am considering a 20% drawdown, I will use 1 − .2 = .8 as my b value), the
f values of the scenario spectrums (from which the HPRs are then derived),
and the joint probabilities of the scenarios across the spectrums.

Why is (12.05b) so important? Because everything in (12.05b) you will
keep constant. The only thing that will change are the f values of the com-
ponents in the portfolio, the scenario spectrums from which the HPRs are
derived.

Therefore, given (12.05b), one can determine the portfolio that is growth
optimal within a given acceptable RD(b)! In other words, starting from the
standpoint of “I want to have no more than an x percent probability of a
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drawdown greater than 1 − b,” you can discern the portfolio that is growth
optimal.

Essentially then, the new model is:

Maximize TWR where RD(b) < = an acceptable probability of hitting b.

(12.08)
Also expressed as:

Maximize (9.04) where (12.05b) < = an acceptable probability of hitting b.

That is, whenever an allocation is measured in, say, the genetic algo-
rithm for discerning if it is a new, optimal allocation mix, then it can be
measured against (12.05b) given the f values of the candidate mix, the
drawdown being considered as 1 − b, to see whether RD(b), as given by
(12.05b) is acceptable (i.e., if RD(b) <= x).

Additionally, the equation can be looked at in terms of a fund as a sce-
nario spectrum. We can use (12.05), (12.05a), and (12.05b) to determine
an allocation to that specific fund in terms of maximum drawdown and
maximum risk of ruin probabilities, rather than looking to discern the rel-
ative weightings within a portfolio. That is, in the former we are seeking
an individual f value that will give us probabilities of drawdowns and ruin
which are palatable to us and/or will determine the notional funding amount
that accomplishes these tolerable values. In the latter, we are looking for
a set of f values to allocate among m components within the portfolio to
accomplish the same.

How many q is enough q? How elusive is that asymptote, that risk of
drawdown?

In seeking the asymptote to (12.05), (12.05a), (12.05b) we seek that
point where each increase in q is met with RX(b) increasing by so slight a
margin as to be of no consequence to our analysis. So it would appear that
when RX(b) for a given value of q, RX(b,q) is less than some small amount,
a, where we say we are done discerning where the asymptote lies—we can
assume it lies “just above” RX(b,q).

Yet, again refer to Figure 12.1. Note that the real-life gradations of RX(b)
are not necessarily smooth, but do go upward with spurious stairsteps, as it
were. So it is not enough to simply say that the asymptote lies “just above”
RX(b,q) unless we have gone for a number of iterations, z, before q where
RX(b,q)− RX(b,q − 1) <= a.

In other words, we can say we have arrived at the asymptote, and that
the asymptote lies “just above” RX(b,q) when, for a given aand z:

RX(b, q) − RX(b, q − 1) < = a, and . . . and RX(b, q) − RX(b, q − z) <= a

(12.09)

where: q > z.
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The problem with Equation (12.05a) or (12.05b) now [and (12.05a) or
(12.05b) will give you the same answer as (12.05) when the probabilities
of each kth occurrence are identical] is that it increases as q increases,
increasing to an asymptote.

It is relatively easy to create a chart of the sort shown in Figure 12.1
derived from the table on page 386 to attempt to discern an asymptote
when q = 2 as in our simple two-to-one coin-toss situation. However, when
we have 26 plays—that is, when we arrive at a value of q = 26, then
nq = 226 = 67,108,864 permutations. That is over 67 million β values to
compute.

And that’s in merely calculating the RR(b) for a single coin-toss scenario
spectrum! When we start getting into multiple scenario spectrums with
more than two scenarios each, where n equals the results of (12.06), then
clearly, computer power—speed and raw memory requirements—are vital
resources in this pursuit.

Suppose I am trying to consider one scenario spectrum with, say, 10
scenarios in it. To make the pass through merely when q = n, I have 10 ∧ 10 =
10,000,000,000 (ten billion) permutations! As we get into multiple scenario
spectrums now, the problem explodes on us exponentially.

Most won’t have access to the computing resources that this exercise re-
quires for some time. However, we can implement two mathematical short-
cuts here to arrive at very accurate conclusions in a mere fraction of the
time, with a mere fraction of the computational requirements.

Now, can’t I take a random sample of these 10 billion permutations
and use that as a proxy for the full 10 billion? The answer is yes, and can
be found by statistical measures used for sample size determination for
binomially distributed outcomes (note that β is actually a binomial value
for whether we have hit a lower absorbing barrier or not; it is either true or
false).

To determine our sample size, then, from binomially distributed data,
we will use Equation (12.10):( s

x

)2

* p * (1 − p) (12.10)

where: s = The number of sigmas (standard deviations) confidence
level for an error of x.

x = The error level.
p = The probability of the null hypotheses.

That last parameter, p, is circularly annoying. If I know p, the probability
of the null hypotheses, then why am I sampling to discern, in essence, p?

Note, however, that in (12.10), any deviation in p away from p = .5
will give a smaller answer for (12.10). Thus, a smaller sample size would be
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required for a given s and x. Therefore, if we simply set p to .5, we are being
conservative, and requiring that (12.10) err on the side of conservatism (i.e.,
as a larger sample size).

Simply put then, we need only answer for s and x. So if I want to find
the sample size that would give me an error of .001, with a confidence to s

standard deviations, solving for (12.10) yields the following:

2 sigma =
(

2
.001

)2

* .5 * (1 − .5) = 1,000,000

3 sigma =
(

3
.001

)2

* .5 * (1 − .5) = 2,250,000

5 sigma =
(

5
.001

)2

* .5 * (1 − .5) = 6,250,000

Now the reader is likely to inquire, “Are these sample sizes independent
of the actual population size?” The sample sizes for the given parameters
to (12.10) will be the same regardless of whether we are trying to estimate
a population of 1,000 or 10,000,000.

“So I need only do this once; I don’t need to keep increasing q?”
Not so. Rather, you use (12.10) to discern the minimum sample size re-

quired at each q . You still need to subsequently increase q, and the answer
[as provided by (12.05), (12.05a), or (12.05b)] will keep increasing to the
asymptote. The reason you must keep increasing q is that at each q, the bi-
nomial distribution is different, as was demonstrated earlier in this chapter.

One of the key caveats in implementing Equation (12.10) is that it is pro-
vided for a “random” sample size. However, these minimum, random sample
sizes provided for in (12.10) tend to be rather large. Thus, it’s important to
make sure, since we are generating random numbers by computer, that we
are not cycling in our random numbers so soon that it will cause distortion
in randomness, and that the random numbers generated be isotropically
distributed.

I strongly suggest to the ambitious readers who attempt to program
these concepts that they incorporate the most powerful random number
generators they can. Over the years this has been something of a moving
target, and, likely and hopefully will continue to be. Currently, I am partial to
the Mersenne Twister algorithm.7 You can use other random number gener-
ators, but your results will be accurate only to the extent of the randomness
provided by them.

7Makato Matsumoto and Takuji Nishimura, “Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator,” ACM Transactions

on Modeling and Computer Simulation, Vol. 8, No. 1 (January 1998), pp. 3–30.



JWDD035-12 JWDD035-Vince February 10, 2007 22:19 Char Count= 0

The Leverage Space Portfolio Model in the Real World 403

There are additional real-world implementation issues in terms of
adding floating point numbers millions of times considering the floating
point roundoff errors, and so on. Ultimately, we are trying to get a “reason-
able and real-world workable” resolution of the curves for RR and RD so
that we can determine their asymptotes.

This particular shortcut is invoked only if the number of permutations
at a given q exceeds nq . If not, just run all the permutations. For example,
where q = 1, where we start, there are 101 = 10 permutations. Thus, we
just run all 10. At q = 2, we have 102 = 100 permutations, and again run
all permutations. However, at 107 = 10,000,000, which is greater than the
6,250,000 sample size required, we would begin using the sample size when
q = 7 in this case.

Let’s look at a real-world implementation of what has been discussed
thus far. Consider a single scenario spectrum with the following scenarios:

Outcome Probability

−1889 0.015625
−1430.42 0.046875
−1295 0.015625
−750 0.0625
−450 0.125
0 0.203125
390 0.078125
800 0.328125
1150 0.0625
1830 0.046875

This is a case of a single scenario spectrum of 10 scenarios. Therefore,
on our n = q pass through the data (i.e., q = 10), we are going to have
n∧ q , or 10 ∧ 10 = 10,000,000,000 (ten billion) permutations, as alluded to
earlier.

Now, we will attempt to calculate the risk of ruin, with ruin defined as
having 60% of our initial equity left.

Running these 10 billion calculations outright gives:

RR(.6, 10) = .1906955154

at an f value of .45.

Using (12.10) with s = 5, x = .001, p = .5, we iterate through q obtaining
quite nicely, and in a tiny fraction of the time it took to actually calculate the
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actual value at RR(.6,10) just presented (i.e., 10 billion iterations for q = 10
actually versus 6,250,000! This is .000625 of the time!):

q RR(.6)

1 0.015873
2 0.047367
3 0.07433
4 0.097756
5 0.118505
6 0.136475
7 0.150909
8 0.16485
9 0.178581

10 0.191146
11 0.202753
12 0.209487
13 0.21666
14 0.220812
15 0.244053
16 0.241152
17 0.257894
18 0.269569
19 0.276066
20 1

Note that at q = 20 we have RR(.6) = 1. This is merely an indication
that we have overflowed the value for a long data type in Java.8 This is still
far from the asymptote.

Also note the floating point roundoff error even at q = 1. This value
should have been 0.015625, not 0.015873.

These calculations were performed by extending the class of the previ-
ous Java program earlier in this chapter, and is included herein:

import java.awt.*;
import java.io.*;
import java.util.*;

public class MaxTWR4VARWithProbs extends MaxTWR4VAR{
double probs[][];
double probsarray[];
double probThisB;

8Again, all of the code presented here can, even under present-day Java, be made
far more efficient and robust than what is shown here. This is merely presented as
a starting point for those wishing to pursue these concepts in code.
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public MaxTWR4VARWithProbs(String[] args){
super(args);

}

public static void main(String[] args){
MaxTWR4VARWithProbs maxTWR4VARWithProbs = new

MaxTWR4VARWithProbs(args);
}

protected void getinputdata(String fileName){
String filetext = readInputFile(fileName);
lines = getArgs(filetext,”\r\n”);
N=lines.length-2;
NL=(long)N;
plays=new double[N][];
probs=new double[N][lines.length-2];
for(int i=0;i<lines.length;i++){

System.out.println(”line ”+i+” : ”+lines[i]);
if(i==0){

msnames = getArgs(lines[i],”,”);
}else if(i==1){

f =
convertStringArrayToDouble(getArgs(lines[i],”,”));

}else{

plays[i-2]=
convertStringArrayToDouble(getArgs(lines[i],”,”),i-2);

}
}
System.out.println(”b : ”+b);
if(usedrawdowninsteadofruin){

System.out.println(”pr of : drawdown”);
}else{

System.out.println(”pr of : ruin”);
}

}

protected double [] convertStringArrayToDouble(String
[] s,int lineno){

double [] d = new double[s.length];
probs[lineno]= new double[s.length];
for(int i = 0; i<s.length; i++){

String ss[] = getArgs(s[i],”;”);
try{

d[i]=Double.parseDouble(ss[0]);
probs[lineno][i]=Double.parseDouble(ss[1]);
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}catch(NumberFormatException e){
d[i]=0.0;
probs[lineno][i]=0.0;

}
}
return d;

}

protected int B(double [] hprset,boolean drawdown){
double interimHPR=1.0;
double previnterimHPR=1.0;
double numerator=0.0;
double denominator=0.0;
probThisB=1.0;
for(int i=0;i<hprset.length;i++){

double useinvalue = previnterimHPR;
if(drawdown && previnterimHPR>1.0)

useinvalue = 1.0;

interimHPR = useinvalue × hprset[i];
//interimHPR = previnterimHPR × hprset[i];
double value = interimHPR - b;
numerator += value;
denominator += Math.abs(value);
previnterimHPR = interimHPR;
probThisB *= probsarray[i];

}
if(denominator==0.0){

return 0;
}else{

double x = (numerator/denominator);
if(x>=0){

return (int)x;
}else{

return 0;
}

}
}

//n things taken q at a time where q>=n to return the
i’th item
protected double[] nPq i(int q, long pn){

double hprpermutation[]=new double[q];
probsarray=new double[q];
int x = 0;
for(int column=0;column<q;column++){ // go through

column x column
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if(column==0){
x = (int)(pn % NL);

}else{
x =

(int)((pn/(long)(Math.pow((double)N,(double)column))) %
NL);

}
int a = q-1-column;
hprpermutation[a] = hpr[x];
probsarray[a] = probs[x][0];//it’s zero here

because we are only figuring one MS
}
return hprpermutation;

}

protected void control(){
double sigmas = 5.0;
double errorsize = .001;
double samplesize = Math.pow(sigmas/errorsize,2.0)

x .25;
long samplesizeL = (long)(samplesize+.5);
int counter=1;
RalphVince.Math.MersenneTwisterFast generator = new

RalphVince.Math.MersenneTwisterFast(System.currentTime
Millis());

java.util.Random random = new java.util.Random();
while(1==1){

long permutationcount = 0L;
double passed=0.0;
double sumOfProbs=0.0;
long nopermutations = (long)

Math.pow((double)hpr.length,(double)counter);
if(nopermutations<(long)samplesize){

for(long pn=0;pn<nopermutations;pn++){
double

hprpermutation[]=nPq i(counter,pn);
double theB =

(double)B(hprpermutation,usedrawdowninsteadofruin);
if(theB>0.0){

theB *= probThisB;
passed += theB;

}
sumOfProbs += probThisB;
permutationcount++;

}
}else{



JWDD035-12 JWDD035-Vince February 10, 2007 22:19 Char Count= 0

408 THE HANDBOOK OF PORTFOLIO MATHEMATICS

do{
generator.setSeed(random.nextLong());
long

pn=(long)(generator.nextDouble()*(double)nopermutations);
double

hprpermutation[]=nPq i(counter,pn);
double theB =

(double)B(hprpermutation,usedrawdowninsteadofruin);
if(theB>0.0){

theB *= probThisB;
passed += theB;

}
sumOfProbs += probThisB;
permutationcount++;

}while(permutationcount<samplesizeL);
}
double result=1.0-passed/sumOfProbs;
System.out.println(counter+” = ”+result);
counter++;

}
}

}

Unlike the previous code provided, this code class works only with one
market system, and the format for the input file differs from the first in that
in this class, each line from the third line on is a semicolon-delimited value
pair of outcome;probability.

Thus, the input file in this real-world example appears as:

Real-world example file of a single scenario spectrum
.45
-1889;0.015625
-1430.42;0.046875
-1295;0.015625
-750;0.0625
-450;0.125
0;0.203125
390;0.078125
800;0.328125
1150;0.0625
1830;0.046875

The technique of using a random sample gets our first few values for
the line of RX to q up and running with very good estimates in short order.
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With the second technique, to be presented now, we can extrapolate out
that line and hence seek its horizontal asymptote. Fortunately, lines derived
from the Equations (12.05), (12.05a), and (12.05b) do possess an asymptote
and are of the form:

RX ′(b, q) = asymptote-variableA * EXP(−variableB ∗ q) (12.11)

RX′(b,q) will be the surrogate point, the value along the y axis for a
given q along the x axis in the Cartesian plane.

We can use equation (12.11) as a surrogate for the actual calculations
in (12.05), (12.05a), or (12.05b) when q gets too computationally expensive.

To do this, we need only know three values: the asymptote, variableA,
and variableB.

We can find these values by any method of mathematical minimization
whereby we minimize the squares of the differences between the observed
values and the values given by (12.11). Those values with the minimum sum
of the differences squared are those values that best fit this line, this proxy
of actual RX(b,q) values when q is too computationally expensive.

The process is relatively simple. We take those values we were able to
calculate for RX(b,q). For each of these values, we compare corresponding
points derived from (12.11) and square the differences between the two. We
then sum the squares.

Thus, we have a sum of the squared differences of our points to (12.11)
for a given (asymptote, variableA, variableB). Proceeding with a mathe-
matical minimization routine (Powell’s, Downhill Simplex, even the genetic
algorithm, though this will be far from the most efficient means— for a list
and detailed explanation of these methods, see “Numerical Recipes,”9 Press
et al.) we arrive at that set of variable values that minimizes the sum of the
differences squared between the observed points and their corresponding
points as given by (12.11).

Returning, for example, to our two-to-one coin toss, we had calculated
by equation (12.05) those RR(.6) values, and these were given in Table 4.2.
Here, using Microsoft Excel’s Solver function, we can calculate the param-
eters in (12.11) that yield the best fit:

asymptote 0.48406
variableA 0.37418
variableB 0.137892

9Press, William H.; Flannery, Brian P.; Teukolsky, Saul A.; and Vetterling, William
T., Numerical Recipes: The Art of Scientific Computing, (New York: Cambridge
University Press, 1986).
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These values given by (12.11) are shown in the table below.

Observed Calculated

Play# (12.05) (12.10)

2 0.25 0.200066
3 0.25 0.236646
4 0.25 0.268515
5 0.3125 0.296278
6 0.3125 0.320466
7 0.367188 0.341538
8 0.367188 0.359896
9 0.367188 0.375889

10 0.389648 0.389822
11 0.389648 0.40196
12 0.413818 0.412535
13 0.413818 0.421748
14 0.436829 0.429774
15 0.436829 0.436767
16 0.436829 0.442858
17 0.447441 0.448165
18 0.447441 0.452789
19 0.459791 0.456817
20 0.459791 0.460326
21 0.459791 0.463383
22 0.466089 0.466046
23 0.466089 0.468367
24 0.47383 0.470388
25 0.47383 0.472149
26 0.482092 0.473683

This fitted line now, Equation (12.10), is shown superimposed as the
solid line over Figure 12.1, now as Figure 12.2.

Now that we have our three parameters, I can determine for, say, a q of
300, by plugging in these values into (12.10), that my risk of ruin [RR(.6)] is
.484059843.

At a q of 4,000 I arrive at nearly the same number. Obviously, the hori-
zontal asymptote is very much in this vicinity.

The asymptote of such a line is determined, as pointed out earlier by
(12.09), since the line given by (12.10) is a smooth one.

Let’s go back to our real-world example now, the single scenario set of
10 scenarios. Fitting to our earlier case of a single scenario set with 10 sce-
narios, whereby we were able to calculate the RR(.6) values for q = 1 . . . 19,



JWDD035-12 JWDD035-Vince February 10, 2007 22:19 Char Count= 0

The Leverage Space Portfolio Model in the Real World 411

FIGURE 12.2 RR(.6) observed and calculated for two-to-one coin toss f = .25

by taking 6,250,000 samples for each q (beyond q = 6) , and using these 10
data points (q = 1 . . . 19) as input to find those values of the parameters in
(12.11) that minimize the sum of the squares of the differences between the
answers given by those parameters in (12.11) and the actual values we got
[by estimating the actual values using (12.10)], gives us the corresponding
best fit parameters for (12.11) as follows:

asymptote = 0.397758
exponent = 0.057114
coefficient = 0.371217

The data points and corresponding function (12.11) then appear graph-
ically as Figure 12.3.

And, if we extend this out to see the asymptote in the function, we can
compress the graphic as shown in Figure 12.4.

Using these two shortcuts allow us to accurately estimate what the
function for RX ( ) is, and discern where the asymptote is, as well as how
many q—which can be thought of as a surrogate for time—out it is.

Now, if you are trying to fit (12.10) to a risk of ruin, RR(b), you will fit
to find the three parameters that give the best line, as we have done here.

However, if you are trying to fit to risk of drawdown, RD(b), you will
only fit for variable A and variable B. You will not fit for the asymptote.
Instead, you will assign a value of 1.0 to the asymptote, and fit the other two
parameters from there.
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FIGURE 12.3 RR(.6) for real-world example at f = .45

To confirm the reader’s burgeoning uneasiness at this point, consider
the following:

In the long-run sense, the probability of hitting a drawdown (of any

given magnitude, b) approaches 1, approaches certainty as you continue to
trade (i.e., as q increases).

lim
q→∞ RD(b, q) = 1.0 (12.12)

FIGURE 12.4 Figure 12.3 larger field-of-view
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This is not as damning a statement as it appears on first reading. Con-
sider the real-world example just alluded to wherein RR(.6) = 0.397758.
Since the probability of hitting a drawdown of any given magnitude (let’s
say, a 99% drawdown, for argument sake) approaches 1 as q approaches
infinity, yet there is only a roughly 40% chance of dropping back to roughly
60% of starting equity, we can only conclude that so many q have transpired
so as to cause the account to have grown by such an amount that a 99%
drawdown still leaves 60% of initial capital.

What we can know, and use, is that (12.05b) can give us a probability
of drawdown for a given q. We can use it to know, for instance, what the
probability of drawdown is over, say, the next quarter.

Further, since, we have a geometric mean HPR for each value of
(12.05b), we can determine what T we are looking at to reach a specified
growth.

T = logGtarget (5.07b)

where: target = The target TWR.
G = The geometric mean HPR corresponding to the

allocation set used in (12.05b).

Thus, for example, if my target is a 50% return (i.e., target TWR = 1.5)
and my geometric mean HPR from the allocation set I will use in (12.05b)
is 1.1, then I will expect it to take T periods, on average, to reach my target
TWR:

T = log1.11.5 = 4.254164

So I would want to consider the RD(b, 4.254164) in this case to be below
my threshold probability of such a drawdown.

Notice that we are now considering a risk of drawdown (or ruin) versus
that of hitting an upper barrier [i.e., target TWR, or u from (12.01)] . Deriving
T from (5.07b) to use as input to (12.05) is akin to using Feller’s classical
ruin given in (12.01) only for the more complex case of:

1. A lower barrier, which is not simply just zero.

2. For multiple scenarios, not just the simple binomial gambling sense (of
two scenarios).

3. These multiple scenarios are from multiple scenario spectrums, with
outcomes occurring simultaneously, with potentially complicated joint
probabilities.

4. More importantly, we are dealing here with geometric growth, not the
simple case in Feller where a gambler wins or loses a constant unit with
either outcome.
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Such analysis—determining T as either the horizon over the next im-
portant period (be it a quarter, a year, etc.), or backing into it as the expected
number of plays to reach a given target, is how we can determine the portfo-
lio allocation that is growth optimal while remaining within the constraints
of an acceptable level of a given drawdown over such a period.

In other words, if we incorporate the concepts detailed in this chapter,
we can see that the terrain in leverage space is pock-marked, has holes
in it, where we cannot reside. These holes are determined by the utility
preference pertaining to an unacceptable probability of an unacceptable
drawdown.10 We seek the highest point where the surface has not been
removed under our feet via the analysis of this chapter.

The process detailed in this chapter allows you to maximize returns for
a given probability of seeing a given level of drawdown over a given period—
which is risk. This is something that has either been practiced by intuition
by others, with varying degrees of success, or practiced with a different
metric for risk other than drawdown or risk of ruin—often alluded to as
value at risk.

Essentially, by seeking that highest point (altitude determined as a port-
folio’s geometric mean HPR or TWR) in the n + 1 dimensional landscape of n

components, one can mark off those areas within the landscape that cannot
be considered for optimal candidates as those areas where the probability
of risk of ruin or drawdown to a certain point is exceeded.

10Note that as one nears the f1 = 0 . . . . fn = 0 point, as described at the end of
Chapter 10, the likelihood of not being at a hole in the landscape becomes assured,
without going through the analysis outlined in this chapter. However, that is a poor
surrogate for not going through this analysis, as one would pay the consequences
for deviating far left on all axes in leverage space.
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Postscript

In the long run, the probability of hitting a drawdown (of any given mag-
nitude) approaches 1, approaches certainty, as you continue to trade
(i.e., as q increases).
This is not hard to see intuitively. If you can only die by being struck

by lightning, eventually, you will die by being struck by lightning. Trading,
like getting out of bed in the morning, flirts with disaster. I may not like
this—but that’s how it works, and therefore, usually, the best thing to do in
life is nothing at all.

It’s also the hardest thing to do.
Being aware of the risks is enlightenment, not a curse. Knowing that the

sun will burn out someday is not a bad thing to know. Knowing that driving
at 80 km/hour will cause 16 times the impact as driving one-fourth that
speed is beneficial to know, in that enlightenment allows us to better assess
those risks we wish to take.

RALPH VINCE
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Index

Active equity, upside limit on, 341–342
Anti-trending systems, 371
Arc sine laws, 194–198
Arithmetic mean, 45, 47
Asymmetrical leverage, 118–120

Baccarat, 19
Bankrolls, combined versus separate,

180–182
Bell curve. See Normal Distribution
Bernoulli Distribution, 10, 71–72, 183
Beta Distribution, 97
Binomial Distribution, 10, 72–78
Blackjack, 19, 145

as dependent trials process, 5
Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm, 316

Capital market lines (CMLs), 261–266
Cartesian plane, 236, 237, 409
Cauchy Distribution, 92, 96
Central Limit Theorem, 52–54, 88, 97,

203
Generalized, 97

Chi-Square Distribution, 87–88
Chi-square test, 40, 88–91
“Classical Gambler’s Ruin Problem,”

378–379
Coin-toss distribution. See Binomial

Distribution
Coefficients matrix, constructing,

235–246
row-equivalent matrices, solutions

of linear systems using, 246–252
results, interpreting the, 252–260

Commodity Futures Game: Who

Wins? Who Loses? Why?

(Teweles et al.), 222–226
Confidence limits, 27–32
Constant contract trading, 352–354
Continuous distribution, 44
Continuous dominance, 345–351

Davidson-Fletcher-Powell (DFP)
algorithm, 316

de Moivre, Abraham, 52
de Moivre’s distribution. See Normal

Distribution
Degrees of freedom, 91, 92–95
Dennis, Richard, 372
Dilution, 323–333

split equity technique of, 324–325
Dispersion, measures of, 47–49

half-width, 48
mean absolute deviation, 48
range, 47–48

semi-interquartile, 47
10–90 percentile, 47

standard deviation, 49
variance, 48–49

Distributions. See also specific types
continuous, 70
descriptive measures of, 45–47
discrete, 72, 74, 78
Haight’s index of, 98
moments of, 47–52

first, 47
fourth (kurtosis), 51
second, 47–49
third (skewness), 49–50
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Distributions. See also (Continued)
nonstationary, 26
open-ended, 45
probability, 43–98
stationary, 26, 52
unimodal, 54

Downhill Simplex (mathematical
minimization routine), 409

Drawdown
management, 359–363
optimality, 361
risk of, 389–414

Java code for determining,
392–395

time spent in, 197–198
Dynamic fractional f strategy, 325
Dynamic hedging, 335–340

Eckhardt, William, 372
Efficient frontier, 234, 264, 265

geometric, 266–273
Ergodicity, 16
E–V theory (Markowitz), 235–237,

240–241, 263. See also Modern
Portfolio Theory

Exact sequences, 8–12
Expectation, mathematical, 6–8
Expected average compound growth

(EACG), maximizing, 209–217,
345

Expected Utility Theorem, 218, 221
Exponential Distribution, 54, 55, 83–87

Negative, 85

F Distribution, 94
f shift, 342–343
Fisher’s Z transformation, 40–41
Football pools, 21

Galton’s board, 52, 53
Gamma Distribution, 97
Gauss, Karl Friedrich, 52
Gaussian distribution. See Normal

Distribution
Genetic algorithm, 317–321
Geometric average trade, 127–128

Geometric Distribution, 78–80
Geometric growth concepts,

103–116
Geometric mean, 46, 47, 103–109

calculation of using spreadsheet
logic, 127

estimating, 107–109, 198–201
finding optimal f by, 122–125

Gradient trading, 345–351
Growth risk ratio, 354–355
Growth, utility, and finite streams, laws

of, 207–229
expected average compound

growth, maximizing, 209–217
Expected Utility Theorem, 218
utility and the new framework,

226–229
utility preference curve, finding,

222–226
utility preference functions,

characteristics of, 218–221
utility theory, 217–218

alternate arguments to, 221–222

Haight, Frank, 97–98
Harmonic mean, 46, 47
Horse racing, and pari-mutuel betting,

23–24
House advantage, 15–17, 19–20
Hypergeometric Distribution, 80–81

Inflection, point of, 355–358

Kelly Betting System, 119
Kelly criterion, xvii, 120
Kelly formula, 24, 120–122, 131
Kelly, John L., Jr., 119
Kurtosis, 51

Lagrange, method of, 241–246
Laplace, Pierre Simon, 3
Law of Averages, 15, 16
Leverage Space Model, xvii, xx,

287–322, 376
genetic algorithm, 317–321
important notes, 321–322
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mathematical optimization, 303–304
versus root finding, 312–313

new framework, 288–299
objective function, 305–312
old frameworks, comparison to,

302–303
optimization techniques, 313–317

methods for selecting, 315
multidimensional, 315–317

in the real world, 377–414
simultaneous plays, multiple,

299–302
Leverage Space portfolios, geometry

of, 323–363
active equity, upside limit on,

341–342
constructing a robust, 342–343
continuous dominance, 345–351
dilution, 323–333
drawdown management and the

new framework, 359–363
f shift, 342–343
gradient trading, 345–351
margin constraint, 341–342
n + 1 dimensional landscape,

important points to the left of
the peak in, 351–358

constant contract trading,
352–354

growth risk ratio, 354–355
point of inflection, 355–358

portfolio insurance and optimal f,

335–340
reallocation, 333–335

tailoring a trading program
through, 343–345

Linear correlation coefficient, 32–41,
195

Linear programming, 315
Lognormal Distribution, 67–70
Lotteries, state, 21, 22

Margin constraint, 341–342
Markowitz, Harry, 232, 234
Markowitz model, 232–235
Martingale, 112–115

Mathematical expectation, 6–8
negative, 16, 18–20
positive, 19

Mathematical optimization, 303–304
linear programming, 315
techniques, 313–317

methods for selecting, 315
multidimensional, 315–317

versus root finding, 312–313
Mean

arithmetic, 45, 47
geometric, 46, 47
harmonic, 46, 47

Mean absolute deviation, 48, 58
population, 48
sample, 48

Mean variance portfolios, geometry of,
261–286

capital market lines (CMLs), 261–266
completing the loop, 281–286
geometric efficient frontier, 266–273
and optimal f, 277–281
unconstrained portfolios, 273

Median, 45
Mersenne Twister algorithm, 402
Mode, 46
Mode maximizers, 221–222
Modern Portfolio Theory, 231–232
Monte Carlo simulation, 380
Multinomial Distribution, 95–96

n + 1 dimensional landscape,
important points to the left of
the peak in, 351–358

constant contract trading, 352–354
growth risk ratio, 354–355
point of inflection, 355–358

Natural simulation, 316
Negative Binomial Distribution, 97
Negative correlation, 32,33
Negative territory, 195
Newton-Rapheson method of root

finding, 313
Non-interest-bearing cash (NIC),

274–277
Nonsatiation, 219
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Nonstationary distribution, 26
Normal Distribution, 8–11, 17, 52

standardized, 55
working with, 54–59

Normal Probability Distribution. See

Normal Distribution
Numbers game, 20–21, 22

Odds. See Probability statement
One-tailed probabilities, 62, 76
Optimal f, xvii, xviii, xix, 117–205, 209,

215–217, 226–229, 231–232,
277–281, 298, 311–312, 335–340,
342, 345

asymmetrical leverage, 118–120
characteristics of, 175–205

arc sine laws and random walks,
194–197

combined bankroll versus
separate bankrolls, 180–182

drawdown, time spent in, 197–198
geometric mean, estimated,

198–201
optimal f for small traders just

starting out, 175–176
portfolio insurance and, 335–340
sensitivity to the biggest loss,

193–194
simultaneous wagering or

portfolio trading, efficiency loss
in, 185–188

specified goal, time required to
reach, 188–191

threshold to geometric, 177–180
trading, fundamental equation of,

202–203
trading systems, comparing,

192–193
treating each play as if infinitely

repeated, 182–185
why f is optimal, 203–205

consequences of straying too far
from, 145–151

definition, 117–118
drawdown and largest loss with,

141–145

equalizing, 151–157
figuring geometric mean using

spreadsheet logic, 127
finding by the geometric mean,

122–125
finding via parabolic interpolation,

157–162
geometric average trade, 127–128
importance of, 132–140
Kelly formula, 24, 120–122
in mean variance portfolios,

277–281
scenario planning, 162–173
scenario spectrums, 173–174
simpler method for finding, 128–130
virtues of, 130–132

Parabolic interpolation, 157–162, 315
Pareto-Levy distributions. See Stable

Paretian distribution
Pari-mutuel betting, 21–24

horse racing and, 23–24
Pearson, Karl, 97
Pearson’s coefficients of skewness, 50
Pearson’s r. See Linear correlation

coefficient
Phase length test, 39–40
Point of inflection, 355–358
Poisson Distribution, 52, 81–85
Portfolio and systems management,

367–376
long-term trend followers

commonalities, 368
differences, 368–369
further characteristics of, 369–372

Portfolio construction, classical,
231–260

Markowitz model, 232–235
Modern Portfolio Theory, 231–232
problem, definition of the, 235–246
row-equivalent matrices, solutions

of linear systems using, 246–252
results, interpreting the, 252–260

Portfolio insurance, 335–340
Portfolio Management Formulas

(Vince), 315
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Portfolio trading, efficiency loss in,
185–188

Positive correlation, 32,33
Positive territory, 195
Possible outcomes, 8–11

and standard deviations, 11–15
Powell’s mathematical minimization

routine, 409
Probabilities

one-tailed, 62, 76
two-tailed, 63–64

Probability distributions, 43–98
basics of, 43–45
Bernoulli, 71–72
Binomial, 72
Central Limit Theorem, 52–54
Chi-Square Distribution, 87–88
chi-square test, 88–91
descriptive measures of, 45–47
Exponential, 83–87
Geometric, 78–80
Hypergeometric, 80–81
Lognormal, 67–70
moments of, 47–52

first, 47
fourth (kurtosis), 51
second, 47–49
third (skewness), 49–50

Multinomial, 94–95
Normal, 50

further derivatives of, 65–67
working with, 54–59

normal probabilities, 59–65
Poisson, 81–83
stable Paretian, 95–98
Student’s, 91–94
Uniform, 70–71

Probability statement, 3–5, 6
Pyramiding, 371
Pythagorean Theorem, 201, 204, 205,

371

Random process and gambling theory,
3–41

baccarat, 19–20
determining dependency, 25–27

exact sequences, possible outcomes,
and Normal Distribution, 8–11

house advantage, 15–17
independent versus dependent trials

processes, 5–6
linear correlation coefficient, 32–41
mathematical expectation, 6–8
numbers, 20–21
pari-mutuel betting, 21–24
possible outcomes and standard

deviations, 11–15
runs test, Z scores, and confidence

limits, 27–32
winning and losing streaks in, 24–25

Random walks, 194–197
Reallocation, 333–335

tailoring a trading program through,
343–345

Rectangular Distribution. See Uniform
Distribution

Reinvestment of returns, 99–116
Risk aversion, 219–221

absolute, 220
constant, 221
relative, 221

Rolle’s Theorem, 203–204
Root finding, mathematical

optimization versus, 312–313
Newton-Rapheson method, 313

Roulette, and mathematical
expectation, 7–8, 18

Ruin, risk of, 378–414
Java code for determining, 392–395

Runs test, 27–32, 195

Sample space, 12
Scenario planning, 162–173
Scenario spectrums, 173–174, 306–312
Separation Theorem, 263
Sharpe ratio, 263–264, 283–285
Sigma, 56
Significance level, 89–91
Simplex algorithm, 315
Simulated annealing, 316
Simultaneous wagering, efficiency loss

in, 185–188
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Skewness, 49–50
index of, 96
Pearson’s coefficients of, 50

Snedecor’s Distribution, 94
Stable Paretian distribution, 95–98
Standard deviation, 49, 58

possible outcomes and, 11–15
Standard normal deviate, 56
Standard Uniform Distribution. See

Uniform Distribution
Stationary distribution, 26, 52
Student’s Distribution, 41, 91–94
Survival hypothesis (Wentworth), 222

t Distribution. See Student’s
Distribution

Threshold to geometric, 177–180
Trading, fundamental equation of,

202–203
Trading systems, comparing, 192–193
Trials processes, independent versus

dependent, 5–6, 25

Turning points test, 38
“Turtles,” the, 372
Two-tailed, 63–64

Uniform Distribution, 53–54, 69,
70–71

Unimodal distribution, 54
Utility preference curve, finding,

222–226
Utility preference functions,

characteristics of, 218–221
Utility theory, 217–218, 222

alternate arguments to, 221–222
Utility-of-wealth function, 221

Variance, 48–49, 58
infinite, 92

Wentworth, R. C., 221–222

Z scores, 27–32
Ziemba, William T., 115–116, 150
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