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PREFACE TO THE SECOND EDITION

Oe d the main ideas behind the first edition o this book was to provide
, areasonably honest introduction to arbitrage theory without going into abstract
f messure and integration theory. This approach, however, had some clear draw-
i badks some topics, like the change o numeraire theory and the recently
I devdoped LIBOR and swap market models, are very hard to discuss without
E udng the language of measure theory, and an important concept like that o
a martingale measure can be fully understood only within a measure theoretic
framework.

For the second edition | havethereforedecided to include some more advanced
materia, but, in order to keep the book accessiblefor the reader who does not
wat to study measure theory, | have organized the text as follows

e The more advanced parts of the book are marked with a star *.

o The main parts o the book are virtually unchanged and kept on an
elementary level (i.e. not marked with a star).

! e The reader who is looking for an elementary treatment can simply skip

the starred chapters and sections. The nonstarred sections thus constitute
a self-contained course on arbitrage theory.

. The organization and contents o the new parts are as follows:

¢ | have added appendices on measure theory, probability theory, and mar-
tingale theory. These appendicescan be used for a lighthearted but honest
introductory course on the corresponding topics, and they definethe pre-
requisitesfor the advanced parts of the main text. In the appendicesthere
is an emphasis on building intuition for basic concepts, such as measur-
ability, conditional expectation, and measure changes. Most results are
given formal proofs but for some results the reader is referred to the
literature.
There is a new chapter on the martingale approach to arbitrage theory,
where we discuss (in some detail) the First and Second Fundamental The-
orems o mathematical finance, i.e. the connections between absence o
arbitrage, the existence of martingale measures, and completenessd the
market. The full proofsd these results are very technical but | have tried
to provide a fairly detailed guided tour through the theory, including the
Delbaen—Schachermayer proof o the First Fundamental Theorem.
+ o Following the chapter on the general martingale approach there is a sep
arate chapter on martingale representation theorems and Girsanov trans-
{ formations in a Wiener framework. Full proofs are given and | have also

¥

added a section on maximum likelihood estimation for diffusion processes.
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e As the obvious application o the machinery developed above, there is
a chapter where the Black—Scholes modd is discussed in detail from the
martingale point of view. Thereisaso an added chapter on the martingale
approach to multidimensional models, wherethese areinvestigatedin some
detail. In particular we discuss stochastic discount factors and derive the
Hansen—Jagannathan bounds.

e Theold chapter on changes d numeraire always suffered from the restric-
tion to a Markovian setting. It has now been rewritten and placed in its
much more natural martingale setting.

e | have added a fairly extensive chapter on the LIBOR and swap market
models which have become so important in interest rate theory.
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PREFACE TO THE FIRST EDITION

| The purpose o this book is to present arbitrage theory and its applications to
pricing problemsfor financial derivatives. It isintended as a textbook for gradu-
ate and advanced undergraduate students in finance, economics, mathematics,
and statisticsand | also hope that it will be useful for practitioners.

Because o itsintended audience, the book does not presupposeany previous
knowledge o abstract measure theory. The only mathematical prerequisitesare
advanced calculus and a basic course in probability theory. No previous know-
ledge in economicsor finance is assumed.

The book starts by contradicting its own title, in the sense that the second
chapter is devoted to the binomial model. After that, the theory is exclusively
developed in continuous time.

The main mathematical tool used in the book is the theory o stochastic
differentia equations (SDEs), and instead d going into the technical details con-
cerning the foundations of that theory | havefocused on applications. The object
isto givethe reader, as quickly and painlessly as possible, a solid working know-
ledge d the powerful mathematical tool known as It6 calculus. We treat basic
SDE techniques, including Feynman—Kaé representations and the Kolmogorov
equations. Martingales are introduced at an early stage. Throughout the book
there is a strong emphasis on concrete computetions, and the exercises at the
ad d each chapter constitute an integral part o the text.

The mathematics developed in the first part o the book is then applied to
arbitrage pricing of financial derivatives. We cover the basic Black-Scholes the-

ory, including delta hedging and "the greeks’, and we extend it to the case

of several underlying assets (including stochastic interest rates) as well as to
dividend paying assets. Barrier options, aswel as currency and quanto products,
¥ ae given separate chapters. We aso consider, in some detail, incomplete
£ markets.

American contracts are treated only in passing. The reason for this is that
i the theory is complicated and that few analytical results are available. Instead
| have included a chapter on stochastic optimal control and its applications to
E  optimal portfolio selection.

' Interest rate theory constitutes a large part of the book, and we cover the
basic short rate theory, including inversion o the yield curve and affine term
structures. The Heath—Jarrow—Morton theory istreated, both under the object-
ive measure and under a martingale measure, and we aso present the Musiela
L parametrization. The basic framework for most chaptersisthat d a multifactor
k  modd, and this alows us, despite the fact that we do not formally use measure
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theory, to give a fairly complete treatment o the general change o numeraire
technique which is so essential to modern interest rate theory. In particular
we treat forward neutral measures in some detail. This adlows us to present
the Geman-El Karoui—Rochet formula for option pricing, and we apply it to
the general Gaussian forward rate model, as wdl asto a number o particular
cases.

Concerning the mathematical level, the book falls between the elementary text
by Hull (1997), and more advanced texts such as Duffie (1996) or Musidla
and Rutkowski (1997). These books are used as canonical referencesin the
present text.

In order to facilitate using the book for shorter courses, the pedagogica
approach has been that o first presenting and analyzing a simple (typically
one-dimensional) model, and then to derive the theory in a more complicated
(multidimensional) framework. The drawback o this approach is of course that
some arguments are being repeated, but this seemsto be unavoidable, and | can
only apologize to the technically more advanced reader.

Notesto the literature can befound at the end of most chapters. | have tried
to keep the reference list on a manageable scale, but any serious omission is
unintentional, and | will be happy to correct it. For more bibliographicinforma-
tion the reader is referred to Duffie (1996) and to Musidlaand Rutkowski (1997)
which both contain encyclopedic bibliographies.

On the more technical side the following facts can be mentioned. | havetried to
present a reasonably honest picture of SDE theory, including Feynman-Kag¢ rep-
resentations, while avoiding the explicit use o abstract measuretheory. Because
o the chosen technical level, the arguments concerning the construction of the
stochastic integral are thus forced to be more or less heuristic. Nevertheless |
have tried to be as precise as possible, so even the heuristic arguments are the
"correct” onesin the sensethat they can be:completed to formal proofs. In the
rest of the text | try to give full proofs o all mathematical statements, with
the exception that | have often left out the checking o various integrability
conditions.

Since the Girsanov theory for absolutely continuous changes of measures
is outside the scope o this text, martingale measures are introduced by the
use d locally riskless portfolios, partial differential equations (PDEs) and the
Feynman-Kaé representation theorem. Still, the approach to arbitrage theory
presented in the text is basically a probabilistic one, emphasizing the use o
martingale measuresfor the computation o prices.

The integral representation theorem for martingales adapted to a Wiener
filtration is also outside the scope o the book. Thus we do not treat market
completenessin full generality, but restrict ourselvesto a Markovian framework.
For most applications thisis, however, general enough.
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1
INTRODUCTION

11 Problem Formulation

The main project in this book consistsin studying theoretical pricing modelsfor
those financial assets which are known asfinancial derivatives. Before we give
theformd definition of the concept o a financia derivative we will, however, by
meensd a concrete example, introduce the single most important example: the
European call option.

3 Le us thus consider the Swedish company Cé&H, which today (denoted by
I 1 =0) hassigned a contract with an American counterpart ACME. The contract
dipulates that ACME will deliver 1000 computer games to C&H exactly six
months from now (denoted by t = T). Furthermore it is stipulated that C&H
will pay 1000 US dollars per game to ACME at the time o delivery (i.e. at
t=T). For the sake o the argument we assume that the present spot currency
rate between the Swedish krona (SEK) arid the US dollar is 8.00 SEK/S$.

Ore d the problems with this contract from the point o view of C&H is
that it involves a considerable currency risk. Since C&H does not know the
currency rate prevailing six months from now, this meansthat it doesnot know
Fav many SEK it will havetopay at t = T. If thecurrency rateatt =T is
ill 800 SEK/$ it will have to pay 8,000,000 SEK, but if the rate risesto, say,
. 830 it will face a cost o 8,500,000 SEK. Thus Cé&H faces the problem o how
% to guard itsalf against this currency risk, and we now list a number o natural
drategies.

1. The most naive stratgey for C&H is perhaps that o buying $1,000,000
today at the price o 8,000,000 SEK, and then keeping this money (in a
_ Eurodollar account) for six months. The advantage d this procedure is
E”  of course that the currency risk is completely eliminated, but there are
aso some drawbacks. First 0 all the strategy above has the consequence
d tying up a substantial amount of money for a long period o time, but
an even more serious objection may be that Cé&H perhaps does not have
access to 8,000,000 SEK today.

. A more sophisticated arrangement, which does not require any outlays at
al today, is that C&H goes to the forward market and buys a forward
contract for $1,000,000 with delivery six months from now. Such a con-
tract may, for example, be negotiated with a commercia bank, and in the
contract two things will be stipulated.

e The bank will, at t =T, deliver $1,000,000to CéH.

e C&HwIll, at t =T, pay for this delivery at the rate f K SEK/$.
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The exchange rate K, which is caled the forward price, (or forward
exchangerate) at t = 0O, for delivery at t = T, isdetermined at t = 0. By
the definition o a forward contract, the cost d entering the contract equals
zero, and the forward rate K is thus determined by supply and demand on
the forward market. Observe, however, that even if the price d entering the
forward contract (att = 0) is zero, the contract may very wel fetch a nonzero
price during the interval [0,T).

Let us now assume that the forward rate today for delivery in six months
equals 8.10 SEK/$. If C&H entersthe forward contract this smply means that
there are no outlaystoday, and that in six monthsit will get $1,000,000 at the
predetermined total priced 8,100,000SEK. Sincethe forward rate is determined
today, C&H has again completely eliminated the currency risk.

However, the forward contract also has some drawbacks, which are related
to the fact that aforward contract is a binding contract. To seethislet uslook
at two scenarios.

e Suppose that the spot currency rate at t = T turns out to be 820. Then
Cé&H can congratulateitself, becauseit can now buy dollarsat the rate 8.10
despitethefact that the market rate is8.20. Intermsd the million dollars
at stake C&H has thereby madean indirect profit of 8,200,000—8,100,000=
100,000 SEK.

e Suppose on the other hand that the spot exchangerate at t = T turns out
to be 7.90. Because o the forward contract this means that Cé&H isforced
to buy dollars at the rate d 8.10 despite the fact that the market rate is
7.90, which impliesan indirect lossd 8,100,000—7,900,000= 200,000 SEK.

3. What C&H would like to have d course is a contract which guards it
against a high spot rateat t =T, whiletill dlowingit to take advantage
o alow spot rate at t = T. Such contracts do in fact exist, and they
are cdled European call options. We will now go on to give a formal
definition d such an option.

Definition 1.1 A European call option onthe amount of X USdollars, with
strike price (exercise price) K SEK/$ and exercise date T is a contract
written at t = 0 with the following properties.

e The holder of the contract has, exactly at thetimet =T, the right to buy
X USdollars at the price K SEK/$.
e The holder of the option has no obligation to buy the dollars.

Concerning the. nomenclature, the contract is called an option precisdy
because it gives the holder the option (as opposed to the obligation) of buy-
ing some underlying asset (in this case US dollars). A call option gives the
holder the right to buy, wheareas a put option gives the holder the right to sl
the underlying object at a prespecified price. The prefix Eur opean means that
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the option can only be exercised at exactly the date d expiration. There also
exigs American options, which give the holder the right to exercisethe option
a any time before the date o expiration.

Options d the type above (and with many variations) are traded on options
markets al over the world, and the underlying objects can be anything from
i fordgn currenciesto stocks, oranges, timber or pig stomachs. For a given under-
¢ lying object there are typically alarge number o options with different dates of
expiration and different strike prices.

Wenow seethat C&H can insureitself against the currency risk very elegantly
by buying a European call option, expiring six months from now, on a million
dollarswith a strike price of, for example, 8.00 SEK/$. If the spot exchangerate
a T exceeds the strike price, say that it is 8.20, then C&H exercisesthe option
and buysat 8.00 SEK/$. Should the spot exchangerateat T fall below thestrike
price it Smply abstains from exercising the option.

Note, however, that in contrast to a forward contract, which by definition
has the price zero at the time at which it is entered, an option will adways
ha/e a nonnegative price, which is determined on the existing options market.
This means that our friends in C&H will have the rather delicate problem of
determining exactly which option they wish to buy, since a higher strike price
(for a cdl option) will reduce the price o the option.

Ore d the main problemsin this book is to see what can be said from a
theoreticd point o view about the market price o an option like the one above.
In this context, it is worth noting that the European call has some properties
whd turn out to be fundamental.

fracaed
N .

L, o Since the value o the option (at T) depends on the future level o the
= gpot exchange rate, the holding of an option is equivalent to a future
stochastic claim.

¢ o Theoption isaderivative asset in the sensethat it isdefined in terms
d some upderlying financial asset.

"y

i‘it‘ Snce the value o the option is contingent on the evolution o the exchange
' rae, the option is often caled a contingent claim. Later on we will give a
predse mathematical definitiond this concept, but for the moment the informal
definition above will do. An option is just one example d a financial derivative,
' and afar from completelist of commonly traded derivativesis given below:

fat
H

.o European callsand puts
. o American options
¢ Forward rate agreements
¢ Convertibles
j, ¢ Futures
.+ Bondsand bond options
¢ Capsand floors
¢ Interest rate swaps
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Later on we will give precise definitionsd (most of) these contracts, but at
the moment the main point isthe fact that financial derivatives exist in a great
variety and are traded in huge volumes. We can now formulate the two main
problems which concern usin the rest d the book.

Main Problems. Take a fixed derivativeas given.

e What isa "fair" pricefor the contract?

e Suppose that we have sold a derivative, such as a cal option. Then we
have exposed ourselvesto a certain amount d financia risk at the date d
expiration. How do we protect ("hedge") oursalves against this risk?

Let uslook moreclosdy at the pricing questionabove. Thereexist two natural
and mutually contradictory answers.

Answer 1: "Usngstandard principlesd operationsresearch, a reasonable price
for the derivativeisobtained by computing the expected vdue d the discounted
future stochastic payoff.”

Answer 2 "Using standard economic reasoning, the priced a contingentclaim,
like the price d any other commodity, will be determined by market forces. In
particular, it will be determined by the supply and demand curvesfor the market
for derivatives. Supply and demand will intheir turn beinfluenced by such factors
as aggregate risk aversion, liquidity preferences, etc., so it is impossible to say
anything concrete about the theoretical price d a derivative.”

The reason that there is such a thing as a theory for derivatives lies in the
following fact.

Main Result: Both answers above are incorrect! It is possible (given, of course,
! some assumptions) to talk about the "correct” price of a derivative, and this price
isnot computed by the method given in Answer 1.

i In the succeeding chapters we will analyze these problemsin detail, but we
” can aready state the basic philosophy here. The main ideas are as follows.

Main I deas

¢ A financial derivativeisdefined in ter ms of some underlying asset which
already exists on the market.

e The derivative cannot therefore be priced arbitrarily in relation to
the underlying pricesif we want to avoid mispricing between the

derivative and the underlying price.

1 [ e We thus want to price the derivative in a way that is consistent with the

) underlying prices given by the market.

| e \Wearenot trying to computethe priced thederivativein some "absolute'
sense. Theideainstead isto determinethe priced the derivativein terms
of the market pricesof the underlying assets.
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THE BINOMIAL MODEL

In this chapter we will study, in some detail, the simplest possible nontrivial
modd d afinancia market—the binomial modd. Thisis a discrete time model,
but despite the fact that the main purpose o the book concerns continuoustime
modds the binomia mode is wel worth studying. The model is very easy to
understand, almost al important concepts which we will study later on already

gopear in the binomia case, the mathematics required to analyzeit is at high
ghod levd, and last but not least the binomial model is often used in practice.

21 The One Period M odel

W& start with the one period version o the model. In the next section we will
(eedily) extend the model to an arbitrary number o periods.

211 Model Description

Running time is denoted by the letter t, and by definition we have two points
intime, t = 0 ("today") and t = 1 ("tomorrow™). In the model we have two
asds abond and a stock. At timet the price o a bond is denoted by By,
ad the priced oneshare d the stock is denoted by S;. Thus we have two price
process B and S

The bond price processis deterministic and given by

By =1,

: Thecongtant Risthe spot rate for the period, and we can also interpret the

exigenced the bond as the existenced a bank with R asitsrate of interest.

The stock price processis a stochastic process, and its dynarnical behavior is
dexribed as follows

Sg=s,

g =J5u with probability p.
©“1 7 1s.d, with probability pg.

', It is often convenient to write this as
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. A=)
T
FiG. 2.1. Pricedynamics

where Z is a stochastic variable defined as

z7=1U with probability p,
~ 1d, with probability pg.

We assumethat today's stock price s is known, as are the positive constants
u, d, p, and ps. We assume that d < u, and we have o course p, +pd =1 We
can illustrate the price dynamicsusing the tree structure in Fig. 2.1.

2.1.2 Portfolios and Arbitrage

We will study the behavior o various portfolioson the (B,S) market, and to
this end we define a portfolio as a vector h = (X, y). The interpretation is that
X is the number o bonds we hold in our portfolio, whereas y is the number o
units o the stock held by us. Note that it is quite acceptable for x and y to
be positive as well as negative. If, for example, X = 3, this means that we have
bought three bonds at timet = 0. If on the other hand y= -2, this meansthat
we have sold two shares d the stock at timet = 0. In financia jargon we have
along positionin the bond and ashort positionin thestock. It isan important
assumption o the model that short positionsare alowed.

Assumption 2.1.1 We assume the following institutional facts:

e Short positions, aswell as fractional holdings, are allowed. | n mathematical
terms this means that every h € R? is an allowed portfolio.

e Thereisno hid-ask spread, i.e. the selling price is equal to the buying price
of all assets.

e There are no transactions costs of trading.

e The market is completely liquid, i.e. it is always possibleto buy and/or sell
unlimited guantities on the market. In particular it is possible to borrow
unlimited amounts from the bank (by selling bonds short).
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Congder now a fixed portfolio h = (x,y). This portfolio has a deterministic
maket value at t = 0 and a stochastic valueat t =1

Definition 2.1 The value process of the portfolio h is defined by
‘/th =$Bt+ySt, t=0,1,
or, in more detail,

V& =z+ys,
VP =2(1+R)Tysz

Everyonewantsto makea profit by trading on the market, and in this context
a9 cdled arbitrage portfolio is a dream come true; this is one o the central

conoepts o the theory.

Definition 2.2 Anarbitrage portfolio is a portfolio h with the properties

Ve =0,
V>0, with probability 1.

An arbitrage portfolio is thus basicaly a deterministic money making
meaching and we interpret the existenced an arbitrage portfolioas equivaent to
aseriouscased mispricing on the market. 1t isnow natural toinvestigatewhen a
gven market modd is arbitrage free, i.e. when there are no arbitrage portfolios.

Proposition 2.3 The model aboveis free of arbitrageif and only if the following
conditions hold:
d<(1+R)<u (2.1)

Proof Thecondition (2.1) has an easy economic interpretation. 1t smply says
that the return on the stock is not allowed to dominate the return on the bond
and vice versa. To show that absence o arbitrage implies (2.1), we assumethat
(2.1) doesinfact not hold, and then weshow that thisimpliesan arbitrage oppor-
tunity. Let us thus assume that one of the inequalitiesin (2.1) does not hold, so
that we have, say, the inequality s(1+R) > su. Then weaso haves(1 + R) > sd
it isdways more profitableto invest in the bond than in the stock. An arbit-
rage strategy is now formed by the portfolio h = (s,—1), i.e. we sell the stock
dhot and invest al the money in the bond. For this portfoliowe obvioudy have
V¢ =0, and asfor t = 1 we have

Vi =s(1+R)-sZ,

which by assumption is positive.
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Now assume that (2.1) is satisfied. To show that this implies absence o
arbitrage let us consider an arbitrary portfolio such that V* = 0. We thus have
x + ys = 0, i.e. X = —ys. Using this relation we can write the value d the
portfolioatt =1 as

sfu—(1+R)), if Z=u.
‘@’{Lﬁ—u+3% £Z7—d

Assume now that y > 0. Then h is an arbitrage strategy if and only if we have
the inequalities

u>1+R,
d>1+R,

but thisis impossible because d the condition (2.1). The casey < 0 is treated
similarly. O

At first glance this result is perhaps only moderately exciting, but we may
writeit in a more suggestiveform. To say that (2.1) holdsisequivalent to saying
that 1+ R isa convex combinationd » and d, i.e.

1+R=qu-u+qa-d,

whereq, gz = 0 and ¢, +qd =1 In particular we see that the weights g,, and
g4 Can be interpreted as probabilitiesfor a new probability measure Q with the
property Q(Z = u) = q, Q(Z = d) = ¢g4. Denoting expectation w.r.t. this
measure by E< we now have the following easy calculation

1

1 peei-
1+RE[&]

1

TR -8(1+ R) =s.

1
[%W+wM=1+R
We thus have the relation

: 1
__1 0
s=17gE Sib

which to an economist is a well-known relation. It is in fact a risk neutral
valuationformula, in the sensethat it givestoday's stock price asthe discounted
expected value o tomorrow's stock price. Of course we do not assume that the
agents in our market are risk neutra —what we have shown is only that if we
use the Q-probabilitiesinstead d the objective probabilitiesthen we have in fact
arisk neutral valuation d the stock (given absence d arbitrage). A probability
measure with this property is called a risk neutral measure, or aternatively
a risk adjusted measure or a martingale measure. Martingale measures
will play a dominant role in the sequel so we give a formal definition.




THE ONE PERIOD MODEL 9

Definition 2.4 A probability measure Q is called a martingale measure if
the following condition holds:

1
| +R

So = EQ [Sl]

We may now state the condition of no arbitrage in the following way.

Proposition 2.5 The market model is arbitrage free if and only if there exists
a martingale measure Q.

Far the binomia model it is easy to calculate the martingale probabilities.
The prodf isleft to the reader.

Proposition 26 For the binomial model above, the martingale probabilities are
given by

_ (1+R)—d
u u—'d b

_u—(1+R)
94 S5 d

2.1.3 Contingent Claims

Let us now assume that the market in the preceding section is arbitrage free.
We go an to study pricing problemsfor contingent claims.

Definition 27 A contingent claim (financial derivative) is any stochastic
variable X of the form X = ®(Z), where Z is the stochastic variable driving the
stock price process above.

Weinterpret agiven claim X asa contract which paysX SEK to the holder o
the contract at timet = 1. See Fig. 2.2, wherethe value o the claim at each node
is gven within the corresponding box. The function @ is called the contract
function. A typical examplewould be a European call option on the stock with
drike price K. For this option to be interesting we assumethat sd < K < su. If
81 > K then we use the option, pay K to get the stock and then sell the stock

(w) B
()

4 w) E@

FiG. 2.2. Contingent claim
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on the market for su, thus making a net profit o su— K. If $; < K then the
option is obvioudy worthless. In this example we thus have

su— K, ifZ=u,
Xz{o, ifZ=d

and the contract function is given by

®(u) = su — K,
®(d) =0.

Qur main problem is now to determine the "fair" price, if such an object
exists at all, for a given contingent claim X. If we denote the priced X at time
t by II(¢; X), then it can be seen that at timet = 1 the problem is easy to solve.
In order to avoid arbitrage we must (why?) have

I(1; X) = X,

and the hard part o the problemisto determineII(0; X). To attack this problem
we make a slight detour.

Since we have assumed absence d arbitrage we know that we cannot make
money out of nothing, but it isinteresting to study what we can achieve on the
market.

Definition 28 A given contingent claim X is said to ke reachable if there
erists a portfolio h such that
Vlh = X1

with probability 1. Inthat case we say that the portfolio h is a hedging portfolio
or areplicating portfolio. If all claims can be replicated we say that the market
iscomplete.

If a certain claim X is reachable with replicating portfolio h, then, from
afinancia point o view, there is no difference between holding the clam and
holding the portfolio. No matter what happens on the stock market, the value
o theclam at timet = 1 will be exactly equal to the value d the portfolio at
{ =1 Thusthe priced the claim should equal the market vaue d the portfolio,
and we have the following basic pricing principle.

Pricing principle 1 If aclaim X isreachablewith replicating portfolio h, then
the only reasonable price process for X is given by

(t; X)=Vr, t=0,1.

The word "reasonable” above can be given a more precise meaning asin the
following proposition. We leave the proof to the reader.
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Proposition 2.9 Suppose that a claim X is reachable with replicating
portfolio h. Then any price att =0 of the claim X, other than V&, will lead to
an arbitrage possibility.

We s that in a complete market we can in fact price al contingent claims,
it isd great interest to investigate when a given market is complete. For the
binomid mode we have the following result.

Proposition 210 Assume that the general binomial model is free of arbitrage.
Then it is also complete.

Proof W fix an arbitrary claim X with contract function ¢, and we want to
dow that thereexistsa portfolio h = (X,y) such that

vh = ®(u), fZ=u,
L7 @), if Z=4d.

If we write this out in detail we want to find a solution (x,y) to the following
sydem o equations

@t R)z T suy = &(w),
@A+ R)z T sdy = &(d).

Snoeby assumptionu < d, thislinear system has a unique solution, and asimple
cdculaion shows that it is given by

1 u®(d) - d®(u)

*=1+R u—d ' 22)

1 ®(u) - B(d)

= 2= (2.3)
O

214 Risk Neutral Valuation

Snce the binomial model is shown to be complete we can now price any contin-
gat cdam. According to the pricing principle o the preceding section the price
at=0isgiven by

T(o; X) = V',
and usng the explicit formulas (2.2)-(2.3) we obtain, after some reshuffling
d terms,

TOI0;X) =2+ sy

_ 1 f(1+R)-ad
"~ 1+R u—d

M@+E%%%@~M@}
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Here we recognize the martingale probabilities ¢, and g4 o Proposition 2.6.
If we assumethat the model isfree o arbitrage, these are true probabilities (i.e.
they are nonnegative), so we can write the pricing formula above as

00 X) = 1 {20) 00+ 8(@) - aa}

The right-hand side can now be interpreted as an expected value under the mar-
tingale probability measure Q, so we have proved the following basic pricing
result, where we also add our old results about hedging.

Proposition 2.11 If the binomial model is free of arbitrage, then the arbitrage
free price of a contingent claim X is given by

H&m=ﬁ%WWL 2.4)

Here the martingale measure Q is uniquely determined by the relation

1
T 1+R

So E? (8], (2.5)

and the explicit expression for ¢, and g4 are given in Proposition 2.6. Further-
more the claim can be replicated using the portfolio

1 ul(d) - do()

— 2.6
1+ R u—d ’ (26)

x

1. ®(u) - 9(d
L. (J___d( ). @

We see that the formula (2.4) isa "risk neutral” valuation formula, and that
the probabilities which are used are just those for which the stock itsdlf admits
a risk neutral valuation. The main economic moral can now be summarized.

y:

Moral

e The only role played by the objective probabilitiesis that they determine
which events are possible and which areimpossible. | n more abstarct prob-
abilistic terminology they thus determine the class o equivalent probability
measures. See Chapter 10.

e \When we compute the arbitragefree price d afinancia derivativewe carry
out the computations as if welivein a risk neutral world.

e Thisdoes not mean that we de facto live (or believethat welive) in a risk
neutral world.

e The vauation formula holds for all investors, regardlessd their attitude
towards risk, as long as they prefer more deterministic money to less.
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=y

e The formula above is therefore often referred to as a "preference free”
valuation formula.

We end by studying a concrete example.

Example 212 We set s = 100, v = 1.2, d = 0.8, p, = 0.6, pa = 0.4 and, for
computationa simplicity, R = 0. By convention, the monetary unit is the US
dallar. Thus we have the price dynamics

So = 100,

S, = 120, with probability 0.6.
171 80, with probability 0.4.

If we compute the discounted expected value (under the objective probability
meeare P) d tomorrow's price we get

fl‘l
| +R

EF[S;]=1-[120.0.6180-0.4] = 104.

Thisis higher than the value o today's stock price of 100, so the market is risk
avare Since condition (2.1) obvioudly is satisfied we know that the market is
abitrage free. We consider a European call with strike price K = 110, so the
dam X is given by

— X = {1 , i = 120,
P B FS=H
' Usng the method o computing the price as the discounted expected vaues

under the objective probabilities, i.e. "Answver 1'' in Section 1.1, this would give
the price as

a 1 ’
- : = — . + 2 =
B I(0;X) = 55 10-06+0 04 =6

Usdng the theory aboveit is easily seen that the martingale probabilitiesare
gven by ¢, = g4 = 0.5, thus giving us the theoretical price

(o; X) = Frl_o [10-05+0-0.5] = 5.

We thus see that the theoretical price differsfrom the naive approach above.
If our theory is correct we should also be able to replicate the option, and from
the proposition above the replicating portfoliois given by

_12-0-08-10 _
5 . 12-08
b 1 10-0 1

Y=100 12-08 " 4

-20,
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In everyday terms this means that the replicating portfolio is formed by
borrowing $20 from the bank, and investing this money in a quarter o a share
in the stock. Thus the net value o the portfolioat t = 0 isfive dollars, and at
t =1 the valueis given by

Vi =-20+1-120=10, if S =120,
VP=-20+1-80=0, ifsS; =S80,

so we see that we have indeed replicated the option. We also see that if anyone
is foolish enough to buy the option from us for the price $6, then we can make
a riskless profit. We sell the option, thereby obtaining six dollars. Out d these
six we invest five in the replicating portfolio and invest the remainingonein the
bank. At timet = 1theclamsd the buyer of the option are completely balanced
by the value o the replicating portfolio, and we still have one dollar invested in
the bank. We have thus made an arbitrage profit. If someone is willing to sell
the option to us at a price lower than five dollars, we can aso make an arbitrage
profit by selling the portfolio short.

We end this section by making some remarks.

First o all we have seen that in a complete market, like the binomial model
above, there isindeed a unique pricefor any contingent claim. The priceisgiven
by the value o the replicating portfolio, and a negative way o expressing this
is as follows. There exists a theoretical price for the claim precisely because of
the fact that, strictly speaking, the claim is superfluous—it can equally wel be
replaced by its hedging portfolio.

Second, we see that the structural reason for the completeness o the bino-
mial model is the fact that we have two financia instruments at our disposal
(the bond and the stock) in order to solve two equations (one for each possible
outcome in the sample space). This fact can be generalized. A mode is com-
plete (inthe generic case) if the number o underlying assets (includingthe bank
account) equals the number of outcomesin the sample space.

if we would like to make a more reaistic multiperiod moddl of the stock
market, then the last remark above seems discouraging. If we make a (non-
recombining) tree with 20 time steps this means that we have 220~ 106
elementary outcomes, and this number exceeds by a large margin the number o
assets on any existing stock market. 1t would thereforeseem that it isimpossible
to construct an interesting complete model with a reasonably large number o
time steps. Fortunately the situation isnot at al as bad asthat; in a multiperiod
model we will also have the possibility o considering intermediary trading,
i.e. we can dlow for portfolios which are rebalanced over time. This will give
us much more degrees d freedom, and in the next section we will in fact study
a complete multiperiod model.
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22 The Multiperiod Model
2.2.1 Portfolios and Arbitrage

The multiperiod binomial model is a discrete time model with the time index t
runingfromt =0tot =T, wherethe horizon T isfixed. As beforewe have two
underlying assets, a bond with price process B; and a stock with price process S;.

We assume a constant deterministic short rate d interest R, which is inter-
preted as the simple period rate. This meansthat the bond price dynamicsare

gven by
Bpni1=(1+ R)B,,
By=1.

The dynamics of the stock price are given by

Sn+1 = Sﬂ . Z‘n,

So=s.

hee 2y, ..., Zr—; are assumed to bei.i.d. (independent and identically distrib-
uted) stochastic variables, taking only the two valuesu and d with probabilities

P(Zn =’ll.) = Du,

P(Zn = d) = Pd-
i
. We can illustrate the stock dynamics by means o a tree, as in Fig. 2.3.
i Naethat thetreeisrecombining inthe sensethat an "up”-movefollowed by a
I "down''-move givesthe same result as a " down'-movefollowed by an "up"-move.
' We now go on to definethe concept o a dynamic portfolio strategy.

Definition 2.13 A portfolio strategy is a stochastic process
{he = (ze,me); t=1,...,T}

'k suchthat ke is a function o Sp, S1,...,8:—1. For a given portfolio strategy h we
E set hg = hy by convention. The value process corresponding to the portfolio h
i} is defined by
! VP = 2(1+R) + 3Se.

The interpretation of the formal definitionisthat z; isthe amount o money
# which we invest in the bank at timet — 1 and keep until timet. We interpret
¢ 4 as the number o shares that we buy at time t — 1 and keep until time t.
| Wedlow the portfolio strategy to be a contingent strategy, i.e. the portfolio we
L buy at t is allowed to depend on all information we have collected by observing
f the evolution of the stock price up to timet. We are, however, not dlowed to
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FIG. 2.3. Price dynamics

look into the future. The entity V;* above is of course the market value of the
portfolio (z, y:) (whichhas been held sincet — 1) at timett.

The portfolios which primarily interest us are the self-financing portfolios, |
i.e. portfolios without any exogenous infuson or withdrawal o money. In prac-
tical terms this means that in a sdf-financing portfolio strategy the accession
d a new asset has to be financed through the sale  some other asset. The
mathematical definition is as follows.

Definition 2.14 A portfolio strategy h is said to ke self-financing if the
following condition holds for allt=0,...,7 -1

z¢(1 + R) + y£ St = Teq1 + Ye415¢.

The condition aboveissmply a budget equation. It saysthat, at each timet,
the market value d the "old" portfolio (x;, y:) (whichwascreated at t —1) equals
the purchase value o the new portfolio (z¢+1,y:+1), which isformed at t (and
held until t +1).

We can now define the multiperiod verson d an arbitrage possibility.

Definition 2.15 An arbitrage possibility is a self-financing portfolio h with
the properties
Voh 2:6’
P(VE>0)=1,
P(VE>0)>0.
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We immediately have the following necessary condition for absence of
abitrage.
Lemma2 16 If the model is free of arbitrage then the following conditions
necessarily must hold.
d<(1+R)<u. (2.8)
The condition aboveisin fact aso sufficient for absence d arbitrage, but this

fadt is alittle harder to show, and we will proveit later. In any case we assume
that the condition holds.

Assumption 221 Henceforth we assume that d < u, and that the condition
(2.8) holds.

As in the one period model we will have use for "martingale probabilities™
which are defined and computed exactly as before.

Definition2.17 The martingale probabilities g, and ¢; are defined as the
probabilities for which the relation

1
8= H—REQ [SH'II St = 8]

holds.
Proposition 2.18 The martingale probabilities are given by

_(1+R)-d

Qu = u—d 3

u—(1+R)

Qd = ——————.
u—d

2.2.2 Contingent Claims
We row give the formal definition of a contingent claim in the model.

Definition 219 A contingent claim is a stochastic variable X of the form

X = ®(Sr),

- where the contract function @ is some given real valued function.

The interpretation is that the holder of the contract receives the stochastic

. amout X at timet = T. Notice that we are only considering claims that are

"dmple’, in the sense that the value o the claim only depends on the value Sp
o the stock price at the fina time T. It is also possible to consider stochastic
paydifs which depend on the entire path o the price process during the interval
0,7, but then the theory becomesa little more complicated, and in particular
the event tree will become nonrecombining.
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Our main problem isthat of finding a "reasonable” price process
{I(¢; X); t=0,...,T}

for a given clam X, and as in the one period case we attack this problem by
means d replicating portfolios.

Definition 2 20 A given contingent claim X is said to ke reachable if there
exists a self-financing portfolio h such that

VE =X,

with probability 1. In that case we say that the portfolio h is a hedging portfolio
or areplicating portfolio. If all claims can be replicated we say that the market
is (dynamically) complete.

Again we have a natural pricing principlefor reachable claims.

Pricing principle2 If a claim X is reachable with replicating (self-financing)
portfolio h, then the only reasonable price process for X is given by

o X) =V, t=0,1,...,T

Let us go through the argument in some detail. Supposethat X is reachable
using the salf-financing portfolio h. A X t and suppose that at timet we have
oy access to the amount V;*. Then we can invest this money in the portfolio h,
- and since the portfolio is self-financing we can rebalance it over time without
| any extra cost so as to have the stochastic value V;# at time T. By definition
vV} = X with probability 1, so regardiessd the stochastic movements o the
stock price process the value of our portfolio will, at time T, be equal to the
vaue of the claim X. Thus, from a financial point d view, the portfolio h and
the claim X are equivaent so they should fetch the same price.

The "reasonableness” o the pricing formula above can be expressed more
formally as follows. The proof is left to the reader.

Proposition 221 Suppose that X is reachable using the portfolio h. Suppose |
furthermore that, at some timet, itis possible to buy X at a price cheaper than |
(or to sell it at a price higher than) V{*. Thenit is possible to make an arbitrage
profit.

We now turn to the completenessd the model.

Proposition 2 22 The multiperiod binomial model is complete, i.e. every claim
can ke replicated by a self-financing portfolio.

It is possible, and not very hard, to give a formal proof d the proposition,
using mathematical induction. Theformal proof will, however, look rather messy
with lots d indices, so instead we prove the proposition for a concrete example, I
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usng a binomial tree. This should (hopefully) convey the idead the proof, and
the mathematically inclined reader is then invited to formalize the argument.

Example 2.23 Weset T =3, S =80, u =15 d= 05, p, =06, py =04
and, for computational ssimplicity, R=0.

The dynamics o the stock price can now be illustrated using the binomial
treein Fig. 2.4, where in each node we have written the value o the stock price.

We now consider a particular contingent claim, namely a European call on
the underlying stock. The date d expiration d the option is T = 3, and the
drike price is chosen to be K = 80. Formally this claim can be described as

X =max St - K, 0].

We will now show that this particular claim can be replicated, and it will be
obvious from the argument that the result can be generalized to any binomid
modd and any claim.

Theideais to use induction on the time variable and to work backwardsin
thetreefromtheleavesat t = T totheroot at t = 0. We start by computing the
price d the option at the date d expiration. Thisis easily done since obviousy
(why?) we must have, for any claim X, the relation

I(T; X) = X.

“ Thisresult isillustrated in Fig. 2.5, wherethe boxed numbersindicate the price

d the claim. Just to check, we see that if S3 = 90, then we exercisethe option,

D
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FiG. 2.4. Price dynamics
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pay 80 to obtain the stock, and then immediately sell the stock at market price |
90, thus making a profit o 10.

Our problem is thus that of replicating the boxed payoff structure at t = 3.
Imagine for a moment that we are at some node at t=2, e.g. at the node
S2 = 180. What we then seein front o us, from this particular node, isasmple
one period binomial model, given in Fig. 2.6, and it now follows directly from
the one period theory that the payoff structure in Fig. 2.6 can indeed be replic-
ated from the node S, = 180. We can in fact compute the cost o thisreplicating
portfolio by risk neutral valuation, and since the martingale probabilitiesfor this
example are given by g, = g4 = 0.5 the cost o the replicating portfoliois

1
—— [190- 0.5 + 10 - 0.5] = 100.
1+0[ +10-0.5] = 100

In the same way we can consider all the other nodesat t = 2, and compute the
cost of the corresponding replicating portfolios. The result is the set d boxed
numbersat t =2in Fig. 2.7.
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190

r

What we have done by this procedure is to show that if we can find a sdlf-
financing portfoliowhich replicatesthe boxed payoff structure at t = 2, thenitis
infact possibleto replicatethe original claim at t = 3. We have thus reduced the
problemin the time variable, and from now on we simply reproducethe construc-
tion above, but thistime at t = 1. Take, for example, the node S; = 40. From
the point of view o this node we have a one period model given by Fig. 2.8, and
by risk neutral valuation we can replicate the payoff structure using a portfolio,
which at the node S; = 40 will cost

1
— . + . —_—

In this manner wefill the nodes at t = 1 with boxed portfolio costs, and then
we carry out the sameconstruction againatt = 0. The resultisgiven in Fig. 2.9.

We have thus proved that it isin fact possble to replicate the European call
option at an initial cost o 27.5. To check thislet us now folow a possible price
path forward through the tree.




22 THE BINOMIAL MODEL

Fic. 2.9.

Westart at t =0, and since we want to reproducethe boxed claim (52.5, 2.5)
at t=1, we can use Proposition 24 to compute the hedging portfolio as
z1= — 225y, =>5/8. The reader should check that the cogt o this portfolio
is exactly 27.5.

Suppose that the price now movesto §; = 120. Then our portfoliois worth

-22.5-(1+0)+ 3 -120 = 52.5.

Since we now are facingthe claim (100, 5) at t = 2 we can again use Proposi-
tion 24 to calculate the hedging portfolio as zo = —42.5,y, = 95/120, and the
reader should again check that the cost d this portfolio equalsthe vaue d our
old portfolio, i.e. 52.5. Thus it is redly possble to rebalance the portfolioin
a sdlf-financing manner.

We now assume that the price fallsto S; = 60. Then our portfoliois worth

—425-(140)+ 2= - 60 = 5.

Facing the clam (10, 0) at t = 3 we use Proposition 2.4 to calculate the hedging
portfolio as 3 = —5,y3 = 1/6, and again the cost d this portfolio equals the
valued our old portfolio. ]

Now the price risesto S35 = 90, and we see that the value d our portfoliois
given by

-5-(1t0)+L-90=10,

which is exactly equal to the vadue o the option at that node in the tree. In
Fig. 210 we have computed the hedging portfolio at each node.

If we think a bit about the computational effort we see that all the vaue
computations, i.e. al the boxed vaues, have to be caculated off-line. Having
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donethiswe haved course not only computed thearbitragefree priceat t = 0 for
the claim, but also computed the arbitrage free price, at every nodein the tree.

The dynamic replicating portfolio does not have to be computed off-line. As
in the example above, it can be computed on-line as the price process evolves
o time. In this way we only have to compute the portfolio for those nodes
that we actually visit.

We now go on to give the general binomial algorithm. In order to do this we
nead to introduce some more notation to help us keep track o the price evolu-
tion. It is clear from the construction that the value o the price processat time

t can be written as

S, = sukfdt~*, k=0,...,t,

whare k denotes the number of up-moves that have occurred. Thus each nodein
the binomial tree can be represented by a pair (t,k) with k=0,...,t.

i Propostion 2.24 (Binomial algorithm) Consider a T-claim X = &®(Sr).
£ Then this claim can ke replicated using a self-financing portfolio. If V;(k) denotes
' Me value o the portfolio at the node (t,k) then V;(k) can ke computed recursively

by the scheme

1+R

{ Vilk) = —— {quVia(k + 1) + aaVers (0),
Vr(k) = &(sukdT—F).
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where the martingale probabilities ¢, and gz am given by

_(1+R)-d

v u—d '’

u—(1+R)

Q= ————.
u—d

With the notation as above, the hedging portfolio is given by

1 uVi(k) —dVik+1)
=k = 1Tx u—d ’
_ 1 V(k+1)-Vik)

I'n particular, the arbitrage free price of the claim att =0 is given by V5(0).

From the algorithm above it is also clear that we can obtain a risk neutral
valuation formula.

Proposition 2.25 The arbitrage free priceatt = 0 of aT-claim X is given by

1

-E9 [X]’

where Q denotes the martingale measure, or more explicitly

. 1 (T k, T—k —k
I(0; X) = (_]..-:i-T)f : kgo (k) 9ud4 Q(sude )

Proof Thefirst formulafollowsdirectly from the algorithm above. If welet Y |
denote the number o up-moves in the tree we can write

X =®(Sr) = ®(su¥d™Y),

and now the second formula follows from the fact that Y has a binomial
distribution. O

We end this section by proving absence o arbitrage.
Proposition 2.26 The condition
d<{1+R)<u
is a necessary and sufficient condition for absence of arbitrage.

Proof The necessity followsfrom the correspondingone period result. Assume
that the condition is satisfied. We want to prove absence o arbitrage, so let
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s assume that h (a potential arbitrage portfolio) is a self-financing portfolio
sidying the conditions

PV} >0)=1,
P(VE>0)>0.
From these conditions, and from the risk neutral vauation formula, it follows

that
B 1

Vo _ W.EQ (V#] >0,
whi ch showsthat h is not an arbitrage portfolio. D

2.3 Exercises

Exercise 2.1

(a) Prove Proposition 2.6.

I (b) Show, in the one period binomial model, that if II(1;X) # X with
probability 1, then you can make a riskless profit.

Exercise 2.2 Prove Proposition 2.21.

Exercise 2.3 Consider the multiperiod example in the text. Suppose that at
timet =1 the stock price has gone up to 120, and that the market price of the
option turnsout to be 50.0. Show explictly how you can make an arbitrage profit.

Exercise 2.4 Prove Proposition 2.24, by usinginduction on thetime horizon T.

2.4 Notes

Fa the origins o the binomial model, see Cox, Ross and Rubinstein (1979), and
Rendleman and Bartter (1979). The book by Cox and Rubinstein (1985) has
become a standard reference.

E LY
i



3
A MORE GENERAL ONE PERIOD MODEL

In this chapter, we will investigate absence of arbitrage and completeness in
dightly more general termsthan in the binomial modd. To kegp thingssimplewe
will be content with a one period model, but the financial market and the under-
lying sample space will be more general than for the binomia model. The point
o thisinvestigation of a simple case is that it highlights some very basic and
important ideas, and our main resultswill infact be vaid for much more genera
models.

31 The Modd

We consider a financial market with N different financial assets. These assets
could in principle be amost anything, like bonds, stocks, options or whatever
financia instrument that is traded on a liquid market. The market only exists
at the two pointsintimet =0 and t = 1, and the price per unit of asset No. i
at time t will be denoted by Si. We thus have a price vector process S;, t = 0,1
and we will view the price vector as a column vector, i.e.

S
=
sy

The randomnessin the system is modeled by assuming that we have a finite
sample space © = {wx,...,wn} and that the probabilities Plwgd, ®=1,..5
are dl strictly positive. The price vector Sp is assumed to be déterministic and
known to us, but the price vector at time t = 1 depends upon the outcome
w € 2, and Si(w;) denotesthe price per unit of asset No. i at timet = 1if w;
has occurred.

We may therefore define the matrix D by

Si(w1) SHwe) -+ SHwm) |

S}(w1) St(w2) -+ Si(wm)
D=

SN(w1) SM(w2) -+ SV(wm) |
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| |
D=5 = [dl"'dM )
| |

We can dso write D as

whaed,,...,dy arethe columnsd D.

32 Absence of Arbitrage

W& now define a portfolio as an N-dimensional row vector h = [hl, <o, hN]
with the interpretation that h' isthe number o units of asset No. i that we buy
a timet =0 and keep until timet =1.

Since we are buying the assets with deterministic pricesat timet = 0 and
ddlingthem at timet = 1 at stochastic prices, the value processd our portfolio
will be astochastic process V;* defined by

N
V=) RS} =hS;, t=0,1. (3.1)

i=1

o There are various (more or less equivalent) variations o the concept o an
arbitrage portfolio, and in the present setting the following will do nicely.

Definition 3.1 The portfolio h is an arbitrage portfolio if it satisfies the
conditions

V& <o,

v >0, with probability 1.

With obvious notation we can write this as

Vot <0,
VPw) >0, i=1,...,M.
We now go on to investigate when the market model above is free o arbitr-

a&e possibilities, and the main technical tool for this investigation is the
Farkas Lemma.

Lemma 32 (Farkas’ Lemma) Suppose that dg,ds,...,ds are column vec-
torsin RN, Then exactly one of the two following problems possesses a solution:

Problem 1: Find nonnegative numbers zi,..., z; such that

M
do = Z Zjdj.
i=1
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Problem 2: Find a row vector h € RN such that

hdy <0,
hd; >0, j=‘1,...,|\/|.
B Ry

Proof Let K betheset of all nonnegative linear combinations o dy,...,das.
It iseasy to see that K is a convex cone containing the origin. Exactly one o
the following cases can hold:

e The vector dy belongs to K. This means that Problem 1 above has
a solution.

e The vector dy does not belong to K. Then, by the separation theorem for
convex Sets, there exists a hyperplane H such that dp is strictly on one
sided H whereasK ison theother side. Letting h be defined as a normal
vector to H pointingin thedirection whereK lies, this meansthat Problem
2 has asolution. O

We can now formulateour first result.

Proposition 3.3 The market is arbitrage free if and only if there exist non-
negative numbers zi, ..., 2x such that the following vector equality holds:

) M
So = Z z,-S’l(wj).

=1

On component form this reads as

N
SE = szs;'(w,-); t=1,...,N

=1

Proof From the definition it fallows that the market is arbitrage free if and
only if the following system of inequalities does not possessa solution h € RN .

hSp < 0, :

hd; >0, j=1,...,M.
wheredy, .. ., da arethecolumnsd thematrix d above. From the Farkas Lemma
(with dg = Sp) we thus infer the existence of nonnegative numbers z,...,zxm
such that , M.‘ : ‘

So = Z Zjdj.

J=1
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W& can now give an economic interpretation o this result by defining the
real nonnegative numbers gi, ... ,qm by

M
g - —_ Zj e .
| g = —ﬁl, where 3 = Zz]. (3.2)

i=1

o

In this way we may interpret qi,...,qm as a probability distribution on 2
by setting Q(ws) = ¢i, and we can reformulate our previous result.

Proposition 3.4 The market is arbitrage free if and only if there exists a
probability distrébution Q on Q and a real constant 8 such that

So=B-E®[S1]. (3-3)

Such a measure, or probability distribution Q is called a martingale measure,
a arisk neutral distribution, or a risk adjusted distribution.

A natural question is now whether there exists a natural economic interpret-
ation d the factor 8 above. In order to obtain such an interpretation, we now
nmeke the additional assumption that there exists arisk freeinvestment altern-
diveamong the basic assets S1,... , SN, and we assumethat thisisin fact asset
No. 1. By arisk free investment we ssimply mean that the price at timet = 1is
deterministic, and by scaling we may thus assumethat St (w;) =1, j =1,...,M.
In other words, S? is a zero coupon bond with principal equal to one.
~ Thefirst component d the equality (3.3) then becomes

‘\.; |

and we may thus write
1
ﬂ" i_.'F_R')

where r is the risk free interest rate. Plugging this into the general formula
(3.3) we have the fallowing result, which in its far reaching generalizationsis
knoan as "thefirst fundamental theorem d mathematical finance'”.

Proposition 3.5 (First Fundamental Theorem) Assumethat there exists a
risk free asset, and denote the corresponding risk free interest rate by R. Then
- the market is arbitrage freeif and only if there exists a measure Q such that

1 t >
; S0 = T REISi (34)

The economic interpretation is thus that today's asset prices are obtained
as the expected vaue (under Q) of tomorrow's asset prices, di scounted with
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the risk free rate., The formulais dso referred to as a “risk-neutral” pricing
formula. The terminology "martingale measure’ stems from the fact that, for
every i =1,..., N the process

S

st
is a so-called martingale under the measure Q. We will come back later to
martingalesin much more detail, but in the present setting it just meansthat

S Si
Q | Jhte S0
B [s] s

3.3 Martingale Pricing

In this section, we will study how to price financial derivatives or, in tech-
nical terms contingent claims. We take the previoudy studied market model
as given and we assume for simplicity that there exists a risk free asset. In
order to highlight the,role o the risk free asset, we denote its price process
by B: and we may thus regard B; as a bank account, where our money (or

our debts) grow at the risk free rate. (In the previous section we thus had
B=s)

Definition 3.6 A contingent claim is any random variable X, defined on §2.

The interpretation is that a contingent claim X represents a stochastic
amount of money which we will obtain at timet = 1. Our main problem is
now to determine a "reasonable’ price II(0; X), at timet = 0 for a given claim
X, and in order to do this we must give a more precise meaning to the word
"reasonable”" above.

More precisely we would like to price the dlam X consistently with the
underlying a priori given assets St,...,SN, or put in other words, we would like
to pricetheclaim X in such a way that there are no ar bitrage oppor tunities
on the extended market consisting o TI,S?,...,SN. This problemis, however,
eadsly solved. The extended market is arbitrage free if and only if there exists
some martingale measure Q such that

TH(0; X) = - B X)),

and

Q
So = 1+RE (511

Thus, in particular, Q is a martingale measure for the 'underlying assets. At
time t:= 1 the vaue o the clam X is known, so in order to avoid arbitrage
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we must have TI(1; X) = X. Plugging this into the equation above we have the
fdlowing result.

Proposition 3.7 Consider a given claim X. In onler to avoid arbitrage, X
must then be priced according to the formula

10; X) = 5B, (3.5)

whew Q is a martingale measure for the underlying market.

We see that this formula extends the corresponding risk neutral pricing
formula (3.4) for the underlying assets.

The pricingformula (3.5) looksvery nice, but thereisa problem: if thereexist
sverd different martingale measures then we will have several possible arbit-
rage free prices for a given claim X. This has to do with the (possible lack of)
completenessd the market.

34 Completeness

In thissection, we will discuss how it is possibleto generate payment streams at
t =1 by forming portfolios in the underlying.

Assumption 3.4.1 We assume that the market St,..., SN is arbitrage free and
that there exists a risk free asset.

Definition 38 Consider a contingent claim X. If there exists a portfolio h,
besed on the underlying assets, such that
V=X, with probability 1. (36)
i.e.
VW) =XWw;), i=1,..., M, (3.7

then we say that X isreplicated, or hedged by h. Such a portfolio h is called
areplicating, or hedging portfolio. If every contingent claim can ke replicated, we
sy that the market is complete.

It is easy to characterize completeness in our market, and we have the
falowing result.

Proposition 39 The market is complete if and only if the rows of the matrix
D span RM, i.e. if and only if D hasrank M.

Proof For any portfolio h, we view the random variable V}* as a row vector
[V (w1), ..., Vi*(war)] and with this notation we have

Vi* = hD.
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The market isthus completeif and only if, for every random variable X, (viewed
as a row vector in RM)the equation

hD = X

hasa solution. But hD isexactly alinear combination o the rowsd D with the
componentsd h as coefficients. O

The concept o a replicating portfolio gives rise to an aternative way o
pricing contingent claims. Assume namely that the claim X can bereplicated by
the portfolio h. Then there is an obvious candidate as the price (at timet = 0)
for X, namely the market price, at t = 0, o the replicating portfolio. We thus
propose the natural pricing formula

I1(0; X) = V. (3.8)

Here there is a possibility that may get us into trouble. There may very wel
exist two different hedging portfoliosf and g, and it could in principle happen
that V§ # V§. It is, however, easy to see that this would lead to an arbitrage
possibility (how?) so we may disregard that possibility.

The pricingformula (3.8) can also be written in another way, so let us assume
that h replicates X. Then, by definition, we have

X = hS;, (3.9)

and from (3.8) we obtain
I1(0; X)) = hSp. (3.10)

However, on our arbitrage free market we also have the pricing formula (3.4)

Sp = 1‘-}——REQ EAR (3.11)

Combining this with (3.9)-(3.10) we obtain the pricing formula

T1(0; X) = 'ﬁEQ X]. (3.12)

which is exactly the formula given by, Proposition 3.7. Thus the two pricing
approaches coincide on the set d hedgable claims.

In Proposition 3.9 we obtained one characterization d complete markets.
There is another characterization which connects completeness to martingale
measures. This result, which we give below in our simple setting, is known as
""the second fundamental theorem o mathematical finance"
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. Proposition 3.10 (Second Fundamental Theorem) Assumethat the model
I is arhitrage free. Then the market is complete if and only if the martingale
measure is unique.

Proof From Proposition 39 we know that the market is complete if and only
if therowsd D span the wholedf RM , i.e. if and only if

Im[D*] = RM,

where we view the transpose matrix D* as a mapping from RN to RM. On the
other hand, from Proposition 3.3 and the assumption o absenced arbitrage we
knowthat there exists a solution (even a nonnegativeone) to the equation

So = Dz.

This solution is unique if and only if the kerndl (null spacé) of D is‘trivial, i'e.
if and only if
Ker[D] =

We ow recdll the following wdl known duality result:
- (Im[D*])" = Ker|[D].

ThusKer[D] =0 if and only if Im[D*] = RM, i.e. the market is complete if and
only if the martingale measureis unique. - * . a

We may now summarize our findings.
Proposition 3. 11 The following hold:

le The market is arbitmge free if and only if there exists a martingale
measure Q.

| » The market is complete if and only if the martingale measure is unique.

"o For any claim X, the only prices which are consistent with absence of
arbitmge are of the form

i 1
E{‘ n(o X)= —EQ[X], (3.13)

where Q is a martingale measure for the underlying market.
| o If the market is incomplete, then different choices of martingale measures
Q inthe formula (3.13) will generically give rise to different prices.
"elf X is replicable then, even in an incomplete market, the pricein (3.13)
_will not depend upon the particular choice of martingale measure Q. If X
4. isreplicable, then
o Vh iy ! E°
| o =—5E¥[X],
w [ +R

for d| martingale measuresQ and for all replicating portfolios h.
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3.5 Stochastic Discount Factors

In the previous sections we have seen that we'ean price financial derivitives by
using martingale measures and the formula

1

In some applicationsd the theory (in particular in asset pricing) it is common
to write this expected vaue directly under the objective probability measure P
instead o under Q.

Recalling the notation p;=P(w;) and ¢;=Q(wi), i=1,...,M, and the
assumption that p;>0 for i=1,...,M, we may define a new random
variableon Q.

Definition 3.12 The random variable L on £ is defined by

L(w,-):%%, i=1,...,M.

Thus L gives us the likdihood mtio between the measures P and Q, and
in more general situations it is known as the Radon-Nikodym derivative o Q
w.r.t. P.

Definition 3.13 Assume absence d arbitrage, and fiz a martingale measure Q.
With notations as above, the stochastic discount factor (or "state price
deflator") is the mndom variable A on © defined by

Aw)= T‘E‘E  L(w). (3.14)

We can now express our arbitrage free pricing formulas in a dightly
different way.

Proposition 3.14 The arbitrage free price of any claim X is given by the
formula

1(0; X) = EP[A - X], (3.15)

where A is a stochastic discount factor,
EY

Proof Exercisefor the reader: O

We see that thereis a one-to-one correspondence between stochastic discount
factors and martingale measures, and it islargely a matter d tasteif you want
to work with A or with Q. The advantaged working with A isthat you form-
aly stay with the objective measure P. The advantagewith working under Q is
that the decompositiondf A in (3.14) gives usimportantstructural information,
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and in more complicated situations there exists a deep theory (see "Girsanov
transformations” later in the text) which alows us to have compl ete control over
* the dassd martingale measures.

From an economic point of view, the stochastic discount factor is precisely an
Arrow-Debreu state price system, which gives the price A(w;) to the primitive
dam X; which pays1if w; occurs, and zero ctherwise.

36 Exercises
Exercise 3.1 Provethat Q in Proposition 3.7 is a martingale measure also for
the price process II(t; X), i.e. show that

(O X) _ po[H(iX)
Bg B; ’

whae B isthe risk free asset. Boge
Exercise 3.2 Provethelast item in Proposition 3. 11 e
Exercise 33 Prove Proposition 3.14.
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4
STOCHASTICINTEGRALS

41 Introduction

The purpose of this book is to study asset pricing on financial markets in
continuous time. We thus want to model asset prices as continuous time
stochastic processes, and the most complete and elegant theory is obtained if
we use diffuson processes and stochastic differential equations as our
building blocks. What, then, is a diffusion?

Loosaly speaking we say that a stochastic process X is a diffusion if its
local dynamics can be approximated by a stochastic difference equation o the
following type:

X(t+ At - X () = p (tX (1) ALt o (X)) Z(2). (4.1)

Here Z(t) is a normally distributed disturbance term which is independent o
everything which has happened up totimet, while ¢ and ¢ are given determ-
inistic functions. The intuitive content o (4.1) is that, over the time interval
[tt + At] the X-processis driven by two separate terms.

e A localy deterministic velocity p (t,X(2)).
e A Gaussian disturbance term, amplified by the factor o (t,X(¢)).

The function 4 is called the (local) drift term of the process, whereas ais
called the diffuson term. In order to model the Gaussian disturbance terms we
need the concept of a Wiener process.

Definition4.1 A stochastic process W is called a Wiener process if the
following conditions hold:

1. W(0)=0.

2. The processW has independent increments, i.e. if r < 8 <t < u then
W(u) — W(t) and W(s) — W(r) are independent stochastic variables.

3. For s <t the stochastic variable W (t)—W (s) hasthe Gaussian distribution
N [0t — s] .

4. W has continuous trajectories.

Remark 411 Note that we use a somewhat old fashioned notation, where

N [ pe] denotes a Gaussian distribution with expected vaue ¢ and standard
deviation a.

In Fig. 4.1 acomputer simulated Wiener trajectory is shown.
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Fic. 4.1. A Wiener trajectory

We may now use a Wiener processin order to write (4.1)as

Xt At - X(¢) = u(t, X)) Attt X(t) AW(2), (4.2)

whare AW (¢) is defined by
AW (t) =W (tT At) - W(t).

Le us now try to make (4.2)a bit more precise. It is then tempting to divide
the equation by At and let At tend to zero. Formally, we would obtain

X(t) = n(t, X)) +0(t,X(2)v(t), (4.3)
X(0)=a, (4.4)

where we have added an initial condition and where
dw
)= —
o) =5
is the formal time derivative o the Wiener process\W .

If v were an ordinary (and wel defined) process we would now in principle
be able to solve (4.3)as a standard ordinary differential equation (ODE) for
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each v-trgjectory. However, it can be shown that with probability 1 a Wiener
trajectory is nowhere differentiable (cf. Fig. 4.1), s0 the process v cannot even
be defined. Thus this is a dead end.

Another possibility of making eqn (4.2) more precise is to let At tend to
zero without first dividing the equation by At. Formaly we will then obtain the
expression

{dX(t) =u(tX () dtto (t,X(¢) dW (), 45

X(0)=a,

and it is now natural to interpret (4.5) as a shorthand verson o the following
integral equation

X(t)=at /Ot p(s,X(s)) ds+ /Ot o (s, X(s)) dW(s). (4.6)

In egn (4.6) we may interpret the ds-integral as an ordinary Riemann integral.
The natural interpretation o the dW-integral isto view it asa Riemann-Stieltjes
integral for each W-trgjectory, but unfortunately this is not possible snce one
can show that the W-trgjectoriesare d locally unbounded variation. Thus the
stochastic dW-integral cannot be defined in a naive way.

As long as we insist on giving a precise meaning to egn (4.2) for each
W-trajectory separately, we thus ssem to be in a hopdess situation. If,
however, we relax our demand that the dW-integral in egn (4.6) should be
defined tragjectorywisewe can still proceed. It isin fact possible to give a globa
(L2-)definitiond integralsd the form

/0 o(s) AW (s) a7)

for a large class d processes g. This new integral concept—the so called 1to
integrd —will then give rise to a very powerful type d stochastic differentia
cdculus—the 1t6 calculus. Our program for the future thus consists o the
following steps:

1. Defineintegralsd the type

/Ot g(s) dW (s).

2. Develop the corresponding differentia calculus.
3. Andyze stochastic differential equations o the type (4.5) usng the
stochastic calculus above.

4.2 Information

Let X be any given stochastic process. In the sequd it will be important to
define "theinformation generated by X" astimegoesby. To do thisin arigorous
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b fashion is outside the main scope d this book, but for most practical purposes
¢ the following heuristic definitionswill do nicely. See the appendicesfor a precise
. treatment.

Definition 4.2 The symbol F#* denotes "the information generated by X onthe
interval [0f]”, or alternatively "what has happened to X over the interval [0¢]”.
If, basad upon observations of the trajectory {X(s); 0 < s <t), it is possbleto
decide whether a given event A has occurred or not, then we write this as

Ae FX

or say that "A is F{X-measurable”.
If the value of a given stochastic variable Z can ke completely determined
given observations of the trajectory {X(s); 0 < s < t}, then we also write

Z e FX
If Y is a stochastic process such that we have
Y (t)e FX
for all t > 0 then we say that Y isadapted to the filtration {FX}

t>0°

The above definition is only intended to have an intuitive content, since
a precise definition would take us into the realm o abstract measure theory.
Neverthdess it is usually extremely smple to use the definition, and we now
gve ome fairly typical examples.

1 If wedefinetheevent A by A= {X(s) < 3.14, for all s<9) then we have
A€ F¥

g t2. For the event A= {X(10) > 8) we have A€ Fi¥. Note, however, that we

do not have A € FZ, sinceit isimpossible to decide if A has occurred or

not on the basisof having observed the X-trajectory only over theinterval

e 0,9].

% 3. For the stochastic variable Z, defined by

Z=/05X(s)ds,

we have Z € F&
4. If W isaWiener process and if the process X is defined by

X (t)=supW(s),

E s<t

then X is adapted to the W-filtration.
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5. With W as above, but with X defined as
X(t) = sup W(s),
8<t+1

X is not adapted (to the W-filtration).

4.3 Stochastic Integrals

We now turn to the construction d the stochastic integral. For that purposewe
consider as given a Wiener process W, and another stochastic processg. In order
to guarantee the existenced the stochastic integral we haveto impose somekind
d integrability conditionson g, and the class £2 turnsout to be natural.

Definition 4.3

() We say that the processg bdongs to the class E? [a,b] if the following
conditions are satisfied.
o [P E[g*(9)]ds < oo.
e The processg is adapted to the F}¥ -filtration.
(2 We say that the process g bdongs to the class £2 if g € £2[0,t] for
alt>0.

Our object is now to define the stochastic integral f: g(s)dW (s), for a process
g € E?[a,b], and this is carried out in two steps.

Supposeto begin with that the processg € £2[a,] issimple, i.e. that there
exist deterministic pointsintimea =ty <t; <:..- <t, = b, such that g is
constant on each subinterval. In other words we assume that g(s) = g(tx) for
8 € [tk, tk+1)- Then we define the stochastic integral by the obvious formula

n—1

b
/ 9(5) AW (s) = 3 g(tk) [W (tsn) — W (te)]. (48)

k=0

Remark 4.3.1 Note that in the definition d the stochastic integral we take
s0 called forward increments o the Wiener process. More specificdly, in the
generic term g(tx) [W(tk+1) — W(tx)] of the sum the process g is evaluated at
the left end tx o the interval [tg,tx+1] Over which we take the W-increment.
This is essential to the following theory both from a mathematical and (as we
shall see later) from an economica point o view.

For a general processg € E?[a,b] which is not smple we may schematically
proceed as follows.

1. Approximateg with a sequenced simple processes g, such that

/ " E[{on(s) - 9(6))"] do =0
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2. For eech n theintegra f: gn(8) dW (s) is awdl-defined stochastic variable
Zn, and it is possible to prove that there exists a stochastic variable Z2

such that Z, — Z (in L?) asn — co.
3. We now define the stochastic integral by

b b
/ o(5) W () = lim | 9n(3) g (s). (4.9)

fdlowing proposition. In particular we will use the property (4.12) over and

1 The most important properties o the stochastic integral are given by the
ove again.

Proposition 4.4 Let g le a process satisfying the conditions

i B N B B

, / " B [¢%(s)] ds < o, (4.10)

p a

I g is adapted to the F}¥ -filtration. (4.11)

; | Then the following relations hold:

F E [/b g(s) dW(s)] =0. (4.12)
b 2 b

P E ( / a(s) dW(s)) - / E [¢%(s)] ds. (4.13)

r

} /b g(s)dW(s) is F}¥-measurable. (4.14)

Proof A full proof is outside the scope o this book, but the general strategy
isto start by proving all the assertions above in the case when g issimple. This
isfarly easily done, and then it "only" remainsto go to the limit in the sense
d (4.9). We illustrate the technique by proving (4.12) in the case d asmple g.
We obtain

c - [ / g(s) dW/( s)] [Zg(m[W(tm)—W(tkn]

‘P-'

& o ow

v

= éE (9(te) [W(tes1) — W(tk)]).

' Snceg is adapted, the value g(tx) only depends on the behavior d the Wiener
» processon theinterval [0,tk]. Now, by definition W has independent increments,
L 0 [W(tk+1) — W(tk)] (which is a forward increment) is independent o g(t).
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Thus we have .
E [g(te) W (te+1) — W)l = E [g(tx)] - E W (trt1) — W (tr))
= FE[g(t)] - 0= 0. ]
[m]
Remark 4.3.2 It is possible to define the stochastic integral for a process g
satisfying only the wesk condition

P (/b g%(s)ds < oo) =1 (4.15)

For such a general g we have no guarantee that the properties (4.12) and (4.13)
hold. Property (4.14) is, however, still valid.

4.4 Martingales
The theory d stochastic integration isintimately connectedto the theory of mar-

tingales, and the modern theory o financial derivativesisin fact based mainly on
martingale theory. Martingale theory, however, requires some basic knowledge
of abstract measure theory, and a formal treatment is thus outside the scope of
the more elementary parts o this book.

Because of its great importance for the field, however, it would be unreason-
able to pass over this important topic entirely, and the object d this section is
to (informally) introduce the martingale concept. The more advanced reader is
referred to the appendicesfor details.

Let us therefore consider a given filtration ("flow o information™) {F;}+>o,
where, as before, the reader can think o F; asthe information generated by all ;
observed events up totimet. For any stochastic variable Y we now let the symbol

E[Y|F]

denote the "expected value of Y, given the information available at time ¢”.
A precisedefinitionof thisobject requires measuretheory, so we haveto be con-
tent with thisinformal description. Note that for a fixed t, the object E [Y| F]
is a stochastic variable. If, for example, the filtration is generated by a single
observed process X , then theinformationavailableat timet will o coursedepend
upon the behavior o X over the interval [0,t], so the conditional expectation
E[Y|F] will in this case be a function of all past X-values {X(s):s<t). We
will need the following two rules o calculation.

Proposition 4.5
e IfY and Z are stochastic variables, and Z is F;-measurable, then

E(Z2 Y|R]=2Z E[Y|F]
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o If Y is a stochastic variable, and if s < t, then
E[E[Y|FR]| Fs] = E[Y|F,).

Thefirst d these resultsshould be obvious: in the expected value E[ Z . Y | ;] we
condition upon all information available timet. If now Z € F, this meansthat,
gven the information F;, we know exactly the valued Z, so in the conditional
expectation Z can be treated as a constant, and thusit can be taken outside the
expectation. The second result is caled the "law o iterated expectations’, and
it is bascdly a verson o the law of total probability.

We can now define the martingale concept.

Definition 4.6 A stochastic process X is called an (F;)-martingale if the
following conditions hold:

e X isadapted to the filtration {F;}+>0.
o Forallt
E[IX(®)|] < 0.

e For all s andt with s <t the following relation holds:
E[X(t)| Fo] = X(s).
A process satisfying, for all s and t with s <t, the inequality
E[X(t)| F] < X(s),
is called a supermartingale, and a process satisfying
E[X(t)| Fs] 2 X(s),

is called asubmartingale.

Thefirst condition saysthat we can observe the value X (¢) at timet, and the
seoond conditionis just a technical condition. The really important condition is
the third one, which says that the expectation of afuture valued X, given the
information available today, equals today's observed valued X. Another way d
putting thisisto say that a martingale has no systematic drift.

It is possibleto prove the following extension o Proposition 4.4.

Proposition 4.7 For any process g € £2 [st] the following hold:

5[ ' ou) dW(w) 7| =0

As a corollary we obtain the following important fact.
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Corollary 4.8 For any process g € £2, the process X, defined by

X(t) = /0 o(s) AW (s),

isan (F¥)-martingale. In other words, modulo an integrability condition, every |

stochastic integral isa martingale.
Proof HXx sandt withs<t.We have

E[X@®)|FY])=E [/ot g(t)dW(7) faw]

f,W] +E Ut g(r) dW (r)

=E[/Osg(r)dW(7') f,W].

From Proposition 4.4 we also seethat E [f: g(r)dW(r)

.7-':"] =0, so weobtain

The integral in the first expectation is, by Proposition 4.4, measurable w.r.t.
FY, s0 by Proposition 4.5 we have
8 ' ‘
B| [ anawen)| 7| = [' s awee),
0

E[X(¢)| FV = /Os g(T)dW(r) + 0 = X (s).

O
We have in fact the following stronger (and very useful) result.
Lemma 4.9 Within the framework above, and assuming enough integrability,
a stochastic process X (having a stochastic differential) is a martingale if and
only if the stochastic differential has the form

dX(t) = g(t) dW(?),

i.e. X has no dt-term.

Proof We haveadready seenthat if dX hasnodt-termthen X isa martingale.
The reverse implication is much harder to prove, and the reader is referred to
the literature cited in the notes below. O
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45 Stochastic Calculus and the 1t6 Formula

Let X be a stochastic process and suppose that there exists a real number xg
and two adapted processes ¢ and o such that the following relation holds for
dlt>0.

X(t)=a+ /0 u(s) ds + /0 o(s) dW (s), (4.16)

wherea issomegiven real number. Asusual W isa Wiener process. To usealess
cumbersome notation we will often write egn (4.16) in the following form:

dX(t) = p(t)dt + o(t) AW (), (4.17)
X(0) =a. (4.18)

In this case we say that X has a stochastic differential given by (4.17) with
an initial condition given by (4.18). Note that the formal string dX(t) =
u(t) dt T o (t) dW (t) has no independent meaning. It issimply ashorthand ver-
dond the expression (4.16) above. From an intuitive point d view the stochastic
: differentid is, however, a much more natural object to consider than the cor-
~ responding integral expression. This is because the stochastic differential gives
% us the "infinitesimal dynamics” of the X-process, and as we have seen in Sec-
~ tion 4.1, both the drift term p(s) and the diffusion term o(s) have a natural
intuitiveinterpretation.

Let us assume that X indeed has the stochastic differential above. Loosaly
speaking we thus see that the infinitesimal increment dX(t) consists o a loc-
dly deterministic drift term p(t)dt plus an additive Gaussan noise term
o(t)dW (t). Assume furthermore that we are given a C1»2-function

f:Ry xR—> R
and let us now definea new process Z by

Z(t) =1 (¢, X(t))-

Wemay now ask what thelocal dynamicsd the Z-processlook like, and at first it
seamsfairly obviousthat, except for the casewhen f islinear in X, Z will not have
astochastic differential. Consider, for example, a discrete time example where
X satisfiesa stochastic difference equation with additive Gaussian noisein each
step, and suppose that f (t,x) = €*. Then it isclear that Z will not be driven by
additive Gaussian nhoiss—the noise will in fact be multiplicativeand log-normal. -
It istherefore extremely surprising that for continuoustime model sthe stochastic
differentia structurewith adrift term plusadditive Gaussian noisewill in fact be
preserved even under nonlinear transformations. Thus the process Z will have
a stochastic differential, and the form o dZ is given explicitly by the famous
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It6 formula below. Before turning to the 1t6 formula we have to take a closer
look at some rather fine properties o the trgjectories d the Wiener process.

Aswe saw earlier the Wiener processis defined by a number o very smple
probabilistic properties’ It is therefore natural to assume that a typical Wiener
trgjectory is a fairly smple object, but this is not at al the case. On the
contrary-one can show that, with probability 1, the Wiener trajectory will
be a continuousfunction d time (seethe definition above) which is nondifferen-
tiable at every point. Thus a typical trajectory is a continuous curve consisting
entirely d cornersand it is o course quite impossible to draw a figure o such
an object (it isin fact fairly hard to prove that such a curve actually exists).
Thislack of smoothnessgives riseto an odd property o the quadratic variation
o the Wiener trgjectory, and since the entire theory to follow depends on this
particular property we now take sometime to study the Wiener incrementsa bit
closer.

Let usthereforefix two pointsin time, s and t with s <t, and let us usethe
handy notation

At=1t—s,
AW (t) = W(t) — W(s).

Using well-known properties o the normal distribution it isfairly easy to obtain
the following results, which we will use frequently

E[AW]=0, (4.19)
E[(AW)?] = At, (4.20)
Var[AW] = At, 4.21)
Var[(AW)?] = 2 (At)% (4.22)

We see that the squared Wiener increment (AW (t))? has an expected value
which equals the time increment At. The really important fact, however, is
that, according to (4.22), the variance d [AW (¢)]? is negligible compared to its
expected value. In other words, as At tends to zero [AW (¢)]? will of coursealso
tend to zero, but the variancewill approach zero much faster than the expected
vaue. Thus [AW (¢)]? will look more and more "deterministic” and we are led
to believethat in the limit we have the purely formal equality

[AW ()] = dt. (4.23)

The reasoning aboveis purely heuristic. It requiresalot d hard work to turn the
relation (4.23) into a mathematically precise statement, and it isdf course even
harder to proveit. We will not attempt either a precise formulationor a precise
proof. In order to give the reader a flavor o the full theory we will, however,
give another argument for the relation (4.23).
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Let us therefore fix a point in timet and subdivide the interval [0,t] into n
equally large subintervals o the form [k£, (k +1)£], wherek =0,1,...,n— 1.
Given this subdivision, we now define the quadratic variation of the Wiener
'~ process by S, i.e. ¢

S, = i [W (%) —w ((i - 1)%)}2, (4.24)

i=1

and our god isto see what happensto S, as the subdivision becomes finer, i.e.
as N — oo. We immediately see that

E[S.] = gE “W (z;t;) -W ((i— 1)%)]2}

‘ E Using the fact that W has independent increments we also have

waisg = v [ (1) (6-2)] ]

‘ Thuswe seethat E [Sp] =t whereas Var[S,] — 0 ash — oo. In other words, as
n — oo we se that S, tends to the deterministic limit t. This motivates us

to write .
/ AW =+, (4.25)
V]

'g ' or, equivalently,
: [dW)? = dt. (4.26)
Note again that all the reasoning above has been purely motivational. In this

[} text we will have to be content with accepting (4.26) as a dogmatic truth, and
rowv we can give the main result in the theory o stochastic calculus—the 1t6

formula.

Theorem 4.10 (Ité’s formula) Assume that the process X has a stochastic
differential given by

't dX (t)= @) dt +o(t) dw (t) (4.27)
Il where, and a are adapted processes, and let f be a C12-function. Define the
t processZ by Z(t) =f (1,X(t)). Then Z has a stochastic differential given by

2
Cdf(t, X)) = {% + “g_i + %02%} dt + ag—i dw (¢). (4.28)
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Remark 4.5.1 In the statement d the theorem above we have, for readability
reasons, suppressed a lot of variables. The term pdf /0z, for example, is
shorthand notation for of

ut) 5o (. X(0)
and correspondingly for the other terms.

Proof A full formal proof is outside the scope o this text, so we only give
a heuristic proof (see Remark 4.5.2). If we make a Taylor expansion including
second order terms we obtain

2
df_afdt+ﬁdx+1@”(d)()2 laf gtaf

oz

By definition we have

= () + dtdX. (4.29)

dX (t) = p(t)dt + o(t) dW (1),
so, at least formally, we obtain
(dX)? = p2 (dt)® + 2u0 (dt)(dW) T o2 (dW)?.

The term containing (dt)? aboveis negligible compared to the dt-term in (4.27),
and it can also be shown that the (d¢)(dW)-term is negligible compared to the
dt-term. Furthermore we have (dW)? = dt from (4.23), and plugging in all this
into the Taylor expansion (4.29) gives us the result. O

It may be hard to remember the 1t6 formula, so for practical purposesit is
often easier to copy our "proof" above and make asecond order Taylor expansion.

Proposition 4.11 (Itd’s formula) With assumptionsasin Theorem 4.10, df
isgiven by

Of 444 9f 18 42
df = Zpdt+=-dX + 257 (dX) (4.30)

whew. we use the following formal multiplication table.

(dt)? =0,
dt.dw =0,
(AW)? = dt.

Remark 4.5.2 As we have pointed out, the "proof" o the I1t6 formula above
doesnot at all constitute aformal proof. We end this section by giving an outline
o the full proof. What we have to proveisthat, for al t, the following relation
holds with probability one:

t af

A - dW (s).

(4.31)

6, X))~ £0,X(0) = | (?—3{+ o Lo 2325) dot

Univ.
Bibtiothek
| Bielefeld
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We thereforedivide the interval [0,f] as0 =1ty <t; <.-- <t =t into n equal
5 subintervas. Then we have

n—1
f(t X)) -1(0,X(0) = &f (tkr1, X (tes1)) — T (6, X (t8)) . (4.32)

Usng Taylor's formula we obtain, with subscripts denoting partial derivatives
and obvious notation,

f ka1, X(tr41)) — T (te, X (t1))
=t (tk, X (tk)) At +x (tr, X (tr)) AXk (4.33)
+ 3 faa (tr, X (86)) (AXk)” + ok,
whae @y, isthe remainder term. Furthermore, we have
tht1 try1
AXp = X(tey1) — X (k) = / u(s)ds + / a(s)dW(s)
tr tr

= u(tp)At + o(ti) AWy + Si,

(4.34)

- | whae S, is a remainder term. From this we obtain
(AXe)? = p(te) (A1) + 2u(te)o (te) AtAWE + 02(t) (AWR)? + P,  (4.35)

. whee Py isaremainder term. If we now substitute (4.33)-(4.35) into (4.32) we
. obtain, in shorthand notation,

, ft,X1)-f(0,XO0)=h+L+Ii+ 34+ 1K +K:+R,
7' whae |
L= X Ao =¥, fulte)ulti) A,
|, b= T Lt)ot)AWs, L= T, feultn)o®(t) (AWK)?
9 K1 =Y faa(th)p?(te) (A1), Kz = Yo fuo(te)u(te)o(te) AtAW,,
. R=Y,{Qx+58k+ P}

g Letting n — oo we have, more or less by definition,

L — /Ot fr(s,X(s)) ds, I — /0th (s, X(s)) u(s)ds,

'I3—>/0 fz (8,X(8)) o(s)dW(s).

” Vay much as when we proved earlier that 3~ (AWi)? — t, it is possible to

' dow that .

I — / fes (5, X () 0%(s) ds,
0 .
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and it isfairly easy to show that K; and K, convergeto zero. The realy hard
part is to show that the term R, which is a large sum o individual remainder
terms, also converges to zero. This can, however, aso be done and the proof
is finished.

4.6 Examples

In order toillustrate the use o the 1t6 formulawe now give some examples. All
these examples are quite simple, and the results could have been obtained as
wdl by using standard techniquesfrom elementary probability theory. The full
force o the It6 calculus will be seen in the following chapters.

The first two examples illustrate a useful technique for computing expec-
ted valuesin situations involving Wiener processes. Since arbitrage pricing to
a large extent consists o precisely the computation o certain expected values
this technique will be used repeatedly in the sequel.

Supposethat we want to compute the expected value E[Y]where Y issome
stochastic variable. Schematically we will then proceed as follows

1 Try towriteY as Y = Z(ts) where tp is some point in time and Z is
a stochastic process having an 1t6 differential.
2. Us=the It6 formulato compute dZ as, for example,

dZ(t) = p(t) dt + o(t) AW (¢),
Z(0) = z.

3. Write this expression in integrated form as

Z(t) = go +/0 u(s)ds +_/.§ o(s)dW (s).

4. Take expected values. Using Proposition 4.4 we see that the dW-integral
will vanish. For the ds-integral we may move the expectation oper- |
ator indide the integral sign (an integral is "just” a sum), and we
thus have

E(2(t) = 20 + fo Elu(s) ds.

Now two cases can occur:

(a) We may, by skill or pure luck, be able to calculate the expected |
vaue E[u(s)] explicitly. Then we only have to compute an ordin-
ary Riemannintegral to obtain E[Z(t)], and thusto read df E[Y]=
E[Z(to)]-

(b) If we cannot compute E|[u(s)] directly we have a harder problem, but
in some cases we may convert our problem to that o solving an ODE. ]
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Example 4.12 Compute E[W4(2)].

Solution: Define Z by Z(t) = W*(t). Then we have Z(t) = f(¢, X(t)) where
X =W and f isgiven by f(t,x) = x*. Thus the stochastic differential d X
istrivial, namely dX = dW, which, in the notation o the 1t6 formula (4.28),
means that 1 = 0 and a = 1. Furthermore we have 8f/8t = 0, 8f/8z = 4x>,
and 0%f /0z? = 12x2. Thus the 1t6 formulagives us

dZ(t) = 6W2(t) dt T 4W3(t) aw (1),
Z(0)=o.

Written in integral form this reads
t t
Z(t)=0+ 6/ W2(s)ds+ 4/ W3(s)dW (s).
0 0
Nw we take the expected values o both membersd this expression. Then, by

Proposition 4.4, the stochastic integral will vanish. Furthermore we may move
the expectation operator inside the ds-integral, so we obtain

E[Z(t)] =6 /0 "E[W2(s)] ds.

Now we recall that E [W?2(s)] ='s, so in the end we have our desired result

t
E[W*t) =E|[Z(t) =6 / sds=3t2.
0

Example 4.13 Compute E [e2W®)].
Solution: Define Z by Z(t) = e ®, The Ité formula gives us

dZ(t) = %oﬁe"‘w(t) dt+ ae®™® aw (t),
Dwe xethat Z satisfiesthe stochastic differential equation (SDE)

dz(t) = 1a2Z(t) dt T aZ(t) dW (t),

Z(0) =1.

In integral form this reads

1 ¢ t
() =1+ 12 /0 Z(s)(ds) + a /0 Z(s) AW (s).
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Taking expected values will make the stochastic integral vanish. After moving
the expectation within the integral sign in the ds-integral and defining m ky
m(t) = E [Z(¢)] we obtain the equation

m(t) =1+ %az /0 t m(s)(ds).
Thisis an integral equation, but if we take the t-derivative we obtain the ODE |
{m(t) = $m(t),
m(0) = 1.
Solving this standard equation gives us the answer
E [eaW“)] = E [Z(t)] = m(t) = e**/2,

O

It is natural to ask whether one can "compute” (in some sense) the value o
a stochastic integral. Thisis afairly vague question, but regardlessd how it is
interpreted, the answer is generally no. There are just a few exampleswherethe
stochastic integral can be computed in a fairly explicit way. Here is the most
famous one.

Example 4.14 Compute
t
/ W (s) dW (s).
0

Solution: A natural guess is perhaps that fot W(s)dW(s) = W?2(t)/2. Since |
It6 calculus does not coincide with ordinary calculus this guess cannot possibly
be true, but neverthelessit seems natural to start by investigating the process
Z(t) = W?2(t). Using the It6 formula on the function f(t,z) = x? and with
X =W we get

dz(t) =dt 2w () dw(z).
In integrated form this reads

£y t
W2ty =1+2 / W(s)dW (s),
0
SO we get our answer

¢ _wWE) ot
/OW(s)dW(s)- -

We end with a useful lemma.

|
|
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Lemma4.15 Le a(t) ke a given deterministic function d time and define
the process X by

X(t):/0 o(s) dW(s). (4.36)

Then X(¢) has a normal distribution with zero mean, and variance given hy

Var[X(t)] = /0 " 0%(s) ds.

. # Thisis d course an expected result because the integral is "just" a linear
combingtion d the normally distributed Wiener increments with deterministic
' codffidents See the exercisesfor a hint d the proof.

47 The Multidimensional Ité Formula

Let us now consider a vector process X = (X3, ...,Xn)*, where the component
X; has astochastic differential of the form

d
dX;(t) = m(t) dt T Y oi5 (1) AW (1)
j=1

and W1,...,W, are d independent Wiener processes.
. Ddfining the drift vector u by

1
Un
- the d-dimensional vector Wiener process W by

wh
W = ’
Wy

ad the n X d-dimensional diffusion matrix o by

g11 012 ... Oid
g21 0322 co. O24

g = . 3
Onl1 On2 .-- ffnd

.f we may write the X-dynamics as

dX(t) = pu(t) dt + o(t) dW ().
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Let us furthermore definethe process Z by

Z(t) = F(t, X (1)),

wheref : Ry x R"— Risa C%2 mapping. Then, using arguments as above, it
can be shown that the stochastic differentialdf is given by

af (. X(t))—afdt+2 - dX; niia

i=1 j=

dX;dX;,  (4.37)
16 Zj

withthe extended multiplication rule (seethe exercises)
(dW;) (dw;) =0, fori#j.

Writtenout in full (seethe exercises) this gives usthe following result.

Theorem 4.16 (Ité’s formula) Let then-dimensional process X have dynam-
ics given by
dX () = u(t) dt + o(t) AW (2),
with notation as above. Then the following hold:
e The process f (t,X(t)) has a stochastic differential given by

_J8F ¢ .a — Of

1]—

, dW.

Here the row vector o; istheith row of the matrix a, i.e.
o; = [O'il,-..,a'id]a
and the matrix C is defined by
C = aa*,

where * denotes transpose.
o Alternatively, the differentialis given by the formula

aof 1 & Bf
df (t, X(¢)) = dt+ dX +=

I _ax,dx;,

with the formal multiplication table

(ar)? =o,

dt.dw =0,

@w;?=dt, i=1,...,d,
dW; - dW; =0, |,
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Remark 4.7.1 (Ité’s formula) The Ité formula can also be written as

df = {6f+ 1 [ 1f+—tr[a*Ha]} dt-’rZande

wheare H denotesthe Hessian matrix

_ o
v 8.’13,;612]"

and tr denotes the trace of a matrix. The trace is defined, for any square
matrix A, asthe sum o the diagonal elements, i.e.

trdA= ZAu.
i

S the exercises for details.

L 48 Correlated Wiener Processes

| Up to this point we have only considered independent Wiener processes, but
vmetimesit is convenient to'build models based upon Wiener processes which
ae correlated. In order to define such objects, let us therefore consider d
independent standard (i.e. unit variance) Wiener processes Wa,...,Wa. Let
‘furthermorea (deterministic and constant) matrix

611 b12 ... 14
821 O ... b2
6n1 5n2 Lo 6nd

} be given, and consider the n-dimensional processes W, defined by
W =W,

where

ﬁ In other words

d
Wi=§:6¢jo, i=1,...,n.
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Let us now assume that the rows of § have unit length,i.e.

16l =1, i=1,...,n,

where the Euclidean norm is defined as usual by

d
ll=l = ylsz-
i=1

Then it is easy to see (how?) that each d the components Wi,...,W, separ-
ately are standard (i.e. unit variance) Wiener processes. Let us now define the
(instantaneous) correlation matrix p o W by

pij At = Cov[dW;, dW;].
We then obtain
Pij dt = E[sz . dVVJ] - E[dW»,,] ‘ E[dW]] = E[dW, . dVV]]

d d
=E | 6udWi Y 65dWi| = buduB[dWi - dWj]
k=1 =1 kl

d
=) didjk = 6,5 dt,
k=1
ie. ,
p = 66",
Definition 4.17 The process W, constructed as above, is called a vector of
correlated Wiener processes, with correlation matrix p.

Using this definition we have the following 1t6 formulafor correl ated Wiener
processes.

Proposition 4.18 (Ité’s formula) Take a vector Wiener process W =]
(W1, ..., Wp) with correlation matrix o as given, and assume that the vector pro-
cessX = (Xy,..., Xg)* has a stochastic differential. Then the following hold:

e For any C12 function f, the stochastic differential of the process f (t,X(¢))

is given by
) "9 1S 82
df (¢, X () = B%dt +3 6—gfdx,- +3 > ngv—jdXide,
=1 ° ij=1 ¢
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with theformal multiplication table

(dt)? =0,
dt'dWi=0, i=1,...,n

dW; - dW; = py; dt.

aven d‘N

) o If,in particular, K = n and dX has the structure w

dX; =p;dt +o0;dW;, i=1,...,n,

where p1,...,un and oy,...,0, are scalar processes, then the stochastic
differential o the processf (t, X(t)) is given by

n n a
df={%‘tf+§uig Zo,ajp,Ja 5% }dt+20, de

1,j=1 i=1

We end this section by showing how it is possible to translate between the
two formalismsabove. Suppose therefore that the n-dimensional process X has
- adochadtic differential of the form

dX (t) = p(t) dt + o(t) dW (1), (4.38)
: ie. .
dXi(t) = () dt T oy(H) dWi(t), i=1,...,n. (4.39)

* Thusthe drift vector process p is given by

M
p=1 : 1
Hn
and the diffuson matrix process o by
011 012 ... O14
O21 022 ... 024
o= .
Onl On2 ... Ond
W is assumed to be d-dimensional standard vector Wiener process (i.e. with
) [8  indenendent components) of the form

W,
W= :
s,\ e Wd




58 STOCHASTIC INTEGRALS

The system (4.38) can also be written as

dX;(t)= ps(t)t + o (AW (1),

where, asusudl, o; istheith row o the matrix u. Let us now define n new scalar
Wiener processes Wy, ..., W, by

Wi= oW, i=1,..,n.
llo:|l A
We can then write the X-dynamicsas
dX;(t) = pi(t) dt + lo:@®)||dWi(2), i=1,...,n. (4.40)
Asis easily seen, each W; is a standard scalar Wiener process, but Wi,...,Wy

are d course correlated. The local correlation is easily calculated as

pijdt = E [dW; dW;)

i oot = 1
ikOjk
ouo i = oo

‘l IC=
Summing up we have the following result.

Proposition 4.19 The system

d .
dX;(t) = m(t)at Y o) dWit), i=1,...,n, (4.41)

i=1
where W1, ..., Wy are independent, may equivalently be written as
dX;(t) = pa(t) dt + 8;(t) dWi(t), i=1,...,n, (4.42)

where Wh,...,W,; have the local correlation matrix p. The connections
between (4.41) and (4.42) are given by the following expressions:

= 1
W.;=——a,-W, i=1,...,n,
llol
3 = ||oill, i=1,...,n,
. 0’,‘0';5 )

pii= I
Y ol el 7
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49 Exercises
Exercise 4.1 Compute the stochastic differential dZ when

- (a) Z(t) =e™,

T (b) Z() = fot g(s)dW (s), whereg is an adapted stochastic process.
(o) Z(t) =2V
., (d) Z(t) = e*X®) where X has the stochastic differential

dX(t) = pdt T odW(t)

(1 and o are constants).
(e Z(t) = X?(t), where X has the stochastic differential

dX(t) = aX(t)dt T o X (t) dW (1).

Exercise 4.2 Compute the stochastic differential for Z when Z(¢) = 1/X(t)
and X hasthe stochastic differential

dX (t) = aX (t)dt + e X ) dW(t).

By using the definition Z = X! you can in fact express the right hand side of
dZ entirdly in terms o Z itsdf (rather than in terms o X). Thus Z satisfies
adochadtic differential equation. Which one?

Exercise 4.3 Let o(t) be a given deterministic function o time and define the
process X by

|
XY= ] o(s)dW(s). (4.43)

> Ue the technique described in Example 4.13 in order to show that the
characteristicfunction of X (¢t) (for afixed t) is given by

u2 t 2
E [eiuX(t)] — exp _3_/ o“(s) ds} , u€R, (4.44)
0

~ thus showing that X (¢} is normally distributed with zero mean and a variance
given by

t
Var[X(2)] = / o?(s)ds.
0
Exercise 44 Supposethat X has the stochastic differential
dX(t) = aX(t)dt T o(t) dW(t),

whareaisareal number whereaso(t) isany stochastic process. Usethetechnique
- in Example 4.13 in order to determine the function m(t) = E [X (t)].
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Exercise 4.5 Suppose that the process X has a stochastic differentia
dX (t) = u(t) dt T o(t) dW (1),

and that u(t) > 0 with probability one for all t. Show that this implies that X
isa submartingale. ‘

Exercise 4.6 A function h(z1,...,z,) issaid to be harmonicif it satisfiesthe

condition -
°h
i1 9%
It issubharmonic if it satisfies the condition

" g2
h g,
i=1 Oz

Let Wh,...,W, be independent standard Wiener processes, and define the
process X by X(t)=h(Wi(t),...,Wn(t)). Show that X is a martingale (sub-
martingale) if h is harmonic (subharmonic).

Exercise 4.7 The. object o this exercise is to give an argument for the
formal identity
dW;.dW, =0,

when W; and W, are independent Wiener processes. Let us thereforefix atime
t, and dividetheinterval [0,1] into equidistant points0 =ty <t; <..- <t, =t,
wheret; = £ - t. We use the notation

AWi(tk) =W; (tk) -W; (tk—l) , =12

Now define @, by

n

on = ZAWI(tk) AW, (t).
k=1

Show that Q,, — 0in L2, i.e. show that

E[Qn] =0,
Var[@,] — 0.

Exercise 48 Let X and Y be given as the solutionsto the following system d
stochastic differential equations.

dX = aXdt-YdW, X(0)= o,
dY =aY dt + X dW, Y(0) = yo.
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E Note that the initial values zp, yp are deterministic constants.

i © (2) Provethat the processR defined by R(t) = X?(t)+Y 2(t) isdeterministic.
3 (b) Compute E [X(t)].

Exercise 49 For an X n matrix-A, thetraced A isdefined as
n
tl‘(A) = EAi,;.
: i=1

(@ If Bisnxdand Cisd x n, then BC isn X n. Show that

tr(BC) = Z B;;Cji.
ij

+ (b) With assumptions as above, show that

tr(BC) = tr(CB).

(c) Show that the Ité6 formulain Theorem 4.16 can be written as

{ + E + tr [a*Ha]} dat + Z —La1 aw;,
1,—-1

where H denotes the Hessian matrix

2 f

Hij = Bxiaa:j ’

Exercise 4.10 Proveadll claimsin Section 4.8.

, 410 Notes

. As a (far reaching) introduction to stochastic calculus and its applications,
b Oksendal (1995) and Steele (2001) can be recommended. Standard references
¥ on a more advanced level are Karatzas and Shreve (1988), and Revuz and Yor
- (1991). The theory o stochastic integration can be extended from the Wiener
E framework to allow for semimartingales as integrators, and a classicin this fied
i is Meyar (1976). Standard references are Jacod and Shiryaev (1987), Elliott
i (1982), and Dellacherieand Meyer (1972). An alternativeto the classic approach
o semimartingale integration theory is presented in Protter (1990).
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5
DIFFERENTIAL EQUATIONS

5.1 Stochastic Differential Equations

Let M(n,d) denotetheclassd nxd matrices, and consider as given thefollowing
objects.

e A d-dimensional (column-vector) Wiener process W.
e A (column-vector valued) function u: Ry x R —» R".
e Afunctiona: Ry X R" —» M(n;d).

e A real (column) vector zo € R".

We now want to investigatewhether there existsa stochastic process X which
satisfies the SDE

dX; = p (1, X:) dt T a(t, X:) dw, (5.1)
Xo =20 (5.2) |

To be more precise we want to find a process X satisfying the integral equation

rt t
X = xo+/ w(s,Xs) ds+/ o(s X,) dW,, forallt>0. (5.3)
0 0

The standard method for proving the existenced a solution to the SDE above
isto construct an iteration scheme d Cauchy—Picard type. The ideaisto define
asequence d processes X%, X1, X?2,... according to the recursive definition

X? = xo, (5.4)

nt

4
Xptl=gt / (s, XM dst | o(s, X7 dW.. (5.5) |
0

Having done this one expects that the sequence {X™}>> ; will convergeto some |
limiting process X, and that this X isa solution to the SDE. This construction
caninfact be carried out, but asthe proof requiressome rather hard inequalities
we only give the result.

Proposition 5.1 Suppose that there exists a constant K such that thefollowing
conditions are satisfiedfor al x, y and t:

ln(t,2) = p(t,9) || < Kllz —yll, (5.6)
lot,z) — oty < Kllz - yll, (5.7)
e (8 2) || + llo (3, 2) | < K (1 + [])). (5.8) |
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Then there exists a unique solution to the SDE (5.1)-(5.2). The solution has the
following properties:

1. X is F¥ -adapted.

2. X has continuous trajectories.

3. X isa Markov process.

4. There exists a constant C' such that

E[I1X./1%] < Ce® (1 + [lzo?). (5.9)

The fact that the solution X is ftw-ada.pted means that for each fixed t,

the process vaue X; is a functional o the Wiener trgjectory on the interval

[0,t], and in this way an SDE induces a transformation of the space C[0, o)
into itself, where a Wiener trajectory W.(w) is mapped to the corresponding

. solutiontrajectory X.(w). Generically this transformation, which takes a Wiener

trgjectory into the corresponding X -trajectory, isenormoudy complicatedand it
isextremely rare that one can "solve' an SDE in some “explicit” manner. There
are, however, a few nontrivial interesting cases where it is possible to solve an
SDE, and the most important example for us is the equation below, describing
the so-cadled geometric Brownian motion (GBM).

52 Geometric Brownian Motion

Geometric Brownian motion will be one o our fundamental building blocks for
the modding o asset prices, and it aso turns up naturally in many other places.
The equation is one of two natural generalizationsd the simplest linear ODE
and looks as follows:

Geometric Brownian motion:

dX, = aX,dt T oX,dw,, (5.10)
Xo = o. (5.11)

Writing in a slightly sloppy form we can write the equation as

X, = (at UWt) X,

‘ " where W is "white noise", i.e. the (formal) time derivative o the Wiener pro-

cess. Thus we see that GBM can be viewed as a linear ODE, with a stochastic
codfficient driven by white noise. See Fig. 5.1, for a computer simulation of GBM
with @ = 1, 0 = 0.2 and X (0) = 1. The smooth lineisthe graph d the expected
value function E[X;] = 1-e°t. For small valuesd o, the trajectory will (at least
initially) stay fairly close to the expected value function, whereas a large value

of o will give rise to large random deviations. This can clearly be seen when we
- compare the simulated trajectory in Fig. 5.1 to the three simulated trajectories

in Fig. 5.2 where we have o = 04.
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0 1 1 LI . s
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Fic. 5.1. Geometric Brownian motion:a=1, a=0.2

14['
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Fic. 5.2. Geometric Brownian motion:a=1, a=0.4
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Inspired by thefact that the solution to the correspondingdeterministiclinear
eguation is an exponential function d time we are led to investigatethe process
Il Z, defined by Z; = In X;, where we assume that X isasolution and that X is
§ <rictly positive (see below). The 116 formula gives us
1

_1 _1 2
dZ—YdX+§{ Xz}[dX]

1
= —)lz{ath+aXdW}+ % {—ﬁ}azdet

={adt+odW} - Lo?at.
Thus we have the equation
dZ; = (a - %02) dt + o dWy,

Z() = ln.’to.

¥ This equation, however, is extremely simple: since the right-hand side does not

contain Z it can be integrated directly to
Zy=Inzo+ (a - 10?)t+ oW,
which meansthat X is given by
i " - Xy=ugxo-exp{(a— L) t+oW,}. (5.12)

Strictly speaking there is a logical flaw in the reasoning above. In order for
v Z to be wdl defined we have to assume that there actually exists a solution X
toegn (5.10) and we also have to assume that the solutionis positive. Asfor the
exigence, this is covered by Proposition 5.1, but the positivity seemsto present
a bigger problem. We may actually avoid both these problems by regarding the
caculaions above as purely heuristic. Instead, we define the process X by the
formula (5.12). Then it is an easy exercise to show that X thus defined actually
} idfiesthe SDE (5.10)—(5.11). Thus we redlly have proved thefirst part o the
E fdlowing result, which will be used repeatedly in the sequel. The result about
:  the expected value is an easy exercise, which isleft to the reader.

Proposition 5.2 The solution to the equation

dX; = aX,dt + o X, dW;, (5.13)
X() = To, (514)

is given by
X(t)y=z0.exp{(a- oY) ttoW(t)}. (5.15)

The expected value is given by
V E [X;) = zoe™. (5.16)
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5.3 Thelinear SDE

In this section, we will study the linear SDE, which in the scalar case has the
form

dX; = aX,dt T o dW,,
(5.17)

XO = Ig-

This equation turns up in various physical applications, and we will also meet it
below in connection with interest rate theory.
In order to get some fedling for how to solve this equation we recall that the
linear ODE d
Tt

—t _axtt
ot axt T ut,

where u is a deterministic function of time, has the solution
t
Ty = e*xg + / e®(t=%)y, ds. (5.18)
0

If we, for a moment, reason heuristically, then it istempting to formally divide
egn (5.17) by dt. Thiswould (formally) give us

ax, . . _dw;
x Cetoge

and, by analogy with the ODE above. oneisled to coniecturethe formal solution

t dW t
X =e"Xo+ 0 / e“‘t**’)—s’ ds=e*Xo+o / =2 dw,.
[1} 0
Generally speaking, tricks like this will not work, since the solution of the
ODE is based on ordinary calculus, whereas we have to use Ité calculus when
dealing with SDEs. In this case, however, we have a linear structure, which
means that the second order term in the 1t6 formula does not come into play.
Thus the solution o the linear SDE isindeed given by the heuristically derived
formula above. We formulate the result for a slightly more general situation,
wherewe alow X to be vector-valued.

Proposition 53 Consider the n-dimensional linear SDE -
dXt = (AXt + bt) dt + o th,
(5.19) |

Xo =xo
where A isan n X n matrix, b is an R"-valued deterministicfunction (én column-

vector form), a is a deterministic function taking values in M(n,d), and W a
d-dimensional Wiener process. The solution of this eauation is aiven by

t t
X = e‘f,“.'co + / eA(t—s)b,, ds + / eA(t""“)as dw,. (5.20)
) 0




THE INFINITESIMAL OPERATOR 67

Here We have usad the matriz exponentia eAt, defined by

2. AF
At k
© k! T
_o

Proof Defining the process X by (5.20) and using the 1t6 formula, it is easily
s that X sdtisfies the SDE (5.19). See the exercisesfor some details. O

In the exercises you will find results about the moments of X; as wdl as
details about the matrix exponential.

54 Thelnfinitesimal Operator
Condder, as in Section 5.1, the n-dimensiona SDE

dX, = u(t,X;) dt t o (t,X;) dWs. (5.2)

Through the 1t6 formula, the process above is cosdy connected to a partia
differentid operator A, defined bdow. The next two sections are devoted to
§  investigating the connectionsbetween, on the one hand, the anal ytical properties
. d the operator A, and on the other hand the probabilistic properties o the
process X above.

Definition 5.4 Given the SDE in (5.21), the partial differential operator A,
refered to as the infinitesimal operator d X, is defined, for any function
h(z) with h € C2(R™), by

bt ) = 3wl ) ) + 2 Zc,,(tw)a )

=1 ’.1—

where as before
C(t,x) = o(t,z)o*(t, ).

This operator is dso known as the Dynkin operator, the It6 operator,
o the Kolmogorov backward operator. We note that, in terms d the
infinitesma generator, the 1t6 formula takes the form

asex) = { G +ar} s+ v.sloaw,
whae the gradient V., is defined for h € C*(R") as

Vh_[ah 6h].

6$1 ',aﬂ_n_
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5.5 Partial Differential Equations

In this section, we will explore the intimate connection which exists between
stochastic differential equations and certain parabolic partial differential equa-
tions. Consider for example the following so-caled Cauchy problem.

We are given three scalar functions u(t, X), o(t,x) and ®(z). Our task isto
find a function F which satisfies the following boundary value problem on
[0T] x R:

1, 0*F _
39 (¢, E)W(t’ z) =0, (5.22)

F(T,z) = &(x). (5.23)

oF '~ oF
E(t,f’f')*‘#(t,w)% +

Now, instead d attacking this problem using purely analytical tools, we will pro-
duce a so cdled stochastic representation for mula, which gives the solution
to (5.22)-(5.23)in termsd the solution to an SDE which isassociated to (5.22)-
(5.23) in a natural way. Thus we assume that there actually exists a solution F
to (56.22)-(5.23). Let us now fix a point in timet and a point in space X. Having
fixed these we define the stochastic process X on the time interval [t,T] as the
solution to the SDE

dX, = pu(s, X,)ds + o(s, X,) dW;, (5.24)
X; =z, ‘  (5.25)

and the point isthat the infinitesmal generator A for this process is given by

A= u(tw) —+ az(tw)az,

which is exactly the operator appearing in the PDE above. Thus we may write
the boundary value problem as

O (t3) + AF(t,) =, (5.26)
F(T,2) = &(z). (5.27)

Applying the 1t6 formula to the process F' (s, X (s)) gives Us

F (T, Xr) = F(t, X)) + /tT {%F(s, X,) + AF(s, X,,)} ds

/ " e X ) (s X,)dw,. (5.28)
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Since, by assumption, F actually satisfieseqn (5.26), the timeintegral abovewill
vanish. If furthermore the process o (s, Xs}(8F/8z)(s, X,) is sufficiently integ-
rable and we take expected values, the stochastic integral will aso vanish. The
initial vaue X; = x and the boundary condition F(T, x) = ®(z) will eventually
leave us with the formula

F(t,z) = E, . [2(XT)],

where we have indexed the expectation operator in order to emphasizethat the
expected vaue is to be taken given the initial vaue X; = x. Thus we have
proved the following result, which is known as the Feynman—Ka¢ stochastic
representation formula.

Proposition 5.5 (Feynman—Kaég&) Assume that F is a solution to the bound-
ary vaue problem

OF oF + 1, d2F _

'gt—(t’z) + /‘l'(t, x)é; Ea (ta z)TaX—Q(t, IB) =0,
F(T,z) = ®(x).

Asume furthermore that the process

o(s, X ) (s X,)

isin £2 (e Definition 4.8), where X is defined bdow. Then F has the
representation

F(t,z) = B, , [2(XT)], (5.29)

whare X satisfies the SDE
dX, = u(s, X,)ds T o(s, X,) dW,, (5.30)
X == (5.31)

Note that we need the integrability assumption & (s, X,,)%_f}(s, X,) € £2in
order to guarantee that the expected vaue o the stochastic integral in (5.28)
- equalszero. Infact the generic situation isthat a boundary value problem of the
typeabove—a so-caled parabolic problem—will haveinfinitely many solutions,
(22 John 1982). It will, however, only have one "nice" solution, the others being
rather "wild", and the proposition above will only give us the "nice" solution.
We may aso consider the closaly related boundary value problem

8F OF 12(t )

e, e L@ THbT)E &0 2 t,2) - rF(t,z) = (5.32)

F(T,z) = Q("1")) (533
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where r is a given real number. Equations d this type appear over and over
again in the study d pricing problemsfor financial derivatives. Inspired by the
ODE techniqued integrating factorswe are led to multiply the entireegn (5.32)
by the factor €S, and if we then consider the process Z(s) = e™"*F (s, X(s)),
where X as before is defined by (5.30)—(5.31), we obtain the following result.

Proposition 5.6 (Feynman—Kaé&) Assumethat F is a solution to the bound-
ary vaue problem

au OF .\ o)+ u(t, z)°L a +1 1, 0 ZE — F t,2) - rF(t,z) = (5.34)
F(T,z) =®(z). (5.35)

Asaume furthermore that the process (s, Xs)%—(s,x,) isin £2, whee X is
defined bdow. Then F has the representation

F(t,x) =e"TYE, _[&(X7)], (5.36)
where X satisfies the SDE

dX, = (s, X,) ds T o(s, X;) dW,, (5.37)
Xe=1. (5.38)

Example 5.7 Solve the PDE

OF t2) + 20?22 (t,0) =

F(T,x) = X2,
where a is a constant.

Solution: From Proposition 5.5 we immediately have

B ape#ios
2 A
F(t,x) = Et,z [XT], sty o
I om0
where Lo R S
Fifs AERR L ok o8
dX, =0-ds+odW,, & . "bijse sy
¢ X; =z e i AT
} K

This equation can easily be solved, and we have , “l{’

XT=z+U[WT_Wt]7
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0 X7 hasthe distribution Nz, o+/T — t]. Thus we have the solution

F(t,z) = E [X2] = Var[X] + {E [X]}?
=o¥(T-t)Tx2
O

;
Up to now we have only treated the scalar case, but exactly the same
- arguments as above will give us the following result.
Proposition 58 Take as given
e A (column-vector valued) functionp : Ry X R - R,
e A function C : Ry x R" — M(n,n), which can ke writter in the form
C(t,z) = o(t,x)o™*(t,X),

for some function o : Ry X R" — M(n,d).
e Ared valued function ® : R* - R
o Ared number r.
Assume that F : Ry x R" — Ris a solution to the boundary value problem

Fta: +Zu,(t x)a (, a:)+ ZC.J(t a:) (tx) rF(t,z)=0,
3:1:,8:3,
F(T,x)= &(z).

i=1 t,j=1

| Asaume furthermore that the process

n
oF
0','(3, Xs) 3:1:,- (31 Xs)

is in £2 (see Definition 4.8), where X is defined bdow. Then F has the

L representation
| F(t,z)=e"TYE, , [®(X1)), (5.39)
E whae X satisfiesthe SDE
dX, = u(s, X,) dt T o(s, X,) dW,, (5.40)
(5.41)

Xt:X.

We end this section with a useful result. Given Lemma4.9 the proof iseasy and
left to the reader.
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Proposition 59 Consider as given a vector process X With generator A, and
a function F(t,x). Then, modulo some integrability conditions, the follow-
ing hold:

e The process F(t,X;) is a martingale relative to the filtration 7% if and
only i fF satisfiesthe PDE

OF
W-’-AF 0.

e The process F(t, X,) is a martingale relative to the filtration FX if and
only if, for every (¢,z) and T > t, we have

F(t,z) = B, [F(T, Xr)]

56 The Kolmogorov Equati ons

We will now use the results o the previous section in order to derive some
classical results concerning the transition probabilities for the solution to an
SDE. The discussion has the nature of an overview, so we dlow ourselves some
latitude as to technical details.

Suppose that X isasolution to the equation

dX; = p(t, Xy) dt + o(t, X)) dW3, (5.42)
with infinitesimal generator .4 given by

(AF) (s,3) = Zu.(s,y) (s.0)+ 3 35 Gyl (o)

$,5=1

where as usual
C(t,z) =a(t,z)o™(t, ).

Now consider the boundary value problem
ou
(F+4) =0 Gueon xR
'u.(T,y) = IB(y)v S R",

where I is the indicator function of the set B. From Proposition 5.8 we |
immediately have

u(svy) = Ea,y [IB(XT)] = P(XT €B IXs = Y)a

where X isasolution o (5.42). Thisargument can also be turned around, and
we have thus (more or less) proved the following result.
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Proposition 5.10 (Kolmogorov backward equation) Let X & a solu-
} ton to en (5.42). Then the transition probabilities P(s,y;t,B) =
. P(X; € B|X(s) =y) are given as the solution to the equation

(S +4p) 6wt By=0, (e xR (5.43)

¥ Usng basically the samereasoning one can al so provethe following corresponding
. result for transition densities.

? Proposition 5.11 (Kolmogorov backward equation) Let X ke a solution
E to e (5.42). Assume that the measure P(s, y;t,dx) has a dendity p(s, y;t,x) dx.
L Then we have

(% + Ap) (s,y5t,2) =0, (s,9) € (0,8) x R™, (545)
p(s,y;t,z) — 8, ass— t. (5.46)

; The reason that egns (5.43) and (5.45) are cdled backward equationsis that
I the differential operator is working on the "backward variables® (s,y). We will

¥ now derive a corresponding “forward” equation, where the action d the differ-
- entid operator is on the "forward" variables (t,x). For simplicity we consider
b oy the scalar case.

§ We assumethat X hasatransition dengity. Let us then fix two pointsin time
E sand T with s< T. Now consider an arbitrary "test function”, i.e. an infinite
. differentiable function h(t, x) with compact support in the set (s, T) x R. From

f the It6 formulawe have

(T, X1) = h(s, X,) + / (ah+Ah> (t, X;) dt + / Oh oo Xo) dW..

f Applying the expectation operator E, , -}, and using the fact that, because
} the compact support, h(T, x) = h(s,x) = 0, we obtain

/ /p(s,y,tx)( +A) h(t,x) dzdt=0.

. Partial integrationwith respecttot (for g) and withrespectto x (for A) givesus

o0 T
[ [ neo (~% 4 A*) p(s,yit, @) ddt = O,

- whare the adjoint operator A* is defined by

1a

. a
(A) (t,2) = =5 [u(t, 2) £ (2, 2)) + 53 [P (Lo f(t,2)].
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Since this equation holds for all test functions we have shown the follow-
ing result.

Proposition 5.12 (Kolmogorov forward equation) Assume that the solu-
tion X of egn (5.42) has atransition density p(s,y; t,x). Thenp will satisfy the
Kolmogorov forward equation

SPeuita) = Ap(s,uta), (50T xR, (547
p(s,y;t,7) = 8y, astls. - (5.48)

This equation is aso known as the Fokker-Planck equation. The
multidimensional version is readily obtained as

o
gtl—jp(s, yit, ) = A*p(s,y;t, z),

where the adjoint operator A is defined by

n n 2
() (0) = =3 o (6262 + 5 Y 5o [Cylt,2)f(t,)]
t 2

i=1

Example 5.13 Let us consider a standard Wiener process with constant
diffusion coefficient o, i.e. the SDE

dXt = O'th.

The Fokker—Planck equation for this processis
Op _1 23217 .
at(S,y,t,x) "150 Bﬁ(sﬂuvt,m)’

and it is eadly checked that the solution is given by the Gaussan -

densitv \
. :E _ 1 x _:_l_ ((L‘—y) :
p(87y’t7 )‘_ o ,_—_-27T(t—3) € p[ 20’2(t—3)].

Example 5.14 Consider the GBM process
dXt = aXt dt + O'Xt th
The Fokker—Planck equation for this processis

op ) 16 -, ) 0 )
'&(8, v; t7 IL‘) = 5513 [0 z P(S,'yyt,x)] - & [Ot:Bp(S,y,t,(B)],
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e
o _ 15,0 o
ot~ 2 0x2 oz
A change d variablesd the form X = e¥ reduces this equation to an equation
, with constant coefficients, which can be solved by Fourier methods. For usit is
perhapseasier to get the transition density directly by solving the SDE above.

+ (202 —a)z-—+(c? - a)p.

| S the exercises below.

5.7 Exercises
Exercise 5.1 Show that the scalar SDE

dXt = aXt dt + O'th,

Xo = zo,

has the solution '
Xt)=e*.gota| et9aw,, (5.49)
by differentiating X as defined by egn (5.49) and showing that X so defined

actually satisfies the SDE.
Hint: Write egn (5.49) as

Xe=Y:+ 27 Ry,
where

Y, = e * 29,

Zt = eat -0,
pt

Re= [ e aw.,
Jo

and first compute the differentialsdZ, dY and dR. Then use the multidimen-
' sond 1t6 formulaon the function f (y, z,r )=y +z.r.

' Exercise 5.2 Let A bean n x n matrix, and define the matrix exponential e*
by the series
A A¥

pard k!

 This series can be shown to converge uniformly.

€

(@) Show, by taking derivatives under the summation sign, that

deAt At
T‘t— = Ae™.
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(b) Show that

where 0 denotes the zero matrix, and | denotes the identity matrix.
(c) Convinceyoursdf that if A and B commute, i.e. AB = BA, then

A+B _ oA B _ B A

€ € e e,

Hint: Write the series expansion in detail .
(d) Show that € isinvertiblefor every A, and that in fact

[e4] ! =e 2.
(e) Show that for any A, t and s
Alt+s) — gAt . As
(f) Show that
(e4)" = 4"

Exercise 5.3 Use the exercise above to complete the details d the proof o
Proposition 5.3.

Exercise 5.4 Consider again the linear SCE (5.19). Show that the
expected vaue function m(t) = E[X(t)], and the covariance matrix
O(t) = {Cov(Xi(t), X;(1))},; aregiven by

t
m(t) = ettgy T / eAt=9p(s)ds,
0
¢
C(t) = / eAt=2)g(s)o*(s)e4" *~*) dis,
0

where * denotes transpose.
Hint: Usethe explicit solution above, and the fact that

C(t) = E[X:X}] — m(t)m* (2).

Geometric Brownian motion constitutesa classdf processeswhich is closed under
a number o nice operations. Here are some examples.

Exercise 55 Supposethat X satisfies the SDE
dX, = aX,dtt o X, dW,.

Now defineY by Y; = Xtﬁ, where 8 isarea number. Then Y is also a GBM
process. Compute dY" and find out which SDE Y satisfies.
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Exercise 56 Supposethat X satisfiesthe SDE
dX; = aX,dt T o X, dW,,
- and Y satifies

dY; = 7Y: dt + 6Y; dV;,

wheare V isa Wiener process which isindependent o W. Define Z by Z = X/Y
and derive an SDE for Z by computing dZ and substituting Z for X/Y in the
i right hand sidedf dZ. If X is nominal income and Y describesinflation then Z
} describes real income.

Exercise 5.7 Supposethat X satisfiesthe SDE
dX; = aX;dt T o X, dW,
ad Y satisfies

dY; = vY; dt + 6Y; dW,.

| Notethat now both X and Y are driven by the same Wiener process W. Define
F Z by Z=X/Y and derive an SDE for Z.

Exercise 58 Supposethat X satisfiesthe SDE
dX; = aX,dt toX,dw;,
ad Y satisfies

dY; =Y, dt + 6Y: dV;,

wheare V isa Wiener processwhichisindependent o W. DefineZ by Z=X.Y
and derive an SDE for Z. If X describesthe price process of, for example, IBM
in US$ and Y isthe currency rate SEK/US$ then Z describes the dynamics o
i the IBM stock expressed in SEK.

Exercise 59 Use a stochastic representation result in order to solve the
fdlowing boundary value problem in the domain [0, T] x R:

oF OF 1 &F
+ + Z o242 =
T M 2T aa
F(T, ) = In(x?).
Hee i and o are assumed to be known constants.
Exercise 5.10 Consider the following boundary value problem in the domain
[0,T] x R:

8F+12

OF
-+
5 ult, )

2(t, )a - +k(,2) =0
F(T,x) = &(z).

Hee u, o, k and ® are assumed to be known functions.
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Prove that this problem has the stochastic representation formula

T
F(t,z) = B, (8(Xr)] + / E, , [k(s, X,)] ds,

whereas usual X has the dynamics

= p(s, X,) ds + a(s, X,) dWs,
X =X
‘ Hint: Define X as above, assume that F actually solves the PDE and
‘ consider the process Z, = F(s,X,).
|‘ Exercise 511 Usethe result of the previousexercisein order to solve
oF 1 26 F
at a2
F(T,z) =In(x?).

+xz=0,

Exercise 5.12 Consider the following boundary value problem in the domain
[0, 7] x R.

;l §+ u(t,x )a + = az(tx)al.j+r(tz)F 0,

F(T,z) = ®(x).

Here pu(t,X), o(t,x), 7(t,x) and ®(z) are assumed to be known functions. Prove
that this problem has a stochastic representation formula o the form

F(t,z) =B, , {q;( XT)eftT r(s,X-)ds] ’
by considering the process Z, = F(s, X,) x exp[f;’ r(u, X,)du] on the time
interval [tT].
Exercise 5.13 Solve the boundary value problem

oF 1 (9
_a_f(t’ z, )+ 2 2 (ta ,y) + ayg (t’ ay)
F(T,IL‘,y) =Y.

Exercise 5.14 Go through the details in the derivation o the Kolmogorov |
forward equation.

Exercise 5.15 Consider the SDE

dX; =adttodw,, T
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where a and a are constants.

(a) Computethe transition density p(s,y;t,x), by solving the SDE.
(b) Write down the Fokker—Planck equation for the transition density and
check the equation isindeed satisfied by your answer in (a).

Exercise 516 Consider the standard GBM
dX; = aX;dt + o X, dW;
and use the representation
X=X, exp{[ & }0?] (t- ) T o [W, - W.]}

| in order to derive the transition density p(s,y;t,z) o GBM. Check that this
dengty satisfies the Fokker—Planck equation in Example 5.14.

58 Notes
All the resultsin this chapter are standard and can be found in, for example,
Karatzas and Shreve (1988), Revuz and Yor (1991), @ksendal (1995). For an
encydopedic treatment of the probabilistic approach to parabolic PDEs see
Doob (1984).
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6
PORTFOLIO DYNAMICS

6.1 Introduction

Let us consider a financial market consisting o different assets such as stocks,
bonds with different maturities, or various kinds o financial derivatives. In this
chapter we will take the price dynamicsd the various assets as given, and the
main objetiveisthat o derivingthe dynamicsd (the value of) a so-called self-
financingportfalio. In continuoustimethisturnsout to be afairly delicatetask,
so we start by studying a model in discrete time. We will then let the length o
the time step tend to zero, thus obtaining the continuoustime analogs. It isto
be stressed that this entire section is only motivating and heuristic. The formal
definitionsand the corresponding theory will be given in the next section.

Let us thus study a financial market, where time is divided into periods d
length At, and where trading only takes place at the discrete points in time |
nAt, n = 0,1,.... We consider a fixed period [tt + At). This period (where
o courset = nAt for some n) is henceforth referred to as "period t". In the |
sequel we will assume that all assets are stocks, but thisis purely for linguistic
convenience.

Definition 6.1

N = the number o different types o stocks.
hi(t) = number  sharesd typei hdd during the period [tt + At).
h(t) = the portfdlio [h1(t),..,hn(t)] hdd during peiod t.
¢(t) = the amount d money spent on consumption pa unit time
during the period [tt T At).
S(t) = the price d one share d type during the period [t T+ At).
V(t) = the value d the portfolio h a timet.

The information and the decisionsin the moddl are structured as follows:

e Attimet,i.e. at thestart o periodt, we bring with usan "old" portfolio
h(t— At)= {h;(t — At),j =1,...,N) from the previous period t — At.

e At timet we can observe the price vector S(t) = (S1(t),...,Sn(t)).

e At timet, after having observed S(t), we choose a new portfolio A(t), to
be held during periodt. At the same time we also choose the consumption |
rate ¢(t) for the period t. Both h(t) and ¢(t) are assumed to be constant
over the period t.
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Remark 6.1.1 Notethat, sofar, weonly consider nondividend paying assets.
The case d dividend paying assets isslightly more complicated, and sinceit will
only be used in Chapter 16, we omit it from our main discussion. See Section 6.3
for details.

We will only consider so called self-financing portfolio—consumption pairs
(h,c), i.e. portfolios with no exogenous infusion or withdrawal of money (apart
d course from the c-term). In other words, the purchase o a new portfolio, as
wdl as all consumption, must be financed solely by selling assets already in the

portfolio.
To start the analysis we observe that our wealth V(t), i.e. the wealth at the
gart of periodt, equals the value d the old portfolio h(t — At). Thus we have

N
V()= hi(t- A8)S(t) = h(t - At)S(t), (6.1)

=1
where we have used the notation
N
Ty = Zﬂvz‘yi
i=1

for the inner product in RN. Equation (6.1) simply says that at the beginning
d period t our wealth equals what we get if we sell our old portfolio at today's
prices. We may now use the proceedsd this sale for two purposes:

e Reinvest in anew portfolio h(t).
e Consume at the rate ¢(t) over the period t.

The cost o the new portfolio A(¢), which hasto be bought at today's prices, is
gven by

N
=) R()Si() = h(8)S(®),
i=1

wheress the cost for the consumption rate c(t) is given by ¢(¢)A¢. The budget
equation for period t thus reads

h(t — At)S(t) = h()S(t) + c(t)At. (6.2)
if we introduce the notation
AX()=X(t) - X(t - A1),
i for an arbitrary process X, we see that the budget equation (6.2) reads

S(t)A(t) + c(t)At = 0. (6.3)




82 PORTFOLIODYNAMICS

Since our god is to obtain the budget equation in continuous time it is now
tempting to let At — 0 in egn (6.3) to obtain the formal expression

S(t) dh(t) T c(t) dt = 0.

This procedureis, however, not correct, and it isimportant to understand why
that isso. The reasons are as follows.

e All stochastic differentialsare to be interpreted in the 116 sense.
e Thelt6integral [ g(t) dW (t) was defined as the limit of sumsd the type

Zg(tn) [W(tn+1) - W(tn)];

whereit was essential that the W-increments were for war d differences.
e |n egn (6.3) we have a backward h-difference.

In order to get 1t6 differentialswe thus have to reformulateegn (6.3). Thisis

done by adding and subtracting the term S(t — At)Ah(t) to the left-hand side,
and the budget equation now reads

S(t — At)Ah(t) T AS(t)Ah(t) T c(t)At = 0, (6.4)
Now, at last, we may let At — 0 in the budget equation (6.4), giving us
S(t) dh(t) T dh(t) dS(t) T c(t) dt = 0. (6.5)
Letting At — 0 inegn (6.1) gives us

V(t) = h(t)S(t), (6.6)

and if we take the It6 differential o this expression we get
dV (t) = h(t)dS(t) T S(t) dh(t) T dS(t) dh(t). (6.7)
To sum up, egn (6.7) is the general equation for the dynamics o an arbitrary

portfolio, and egn (6.5) is the budget equation which holds for al sdlf-financing

portfolios. Substituting (6.5) into (6.7) thus gives us our desired object, namely
the dynamicsd (the wealth of) a self-financing portfolio.

dV(¢) = h(t)dS(t) — () dt. (6.8)
In particular we see that in a situation without any consumption we have the

following V-dynamics:
dV(t) = h(t)dS(¢). (6.9)




' integrator increment dS(t) is a forward increment. If we had chosen to define
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Remar k 6.1.2 The natural economic interpretation o eqn (6.9) is of course
that in a model without any exogenousincome, dl change o wealth is due to
changesin asset prices. Thus (6.8) and (6.9) seem to be rather self-evident, and
. onemay think that our derivation was rather unneccesary. Thisis, however, not
the case, which we redlize if we recall that the stochastic differentials in (6.8)
and (6.9) are to be interpreted in the 118 sense, where it isimportant that the

§ our stochastic integral in some other way, e.g. by using backward increments
. (this can actually be done), the formal appearance o (6.8)-(6.9) would have
been quite different. The real content, on the other hand, would of course have i
been the same.

6.2 Self-financing Portfolios

Having gone through the derivations o the preceding section there are some
natural questions.
1. Inwhichsense(L?2, P-a.s., etc.) isthelimiting procedured letting At — 0
to be interpreted?
2. Equation (6.8) issupposed to be describingthedynamicsd asdf-financing
portfolio in continuous time, but what is "continuous time trading"
_ supposed to mean “in reality™?
i The answer to these questions is simply that the preceding reasoning has only
E been d a motivating nature. We now give a purely mathematical definition o
the central concepts. The interpretations of the concepts are of course those o
the preceding section.
Definition 6.2 Let the N-dimensional price process {S(t);t > 0} be given.
1 A portfolio strategy (most often simply called a portfolio) is any F3-
adapted N-dimensional process {h(t);t > 0).
2. The portfolio h is said to be Markovian if it is of the form

h(t) = h(t, 5(2)),

for some functionh: Ry X RN — RN,
3. The value process V" corresponding to the portfolio h is given by

N
VAE) = Y ha(1)Si(d). (6.10)

i=1
4. A consumption process is any F5-adapted one-dimensional process
[t {c(t);t > 0}).
| 5. A portfolio—consumption pair (h,c) is called self-financing if the value
process V" satisfies the condition

N
dVh(t) =) h(t) dSi(t) — c(t) dt, (6.11)
i=l
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i.e. if
dV(t) = h(t) dS(t) — c(t) dt.
Remark 6.2.1 Note that, in general, the portfolio h(t) is alowed to depend
upon the entire past price trajectory {S(u);u < t).In the sequel we will almost
exclusively be dealing with Markovian portfolios, i.e. those portfolios for which
the value at timet depends only on today's datet and today's value d the price
vector S(t).

For computational purposesit is often convenient to describe a portfolioin
relative terms instead of in absolute terms as above. In other words, instead o
specifying the absolute number o shares held d a certain stock, we specify the
relative proportion o the total portfolio value which isinvested in the stock.

Definition 6.3 For a given portfolio h the corresponding r elative portfolio u

isgiven by
hi($)S:i(t) .
ui(t) = 1_1/'1#’ i=1,...,N, (6.12)
where we have N
Zui(t) = 1.
=1
The sdlf-financing condition can now easily be given in terms of the relative

portfolio.
Lemma 6.4 A portfolio-consumptionpair (h,c) is self-financing if and only if

N
dvh(t) = vh(1) E ui(t) dnS ",Et\) - ¢(t)dt. (6.13)
i=1 Si(t) .

In the future we will need the following slightly technical result which roughly
saysthat if a processlooksasif it isthe value processd asdlf-financingportfolio,
then it actually issuch a vaue process.

Lemma 6.5 Let ¢ ke a consumption process, and assumethat there exist a scalar

processZ and a vector processq= (g1,...,qn) such that
X dSi(t)
dZ{t) =Z ; LM .

N LI -

da) =1 (6.15)

=1 T ! ]
Now define a portfolio h by

hi(t) = &(_t)_Zit_) A (6.16)

Si(t)
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Then the value process V* is given by V* = Z, the pair (h,c) is self-financing,
and the corresponding relative portfolio w is given by u = q.

Proof By definition the value process V* is given by VP (t) = h(t)S(t), so
egns (6.15) and (6.16) give us

N N N
VhE) =Y mOSi) = Y aZ0) = ZO) Y a®) = 2¢).  (6.17)
i=1

i=1 i=1

Inserting (6.17) into (6.16) we see that the relative portfoliou corresponding to
hisgivenby u = q. Inserting (6.17) and (6.16) into (6.14) we obtain

AVr() = hi(1)Si(t)- e(t) dt,

i=1

! which shows that (h, c) is self-financing. O

| 6.3 Dividends

L. This section is only needed for Chapter 16. We again consider the setup and
I notationdf Section 6.1, with the addition that the assets now may pay dividends.

Definition 6.6 We take as given the processes Dy (t),..,Dn(t), where D;(t)
denotes the cumulative dividends paid to the holder of one unit of asset i
during the interval (0,t] .If D; has the structure

dD;(t)= & (t)t,

| for some process 8;, then we say that asseti pays a continuous dividend yield.

The dividends paid to the holder of one unit of asset i during (s,t] are thus
given by D;(t) — D;(s), and in the case o a dividend yield we have

D;(t)= /Ot di(s)ds.

We assumethat all the dividend processes have stochastic differentials.
We now go on to derive the dynamics o a sdf-financing portfolio, and as
usua we define the value processV by

V(t) = h(£)S(2)..

f The difference between the present situation and the nondividend paying case
is that the budget equation (6.2) now has to be modified. We have to take
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into account the fact that the money at our disposal at time t now consists of
two terms:

e Thevaued our old portfolio, as usual given by
h(t — At)S(¢).

e Thedividends earned during the interval (t — At,t]. These are given by
N
2h,.(t— At)[Di(t) — D;(t = At)] = h(t — At)AD(t).
1=

The relevant budget equation is thus given by
h(t — At)S(t) T h(t — At)AD(t) = h(t)S(t) T c(t) At. (6.18)

Going through the same arguments as in Section 6.1 we end up with the ;
following dynamics for a self-financing portfolio:

N N
AV () =" k(1) aSi(t)t D hu(t)dD;(t) — e(t) dit,
i=l

=1 SRS

z / f
and we write this as a formal definition. Looh
Definition 6.7 /S

1. Thevalue process V" isgiven by

N |
VAE) = ) hi(®)Si(2). (6.19)
i=1

2. The (vector vaued) gain process G is defined by
G(t) = S(t) + D(t). (6.20) |

3. The portfolio-consumptionpair (h,c) is caled sddf-financing if

N ]
dVh(E) = hi(t)dGi(1) — c(t) dt. (6.21) 1

=1

With notation as above we have the following obvious result.
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Lemma 6.8 In terms of the relative portfolio weights, the dynamics of
a self-financing portfolio can be expressed as

VA (D= V(). Z ui(t) 3G _

i=1 i

- c(t) dt. (6.22)

6.4 Exercise

Exercise 6.1 Work out the details in the derivation o the dynamics o
asdf-financing portfolio in the dividend paying case.

;
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ARBITRAGE PRICING

7.1 Introduction

In this chapter, we will study a special case o the general model set out in the
previouschapter. We will basically follow the argumentsd Merton (1973), which
only require the mathematical machinery presented in the previous chapters. For
the full story see Chapter 10.

Let usthereforeconsider a financial market consisting d only two assets. a
risk free asset with price process B, and a stock with price process S. What,
then, is arisk free asset?

Definition 7.1 The price process B is the price of arisk free asset if it has
the dynamics
dB(t) = r(t)B(t) dt, (7.1)

where r is any adapted process.

The defining property d a risk free asset is thus that it has no driving
dW-term. We see that we also can write the B-dynamicsas

dB(t)

T2 = rOB),

so the B-process is given by the expression

B(t) = B(0) exp/(; r(s)ds.

A natural interpretation o ariskless asset isthat it correspondsto a bank with
the (possibly stochastic) short rate of interest . An important special case
appears when r is a deterministic constant, in which case we can interpret B as |
the price o a bond.

We assume that the stock price Sis given by

dS(t) = St)a (1 S(t)) dt T S(t)o (1 ,5()) AW (2), (7.2)

where W isa Wiener process and aand a are given deterministicfunctions. The -
reason for the notation W, instead of the smpler W, will become clear below.
The function ais known as the volatility o S, whilea isthe local mean rate
of returna S.
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Remark 7.1.1 Notethe difference between the risky stock price B, as modeled
_ above, and theriskless asset B. The rate o return o B isformaly given by

dB(t)
B @t~

| This object is locally deterministic in the sense that, at time t, we have
L complete knowledge of the return by ssimply observing the prevailing short rate
r(t}. Comparethisto therate o return on thestock S Thisisformally given by

dwW (t)

B = (1,500 +0 (1, 5) T,

S(t)-dt.

§ and this is not observable at time t. It consists d the terms a (t,S(t)) and

a(t,S(t)), which both are observable at time t, plus the "white noise" term
(dW (t)/dt), which is random. Thus, as opposed to the risk free asset, the stock
has a stochasticrate o return, even on the infinitesimal scale.

The most important special case o the above model occurswhen r, a and a

( are deterministic constants. This is the famous Black—-Scholes model.

| Definition 7.2 The Black—-Scholesmodel consists of two assets with dynam-
| ics given by

dB(t) = rB(t) dt, T (7.3)
dS(t) = aS(t) dt T o S(t) dW (t), (7.4)

E where r, a, and a are deterministic constants.

7.2 Contingent Claims and Arbitrage

We take as given the model o a financial market given by egns (7.1)—(7.2),
and we now approach the main problem to be studied in this book, namely the
pricing d financial derivatives. Later we will give a mathematical definition, but
let us at once present the single most important derivative—the European call
option.

Definition 7.3 A European call option withexercise price (or strike price)
K and time of maturity (exercise date) T on the underlying asset S is a
contract defined by the following clauses.

.o The holder of the option has, at time T, the right to buy one share of the
underlying stock at the price K SEK from the underwriter of the option.
e The holder of the option isin no way obliged to buy the underlying stock.
e The right to buy the underlying stock at the price K can only be exercised
at the precise time T.
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Note that the exercise price K and the time o maturity T are determined
at the time when the option is written, which for us typically will beat t = 0.
A European put option is an option which in the same way gives the holder
the right to sell a share of the underlying asset at a predetermined strike price.
For an American call option the right to buy a share o the underlying asset
can be exercised at any time before the given time of maturity. The common
factor o all these contractsisthat they all are completely definedin termsd the
underlyingasset S, which makesit natural to call them derivativeinstruments
or contingent claims. We will now give the forma definition of a contingent
claim.

Definition 74 Consider a financial market with vector price process S.
A contingent claim with date of maturity (exercise date) T, also called
aT-claim, is any stochastic variable X € F5. A contingent claim X is called a
simple claimif itis of the form

X = ®(S8(T)). The function & is called the contract function.

The interpretation of this definitionis that a contingent claim is a contract,
which stipulates that the holder of the contract will obtain X SEK (whichcan be
positive or negative) at the time o maturity T. The requirement that X € 75 |
simply means that, at time T, it will actually be possible to determine the
amount of money to be paid out. We see that the European cal is a smple
contingent claim, for which the contract function is given by

®(z) = max[x — K, 0]

The graphs o the contract functionsfor European calls and puts can be seenin
Figs7.1and 7.2. It isobviousthat a contingent claim, e.g. like a European call
option, is a financial asset which will fetch a price on the market. Exactly how
much the option isworth on the market will o course depend on thetimet and
on the price S(¢) of the underlying stock. Our main problem is to determine a
"far" (insomesense) pricefor the claim, and we will use the standard notation

I¢; &), (7.5)

for the price process of the claim X, where we sometimes suppress the X. In the
case o a simpleclaim we will sometimeswrite II(¢; ®).

If westart at time T the situation issimple. Let usfirst look at the particular
case o a European call

1 If S(T) > K wecan makeacertain profit by exercising the option in order
to buy one share of the underlying stock. Thiswill cost us K SEK. Then
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FIG. 7.2. Contract function. European put, K = 100

we immediately sell the asset on the stock exchange at the price S(T),
thus giving us a net profit of S(T") - K SEK.
2. If S(T) <K the option has no value whatsoever.

Thus we see that the only reasonable price II (T) for the option at time T is
given by

I (T) = max [S(T) — K, Q). (7.6)




92 ARBITRAGE PRICING

Exactly the same way we see that for a more general contingent claim X, we
have the relation

I(T; X) = X, (1.7)

and in the particular cased asimple clam
I(T; X) = (S(T)). (7.8)

For any timet < T it is, however, far from obvious what the correct priceis for
aclam X. On the contrary it seems to be obvious that there is no such thing
as a "correct” or "far" price. The price of an option, likethe price d any other
asset, is o course determined on the (option) market, and should therefore be
an extremely complex aggregate of, for example, the various attitudes to risk
on the market and expectations about the future stock prices. It is therefore an
extremely surprising fact that, given some fairly mild assumptions, there is a
formula (the Black-Scholes formula) which gives the unique price o the option.
The main assumption we will make is that the market is efficient in the sense
that it isfree of arbitrage possibilities.We now define this new and central

concept.

Definition 7.5 Anarbitrage possibility on a financial market is a self-financed
portfolio h such that

Vo) =0, (7.9)
P(V*T)>0) =1, (7.10)
P(VMT)>0) >0. (7.11)

We say that the market is ar bitrage free if there are no arbitrage possibilities.

An arbitrage possibility is thus essentially equivaent to the possibility o
making a positive amount o money out o nothing without taking any risk. It
is thus essentially a riskless money making machine or, if you will, a free lunch
on thefinancial market. We interpet an arbitrage possibility as a serious case d
mispricingin the market, and our main assumptionisthat the market isefficient
in the sense that no arbitrage is possible.

Assumption 7.2.1 We assume that the price processII(t) is such that there
are no arbitrage possibilities on the market consisting of (B(t), S(t), II (t)).

A natural question now is how we can identify an arbitrage possibility. The
general answer to this question requires quite a lot o fairly heavy probabilistic
machinery which the more advanced reader will find in Chapter 10. Happily
enough there isa partial result which is sufficient for our present purposes.
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Proposition 7.6 Suppose that there erists a sdlf-financed portfolio h, such that
the value process V* has the dynamics

dV*(t) = k(t)V*(t) dt, (7.12)

where k is an adapted process. Then it must hold that k(t) = r(t) for al t, or
there exists an arbitrage possibility.

Proof We sketch the argument, and assume for simplicity that k and r are
constant and that k > r. Then we can borrow money from the bank at the
rate r. This money isimmediately invested in the portfolio strategy h whereit
will grow at the rate k with k > r. Thus the net investment at t = 0 is zero,
wheressour wealth at any timet > 0 will be positive. In other words we have an
h arbitrage. If on the other hand r > k, we sdll the portfolio h short and invest this
~ mongy in the bank, and again there is an arbitrage. The cases with nonconstant
and nondeterministicr and k are handled in the same way. O

‘ The main point o the aboveisthat if a portfolio has a vaue process whose
# dynamics contain no driving Wiener process, i.e. a locally riskless porfolio,

¥ then the rate o return of that portfolio must equal the short rate of interest.

To put it in another way, the existencedf a portfolio h isfor practical purposes
equivaent to the existence o a bank with k asitsshort rate o interest. We can

; then paraphrase the lemma above by saying that on an arbitrage free market

i there can only be one short rate of interest.

; We now return to the question of how the price process II(¢; X) for a con-

I tingent claim X can behave, and the main ideais the following. Since the claim
' isdefined entirely in terms o the underlying asset(s), we ought to be able to
priceit in terms of the price d the underlying asset(s) if arbitrage possibilities
areto be avoided. Thuswe are looking for a way to price the derivativein a way
which is consistent with the price process d the underlying asset.

To take a simple example, it is quite obvious that for a European call we
must have the relation II(t) < S(t) in an arbitrage free market, because no
b one in their right mind will buy an option to buy a share at a later date at
¢ price K if the share itself can be bought cheaper than the option. For a more
- forma argument, suppose that at some time t we actually have the relation
O(t) > S(t). Then we simply sell one option. A part of that money can be
usd for buying the underlying stock and the rest is invested in the bank (i.e.
L we buy the riskless asset). Then we sit down and do nothing until time T. In
this way we have created a sdf-financed portfolio with zero net investment at
timet. At time T we will owe max [S(T") — K, Q] to the holder o the option, but
this money can be paid by sdlling the stock. Our net wealth at time T will thus
be S(T) — max [S(T") — K, 0], which is positive, plus the money invested in the
bank. Thus we have an arbitrage.

It isthus clear that the requirement o an arbitrage free market will impose
some restrictions on the behavior of the price processII(t; X). Thisin itsef is not
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terribly surprising. What is surprising isthe fact that in the market specified by
eqns (7.1)—(7.2) these restrictions are so strong as to completely specify, for any
givenclaim X, the unique price process I1(t; X) which is consistent with absence
of arbitrage. For the case of simple contingent claims the formal argument will
be given in the next section, but we will now give the general idea.

To start with, it seems reasonable to assume that the price II(¢; X) at time
t in some way is determined by expectations about the future stock price S(T').
Since S is a Markov process such expectations are in their turn based on the
present value d the price process (rather than on the entire trajectory on [0,¢]).
We thus make the following assumption.

Assumption 7.2.2 We assume that

1. Thederivativeinstrument in question can ke bought and sold on a market.
2. The market is free d arbitrage.
3. The price processfor the derivative asset is o theform

(4 X) = F(t, S(t)), (7.13)

where F 4s some smooth function.

Our task isto determine what F might look like if the market consisting o
S(t), B(t) and II(t; X) is arbitrage free. Schematically we will proceed in the
following manner:

1. Consider a, o, ®, F, and r as exogenoudly given.

2. Use the genera results from Section 6.2 to describe the dynamics o the
vaue o a hypothetical sdaf-financed portfolio based on the derivative
instrument and the underlying stock (nothing will actually be invested
in or loaned by the bank).

3. It turns out that, by a clever choice, we can form a sdlf-financed portfo-
lio whose value process has a stochastic differential without any driving
Wiener process. It will thus be o the form (7.12) above.

4. Since we have assumed absence o arbitrage we must have k = r.

5. The condition k = r will in fact have the form o a partial differential
equation with F as the unknown function. In order for the market to be
efficient F must thus solve this PDE.

6. The equation has a unique solution, thus giving us the unique pricing
formulafor the derivative, which is consistent with absence o arbitrage.

7.3 The Black-Scholes Equation
I n thissection wewill carry through the schematicargument givenin the previous
section. We assume that the a priori given market consists o two assets with
dynamics given by
dB(t) =rB(t)dt, (7.149)
dS(t) = S(t)a (1, S(®)) dt T S(t)o (t,S(t)) AW (t), (7.15)
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where the short rate d interest » is a deterministic constant. We consider a
smple contingent claim o the form

X = ®(S(T)), (7.16)

and we assume that this claim can be traded on a market and that its price
process1I (t) = II(¢; @) has the form

II(¢) = F(¢,5()), (7.17)
for some smooth function F. Our problem isto find out what F must look like
in order for the market [S(t), B(t),I1 (t)] to befree o arbitrage possibilities.

We start by computing the price dynamics o the derivative asset, and the
1t8 formula applied to (7.17) and (7.15) gives us
dII (t) = a (I (t)dt T o, ()1 (1) dW(2), (7.18)
where the processes a.(t) and ox(t) are defined by

F; + aSF, + 102S8%F,,
F b
. (7.20)

ox(t) = (7.19)

oSF,
F

ox(t) =

Here subscripts denote partial derivatives, and we have used a shorthand

iE notation o the form

oSF, _ U(t, S(t))S(t)Fs(t’ S(t))
F o FG,50)

and similarly for the other terms above.
Let us now form a portfolio based on two assets: the underlying stock and

\ the derivative asset. Denoting the relative portfolio by (us,u,) and using egn

(6.13) we obtain the following dynamics for the value V o the portfolio.
dV =V {u, [adt + 0 AW] + ur [ar dt + o, dW]} (7.21)

where we have suppressed t. We now collect dt- and dW-terms to obtain
AV =V [usa T uga,] dt TV [uo T uro,] dW. (7.22)
The point to notice hereisthat both brackets above are linear in the arguments
us and u,. Recall furthermore that the only restriction on the relative portfolio

isthat we must have
us + u‘!\' = 11
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for al t. Let usthusdefinetherelative portfolio by thelinear system o equations

Us + Ur = 1, (7.23)
uso T uror =0. (7.24)

Using this portfolio we see that by its very definition the driving dW-term in
the V-dynamicsof egn (7.22) vanishes completely, leaving us with the equation

dV =V [u,a T uga,] dt. (7.25)
Thuswe haveobtained a locally riskless portfolio, and becaused the requirement

that the market isfree d arbitrage, we may now use Proposition 7.6 to deduce
that we must have the relation

usa T urar =r. (7.26)

This is thus the condition for absence d arbitrage, and we will now look more
closdly at thisequation.

It iseasily seen that the system (7.23)—(7.24) has the solution

U= =, (7.27)
Up = a,_— = (7.28)
which, using (7.20), gives us the portfolio more explicitly as
u (t) = S(t)Fs(t) S(t)) (7 29)
T SR SE) - F(t,8(2) '
—F(¢,S(t)
“ ) = SORE0) - FGS@) (7:30)

Now we substitute (7.19), (7.29) and (7.30) into the absence o arbitrage
condition (7.26). Then, after some calculations, we obtain the equation

Fi (t,8(t)) +rS(¢)F, t,81) 162 (1,5(t)) S*(t)Fus (1,S(t)) — rF (1,5(t)) = O.
Furthermore, from the previous section we must have the relation

I1(T) = @(S(T)).
Thesetwo equations haveto hold with probability 1 for eachfixed t. Furthermore

it can be shown that under very weak assumptions (which trivially are satisfied
in the Black—Scholes model) the distribution of S(t) for every fixed t > 0 has
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support on theentire positivereal line. Thus S(t) can take any value whatsoever,
so F hasto satisfy the following (deterministic) PDE.

Fy(t,s) FrsF,(t,s) T 1s0%(t,8)Fou(t,s) — rF(t,s) =0,
F(T,s) = ®(s).

Summing up these results we have proved the following proposition, which is
in fact one o the most central results in the book.

Theorem 7.7 (Black-ScolesEquation) Assume that the market is specified
by egns(7.14)-(7.15) and that we want to price a contingent claim d the form

(7.16). Then the only pricing function d the form (7.17) which is consistent
- with the absence o arbitrage is when F is the solution d thefollowing boundary
vaue problem in the domain [0,T] X R+.

Fy(t,s) trsF,(t,s) T %3202(t, 8)F,s(t,8) —rF(t,8) =0, (7.30)
F(T,s)=®(s). (732

Before we go on to a closer study o the pricing equation (7.31) let us make
afew comments.

First, it isimportant to stress the fact that we have obtained the priced the
dam X in the form II(¢; X) = F(t, S(t)), i.e. the price o the claim is given as
afunction o the price of the underlying asset S. This is completely in line with
| thebasicideaexplained earlier, that the pricing d derivative assetsis a question
} d pricing the derivative in a way which is consistent with the price o the
underlying asset. We are thus not presenting an absolute pricing formula for
X. On the contrary, derivative pricing is all about relative pricing, i.e. pricing
the derivative asset in terms of the price o the underlying asset. In particular
thismeans that in order to use the technique o arbitrage pricing at all we must
have one or several underlying price processes given a priori.

Second, a word o criticism. At a first glance our derivation o the pricing
equation (7.31) seemsto befairly convincing, but in fact it contains some rather
wesk points. The logic of the argument was that we assumed that the price
d the derivative was a function F o t and S(t). Using this assumption we
then showed that in an arbitrage free market F had to satisfy the Black—Scholes
equation. The question now is if we really have good reasons to assume that
the priceisd the form F(t, S(t)). The Markovian argument given above sounds
good, but it is not totally convincing.

A much more serious objection is that we assumethat there actually existsa
market for the derivative asset, and in particular that there exists a price process
for the derivative. This assumption o an existing market for the derivative is
crucia for the argument since we are actually constructing a portfolio based on
the derivative (and the underlying asset). If the derivativeis not traded then the
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portfolio cannot be formed and our argument breaks down. The assumption of
an existing price for the derivativeis o course innocent enough in the case o a
standard derivative, like a European call option, which defacto istraded in large
volumes. If, however, we want to pricean OTC ("over the counter") instrument,
i.e. an instrument which is not traded on a regular basis, then we seem to bein
big trouble.

Happily enough there is an alternative argument for the derivation d the
pricing equation (7.31), and this argument (which will be given below) is not
open to the criticism above. The bottom line is that the reader can fed safe
equation (7.31) redly isthe "correct” equation.

Let us end by noting an extremely surprising fact about the pricing equa-
tion, namely that it does not contain the local mean rate d return af(t,s) o
the underlying asset. In particular this means that, when it comes to pricing
derivatives, the local rate o return o the underlying asset plays no role whatso-
ever. The only aspect d the underlying price process whichisd any importance
is the volatility o(t,s). Thus, for a given volétility, the price d a fixed derivat-
ive (likea European call option) will be exactly the same regardlessd whether
the underlying stock has a 10%, a 50%, or even a —50% rate o return. At a
first glance this sounds highly counter-intuitiveand one is tempted to doubt the
whole procedure d arbitrage pricing. There is, however, a natural explanation
for this phenomenon, and we will come back toit later. At this point we can only
say that the phenomenon is closaly connected to the fact that we are pricing the
derivativein terms o the priced the underlying asset.

7.4 Risk Neutral Valuation
Let us again consider a market given by the equations

dB(t) = rB(t) dt, (7.33)
dS(t) = S(t)a (t,8(t)) dt + S(t)e (t,5(t)) dW(2), (7.34)

and a contingent clam o the form X = &(S(T)). Then we know that the
arbitrage free price is given by II(t; ®) = F(t, S(t)) where the function F is the
solution o the pricing equations (7.31)—-(7.32). We now turn to the question d
actually solving the pricing equation and we noticethat thisequation is precisely
o the form which can be solved using a stochastic representation formula a la
Feynman-Ka¢. Using the results from Section 5.5 we see that the solution is
given by

F(t,s) = e "T-Y g [&(X(T))), (7.35)

wherethe X processis defined by the dynamics

dX (u) = rX(u) du T X(u)o(u, X (v)) dW (u), (7.36)
X)) =s, (7.37)
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whereW isa Wiener process. Theimportant point to note hereisthat the SDE
(7.36) isd precisely the same form asthat o the price process S. The only, but
important, changeisthat whereasS hasthelocal rate o return a, the X-process
has the short rate of interest r asitsloca rate d return.

The X-processaboveislogicaly just atechnical tool, defined for the moment,
and in particular we can nameit aswe please. Inview o the resemblance between
X and S itisrather temptingtocal it S instead of X . Thisis perfectly acceptable
as long as we do not confuse the "red" S-process o (7.34) with the "new"
S-process, and one way to achievethis godl is by the following procedure.

Let us agreeto denotethe "objective" probability measurewhich governsour
redl modd (7.33)-(7.34) by the letter P. Thus we say that the P-dynamics of
the S-process are that o (7.34). We now define another probability measure Q
under which the S-process has a different probability distribution. Thisis done
by defining the Q-dynamicsd S as

dS(t) = rS(t)dt + S(t)o (1,5(t)) dW (t), (7.38)

whereW isa Q-Wiener process. In order to distinguish the measure under which
we take expectations we introduce some notational conventions.

Notation convention 7.4.1 For the rest of the text, the following conventions
will be used:

a Weidentify the expectation operator by letting E denote expectations taken
under the P-measure whereas E9 denotes expectations taken under the
Q-measure.

a We identify the Wiener process. Thus W will denote a P-Wiener process,
whereasW will denote a Q-Wiener process.

The convention on W has the advantage that it is possible, at a glance, to
decide under which measure a certain SDE is given. We will work much more
often under Q than under P, and this is the reason why the Q-Wiener process
W has a simpler notation than the P-Wiener pricess W. Using this notation we
may now state the following central result for derivative pricing.

Theorem 7.8 (Risk Neutral Valuation) The arbitrage free price o the
claim ®(S(T)) is given by II(t; Q)= F(t, S(t)), where F is given by the formula

F(ts) =e ™ T-9E2 [3(S(T))), (7.39)

where the Q-dynamics of S are those of (7.38).

There is a natural economic interpretation of the formula (7.39). We see
that the price d the derivative, given today's date t and today's stock price s,
is computed by taking the expectation o the final payment Eff, [®(S(T))] and
then discounting this expected value to present value using the discount factor
e~"(T-t), Theimportant point to noteisthat when wetake the expected vauewe
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are not to do this using the objective probability measure P. Instead we shall
use the Q-measure defined in (7.38). This Q-measure is sometimes called the
risk adjusted measure but most often it iscaled the martingal e measure,
and this will be our terminology. The reason for the name is that under Q the
normalized process (S(t)/B(t)) turns out to be a Q-martingale. In the deeper
investigation of arbitrage pricing, which will be undertaken in Chapter 10, the
Q-measure is the fundamental object of study. We formulate the martingale
property as a separate result.

Proposition 7.9( The Martingale Property) In the Black-Scholes model,
the price processII (t) for every traded asset, be it the underlying or derivative
asset, has the property that the normalized price process

()

is a martingale under the measure Q.

Proof Seethe exercises. |

The formula (7.39) is sometimes referred to as the formula d risk neutral
valuation. Supposethat all agentsare risk neutral. Then al assetswill command
a rate of return equal to the short rate of interest, i.e. in a risk neutral world
the stock price will actually have the Q-dynamics above (more precisaly, in this
case we will have Q = P) .Furthermore, in arisk neutral world the present value
o afuture stochastic payout will equal the expected value o the net payments
discounted to present value using the short rate o interest. Thus formula (7.39)
is precisely the kind o formula which would be used for valuing a contingent
clam in a risk neutral world. Observe, however, that we do not assume that
the agents in our model are risk neutral. The formula only says that the vaue
o the contingent claim can be calculated as if we livein a risk neutral world.
In particular the agents are alowed to have any attitude to risk whatsoever, as
long as they all prefer a larger amount of (certain) money to a lesser amount.
Thus the valuation formulaaboveis preference freein thesensethat it isvaid
regardlessd the specificform o the agents' preferences.

75 The Black—Scholes Formula

I'n this section we specialize the model o the previous section to the case of the
Black—Scholes model,

dB(t) = rB(t) dt, (7.40)
dS(t) = aS(t) dt + aS(t) dW (t), (7.41)

where o and ¢ are constants. From the results of the previous section we know
that the arbitrage free price of a simpleclaim ®(S(T)) is given by

F(t,s) = e "T-9EZ [®(S(T))], (7.42)
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where the Q-dynamics o Sare given by

dS(u) = rS(u) du T 0:S(u) dW(u), (7.43)
S(t)=s (7.44)

i |n this SDE we recognizeour old friend GBM from Section 5.2. Using the results
. from Section 5.2 we can thus write S(T') explicitly as

S(T) =sexp{ (r- 36?) (T-t) Tt o (W(T) - W(t))}. (7.45)

i Thus we have the pricing formula
F(t,s) = T~ / o (se?) f (2) dz, (7.46)

where Z is a stochastic variable with the distribution
N [(r- 1o? (T- t),a\/T—t],

and f isthe corresponding density function.

Formula (7.46) is an integral formula which, for a general choice of contract
function ®, must be evaluated numericaly. There are, however, a few particular
cassswhere we can evaluate (7.46) moreor lessanalytically, and the best known
d these is the case df a European call option, where ® has the form ®(z) =
max [X — K,0]. In this case we obtain

;ﬂ( EZ, [max [se? - K,Q]] =0-Q(seZsK)+/°: )(sez—K)f(z)dz. (7.47)
e in %

¢ After some standard calculations we are left with the following famous result
* which is known as the Black— Scholes formula.

Proposition 7.10 The price d a European call option with strike price K and
time d maturity T is given by the formula II (t) = F(t, S(t)), where

F(t,s) = sN [dy(t,5)] — e " T~D KN [da(t, 3)]. (7.48)

Here N is the cumulative distribution function for the N [0,1] distribution and

dilt,s) = ovT =3 {ln (%) +(rt %02) (T - t)} : (7.49)
dz(t, 8) =d; (t, 8)‘— oVT —t. (750)

The graph o the Black—Scholes pricing function (the unit of time is chosen
to be one year) isshown in Fig. 7.3.
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7.6 Optionson Futures

The purpose d this section is to derive the Black formulas for options written
on a futures contract. Our discussion here will be rather brief, and for more
institutional and technical information the reader isreferredto Chapter 26 (and
the Notes), where the contracts are discussed in more detail.

7.6.1 Forward Contracts

Consider a standard Black—Scholes model, a simple T-clam & = ®(St), and
assume that we are standing at timet. Aforward contract on X, madeat t, is
a contract which stipulatesthat the holder of the contract paysthe deterministic
amount K at thedelivery date T, and receives the stochastic amount X’ at T.
Nothing is paid or received at the timet, when the contract is made. Note that
forward price K is determined aready at time t. It is customary to use the
notation K = f (t;T, X), and our primary concernisto compute f (tT,X).

This is, however, easily done. We see that the entire forward contract is
acontingent T-clamY d theform

Y=X-K,

and, by definition, thevaued Y at thetimet when the contract is made equals
zero. Thus we have

e X - K) =0,
which leads to
I(t; X) = II(¢; K). in oi (15
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Usng risk neutral valuation we immediately have II(t;K) = e~"T-9 K and
I(t; X) = e~ (T x Ef?s [X], so we have proved the first part o the following
result. The second part isleft as an exercise.

Proposition 7.11 Theforward pricef (t; T, X), contracted at t, on the T-claim
X isgiven by
(T, X) = B2 [x]. (7.51)

In particular, if X = Sy the correspondingforward price, denoted by f (t;T), is
given by
f(t;T)=eT-Ng,. (7.52)

Remark 7.6 1 Note the difference between the forward price f (t; T, X) which
isasum to be paid at T, for a forward contract entered at time t, and the spot
price o the entire forward contract. This latter priceis zero at the time t when
the contract is made, but at any subsequent time s > t it will typically have a
nonzero value.

7.6.2 Futures Contracts and the Black Formula

With the same setup as the previous section we will now discuss a futures
contract on X. Thiscontract isvery closeto the correspondingforward contract
inthesensethat it isstill a contract for thedelivery o X at T. The differenceis

that all the payments, from the holder of the contract to the underwriter, are no
- longer made at T. Let us denote the futures price by F(t; T, X); the payments
are delivered continuously over time, such that the holder d the contract over
thetimeinterval [s,s + As] receives the amount

F(stTAsT,X)-F(8T,X)

from the underwriter. Finally the holder will receive X, and pay F(T;T, X), at
thedelivery date T. By definition, the (spot) price (at any time) o the entire
futures contract equals zero. Thus the cost o entering or leaving a futures con-
tract iszero, and the only contractual obligationisthe payment stream described
above. See Chapter 26 for more details, and for a proof o the following result.

Proposition 7.12 If the short rate is deterministic, then the forward and the
futures price processes coincide, and we have

F(;T,X) = EZ, []. (7.53)

We will now study the problem of pricing a European call option, with exer-
csdateT, and exercise price K, on an underlyingfutures contract. The futures
contract is a future on S with delivery date 17, with T < Tj. Options o this
kind are traded frequently, and by definitionthe holder of thisoption will, at the
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exercisetime T, obtain along positionin the futures contract, plusthe stochastic
amount

X = max[F(T;T) — K,0]. (7.54)

Since the spot price of the futures contract equals zero, we may, for pricing
purposes, forget about the long futures position embedded in the option, and
identify the option with the claim in (7.54).

We now go on to price the futures option, and we start by using
Proposition 7.12 and eqn (7.52) in order to write

X =e™M-D max[Sy — e~ "=V K, 0].

Thus we see that the futures option consists o e™(T1~T) call options on the
underlyingasset S, with exercisedate T and exercisepricee~"T1~T) K. Denoting
the priceat T of thefuturesoption by c, thestock priceat t by s, and the futures
price F(t; T1) by F, we thus have, from the Black—Scholes formula,

y=e"(T-T) [sN[dl] - e”’(T“.‘)e"'(Tl"T)KN[dz]]

where d; and d; are obtained from the Black-Scholesd; and d2 by replacing k
with e ™T1-T K. Finally we may substitute s = Fe~™Ti=%, and simplify, to
obtain the so-called " Black-76 formula".

Proposition 7.13 (Black's formula) The price, at t, o a European call
option, with exercise date T and ezercise price K, on a futures contract (on
an underlying asset price S) with delivery date T} is given by

¢ = 7T~ [FN[di] — KNldp]], (7.55)

where F is the futures price F= F(T;T}), and

_In(f) + 32T -1)

dl
ovlT —1t !
dy =d; —oVT -t

7.7 Volatility

In order to be able to use the theory derived above in a concrete situation, we
need to have numerica estimates o all the input parameters. In the Black-
Scholesmodel theinput dataconsistsd thestring s, r, T, t,and ¢. Out o these
five parameters, s, r, T, and t can be observed directly, which leaves us with the
problem o obtaining an estimate o the volétility s. Here there are two basic
approaches, namely to use "historic volatility” or "implied volatility".
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¢ 1.7.1 Historic Volatility

Supposethat we want to value a European call with six months left to maturity.
Anobviousideaisto use historical stock pricedatain order to estimate o. Since,
in red life, the volatility is not constant over time, one standard practice is to
use historical datafor a period of the same length as the time to maturity, which
inour case meansthat we use data for the last six months.

In order to obtain an estimate of o we assume that we have the stand-
ard Black-Scholes GBM model (7.4) under the objective measure P. We
sample (observe) the stock price process Sat n + 1 discrete equidistant points
to,t1,...,tn, Where At denotes the length o the sampling interval, i.e. At =
t,‘ - t,‘_l.

We thus observe S(tp), ..., S(tn), and in order to estimate ¢ we use the fact
that S has a log-normal distribution. Let us therefore defineés. .. .. & bv

s=ln (S?t(.-tj))

' From (5.15) weseethat &, . .., &, areindependent, normally distributed random
variables with

E 6] = (a- 10%) At,
Va.r[{,] =g%At.

Using elementary statistical theorv we see that an estimate o ¢ is given bv

o* = Se ,
VAL
where the sample variance S? is given by g
2= 3 (-8
¢ n—14& ’ il
S .
§=E;€i-

The standard deviation, D. o the estimate ¢* is approximatively given bv

0,*

D(o™) =~ NoTh
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7.7.2 Implied Volatility

Suppose again that we want to value a European call with six months left to
maturity. An argument against the use o historical volatility is that in real life
volatility is not constant, but changes over time, and thus we want an estimate
o the volatility for the coming six months. Using historical volatility we will,
however, only obtain an estimate for the volatility over the past six months. If,
furthermore, our objective isto price our option consistently with respect to
other assets which are already priced by the market, then we really should use
the market expectationd the volatility for the next six months.

Oneway d findingthe market expectation o the volatility is by getting mar-
ket price data for another six month "benchmark” option, written on the same
underlying stock as the option which we want to value. Denoting the price o
the benchmark option by p, the strike price by K, today's observed vaue o
the underlying stock by s, and writing the Black—Scholes pricing formula for
European callsby ¢(s,t, T, r,a,K), we then solve the following equation for o

p=c(s,t, T,r,a,K).

In other words, we try to find the value of a which the market has implicitly
used for valuing the benchmark option. Ths vaue o a is caled the implied
volatility, and we then use the implied volatility for the benchmark in order to
priceour original option. Put another way, we price the original option in terms
o the benchmark.

We note that implied volatilities can be used to test (in a nonstandard way)
the Black—Scholes model. Suppose, e.g. that we observe the market pricesd a
number o European calls with the same exercise date on a single underlying
stock. If the mode is correct (with a constant volatility) then, if we plot implied
volatility asafunction o theexercise price, weshould obtain a horizontal strai ght
line. Contrary to this, it is often empirically observed that options far out d
the money or deep into the money are traded at higher implied volatilitiesthan
options at the money. The graph o the observed implied volatility function thus
often looks like the smile o the Cheshire cat, and for this reason the implied
volatility curveistermed the volatility smile.

Remark 7.7.1 A call option is said to be "in the money" at timet if S; > K,
and "out o the money" if S; < K. For put options the inequalitiesare reversed.
If S =K theoptionissaid to be "at the money".

7.8 American options

Up to now we have assumed that a contract, like a call option, can only be
exercised exactly at the exercisetime T. In redl life a large number of options
can in fact be exercised at any time prior to T. The choice o exercisetimeis

thus left to the holder o the contract, and a contract with this feature is caled
an American contract.
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To put it more formally, let usfix a final exercise date T and a contract
function . The European version o this contract will, as usual, pay the amount
®(Sr) at time T tothe holder of the contract. If the contract, on the other hand,
isd the American type, then the holder will obtain the amount ®(S;) if he/she
choosssto exercisethe contract at timet. Thesituation iscomplicatedfurther by
| thefact that theexercisetimet does not haveto be chosen a priori (i.e. at t = 0).
It can be chosen on the basis o the information generated by the stock price
process, and thus the holder will in fact choose a random exercise time 7.
The exercise time (or rather exercisestrategy) 7 has to be chosen such that the
decison on whether to exercise the contract at timet or not, depends only upon
the information generated by the price process up to time t. The mathematical
formulation of this property isin terms o so caled "stopping times”, but we
will not go further into this subject.

American contracts are thus more complicated to analyze than their
| European counterparts, since the holder o the contract has to decide on an

" optimal exercise strategy. Mathematically this means that we have to solve
the "optimal stopping problem"

max [E9 [e7"®(S,)]],

where 7 isadlowed to vary over the classdf stopping times. Problemsd this kind
ae quite hard to solve, and analytically they lead to so called "free boundary
vaue problems’ (or variational inequalities) instead d the corresponding para-
balic PDEs for the European counterparts. The mathematics o thislies outside
the scope o this book, but it may be o interest to know that for American
contracts practically no analytical formulasare at hand. See the Notes below for
references.

Onesituation, however, isvery easy to analyze, even for American contracts,
and that isthe case of an American call option on a nondividend paying under-
lying stock. Let us consider an American call option with final exercisedate T
and exercise price K. We denote the pricing function for the American option
by C(t, s) and the pricing function for the corresponding European option (with
thesame T and K) by ¢(t,s).

First, we note that we have (why?) the trivia inequality

C(t,s) = c(t, s). (7.56)

Second, we have, for all t < T, the less obvious inequality
c(t,s) > s — Ke~™(T-9, (7.57)
To s why this inequality holds it is sufficient to consider two portfolios, A

and B. A consistsd a long position in the European option, whereas B consists
d along position in the underlying stock and a loan expiring at T, with face
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valueK . Denctingthe priced A and B at any timet by A, and B; respectively,
it iseasily seen that Ar > By regardlessd the value o Sr (analyzethe two
cases St > K and St < K). In order to avoid arbitrage possibilities we then
must have A; > B, for all t < T, which is precisdly the content o (7.57).

Furthermore, assuming a positive rate o interest, we have the trivial
inequality
s—Ke™T-H9>5_K, w< T,

so we end up with the inequality

Ct,s) >s—K, Vt<T. (7.58)

On the left-hand side we have the value o the American option at timet,
whereasthe right-hand side givesusthevaue d actually exercising the option at
timet. Sincethe valued the option isstrictly greater than the value o exercising
the option, it can thus not be optimal to exercisethe option at time t. Sincethis

holdsfor all t < T, weseethat it isin fact never optimal to exercisethe option
before T, and we have the following result.

Proposition 7.14 Assumethatr > 0. For an American cal option, written on
an underlying stock without dividends, the optimal exercise time |- is given by

I- = T. Thus the price & the American option coincides with the price d the
corresponding European option.

For American call options with discrete dividends, the argument above can
be extended to show that it can only be optimal to exercisethe option either at
thefina time T or at oned thedividend times. The American put option (even

without dividends) presents a hard problem without an analytical solution. See
the Notes below.

7.9 Exercises

Exercise 7.1 Consider the standard Black—-Scholes model and a T-claim X o

the form X = ®(S(T")). Denote the corresponding arbitrage free price process
by II(¢).

(a) Show that, under the martingale measure Q, II (t) has a locd rate d

return equal to the short rate o interest r. In other words show that
I (t) has a differential of the form

dII (1) =r . TI (t) dt T g(t) dW(¢).
Hint: Use the Q-dynamicsdf Stogether with the fact that F satisfies
the pricing PDE.
(b) Show that, under the martingale measure Q, the process Z(t) =

(II(t) /B(t)) isa narti ngal e. More precisdly, show that the stochastic
differential for Z has zero drift term, i.e. it isdf the form

dZ(t) = Z(t)oz(t) AW (t).
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Determine also the diffusion process oz(t) (in terms o the pricing
function F and its derivatives).

Exercise 7.2 Consider the standard Black-Scholes model. An innovative com-
pay, F&H INC, has produced the derivative "the Golden Logarithm",
i henceforth abbreviated as the GL. The holder of a GL with maturity time
¥ T, denoted as GL(T), will, at time T, obtain the sum InS(T). Note that if
b S(T) < 1thismeansthat the holder hasto pay a positiveamount to F&H INC.
Determine the arbitrage free price processfor the GL(T).

Exercise 7.3 Consider the standard Black—Scholes model. Derive the Black-
Schdes formulafor the European call option.

Exercise 74 Consider the standard Black—Scholesmodd. Derivethe arbitrage
free price process for the T-claim X where X isgiven by X = {S(T)}B. Here 8
isa known constant.

Hint: For this problem you may find Exercises 5.5 and 4.4 useful.

Exercise 75 A socaled binary optionisa claimwhich paysa certain amount
if the stock price at a certain date falls within some prespecified interval. Oth-
awise nothing will be paid out. Consider a binary option which pays K SEK to
the holder at date T if thestock priceat time T isintheinerval [ a8]. Determine
the arbitrage free price. The pricing formulawill involve the standard Gaussian
cumulativedistribution function N.

Exercise 7.6 Consider the standard Black—Scholesmodel. Derivethe arbitrage
free price process for the claim X where X isgiven by X = (S(T1)/S(T)). The
times Ty and T are given and the claim is paid out at time Tj.

Exercise 7.7 Consider the American corporation ACME INC. The price
process S for ACME isd course denoted in US$ and has the P-dynamics

dS =aSdt + oS dWw,,

wherea and a are known constants. The currency ratio SEK/USS$ is denoted by
Y and Y has the dynamics

dY = BY dt T 6Y aWw,,

where W, is independent of W;. The broker firm F&H has invented the deriv-
ative "Euler”. The holder o a T-Euler will, at the time of maturity T, obtain
the sum

X:m“ﬂﬂﬂ

in SEK. Here Z(t) isthe price at timet in SEK o the ACM E stock.

Compute the arbitrage free price (in SEK) at timet o a T-Euler, given
that the price (in SEK) o the ACME stock is z. The Swedish short rate is
denoted by 7.
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Exercise 7.8 Prove formula (7.52).

Exercise 79 Deriveaformulafor the value, at s, of aforward contract on the
T-claim X, where the forward contract ismadeat t,and t <s<T.

7.10 Notes

The classicsin the fidd are Black and Scholes (1973), and Merton (1973). The
modern martingale approach to arbitrage pricing was developed in Harrison and
Kreps (1981), and Harrison and Pliska (1981). A deep study o the connections
between (various formulations of) absence o arbitrage and the existenced a
martingale measure can be found in Delbaen and Schachermeyer (1994).

For a wealth o information on forward and futures contracts, see Hull (1997)
and Duffie (1989). Black's formula was derived in Black (1976). For American
options see Barone-Ades and Elliott (1991), Geske and Johnson (1984) and
Musiela and Rutkowski (1997). The standard reference for optimal stopping
problems is Shiryayev (1978), and a very readable exposition can be found in
Dksendal (1995). Option pricing with stochastic volatility is discussed in Hull
and White (1987), and Leland (1985) studies the consequencesd introducing
transaction costs.
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8
COMPLETENESS AND HEDGING

8.1 Introduction

In the previous chapter we noticed that our derivation o the pricing
| equation (7.31) was somewhat unsatisfactory, and a mgjor criticism was that
we were forced to assume that the derivative asset a priori possessed a price
process and actually was traded on the market. In this chapter we will look
- a arbitrage pricing from a somewhat different point o view, and this altern-
© dive approach will have two benefits. First it will dlow us to dispose d the
annoying assumption above that the derivativeis actually traded, and second it
will provide us with an explanation o the surprising fact that the simple claims
investigated earlier can be given a unique price. For a more detailed discussion
. see Chapters 10, 12, and 15.

i Westart with afairly general situation by considering afinancial market with
'+ aprice vector process S= (S%,...,SN), governed by an objective probability
. meaaure P. The process S is as usual interpreted as the price process of the
= exogenoudy given underlying assets and we now want to price a contingent
T-cdam X. We assume that all the underlying assets are traded on the market,
but we do not assumethat there existsan a priori market (or a price process) for
the derivative. To avoid trivialities we aso assume that the underlying market
| is arbitrage free.

Definition 8.1 We say that a T-claim X can kereplicated, aternatively that
it isreachable or hedgeable, if there exists a self-financing portfolio h such
that

VMT)=X, P-as. (81)

In this case we say that h is a hedge against X. Alternatively, h is cdled a
replicating or hedging portfolio. If every contingent claim is reachable we say
¢ that the market is compl ete.

¢ Le usnow consider afixed T-claim X and let usassumethat X can be replicated
by a portfalio h. Then we can make the following mental experiment:

g 1 Fixapointintimetwitht <T. ‘
‘ 2. Suppose that we, at time t, possess V*(t) SEK. 1
3. We can then use this money to buy the portfolio h(t). If furthermore we

follow the portfolio strategy h on the time interval [t,T] this will cost us

nothing, since h is self-financing. At time T the valued our portfolio will I
then be V*(T) SEK.
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4. By the replication assumption the value, at time T, o our portfolio will
thus be exactly X SEK, regardlessdf the stochastic price movementsover
the interval [t,T).

5. From a purely financial point o view, holding the portfolio h is thus
equivalent to the holding o the contract X.

6. The "correct” pricedf X at time't isthus given by II(t; X) = VA(t).

For a hedgeable claim we thus have a natural price process, II(t; X) = V(t),
and we may now ask if this has anything to do with absence o arbitrage.

Proposition 8.2 Suppose that the claim X can le hedged using the portfolio h.
Then the only price processII(¢; X) which is consistent with no arbitrageisgiven
by II(¢; X) = V*(t). Purthermore, if X can ke hedged by g as well as by h then
V9(t) = V*(t) holdsfor all t with probability 1.

Proof If at sometimet we havell(t; X) < V(t) then wecan makean arbitrage
by sdlling the portfolio short and buying the claim, and vice versaif TI(t; X) >
Vh(t). A similar argument shows that we must have V9(t) = V*(t). O

8.2 Completenessin the Black—Scholes Model
We will now investigate completenessfor the generalized Black—Scholes model
given by

dB(t) = rB(t) dt, (8.2)
dS(t) = S(t)a (t,8(t)) dt T S(t)o (t, S(t)) AW (¢), (8-3)

where we assume that a(t,s) > 0 for al (t,s). The main result is the following.
Theorem 8.3 The modd (8.2)-(8.3) is complete.

The proof of thistheorem requiressomefairly deep results from probability the-
ory and isthus outside the scope o this book. We will prove a wesker version of
the theorem, namely that every simple claim can be hedged. Thisisoften quite
aufficient for practical purposes, and our proof of the restricted completeness
also has the advantage that it givesthe replicating portfolioin explicit form. We
will use the notational convention k(t) = [ho(t), h* (t)] where h° is the number
o bondsin the portfolio, whereas h* denotes the number o sharesin the under-
lying stock. We thus fix a simple T-claim o the form X = ®(S(T")) and we now
want to show that this claim can be hedged. Since the formal proof isdf theform
"consider the following odd construction™, we will instead start by presenting a
purely heuristic (but good) argument. This argument is, from a formal point o
view, only o motivational nature and the logic of it israther unclear. Since the
argument is only heuristic the logical flaws do not matter, since in the end we
will in fact present a rigorousstatement and a rigorous proof. Beforewestart the
heuristics, let us make more precise what we are looking for. Usng Lemma 6.5
we immediately have the following result.
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Lemma 8.4 Suppose that there exists an adapted process V and an adapted
processu = [uf, u*] with
WO ()t ur(t) =1, (8.4)
<uch that
{dV(t) =V () {«2(t)r T uw*@)alt, SE))} dt T V(E)u*(t)o(t, S(t) dW(2),

V(T) = ®(S(T)).
‘ (8.5)
' Then the claim X = &(S(T")) can ke replicated using u as the relative portfolio.
The corresponding value process is given by the process V and the absolute
portfolio h is given by

RO(t) = -u"(l%(t), (8.6)
* = u* 1] V t
h*(t) Jg%l 8.7)

'
Qr strategy now is to look for a process V and a process u satisfying the
conditions above.

Begin Heuristics

We assume what we want to prove, namely that X = ®(S(T)) is indeed rep-
licable, and then we ponder on what the hedging strategy u might look like.
Since the S-process and (trivially) the B-processare Markov processesit seems
reasonable to assume that the hedging portfoliois of the form h(t) = h(t, S(t))
where, with aslight misusedf notation, the hin the right member o the equality
| isadeterministic function. Since, furthermore, the value processV (we suppress
- the superscript h) is defined as V(t) = hO(t)B(t) T h*(t)S(t) it will also be a
- function of time and stock price as

V()= F(t,5@)), (8.8)

where F is some real valued deterministic function which we would like to knou
more about.

Assume therefore that (8.8) actually holds. Then we may apply the It¢
formulato V in order to obtain the V-dynamics as

dv:={F, t aSF, t 14°5%F,,} dt t 0SF,dW, 89

where we have suppressed the fact that V and Saxe to be evaluated at time t
wheressa, o and F are to be evaluated at (t,.S(t)). Now, in order to make (8.9
look more like (8.5) we rewrite (8.9) as

F,t aSF, + 10°SF. } qt+vS

v B aw. (8.10

v

dV=V{
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Since we have assumed that X is replicated by V we see from (8.10) and (8.5)
that u* must be given by

S(t)F,(t, S(2))

0= =F650)

(8.11)

(remember that we have assumed that V(t) = F(t,S(t)), and if we substitute
(8.11) into (8.10) we get

F, + 10%8%F,, -
Tt 37 5T, + u*a} dt + Vu*o dW. (8.12)

dV=V{ 7

Comparing this expression to (8.5) we see that the natural choice for u? is
given by
o Ft10%S%F,,
= rF ’
but we also have to satisfy the requirement «® + u* = 1 d (8.4). Using (8.11)
and (8.13) this gives us the relation

(8.13)

-Ft + %UzSzFa; — F—SF,

14
rF F (8.14)

which, after some manipulation, turns out to be the familiar Black—Scholes
equation
F,trSF,+ 10%S?F,, - rF =0, (8.15)

Furthermore, in order to satisfy the relation F(T,S(T))=®(S(T)) o (8.5)
(remember that we assume that V(t) = F(t, S(t))) we must have the boundary
value

F(T,s) = ®(s), foradls&< R,. (8.16)

End Heuristics

Since at this point the reader may wel be somewhat confused as to the logic
o the reasoning, let us try to straighten things out. The logic d the reasoning
aboveis basicaly as follows:

e We assumed that the claim X was replicable.

e Using thisand somefurther (reasonable) assumptionswe showed that they
implied that the vaue process o the replicating portfolio was given as
V(t) = F(t,S(t)) where Fisa solution o the Black—Scholesequation.

Thisisd course not at all what we wish to achieve. What we want to do is
to prove that X redly can be replicated. In order to do this we put the entire
argument above within a logicd parenthesisand formally disregard it. We then
have the following result.
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' Theorem 85 Consider the market (8.2)-(8.8), and a contingent claim of the
form X = ®(S(T)). Define F as the solution to the boundary value problem

{Ft +rsF, + %azst,, -rF =0,
(8.17)
F(T,s) = ®(s).
Then X can be replicated by the relative portfolio
Uo(t) — F(t’ S(t);‘zt‘s‘;zz)l';s(ti S(t)) , (818)
wr(t) = S5 SE) (22' ’(;’(S()t)) (8.19)
,b The corresponding absolute portfolio is given by
ho(t) — F(t’ S(t)) —B‘S(’S)Fa(ta S(t))’ (820)
R*(t) = Fi(¢,5(2)), (8.21)
and the value processV " is given by
Vh(t) = F(t, S(t)). (8.22)

Proof Applying the It6 formula to the process V'(¢) defined by (8.22) and
performing exactly the same calculations as in the heuristic argument above,
will show that we can apply Lemma 8.4. O

The result above gives us an explanation of the surprising facts that there
actualy exists a unique price for a derivative asset in the Black—Scholes model
and that this price does not depend on any particular assumptions about indi-
vidual preferences. The arbitrage free price d a derivative asset is uniquely
determined simply because in this modd the derivative is superfluous. It can
dways be replaced by a corresponding "synthetic" derivative in terms o a
replicating portfolio.

Since the replication is done with P-probability 1, we also see that if a con-
tingent claim X is replicated under P by a portfolio h and if P* is some other
probability measure such that P and P* assign probability 1to exactly the same
events (such measures P and P* aresaid to be equival ent),then h will replicate
X dso under the measure P*. Thus the pricing formulafor a certain claim will
beexactly the samefor all measureswhich areequivalentto P. It isawdl known
fact (the Girsanov theorem) in thetheory of SDEs that if we changethe measure
from P to some other equivalent measure, this will change the drift in the SDE,
but the diffusion term will be unaffected. Thus the drift will play no part in the
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pricing equation, which explains why a does not appear in the Black—Scholes
equation.

Let us now list some popular claims and see which o them will fall into the
framework above.

X =max[S(T) - K,0] (European call option) (8.23)

X = 8(T) - K (Forward contract) (8.24)
T

X = max [-;;/ S(t)dt — K,O]. (Asian option) (8.25)
0

X=8(T) - . <lltl£ r S(t) (Lookback contract) (8.26)

We know from Theorem 8.3 that in fact all of the claimsabove can be replicated.
For general claims this is, however, only an abstract existence result and we
have no guarantee of obtaining the replicating portfolioin an explicit form. The
point of Theorem 8.5 is precisaly that, by restricting ourselvesto ssmpleclaims,
i.e. claims o the form X = ®(S(T)), we obtain an explicit formula for the
hedging portfolio.

It is clear that the European call as wdl as the forward contract above are
simple claims, and we may thus apply Theorem 8.5. The Asian option (also
called a mean vaue option) as wdl as the lookback present harder problems
since neither o these claims is simple. Instead 0 just being functions d the
vaue o Sat time T we see that the claims depend on the entire S-trajectory
over theinterval [0,T]. Thus, while we know that there exist hedging portfolios
for both these claims, we have presently no obviousway d determining the shape
o these portfolios.

It isin fact quite hard to determine the hedging portfolio for the lookback,
but the Asian option belongs to a class d contracts for which we can give a
fairly explicit representation o the replicating portfolio, using very much the
same technique as in Theorem 8.5.

Proposition 8.6 Consider the modd

dB(t) = rB(t)dt, (8.27)
dS(t) = S(t)a (t,S(t)) dt + S(t)o (t, S(t)) AW (t), (8.28)

and let X beaT-claim d the form
X=2e (S(T)a Z(T))’ (8-29)

where the process Z is defined by

20= [ " g(u, S(w)) du, (830)
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for some choice of the deterministic function g. Then X can be replicated using
areative portfolio given by

_ F(4,5(),2(8) - SF(, 50), 2(2)
W) = F(t,50), 200) : (831)
o) = SOE.50,2() 82

F(t,S(t),Z(t)) ’

where F is the solution to the boundary value problem

Fy+ srF,t 1s20%F,, + gF, — rF =0,
{‘ © 277 Fee O (8.33)

F(T,s,2)= ®(s,z).

The corresponding value processV is given by V(t) = F(t,S(t),Z(t)), and F
has the stochastic representation

F(t,5,2) =TS, | [8(S(T), Z(T))], (8.34)

where the Q-dynamics are given by

dS(u) = rS(u) du + S(u)o(u, S(u)) dW (u), (8.35)
S(t) =s, (8.36)
dZ(u) = g(u, S(u)) du, (8.37)
Z(t) = = (8.38)

Proof The proof is left as an exercise for the reader. Use the same technique
asin the proof of Theorem 8.5. O

Agan we see that the arbitrage free price o a contingent claim is given as
the expected value o the claim discounted to the present time. Here, as before,
. the expected value is to be calculated using the martingale measure Q instead
[ d the objective probability measure P. As we have said before, this general
structure o arbitrage free pricing holds in much more general situations, and as
aruled thumb one can view the martingale measure Q as being defined by the
property that all traded underlying assets haver astherate d return under Q.
It is important to stress that it is only traded assets which will have sr as the
rate d return under Q. For models with nontraded underlying objects we have
acompletely different situation, which we will encounter below.

8.3 Completeness— Absence of Arbitrage

In this section, we will give some general rulesd thumb for quickly determining
whether a certain model is complete and/or free o arbitrage. The arguments
will be purely heuristic.
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Let us consider a modd with M traded underlying assets plus the risk
free asset (i.e. totally M +1 assets). We assume that the price processes of
the underlyingassetsaredriven by R "randomsources'. We cannot givea precise
definition d what constitutes a "random source" here, but the typical example
is a driving Wiener process. If, e.g. we have five independent Wiener processes
driving our prices, then R = 5. Another example o a random source would be
a counting process such as a Poisson process. In this context it isimportant to
note that if the prices are driven by a point process with different jump sizes
then the appropriate number o random sources equals the number of different
jump sizes.

When discussing completenessand absence d arbitrage it is important to
realize that these concepts work in opposite directions. Let the number o ran-
dom sources R be fixed. Then every new underlying asset added to the model
(without increasing R) will of coursegive us a potential opportunity of creating
an arbitrage portfolio, so in order to have an arbitrage free market the number
M o underlying assets must be small in comparison to the number of random
sources R.

On the other hand weseethat every new underlyingasset added to the model
gives us new possibilitiesdf replicating a given contingent claim, so completeness
requires M to be great in comparisonto R.

We cannot formulate and prove a precise result here, but the following rule
of thumb, or “meta-theorem”, is neverthelessextremely useful. I n concrete cases
it can infact be given a preciseformulation and a precise proof. See Chapters 10
and 14. We will later use the meta-theorem when dealing with problems con-
nected with nontraded underlying assets in general and interest rate theory in
particular.

Meta-theorem 8.3.1 Let M denote the number of underlying traded assetsin
the model excluding therisk free asset, and let R denote the number of random
sources. Generically we then have the following relations:

1. .The model is arbitrage freeif and only if M < R.
2. The model is complete if and only if M > R.
3. The model is complete and arbitrage free if and only if M = R.

As an éxample we take the Black—Scholes model, where we have one under-
lying asset S plus the risk free asset so M = 1. We have one driving Wiener
process, giving us R=1, soin fact M = R. Using the meta-theorem above we
thus expect the Black—-Scholes model to be arbitrage free as wel as completeand
this isindeed the case.

8.4 Exercises

Exercise 8.1 Consider a modd for the stock market where the short rate o
interest r is a deterministic constant. We focus on a particular stock with price
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. process S, Under the objective probability measure P we have the following
dynamicsfor the price process.

dS(t) = aS(t) dt + oS(t) dW(t) T 6S(t-) AN (t).

Hee W is a standard Wiener process whereas N is a Poisson process with
intensity A. We assumethat a, o, 6 and A are known to us. The dN termisto
be interpreted in the following way:

e Between the jump times of the Poisson process N, the S-process behaves
just like ordinary geometric Brownian motion.

e If N has a jump at time t this induces Sto have a jump at timet. The

g, sze d the S-jump is given by

k S@t) - S(t-) = 8- S(t-).

Discuss the following questions:

v (a) Isthe model free o arbitrage?

' p  (b) Isthe model complete?
i (c) Isthere a unique arbitrage free price for, say, a European call option?

(d) Suppose that you want to replicate a European call option maturing in
January 1999. Is it posssible (theoretically) to replicate this asset by a
portfolio consisting o bonds, the underlying stock and European call
option maturing in December 20017

Exercise 8.2 Usethe Feynman—Ka¢ techniquein order to derivea risk neutral
vauation formulain connection with Proposition 8.6.

Exercise 8.3 Thefairly unknown company F&H INC. has blessed the market
with a new derivative, "the Mean". With "effective period” given by [T1, T3] the
holder d a Mean contract will, at the date of maturity T», obtain the amount

1 T

S(u) du.

* To-Ti Jy
Determine the arbitrage free price, at time t, o the Mean contract. Assume
that you live in a standard Black—Scholes world, and that t < T3.

" Exercise 8.4 Consider the standard Black—-Scholes model, and n different
dmple contingent claims with contract functions ®4,...,®,. Let

V= h;(t)S:i(t)
; (t)

denotethe value processd a self-financing, Markovian (see Definition 6.2) port-
folio. Because o the Markovian assumption, V will be o the form V (¢, S(¢)).
. Sow that V satisfiesthe Black-Scholes equation.
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8.5 Notes

Completenessis mathematically closaly related to rather deep results about the
possibility of representing martingales as sums o stochastic integrals. Using
this connection, it can be shown that the market is complete if and only
if the martingale measure is unique. This is developed in some detail in
Chapters 10 and 14. See aso Harrison and Pliska (1981) and Musiea and
Rutkowski (1997).
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9
PARITY RELATIONS AND DELTA HEDGING

' 9.1 Parity Relations

Congde the standard Black-Scholes modedl. As we know from general theory
(Theorem 8.3) this model alows us to replicate any contingent claim using a
* portfolio based on the underlying asset and the risk free asset. For a nontrivial
dam the structure o the hedging portfoliois typically quite complicated, and
in particular it is a portfolio which is continuously rebalanced. For practical
purposes this continuous rebalancing presents a problem because in real life
- trading does have a cost. For managerial purposesit would be much nicer if we
could replicatea given claim with a portfoliowhich did not haveto be rebalanced,
in other words a portfoliowhich isconstant over time. Such a portfoliois known
as a buy-and-hold portfaolio.

If weinsist on usingonly B and S in our replicating portfoliowe cannot rep
licate any interesting claims using constant portfolios, but if we dlow ourselves
toincludesome derivative, like a European call option, in our hedging portfolio,
then life becomes much simpler, and the basic result we will useis the following
trivid linear property of pricing.

Proposition 9.1 Let & and ¥ ke contract functions for the T-claims X =
®(S(T)) and Y = ¥(S(T)). Then for any real numbers a and 8 we have the
following price relation:

(t; a® T BY) = ofI(t; ) T BII(t; ¥). (9.1)

Proof Thisfollowsimmediately from the risk neutral valuation formula (7.39)
and the linear property d mathematical expectation. O

To set notation let ¢(t,s;K,T,r,a) and p(t,s; K, T,r,0) denote the price at
- time t given S(t) = s d a European cal option and a European put option
respectively. In both cases T denotes the time of maturity, K the strike price,
. whereas r and a indicate the dependence on model parameters. From time to
time we will freely suppress one or more of the variables (t,s, K, T,r,a).Let us
furthermoreconsider the following "basic" contract functions:

®s5(z) =z, (9.2)
@B(:L‘) = 1, (9'3)
<I>C,K(a:) = max [X— K, 0] . (9.4)
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The correspondingclaimsat the time d maturity give us one share o the stock,
$1,and one European call with strike price K respectively. For these claimsthe
prices are given by

II(t; @5) = S(t), (9.5)
0(t; @) =e 7Y, (9.6)
H(t; (I)C,K) = C(t, S(t); K, T) (97)

Let us now fix a time  maturity T and a T-clam X o the form X =
®(S(T)), i.e. asimple clam. It is now clear that if ¢ isalinear combinationdf
the basic contracts above, i.e. if we have

@ =ads + 0% + »_%:®cki (9.8)

i=1

then we may price @ in termsthe pricesd the basic contracts as

II(t; @) = oll(t; ®5) + AII(t; @) + i %Il(t; @c,k,)- (9.9)

i=1

Note also that in thiscase we may replicatethe claim @ using a portfolio consist-
ingd basic contracts that isconstant over time, i.e. a "'buy-and hold" portfolio.
More precisely the replicating portfolio consists of

e a shares d the underlying stock,
e [ zero coupon T-bonds with face value $1,
e 7; European call options with strike price K;, all maturing at T.

The result above isd course interesting only if there is a reasonably large class
d contracts which in fact can be written as linear combinations o the basic
contracts given by (9.2), (9.3), and (9.4). This isindeed the case, and as a first
examplewe consider the European put option with strike price K, for whichthe
contract function ®p i is defined by

®p i (z) = max [K - x,0]. 1 (9.10)
o ;E
It is now easy to see (draw a figure!) that
®px =K®p +Pc,x — s,

so we have the following so-called put-call parity relation.
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Proposition 9.2 (Put-call parity) Consider a European call and a European
put, both with strike price K and time of maturity T. Denoting the corresponding
pricing functions by ¢(t,s) and p(t,s), we have the following relation:

p(t,s) =K eIt +c(t,8) —s. (9.11)

In particular, the put option can be replicated with a constant (over time) port-
folio consisting of a long position in a zero coupon T-bond with face value K, a
long position in a European call option and a short position in one share of the
underlying stock.

It isnow natural to pose thefollowing more general question. Which contracts
} can be replicated in this way using a constant portfolio consistingdf bonds, call
F options and the underlying stock? The answer is very pleasing.

Proposition 9.3 Fix an arbitrary continuous contract function ® with compact
support. Then the corresponding contract can ke replicated with arbitrary pre-
cision (in sup-norm) using a constant portfolio consisting only of bonds, call
options and the underlying stock.

Proof It is easily seen that any &ffine function can be written as a linear
combination o the basic contract functions. The result now follows from the
fact that any continuous function with compact support can be approximated
uniformly by a piecewise linear function. O

[] 92 The Greeks

Le P(t, s) denote the pricing function at timet for a portfolio based on asingle
underlying asset with price process S;. The portfoliocan thus consist of a pos-
ition in the underlying asset itself, as well as positionsin various options written
o the underlying asset. For practical purposesit isoften o vital importance to
| have a grip on the sensitivity of P with respect to the following.

} 1. Price changesd the underlying asset.
2. Changesin the model parameters.

In case 1 above we want to obtain a measure o our risk exposure, i.e. how the

1 vaue & our portfolio (consisting of stock and derivatives) will change given

| a certain change in the underlying price. At first glance case 2 seems sdf-

| contradictory, since a model parameter is by definition a given constant, and
b thusit cannot possibly changewithin the given model. This caseis therefore not
} oned risk exposure but rather one of sensitivity with respect to misspecifications

¥ d the model parameters.

We introduce some standard notation.
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Definition 9.4

oP
A = E)
&P
F = w,
Y 300845 _3-)({- Satty — a_P
- o P= 3
o=
at
oP
V= Fe

(9.12)
(9.13)
(9.14)
(9.15)

(9.16)

All these sensitivity measures are known as "the greeks’. This includes V,
which in this case is given the Anglo-Hellenic pronounciation "vegd'. A portfolio
which isinsensitivew.r.t. small changesin oned the parameters aboveissaid to
be neutral, and formally this meansthat the correspondinggreek equals zero. A
portfoliowith zero deltaissaid to bedelta neutral , and correspondinglyfor the
other greeks. In the next section we will study various hedging schemes, based
upon the greeks, but first we present the basic formulas for the case o a call
option. See Figs 9 1-9.5 for graphs o the greeks as functions o the underlying

stock price.

Proposition 95 For a European call with strike price K and time of maturity
T we have the following relations, with notation asin the Black-Scholes formula.

1,
09}
0.8+
0.7¢
06
05}
041
03r
021
0.1

0 . . . { . . N . )
& 0 20 40 60 80 100 120 140 160 180 200

4 FiG. 9.1. Deltafor a European call

s

o4
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0

0 20 40 60 80 100 120 140 160 180 200

Fic. 9.2. Gamma for a European call

0 20 40 60 80 100 120 140 160 180 200"
Fi1G. 9.3. Vega for a European call
The letter o denotes the density function of the N0, 1} distribution:

A = N(dy), 9.17)
_ pldy)

[ —— e ¥, gor (9.18)

p=K(T - t)e " T-)N(dy), (9.19)

0= —5\“}% —rKe " T~ N(dy), (9.20)

V = sp(d1)VT —t.
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FiG. 9.4. Thetafor a European call

25¢

20t

15¢

10t

0

" " 2 n L " L 1 PR |
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Fic. 9.5. Rhofor a European call

Proof Usethe Black-Scholesformula (7.48) and take derivatives. The (brave)
reader isinvited to carry thisout in detail. The calculations are sometimes quite

messy. O

9.3 Deltaand Gamma Hedging

Asin the previoussection, let us consider a given portfoliowith pricing function
P(t,s). The object is to immunize this portfolio against small changes in the
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underlying asset prices If the portfolio already is delta neutral, i.e. if

then we are done, but what can we do in the moreinteresting casewhen Ap # 07
Ore possibility is of course to sall the entire portfolio, and invest the sum thus
obtained in the bank, but thisisin most cases neither practically feasible, nor
preferable.

A moreinteresting ideaisto add aderivative(e.g. an option or the underlying

1 as itself) to the portfolio. Sincethe price of a derivativeis perfectly correlated

¢ with the underlying asset price, we should be able to balance the derivative

againgt the portfolio in such a way that the adjusted portfolio becomes delta

| neutral. Thereader will recognizethisargument fromthederivationdf the Black—
k  Scholes PDE, and the formal argument is as follows.

We denote the pricing function of the chosen derivative by F(t,s), and

: z denotesthe number o units d the derivative which we will add to the a priori

1] given portfolio. The value V o the adjusted portfoliois then given by

V(t,s) = P(t,s) +z- F(t,s). (9.22)

' In order to make this portfolio delta neutral we have to choose X such that

9V/ds = 0, and this gives usthe equation

P OF
+z

%5 T =0

- which, with obvious notation, has the solution

r=——. (9.23)

Example 9.6 Let us assume that we have sold a particular derivative with
pricing function F(t,s), and that we wish to hedge it using the underlying asset
itsalf. In (9.22) we now have P= —1.F, whereas Fis replaced by s, and we get

| the equation

a s
98 [-F(t,s)+z-5] =0,
with the solution
OF(t,s)
ds

We thus see that the delta df a derivative gives us the number of units o the
underlying stock that is needed in order to hedge the derivative.

:c=AF=

It is important to note that a delta hedge only works well for small changesin
the underlying price, and thus only for ashort time. In Example 9.6, what wedid
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FiG. 9.6. Linear approximation of .aEuropean cdl

was to approximate the pricing function F(t, s) with itstangent, and in Fig. 9.6
thisisillustrated for the case when Fisthe pricing function of a European call
option. Az equals the dope d the tangent.

In Fig. 9.1 we have a graph o the delta o a European call, as a function d
the underlying stock price. As time goes by the vaue d s (and t) will change,
and thuswewill be using an ald, incorrect vaued A. What isdonein practiceis
to perform a discrete rebalanced delta hedge, which for the example above
can be done along the following lines:

e Sdl one unit o the derivativeat timet =0 at the price F(0, s).

e Compute A and buy A shares. Use the income from the sde d the
derivative, and if necessary borrow money from the bank.

e Wait one day (week, minute, second). The stock price has now changed
and your old A is no longer correct.

e Compute the new valuedof A and adjust your stock holdings accordingly.
Balance your account by borrowing from or lending to the bank.

e Repeat this procedure until the exercisetime T.

¢ Inthisway the value df your stock and money holdings will approximately
equal the vdue d the derivetive.

It isin fact not hard to prove (see the exercises) the following asymptotic result.

Proposition 9.7 In a continuously rebalanced delta hedge, the value of the stock
and money holdings will replicate the value o the derivative.

In a (discrete) scheme o the kind above we face a dilemma concerning the
frequency d the rebalancing points in time. If we rebalance often, we will
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have a very good hedge, but we will aso suffer from high transaction costs.
The reason why we have to rebalance is that delta changes as the underlying
price changes, and a measured the sensitivity d A with respect to sisd course
gven by T = 8A/8s = 8?P/8s%. See Fig. 9.2 for a graph o the gamma of
a European call. If gamma is high we have to rebalance often, whereas a low
gammawill dlow usto keep the delta hedgefor alonger period. It isthus prefer-
able to form a portfolio which, apart from being delta neutral, is aso gamma
neutral.

In order to analyze this in some generality, let us again consider an a priori
given portfolio with price function P(t,s). For future use we state the following
trivial but important facts.

Lemma 9.8 For the underlying stock, the delta and gamma are given by

As=1,
T's=0.

From thefact that the gammad the underlyingstock equals zero, it followsthat
we cannot usethestock itself in order to changethegammadt the portfolio. Since
we want the adjusted portfolio to be both delta and gamma neutral, it is also
obvious that we need two different derivativesin the hedge. Let usthus fix two
derivatives, e.g. two call options with different exercise prices or different times
d maturity, with pricing functions F and G. We denote the number o units of
the derivativesby zr and z¢ respectively, and the vaue o the hedged portfolio
is now given by

V = P(t,s) tzp. F(t,s) T z¢. G, s).

In order to make this portfolio both deltaand gamma neutral we have to choose
zr and z¢ such that the equations

v _
ds
v

a7 =

0,

are satisfied. With obvious notation we thus obtain the system

Ap+zp-Arp+2¢-Ac=0, (9.24)
I'p+zp-Tp+zg-Tg =0, (9.25)

which can easily be solved.
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It is natural, and very tempting, to construct a delta and gamma neutral
hedge by the following two step procedure:

1. Choose zr such that the portfolio consistingd P and F is delta neutral.
This portfoliowill generally not be gamma neutral.
2. Now add the derivative G in order to make the portfolio gamma neutral.

The problem with this schemeisthat the second step in general will destroy the
delta neutrality obtained by the first step. In this context we may, however, use
thefact that the stock itself has zero gamma and we can thus modify the scheme
as follows:

1. Choose zF such that the portfolioconsistingd Pand Fisgammaneutral .
This portfolio will generally not be delta neutral.
2. Now add the underlying stock in order to make the portfolio delta neutral.

Formally the value o the hedged portfolio will now be given by
V=P+zxr-F+zg-38
and, using the lemma above, we obtain the following system.

Ap+zp-Ar+2z5=0, (9.26)
I'p+azp-Trp=0. (9.27)

This system istriangular, and thus much simpler than the system (9.24)-(9.25).
The solution is given by

rp
xF—_FF’
Afp-T

Using the technique described above one can easily derive hedging schemes in
order to make a given portfolio neutral with respect to any o the greeks above.
This is, however, left to the reader.

9.4 Exercises

Exercise 9.1 Consider the standard Black—Scholes modd. Fix the time o
maturity T and consider the following T-claim X:

K if S(T) < A,
X={K+A-S(T) ifA<S(T)<KH+A, (9.28)
0 if $(T) > K + A.
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| Thiscontract can be replicated using a portfolio, consistingsolely o bonds, stock
and European call options, which is constant over time. Determinethis portfolio
as wdl asthe arbitrage free price of the contract.

Exercise 9.2 The setup is the same as in the previous exercise. Here the
contract is a so-called straddl e, defined by

_JK-8(T) f0<S(T) <K,
X = {S(T) K i K < S(T). (9-29)
| Determine the constant replicating portfolio as wdl as the arbitrage free price
d the contract.

Exercise 9.3 The setup is the same as in the previous exercises. We will now
study a so-called "bull spread” (see Fig. 9.7). With this contract we can, to a
limited extent, take advantage o an increase in the market price while being
protected from a decrease. The contract is defined by

{B if S(T) > B, ,
x={8(T) if A<S(T)<B, (9.30)
- A ST <A

: We have of course the relation A < B. Determine the constant replicating
- portfolio as well as the arbitrage free price o the contract.

Exercise 9.4 The setup and the problem are the same as in the previous
exercises. The contract is defined by

0 if S(T) < A,
S(T)—-A if A<S(T)< B,
C-S(T) ifB<S(T)<C,
0 if S(T) > C.

X = (9.31)

) IR —
-]

F1c. 9.7.




132 PARITY RELATIONS AND DELTA HEDGING

By definition the point C divides the interval (4,C] in the middle, i.e B =
Ato)/2

Exercise 95 Supposethat you have a portfolio Pwith Ap =2 and I'p = 3.
You want to make this portfolio delta and gamma neutral by using two deriv-
atives F and G, with Ap = -1, Tr = 2, Ag = 5and I'¢q = —2. Compute the
hedge.

Exercise Q6 Consder thesamesituation as above, with thedifferencethat now
you want to use the underlying Sinstead  G. Construct the hedge according
to the two step scheme descibed in Section 9.3.

Exercise 9.7 Prove Proposition 9.7 by comparing the stock holdings in the
continuously rebalanced portfolioto the replicating portfolio in Theorem 85 of
the previous chapter.

Exercise 9 8 Consider asdf-financing Markovian portfolio (incontinuoustime)

containing variousderivativesd the single underlying asset in the Black—Scholes
model. Denotethe vaue (pricingfunction) o the portfolio by P(t,s. Show that

the following relation must hold between the various greeks d P.

Op +rsAp + %0’2321-‘}? =rP.

Hint: Use Exercise 4.

Exercise 9.9 Usetheresult inthe previousexerciseto show that if the portfolio
is both delta and gamma neutral, then it replicatesthe risk free asset, i.e. it has
arisk freerate d return which isequal to the short rater.

Exercise 9. 10 Show that for a European put option the delta and gamma are
given by

A = Nid;] - 1,
= p(d1)
sovT —1

Hint: Use put—all parity.

Exercise 9. 11 Takeasgiventhe usual portfolio P, and investigatehow you can
hedgeit in order to make it both delta and vega neutral.
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THE MARTINGALE APPROACH
TO ARBITRAGE THEORY*

In this chapter, we consider a market model consistingdf N + 1 a priori given
asxt price processes Sp, S1, .- ., Sn. Typically we specify the model by givingthe
dynamicsd the asset price processesunder the objective probability measure P,
and the main problems are as follows.

Fundamental Problems10.1

1 Under what conditions is the market arbitrage free?
2. Under what conditions is the market complete?

We attack the fundamental problems above by presenting the "martingale
approach” to financial derivatives. This is, so far, the most general approach
exiging for arbitrage pricing, and it is also extremely efficient from a computa-
tiond point of view. The answersto the problems above are given by the famous
' o cdled First and Second Fundamental Theorems o Mathematical Fin-
ance, which will be 4reated below. However; while these results are extremely
generd and powerful, they are aso quite deep, necessarily involving hard results

from functional analysis, so at some points we only present the main structural
i ideas d the proofs. For full proofsthe reader is directed to the referencesin the
' Notes For the benefit of the reader who does not want to go deeply into the
t theory, we give a summary o the results in Section 10.7. That section can be
read without reading the rest o the chapter.

10.1 The Case with Zeo Interest Rate

Wewill start by consideringthe special case when one d the assetson the market
isarisk free asset with zero rate d return. This may sound very restrictive, but
we will later show how the general case easily can be reduced to this special case.
As the basic setup we thus consider a financial market consisting d N exo-
genoudy given risky traded assets, and the asset price vector is as usua
denoted by
S1(t)

S(t) = DT (10.1)
Sn(t) | .
We also assume that there exists a risk free assgt with price process So(t). This

will be our numeraire, and in this section we assumethat in fact it is constant,
ie. it has zerorate o return.
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Assumption 10.1.1 We assume that
So(t) =1, foralt>0. (10.2)

The Sy asset ean thus be interpreted as a money account in a bank with zero
short rate. In the most general verson o the theory, the risky price processes are
dlowed to be general semimartingales, but for our purposesit will be enough to
assume that all price processes possess stochastic differentialswith a finite num-
ber o driving Wiener processes. Our fundamental problemsareto find out under
what conditionsthe market described aboveisfree d arbitrage possibilities, and
under what conditionsit is complete.

Before starting a formal discussion of this project we have to be a bit more
preciseabout theset d admissibleportfolios. Let uson a preliminary basisdefine
a naive portfolio process as any adapted process h(t) = [ho(t), h1(t), ..., hn(t)].
It then turns out that in order to construct a reasonable theory, the class o
naive Hf financing portfoliosissimply too big, and we have in fact the following
strongly negative result.

Theorem 10.1 If at least one of the assets S1,...,Sx has a diffusion term
which is nonzero at all times, and if naive portfolio strategies are admitted, then
the model admsts arbitrage.

Proof Theidead the proof is based upon the so caled "doubling strategy”
for the roulette. In thisstrategy you start by investing one dollar on black. If you
win you stop, having won one dollar. If you lose, you bet another two dollars,
and if you win in this bet your total gain is again one dollar. If you lose again
you bet another four dollars, etc. Thus, as soon as you win you stop, and as
long as you lose you double your bet. In thisway, and as long as the roulette has
positive probability for black coming up (it does not have to be evenly balanced),
you will eventualy (i.e. with probability one) win, and your net profit will be
one dollar.

Thisis an arbitrage on the roulette, and the reason that this does not work
wdl in practice, like in Monte Carlo, is that it requires you to have unlimited
credit, since at some points in the game you will have lost an enormous amount
o money before eventually winning one dollar. Also, the time spent until you
win is a priori unbounded although it is finite with probability one. Thus the
probability is high that the sun (and you) has died until you get your dollar.

In real lifeyou do not have unlimited credit, but withinour theoretical frame-
work credit is unlimited, and it isin fact quite smpleto use our market model
to imitate the Monte Carlo roulette whed and the doubling strategy above in
finite time. If you want the play to be over at t = 1 you simply invest at the
discrete times1— 1/n; n = 1,2,.... You start by investing one dollar in the
risky asset, financing by a bank loan, and then you stop as soon as you gain on
the investment and you double your investment as long as you lose (all the time
financing by a bank loan). It isthen easy to see that you can in fact repeat this
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arbitrage strategy an infinite number of times on any bounded interval, so with
probability one you will become infinitely rich. O

In order to have a reasonabl e theory we must thus restrict the classdf admis-
' Sble strategies to a smaller class where these doubling strategies are excluded.
' There are many ways d doing this and a commonly used one is given below. In
order to have a compact notation we will use hg(t) as shorthand for the part of
¥ the portfoliowhichisconnected to therisky assets, i.e. hg(t) = [h1(t), ..., hAn(t)],
and we can thus write the entire portfolio h as h = [he, hg].

Definition 10.2
e For any processh = [hg, hg], its value process V(t;h) is defined by

N
V(th) = ho(t) - 1+ Y hi(t)Si(2), (103)
~ FI. i=1
or in compact form

V(t;h) = ho(t) - 1+ hs()S(t) (10.4)

P e An adapted process hg is called admissible if there ezists a nonnegative
real number a (which may depend on the choice of kg) such that

- /t hs(u)dS(u) > —a, forallte< [OF,T], (10.5)
0

A process h(t) = [ho(t), hg(t)], is called an admissible portfolio process
if hg is admissible.
e An admissible portfolio is said to be self-financing, if

Vth) = VO, h) + / * hs(u) dS(w), (10.6)
0
i.e. if

dV (t;h) = hs(t) dS(2). (10.7)

Comparing with Definition 6.2, we note that formaly the sdf financing
condition should be

AV (t; h) = ho(t) dSo(t) + hs(t) dS(¢),

" but sincein our case So = 1, we have dSp = 0 so the sdf financing condition
reducesto (10.7). This is a simple but important fact, which is highlighted by
the following result.
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Lemma 10.3 For any adapted process ks satisfying the admissibility condition
(10.5)) and for any real number X, there exists a unique adapted process hyg,
such that:

e The portfolio h defined by h = [ho, hg] is self financing.
e The value processis given by

V(i h)=z+ /t hg(u) dS(u). (10.8)
0

In particular, the space Kq of portfolio values, reachable at time T by means of
a sdf financing portfolio with zero initial cost is given by

T
Ko = { /0 hs(t)dS(E)| hs is admissible}. (10.9)

Proof Define hg by
holt) = = + /0 * hs(w) dS() - hs()S(2).
Then, by the definition o the value process, we obviously have
V(t;h) = ho(t) + hs(t)S(t) =z + /Ot hs(u) dS(u)

and from this we obtain directly

dV (t; h) = hs(t) dS(t),

which shows that h is sdf financing. The last item is now obvious. O

We stress the fact, that the simple characterization of the zero cost reachable
claimsin (10.9) depends crucially on our assumption that Sp = 1.

10.2 Absence of Arbitrage

We consider the market model (10.1) over thefinitetimeinterval [0, T, still with
the assumption that So = 1
We now give the formal definition of a martingale measure.

Definition 10.4 A probability measure Q on Fr is called an equivalent mar-
tingale measure for the market model (10.1), the numeraire S, and the time
interval [0,T], if it has the following properties:

e Qisequivalent to P on Fr.
e All price processes Sy, S1,...,Sny are martingales under Q on the time
interval [O7].

i
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b An equzvalent martzngale measure will often be referred to as just “a martingale
measure’ or as "an EMM". If Q ~ P has the property that S, S1,...,Sy are
£ local martingales, then Q is called a local martingale measure.

W& notethat by our assumption above, Sp istrivially aways a martingale. From
t an informal point of view, the main result o the entire arbitrage theory is the
i following not very precisely formulated Theorem.

' Theorem 10.5 (The First Fundamental Theorem) The model is arbitrage
¥ free essentially if and only if there exists a (local) martingale measure Q.

: This widely quoted result has the nature o a "Folk Theorem" in the sense
that it is known to everyone and that, apart from the diffuse term "essentially”,
f it is correct. Below we will discuss exactly what we mean with "essentialy"” in
the formulation above, and we will also give more exact formulationsd it. A
full proof d a precise verson d the First Fundamental Theorem is very hard
and technical, and thus to a large extent outside the scope o the book. The
| main ideas, however, are quite ssmpleand straightforward. We will present these
ideesand we will also point out where the technical problemsappear. The reader
e interested in the full story is referred to the Notes.

i 1021 A Rough Sketch of the Proof

| In this section we will informally discuss the main ideas o the proof of the First
- Fundamental Theorem, and we will also point out the problems encountered.
The proof consists of two parts:

¢ ® Existenced an EMM implies absence o arbitrage.
e Absence o arbitrage implies existenced an EMM.

k Thefirst part is rather easy, whereas the second part is very hard.

I: Existence of an EMM implies absence of arbitrage. This part isin
. fact surprisingly easy. To see this, let us assume that there does indeed exist a
i martingalemeasure Q. In our Wiener driven world this implies (seethe Girsanov
- Theoremin Chapter 11) that all price processeshave zero drift under Q, i.e. their
b Q dynamicsare o the form

dS;(t) = Si(t)os(t)dwW®(t), i=1...,N, (10.10)

where W< is some multidimensional Q-Wiener process and o; is some adapted
FON VECLOr process.

] We now want to provethat there exist no arbitrage possibilities, so we assume
| that for some sdf financing process h, which we for the moment assume to be
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uniformly bounded, the corresponding value process satisfiesthe relations

P(V(T;h) >20) =1, (10.11)
P(V(T;h) >0)>0. (10.12)

We are thus viewing h as a potential arbitrage portfolio, and in order to prove
absence o arbitrage we thus want to show that V'(0, h) > 0.
Since Q ~ P we seethat we also have the relations

QV(T;h)20) =1, (10.13)
Q(V(T;h)>0)>0, (10.14)

Since h is f financing we have (remember that dSp = 0)
N

dV (k) = ) hi(£)Si()oi(t) AW (2),
i=1

and thus (by the boundednessassumptions) weseethat V'(¢; h) isaQ-martingale.
In particular we then have

V(0;h) = E [V(T;h)].

However, (10.13)-(10.14) imply that E®[V(T;h)] >0, so V(0;h)>0. We
have thus shown that (10.11)-(10.12) implies V' (0; h) >0, thereby proving the
nonexistence d a bounded arbitrage portfolio.

For the case of a possibly unbounded, but o coursestill admissible, portfolio
we have to resort to more delicate arguments. One can then show that, sincethe
value process is bounded from bdow it isin fact a supermartingale. Thus

V(0;h) > E?[V(T; h)] >0,
and the proof o this part is finished. O

II: Absence o arbitrageimpliesexistenced an EMM. Thisistheredly
difficult part o the first fundamental theorem. It requires severa hard results
from functional analysis, but the basic ideas are as follows.

In order to avoid integrability problems we assume that all asset price pro-
are bounded and we interpret "arbitrage” as "bounded arbitrage”. We
thus assume absence d arbitrage and we want to prove the existence o an
EMM or in more technical terms we would like to prove the existence d a
Radon-Nikodym derivative L on Fr which will transform the P-measure into a
martingale measure Q. Inspired from the simple one period model discussed in
Chapter 3it isnatural to look for somesort o convex separation theorem, and to
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thisend we need to put our problem within a more functional analytical setting.
Since the Radon-Nikodym derivative L should be in L1, it is natural to try to
utilize duality between L™ and L?! so therefore we definethe followingsets, with
L! denoting L* (2, Fr, P) and L™ denoting L*® (R, Fr, P). (Recal that Ky is
the space of al claimswhich can be reached by a sdf financed portfolio at zero
initial cost.)

« K=KygNL>, (10.15)
L$ = the nonnegative random variablesin L, (10.16)
C=K-L?%. (10.17)

. The space K thus consists o all bounded claims which are reachable by a sdf
financing portfolio at zero initial cost. The set C are those claims which are
dominated by theclaimsin K, soevery claimin C can be reached by sdlf-financing
portfoliowith zero initial cost if you aso dlow yoursdlf to throw away money.

Since we have assumed absence d arbitrage we deduce that
o
" cnLy ={0}. (10.18)

E Now, both C and LY areconvex setsin L™ with only one point in common, so at
this point (which is the crucial point o the argument, see below) one would like
to refer to a convex separation theorem to guarantee the existenced a nonzero
random variable L € L! such that

EP[LX]>0, foral X € Lyoo, (10.19)
EP[LX]<0, fordl X eC. (10.20)

] Assume for the moment that this part of the argument can be carried out. From
(10.19) we can then deduce that in fact L > 0, and by scaling we can choose
L such that EP[L] = 1. We can thus use L as a Radon-Nikodym derivative
to define a new measure Q by dQ = LdP on Fr, and Q is now our natural
candidate as a martingale measure. O

Although the main ideas above are good, there are two hard technical
| problemswhich must be dealt with:

e Since L! isnot thedual o L™" (in the norm topologies) we can not use a
standard convex separation theorem. An application d a standard Banach
space separation theorem would provide us with a linear functional L €
(L™)* such that (X,L) > 0for al X € L and (X,L) <0 foral X inC,
but since L1 isstrictly included in (L)* we have no guarantee that L can
be represented by an element in L. We thus need a stronger separation
theorem than the standard one.

e Supposing that the duality problem above can be resolved, it remainsto
provethat L isstrictly positive (not only nonnegative), since otherwisewe
may only have Q << P but not Q ~ P.
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10.2.2 Precise Results

We now moveon to a moreformal discussiond the variousversonsd the First
Fundamental Theorem. For the main proof we follow Debaen-Schachermayer
(1994). This will force us to use some results and concepts from functional ana-
lysiswhich are outsidethe present text, and the reader isreferred to Rudin (1991)
for genera information. The new ingredientsd the full proof are asfollows

e Weintroduce a variation d the concept d no arbitrage, namely "No Free
Lunch with Vanishing Risk".

e In order to obtain a duality between L! and L™ we consider the wesk*
topologiesinstead d the norm topologies.

e We use the Kreps-Y an separation Theorem.

Asalfirst step, it turnsout that the standard definition d absenced arbitrage
is a bit too restrictive to dlow us to deduce the existence & an EMM, so we
need to modify this concept dightly.

Definition 10.6 With notation as i n the previous section, we say that the model
admits

e No Arbitrage (NA) if
cnLy = {0}, (10.21)
e NoO Free Lunch with Vanishing Risk (NFLVR) if

CNLY = {0}, (10.22)

where € denotes the closure of Cin L™.

The no arbitrage condition isthe same as before, whereassNFLVR isadightly
wider concept. If NFLVR does not hold then there will exist a nonzero clam
X € LY and a sequence X, € C such that | X, — X| < 1/n for dl n, soin
particular X,, > —1/n. Thus; for each n there exists a sdf financing (zero ini-
tial cost) portfolio generating a claim which is closer then 1/n to the arbitrage
clam X, while the downside risk islessthan 1/n. Thisisadmost an arbitrage.

As a second step we consider the weak* topology on L™ generated by L1.
It is wdl known (see Rudin (1991)) that with the weak* topology, the dual o
L% is L! so we are now in a nice position to apply a separation theorem. More
precisely we will need the following deep result.

Theorem 10.7 (Kreps-Yan Separation Theorem) |If C is weak* closed,
and if

CNLY = {0},
then there ezists a randomvariable L € L! suchthat L is P almost surely strictly
positive, and
EP[L X]<0, forallX eC.
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Proof For a proof and references see Schachermayer (1994). O

. We are now almost in business, and we see that in order for the Kreps-Yan
Theorem to work we need to assume No Arbitrage and we aso need assump-
tions which guarantee that C is weak* closed. Happily enough we have the
L following surprising result from Delbaen-Schachermayer (1994) which showsthat
. the closedness of C in fact follows from NFLVR. The proof is very hard and
I therefore omitted.

b Proposition 10.8 If the asset price processes are uniformly bounded, then the
| condition NFLVR implies that C is weak* closed.

We can now state and prove the main result.

Theorem 10.9 (First Fundamental Theorem) Assume that the asset price

process S is bounded. Then there exists an equivalent martingale measure if and
only if the model satisfies NFLVR.

t Proof The only if part is the easy one, and the proof is already given in

p Section 10.2.1. Before going on we recall the definitions of X and C and from

(10.15)-(10.17).For the if part we assume NFLVR. Thisimpliesthat C is wesk*

j dosed and it dso (trivially) implies No Arbitrage, i.e. CNLS® = {0}. We may

+ thus apply the Kreps-Yan Separation to deduce the existence of a random
variable L € L* such that L is P almost surely strictly positive, and

EP[L.-X]<0, fordl X eC. (10.23)

By scaling we can choose L such that EP [L] = 1. We may thus use L as a
Radon-Nikodym derivative to define a new measure @ by d@ = LdP on Fr,
and Q is now our natural candidate as a martingale measure. It follows from
(10.23) and the definition o K that EP[LX] < 0 for all X € K. Since K isa
linear subspace thisimpliesthat in fact EQ [X] = EX [LX]=0for al X € K. In
order to prove the martingale property o S; for afixed i, we choosefixed s and
t with s <, as wdl as an arbitrary event A € F,. Now consider the following
salf-financing portfolio strategy:

e Start with zero wealth and do nothing until time s.

e At time s buy I4 unitsdf asset No. i. Finance this by aloan in the bank.

e At time t sdll the holdings of asset No. i and repay the loan. Put any
surplus in the bank and keep it there until time T.

Since the short rate equals zero, the initial loan (at time s) in the bank is
paid back (at timet) by the same amount, so at timet the value of our portfolio
isgiven by V(t; h) = 14 [S;(t)- Si(s)]. Sincethe short rate equals zero this will
dso bethe value o our portfolioat time T. Thuswe have I4 (S;(t) — Si(s)) € K
0 we must have E@ [I4 (S;(t) — Si(s))] =0, and since this holds for al s, t and
A € F; we have proved that S; isa Q martingale. O
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I n most applications, the assumption d a bounded S processisfar to restrict-
ive. The Delbaen—Schachermayer Theorem can however easily be extended to a
more general case.

Theorem 10.10 Assumethat the asset price process S is localy bounded. Then
there exists an equivaent locd martingale measure #f and only if the modd
satisfies NFLVR.

Remark 10.21 We note that in particular the result above will hold if the
S process has continuous trajectories. It will also hold for an S process with
jumps as long as the jumps are bounded. The case d an S process which is
not localy bounded such asfor examplea process with lognormally distributed
jumps at exponentially distributed times is much more difficult, and in such
a case NFLVR is only equivalent to the existence o an equivalent measure Q
such that S becomesa so caled "sigma-martingale” under Q. See the Notes for
references. )

10.3 The General Case

We now relax the assumption that Sg = 1, and go on to consider a market model
consisting of the price processes

S0, S15- -, 5N,

2
where we make the following assumption.
Assumption 10.31 We assume that So(t) > 0 P-a.s. for all t > 0.

The main problemisto giveconditionsfor absence d arbitragein this model,
and these are easily obtained by movingto the "normalized" economy where we
use Sp as a numeraire.

Thus: instead o looking at the price vector process S = [Sp, Sy, ..., SN] We
look at the relative price vector process S(t)/So(t), wherewe have used Sy as the
numeraire price. This object will be studied in more detail in Chapter 24.

Definition 10. 11 The normalized economy (also referred to as the
"'2-economy”) is defined by the price vector process Z, where

S@)

Z(t)= 5 (t)

(10.24)

20)= (20, 2] = [1. 20, 520, 500

So(t)’ So(t) e So(t) '

The point of thisisthat in the Z economy we have arisk freeasset Z, = 1,
with zero rate df return, so the simple idea is to apply the results from the
previoussections to the Z economy.

First, however, we have two price systemsto keep track of: the S-system and
the 2-system, and before going on we have to clarify the relations between these
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'systems In particular, for any portfolio process h there will be associated two
vaue processes, onein the S system and onein the Z system, and we thus need
" to introduce some notation.

Definition 10.12
e A portfolio strategy is any adapted (n+ 1)-dimensional process

| ' h(t) = [hO(t)a hl (t), EEE} hn(t)]
» e The S-value process V¥(t;h) corresponding to the portfolio h is given
by .
l? ¥ VS(t;h) = ;hi(t)s..(t). (10.25)
i e The Z-value process VZ(t; h) corresponding to the portfolio h is given by
x[ VZ(t;h) = S hi(t) Zi(2). (10.26)
i=0

A portfolio is said to be admissible if it is admissible in the sense of
‘ Definition 10.2 as a Z portfolio.
. e Anadmissible portfoliois said to ke S-self-financing if

TR
[ ]

dvS(t;h) = ;;hi(t)dsi(t). (10.27)

]
[ ]

An admissible portfoliois said to be Z-self-financing if

dvZ(t;h) = ; hi(t) dZ;(t). (10.28)

We can also makethe obviousdefinitionsd agiven T-claim being S-reachable
and Z-reachable, respectively.
The intuitive fedling is that the concept of a saf-financing portfolio should
I not depend upon the particular choice o numeraire. That thisisindeed the case
is shown by the following "Invariance Lemma’".

Lemma 10.13 (Invariance lemma) With assumptions and notation as
above, the following hold:

(i) A portfolio h is S-self-financing if and only if it is Z-self-financing.

(ii) The value processes VS and VZ are connected by

VZt;h)= & -VS(@t;h).
(t:h) 5 (t:h)
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(iii) AclaimY is Sreachable if and only if the claim

Y
So(T)

is 2-reachable.
e The model isZ arbitragefree if and only if it is S arbitrage free.

Proof Items (ii) and (iii) are obvious. Thus it only remains to prove the df
financing result, and for simplicity weassumethat all processes possessstochastic
differentialsdriven by afinite number of Wiener processes. Assumethereforethat
the portfolio h is S-self-financing. Denoting the scalar product between vectors
by the "scalar dot” -, using the notation 8 = Sy, and suppressingthe t-variable,
we have from this assumption that

3 5

Z=p8718, (10.29) - {
VS =h-S5, (10.30)
VvZ = g-1vs, (10.31)

dv® =h.ds. (10.32)

We now want to prove that in fact
dvZ =h- dz.

Using the It6 formulaon Z = =18, we thus want to prove that

dvZ =g 'h.dS+h-Sdg*t+h.dsdp . (10.33)
Now, from_(10.31) we have

dVZ =g 1av¥ + vSdp—t +dgtav’.

Substituting (10.30) and (10.32) into this equation gives

dvZ = B71h.dS*+h-SdB™" + 4B th.ds,
which is what we wanted to prove. r_‘l

We may now formulate and prove the main result concerning absence o
arbitrage.

Theorem 10.14 (The First Fundamental Theorem) Consider the market
model Sy, S1,...,5y where we assume that Sp(¢) > 0, P-a.s. for al t > 0.
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Assume furthermore that Sg,S1,...,Sn arelocally bounded. Then the following
conditions are equivalent:

e The model satisfies NFLVR.

e There exists a measure Q ~ P such that the processes

Z07ZIa"-,ZN1
defined through (10.24), are local martingales under Q.

Proof This follows directly from the Invariance Lemma and from
Theorem 10.10. O

Remark 10.3.1 From now on we will use the term "martingale measure” to
denote the (not necessarily unique) local martingale measure of Theorem 10.14.

L 10.4 Completeness

- |n thissection we assume absenced arbitrage, i.e. we assumethat there existsa
f (local) martingale measure. We now turn to the possibility o replicating a given
| contingent claim in terms of a portfolio based on the underlying assets. This
problem is most conveniently carried out in terms d normalized prices, and we
b have the following useful lemma, which shows that hedging is equivalent to the
~ existencedf a stochastic integral representation of the normalized claim.

Lemma 10.15 Consider a given T-claim X. Fiz a martingale measure Q and

assume that the normalized claim X/So(T') isintegrable. If the Q-martingale M,
defined by

X .
M(t =EQ[—— ]-'] 10.34
(®) s (10.34)
admits an integral representation of the form
N t
Mt =2+ / hi(s) dZi(s), (10.35)
0

=1
then X can be hedged in the S-economy. Furthermore, the replicating portfolio
| (ho,h1,...,hn) is given by (10.35) for (hy,...,hk), Whereas hg is given by
f ho(t) = M(t) - LI, hi(t) Zi().
' Proof Wewant to hedge X in the Seconomy, i.e. wewant to hedge X/So(T') in
the Z economy. In terms of normalized prices, and using the InvarianceLemma,

L \ie are thus looki ng for a process h = (hg, h1,...,hn) such that
X
z . p—y -
V4(T;h) o)’ P-a.s. (10.36)

N
dvZ =Y "h;dz, (10.37)
i=1
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wherethe normalized value processis given by
N
VZ(t;h) = ho(t) - 1> hi(t) Zu(2). (10.38)
i=l

A reasonable guess is that M = VZ, so we let M be defined by (10.34).
Furthermore we define (hq,. .., hn) by (10.35), and we define ko by

N
ho(t) = M(t) - > hi(t)Zi(t). (10.39)
i=1

Now, from (10.38) we obviously have M = VZ, and from (10.35) we get

N
dvZ =dM = Zhi dz;,

i=I|
which shows that the portfolio is sdf financing. Furthermore we have ’

fT] = %,

which showsthat X isreplicated by h. O

X

VZ(T;h) = M(T) = E? [ 5

We thus see that, modulo some integrability considerations, completenessis
equivalent to the existence d a martingale representation theorem for the dis-
counted price process. Thus we may draw on the deep results d Jacod (1979)
from semimartingale theory which connect martingale representation properties
for Z with the extremal points of the set of martingale measures.

Theorem 10.16 (Jacod) Let M denote the (convex) set of equivalent mar-
tingale measures. Then, for any fized Q € M, the following statements are
equivalent.

e Every Q local martingale M has dynamics o the form

N
dM(t) = X;hi(t)izi(t)'
=

e Q isan extremal point of M.
We then have the second fundamental theorem of mathematical finance.

Theorem 10.17 (The Second Fundamental Theorem) Assume that the
market is arbitrage free. Then the market is completeif and only if the martingale
measure is unique.
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Proof If the martingale measure Q is uniquethen M isasingleton M ={Q)
- 0 Q is trividly an extremal point o M. Thus the Jacod Theorem provides
us with a stochastic integral representation o every Q-martingale, and it then
. fdlows from Lemma 10. 15 that the model is complete. The other implication
folows easily from(10.56) of Proposition 10. 25. O

Remark 10.4.1 The reader may find the proof given above rather abstract,
and we provide two alternatives:

e A more functional analytic proof of the Second Fundamental Theorem
would be roughly as follows The market is uniqueif and only if theset C
d reachableclaimsat zeroinitial cost has codimension one, i.e. if

L*®=C®R'Y

. for some Y € L™. This implies that the separating hyperplane implied

iy by the Kreps—Yan Theorem(10.7) is,uniqueand thus that the martingale
measureis unique.

e In Section 14.3 we provide a self-contained and complete proof o the
Second Fundamental Theorem for the special case of purely Wiener driven

models.

105 Martingale Pricing

We now turn to the pricing problem for contingent claims. In order to do this,
we consider the "primary"” market Sp, S1,...,Sn asgiven a priori, and wefix a
T-claim X. Our task isthat of determining a "reasonable” price processII(t; X)
for X, and we assume that the primary market is arbitrage free. There are two
| main approaches:

e The derivative should be priced in a way that is consistent with the
pricesof the underlying assets. More precisely we should demand that the
extended market II( ; X) , So, S1,...,Sn is free d arbitrage possibilities.

e If the claim is attainable, with hedging portfolio h, then the only
reasonable priceis given by II(¢t; X) =V (¢; 1.

Inthefirst approach above, we thus demand that there should exist a martin-
| gde measure Q for the extended market II( X) , Sp, S1, . -.,Sn. Letting Q denote
' such a measure, assuming enough integrability, and applying the definitiondof a
martingal e measure we obtain

H(t; X) _ H(T; X) _ X
5000 “EQ[ So(T) f] =54 [so(T)

}}] (10.40)

We thus have the following result.
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Theorem 10.18 (General Pricing Formula) The arbitrage free price pro-
cess for the T-claim X is given by
X

ft] ’

(10.41)
whereQ isthe (not necessarily unique) martingale measure for the a priori given
market Sg, S1,...,Sn, With Sy as the numeraire .

Note that different choices o Q will genericaly give rise to different price
processes. j
In particular we note that if we assume that if Sy isthe money account

So(t) = So(0) - efo m(e)de,

where r is the short rate, then (10.41) is reduced to the familiar "risk neutral
valuation formula".

Theorem 10.19 (R sk Neutral Valuation Formula) Assuming the ezist-
ence d a short rate, the pricing formula takes the form

JI(t; X)= E® [e' ST r(a)ae x

f,,] , (10.42)

whereQ is a (not necessarily unique) martingale measure with the money account
as the numemire.

For the second approach to pricing let us assume that X can be replicated
by h. Since the holding o the derivative contract and the holding d the replic-
ating portfolio are equivaent from afinancial point d view, we see that price of
the derivative must be given by the formula

I(t; X )= V(t; h). (10.43)

One problem here is what will happen in a case when X can be replicated by
two different portfolios, and one would aso like to know how thisformula is
connected to (10.41).

Defining II(¢; X) by (10.43) we see that II(t; X)/Se(t) = VZ4(t) and
since, assuming enough integrability, VZ is a Q-martingale, we see that also
II(¢; X) /So(t) isa Q-martingale. Thus we again obtain the formula (10.41) and
for a attainable claim we have in particular the formula

V(th) = So(t) B9 [S—o%

-7:.‘} , (10.44)

which will hold for any replicating portfolio and for any martingale measure Q.
Thus we seethat the two pricing approachesabove do in fact coincideon the set
d attainable claims. In Section 10.7 we will summarizeour results.
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. 10.6 Stochastic Discount Factors

¢ In the previous sections we have seen that we can price a contingent T-claim X
by using the formula

(t; X) = B9 [e— THUHOL

A, (10.45)

i where Q isa martingale measurewith the money account asa numeraire. |n some
L agpplications o the theory (in particular in asset pricing) it is common to write
this expected value directly under the objective probability measure P instead
d under Q. Thiscan easily be obtained by using the likelihood process L, where
% as usual L is defined on the interval [0,77] through

L(t) = j—g, on F;. (10.46)

Usng the Abstract B@Qfes’ Formulawe can now write (10.45) as

i —?fg‘ r(s)dsy
E [e L(T)X| ]'-t] _gP [ fT r(s) d,L(T) ]
L(t) , L( t)
which naturally leads usto the following definition.

Definition 10.20 Assume the existence of a short rate . For any fixed martin-
galemeasure Q, let the likelihood process L be defined by (10.46). Thestochastic
discount factor (SDF) process A, corresponding to Q, is defined as

A(t) = e~ Jor@depp). (10.47)

We thus see that there is a one-to-one correspondence between martingale
measures and SDFs. We have now more or less proved the following result.

' Proposition 10.21 Assume absence o arbitrage. With notation as above, the

following hold:

e For any sufficiently integrable T-claim X, the arbitrage free price is
given by

¥ AT) 5o

H(t,X) = [A(t) f] { » (%0.48')

e For any arbitrage free asset price process S(derivative or underlying) the
process

A(t)S(t) (10.49)

is a (local) P-martingale.
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e The P-dynamics of Ais given by

dA(t) = —r(OA(E) dt + —— dL(2). (10.50)
B(t)
Proof Theremaining detailsd the proof are left to the reader. a

Although SDFs and martingale measures are logicaly equivalent, it is often
convenient to be able to switch from one to the other. The main advantage of
using the martingale measure formalism is that it provides us with a canonical
decomposition of the SDF as the (inverse) bank account multiplied by the like-
lihood process L, and we can then use the deep and well established theory for
likelihood processes (see Chapter 11).

We may. also, in the obvious way, define stochastic discount factors for other
choices o the numeraire then the money account.

An aternative approach to SDFsisto define an SDF asany nonnegativeran-
dom process A possessingthe property that S(t)A(t) isa (local) P-martingal e for
every asset priceprocess S. TheFirst Fundamental Theorem can then berestated
as the equiva ence between absence d arbitrage and the existenced an SDF.

10.7 Summary for the Working Economi st

I'n this section we summarize the results for the martingale approach. We con-
sider a market model consisting of the asset price processes Sy, S1,...,Sy On
the time interval [0,7]. The "numeraire process’ Sy is assumed to be strictly
positive. Modulo some technicalitieswe then have thefollowing results. Thefirst
providesconditions for absence d arbitrage.

Theorem 10. 22 (First Fundamental Theorem) The market model is free
of arbitrage if and only if there exists a martingale measure, i.e. a measure
Q ~ P such that the processes

So(t) S1(t) . Sn(t)
So(t)’ So(t)” " Sol(t)

are (local) martingales under Q.

For the case when the numeraireisthe money account we have an alternative
characterization of a martingale measure. The proof is a simple application o
the Ité6 formula.

Proposition 10. 23 If the numeraire Sp is the money account, i.e.
So(t) - é—fgr(s) ds,

wherer isthe (possibly stochastic) short rate, and if we assume that all processes
are Wiener driven, then a measure Q ~ P is a martingale measure if and only
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if al assets Sy, S1,...,Snx have the short rate as their local rates of return, z.e.
if the Q-dynamics are of the form

dS;i(t) = Si(t)r(t) dt T S;(t)oi(t) AW R(2), (10.51)

where W2 is a (multidimensional) Q-Wiener process.
The second result gives us conditions for market completeness.

Theorem 10. 24 (Second Fundamental Theorem) Assuming absence o
~ arbitrage, the market model is complete if and only if the martingale measure
. Q isunique.

;1  As far as pricing of contingent claims is concerned the theory can be
summarized as follows.

| Proposition 10. 25

1. In order to avoid arbitrage, X must ke priced according to the formula

TI(t; X) = So(t)E? [ﬁT—)

7,
(10.52)
where Q is a martingale measure for [Sg, S1,...,Sn], with Sy as the
numeraire.
2. In particular, we can choose the bank account B(t) as the numeraire. Then
) B has the dynamics
dB(t) = r(t)B(t) dt, (10.53)

where r is the (possibly stochastic) short rate process. In this case the
pricing formula above reduces to

I(t; X )= ERQ [e- I f<8>dsx| f,] . (10.54)
3. Different choices of Q will generically give rise to different price processes

for a fized claim X . However, if X is attainable then all choices of Q will
produce the same price process, which then is given by

II(t; X )= V(t; h), (10.55)
where h is the hedging portfolio. Different choices of hedging portfolios (if

such ezist) will produce the same price process.
4. In particular, for every replicable claim X it holds that

V(t;h) = E9 [e- JErie) d’X| .7-}] . (10.56)
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Summing up we see that in a complete market the price d any derivative
will be uniquely determined by the requirement d absence o arbitrage. The
priceis unique precisely because the derivativeisin a sense superfluous—it can
equally well be replaced by its replicating portfolio. In particular we see that the
price does not depend on any assumptions made about the risk-preferences o
the agentsin the market. The agents can have any attitude towardsrisk, aslong
as they prefer more (deterministic) money to less.

In an incomplete market the requirement o no arbitrage is no longer suffi-
cient to determine a unique pricefor the derivative. We have several martingale
measures, all d which can be used to price derivativesin a way consistent with
no arbitrage. The question which martingale measure one should use for pricing
has a very simple answer: The martingale measure is chosen by the market.

Schematically speaking the price o a derivative is thus determined by two
major factors.

1. We require that the derivative should be priced in such a way as to
not introduce arbitrage possibilities into the market. This requirement is
reflected by the fact that al derivativesmust be priced by formula (10.52)
where the same Q is used for all derivatives.

2. In an incomplete market the priceis aso partly determined by aggregate
supply and demand on the market. Supply and demand for a specific deriv-
ative arein turn determined by the aggregate risk aversion on the market,
as well as by liquidity considerations and other factors. All these aspects
are aggregated into the particular martingale measure used by the market.

Let us now assume that we have specified some model under the objective
probability measure P. This meansthat we have specified the P-dynamics o all
asset pricesin the primary market. We may a so have specifiedthe P-dynamics o
some processes which are not price processes, like the inflation rate, the unem-
ployment rate, or the outside temperature (which influences the demand for
electric energy).

In order to be ableto apply the theory developed above, it isthen clear that
we need the following tools:

e \We need to have full control of the classd equivaent measure transform-
ations that can be made from a given objective measure P.

e Given an equivalent measure ¢ (apotential martingale measure), we must
be able to write down the Q-dynamics o all processesunder consideration.

o \We need theorems which alow usto write certain stochastic variables{typ-
ically contingent claims) as stochastic integrals of some given processes
(typically normalized asset prices).

All these tools are in fact provided by the following mathematical results
which are the objects under study in the next chapter.

¢ The Martingale Representation Theorem for Wiener processes.
e The Girsanov Theorem.
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y 108 Notes

i The martingale approach to arbitrage pricing was developed in Harrison
b and Kreps (1979), Kreps (1981), and Harrison and Pliska (1981). It was
then extended by, among others, Duffie and Huang (1986), Delbaen (1992),
}  Schachermayer (1994), and Delbaen and Schachermayer (1994). In this chapter
we folow closadly Delbaen and Schachermayer (1994) for the case o loc-
aly bounded price processes. The general case d unbounded price processes
and its connection to sigma-martingales was finaly resolved in Delbaen and
} Schachermayer (1998), which also contains further bibliographic information on
thissubject. Rudin (1991) is a standard reference on functional analysis, which
} isdso treated in Royden (1988).

I Stochastic discount factors are treated in Duffie (2001), and in most modern

textbookson asset pricing such as Cochrane (2001).
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THE MATHEMATICS OF THE
MARTINGALE APPROACH*

In this chapter, we will present the two main workhorses d the martingale
approach to arbitrage theory. These are:

e The Martingale Representation Theorem, which shows that in a Wiener
world every martingale can be written as a stochastic integral w.r.t. the
underlying Wiener process.

e The Girsanov Theorem, which gives us complete control o all absolutely
continuous measure transformations in a Wiener world.

11.1 Stochastic Integral Representations

Let us consider a fixed time interval [0,T], a probability space (©2,F, P),
with some filtration {F;},.,, and an adapted vector Wiener process W =
(Wi,...,Wa)*. Now fix a vector process h = (hy,...,hq) Which is "integrable
enough" (e.g. h € £2 is enough) and a real number zo. If we now define the
processM by

d t
M(t)=z0 + Z/o. hi(s)dW;(s), tel0,T], (11.1)
i=1

then we know that M is a martingale. In other words. under mild integrability
conditions, every stochastic integral w.r.t. a Wiener processis an F;-martingale.
A very natural and important question is now whether the converse holds, i.e.
if every F:-adapted martingale M can be written in the form (11.1). If thisis
indeed the case, then wesay that M hasa stochasticintegral r epresentation
w.r.t. the Wiener process W.

It isnot hard to seethat in the completely genera case, there is no hope for
a stochastic integral representation w.r.t. W for a general martingale M. Asa
counterexample, let W be scalar (i.e. d = 1) and consider, apart from W, aso
a Poisson process N, with constant intensity A, where N is independent o W.
Now define the filtration by F;, = ]—'fV’N, i.e. F; contains al the information
generated by W and N over theinterval [0,t].

It is now very easy to see that the processM defined by

M(t) = N(t) - M,

is an Fi-martingale. If we look at the trgjectories of M, they consist o straight
lines with downward dope A, interrupted at exponentially distributed points
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1 in time by positive jumps d unit size. From this it is obvious that M can
- posss no stochastic integral representation o the form (11.1), since any such
representation impliesthat M has continuoustrajectories. The intuitive reason
isd course that since M is independent & W, we cannot use W in order to
& represent M.

, From this exampleit is clear that we can only hope for a stochastic integ-
| ra representation result in the case when {F;},., is the internal filtration
generated by the Wiener process W itsalf. We start with the following basic
representation for Wiener functionals, which in turn will give us our martingale
representation result.

‘ Theorem 111 (Representation of Wiener Functionals) Let W be a
. d-dimensional Wiener process, and let X be a stochastic variable such that

° XG]:TW,
E[IX]] <m.

| Then there exist uniquely determined F}¥ -adapted processeshy,...,hq, such that
* X has the representation

d_ .7
X = B [X] +Z/0 hi(s)dWi(s) (11.2)
i=1

i Under the additional assumption

E [X?] < oo,

t then hy,...,hq arein H?

Proof Weonly givethe proof for the L? case, where we present the main ideas

d a particularly nice proof from Steele (2001). For notational simplicity we only
condder the scalar case.

We start by recalling that the GBM equation

dXt = O’Xt th,
Xo =1,
has the solution
X, = e~ 17 tHoWe (11.3)

Writing the SDE on integral form as

t
X, =1+ / o X, dW, (11.4)
0




156 THE MATHEMATICS OF THE MARTINGALE APPROACH

and plugging (11.3) into (11.4) we obtain, after some reshufflingd terms,
¢
eaWt _ e%azt +0,/ e—%da(u—t)+a‘Wu dw,
0
Using the same argument we easily obtain, for s < t,

_, , ¢ ,
e WeWe) — g3o*(t=0) | 0’/ e~ B (uthartoWu gy (11.5)

8

wherethe important point isthat theintegral isonly over theinterval [s,t]. Thus
any stochastic variable Z o the form

Z = exp{o(W, - W.)}

will have a representation of the form
T
Z=E{Z]+/ hy dW,,,
0

where h = 0 outside [sit]. From this it follows easily (seethe exercises) that any
variable Z o the form

Z = H exp {O'k (WTk - WTk—x)} N (11.6)
k=1

where0 <t <t £...<t, £T, hasarepresentation d the form

Z=E[Z)+ /OT h AW, (11.7)

It is now fairly straightforward to see that also any variable o the form
n
z =[] exp{iox (W, - Wr,_.)}» (11.8)
k=l

where ¢ is the imaginary unit, has a representation o the form (11.7). At this
point we may use Fourier techniquesto seethat the set o variablesd the form
(11.8) is dense in the (complex) space L?(Fr), and from this one can deduce
that in fact every Z € L3(Fr) has arepresentation o theform (11.7). See Stecle
(2001) for the details. O

From this result we now easily obtain the martingal e representation theorem.




STOCHASTIC INTEGRAL REPRESENTATIONS 157

Theorem 11.2 (The Martingale Representation Theorem) Let W ke a
d-dimensional Wiener process, and assume that the filtration F is defined as

Fe=FV, telo,T].

Le M be any F;-adapted martingale. Then there exist uniquely determined
Fi-adapted processeshi, ..., hq such that M has the representation

d t
M(t)=M©O)+ ) /0 hi(s)dWi(s), te0,T]. (1L.9)
i=1

If the martingale M is square integrable, then by, ..., hy arein H2.

Proof From Theorem 111 we have

d T
M(T)=M@O0)+ /0 hi(s) dW;(s).

i=1

The result now follows by taking conditional expectations and using the fact
that M as wel as the stochastic integral isa martingale. O

It isworth noticing that the martingale representation theorem above is an
abstract existence result. It guarantees the existenced the processes by, ..., hq,
but it does not tell us what the h processlookslike. In fact, in the general case
we know very little about what exact form o h. The most precise description
d h obtained so far is via the so-called Clarc—Ocone formula (see the Notes),
but that requires the use and languaged Malliavin calculusso it is outside the
present text.

In onespecial case, however, we have arather explicit descriptiond the integ-
rand h. Let us therefore assume that we have some a priori given n-dimensional
process X with dynamicsd the form

AX(t) = p(t) dt + o(t) AW (2), (11.10)

where W isasabove, whereas . and ¢ are adapted processestaking valuesin R
and M(n,d), respectively. Let us now assume that the martingale M is o the
vay particular form M(t) =f (t,X(¢)) for some deterministic smooth function
f (t,x). From the It6 formula we then have

1, X(0) = { 5 6. X@) + A1, X(0) | dt + (V) & XDt WD),

where A is the usua Ito operator. Now; since f (¢, X;) was assumed to be a
martingale, the drift must vanish, 0 in fact we have

df(t, X (1)) = (V=£) (t, X (t)) o(t) AW (2).
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Written out in more detail this becomes

naf

df(t, X:) = a—m(t,X(t))a"(t) dwi(t),

where ¢* is the ith row o a. In this particular case we thus have the explicit
descriptiond the integrand h as

hi(t) = g—a{;(t,X(t))ai(t), i=1,...,d.

11.2 The Girsanov Theorem: Heuristics

We now start a discussion d the effect that an absolutely continuous measure
transformation will have upon a Wiener process. This discussion will lead usto
the Girsanov Theorem which is the central result o the next section.

Assume thereforethat our space (2, F, P,F) carriesa scalar P-Wiener pro-
cess WP, and that for some fixed T we have changed to a new measure Q on
Fr by choosing a nonnegative random variable Ly € Fr and defining Q by

dQ = LT dP, on .7'-'11.

This measure transformation will generatea likelihood process (see Section C.3)
Ly; t > 0} defined

{L } by aQ
dpP’
and from Proposition C.12 we know that L isa P-martingale.

Since L is a nonnegative P-martingale, and since any (suitably integrable)
stochastic integral w.r.t. W is a martingale, it is natural to define L as the
solution o the SDE

Ly = on F,

dL; = @ L dW{, (11.11)
Lo =1. (11.12)
for some choice o the process ¢.

It thus seems that we can generate a large class o natural measure
transformations from P to a new measure Q by the following prescription:

e Choose an arbitrary adapted process h.
e Define a likelihood process L by

dL; = oL dW], (11.13)
Lo=1. (11.14)




THE GIRSANOV THEOREM: HEURISTICS 159

e Definea new measure @ by setting
dQ = L;dP, (11.15)

on F; for al t € [0,T].

By applying the It6 formula we easily see that we can expressL as

Lt = €fs 0edW,—3 [5 oids

© L is nonnegative, ‘which is necessary if it is going to act as a likelihood pro-

cess If ¢ isintegrable enough (seethe Novikov condition below) it is aso clear

~ (why?) that L isa martingale and the initial condition Ly = 1 guarantees that

EP [Lt] == 1

J To see what the dynamics o WP are under Q, let us first recdl that if a
process X has the dynamics

dX; = pe dt + oy AW/,

then the drift i and (squared) diffusion a hastheinterpretation o being the con-
i ditional drift and quadratic variation processes respectively. A bit more precisely,
L but still heuristically, we have

EP [dX:| Fy] = pedt,

BP [(@x.?| 7] = ot o,
where we have the informal interpretation dX; = X;y4: — X;. Let us now define
' the processX by X = WP, i.e. we have 4 =0 and a= 1 under P. Our task is
to compute the drift and diffuson under Q and for that we will use the Abstract

Bayes’ Theorem (B.41). Using the fact that L is a P-martingale, and recalling
that dX; € Fiya: (seedefinition above), we obtain

EP [LypacdXe| 7] EP [Lyyqr dXs| Fi

EQ [dth ft] =

EP [Lg+dt|ft] B Lt
_ P
- M&
_ EP|L.dX|F] EPlALdX,|F]
L, ) L,

Since L isadapted (so L; € ;) and X has zero drift under P, we have

- EP[LydX,| F] ‘;_Lt_EP[ddet] _

2P [dX,| F] = 0- dt.
- AT pPax 7
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Furthermore we have
dL; dX; = Lepe dWF (0- dt +1-dWF) = Lyg, (dWF)? = Ly, dit.
Using this and the fact that Ly, € F; we get

EP [st dXtI -7:t] - LgQOg
Lt Lt

dt = Pt dt.

Using the fact that under P we have dX2 = dt we can also easily compute
the quadratic variationd X under Q as

P 2 [=)
B9 (x| 7] = E eeae @K IA] — EP[Luvar )

EP[Lyyae| e L
Tdt = L_tdt = dt.

Summing up we have thus obtained the formal relations

E?[dX,| F) = gy,
BR (@ 7] =1-at,

or in other words:

e The process X = WF was, under P, a standard Wiener process with unit
diffusion term and zero drift.

o Under the probability measure Q defined above, the drift process for X
has changed from zero to ¢, whilethe diffuson term remains the same as
under P (i.e. unit diffusion).

11.3 The Girsanov Theorem

Rephrasing the results o the previousdiscussion, we thus see that we should be
able to write the P-Wiener process W¥ as

dWF = gy dt +dWE,

where W€ is a Q-Wiener process. Thisis precisdly the content of the Girsanov
Theorem, which we now formulate.

Theorem 11.3 (The Girsanov Theorem) Le¢ W¥ e a d-dimensiona
standard P-Wiener process on (,F,P,F) and let ¢ ke any d-dimensional
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adapted column vector process. Choose a fized T and define the process L on
[0,7) by

dL; = ¢} L, dW], (11.16)
Ly=1, T (11.17)

i.e.
L, = elo #2aW7 =1 [g lleal®ds

Assume that )
EP[L7] =1, (11.18)

and define the new probability measure @ on Fr by

Q@ (11.19)

LT=(—1_§,

Then
dWF = g dt Tdw2,

where W2 is a Q-Wiener process.

Remark 11.3.1 An equivalent, but perhaps lesssuggestive, way o formulating
the conclusion of the Girsanov Theoremisto say that the process W<, defined by

t . .
we =wF - / @sds (11.20)
0

isastandard Q-Wiener process.

Proof We only give the proof in the scalar case, the multidimensiona case
being a straightforward extension. Using the formulation in Remark 11.3.1 we
thus have to show that, for s <t and under Q, the increment WtQ - WGQ is
independent o F,, and normally distributed with zero mean and variancet — s.
We start by considering the special case when s = 0 and we thus want ta show
that, for any t, W,,Q is normal with zero mean and variancet under Q. Using
characteristic functionsit is thus enough to show that for alt € Ry and v € R

we have .
EQ [eiuW,Q] — e—%—t,

ie.
EP [Lt-eiuwta] =e 7t

To show this, let us choose any fixed u, and define the process Z by

. Q
Zs = Ly - W,
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The dynamicsd Z are given by
dZ; = Ly . d (%) + mWEdL, + d(ev) . dLy. (11.21)
From the definitionswe have

dL; = oLy AW/,
dWE = W/ — o, dt,

s0, remembering that WF is P-Wiener, the 1t6 formula gives us
d(e™7) = iue W aw R - “;eiuWeQ (awR)?
= iueW dWf —iu eluWs pedt — u;ei“WtQ dt.
Plugging this, and the L-dynamics above into (11.21), we obtain
dZ, = iuZ, AW} — iuZ,p,dt — u—zzzt dt + ¢, 2, dAWF + fueps Z, dt

2
= {iuz, + ¢, 2.} dWF - UE Z,dt.

Since WP is P-Wiener, standard technique gives us
EP(Z)=e%",

which finishesthe proof in the special case when s =0.
In the general case we want to prove that for any s <t

EQ[enWE-W)| £, = e~ % (t-9)

and thisis equivaent (why?) to proving that

E® [IA . eiu(W:Q—W.Q)] = Q(A)e—%'(t"a)’ (11.22)

for every A € 3,.To prove (11.22) we defing, for fixed s and A € F,, the process
{Zs;t > s} by
Zy =Ly Iy -eiu(WS—W,Q)’

and then we can proceed exactly as above. O

Remark 11.3.2 The processy abovewill often be referred to as the Gir sanov
kernel o the measuretransformation.
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Remar k 11.3.3 In the formulation above we have used vector notation.
Written on component form, and with obvious notation, the L-dynamics will
have the form

d
dL(t) = L(t) ) @i(t) AW (t),

and explicit form of L will be given by

d t 1 t d
) = {3 [ wrawro- } f 3ecto]

. Sincethis processis so important it has a name d it's own:

Definition 11.4 For any Wiener process W and any kernel process ¢, the
Doleans exponential process& is defined by

t t
E(pxW)(t) =exp { / ¢*(s)dW (s) — % / lell2(s) ds} (11.23)
0 0
With notation as above we thus have

L(t) = € ( x W) (). (11.24)

Remark 11.3.4 Notethat in the Girsanov Theorem we have to assume ad hoc

that h issuch that EP [Lr] =1 or, in other words, that L is a martingale. The
"~ problem is one o integrability on the process Ly, since otherwise we have no
guarantee that L will be a true martingale and in the general caseit could in fact
happenthat EF [Ly] < 1. A sufficient condition for E¥ [Lt] = 1lisdf coursethat
the processL . p isin £2 but it is not easy to give a general a priori condition
on ¢ only, which guarantees the martingale property o L. This problem used
to occupy a minor industry, and the most general result so far is the "Novikov
Condition™ below.

Lemma 11.5( The Novikov Condition) Assume that the Girsanov kernel ¢
is such that

EP [} Ia lolPdt] < oo, (11.25)
Then L is a martingale and in particular EF [Ly] = 1.

There are counter examples which show that the exponent % in the Novikov
condition cannot be improved.
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11.4 The Converse of the Girsanov Theorem

If we start with a measure P and perform a Girsanov transformation, according
to (11.16)—(11.20), to define a new measure Q, then we know that Q <« P.
A natural question to ask is now whether all absolutely continuous meas-
ure transformations are obtained in this way, i.e. by means o a Girsanov
transformation.

It is clear that in a completely general situation, this cannot possibly be
true, since the Girsanov transformation above is completely defined in terms
o the Wiener process WP whereas there could be many other processes living
on (2,3,P,F). However, in the case where the filtration {F;}:>0 is the one
generated by the Wiener processitself, i.e. in the case when we have no other

sources d randomness apart from WF, then we have a converse result o the
Girsanov Theorem.

Theorem 11.6 (The Converse of the Girsanov Theorem) Let WP be a
d-dimensional standard (%i.e. zero drift and unit variance independent compon-
ents) P-Wiener process on (R,3,P,F) and assume that

Fe=F", vt

Assume that there exists a probability measure Q such that Q « P on Fr.
Then there exists an adapted process ¢ such that the likelihood process L has
the dynamics

dL; = Ly} dWF,
Lo=1.

Proof We know from Theorem C.12 that the likdihood process L is a
P-martingale. Sincethefiltration istheone generated by WP wededucefrom the
Martingale Representation Theorem (11.2) that there existsa process g such that

st = gt* dW;.
Now we simply define ¢ by 1
Yr = E gt

and the proof is basically finished. There remainsa small problem, namely what
happens when L; = 0 but also this can be handled and we omit it. O

This converse result is very good news, sinceit implies that for thecased a
Wiener filtration we have complete control o the classd absolutely continuous
measure transformations.

11.5 Girsanov Transformationsand Stochastic Differentials

We will now discussthe effect that a Girsanov transformation has on the dynam-
ics o a more general 1t6 process. Suppose therefore that, under the origind
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measure P, we have a process X with P-dynamics
dX; = p dt + o, dW/,

where W¥ is a (possible multidimensional) standard P-Wiener process, and
where ¢ and o are adapted and suitably integrable. Suppose furthermore that
we perform a Girsanov transformation with kernel process¢ and transform from
P to a new measure Q. The problem is to find out what the Q-dynamicsd X
look like.

This problemiseasily solved, sincefrom the Girsanov Theorem we know that
We can write

AWF = g dt +aw,

where W< isQ-Wiener. We now simply plug this expressioninto the X-dynamics
above, collect the dt-terms and obtain

dX: = {/Lt +0't§0t}dt + G'tthQ dt.

;. The moral o this isasfollows:

, e Thediffusionterm is unchanged.
e Thedrift term ischanged from u to p + op.

. 11.6 Maximum Likelihood Estimation

In this section we give a brief introduction to maximum likelihood (ML) estim-
ation for 1t6 processes. It is a bit outside the main scope o the book, but since
ML theory is such an important topic and we aready have developed most o
the necessary machinery, we includeit.

We need the concept of a statistical model.

Definition 11.7 A dynamic statistical model over a finite timeinterval [0
consists of the following objects:

e A measurable space (22, F).

e A flow of information on the space, formalized by a filtration F = {F; }+>0-

e An indexed family of probability measures {Py; a € A), defined on the
space (2, F), where A is some index set and where all measures are
assumed to be absolutely continuous on Fr w.r.t. some base measure Py, .

In most concrete applications (see examples below) the parameter a will be
area number or afinite dimensional vector, i.e. A will be the real line or some
finite dimensional Euclidian space. The filtration will typically be generated by
some observation process X .

The interpretation o all thisisthat the probability distribution is governed
by some measure Py, but we do not know which. We do have, however, access
toaflow o information over time, and thisisformalized by the filtration above,
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S0 at time t we have the information contained in F;. Our problem isto try to
estimate a given thisflow o observations, or more precisaly: for every t we want
an estimatea; o a, based upon theinformationcontained in 7, i.e. based on the
observationsover the time interval [0,¢]. The last requirement is formalized by
requiring that the estimation processshould be adapted to F, i.e. that oy € F;.

One d the most common techniques used in this context is that o finding,
for each t, the ML estimate d a. Formally the procedure works as follows.

e Compute, for each athe correspondingLikelihood process L(«) defined by

dP,
Li(a)= on F;.

«
dP,,’
e For each fixed 4, find the vadue d a which maximizes the likelihood

ratio L¢(a).

e The optimal ais denoted by &; and is cdled the ML estimate d a based

on the information gathered over [0,1].

As the simplest possible example let us consider the problem o estimating
the constant but unknown drift o a scalar Wiener process. In elementary terms
we could naively formulate the model by saying that we can observe a process X
with dynamicsgiven by

dX, = adt T dw,,
X, =0.

Here W isassumed to be Wiener under some given measure P and the drift ais
some unknown real number. Since this exampleis so smple, we do in fact have
an obvious candidate (why?) for the estimator process, namely

s _ Xy
Qp = T

In anaive formulation like this, we have a single underlying Wiener process,
W under a single given probability measure P, and we see that for different
choicesd a we have different X-processes. In order to apply the ML techniques
we must reformulate our problem, so that we instead have a single X-process
and afamily d measures. This is done as follows.

e Fix a process X which is Wiener under some probability measure Po. In
other words. under Py, the process X hasthe dynamics

dX; =0-dt +dwp,

where W0 is Pg-Wiener.
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e We assumethat the information flow is the one generated by observations
d X,
so we definethefiltration by setting F; = F;*. For every rea number a,
we then definea Girsanov transformation to a new measure P, by defining
the likelihood process L(a) through

st(a) = aLt(a) dXt, (1126)
Lo(a) =1 (11.27)

i

e From Girsanov's Theorem it now follows immediately that we can write
dW? = adt + dWg, where W™ is a P, Wiener process. Thus X will have
the P, dynamics

dX; = adt + dW?

We now have a statistical model along the general lines above, and we notice
that, as opposed to the casein the naive formulation, we havea single process X,
- but the driving Wiener processes are different for different values of a.

Toobtain the ML estimation processfor a, we need to compute the likelihood
process explicitly, i.e. we have to solve (11.26)-(11.27). This is easily done and
we have

Ly(a) = exXe—ho™

Wemay o course maximize In[L;(a)] instead o maximize Ly(a) so our problem
isto maximize (over a) the expression

a~Xt—-%a2-t.

This trivial quadratic optimization problem can be solved by setting the
a derivative equal to zero, and we obtain the optimal a as

Gy = 2t
t = t-

Thus we see that in this example the ML estimator actually coincideswith our

naive guess above. The point of using the ML technique is o course that in a

. more complicated situation (seethe exercises) we may have no naive candidate,
whereasthe ML technique in principleis aways applicable.

11.7 Exercises
Exercise 11.1 Complete an argument in the proof d Theorem 11.1 by proving

that if X and Y are random variablesof the form

.
X=-'Bo+/ g5 W,
0

T
Y=y0+/ hdesy
0
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and if g and h have disoint support on the time axis, i.e. if
gthy =0, P—-as 0£t<T

then T
XY = zoyo +/ [Xshs T Yag,] dW;.
0

Hint: Definethe processes X; and Y; by X; = ¢ + fot gs dW, and correspond-
ingly for Y and use the It6 formula.

Exercise 11.2 Consider the following STE

dX, = af(X,) dt T o(X,) dW,,

X() = To.

Here f and a are known functions, whereas a is an unknown parameter. We
assume that the SDE possesses a unique solution for every fixed choice o «.

Construct a dynamical statistical model for this problem and compute the
ML estimator process é&; for «, based upon observationsd X.

11.8 Notes

The results in this chapter can be found in any textbook on stochastic analysis
such as Karatzas and Shreve (1988), @ksendal (1995), and Steele (2001).




12

BLACK-SCHOLESFROM A MARTINGALE
POINT OF VIEW*

In this chaper we will discuss the standard Black—Scholes model from the
martingale point of view. We thus choose a probability space (R, F, P, F) car-
rying a P-Wiener proces W, wherethe filtration F is the one generated by W,
ie. F, = F¥. On this space we define the model by

dS; = aS,dt T ¢S, dW;, (12.1)

b Note that for ease of notation the P-Wiener process is denoted by W rather
| than by WF.

12.1 Absence of Arbitrage

We now want to see whether the modd is arbitragefreeon afiniteinterval [0,77,
and for that purpose we use the First Fundamental Theorem (10.22) which says
that we have absence o arbitrageif and only if there existsa martingale measure
Qfor our model. Wethen usethe Girsanov Theoremto look for a Girsanov kernel
process h such that the induced measure Q is a martingale measure. Defining,
as usual, the likelihood processL by

dL; = hyL; dW,,
and setting dQ = L dP on Fr, we know from Girsanov’s Theorem that
| AW, = hy dt + dW,

where W is Q-Wiener. (For ease d notation we write W instead o the earlier
W<Q.) Inserting the above expression into the stock price dynamics we obtain,
after a collection o terms, the Q-dynamicsd Sas

" 48, = Sy {a + ok} dt + oS, AW,

In order for Q to be a martingale measure, we know from (10.51) that the locd
rate d return under Q must equal the short rate. Thus we want to determine

the process h such that
atoh,=r (12.3)
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This equation has the simple solution

and we see that the Girsanov kernel process h is in fact deterministic and
constant.
Furthermore, h has an important economic interpretation: In the quotient

a-—-r
g

the numerator a — r, commonly known as the "risk premium" o the stock,

denotes the excess rate return o the stock over the risk free rate o return
| on the market. In the denominator we have the volatility o the stock, so the
| quotient above has an interpretation as "risk premium per unit volatility™ or
"risk premium per unit risk™. This important concept will be discussed in some
detail later on, and it is known in the literature as "the market price of risk".
It is commonly denoted by A, so we have the following result.

Lemmal21 The Girsanov kernel h is given by
h=-X

where the market price d risk X is defined by

] )\ = a- 'r.
i o
We havethus proved the existenced a martingale measureand fromthe First

Fundamental Theorem we then have the following basic result for the Black—
Scholesmodel.

Theorem 122 The Black—Scholesmodd above is arbitrage free.

We note in passing that instead o the standard Black—Scholes model above
we could have considered a much more general model of the form

dS; = a4 S, dt + 5,8, dW;, (12.4)
dBt = ’I"tBt dt. (125)

where a, a, and r are allowed to be arbitrary adapted (but suitably integrable)
processeswith a; # 0 P-a.s. and for all t. The analysisd this more complicated
model would be completely parallel to the one carried out above, with the only
difference that the Girsanov kernel h would now be a stochastic process given
by the formula

hy= 2Tt (12.6)
Ot

|
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As long as this h satisfies the Novikov condition, the market would still be
arbitrage free.

Remark 12.1.1 The formal reason for the condition o; # 0 is that otherwise
the quotient in (12.6) is undefined. Being a bit more precise, and going back to
the fundamental equation

& + htO't =T,

we see that we can in fact solve this equation (and thus guarantee absence d
arbitrage) as long as the condition

or=0 = ar=r;s.

 isvdid. The economicinterpretation d this conditionisthat if oy =0, then the
I stock price is locally riskless with dynamicsdS; = S:a; dt, so in order to avoid
arbitrage with the money account B we must have oy = r:.

12.2 Pricing

Condder the standard Black—Scholes model and a fixed T-claim X. From
 Proposition 10.25 we immediately have the usual "risk-neutral™ pricing formula

(t; X) = e "T-DEQ[X| F], (12.7)
where the Q-dynamics of Sare given as usual by
dS; = rS, dt t ¢S, dw;.

t For a general claim we can not say so much more, but for the case o a simple
f clam d theform
] X = q)(ST),

we can o course, write down the Kolmogorov backward equation for the
expectation and expressthe price as

H(t; X) = F(ta St)a

where the pricing function F solves the Black—Scholesequation.

OF , OF .1 ,,8F
—trs—t DRI e =
{ 5 55 T VS g ~TE=0, (12.8)

F(T,s) = ®(s).

The moral o al this is that the fundamental object is the risk neutral
valuation formula (12.7), which is valid for all possble clams, whereas the
Black—Scholes PDE is only valid for the case d simple claims.
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123 Completeness

We now go on to investigate the completenessdf the Black—Scholes model, and
to this end we will use the Second Fundamental Theorem (10.24) which says
that the market is completeif and only if the martingale measureis unique. We
have seen in the previoussection that there exists a martingale measure and the
remaining question is whether thisis the only martingale measure.

Inthe present setting, wherethefiltration isthe one generated by W we know
from Theorem 11.6 that every absolutely continuous measure transformation is
obtained from a Girsanov transformation, and since the basic equation (12.3)
has a unique solution, we see that the martingale measureisin fact unique. The
same argument is valid for the more general model above, and we have thus |
proved the following result. '

Theorem 123 The Black-Scholes modd (12.1)-(12.2) is complete. This aso
holdsfor the more general modd (12.4)-(12.5).

From an abstract point o view, the theorem above settles the completeness
question, but since it is based on the second fundamental theorem, which in
turn relies on rather abstract martingale theory, the argument is perhaps not
overly instructive. We will therefore provide a more sgf contained completeness
proof, which moreclearly showsthe useand central importance of the Martingale
Representation Theorem 11.2.

Wewill carry out the argument for the standard Black—Scholesmodel (12.1)-
(12.2), but the argument goes through with very small changes also for the
more general model above. We will use the technique in Lemma 10.15 and in
terms o the notation o that lemma we identify the numeraire Sy with the
money account B, and S; with the stock price S. We then definethe normalized
processes Z, and Z; by

20 =29

B(t)’ B@)

Let Q be the (unique) martingale measure derived above, and consider an
arbitrary T-claim X with

Zo(t) =

X
Q|
E [B(T)] < 0o0.
(For the standard Black—-Scholes model we may o course take thefactor 1/B(T)
out o the expectation.) We then definethe Q-martingale M by
X

M) =5° | gy

ft] , (12.9)

and it now follows from Lemma 10.15 that the model is completeif we can find
a process h; (t)such that

dM(t) = hi (t)dZy(1). (12.10)
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In order to prove the existence of such a process h; we use the Martingale
Representation Theorem 11.2 (under Q), which says that there exists a process
g(t) such that

dM(t) = g(t) dW(2), (12.11)

where W isthe Q-Wiener processdefined earlier. With the purposed connecting
(12.11)-(12.10) we now use the Ito formulaand the fact that Q is a martingale
measure for the numeraire B to derive the Q-dynamics o Z; as

dZ, (1) = Z1(t)o dW (2). (12.12)
We thus have 1
dw(t) = Zl(—t)adzl(t)’

and pluggingthisinto (12.11) weseethat wein fact have (12.10) satisfied with hy
defined by
9(t)
0'Z1 (t) '
Again using Lemma 10.15, we have thus proved the following result.

Theorem 12.4 In the Black-Scholes modd (standard as wel as extended),
evay T-clam X satisfying

hl (t) =

E° [-B—i(T—)] <00

can ke replicated. The replicating portfolio is given by

_ 9@
ho(t) = M(t) — ha(t) 21 (1), (12.14)

where M is defined by (12.9) and g is defined by (12.11).

This completeness result is much more general than the one derived in
Chapter 8. The price that we have to pay for the increased generdlity is that
we haveto rely on the Martingale Representation Theorem which is an abstract
existenceresult. Thus, for agenera claimit isvery hard (or virtually impossible)
to compute the hedging portfolio in a reasonably explicit way. However, for the
caxe d asimpleclaim o theform

X = ®(Sr),
the situation is df course more manageable. In this case we have

M(t) = E? [e7TQ(S(T)| 7],
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and from the Kolmogorov backward equation (or from a Feynman-Kag
representation) we have M(t)=f (t,5(t)) where f solves the boundary vaue
problem

(t 3)+rs—(t s)+ 1 o’s 26 £(t,8)=0,

f(T,5)=e""T®(s).
t6’s formula now gives us
a
aM () = oS(t) ok (5,5(1),
so in terms of the notation abovewe have
6 N
o) = oS() - 2L ¢, 5(2),

which gives us the replicating portfolio h as
ho(t) = f(t,5(t)) - S(t) (t S()),
hi(t) = B(t) (t 5(¢)).

We have the interpretation f (t,8(t))=V4(t), ie. T is the value o the nor-
malized hedging portfolio, but it is natural to express everything in terms o
the unnormalized value process V(t) rather than in terms d V4. Therefore,
we define F(t,s) by F(t,s)=e"tf (t,s) which gives us the following result which
we recoghizefrom Chapter 8.

Proposition 12.5 Consider the Black-Scholesmodd and aT-claim d theform
X =®(S(T)). Then X can ke replicated by the portfolio

F(t,5(t) - S() & (¢, S(t))
'B(t) (12.15) 4
()= 90 (5, S(2)

ho(t) =

where F solves the Black— Scholes equation

OF | OF L 1 , ,8*F
+rs2E+ 252 -
{3_ S 32 ~F =0 (12.16)

F(T,s) = 3(s)
Furthermore the value processfor the replicating portfolio is given by
V(t) = F(t,S(t)).
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MULTIDIMENSIONAL MODELS: CLASSICAL o
APPROACH

13.1 Introduction

In this chapter, we will generalize the Black—Scholes model to the case where,
apart from the risk free asset, we have severa underlying risky assets. In the
present chapter we will carry out the analysisusing the "classica™ delta-hedging
approach. In Chapter 14 we will then provide a more complete analysis usng
the martingale methods o Chapter 10.

We assume that we have n a priori given risky assets ("'stocks") with price
processes 51 (t), ..., S, {t). The entire asset price vector is denoted by S(t), and
in matrix notation we will write it as a column vector

Si(t)
SW=1 :
Sa(t)

Themain problemsarethosed pricingand hedging contingent clamsd theform
X = ®(S(TY)),

where T as usual is a fixed exercisetime.

In the first sections we will analyze this problem in some detail usng the
"classica approach” developed in Chapters 7 and 8. In Chapter 14 we will then
. U the martingale machinery developed in Chapter 10 to extend the anaysis
}  considerably. However, while from a formal point of view, all results obtained by
the elementary approach in the present chapter are special casesd the results o
¢ Chapter 14, there is a substantial amount o economic intuition to be gathered
| from the classical approach, so the present chapter is not redundant even for the
mathematically advanced reader.

The first problem to be attacked is how to construct a "reasonable” math-
ematical model for the dynamicsd the asset price vector S, and in this context
we have two demands. We o course want the model to be freed arbitrage pos-
shilities, and we also want the model to be such that we have a unique arbitrage
free price process I1(t; X) for any given claim X.

From the meta-theorem 8.3.1 we know that we may generically expect absence
d arbitrage if we have at least as many sourcesd randomnessas we have under-
lying assets, so it is natural to demand that the price vector S should be driven
by at least n independent Wiener processes.
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If, on the other hand, we want a unique price process for every claim, then
we need a complete market model, and according to Meta-theorem 8.3.1 this will
only occur if we have at least as many assets as we have sourcesd randomness.
In order to obtain a nicely behaved model we are thus forced to model the stock
price dynamics using exactly n independent Wiener processes, and we now go
on to specify the forma model. '

Assumption 13.1.1 We assume thefollowing:
e Under the objective probability measure P, the S-dynamics are given by

dSi(t) = asSi(t)dt T Si() D o35 AW (8), (13.1)

j=1

fori=1,...,n. Here W1,..., W, are independent P- Wiener processes.
e The coefficients a; and o;; above are assumed to ke known constants.
e The volatility matrix __
o= {.aij};:j=1
is nonsingular.
e We have the standard risk free asset with price process B, where

dB(t) = rB(t) dt. (13.2)

The assumption that the coefficients are constants is made for ease of expos-
ition. Later on we will see that we may dlow the coefficientsto be functions o
current time and current stock prices, ie. a; = e (t,5(¢)), 035 = 045 (1, 5(t))-

In the seauel we will let W (t) denote the column vector
Wa(t)
wit)=|
Wa(t)
and it will beconvenient to definethe row vector o; astheith row of thevolatility
matrix o, i.e.

g; — [0’,’1, - ,O',',n].
With this notation we may write the stock price dynamics more compactly as
dSi(t) = eiSi(t) dt T Si(t)os AW (2). (133)
It isin fact possible to write the S-dynamics even more compactly. For any
n-vector X = (z1,...,Z») Welet D [z] denote the diagonal matrix
Iy 0 e 0

Ds] = ? T ? (13.4)
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and we let a denote the column vector

ay
a=|  |. (13.5)

Qp
Udng this notation we can write the S-dynamics as

dS(t) = D[S(t)| adt + D[S(t)] o AW (¢). (13.6)

13.2 Pricing

We take the market model above as given and we consider a fixed T-claim of
the form

o(S(T))-

The problemisto find the arbitrage free price processII(t; X) for X, and we will
do this by using a slight variation o the technique for the one-dimensional case.
As before we start by assuming that there actually isa market price process for
- the claim, and that the price processis o the form

II(t; X) = F(¢, S(t))
for some deterministic function
F: R+ x R® - R.
Our problem is to find out what F must look like, in order not to intro-
duce any arbitrage possibilities, if we are dlowed to trade in the derivative
. as wdl as in the underlying assets. More precisely, we want the market

[S1(t),...,Sa(t),II(t; X)] to be free of arbitrage, and the basic scheme is as
folows

e Take the model for the underlying assets, the contract function &, and the
pricing function F as given.

e Form a sdf-financing portfolio, based on Si,...,S,,B and F. Since we
have n + 2 assets, and the portfolio weights must add to unity, this will
give us n 1 degrees o freedom in our choice of weights.

¢ Choose the portfolio weights such that the driving Wiener processes are
cancelled in the portfolio, thus leaving us with portfolio dynamics of
the form

dV(t) = V (£)k(t) dt.
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Since we have n driving Wiener processesthis will "use up” n degrees o
freedom.
e Use the remaining degree of freedom in order to force the value dynamics
to be d theform
dv(t) = (r T B) V(t)dt,

where 8 issome fixed nonzeroreal number. In the equation above we think
of 3 as being a positivereal number, so we are in effect trying to "beat the
risk free asset" B by constructing a synthetic risk free asset with higher
rate d return than the money account. It turns out that thisistechnically
possible if and only if a certain matrix is nonsingular.

e Since we assume that the market is free d arbitrage possibilities, it is
impossibleto beat the risk freeasset in the way described above. Therefore,
the matrix mentioned above has to be singular.

e The singularity condition o the matrix leads to a PDE for the pricing
function F', and the solution o this PDE isthus the unique arbitrage free
pricing function for the claim X.

To put these ideas into action we start by computing the price dynamics o
the derivative. The multidimensional 116 formula gives us (see Remark 4.7.1),
after some reshuffling,

dF= F'ath-i-F-O'FdW, (13.7)
where
1 = 1 ‘ .
ar(t) = 7 F, + ZaiS,-F,- + §tr {a*D[S]F,eD[S]o}} , (13.8)
: ‘

1 n
or(t) = & > SiF0;. (13.9)

1

Here the arguments t and S(t) have been suppressed, and we have used the
notation

oF
F = Et' (t’ S(t)),

F;= —EF (¢, S(t)),

. 08 ,
82F "
Fyy = {53_16_3; ( S(t))}i’j=1

Note that F; and F; are scalar functions, whereas F;; isan n x n matrix-valued
function.
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We now form a portfoliobased on Sy,...,S,, B and F. For S4,...,8, and F
we use the notation uy,...,u, and ug for the corresponding portfolio weights,
which gives us the weight ug for the money account as

n
ug=1- <§:’U,,’+’U«F).
, 1

The dynamics of,the value process for the corresponding sdlf-financing
portfolio are given by’

s dS dF dB |
dV—Vl;u1 S, +uF—F_+uBB]’

and substituting the expression for ug above, as wel as inserting the dynamics
d the processes involved, gives us

dv=V.

Z Uio; + UFUF] dw.
1

ZUi(ai—r)+up(ap—r)+r] dt+V-
1

We now try to choose the weights so that, first d al, the value process is
- locdlly risk free, i.e. it has no driving Wiener process. This means that we want
- to solve the equation

n
ZUiai +upop =0.

1
Supposing for the moment that this can be done, we now have value dynamics
d theform

avV=V- Zui(ai—r)+up(ap—r)+r dt,
- ,

and now we try to beat the market by choosing the weights such that we obtain

arate d return on the portfolioequaling r + 3. Mathemati cally this meansthat
we want to solve the equation

Zui(ai—r)+uF(‘ap—r)+r)={r‘+ﬂ. ,
1

In order to see some structure, we now write these equations in matrix form as

[al—r o @nmT OAF—T':I[’U:S]=[§}’ (13.10)

ot ... oFf ok up
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(note that ¢} is a column vector) where we have used the notation
uy
u2
ug =

Un

Let usnow take a closer look at the coefficient matrix in egn (13.10). Denoting
this matrix by H, weseethat it isan (n+1) X (n+l) matrix, and we have two
possibilitiesto consider, namely whether H isinvertible or not.

If H isinvertible, then the system (13.10) has a unique solution for every
choiced 8. In economictermsthis meansthat we are ableto form a sdf-financing
portfolio with the dynamics

avie) = (r+ BV (e dt,

which in turn means that we have constructed a " synthetic bank™ with r +3as
its rate o interest. This will of course lead to arbitrage opportunities. We just
solve the system for, say, 8 = 0.10, then we borrow a (large) amount of money
from the bank and invest it in the portfolio. By this arrangement our net outlays
at t = 0 are zero, our debt to the bank will increase at the rate r, whereas the
vaue o our portfolio will increase at a rate which is 10% higher.

Since we assume absence d arbitrage we thus see that H must be singular,
and in order to see the implications o this we choose, for readability reasons, to
study its transpose H*, given by

Q] —T 01

H* = i 5 (13.11)
an -Tr Un
afF —T OFf

(recall that a, is a row vector). We can write this somewhat more compactly by
defining the n-dimensional column vector 1, as

1
,=]|:|. (13.12)

With this notation we have

H*=[a—r1n o ]

o —r OF

Since H* is singular this means that the columns are linearly dependent, and
since the matrix a was assumed to be nonsingular we draw the conclusion that

bf
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the first column o H* can be written as a linear combination of the other

columns. Thus there exist real numbers A4, ..., A, such that
a—r=Y oyk, i=1,...,n, (13.13)
j=1
ar —1=Y or;)j, (13.14)
—

where o; denotes the jth component o the row vector op.

4 Thereis an economic interpretation of the multipliers Ay, ..., A, asso-called
L "market pricesdf risk" (cf. standard CAPM theory), and later on we will discuss
} thisin some detail. For the moment the main logica point is that eqn (13.14)
E is the equation which will determine the derivative pricing function F. In order
L {0 use this equation we need, however, to get hold d the A-vector, and as we
b shdll see, this vector is determined by the system (13.13).

j Writing (13.13) in vector form we see that the vector

A1
A= :
An
is the solution of the n x n linear system

a—rl, =0},

and since a by assumption is nonsingular we see that A is in fact uniquely
determined as
A=ar[a-rl,). (13.15)

We now want to substitute this expression for A into (13.14), but first we
rewrite (13.14) in vector form as

aF —T =0FA, (13.16)

and from the definition d or in (13.9) we see that we may write op more
compactly as

op = é (SiF,..., S Fy)o. (13.17)

Inserting (13.15) and (13.17) into (13.16) and using oo~ = |, we obtain the

relation 1
aQfF - T = I—: . [SlFl, e ,SnFn] Q— 7‘1"], (13.18)
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and finally we insert the expression for ap from (13.8) into (13.18) to obtain,
after some calculations,

Fi+ Y rSiF: + 5t {o* D[S|F.,D[S)o} ~ rF =0, (13.19)

i=1

Note that this equation is a stochastic equation. For ease d reading we
have suppressed most o the arguments, but if we backtrack we will see that,
for example, the term rS;F; in the equation above is just shorthand for the
expression

oF
rS5i(t) g, (4 5().
Thusegn (13.19) must hold, at each t, with probability 1 for every possible value
o the price vector S(t). Now, in our model for the price processit can be shown
that the support (the set of possible values) for the vector S(t) is the entire set
R7%, and thus egn (13.19) must also hold for each deterministict and s. By a

standard argument we must also have F(T, S(T')) = ®(S(T)), so0 we have proved
our main pricing result.

Theorem 13.1 Consider the contract X = ®(S(T)). In order to avoid arbitrage
possibilities, the pricing function F(t,s) must solve the boundary vaue problem

Fi(t,s) + g rsiFi(t, s) + %tr {0*D[s]Fss Dlslo} — rF(t,8) =0, (13.20)

F(T, s) = ®(s).

Remark 13.2 1 To be more explicit we recall that we can write the quadratic
term above as

. = o*F
tl‘{O’ D[S]FGSD[S]O'} = Z SiSjm;(t, S)Cij,

4,j=1

where
Cij =] aa*,}..

Remark 1322 As in the one-dimensional case we notice that the drift
vector a, o the price process, does not appear in the pricing equation. Again we
seethat theonly part o the underlying price processwhich influencesthe price of
a financial derivativeisthe diffuson matrix o. The reason for this phenomenon
isthe same asin the scalar case and we refer the reader to our earlier discussion
on thesubject. A deeper understanding involves the Girsanov Theorem. See next
chapter.
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Remark 13.2.3 Inthederivation o the result above we have assumed that the
drift vector a and the volatility matrix a in the price dynamicsegn (13.1) are
congtant. Going through the arguments it is, however, easily seen that we may
dlow the coefficients to be functions of current time and current stock price,
i.e. they may be of the form

a=a(t,S(t)),
a=o(t,S(t)).

| If we assume that the volatility matrix o(t, s) is invertible for each (ts), then
t Theorem 13.1 will still hold, the only difference being that the term

tr{a*D[S]FssD[S]a}_
in the pricing equation is replaced by the term

tr{o™(t, ) D[] Fss(t, 5)D[slo(¢, 5)} -

I 13.3 Risk Neutral Valuation

 Asin the scalar casethereisa natural economic interpretation of Theorem 13.1
L in terms of risk neutral valuation. From the Feynman-Ka¢ representation
. theorem 5.8 we may immediately obtain a probabilistic formulafor the solution
to the pricing equation.

Theorem 13.2 The pricing function F(t,s) of Theorem 13.1 has the following
representation.
F(t, 3) = e—'(T—t)E& [Q(S(T))]

‘ Here the expectation is to be taken with respect to the martingale measure Q,
'~ defined by the fact that the Q-dynamics of the price process S are given by

dS; =rS;dt + S;o;dW, i=1,...,n.

Adhering to the notational convention 7.4.1 the expression Et‘?s [] indicates, as
- usual, that the expectation shall be taken under Q, given the initial condition
S(t) = s. By the same convention, W is a Q-Wiener process.

Again we see that the arbitrage free price o a derivativeis given as the dis-
¢ counted expected value o the future cash flow, and again the main moral isthat
| the expected value is not to be taken with respect to the objective probability
F measure P. Instead we must use the martingale measure Q. This martingale
measure, or risk adjusted measure, ischaracterized by the following equivalent
' facts. The proof is left as an exerciseto the reader.
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Proposition 13.3 The martingale measure Q is characterized by any of the
following equivalent conditions:

1. Under Q every price process I (t) ,be it underlying or derivative, has the
risk neutral valuation property

I (t)=e T EZ [I1(T)).

2. Under Q every price processII (t) ke it underlying or derivative, has the
short rate of interest asitslocal mte of return, i.e. the Q-dynamics are of
the form

dII(t) = rII(¢) dt + TI(2) oy (1 )W,
where the volatility vector oy is the same under Q as under P.

3. Under Q every price process II(t), be it underlying or derivative, has the

property that the normalized price process

1(0)
B(t)

isa martingale, .e. it has a vanishing drift coefficient.
As before we may summarizethe moral as follows

e \When we compute arbitrage free prices d derivative assets, we can carry
out the computations as if we livein a risk neutral world.

e This does not mean that we de facto live, or think that we live, in a risk
neutral world.

e Theformulasabove hold regardlessd the investor's preferences, and atti-
tude towards risk, as long as he/she prefers more deterministic money
to less.

13.4 Reducing the State Space

From Theorem 13.1 we see that in order to compute the price d a financia
derivative based on n underlying assets, we have to solve a PDE with n state
variables, and for a general case this has to be done by numerical methods.
Sometimesit is, however, possibleto reducethe dimensiond the state space, and
this can lead to a drastic simplification o the computational work, and in some
cases even to analytical formulas. We will now present a theory which will alow
us to obtain analytical pricing formulas for some nontrivial multidimensional
claims which quite often occur in practice. The theory presented hereis based on
an analysisd the pricing PDE, but there also existsa correspondingprobabilistic
theory. See Chapter 24. '
Let us assumethat we have the model

dSi(t) = aiSi(t) dt + Si(t) Z Oij dWJ (t), i=1,...,n. (1321)

=1
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L We consider a T-claim o the form X = & (S(T)), and the crucial assumptions
ae the following.

Assumption 13.4.1

e For the rest of the section we assume that the contract function & is
homogeneous of degree 1, i.e. that

®(t.s)=1.P(s),

for allt > 0 and for all s< R".
e The volatility matrix o is constant.

For a homogeneous ® we see that, by choosingt = s,; !, we have the relation

®(s1,...,8,) = 8, ® ('—:—1—,...,8"—1,1).

n Sn

- This naturally gives us the idea that perhaps dso the corresponding pricing
F function F has the same homogeneity property, so wetry the ansatz

F(t,51,...,5) = 8uG (t, :—1)...,3"‘1) (13.22)

n Sn

where G is some function

G:Ry xR ! =R.

' First o all, if thereisa solution to the pricing PDE of the form (13.22), then it
has to satisfy the boundary condition

F(T,s) = ®(s), Vs,

and translated into G this gives the boundary condition

G(T, z) =V(z), Vz, (13.23)

where the function ¥ : R*~! — R isdefined by

U(z1y-eny2n-1) = B(21,...,2n-1,1). (13.24)

The main problem is now to see whether there is a function G such that the
ansatz (13.22) satisfiesthe pricing PDE. Wethereforecompute the various partial
derivativesd Fintermsd G, and substitutetheresult into the PDE. After some




186 MULTIDIMENSIONAL MODELS: CLASSICAL APPROACH

tedious cal cul ations we have the following relations, where for brevity z denotes
the vector z = (81/8n, - - -, Sn—1/8x). Subscripts denotes partial derivatives.

Ft(t, 8) = SnGt(t, Z),
E(t,S)zGi(t,Z), t=1,...,n—1,

n—1

Fult,s)=G(t,2)— > ?Gj(t, 2),

j=1°"

LI

1 .
Fi;(t,s) = S_Gij(t,z), i,j=1,...,n—-1,
n

n—1

85 . ‘
Fin(t, 3) = Fn,'(t, 8) = - Z ;%'Gij(t, Z), z = 1, cee, N — 1,
j=1°m
n—1 8:8:
an EE Z —';-S—JGij(t,Z).
i,j=1 "

Asin Remark 13.2.1 we write the pricing PDE as

n n
1
Fy(t,s) + E r3;Fi(t,8) + 2 E ;8 Fi;(t,8)Cij — rF(t,8) = 0. (13.25)

i=1 i,j=1

Substituting the expressions above for the partial derivatives d F into
egn (13.25) may look fairly forbidding, but in fact there will be many
cancellations, and we end up with the following PDE for G.

1 n—1
Gi(t:2) + 3 > %zGiyt, 2)Di; =0, (13.26)

ij=1 ~
where
D"J' = C'ij + Cnn + Cin + an‘ (1327)
We have thus proved the following result.

Proposition 13.4 Assume that the contract function & is homogeneous d
degree 1, and that the volatility matrix a is constant. Then the pricing function
F isgiven by

F(t,s) = 5,G (t, :—1, s"‘l) ,

n sn

where G(t, z1, . . . , 2n—1) S0lves the boundary value problem

n—1

1
Gi(t,z) + = 2i2jGij(t,2)Dij = 0
2 1';1 T v (13.28)

G(T, z) = T(z).
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| Here the matrix D is defined in (13.27), where C is given by Remark 13.2.1.
- Thefunction ¥ is definedin (13.24).

j The point o this result is that, instead d having to solve a PDE with n
| State variables (and one time variable), we have reduced the problem to that o
s0lving a PDE with only n — 1 state variables.

Remark 13.4.1 The crucial assumption in Proposition 13.4 is o course the
¥ homogeneity o the contract function, but one may wonder where we used
§ the assumption of a constant volatility matrix. The point is that, with a state
| dependent o, the PDE (13.26) is no longer a PDE in only the n — 1 state vari-
t dbles z,...,2,—1, becausethe matrix D now depends on the entire price vector
81,.-4S

It is interesting to note that the PDE satisfied by G is o parabolic type.
By inspection we see that it can in fact be interpreted as the pricing PDE, in
i aworld with zero interest rate, for a claim of the formY = ¥(Z(T)), wherethe
n — 1 underlying price processes satisfy an SDE o the form

" dZ(t) = D[Z]u(t) dt + D[Z]6 dW (¢),

where the drift vector x is as usua o no importance, the process W is an

g (n-—1)-dimensional standard P-Wiener process, and the covariance matrix

p tisfies

g6* = D.
Example 13.5 Weillustrate the technique o state space reduction by a simple
exampled some practical importance. We consider a model with two underlying
price processes S; and Sz, satisfying (under P) the following system of SDEs:

dSl = Slal dt + SIO’] dWl,
dSy = Ssaz dt + Sz09 sz.
V As usual W, and W, are independent, so in this model the price processes are
dso independent, but thisis just for notational simplicity.

The claim to be studied is an exchange option, which givesthe holder the
right, but not the obligation, to exchange one S; sharefor one §; shareat timeT.
Formdly this means that the claim is defined by X = max[S;(T) — S2(T), 0],

and we see that we have indeed a contract function which is homogeneous o
| degreel. A straightforward application of Theorem 13.1 would give usthe PDE

{Ft + ’I‘SlFl + T82F2 + %sfafFu + %3%0’%1‘722 —-rF = 01
F(T, 81, 82) — max [31 - 82,0].

1+ Uding Proposition 13.4 we can instead write

F(t, 81,82) =89-G (t, 8—1) R
82
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where G(t, z) satisfies
Gi(t,2) T 122G (t2)(0? T od) =0,
G(T, x) = max [ z— 1,0].

We see that this is the pricing equation, in a world with short rate r = O, for
a European call option with strike price K = 1 written on a single stock with
volatility 4/o% +02. Thus G can be obtained directly from the Black-Scholes
formula, and after some minor calculations we get

F(t, s1,82) = 81N [d1(¢, 2)] — 52N [da(t, 2)],

where z = 51/52. N is as usual the cumulative distribution function for the
N [0, 1] distribution and

1

V(i +o3)(T-1)
da(t,2) = di (t2) - /(03 T oR)(T - 1).

dl (t, Z) =

{lnz + %(af + 02T - t)} )

135 Hedging
When we introduced the model

ds; (t) = a;S; (t) dt + S; (t)a’,‘ dW(t) (1329)

for the price vector process, one reason for the assumption o an invertible volat-
ility matrix was that we wanted a complete market, and the goal o this section
is to show that our modd is in fact complete. From Chapter 8 we recall the
following definition.

Definition 13.6 We say that a T-claim X can ke replicated, alternatively
that it is reachable or hedgeable, if there erists a sdf financing portfolio h
such that

VMT)=X, P-as. (13.30)
In this case we say that h is a hedge against X, alternatively a replicating
portfolio for X. If every contingent claimis reachable we say that the market
iscomplete.

Since we are not using the full probabilistic machinery in this chapter, we
will not be able to show that we can hedge every contingent T-claim X. Asin
the scalar case, we will "only” be able to prove completeness for smple claims,
i.e. we will provethat every claim o the form

X = 2(8(T)),
can be replicated. For the full story see next chapter.
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Let usthus fix a date d delivery T, and a claim X = @ (S(T')). We denote

portfolio weights by u%,u!,...,u", where «* is the weight on asset i for i =
1,...,n, whereasu® is the weight on the risk free asset. From Lemma 6.5 it is
! clear that if wecanfindaprocessV, and weight processesu®, u!, ..., u™ such that
V(T) =<I>(S(T)), P—aq.s. (13.31)
dB | < ;dS;

= 0_— P 13.32

dav V{u B+;u S‘i}’ ( )

3wt =1, (13.33)

1=0

l then u®,u!,...,u" is a replicating portfolio for X, and V is the corresponding
vaue process. For future use we note that egns (13.32)-(13.33) can bewritten as

n n n
’ dv=V. {r (1—21/) +Zuia,~} dt+V-Zuia,-dW. (13.34)
3 =1 i=1 i=1
3 The structure o the proof is that we will make an educated guess about
the nature of the value process V, so we will make an ansatz. Given this
ansatz we then compute the stochastic differential dV, and at last, compar-
ing the expression thus obtained to (13.34), we identify the portfolio weights by
ingpection.

We now go on to produce a natural candidate for the role as vaue process,
and to this end we recall from Section 8.1 that, for a hedgeable claim, we should
have the relation II(t; X) = V(¢).

Thus the obvious candidate as the vaue processfor the replicating portfolio
(if it exists at all) is the price processII(t; X) for the claim. On the other hand
we have already computed the price processas

I(t; X) = F (t,5(t)),

+ where F' solvesthe pricing PDE o Theorem 13.1.

Let usthusdefine F asthesolution to the pricing PDE, and then define the
process V by V() = F(t, S(t)). Qur task isto show that V in fact isthe vaue
processd areplicating portfolio, i.e. to show that therelation (13.31) issatisfied,
and that thedynamicsfor V can bewritten intheform (13.34). Equation (13.31)
is obvioudy (why?) satisfied, and using the identity (by definition) F=V, we

. obtain from (13.7)

dV = Fapdt + FopdW.
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So, from (13.8)-(13.9)

F+ 2’11 ;S F; + %tr (0*D[S]F,,D|S]o)

dv=V.
F

n
dt+V-Z§;,—Ea,-dW.
1

(13.35)

Comparingthe diffusion part of (13.35) to that of (13.34) we see that the natural
candidatesasu!,...,u™ are given by

F b
Substituting these expressionsinto (13.35) gives us

= itr(o* D[S]F,,D[S N =
dV=V.{Zulai+Ft+2tr(o [S1F2 []a)}dt+V-Zu'aidW,
1 1

ut(t) = i=1,...,n (13.36)

F

and, using the fact that F satisfiesthe pricing PDE, we obtain

n n n
v =Vv. {Zuiai.y — rS,F,+rF} dt+V-Zuia,~dV_V.
1 1

F

Again using the definition (13.36), this reducesto

n n n
dV=V-{(1—Zu‘>r+Zu"a,-} dt+ V- uio;dW, (13.37)
1 1 1

whichisexactly egn (13.34). We havethus proved the second part o the following
theorem.
Theorem 13.7 Assume that the volatility matriz a is invertible. Then the
following hold:
e The market is complete, i.e. every claim can ke replicated.
e For aT-claim X of the form X = ® (S(T")), the weights i n the replicating
portfolio are given by

Si(H)Fi(t, S(t))
F(t,8(t) '

wW0(t)=1- iui(t)

ui(t) =

where F by definition is the solution of the pricing PDE in Theorem 13.1.

We haveonly proved that every simple contingent claim can bereplicated, so
we have not proved thefirst item above in full generdity. It canin fact be proved
that every (sufficiently integrable) claim can be replicated, but this requires the
use o more advanced probabilistic tools (the martingal e representation theorem
for Wiener filtrations) and is treated in the next section.
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13.6 Exercises
Exercise 131 Prove Proposition 13.3.

Exercise 13.2 Check all calculations in the derivation o the PDE in
Proposition 13.4.

Exercise 13.3 Consider again the exchange option in Example 135. Now
assumethat Wi and Wa are no longer independent, but that the local correlation
isgiven by dW; - dW, = pdt. (Westill assumethat both Wiener processes have
unit variance parameter, i.e. that dW? = dWZ = dt.) How will this affect the
Black—Scholes-type formula given in the example?

Exercise 13. 4 Consider the stock price model in Example13.5. The T-contract
X to be priced is defined by

X = max [aS1 (T),b8:(T)],

wherea and b are given positive numbers. Thus, up to thescalingfactors a and b,
we obtain the maximum o the two stock pricesat time T. Use Proposition 13.4
and the Black-Scholes formula in order to derive a pricing formula for this
contract. See Johnson (1987).

Hint: You may find the following formula (for X > 0) useful.

max[z, 1] = 1 + max(z — 1,0].

Exercise 13.5 Use the ideas in Section 13.4 to analyze the pricing PDE for a
. damd theform X = &(S(T)) where we now assumethat ® is homogeneousdf
degree 3, i.e.

®(t-s) =tP®(s), Vt>0.
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MULTIDIMENSIONAL MODELS: MARTINGALE
APPROACH*

In this chapter, we will now change our point o view and use the martingale
machinery o Chapter 10 to analyze a multidimensional model whichis more gen-
eral than the one discussed in the previous chapter. This will give more generd
results than those obtained earlier and it will also provide us with an enhanced
understanding o the pricing and hedging problems for Wiener driven models.
In particular we will, for the special case o Wiener driven models, produce a
self-contained proof d the Second Fundamental Theorem.

Let us thus consider a filtered probability space (92, F, P,F) carrying a
k-dimensional standard Wiener process W. The basic setup is as follows

Assumption 14.0.1 We assume the following:

e There are n risky asset Si,...,S, given a priori.
e Under the objective probability measure P, the S-dynamics are given by

k
dS,'(t) = a,-(t)Si (t) dt + S—,’(t) Z Gij (t) dW, (t), (141)

=1

fori=1,...,n.
e The coefficients processes «; and o;; above are assumed to be adapted.
e \We have the standard risk free asset with price process B, where

dB(t) = r(£)B(t) dt. (14.2)

The short rate is allowed to be a stochastic adapted process.

With notation as above we can write this on compact form as
dS(t) = D[S(t)] a(t) dt + D[S(t)] o(t) dW (t), (14.3)

where D isthe diagonal matrix defined in (13.4).

Note that at this point we do not assume that we have the same number d
driving Wiener processes as the number o risky assets. Also note that the prob-
ability spaceis dlowed to carry also other processesthan the Wiener process W,
and thus that the filtration could be generated by other processes beside W.
For example, we make no assumptions about the distribution o the short rate
processr or of the processes «; and g;;—we only assumethat they are adapted.
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In particular this alows for models where these processes are path dependent
upon the Wiener process, or that they are driven by some other "hidden™ state
variable processes. See below for a particular case.

Remark 14.0.1 In many applications there are, beside S, other nonfinancia
variables which may influence r, a, and i1s or the claims under consideration.
A common situation is when these nonfinancial variables are modeled through
ome (vector) process X with P-dynamics of the form

dX () = px(t)dt + ox(t) dW (). (14.4)

Note that we assume that the same P-Wiener process W is driving both S
and X. Thisis no serious restriction, since if, e.g. Sisdriven by W' and X is
driven by W2 then we define W as (W1, W?). Note that it is important that
we assume that the vector process X doesnot contain any price process. Any
price component o X should instead be included in S.

14.1 Absence of Arbitrage

Our firgt task isto investigate when our model is free d arbitrage, and to this
end we use the First Fundamental Theorem 10.22 and look for a martingale
| measure Q with B as the numeraire. Using the Girsanov Theorem 11.16 we
| define a prospective likelihood process L by

dL(t) = L(t)p*(t) dW(t), (14.5)
L(0)=1, (14.6)

where ¢ is some adapted k-dimensional (column-vector) process, and we recall
from (11.24) that L is given by the Doleans exponential as

10 = (s W) O =ew | [ @ aWs) -3 [ IolF(0)as}.

We now define our candidate martingale measure Q by setting dQ = L(T')dP
on Fr, and from the Girsanov Theorem we know that we can write

dW (t) = p(t) dt + AW (t), (14.7)

where W is a standard Q-Wiener process. Plugging (14.7) into the P-dynamics
(14.3) we obtain the following Q-dynamicsd S:

dS(t) = D[S@®)] [a(t) T o (t)e(t)] dt T D[S(E)] o(t) AW (£). (14.8)

From (10.51) we know that, disregarding integrability problems, Q is a
martingalemeasure if and only if the local rate of return o each asset equalsthe
short rate, i.e. if and only if the equality

a(t) + o(t)e(t) = r(t) (14.9)
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holds with probability one for each t, wherer is defined by

In this equation, which we write as

o(t)e(t) = r(t) — a(?), (14.10)

a,o,and r are given a priori and we want to solvefor ¢. Thus, for each t, and
P-a.s., the n-dimensional vector r(t) — a(t) must bein theimaged the diffusion
matrix o(t) so we have the following result.

Proposition 14.1 A necessary condition for the absence of arbitmge is that
r(t) — a(t) € Im[o(t)] (14.11)

with probability one for eacht. A sufficient condition for absence of arbitrage is
that there exists a process ¢ which solves (14.10) and such that E (¢« W) isa
martingale.

Note that it is not enough for ¢ to solve (14.10). We also need enough integ-
rability to ensure that L is a true martingale (and not just a local one). Hence
the following definition.

Definition14.2 A Girsanov kernel ¢ is said to be admissible if it generates
a martingale measure, i.e. it solves (14.10) and E (¢ *W) is a martingale.

The integrability problem for L will be discussed further beow, & in
Proposition 14.10. However, the main focus will be on egn (14.10) and we will
thus often carry out the arguments "modulo integrability problems”.

Proposition 14.1 is quite general, but it also covers "pathological” models,
such as those where all assets 51,...,85, areidentical. In order not to be dis-
tracted by silly models like that we make the following definition which will
guarantee that the concept o no arbitrage is structurally stable.

Definition 14.3 The model above is said to ke generically arbitrage freeif
it is arbitrage free for every (sufficiently integrable) choice of a.

We then have the following central result.

Proposition 14. 4 Disregarding integrability problems the model is generically
arbitmge freeif and only #f, for eacht < T and P-a.s., the mapping

o(t): R* - R"

is surjective, 4.e. if and only if the volatility matrix e(t) has rank n.
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Fom this result it follows in particular that for absence o arbitrage we must
in the generic case necessarily have n < k, i.e. we must have at least as many
independent Wiener processesaswe haverisky assets. Thisisquite in accordance
with the informal reasoning in the meta-theorem 8.3.1.

We note that the martingale measure equation (14.10) only involves the
S-dynamics, and not the dynamics o the extrafactor process X (if the model
includes such a factor). This is of course because the no arbitrage restrictions
- only concern prices of traded assets.

If our (or the market's) choiced Q isgenerated by the Girsanov kernel ¢, then
the Q-dynamicsd X are of course determined by this Girsanov transformation,
0 we have complete control of the distribution o X under Q. We summarize
thisas a separate result.

Proposition 14.5 Assuming absence d arbitrage, consider a fized martingale
meesure Q generated by ¢, and denote the correspondingQ- Wiener process by W.
Then thefollowing hold:

e The Q-dynamics d S are
dS(t) = r(t)D[S(t)] dt T D[S(t)] o(t) AW (2). (14.12)

- e If the mode contains an extrafactor process X with P-dynamics given by
(14.4), then the Q-dynamics d X are given by

dX(t) = {px(t) + ox (®)e(t)} dt + ox(t) dW(t). (14.13)

14.2 Completeness

We now go on to obtain conditions for the model to be complete, and in order
to avoid pathological cases we assume that the model is generically arbitrage
free. From the Second Fundamental Theorem 10.24, we know that the mode is
complete if and only if the martingale measure is unique, so it is tempting to
draw the conclusion that we have completenessif and only if egn (14.10) has a
unique solution, i.e. if and only if the condition

Ker[o(t)) = {0}, (14.14)

is satisfied for all t and with probability one. Thisis, however, not quite true
and the reason is that, in case of a genera filtered probability space, there is
no guarantee that all equivalent measure transformations are d the Girsanov
type above. In a general situation, where there are other sourcesd randomness
beside the Wiener process W, like say an independent Poisson process N, the
Girsanov transformation above will only change the measure for the Wiener
process, but it will not affect the Poisson process. Thus; even if egn (14.10) has
a unique solution we do not have a unique martingale measure, since we have no
restriction on how we are dlowed to change the measurefor the Poisson process.
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Put into more economic terms it is fairly obviousthat if we consider aclam X
o the type X = ®(N(T)), then it isimpossible to hedge this claim if the asset
pricesare driven by the Wiener process alone.

In order to obtain sharp results we are thereforeforced to make the assump-
tion that all randomness in our modedl is generated by the Wiener process W.
We then have the following basic result.

Proposition 14.6 Assume that the model is generically arbitrage free and that
the filtration £ is defined by _
Fo=FF. (14.15)

Then, disregarding integrability problems, the model is complete if and only if
k = n and the volatility matrix a(t) isinvertible P-a.s. for eacht <T.

Proof From the Conversed the Girsanov Theorem 11.6, we know that under
the assumption that the filtration is the one generated by the Wiener process,
every equivalent measure transformation is obtained by a Girsanov transforma-
tion of the type above. Hence the martingale measureis uniqueif and only if the
solution d the "martingale measure equation™ (14.10) is unique, and this occurs
if and only if o(¢) isinjective, which impliesk < n. Since we have assumed gen-
eric absence d arbitrage, we know that n > k and that o () is surjective. Thus
k =nand o(t) isinvertible.

14.3 Hedging

I'n this section we will discuss the compl etenessquestion from the more concrete
perspective of actually producing hedging strategiesfor an arbitrary T-claim X.
This has independent interest and it will also provide us with a new proof
(within the framework of the present chapter) for the Second Fundamental
Theorem. The advantage o thisalternative proof isthat it is much more concrete
than the rather abstract one givenin Section 10.4. The drawback isthat we only
provide the proof for Wiener driven models, whereas the Second Fundamental
Theorem in fact holdsin much more general situations.
Let us thus again consider the model from (14.3)

dS(t) = D[S(t)] a(t) dt + D [S®)]) o(t) dW (t). (14.16)

Assumption 1431 We assume that the model is generically free of arbitrage,
i.e. that
Im[o(t)] = R", (14.17)

for allt and with probability one. We also assume that the mode! is purely Wiener
driven, i.e. that F, = F}¥.

Since we have assumed absence o arbitrage there exists some (not necessarily
unique) martingale measure and we choose a particular one, denote it by Q and
keep it fixed for the rest of the argument.
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We then choose an arbitrary T-claim X in L*(Q), and the problem is to find
a hedging portfoliofor X. From Lemma10.15 we know that X can be hedged if
and only if the martingale M, defined by

M(t) = E® [—';(% -7'-t:l : (14.18)
admitsdynamicsdf the form
dM(t) = h(t)dZ(¢), (14.19)

where as usua Z = S/B, and where h is an adapted (row vector) process
~in R". Given our assumption o a purely Wiener driven system it follows from

the Martingale Representation Theorem 11.2 that there exists an adapted
k-dimensiona (row vector) process g such that

FAg

dM(t) = g(t) dW (). (14.20)

Ontheother hand, sincethe Z processisa (local) martingale under Q, it follows
eadly from It6 that the Q-dynamicsare given by

dZ(t) = D|[Z(t)] o(t)dW (2). (14.21)
Plugging (14.21) into (14.19) gives us
dM(t) = h(t)D [Z(t)] o(t) dW (t). - (14.22)

Comparing (14.22) with (14.20) we see that we can hedge X if and only if we
can solve (at each t and for every w) the equation

h)D[Z(B)] o(t) = 9(2),
or, alternatively the equation
o*(t)D [Z(t)] h* (1) = g* (1). (14.23)

In thisequation, g isgenerated by the claim X and wewant to solve the equation
for h. Since D [Z(t)] is nondegenerate diagonal, the equation can be solved if and
only if

g*(t) € Im[o*(t)],
and we have the following result.

Proposition 14.7 Under Assumption 14.3.1 the modd is completeif and only if

Im[a*(t)] = RF. (14.24)
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If the modd is complete then, using the notation & Chapter 10, the replicating
portfolio [hg, hs] is given by

hs(t) = g(t)o~ () D [2(2)], (14.25)
ho(t) = M(t) — h(t)Z(2). (14.26)
Proof Followsimmediately from Lemma10.15. O

Note that D=1 [Z(t)] is just a diagona matrix with Z;1(t),...,Z;(t) on
the diagonal.

We can now easily provide an alternative proof of arestricted version o the
Second Fundamental Theorem.

Theorem 14.8 (The Second Fundamental Theorem) Under Assumption
14.8.1 the modd is complete if and only if the martingale measure is unique.

Proof Using Proposition 14.7 and the standard duality result
{Im [a*(®)]}* = Ker [o(2)]
we see that the model is completeif and only if
Ker[o(t)] = {0}. (14.27)

This is, however, precisaly the condition for the uniqueness o the martingale
measure obtained earlier. O

It isinstructive to compare these duality arguments with those given in the
simple setting o Chapter 3, and in particular to the proof d Theorem 3.10,
to see how much o the structure is carried over from the simple one period
model to the present general setting. From the discussion above we see that the
"martingale measure equation” (14.10) and the "hedging equation” (14.23) are
adjoint equations. Thus absence d arbitrage and completeness are truly dual
concepts from a functional analytical point o view.

14.4 Pricing

Assuming absence o arbitrage, the general pricing formulais, as aways, given
by the risk neutral valuation formula

I(t; X) = e "T-DEQ [ X]| Fy), (14.28)

where Q is some choice df martingale measure, where the Q-dynamicsd S are
given by
dS(t) = D[S(®)]r(t)dt T D [S(®)] o(t) dWR (1), (14.29)

and where W< is Q-Wiener.
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14.5 Markovian Models and PDEs

- We now apply the martingale approach to the Markovian model discussed in
the previouschapter. Thus we again introduce Assumption 13.1.1, i.e. we assume
that k = n, that the vector of returns o« as well as the volatility matrix a are
deterministic and constant over time, that ais invertible and that the filtration
is the one generated by the Wiener process. Thus S will be a Markov process.
The genera pricing formulais, as always,

O X) =e "TYEQ[X| F], (14.30)
where the Q-dynamics of Sare given by
dS(t) = D[S(t)]rdt+ D [S(t)] o dW (t).

If we now assume that X isasinge claim, i.e. of form X = @ (§(T")), then,
snce Sis Markovian we have

e TTVEQ (x| F] = e " T-YEQ[X| S(t)],

and thus (exactly why?) the pricing process must be of the form II(t; X) =
F(t, S(t)) for some pricing function F. We can then apply the Kolmogorov back-
ward equation to the expectation above and we immediately see that the pricing
function must solve the PDE

Fi(t,s)+ 3 rs:Fi(t,s) + %tr {0* D[S|F.s D[]0} — rF(t,s) = 0,
i=1
F(T,s) =®(s).
(14.31)
We have thus recovered our old pricing result from Theorem 13.1.
Turning to hedging, we know from the uniqueness of the martingale measure
that the market is complete, and thus that there exists a hedging portfolio h =
(ho, h1,...,hy). The value process dynamics are of course given by

AV (t; h) = ho(t) dB(t) + z": hi(t) dSi(t),
=1

but we also have V'(t; h) = F(t, S(t)) where F solvesthe PDE above. Applying
the 1t6 formula, this gives us

V(t;h) = ZF(t S(t)) dS;(t) + (second-order terms)dit.

i=1
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Comparing these two equations we can identify hy,...,k, from the dS; terms
and we see that the hedging portfoliois given by

hi(t) = 9-5 -(6S@), i=1...m, (14.32)

holt) = 7 ‘{F(t S(t)) - gg t, S(t))S(t)} (14.33)

i=1

If we expressthe portfolioin terms o relative weights, this will once again give
us the hedge o Theorem 13.7.

14.6 Market Prices of Risk

Going back to the general model o Section 14.1 let us assume that the mode
is generically free o arbitrage possibilities, then we know that the "martingale
measure equation”

o(t)e(t) =r(t) — aft), (14.34)
always possesses a (not necessarily unique) solution ¢ = (@1, ..., @k)*, Where
@ isthe Girsanov kernd used in the transition from P to Q. If we now define
the vector process A by A = —yp, then we can write (14.34) as

a(t) — £(t) = a(t)A@E), (14.35)

and on component form this becomes

k

o;(t) — r(t) = 2 oii(tA(t), i=1,...,n. (14.36)
1=

As in the smpler setting o Section 13.2 we have an economic interpretation
of this equation. On the left-hand side we have the excess rate of return over
the risk free rate for asset No. i, and on the right-hand side we have a linear
combination o the volatilitiesa;; of asset No. i with respect to the individual
Wiener proch, .., Wi. Thus A; isthe "factor loading” for the individual
risk factor W;, and this object is often referred to as the "market price d risk
for risk factor No. j”. Roughly speaking one can then say that A; gives us a
measure o the aggregate risk aversion in the market towardsrisk factor No. j.
The main point to notice here isthat the same A is used for all assets. We can
summarize the situation as follows:

e Under absence of arbitrage there will exist a market price d risk vector
process A satisfying (14.35).
e The market priced risk A isrelated to the Girsanov kernd ¢ through

o(t) = —A(t).
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a In a complete market the market price o risk, or aternatively the
martingale measure Q, is uniquely determined and there is thus a unique
price for every derivative.

L a Inanincompletemarket there are several possiblemarket pricesd risk pro-
ceses and several possible martingale measures, all o which are consistent
with no arbitrage.

. a Inanincomplete market, ¢, A, and Q are thus not determined by absence
d arbitrage alone. Instead they will be determined by supply and demand

. ontheactual market, i.e. by the agents on the market.

14.7 Stochastic Discount Factors

Condder again the model in Section 14.1, assume absence o arbitrage, and
¥ choose a fixed martingale measure Q with corresponding Girsanov kernel ¢. In
f Section 10.6 we defined the stochastic discount factor A by

A(t) = e~ D& da 4y,

ki where L is the likelihood process for the measure transformation from Pto Q.
| In the special case of a Wiener driven model we can compute L explicitly as

Lit)=E(pxW) (1) = elo ©"(©) AW (e)-3 [ lio(e)|* ds

20 in this model we have an explicit expression for A as

A(t) = et ©* @ W ()= 4 [ {lle(@)+r()} o (14.37)

we can of course also express A in terms of the market price o risk processas

A(t) = e Jo X @ W (-} [G{IM@I* +r()} ds. (14.38)
14.8 The Hansen-Jagannathan Bounds
| Asume that we have generic absence o arbitrage, i.e. that o(t) is surjective, so

 the martingale measure equation

o(t)p(t) = r(t) — a(t), (14.39)

dways possessesa solution. As noted above, thisisnot enough to ensure absence
E of arbitrage, since we must also have a guarantee that there exists an admissible
§ solution ¢, i.e. a ¢ such that the induced likelihood process L = £(p x W) is
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a true martingale (and not just a local one). Recalling, from Lemma 11.5, the

Novikov condition T
EPexp (% / ||¢(t)||2dt) <o,
0

it isthen natural tolook for a solution ¢ to (14.39) with minimal Euclidian norm
at every t.
We recall the following result from elementary linear algebra.

Proposition 14.9 Assume that the n X k matrix A is surjective as a mapping
A: RF — R". For any y € R", consider the optimization problem

: 2
min ||z
min [z]?,
s.t. Az =y.

Then the following hold:
e A* isinjective and A*A isinvertible.
e The unique optimal solution of the minimum norm problemis given by
&= (A*A)7! Ay (14.40)

Proof Left tothereader as an exercise. O

From this we have the following obvious result.
Proposition 14.10 Assume that the volatility matrix a(t) is surjective P-a.s.
for all t. Then the process ¢ defined by
¢ = [o*o] " o* [r - q], (14.41)

has the property that,
e < lle@)l (14.42)

for all t and for every ¢ which satisfies (14.39). If in particular ¢ satisfies the
Novikov condition, then the model is free of arbitrage.

We may d course usethe correspondencel = —¢ between the Girsanov kerndl ¢
and the market price df risk A to formulate a parallel result for market prices o
risk. we define the minimal market price d risk processas

A=[o*0] to* [a-1], (14.43)

and we have the inequality )
AN < A
for all admissible A,
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. These simple facts are more or less the essence o what in discrete time
E asdt pricing is known as the "Hansen-Jagannathan bounds® (see the Notes).
¥ To obtain these bounds we consider the price process n(t) o any asset in the
. modd (underlyingor derivative), write its P-dynamics on the form

dm(t) = m(t)ax (t) dt + w(t)o. (1) AW ()

j and defineits Sharpe Ratio process by the expression

an(t) = r(t)
llox (Ol

| Denoting the P-variance by Var” we have the informal interpretation

llox(t))? dt = Var® [dn(t) /7 (t)| F:]

so the Sharpe Ratio gives us the conditional mean excess rate d return per unit
d total volatility.

] We now have the following simple but interesting result.

' Proposition 14.11( The Hansen-Jagannathan Bounds) Assume generic

asence d arbitrage and define A by (14.43). Then thefollowing holdsfor all
} assets, underlying or derivative, and for all admissible market prices o risk A.

Qo (t) — T(t)
llo= (@)1l

Proof The second inequality is already proved so we only have to prove the
fird. Fx any A generating a martingale measure. We then have

or()A(E) = ax(t) - 7(t),

<A@ < @) (14.44)

S0

ag(t) = 7() = _on(t)
lox®@ fox@i "

't and from the Cauchy—-Schwartzinequality in finite dimensional space we obtain

an(t) —r(t) ox(t)
= -IA@& = IX@)|)-
llox ()} el AN = Ix®l
? Since this holds for every A, it holdsin particular for ). O

We can now connect this result to the stochastic discount factor A by noting
that, for our model class, the dynamics of A are given by

dA(t) = —r(®)A(t) dt T A(t)p* (t) dW (), (14.45)
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or dternatively
dA(t) = —r(t)A(t) dt — A(E)A* () AW (2). (14.46)

A (and ) also has the interpretation as the volatility vector o the stochastic
discount factor. The point d this from an economic perspectiveis that we can
either view the Hansen-Jagannathan bounds as a lower bound for the stochastic
discount factor volatility for a given (observed) Sharpe retio, or as an upper
bound on the Sharpe ratio for a given (observed) stochastic discount factor
voletility.

14.9 Exercises
Exercise 14.1 Derive (14.46).

Exercise 14.2 Assume generic absenced arbitrage and prove that any market
price d risk process A generating a martingale measure must be o the form

M) = A@) + w(®),

where u(t) is orthogonal to the rows o o(t) for al t.

14.10 Notes

The resultsin this chapter arefairly standard. The Hansen-Jagannathan bounds
were first derived (in discrete time) in Hansen and Jagannathan (1991). They
have since then become the subject o a large literature. See the recent text-
book Cochrane (2001) for an expositiond (mostly discretetime) asset pricing,
including a detailed discussion d the discrete time HJ bounds, connections to
the "equity premium puzzle" and an extensive bibliography on the subject.

IR VTR PR e




RNV ]

15
INCOMPLETE MARKETS

151 Introduction

| n thischapter wewill investigate someaspects o derivativepricinginincomplete
- markets. We know from the meta-theorem that markets generically are incom-
plete when there are more random sources than there are traded-assets, and
| this can occur in an infinite number of ways, so there is no "canonica" way
I d writing down a model o an incomplete market. We will confine ourselvesto
. Study a particular type of incomplete market, namely a "factor model”, i.e. a
I market where there are some nontraded underlying objects. Before we go on to
| the formal description of the models let us briefly recall what we may expect in
. an incomplete model.

e Since, by assumption, the market isincompletewe will not be ableto hedge
a generic contingent claim.
e In particular there will not be a unique price for a generic derivative.

15.2 A Scalar Nonpriced Underlying Asset

We will start by studying the simplest possible incomplete market, namely a
market where the only randomness comes from a scalar stochastic processwhich
isnot the price o a traded asset. We will then discuss the problemswhich arise
| when we want to price derivatives which are written in terms o the underlying
" object. The model is as follows.

Assumption 1521 The only objects which are a priori given are the
Jollowing:
e An empirically observable stochastic process X, which is not assumed to
ke the price process of a traded asset, with P-dynamics given by
dX(£) = p (1, X (1) dt T o (t.X(2)) dW (1). (15.1)

Here W is a standard scalar P-Wiener process.
e A risk free asset (money account) with the dynamics

dB(t) = rB(t) dt, (15.2)

[ | where r as usual is the deterministic short rate of interest.

We now consider a given contingent claim, written in terms o the process X .
More specifically we define the T-claim Y by

Y =o(X(T)), (15.3)
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where ® is some given deterministic function, and our main problem is that o
studying the price process II(¢; V) for this claim.

In order to give some substance to the discussion, and to understand the
difference between the present setting and that o the previous chapters, let us
consider a specific concrete, interpretation o the model. We may, for example,
interpret the process X as the temperature at some specific point on the earth,
say the end of the Palace Pier in Brighton. Thus X (¢) is the temperature (in
centigrade) at time t at the Palace Pier. Suppose now that you want to go to
Brighton for a holiday, but that you fear that it will be unpleasantly cold at
the particular time T when you visit Brighton. Then it may be wise to buy
"holiday insurance”, i.e. a contract which pays you a certain amount d money
if the weather is unpleasant at a grespecified timein a prespecified place. If the
monetary unit is the pound sterling, the contract function ¢ above may have

the form
100, if z <20,
(=) = {o, if 7> 20.

In other words, if the temperature at time T is below 20°C (degrees centigrade)
you will obtain 100 pounds from the insurance company, whereas you will get
nothing if the temperature exceeds 20°C.

The problem is now that o finding a "reasonable" price for the contract
above, and as usual we interpret the word "reasonable” in the sense that there
should be no arbitrage possibilitiesif we are dlowed to trade the contract. This
last sentence contains a hidden assumption which we now formalize.

Assumption 15.2.2 Thereis a liquid marketfor every contingent claim.

If we compare this model with the standard Black—Scholes model, we see many
similarities. In both cases we have the money account B, and in both cases
we have an a priori given underlying process. For the Black—Scholes model the
underlying process is the stock price S, whereas we now have the underlying
process X , and in both modelsthe claim to be priced isa deterministic function ®
o the underlying process, evaluated at time T.

Inview of thesesimilaritiesit is now natural to assumethat the results from
the Black—Scholes analysis will carry over to the present case, i.e. we are (per-
haps) led to believe that the price processfor the clam Y is uniquely determined
by the P-dynamics o the underlying process X. It is, however, very important
to understand that thisis, most emphatically, not the case, and the reasonsare
as follows:

1. If weconsider the a priori given market, which only consistsof the money
account B, we see that the number R o random sources in this case
equals one (one driving Wiener process), while the number M o traded
assets (always excluding the money account B) equals zero. From the
meta-theorem it now follows that the market is incomplete. The incom-
pleteness can also be seen from the obviousfact that in the a priori given
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- market there are no interesting ways d forming sdf-financing portfolios.
The only strategy that is dlowed is to invest all our money in the bank,
and then we can only sit down and passively watch our money grow at
therater. In particular we have no possibility to replicate any interesting
derivative d the form @ (X (T')). We thus conclude that, since we cannot
replicate our claim, we cannot expect to obtain a unique arbitrage free
price process.

2. One natural strategy to follow in order to obtain a unique price for
the clam X is d course to imitate the scheme for the Black—Scholes
model. We would assume that the price process II(; Y) is d the form
II(¢; V) = F(t, X(t)), and then we would form a portfolio based on the
derivative F and the underlying X. Choosing the portfolio weights such
that the portfolio has no driving Wiener process would give us a riskless
asset, the rate o return on which would have to equal the short rater,
and thislast equality would finally have the form o a PDE for the pricing
function F. This approach is, however, completely nonsensical, since in
the present setting the process X is (by assumption) not the price of a
traded asset, and thusit is meaninglessto talk about a "portfolio based
on X". In our concrete interpretation this is eminently clear. Obvioudy
you can buy any number of insurance contracts and put them in your
portfolio, but it is also obvious that you cannot meaningfully add, e.g.
15°C to that portfolio.

I We can summarize the situation as follows:

. o The price d a particular derivativewill not,be completely determined by
" the specification (15.1) o the X-dynamics and the requirement that the
market [B(t),II(¢; )] isfree o arbitrage.
e Thereason for thisfact isthat arbitrage pricing is alwaysacased pricing
aderivativein ter msof the priced some underlying assets. In our market
{ we do not have sufficiently many underlying assets.

! Thus we will not obtain a unique price d a particular derivative. This fact

" does not mean, however, that prices d various derivatives can take any form
whatsoever. From the discussion above we see that the reason for the incom-
pleteness is that we do not have enough underlying assets, so if we adjoin
one more asset to the market, without introducing any new Wiener processes,

’ then we expect the market to be complete. This idea can be expressed in the
following ways.

Idea 15.2.1

e We cannot say anything about the price of any particular derivative.

e Therequirement o an arbitrage free derivative market impliesthat prices
of different derivatives (i.e. claims with different contract functions
or different times o expiration) will have to satisfy certain internal
consistency relations in order to avoid arbitrage possibilities on the
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bond market. In terms d our concrete interpretation this meansthat even
if we are unable to produce a unique price for a fixed weather insurance
contract, say the “20°C contract"

100, if z < 20,
ﬂ”_ﬂx if z > 20,

for the fixed date T, there must be internal consistency requirements §
between the price of this contract and the price o the following “25°C 1

contract"
100, if z <25,

F“)={m if z > 25,

with some expiration date T' (whered course we may have T =T').
e Inparticular, if wetake the priced one particular "benchmark” derivative |
as a priori given, then the pricesd al other derivatives will be uniquely
determined by the price d the benchmark. Thisfact isin complete agree-
ment with the meta-theorem, sincein an a priori given market consistingd
one benchmark derivative plusthe risk free asset we will have R=M =1,
thus guaranteeing completeness. In our concrete interpretation we expect
that the pricesd all insurance contracts should be determined by the price §
o any fixed benchmark contract. If, for example, we choose the 20°C con-
tract above as our benchmark, and take its price as given, then we expect
the 25°C contract to be priced uniquely in terms o the benchmark price.

To put these ideas into action we now take as given two fixed T-claims, Y
and 2, of the form

Y =2(X(T)),

Z =T(X(T)),
where® and I' are givendeterministic real valued functions. The project istofind
out how the pricesd thesetwo derivativesmust be related to each other in order
to avoid arbitrage possibilitieson the derivative market. Asaboveweassumethat

the contracts are traded on a frictionless market, and as in the Black—Scholes
analysis we make an assumption about the structure o the price processes.

Assumption 15.2.3 We assume that
e thereis a liquid, frictionless market for each of the contingent claims Y
and 2.
e the market prices of the claims are of the form
I(; Y) = F (t, X(1),
II(t; 2) = G (¢, X (1)),

where F and G are smooth real valued functions.
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We now proceed exactly as in the Black—Scholes case. We form a portfolio
based on F and G, and choose the weights so as to make the portfolio locally
riskless. The rate of return d this riskless portfolio has to equal the short rate

. d interest, and this relation will give us some kind o equation, which we then
1 haveto analyze in detail.

From the assumption above, the Ité formula, and the X-dynamics we obtain

 the following price dynamics for the price processes F(t, X (t)) and G(t, X (t)).

dF = apFdttopFdW, (15.4)
dG = agGdt + oG dW. (15.5)
Here the processes ar and o are given by
_ FytuF, 1 10%F,,
ap — E ,
op= e
F — F ,
and correspondingly for ag and og. As usua we have suppressed most
arguments, so in more detail we have, e.g.

WFs = u(t, X (D) 20 (6 X (1)

We now form a self-financing portfolio based on F and G, with portfolio
weights denoted by ur and ug, respectively. According to (6.13), the portfolio
dynamics are given by

dF
dV=V{uF-—F—+uG-%}’
and using the expressions above we get
dV =V {up-ar +ug-ag} dt+V {ur-or +ug-og} dW. (15.6)

In order to make this portfolio localy riskless we must choose ur and ug such

that up - op + ug . o0 = 0, and we must also remember that they must add
to unity. Thus we define up and ug as the solution to the following system of
equations.

ur +ug =1,
up -0 +ug - o0g = 0.
The solution to this system is given by
-0
uﬁ: = —G.,
OF —0qg
OF
ug =

oF — oG’
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‘ We now proceed exactly as in the Black—Scholes case. We form a portfolio
based on F and G, and choose the weights so as to make the portfolio locally
. riskless. Therate d return d this riskless portfolio has to equal the short rate

- o interest, and this relation will give us some kind o equation, which we then
have to analyze in detail.

From the assumption above, the 116 formula, and the X-dynamicswe obtain
the following price dynamics for the price processes F(t, X (t)) and G(t, X (t)).

dF = apFdt + opF dW, (15.4)

dG = agGdt + oG daw. (15.5)

Here the processes ar and or are given by

_ F; +[I/Fz + %O'ZFI:E
afp = F )
oF,
F ¥
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arguments, so in more detail we have, e.g.

oF =

Wy = (t, X (D) 20 (X (1)

We now form a self-financing portfolio based on F' and G, with portfolio
weights denoted by ur and ug, respectively. According to (6.13), the portfolio
dynamics are given by

dF dG}

dV=V{uF-—F;-+ug-—E

and using the expressions above we get
dV =V {ur-ar +ug-ag} dt +V {up-or + ug -og} dW. (15.6)

In order to make this portfolio locally riskless we must choose ur and ug such
that up .or T ug - 6¢ = 0, and we must also remember that they must add
to unity. Thus we define ur and ug as the solution to the following system of
equations.

up +ug =1,
up o +ug-og=0.
The solution to this system is given by
Ugp = —<y
OF —0@g
OF
ug =

oF —0g’




i

210 INCOMPLETE MARKETS

and inserting this into the portfolio dynamicsequation (15.6) gives us

dV=v-{°‘G"’F‘°‘F"’G}dt.
OF —O0G

We have thus created a locally riskless asset, so using Proposition 7.6, absence
o arbitrage must imply the equation

aG-9F —ar-9¢ _
oF —0g '

After some reshuffling we can rewrite this equation as

ap—r ag-—rT
oF o

The important fact to notice about this equation isthat the left-hand side does
not depend on the choice o G, while the right-hand side does not depend upon
the choiced F. The common quotient will thus depend neither on the choice
o F nor on the choice o G, and we have proved the following central result.

Proposition 15.1 Assume that the market for derivativesis free d arbitrage.
Then there exists a universal process A(t) such that, with probability 1, and for
al t, we have
ar(t)—r
or(t)

regardless d the specific choice d the derivative F .

= A1), (15.7)

There is a natural economic interpretation o this result, and o the process A.
In eqn (15.7) the numerator is given by arp — r, and from (15.4) we recognize

ag asthe local mean rate o return on the derivative F. The numerator ag — |
isthusthelocal mean excessreturn on the derivativeF over the riskless rate of
returnr, i.e. therisk premiumd F. In the denominator wefind the volatility o
of the F process, so we see that A has the dimension "risk premium per unit o
volatility”. This is a concept wdl known from CAPM theory, so A is commonly
called "the market price of risk". Proposition 15.1 can now be formulated in the
following, slightly more flashy, form:

e Inanoarbitrage market all derivativeswill, regardlessdf the specificchoice
o contract function, have the same market price o risk.

We can obtain more explicit information from egn (15.7) by substituting our
earlier formulasfor ap and oF into it. After some algebraic manipulations we
then end up with the following PDE.

Fet{p— xu)F, t+ 162Fpp —rF = 0.
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Thisis really shorthand notation for an equation which must hold with probab-
ility 1, for each t, when all terms are evaluated at the point (t, X(¢)). Assuming
L for the moment that the support o X isthe entire real line, we can then draw
the conclusionthat the equation must also hold identically when we evaluate it
a an arbitrary deterministic point (t,x). Furthermore it is clear that we must
have the boundary condition

F(T,z) =®(), WXER,

0 we finally end up with the following result.

Proposition 15.2 (Pricing equation) Assuming absence d arbitrage, the
pricing function F(t,z) d the T-claim ®(X(T)) solves thefollowing boundary
value problem.

Fi(t,z) + AF(t,z) —rF(t,z) =0, (t,z)€(0,T)x R, (15.8)
F(T,z)=®(z), x€R, (15.9)

where
AF(t,7) = {u(t, ) — A, 2)0(t,2)} Fa(t,2) + 36%(t,2) Fua(t, 2).

At first glancethis result may seem to contradict the mora presented above.
We have stressed earlier the fact that, because o the incompleteness of the
market, there will be no unique arbitrage free price for a particular derivative.
In Proposition 15.2, on the other hand, we seem to have arrived at a PDE
which, when solved, will give us precisely the unique pricing function for any
smple claim. Thesolution to this conundrum is that the pricing equation above
is indeed very nice, but in order to solve it we have to know the short rate of
interest r, as wel as the functions u(t,x), o(t, z), ®(z), and A(t,Xx). Of these,
only r, u(t,x), o(t,x), and ®(z) are specified exogenoudy. The market price of
risk A, on the contrary, is not specified within the model. We can now make
ldea 15.2.1 above more precise.

Firstly we see that, even though we cannot determine a unique price for a
particular derivative, pricesd different derivativesmust satisfy internal consist-
ency requirements. This requirement isformulated precisely in Proposition 15.1,
which saysthat all derivatives must have the same market price of risk. Thus, if
we consider two different derivative assets with price processes F and G, these
may have completely different local mean rates o return (er and ag), and they
may also have completely diierent volatilities(or and o¢). Theconsistency rela-
tion which has to be satisfied in order to avoid arbitrage between the derivatives
isthat, at all times, the quotient

ap —T

OF
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must equal
o —T
o

Secondly, let us assume that we take the price process o one particular
derivative as given. To be concrete let us fix the "benchmark” claim I'(X(T))
above and assume that the pricing function G(t,x), for I'(X(T)), is specified
exogenoudy. Then we can compute the market price d risk by the formula

aG(t’ .'l?) -r

At 2) = oc(t, )

(15.10)

Let us then consider an arbitrary pricing function, say the function F for the
claim ®(X(T)). Since the market price of risk isthe same for all derivativeswe
may now take the expression for A obtained from (15.10) and insert this into
the pricing equation (15.8)-(15.9) for the function F. Now everything in this |
equation is well specified, so we can (in principle) solveit, in order toobtain F. |
Thuswe see that the price F o an arbitrary claimisindeed uniquely determined
by the price G o any exogenously specified benchmark claim.

We can obtain more information from the pricing equation by applying the

Feynman-Ka¢ representation. The result can be read of immediately and is as
follows.

Proposition 15.3 (Risk neutral valuation) Assuming absence of arbitrage,
the pricing function F(t,X) of the T-claim ®(X(T)) is given by the formula

F(t,z) = e "T9EZ [8(X(T))], (15.11)
where the dynamics of X under the martingale measure Q are given by
dX () = {ut, X(@) — A({t, X))o (t, X (£))} dt + o (t, X (2)) dW (2).

Here W is a Q-Wiener process, and the subscripts ¢,z indicate as usual that
X(#)=x.

Again we have an "explicit” risk neutral valuation formula for the pricing func-
tion. The arbitrage free price o the claim is given as the discounted value o the
mathematical expectation of the future claim. As before the expectation is, how-
ever, not to be taken under the objective measure P, but under the martingale
("risk adjusted") measure Q. Note that there is a one-to-one correspondence
between the martingale measure and the market price of risk. Thus, choosing a
particular A isequivalent to choosing a particular Q. The characterization of Q
is just the same asin Proposition 13.3. The proof isleft to the reader.
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1 Proposition 15.4 The martingale measure Q is characterized by any d the
following equivalent facts:

e Thelocal mean rate d return d any derivative price processII(t) equasthe
short rate d interest, i.e. the II(t)-dynamics have thefollowing structural
form under Q

dII(t) = rII(¢) dt T op(¢)TI(E)dW (¢),
where W is a Q- Wiener process, and oy is the same under Q as under P.

o With IT as aove, the process II(t)/B(t) is a Q-martingale, i.e. it has a
zero drift term.

| As for the pricing equation above, we have to know A in order to compute

1 the expected value in the risk neutral valuation formula. Thus, in the present

context, and in contrast to the Black—Scholes case, the martingale measure Q is

! not (generically) determined within the model.

It isinstructive to see how the standard Black—Scholes model can be inter-
preted within the present model. Let us therefore assume, in contrast to our
earlier assumptions, that X isin fact the price of a stock in a Black—Scholes
model. This of course means that the P-dynamics o X are given by

[ dX = aGdt + oG dW,

for some constants aand o. Thus, in terms o the notation in (15.1), p(t,X) =
X-aando(t,x) = z-o0. Our project isstill that o finding the arbitrage free price
for the claim ®(X(T')), and to this end we follow the arguments given above,
which o course are still valid, and try to find a suitable benchmark claim1? In
the present setting we can make a particularly clever choiced I'(X (T')), and in
fact we define the claim by

T(X(T)) = X(T).

Thisis the claim which at time T gives us exactly one share o the underlying
stock, and the point isthat the price process G(t, X (¢)) for thisclaim is particu-

t  larly ssimple. We havein fact G(t, X (t)) = X (t), the reason being that the clam
can be trivialy replicated using a buy-and-hold strategy which consists o one
unit of the stock itself. Note that for this argument to hold we use critically our
new assumption that X really is the priced a traded asset. Using the identity
dG =dX we now trivially obtain the G-dynamics as

dG =aXdt+oX dW.

Thus, in terms of our earlier discussion we have ag(t, ) = aand og(t, z) = 0.
We can now determine the market price of risk as
T a—T

ag —
/\(t’w)=—_a?;_= P

and the point to note is that, because o our tradability assumption, A is now
determined within the model. We now go on to the pricing PDE, into which we
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substitute A given as above. Thecritical part, AF, o the PDE now becomes
AF(t,z) = {u(t,x) — ME, x)o(t, 2)} Fu(t,z) + %az(t, z)Fpe(t, )
= {aw _e7r. ax} F; + %w2d2Fm
g

=rzF; + %xzasz,

so we end up (asexpected) with the Black—Scholes equation
F,treF, + %wzasz -rF =0,
F(T, .T) = (D(.'E),

and in the risk neutral valuation formula we will get the old Black—Scholes
Q-dynamics
dX =rXdt+ocXdW.

15.3 The Multidimensional Case
We will now go on to study pricing in a model with more than one nonpriced
underlying asset. The modd isas follows.
Assumption 1531 The only objects which are a priori given are the
following.

e An empiricaly observable k-dimensional stochastic process

X =(Xy,...,Xe),

which is not assumed to te the price process d a traded asset, with
P-dynamics given Ly

dX;(t) = pi (8, X(8)) dt T & (1, X (&) dW(t), i=1. .k (1512
whereW = (W,..., W, )* isastandard n-dimensional P-Wiener process.
e A riskfree asset (money account) with the dynamics
dB(t) = rB(t) dt. (15.13)
Theobject istofind an arbitragefreeprice processfor a T-claim Y of theform
Y = $(X(T)).
Drawing on our experiences from the previous two sections we expect the

following:
e We cannot say anything precise about the price processd any particular
contingent claim.
e Different claims will, however, have to satisfy certain internal consistency
requirements in order to avoid arbitrage on the derivative market.
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e More precisdy, since we now have n sources d randomness we can (gen-

= erically) specify the price processes o n different "benchmark” claims.

v The price processes o all other claims will then be uniquely determined
. by the prices d the benchmarks.

v As usual we assume that there is a liquid market for all contingent claims,
and in order to usethe ideas abovewe fix exactly n clams i, ..., Y, o theform

Vi=®;(t,X(T)), i=1,...,n

| e furthermore assume that the price processes, [II!(t),...,II"(t)], for these
damsexist, and that they are o the form

() = Fi(t, X (t)), i=1,...,n.

Remark 15.3.1 Notethat we use superscripts to distinguish between the vari-
| ous pricing functions. Thisisdonein order to dlow usto use subscripts to denote
partial derivatives.

These claims are our "benchmarks", and we now study the claim
Y = 9(X(T))
above, the price of which isassumed to have the form
I(t) = F(t, X(1)).

Using the same notational conventionsasin Section 13.2, the price dynamics
o the various derivatives are given by

dF = apFdt T opFdW,
dFi = g, Fidt + o, F'dW, i=1,...,n,

where
o= FEF e ’“}Jr b {mm i3 (15.14)
0; = &ﬁf—"s’ (15.15)
o B >k Fj#; + i (9" Fueb) (15.16)
op = gcillaﬂ‘si (15.17)
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We can now follow the reasoning of Section 13.2 word-for-word. To
recapitulate, we form a salf-financing portfolio based on the price processes
[B,FF1,...,F"]. Wethen choose the weightsso as to make the portfoliolocally
riskless, and finally we try to "beat the bank™" by forcing the portfolioto havea
higher rate o return than the short rater.

The conclusion will once again be that, in order to have an arbitrage free
market, the matrix

Q) —7T o1

H* = 5 ; (15.18)
Qn —T Op
ap —1r OF

must besingular (recall that ¢; isarow vector). Assuming that the n x n matrix

o1

On

is invertible (with probability 1 for each t) we thus deduce the existence d
multiplier processes A1 (t, X(t)), ..., Ax(t, X (¢)) such that

n
a.,;—'l‘=E Uij/\j, i=1,...,n,
=1

and

n
ap—r=)Y_oF;\. (15.19)
=1

Sincethe claim ®(X (T')) was chosen arbitrarily we seethat the risk premium,
ap — I, o any asset can be written as a linear combination d the volétility
components, or;, of the asset, the important point being that the multipliers |
are the same for al assets. The vector process A(t, X(t)) is (see Sections 132
and 15.2) known as the market price (vector) of risk (cf. CAPM), and we
see that the individual component A; has the dimension "risk premium per unit
of j-type volatility".

Using the notational conventions of Section 13.2, the A-vector is determined
by the equation

a—rl, =0,

ie.
A=o"1[a-T1l]]. (15.20)
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Thisis precisely eqn (13.15), but in the present setting the volatility matrix a
b and the vector o returns « are no longer given a priori, so A is not determined
= within the modedl. We can summarizethis as follows

a If the derivativesare traded in a no arbitrage market, then there will exist
a market price of risk vector which is the same for all assets.

| 1 a The market price of risk is not determined within the a priori specified
modd.

a If we exogenoudly specify the prices d any n assets such that the corres-
ponding volatility matrix process a is honsingular with probability 1 for
al t, then the market price o risk will be uniquely determined by this spe-
cification and by egn (15.20). Thus all derivativeswill be priced in terms
of the benchmark prices.

' Note that we can choosethe (smooth) benchmark pricing functions abovein
 any way whatsoever, subject only to the following conditions:

a The boundary conditions Fi(T,x) = ®;(z),i =1,...,n are satisfied.
a The volatility matrix o(t,x) isinvertiblefor all (t,x).

Thefirst condition isobvious. The second isthe mathematical formulationd the
requirement that the family of benchmark derivativesis rich enough to span the
entire space o derivatives.

We can easily obtain a PDE for derivative pricing, by writing out egn (15.19)
b indetail. Using (15.16)—(15.17) weobtain, after somesimplification,thefollowing
- result.

| Proposition 15.5 (Pricing equation) If the market is arbitragefree, then the
arbitrage free price processII(¢; ®) is given by II(¢; ®) = F(t, X(t)), where F
lves the boundary value problem

k n
1
F + ; (Hi — j=21(5ij)\j) F, + -2-t1‘ {5*F;m-5} —rF =0,
F(T,z) = ®(z),
where A1, ..., A\, are universal in the sense that they do not depend on the specific

choice d derivative.

A standard application of the Feynman—Kaé techniquegivesusa risk neutral
valuation formula.

Proposition 15.6 (Risk neutral valuation) If the market is arbitrage free,
then there exists a martingale measure Q, such that the pricing function F in
the proposition above can ke represented as

F(t,z) = e "TYE2 [8(X(T))], (15.21)

xT
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where the Q-dynamics of the process X are given by
dX* = {u; — A} dt + 6, dW, i=1,... k.

where Aq,...,A areuniversal.
We have the usual characterization o the martingale measure Q.
Proposition 15.7 The martingale measure Q has the following properties.

1. Under Q every price process I (t),ke it underlying or derivative, has the |
risk neutral valuation property

O =e"TYEZ [(T)]

2. Under Q every price process IT (t) ,be it underlying or derivative, has the |
short rate of interest asitslocal rate of return, i.e. the Q-dynamics are o
the form

dIT (t)= I (t)dt + I (o (t)AW,

where the volatility vector oy isthe same under Q as under P.
3. Under Q every price processII(t),beit underlying or derivative, has the
property that the normalized price process

I (¢)
B(t)

is a martingale, i.e. it has a vanishing drift coefficient.

Remark 15.3.2 The model formulation above aso includes the case when
some, or all, o the X-components, say Xi,...,Xn, are traded assets (e.g. exo-
genously given stock prices), whereas the remaining components (if any) are |,
nontraded state variables. As a special case we see that if m =k = n, then we |
are back in the case d a complete market treated in Chapter 13.

15.4 A Stochastic Short Rate

In the theory derived above we have assumed a constant short rate of interest r.
Let us now assume that we have exactly the same situation as in Section 15.3
with the following difference.

Assumption 15.4.1 The short rate of interest ¢s assumed to be a deterministic |
function of the factors, i.e.

r(t) = r(X(2)). (15.22)

Herewe have used a slightly sloppy notation: the » on the left-hand side denotes
a stochastic process, whereas the r appearing on the right-hand side denotes a
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| deterministic function. We have thus assumed that the factor vector X com-
I pletely determinesthe short rate, and as a special case we can of course have
. ore d the factorsequal to the short rate itself.

For this model, we can now go through all our earlier arguments once again,
* and we will easily obtain the following version of Proposition 15.5.

 Proposdtion 15.8 (Pricingequation) The arbitrage free price processII(t; ®)
| is given by II(t; ®) = F(¢, X (t)), where F solves the boundary value problem

k n
K+ Z (iu’l - ZazJAJ) F; + %tl‘ {6*Fa:x6} - T(I)F =0,
1

i=1

F(T’ .’IZ) = <I>(a:),

wheae Ay,..., A, arethe same for all derivatives.

Agan a standard application o the Feynman-Ka¢ technique gives us a risk
' neutral valuation formula

' Propodtion 15.9 (Risk neutral valuation) There exists a martingale meas-

- ue Q, such that the pricing function F in the proposition above can ke
| represented as

F(t,x) = ES, [e- S rX@) du <I>(X(T))] , (15.23)
where the Q-dynamics of the process X are given by

dX* = {p; — §A} dt T &,dw, i=1,...,k,

.o

and Ay,..., A\, are the same for all derivatives.

L 155 The Martingale Approach*

' From the martingale point o view the setup and results of this entire chapter
} aein fact already covered (in more generality) in Chapter 14 . Let us however,
" briefly recollect some main points.

, & Since we have assumed that the only asset given a priori is B and that

X isnot the price vector o traded assets, the normalized price process Z2

is one-dimensiona with Z = Z; = B/B = 1. Now: the constant process

Zo(t) = 1 is a martingale regardless of the choice  measure, so every
g equivaent measure Q will be a martingale measure

J e From Proposition 10.25 we always have the risk neutral valuation formula

i 5 I(t;y) = E° [e— JTr(s)ds .y| ft] (15.24)
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for any T-claim Y and any specification o the short rate processr. In
particular, » does not have to be o the form r(t,X (¢)).

e Denoting a fixed choice d martingale measure by Q, where ¢ is the cor-
responding Girsanov kernel and A = —¢ the market price o risk, the
Q-dynamicsd X are

dX(¢) = {u(t, X (1)) — 6(t, X ())A()} dt +5(¢, X (¢))aW (t)  (15.25)

o In general, the market price of risk process A is just an adapted (possibly
path dependent) process, so genericaly X will not be a Markov process
under Q.

e If we assumethat the market price o risk isd the form A(t, X (t)), then
X will be Markovian under the corresponding Q. In this special case we
can use the PDE methods discussed earlier in the chapter for pricing.

15.6 Summing Up
We may now sum up our experiencesfrom the preceding sections.

Reault 15.6.1

e In an arbitrage free market, regardiessdf whether the market is complete
or incomplete, there will exist a market pricedf risk process, A(t), whichis
common to all assets in the market. More precisdly, let II(t) be any price
process in the market, with P-dynamics

dII(t) = (t)an(t) dt + I(t)on(t) AW (2).
Then thefollowing holds, for all t, and P-a.s.
on(t) — r = on(B)A(D).

e In acomplete market the price d any derivativewill be uniquely determ-
ined by the requirement o absence d arbitrage. In hedging terms this
means that the price is unique because the derivative can equally well be
replaced by its replicating portfolio. Phrased in terms o pricing PDEs and
risk neutral valuation formulas, the price is unique because a complete
market has the property that the martingale measure Q, or equivalently
the market price of risk A, is uniquely determined within the model.

e In an incomplete market the requirement of no arbitrage is no longer suf-
ficient to determine a unique price for the derivative. We have severa
possible martingale measures, and several market pricesd risk. The reason
that there are several possible martingale measures simply means that
there are several different price systemsfor the derivatives, all o which are
consistent with absence d arbitrage.
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Schematically speaking the price d a derivative is thus determined by two
major factors.

¢ We require that the derivative should be priced in such a way so as to
not introduce arbitrage possibilities into the market. This requirement is

b reflected by the fact that all derivativesmust be priced by formula (15.11)

where the same Q is used for all derivatives, or equivalently by the pricing
PDE (15.8)—(15.9), where the same A is used for all derivatives.

e |n an incompletemarket the priceisalso partly determined, in a nontrivial
way, by aggregate supply and demand on the market. Supply and demand
for a specific derivative are in turn determined by the aggregaterisk aver-
sion on the market, aswdl as by liquidity considerations and other factors.
All these aspects are aggregated into the particular martingale measure
used by the market.

When dealing with derivative pricing in an incomplete market we thus have
to fix a specific martingale measure Q, or equivalently a A, and the question
| arisesas to how thisisto be done.

Question:

Who chooses the martingale measur €?

From the discussions above the answer should by now be fairly clear.

Answer:

The market!

The main implication of this message is that, within our framework, it is
not the job d the theorist to determine the "correct” market price d risk. The
market priced risk isdetermined on the market, by the agentsin the market, and
L in particular this means that if we assume a particular structure d the market
priced risk, then we have implicitly made an assumption about the preferences
on the market. To take a simple example, supposethat in our computations we
assumethat A = 0. This meansin fact that we have assumed that the market is
risk neutral (why?).

From this it immediately follows that if we have a concrete model, and we
want to obtain information about the prevailing market price o risk, then we
must go to the concrete market and get that information using empirical meth-
ods. It would d course be nice if we were able to go to the market and ask
the question "What is today's market price o risk?", or aternatively "Which
martingale measureare you using?', but for obvious reasonsthis cannot be done
inred life. The informationthat can be obtained from the market ispricedata,
0 a natural ideaisto obtain implicit information about the market price d risk
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using the existing prices on the market. This method, sometimescalled "calib-
rating the model to market data", "backingout the parameters’, or “computing |,
the implied parameter vaues', can schematically be described as follows.

Let ustake a concrete model as given, say the one defined by egn (15.1). We
assume that we know the exact form o p and a. Our problem isthat of pricing |
afixed claim ®(X(T)), and in order to do this we need to know the market price 1
o risk A(t,x), and we have to consider two possible scenariosfor the derivative
market, which we are trying to model.

Thefirst case occursif there is no existing market for any derivative product
with X asits underlying object, i.e. no weather insurance contractsfor Brighton
are traded. Then we are stuck. Since the market price o risk is determined by
the market, then if there is no market, there is no market price of risk.

The second case occurs if some contracts are already traded. Let us thus |
assume that there exists a market for the claims ®;(X (7)), :=1,...,Nn. Let }
us furthermore assume that we want to choose our market price o risk froma 1
parameterized family of functions, i.e. we assume a priori that A isd the form

A= X\(t,z;8), BeRF

We havethusa priori specified thefunctional form d A but we do not know which
parameter vector 8 we should use. We then carry out the following scheme. We
are standing at timet =0.

e Compute the theoretical pricing functions F*(t,z) for the claims {
®4,...,®,. Thisis done by solving the pricing PDE for each contract, |
and the result will of course depend on the parameter 3, so the pricing |
functions will be o the form

F'=F'(t,z:8), i=1,...,n

e In particular, by observing today's value d the underlying process, say |
X (0) = =z, wecan compute today's theor etical pricesd thecontractsas

IT'(0; ) = F*(0, 203 B).

e \We now go to the concrete market and observe the actually traded prices
for the contracts, thus obtaining the observed prices

I(0),

where the superscript * indicates an observed vaue.

e We now choose the "implied" parameter vector 8* in such a way that
the theoretical prices are "as close as possible" to the observed prices, i.e.
such that

o*(0) ~ I*(0; %), i=1,...,N.
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One way, out o many, of formalizing thisstep isto determine 5* by solving
the least squares minimization problem

; irn. Ay _ TTi* 2
| Jnin ; {1 (0; 8) - ™*(0)} | -
.

In the theory o interest rates, this procedureis widely used under the name
d "theinverson d theyield curve" and in that context we will study it in some
detail.

Aswe have repeatedly stressed, the problem of determining the market price
d riskisnot a theoretical one, but an empirical one. It should, however, be poin-
- ted out that the truth o this statement depends on our particular framework,
where we have not specified individual preferencesat all. An aternative frame-
wak isthat of a general equilibrium model, where we have specified the utility
b functions o a number o individuals, and the production functions d a num-
' ber o firms. In such a model all prices, derivative or underlying, as well as the
market price of risk, will be determined endogenoudly within the model, so we
no longer have to go to the market to find A. The price we have to pay for a
generd equilibrium approach is that we must then specify the individual pref-
! erences, which in turn is essentially equivalent to a specification d the market
priced risk.

15.7 Exercises

Exercise 15.1 Consider a claim ®(X(T)) with pricing function F(t,z). Prove
Proposition 15.4, i.e. prove that dF under Q has the form

dF =rFdt+ {---} dw,

where W is a Q-Wiener process.
K Hint: UseIté’s formulaon F, using the Q-dynamicsd X. Then usethefact
| that F' satisfiesthe pricing PDE.

Exercise 15.2 Convinceyoursdf, either in thescalar or in the multidimensional
case, that the market price o risk process A redly isd the form

A= A(t, X(2)).

Exercise 15.3 Prove Proposition 15.7

i§ Exercise 15.4 Consider the scalar model in Section 15.2 and a fixed claim
¥ I(X(T)). Take as given a pricing function G(t,z), for this claim, satisfying
. the boundary condition G(T,z) = I'(z), and assume that the corresponding
volatility function og(t, z) is nonzero. We now expect the market {B,G] to be
}  complete. Show that this isindeed the case, i.e. show that every simpleclam o
b theform ®(X (7)) can be replicated by a portfolio based on B and G.
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Exercise 15.5 Consider the multidimensional model in Section15.3 and a fixed
family o claims ®;(X(T)), i =1,...,n. Takeas given a family o pricing func-
tions F'(t,x), i =1,...,n, for these claims, satisfying the boundary condition
Fi(T,z) = ®;(x), i = 1,...,n, and assume that the corresponding volatility
matrix o(t,z) is nonzero. Show that the market [BF1,...,F"] is complete,
i.e. show that every simple claim o the form ®(X(T)) can be replicated by a
portfolio based on [B F2,..., F"].

Exercise 15.6 Provethe propositionsin Section 15.4.

15.8 Notes

As we have seen, in an incomplete market there is generically not a unique price
for a given claim, and it isimpossible to hedge perfectly. A natural ideaisthen
to try to find an approximate hedge, and the obvious first choice is to use a
quadratic loss function. This line o ideas was first investigated by Follmer and
Sondermann (1986) and then generalized in Schweizer (1988), Schweizer (1991)
and many other papers. The quadratic hedging approach has subsequently been
the object o intensive research and has led to alarge and deep literature. For a
recent overview with an extensive bibliography see Schweizer (2001). One pos
sibility of pricing in an incomplete market is to choose, based on some given
principle, one particular member d the infinite set of possible martingale mess-
ures. In thequadratic hedging theory onethus ecounters the "minimal martingale
measure” as wel as the "variance optimal measure”. The "minima entropy
measure” is another canonical choice d a martingale measure where an entropy
related distance between the objective measure and the martingale measure is
minimized. This approach was introduced by Miyahara (1997) and developed
by Frittelli in several papers such as Frittelli (2000). The "Esscher measure”,
discussed in Gerber and Shiu (1994), is related to actuarial mathematics. For a
utility approach to pricing in incomplete markets see Davis (1997). For textbook
treatmentsof incomplete markets, see Bingham and Kiesdl (1998) and Dana and
Jeanblanc (2003).
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16
DIVIDENDS

The object o the present chapter is to study pricing problems for contingent
clams which are written on dividend paying underlying assets. In red life the
vad majority o all traded options are written on stocks having at least one
dividend left before the date of expiration o the option. Thus the study o
dividendsis important from a practical point o view. Furthermore, it turns out
that the theory developed in this chapter will be of usein the study of currency
derivativesand we will aso need it in connection with future contracts.

16.1 Discrete Dividends
16.1.1 Price Dynamics and Dividend Structure

. Weconsider an underlying asset (""the stock™) with price process S, over a fixed
! time interval [0,T]. We take as given a number o deterministic points in time,
Ti,...,Tn, where

0<T, <Th1<-+<Th<T1 <T.

The interpretation isthat at these points in time dividends are paid out to the
holder of thestock. We now go on to construct a mode for the stock price process
aswdl as for the dividend structure, and we assume that, under the objective
probability measure P, the stock price has the following dynamics, between
dividends.

dS=aSdtt+ossaw. (16.1)

To be quite precise we assume that the S-process satisfies the SDE above on
each haf-open interval of the form [T;41,7;), i =1,...,n -1, aswdl ason the |
intervals[0,T;,) and [T}, T7. ‘
Thefirst conceptual issuethat we haveto deal with concernsthe interpreta-
tion of S; as "the price of the stock at time ¢”, and the problem to be handled
is the following: do we regard S; as the price immediately after, or immedi-
ately before, the payment o a dividend? From alogica point of view we can
choose any interpretation— nothing is affected in real terms, but our choice o
interpretation will affect the notation below. We will in fact choose the first
interpretation, i.e. we view thestock price asthe priceex dividend. If wethink
d the model on an infinitesimal time scale we have the interpretation that, if t
is a dividend point, dividends are paid out, not at the time point t, but rather
at t —dt or, if you will, at t—.
Next we go on to model the size o the dividends.
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Assumption 16.1.1 We assume as given a deterministic continuous
function é[s]

6:R— R.
The dividend 6, at a dividend timet, is assumed to have the form

5 = 8[Se_].

Note that the assumption above guarantees that the size o the dividend § at
adividend timet is aready determined at t— . The reason that we are using the
bracket notation §[S;-] instead o the more standard §(S;-) is that in this way
we avoid some hard-to-read formulaswith repeated parenthesissigns later on.
Our next problem concernsthe behavior o the stock priceat a dividend point

{,and an easy (but slightly heuristic) arbitrage argument (seethe exercises) gives
us the following result.

Proposition 16.1 (Jump condition) In order to avoid arbitrage possibilities
the following jump condition must hold at every dividend point t:

St = St_ - J[St_] (162)

The stock price structure can now be summarized as follows:

¢ Between dividend points the stock price process satisfies the SDE
dS=aSdt+oSdw.

e Immediately before a dividend time't, i.e. at t— =t — dt, we observe the
stock price S;—.

¢ Giventhestock priceabove, thesized thedividendisdetermined asé{S;—].

e "Between" t — dt and t the dividend is paid out.

e At timet the stock price has a jump, determined by

St = St_ - J[St_]

16.1.2 Pricing Contingent Claims
As usual we consider a fixed contingent T-claim d the form

X = q)(ST))

where & is some given deterministic function, and our immediate problem is
to find the arbitrage free price process Il(¢; X) for the claim X. Wevill solve
this problem by a recursive procedure where, starting at T and then working
backwards in time, we will compute TI(¢; X) for each intra-dividend interval
separately.
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P T <t<T:

I Westart by computing II(t; X) for t € [Ty, T). Sinceour interpretation o the
stock price is ex dividend, this means that we are actually facing a problem
without dividendsover thisinterval. Thus, for T3 <t < T, we haveIl(t; X) =
F(t,S:) where F solves the usual Black—Scholesequation

OF . OF 1, ,0°F
{m“‘TSE"'ESQW—TF—O,
F(T,8) = ®(s).

i In particular, the pricing function at T; isgiven by F(T3,s).
T2 S t< T1:
; Now we go on to compute the price o theclamfor T <t < T3. Westart by
computing the pricing function F at the time immediately before T3, i.e. at
t = T1—. Suppose, therefore, that we are holding one unit d the contingent
claim, and let us assume that the price at time Ty — is Sy, - = s. Thisisthe
price cum dividend, and in the next infinitesimal interval the following will
happen:
e The dividend é[s] will be paid out to the shareholders.
e At time T the stock price will have dropped to s — §[s].
e \We are now standing at time T1, holding a contract which is worth
F(Ty,s—4[s]). The vaue of F at T; has, however, aready been
computed in the previous step, so we have the jump condition

F(Ti—, s) = F(Ty,s — 8s]). (16.3)

It now remainsto compute Ffor T> <t < T3, but thisturns out to be quite
easy. We are holding a contingent claim on an underlying asset which over
theinterval [T3,T;) is not paying dividends. Thus the standard Black—Scholes
argument applies, which means that F has to solve the usual Black—Scholes
equation ,

oF OF . 1, ,0°F

a * S * 2SZO 052
over thisinterval. The boundary vaue is now given by the jump condition
(16.3) above. Another way o putting thisis to say that, over the half-open
interval [T2,T1), we have F(t,s) = F1(t,s) where F! solves the following
boundary value problem over the dosadinterval [T, T3}

OF1 OF! | 1 21
{——+rs—+_szoz% Pl =0,

—rF =0,

ot ds 2
FYT,s) = F(Ty,s — 4[s)).

Thus we have determined F on [T, T1).




228 DIVIDENDS

T3 <t<Ts:
Now the story repeats itself. At 7> we will again have the jump condition

‘ F(T2'_’ 8) = F(Tz’s —6[3])’
and over the haf-openinterva [T3,T;) F has to satisfy the Black—Scholes
equation.

We may summarize our results as follows

Proposition 16.2 (Pricingequation) The pricing function F(¢,s) is deter-
mined by the following recursive procedure:

e Ontheinterval [T1,T] F solvesthe boundary value problem

OF . OF 1, ,8°F
{at trgs T27 7 g ~TE =0, (16.4)
F(T,s)= &(s).

e At each dividend point T;, F has to satisfy the jump condition

F(T;—,s) = F(T;, s — §s}]). « (16.5)
e On every half-open interval of the form [T;41,7;), i = 1,2,...,n-1, as
well as on the interval [0T;,), F solves the Black-Scholes equation
OF 1 d2F
= +¢s + s2a2 =
o a 52 ~TF=0. (16.6)

Another way o formulatingthis result in order to stress the recursive nature
o the procedure is as follows.
Proposition 16.3

e On the interval [T},T] we have F(t,s) = FO(t,s), where F® solves the
boundary value problem

OF  AF° 1, ,8F°
{W + ’I"SE + 58 o _6—2_ —rF° = 0, (167)
| FYT, s) = &(s).

e On each half-open interval [T;4+1,T;) we have F(t,s) = Fi(t,s) for i =
1,2,..., where F', over the closed interval [T;41,T;], solves the boundary
value problem

{BF +rsOF 4 L2 @F o

ot 9s 2 952 ’ (16.8)
Fi(T%as) = Fi_l(Tia S-— 6[8])
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Throughout the entire section we have assumed the standard Black—Scholes
price dynamics (16.1) between dividends. It is easy to see that we aso have the
following more general result.

Proposition 16.4 Assume that the stock price dynamics between dividends are
o the form _
dS; = Sia(t, S;)dt T S;a(t, S;) dW. (16.9)

| Assume furthermore that the dividend structure as before is given by
’ 8 =4[S:-).

Then the results of Propositions 16.2 and 16.9 still hold, provided that the
constant o 4s replaced by the function o(%,s) in the PDEs.

We now turn to the possibility of obtaining a probabilistic 'risk neutral valu-
ation" formulafor the contingent claim above, and as in the PDE approach this
isdonein a recursive manner.

For Th <t < T thesituation issimple. Since we have no dividend points left
we may use the old risk neutral valuation formulato obtain

FO(t,s) = e "TDE2 [®(Sr)]. (16.10)
3 Here the Q-dynamicsd the stock price are given by
dS =rSdt+o0S5dW,

and we have used the notation F° to emphasizethat in this interval there are
zero dividend pointsleft. Note that the Q-dynamics df S above are only defined
for theinterva [Ty, T).

For T <t < T; thesituation is slightly more complicated. From Proposition
16.3 we know that the pricing function, which on thisinterval is denoted by F,
solvesthe PDE

% "% 27 52

F'(Ty,s) = FO(Ty, s — 8[s]).

{a_Fl OF 1, ,0°F o o

We may now apply the Feynman-Ka¢ Theorem 5.6 to obtain the stochastic
representation

Fl(t,9 =e "MYE,  [F'(T1, X1, - §[X7,])] (16.11)
where the process X , which at this point only acts as a computational dummy,

is defined by
dX =rXdt+oX dW. (16.12)
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Notice that the dummy process X is defined by (16.12) over the entire closed
interval [Tz, T3] (Wwhereasthe pricing function F? isthe relevant pricing function
only over the half-openinterval [Tz, T1)). Thisimpliesthat X hascontinuoustra-
jectoriesover the closed interval [T, Th], soin particular weseethat X, = X, .
We may thus rewrite (16.11) as

F(t,s) = e "M-9E, [FO(Ty, X1, - — 6[X1,-])], (16.13)

still with the X-dynamics (16.12) on the closed interval [T3, Th].
Let us now define the Q-dynamicsfor S over the closed interval [Tk, T3] by
writing
dS =rSdt+ oS dW,
for the half-open interval [T»,T1) and adding the jump condition

Sr, = Sni- - 6l8n,] it
In this notation we can now write (16.13) as
F(t,s) = e="@=0 g% [Fo(71,51)],
and, plugging in our old expressionfor F°, we obtain
F! (t, 3) - e—r(Tl_t)EtQ,,, [e_r(T—Tl)Eg,S(Tl) [(I)(ST)]]

Taking the discount factor out of the expectation, and using standard rules for
iterated conditional expectations, this formulacan be reduced to

F (t,5) = e " TV EZ, [8(S7)).

We may now iterate this procedure for each intra-dividend interval to obtain
the following risk neutral valuation result, which we formulate in its more
general version.

Proposition 16.5 (Risk neutral valuation) Consider aT-claim d the form
®(Sr) as adove Assume that the price dynamics between dividends are given by

dS; = aft, S;)S, dt T o(t, S;)S, AW,
and that the dividend size at a dividend point t is given by
d = 4[S:-].
Then the arbitrage free pricing function F(¢, s) has the representation

F(t,s) =e "T-YEZ, [®(S7)), (16.14)
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| where the Q-dynamics d S between dividends are given by
dS; = rS;dt T o(t, S;)S: dW, (16.15)

} with the jump condition
v St =‘St_ - 6[St..] (1616)

at each dividend point, s.e. at t =11,75,...,T,.

\

‘ We end'this section by specializing to the case when we have the standard 1
Black—Scholes dynamics _

dS=aSdt+oSdW (16.17)

between dividends, and the dividend structure has the particularly ssmpleform
S |
O8] =88, (16.18) |

where é on the right-hand side denotes a positive constant.

As usual we consider the T-claim ®(S7) and, in order to emphasizethe role |
| d the parameter 6, we let Fj(t, s) denotethe pricing function for the claim ®. In |
¥ particular we observe that Fy is our standard pricing function for @ in a model ‘
with no dividends at all. Using the risk neutral valuation formula above, it is ‘
not hard to prove the following result.

Proposition 16.6 Assume that the P-dynamics d the stock price and the divi-
dend structure are given by (16.17)-(16.18). Then thefollowing relation holds

Fs(t,s) = Folt, (1 &)™ . 5), (16.19)

|
| wheren is the number d dividend points in the interval (t,77. '
Proof Seethe exercises. O '

The point of this result is of course that in the smple setting o (16f17)-
L (16.18) we may use our "old" formulasfor no dividend modelsin order to price
b contingent claims in the presence of dividends. In particular we may use the 1
I standard Black—Scholesformulafor European call options in order to price call
optionson a dividend paying stock. Note, however, that in order to obtain these
nice results we must assume both (16.17) and (16.18).

16.2 Continuous Dividends

In this section we consider the case when dividends are paid out continuously
in time. As usual S; denotes the price d the stock at time t, and by D(t) we
denote the cumulative dividends over the interval [0,t]. Put in differential form
this means that over the infinitesimal interval (t,t * dt] the holder of the stock
receives the amount dD(t) = D(t +dt) - D().
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16.2.1 Continuous Dividend Yidd

We start by analyzing the simplest case of continuous dividends, which is when
we have a continuous dividend yield.

Assumption 16.2.1 The price dynamics, under the objective probability meas-
ure, are given by _
dS, =3 .a(S;)dt+ S, . 0(S;) dW,. (16.20)

The dividend structure is assumed to ke d the form
dD(t) = S, . 4[S:] dt, (16.22)

where 6 is a wntinuous deterministic function.

The most common special caseisd course when the functionsaand o above
are deterministic constants, and when the function 6 is a deterministic constant.
We notethat, since we have no discrete dividends, we do not haveto worry about
the interpretation o the stock price as being ex dividend or cum dividend.

The problemto be solved isagain that of determining the arbitrage free price
for a T-claim of the form &(Sr). This turns out to be quite easy, and we can
in fact follow the strategy o Chapter 7. More precisely we recall the following
scheme;

1. Assumethat the pricing function is o the form F(t, S:).

2. Consider a, o, ¥, F, 6, and r as exogenoudy given.

3. Use the general results from Section 6.2 to describe the dynamics o the
vaue o a hypothetical salf-financed portfolio based on the derivative
instrument and the underlying stock.

4. Form a sdf-financed portfolio whose value process V has a stochastic
differential without any driving Wiener process, i.e. it isd the form

dV(t) = V(t)k(t) dt.

5. Since we have assumed absence d arbitrage we must havek = .

6. The condition k = r will in fact have the form o a partial differentia
equation with F as the unknown function. In order for the market to be
efficient F must thus solve this PDE.

7. The equation has a unique solution, thus giving us the unique pricing !
formulafor the derivative, which is consistent with absence of arbitrage.

We now carry out thisscheme and, since the calculationsare very close to those
in Chapter 7, we will be rather brief.

Denoting the relative weights o the portfolio invested in the stock and in
the derivative by ug and ur, respectively we obtain (see Section 6.3) the value
process dynamics as

dv=V. {u,ggcﬁ-f-'udrg},

S F
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I where the gain differential dGg for the stock is given by
dGs = dst+dD,

 ie.
dGs = S(at6)dt T oSdW.

Fom the 1t6 formula we have the usual expressionfor the derivative dynamics

dF = aFth+adeW,

where
_1(f@F OF 1 , ,0°F
ap—ﬁ{ﬁ+a55;+2as 682}’
1 oF
0'F=E O'S-a—s

Collecting terms in the value equation gives us
dV =V - {us(a + 6) + upagp}dt +v. {uso + upop}dW,

and we now determine the portfolio weightsin order to obtain a value process
without a driving Wiener process, i.e. we define ug and ug as the solution to
- the system

ugo + upor =0,

us +up = 1.
This system has the solution I
_ _OF
'U.S - or — 01
F foan
-
up = ,
op—0 Ynoeg

and leaves us with the value dynamics
dV =V - {us(at6) T upar}dt.

Absenced arbitrage now implies that we must have the equation

ug{a+6) + upap =7,
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with probability 1, for all t, and, substltutlng the expressions for ur, Us, aF,
and o into this equation, we get the equation

aF 1 ;0 8F _
5 T 6)S~—+ o*S* 55 —rF =0. ,

Proposition 16.7 The pricing function F(t,s) d the clam ®(Sr) solves the
boundary value problem '

The boundary value is obvious, so we have the following result.

oF OF | 1 5 ,0°F B
{6t +(r - 5)3 + e ~-rF =0, (16.22)
F(T,s) = ®(s).

Applying the Feynman-Kaé representation theorem immediately gives us |
arisk neutral valuation formula.

Proposition 16.8 (Pricing equation) The pricing function has the repres-
entation
F(t,s) = e " T EL, [8(ST)), (16.23)

where the Q-dynamics d S are given by
dS; = (r — 8[S:))S; dt + o(S,) S, AW (16.24)

In contrast with the case o discrete dividends we see that the appropriate
martingale measure in the dividend case differs from that d the no dividend
case. It isleft as an exerciseto provethe following result.

Proposition 16.9 (Risk neutral valuation) Under the martingale measure.
Q, the normalized gain process

GE(t) = 5 +/ BiT-dD(T),

is a @-martingale.

Note that this property is quite reasonable from an economic point o view:
in arisk neutral world today's stock price should be the expected value 0 all
future discounted earnings which arise from holding the stock. In other words,
we expect that

5(0) = E° [ /0 t e"""dD(r) T e‘”S(t)] , (16.25)

and in the exercisesthe reader is invited to provethis "cost o carry" formula
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Asin the discrete case it is natural to analyze the pricing formulasfor the
goecid case when we have the standard Black—Scholes dynamics

dS =aSdt+ oS dw, (16.26)

| where a and a axe constants. We also assume that the dividend function 6 is
adeterministicconstant. Thisimpliesthat the martingale dynamicsare given by

dS = (r — 6)Sdt toSaw, (16.27)

i.e. Sis GBM also under the risk adjusted probabilities. Again we denote the
pricingfunction by Fj inorder to highlight the dependenceupon the parameter 6.
It isnow easy to provethefollowing result, which shows how to price derivatives
I for adividend paying stock in terms o pricing functionsfor a nondividend case.

. Proposition 16. 10 Assume that thefunctions ¢ and 6 are constant. Then, with
: notation as above, we have

F5(t,5) = Fo(t,se7T-9), (16.29)

16.2.2 The Genera Case

We now consider a more general dividend structure, which we will need when
dedling with future contracts in Chapter 26.

Assumption 16.2 2 The price dynamics, under the objective probability meas
ure, aregiven by B
dS; = S; . a(St)dt + S, - o(St) dWs. (16.29)

b The dividend structure is assumed to e o theform
dD(t) = S; . 6[Se] dt T S4v[S:) AW, (16.30)

where 6 and « are continuous deterministic functions. !
We again consider the pricing problem for a contingent T-claim o the form

X = ®(S7),
and the only difference from the continuous yield case is that now we have to
assume that the pricing function for the claim is a function of D as wel as S.
We thus assume a claim price process d the form

H(t; X) = F(t, St, Dt),

and then we carry out the standard program 1-7 o the previous section.
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After alarge number of simple, but messy and extremely boring, calcul ations ;
which (needlessto say) areleft asan exercise, we end up with thefollowing result.

Proposition 16.11 (Pricingequation) The pricing function F(t,s,D) for
the claim X = ®(Sr) solves the boundary value problem

oF |
O L AF —rF =0,
{6t AT (16.31)

F(T,s,D) = ®(s),

where

AF = (a’y+ar—60) 8F+ (60+7r—1a) oF

o+ 505 o+ :75)
1, ,0%F 1 ,,F , O°F
T3 5 T3 ap YO 555D

Using the Feynman-Ka¢ technique we have the following risk neutral valuation |
result.

Proposition 16.12 (Risk neutral valuation) The pricing function has the
representation
F(t,s,D)=e"T-YEL, p [®(ST)],

where the Q-dynamics of Sand D are given by

ds, = S, (E’Eﬂ:jﬂ) dt + S,o dW,,
o+

dD, = S, (M) dt + Spy dW,.
c +’)’

Remark 16.2.1 In the expressons d the propositions above we have sup-
pressed & and s in the functions a, 0, 6, y.

Theroled the martingale measure is the same as in the previous section.

Proposition 16.13 The martingale measure Q is characterized by the follow-
ing facts:

e There erists a market price of risk processX such that the Q-dynamics are
in the form

dS = S(a — Ao)dt+ Sodw,
dD = S(6 - Xy)dt T Sy dw.
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e The normalized gains process Gz, defined by
S t1
Ga(t)= 5+ [ g-aD(),
is a Q-martingale.

This result has extensions to multidimensional factor models. We will not go
into details, but are content with stating the main result.

Propostion 16. 14 Consider a general factor model of the form in Sections
15.3-15.4. Ifthe market is free of arbitrage, then there will exist universal market
price of risk processes A = (A1,...,Ax)* such that

e For any T-claim X the pricing function F has the representation

F(t,z) = E2, [e' ST r(X()du, <I>(X(T))] . (16.32)
e The Q-dynamics of the factor processes X!,...,X* are of the form

dX? = {p; — 6 }dt +6;dW, i=1,...,k.

e For any price process S (underlying or derivative) with dividend process
D, the normalized gains process

Se t1
Zy = B, +/0 E‘:dD(’T)
is a Q-martingale.

163 Exercises

Exercise 16. 1 Prove Proposition 16.1. Assume that you are standing at t—
and that the conclusion o the theorem does not hold. Show that by trading
at t— and t you can then create an arbitrage. This is mathematically dightly
imprecise, and the advanced reader is invited to provide a precise proof based
on the martingale approach of Chapter 10.

Exercise 16.2 Prove the cost-of-carry formula (16.25).

Exercise 16.3 Derive a cost-of-carry formulafor the case o discrete dividends.
Exercise 16. 4 Prove Proposition 16.9.

Exercise 16.5 Prove Proposition 16.10.

Exercise 16.6 Consider the Black—Scholes moddl with a constant continuous
dividend yield . Prove the following put-call parity relation, where ¢5 (ps)
denotes the price o a European call (put).

ps = c5 — 5e~ 0T 4 Ke~rT—1),
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Exercise 16.7 Consider the Black-Scholes modd with a constant discrete |
dividend, asin egns (16.17)—(16.18). Derive the relevant put-call parity for this
case, given that there are n remaining dividend points.

Exercise 16.8 Consider the Black-Scholes model with a constant continuous
dividend yield 6. The object o this exercise is to show that this mode is com-
plete. Take, therefore, as given a contingent claim X = ®(S(T’)). Show that this
claim can be replicated by a sdlf-financing portfolio based on B and S, and that
the portfolios weights are given by

F(t,s) — sFs(t,s)

uO(t8) = =
sF, (t s)
uS(t,s) = Flts)

where F is the solution o the pricing egn (16.8).
Hint: Copy the reasoning from Chapter 8, while using the sdf-financing
dynamics given in Section 6.3.

Exercise 169 Consider the Black-Scholes model with a constant continuous |
dividend yield 6. Use the result from the previous exercise in order to compute
explicitly the replicating portfoliofor the claim ®(S(T')) = S(T).

Exercise 16. 10 Check that, when~.= 0 in Section16.2.2, all resultsdegenerate |
into those of Section 16.2.1. j

Exercise 16. 11 Prove Propositions 16.11-16.13.
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17
CURRENCY VATI VES

. In this chapter, we will study a model which incorporates not only the usual
domestic equity market, but also a market for the exchange rate between the
F domestic currency and afixed foreign currency, aswell asa foreign equity market.
. Financial derivativesdefined in such situations are commonly known as quanto
. products. Wewill start by studying derivativeswritten directly on the exchange
rate X, and then go on to study how to price (inthe domestic currency) contracts
written on foreign equity.

17.1 Pure Currency Contracts

Condder a situation where we have two currencies: the domestic currency (say
pounds sterling), and the foreign currency (say US dollars). The spot exchange
rate at timet is denoted by X(t), and by definitionit is quoted as

unitsof the domestic currency
unit o the foreign currency

' i.e. inour exampleit isquoted as pounds per dollar. Weassumethat the domestic
short rate rq, as wel as the foreign short rate r¢, are deterministic constants,
and we denote the corresponding riskless asset prices by By and By, respect-
- ivdy. Furthermore we assume that the exchange rate is modeled by geometric
Brownian motion. We can summarize this as follows.

Assumption 17.1.1 We take as given the following dynamics (under the
objective probability measure P):

dX = Xaxdt T Xox dW, (17.2)
dB4 = rqBgdt, (17.2)
dBy = ry By dt, (17.3)

. where ax, ox are deterministic constants, and W is a scalar Wiener process.

Our problemisthat of pricing a currency derivative, i.e. a T-clam 2 o the
form ,
Z = ®(X(T)),

where & is some given deterministic function. To take a concrete and important
example, we can consider the case when 2 = max [X(T) — K, 0], i.e. we have a
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European call which gives the owner the option to buy one unit d the foreign
currency at the price K (in the domestic currency).

At first glance it may perhaps seem that the problem o pricing the cdl
option above is solved by use o the standard Black—Scholesformula, where we
usedomesticrate r4 astheshort rate o interest, and the stock price S isreplaced
by the exchange rate X. It is, however, important to understand that this line
d argument is incorrect, and the reason is as follows. When we buy a stock
(without dividends), this means that we buy a piece d paper, which we keep
until we sall it. When we buy a foreign currency (say US dollars) we will, on
the contrary, not just keep the physical dollar hills until we sdl them again.
Instead we will typically put the dollarsinto an account where they will grow at
acertain rate d interest. The obviousimplicationd this fact is that a foreign
currency plays very much the same role as a domestic stock with a continu-
ous dividend, and we will show bdow that this is indeed the case. First we
formalize the institutional assumptions.

Assumption 17.1. 2 All markets are frictionless and liquid. All holdings of the
foreign currency are invested in the foreign riskless asset, i.e. they will evolve
according to the dynamics
dBy = r¢ By dt.

Remark 17.1. 1 Interpreted literally this means that, for example, US dollars
areinvested in a US bank. In reality thisdoes not haveto bethe case—US dollars
bought in Europe will typically be placed in a European so called Eurodollar
account where they will command the Eurodollar rate o interest.

Applying the standard theory o derivativesto the present situation we have
the usudl risk neutral valuation formula

(t; 2) = e T EZ [®(X(T))],

and our only problem is to figure out what the martingale measure Q looks
like. To do this we use the result from Proposition 13.3, that Q is characterized
by the property that every domestic asset has the short rate rq as its loca
rate of return under Q. In order to use this characterization we have to translate
the possibility o investing in the foreign riskless asset into domestic terms. Since
By (t) unitsof theforeign currency areworth By(t)- X (t) in the domestic currency
we immediately have the following result.

Lemma 17.1 The possibility of buying the foreign currency, and investing it at
the foreign short mte of interest, is equivalent to the possibility of investing in a
domestic asset with price process By, where

By (t)= By (1). X(2).
The dynamics of By are given by

dBf = Bf (ox +rs)dt + BfaxdW
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Summing up we see that our currency moded is equivalent to a model o a
domestic market consisting of the assets B4 and Bf. I't now followsdirectly from
the general results that the martingale measure Q has the property that the

Q-dynamicsd By are given by

dB; = rqB; dt + Byox dW, (17.4)
where W is a Q-Wiener process. Since by definition we have
B
By(t)’

we can use Itd’s formula, (17.2) and (17.4) to obtain the Q-dynamicsd X as

X(t) = (17.5)

dX = X (rg —ry) dt T Xox dW. (17.6)

The basic pricing result follows immediately.

Proposition 17.2 (Pricing formulas) The arbitragefreepriceIl(t; ®) for the
T-claim 2= ®(X(T)) isgiven by II(t; ®) = F(¢, X (t)), where

F(t,z) =T DEZ [8(X(T))], (17.7)
and where the Q-dynamics d X are given by
dX =X (rqg —ry) dt + Xox dW. (17.8)

Alternatively F(t,z) can ke obtained as the solution to the boundary vaue
L problem )

oF OF 1 , 5, 0°F

bl ) = — —rgF =0,

ot T2ra TGy ¥ 3% kg T (17.9)
) F(T,z) = ®(x).

Proof Therisk neutral valuation formula (17.7)-(17.8) followsfrom the stand-
ard risk neutral valuation formulaand (17.6). The PDE result then followsvia
Feynman-Kag. O

Comparing (17.8) to (16.27) we see that our original guess was correct: a
foreign currency is to be treated exactly as a stock with a continuous dividend.
We may thus draw upon the results from Section 16.2 (see Proposition-16.10),
which alows us to use pricing formulas for stock prices (without dividends) to
price currency derivatives.

Proposition 17.3 (Option pricing formula) Let Fy(t,x) ke the pricing

function for the clam 2 = &(X (7)), in a world where we interpret X as the
price d an ordinary stock without dividends. Let F(t,x) ke the pricing function
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d the same claim when X isinterpreted as an exchange rate. Then thefollowing
relation holds

F(t,x) = Fo(t,ze~r{T-%),
In particular, the price d the European cdl, 2 = max[X(T) - K, 0], on the
foreign currency, is given by the modified Black-Scholesformula

F(t,z) =2e " TN [d)] — e TV KN [dy], (17.10)

where

dy(t,z) = #Z {ln (%) + (rd —rp %03{) (T - t)} ,
da(t, ) = dy(t,z) — ox VT — t.

17.2 Domestic and Foreign Equity Markets

In this section we will model a market which, apart from the objects o the
previous section, also includes a domestic equity with (domestic) price Sq4, and
aforeign equity with (foreign) price Sy. The restriction to a single domestic and
foreign equity is made for notational convenience, and in most practical casesit
is also sufficient.

We model the equity dynamics as geometric Brownian motion, and since we
now have three risky assets we use a three-dimensional Wiener processin order
to obtain a complete market.

Assumption 17.2.1 The dynamic model d the entire economy, under the
objective measure P, is asfollows:

dX = Xaxdtt Xox dW, (17.11)
dSy = Sqayqdt + Sy04 dW, (17.12)
. dSs = Sray dt+Sf0‘f dw, (17.13)
v dBy = rqBadt, (17.14)
dBy = r; By dt, (17.15)
where -
_ 4
W=| W
W3

is a three-dimensional Wiener process (as usual with independent components).
Furthermore, the (3 X 3)-dimensional matrix a, given by

ox Ox1 O0x2 OX3
L 0= od = Odl1 Od2 043 |,
of Of1 Of2 053

is assumed to ke invertible.
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Remark 17.21 The reason for the assumption about ¢ is that this is the
| necessary and sufficient condition for completeness. See Proposition 17.4.

Remark 17.2 2 It isalso possible, and in many situations convenient, to model
| the market using three scalar correlated Wiener processes (one for each asset).
S= Remark 17.2.4.

b Typical T-contracts which we may wish to price (in terms d the domestic
| currency) are given by the following list:

e Aforeignequity call, struck inforeigncurrency,i.e. anoption to buy
one unit of the foreign equity at the strike price o K units o the foreign
currency. The value d this claim at the date d expiration is, expressed in
the foreign currency, given by

3 2 = max[Sy(T) - K,0]. (17.16)
Expressed in terms o the domestic currency thevalue o theclamat T is
2% = X(T) - max[Sf(T) — K,0]. (17.17)

e A foreign equity call, struck in domestic currency, i.e. a European

option to buy one unit o the foreign equity at time T, by paying K units

I o the domestic currency. Expressed in domestic terms this claim is given

by

24 = max [X(T) . S§(T) - K,0]. (17.18)

e An exchange option which gives us the right to exchange one unit o

the domestic equity for one unit o the foreign equity. The corresponding
claim, expressed in terms o the domestic currency, is

2% = max [X(T) . S§(T) — Sa(T),0]. (17.19)
More generaly we will study pricing problemsfor T-clamsd the form
Z = & (X(T), Sa(T), S5(T)), (17.20)

where 2 is measured in the domestic currency. From the general theory o
Chapter 13 we know that the pricing function F(t,z,sq,sy) is given by the
risk neutral valuation formula

F(t,z,sq4, Sf) — e Td(T-)EQ

t,x,84,8¢

[(X(T))],

0 we only have to find the correct risk adjusted measure Q. We follow the
technique d the previous section and transform al foreign traded assets into
domesgtic terms. The foreign bank account has already been taken care of, and it
isobviousthat one unit o the foreign stock, worth S¢(t) in the foreign currency,
isworth X(¢) - S¢(t) in domestic terms. We thus have the following equivalent
domestic model, where the asset dynamicsfollow from the 118 formula
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Proposition 17.4 The original market (17.11)-(17.15) is equivdent to a
market consisting d the price processes Sy, Sy, By, B4, where

By(t) = X () By (1),
St (t) = X (2)Ss(1).

The P-dynamics d this equivaent mode are given by

dSy = Saagdt + Sy04dW, (17.22)
dS; = 81 (af + ax + ogo%) dt+ 84 (o7 + ox) dW, (17.22)
dBy = By (ax ;) dt+ Brox dw, (17.23)
dBy = r4Badt. (17.24)

Here we have used * to denote transpose, so

3
O'fO';( = ZO'in'x,;.
i=1
Notethat, becaused Assumption17.2.1, thevolatility matrix aboveisinvertible,
so the market is complete.
Since S, 8¢, By can be interpreted as prices o domestically traded assets,
we can easily obtain the relevant Q-dynamics.

Proposition 17.5 The Q-dynamics are asfollows.

dSg = Saradt + SgoqdW, (17.25)
dS; = Syrqdt + Sy (05 + ox) AW, (17.26)
dBy = Byradt+ Brox dW, (17.27)

dX = X(rg —rs) dt + Xox dW, (17.28)

dS; = 8¢ (ry — o0%) dt + Syo s AW. (17.29)

Proof Equations (17.25)-(17.27) follow from Proposition 13.3. The equation
for X followsfrom (17.27), the relation X = By /By and Ité’s formula. A similar

computation applied to the relation Sy = S‘f/X gives us (17.29). O |

We can now immediately obtain the risk neutral valuation formula, and this
can in fact be donein two ways. We can either use (X,S4, Sy) asstate variables,
or use the equivalent (there is a one-to-one mapping) set (X, Sq, S'f). Which set
to useisa matter o convenience, depending on the particular claim under study,
but in both cases the arbitrage free price is given by the discounted expected
value o the claim under the Q-dynamics. (It is dof course quite possible to use
the set (By, S4, Sy) aso, but there seemsto be no point in doing so.)
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Proposition 17.6 (Pricing formulas) For a claim of the form
“. the corresponding pricing function F(t,z,sq4,3f) is given by
F(t,2,50,57) = T OEZ, . [8(X(T),54T),8;T))],  (17.30)

where the Q-dynamics are given by Proposition 17.5.
The pricing PDE is

OF

i OF OF OF" -
—_—+ :L‘(’I‘d - ’I‘_f)-—— + 8qrag—— + 857 d6~

ot O9sq

1 o*F F 0’F
+3 { Pllox|P 5y + sdnadMZ—— 5 (o + hox I+ 2070%) 7 }

02F
+ sdzada}m + 8¢z (a_fo}} + ||o'x||2)

35 fax

+ 848¢ (ada} + oda}) —-rqaF =0,

) &*F
& 054055
F(T, x, 84, §f) =& (:L‘, 8d, §f) .
| Proposition 17.7 For a claim of the form

the corresponding pricing function F(t,z, sq, 8¢) ts given by

—rq(T— t)EQ

F(t,2,54,5) = e e saray [B(X(T), Sa(T), S{(TN],  (17.31)

} where the Q-dynamics are given by Proposition 17.5. '
The pricing PDE is

oF

OF OF 6F
E—i—z(m—r )a +sdrda + 85 (ry — "f"x)a

1 6 8*F
+§( lox |Gz + sl g + sl 5 )

+s:cao*62—F+s:caa*——82—F-+ssaa*a2—F—rF—0
d0dOX Bsqdz 1T X G50z T T  Gsasy T

F(T,z,84,5¢) = ®(x,84,5¢) -
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Remark 17.2.3 In many applications the claim under study isd the restricted
form

2= 3 (X(T), 54(T)).

Inthiscaseall partial derivativesw.r.t. s4 vanishfrom the PDEs above. A similar
reduction will of course aso take place for a claim o the form

Z =& (X(T),84(T)).
We end this section by pricing the contracts (17.16) and (17.18) above.

Example 17.8 (Foreign call, struck in foreign currency) We recal that |
the value o the claim, at time T, expressed in the foreign currency, is

25 = max [S;(T) - K,0).

Let us denote the pricing function, again in the foreign currency, for this clam
at time t, by F7(t,s¢). (It will obviously not involve z.) Furthermore we ‘
denote vaue of the claim at time t, expressed in the domestic currency, by |
Fa(t,x, sf). Now an elementary arbitrage argument (which?) immediately gives ;
us the relation

Fd(t, z,8f)=1z- Ff(t, sf),

so it only remains to compute F7(¢t,ss). This, however, is just the value of a |
European call on a stock with volatility [|of||, in an economy with a short rate j
equal tory. Thus the valueisgiven by the Black—Scholesformula, and the pricing |
formulain domestic terms is as follows ]

Fi(t,z,87) = zs;N[dy] — ze " TV K N|[dy),
where
8 i i r 10 2 -
it ) = i 1 () + (rs + Jlost®) -0},
da(t, 57) = da(t, 87) — o IVT —E.

See dso Remark 17.2.4 for another formalism.
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Example 17.9 (Foreign call, struck in domestic currency) The claim,
expressed in domestic terms, is given by

24 = max [X(T) . S¢(T) - K, 0]
which we write as
24 — max [Sf(T) - K, o].

As we have seen above, the process S'f can be interpreted as the price process of
adomestically traded asset, and from Proposition 17.5 we see that its volatility
is given by |loy T ox||. Thus we may again use the Black-Scholes formula to
| obtain the pricing function F(t,5¢) as

F(t,57) = 3;N[d] — e " T"D K N{dy),

| where
) 4059) = HorhontoB =% {1 () + (ra+ 3oy + oxI?) @ -1},
" dalt,55) = du(t,3) - oy Fox VT,

' See also Remark 17.2.4 for another formalism.

' Remark 17.2.4 In practical applications it may be more convenient to model
the market, and easier to read the formulasabove, if we model the market using
correlated Wiener processes (see Section 4.8). We can formulate our basic model
(under Q) as

dX = Xax dt + Xdx dVx,

dSy = Sgagdt + SabadVy,

dSy = Sfaf dt+ Sféf de,

dBg = rgBgydt,

dBf =r¢Bydt,

where the three processes Vi, V4, V; are one-dimensiona correlated Wiener pro-
 ceses We assume that 0x,684,6, are positive. The instantaneous correlation
between Vx and V5 is denoted by pxy and correspondingly for the other pairs.
- We then have the following set o translation rules between the two formalisms

||0i||=5i, ] 1:=X,d7f’
0.'“; =8:;pij, i, j=X,d,f,
los + o5l = /67 + 62 + 26:6,015, 6,5 =X,d, .
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17.3 Domestic and Foreign Market Prices of Risk

This section constitutes a small digression in the sense that we will not derive
any new pricing formulas. Instead we will take a closer look at the various mar-
ket prices of risk. As will be shown below, we have to distinguish between the
domestic and the foreign market priced risk, and we will clarify the connection
between these two objects. As a by-product we will obtain a somewhat deeper
understanding of the concept of risk neutrality.

Let us therefore again consider the international modd X, Sg4, Sy, Ba, By,
with dynamics under the objective measure P given by (17.11)-(17.15). As
before we transform the international model into the domestically traded assets
S4, 8§, Ba, By with P-dynamics given by (17.21)-(17.24).

In the previous section we used the general results from Chapter 13 to infer
the existence o a martingale measure Q, under which al domestically traded
assets command the domestic short rate ry as the loca rate o return. Our
first observation is that, from a logical point o view, we could just as wdl
have chosen to transform (17.11)—(17.15) into equivalent assets traded on the
foreign market. Thus we should really denote our “old” martingale measure Q
by Q4 in order to emphasize its dependence on the domestic point d view. If
we instead take a foreign investor's point of view we will end up with a "foreign
martingale measure," which we will denote by Q, and an obvious project isto
investigate the relationship between these martingale measures. A natural guess
isperhapsthat Qq = @y, but asweshall seethisisgenerically not the case. Since
there is a one-to-one correspondence between martingale measures and market
prices of risk, we will carry out the project above in terms o market prices
of risk.

We start by taking the domestic point of view, and applying Result 15.6.1
to the domestic price processes (17.21)—(17.24), we infer the existence o the
domestic market price of risk process

[ /\dl(t)
/\d(t) = /\d2(t)
Ad3(t)

with the property that if II isthe price process o any domestically traded asset
in the model, with price dynamics under P o the form

dII(t) = M(t)an(t) dt T I(E)on (t)dW (1),
then, for all t and P-a.s., we have

an(t) —Trg = Un(t)/\d(t).
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i Applying thisto (17.21)—(17.23) we get the following set o equations:

Qg —Tq=0g" /\d, (17.32)
af+ax+afa}~—‘rd=_(af+ox)/\d, (17.33)
ax +15—Ta=0x - Ad. (17.34)

i In passing we note that, since the coefficient matrix

od
o= |of+ox

ox
- is invertible by Assumption 17.2.1, A4 is uniquely determined (and in fact
i constant). This uniquenessis of course equivaent to the completeness o the
E modd.
_ We now go on to take the perspectived aforeigninvestor, and the first thing
| to noticeis that the model (17.11)-(17.15) of the international market does not

 treat the foreign and the domestic points o view symmetrically. Thisis due to
i the fact that the exchange rate X by definitionis quoted as

units o the domestic currency.
unit o the foreign currency

From the foreign point o view the exchange rate X should thus be replaced by
L the exchangerate

Y(t)= )%:)

it which is then quoted as

unit o theforeign currency
units of the domestic currency'

and the dynamics for X, Sq, S¢, B4, By should be replaced by the dynamics for
Y,S4,8¢, Ba, By. In order to do this we only have to compute the dynamics of
ji Y, giventhose of X, and an easy application o 1t&’s formulagives us

dy =Yaydttyaydw, (17.35)
- where

ay = —ax + |ox|?, (17.36)
oy = —0x. (17.37)
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Following the arguments from the domestic analysis, we now transform the pro-
cesses Y, Sq, Sy, Ba, By into a set o asset prices on the foreéign market, namely

Sf, 5’4, Ed, where

S'd=Y'Sd1
By=Y . B,.

If we want to obtain the P-dynamics o Sy, S84, B4 we now only have to use
(17.21)—(17.24), substituting Y for X and 4 for y. Since we are not interested in
these dynamics per se, we will, however, not carry out these computations. The
object that we are primarily looking for is the foreign market price o risk Ay,
and we can easily obtain that by writing down the foreign version o the system
and substituting ¢ for f and Y for X directly in (17.32)—(17.34). We get

af—rf=af-)\f,
ag + oy +0’d0{/ —ry= (O'd+0'y) Af,

ay +7q4—Tf =0y - Aj,

and, inserting (17.36)—(17.37), we finally obtain

af—r§=05"Ag, (17.38)
ag —ax +lox||? — oack — s = (04— 0x) Ay, (17.39)
—ax +|lox|® +ra—rs=—0x - As. (17.40)

After some simple algebraic manipulations, the two systems (17.32)—(17.34)
and (17.38)-(17.40)can be written as

ax +75—T4=0x A,

Qg —Tqd =04 A,

ag+ 050 — T =05 Mg,

ax — llox| +rs —ra=o0x - A,
Qg — 040 —Tq =04 Ay,

af—rf=of-)\f.
These equations can be written as

6 =0\,
Y= UAfa




DOMESTIC AND FOREIGN MARKET PRICES OF RIX 251

b ax +rf—7Tq ax —'IloxIP +Tf—Ta
d= aqg — T4 , = a4 —040% — T4
af+ojox —ry oy — Ty

[} S0, sinceo isinvertible,

Ad = 0'_15,

Af=0"tp.

. Thus we have
Ad—Ap = 0‘_1(5 - @),

and since
. ox0%
d—p=| oaok | =o0%,
o50%
| weobtain

A~ A =010~ ) =0"look = o%.
We have thus proved the following central result.

Proposition 17.10 The foreign market price of risk is uniquely determined by
the domestic market price of risk, and by the exchange rate volatility vector ox,
- through the formula

Af =AMy —0%. (17.41)

i Remar k 17.3 1 For the benefit o the probabilist we note that this res
ult implies that the transition from Qq to Qy is effected via a Girsanov
i transformation, for which the likelihood process L has the dynamics

dL = Lox dW,
Lo)=1
Proposition 17.10 has immediate consequencesfor the existence d risk neut-
ral markets. If we focus on the domestic market we can say that the market is

| (on the aggregate) risk neutral if the following valuation formula holds, where
| I isthe price process for any domestically traded asset.

Ty() = e~+@-0 gP [Ta(T)] 7. (17.42)

In other words, the domestic market is risk neutral if and only if P= Q4. In
many scientific papers an assumption is made that the domestic market isin
fact risk neutral, and this is o course a behavioral assumption, typically made
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in order tofacilitate computations. In an international setting it then seems nat-
ural to assume that both the domestic market and the foreign market are risk
neutral, i.e. that, in addition to (17.42), the following formulad so holds, where
Il isthe foreign price o any asset traded on the foreign market

I (t) = e T-YEF [I4(T)| F). (17.43)
This seems innocent enough, but taken together these assumptions imply that
P=Qq=0Qy. (17.44)

Proposition 17.10 now tells us that (17.44) can never hold, unless ax =0,
i.e. if and only if the exchangerate is deterministic.

At first glancethis seems highly counter-intuitive, sincethe assumption about
risk neutrality often isinterpreted as an assumption about the (aggregate) atti-
tude towards risk as such. However, from (17.42), which is an equation for
objects measured in the domestic currency, it should be clear that risk neutral -
ity isa property which holdsonly relative to a specified numeraire. To put
it as a slogan, you may very wdl be risk neutral w.r.t. pounds sterling, and still
be risk averse w.r.t. US dollars.

There is nothing very deep going on here: it is basicaly just the Jensen
inequality. To see this more clearly let us consider the following smplified situ-
ation. We assume that r4 = ry = 0, and we assume that the domestic market
is risk neutral. This means in particular that the exchange rate itself has the
following risk neutral valuation formula

X (0) = E[X(T)]. uma'

Looking at the exchange rate from the foreign perspective we see that if the
foreign market also isrisk neutral, then it must hold that

Y (0) = E[Y(T)), (17.46)
with Y =1/X. The Jensen inequality together with (17.45) gives us, however,

1 1 1
YO = x5 = ey < & x| = EYOF anan

Thus (17.45) and (17.46) can never hold simultaneously with a stochastic
exchange rate.

17.4 Exercises

Exercise 17.1 Consider the European call on theexchangerate described at the
end o Section17.1. Denote the priced the call by ¢(t, X), and denote the priced
the corresponding put option (with the same exercise price K and exercise date
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T) by p(t, ). Show that the put-call parity relation between p and cis given by

P=c-ze T~ + ge-ra(T-1)

Exercise 17. 2 Compute the pricing function (in the domestic currency) for a
binary option on the exchange rate. Thisoption isa T-claim, 2, o the form

Z = 15 (X(T)),

e if a < X(T) < b then you will obtain one unit o the domestic currency,
otherwise you get nothing.

Exercise 17. 3 Derive the dynamics d the domestic stock price S under the
foreign martingale measure Q.

Exercise 17.4 Compute a pricing formulafor the exchange option in (17.19).
Usetheideas from Section 13.4in order to reducethe complexity of theformula
For simplicity you may assumethat the processes Sy, Sy, and X are uncorrelated.

| Exercise 17.5 Consider a model with the domestic short rate r4 and two for-
- @gn currencies, the exchange rates o which (from the domestic perspective)
are denoted by Xi1.and X2, respectively. The foreign short rates are denoted by
71 and 72, respectively. We assume that the exchange rates have P-dynamics
' given by

dX; = X;o; dt + X0, dWi, 1=1,2,

where Wy, W, are P-Wiener processes with correlation p.

(a) Derive the pricing PDE for contracts, quoted in the domestic currency,
of the form 2 = ®(X;(T), X2(T)).

(b) Derive the corresponding risk neutral valuation formula, and the
Qg4-dynamics of X; and Xa.

(c) Compute the price, in domestic terms, o the "binary quanto con-
tract” 2, which gives, at time T, K units o foreign currency No. 1, if
a< Xo(T) <b, (wherea and b are given numbers), and zero otherwise.
If you want to facilitate computations you may assumethat ¢ = 0.

Exercise 17.6 Consider the model d the previousexercise. Compute the price,
in domestic terms, o a quanto exchange option, which at time T gives you the
- option, but not the obligation, to exchange K unitsd currency No. 1 for 1 unit
d currency No. 2

Hint: It is possibleto reduce the state space as in Section 13.4.

17.5 Notes

The classicin thisfield is Garman and Kohlhagen (1983). See also Reiner (1992).
A more technical treatment is given in Amin and Jarrow (1991).
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18
BARRIER OPTIONS

The purpose d this chapter isto give a reasonably systematic overview d the {
pricing theory for thosefinancial derivativeswhich are, in some sense, connected |
to the extremal values o the underlying price process. We focus on barrier
options, ladders and lookbacks, and we confine ourselves to the case d one
underlying asset.

18.1 Mathematical Background

Inthischapter, wewill give some probability distributions connected with barrier
problems. All the results are standard, see e.g. Borodin—Salminen (1997).

To start with some notational conventions, let {X(t); 0 <t < oo} be any
process with continuoustragjectories taking values on the redl line.

Definition 18.1 For any y € R, the hitting time o y, 7(X,y), sometimes
denoted by 7(y) or 7, is defined by
T(y) =inf{t >0 |X(t) =y).
The X-processabsorbed at vy is defined by
X, () =X(tAT),

where we have used the notation a A5 = min[ag].
The running maximum and minimum processes, Mx(t) and mx(t), are |
defined by

Mx(t) = 0s<u;<>tX(s),
<s<

mx ()= inf_ X(s),

where we sometimes suppress the subscript X.

We will be mainly concerned with barrier problems for Wiener processes, so
naturally the normal distribution will play a prominent role.

Definition 18.2 Let ¢(z; u,0) denote the density of a normal distribution with
mean p and variance u?, i.e.

o= o5}
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| The standardized density ¢(z;0,1) is denoted by ¢(z), and the cumulative
distributionfunction o ¢(z) is as usua denoted by N(z), i.e

Let us now consider a Wiener process with (constant) drift  and (constant)
F diffusion a, starting at a point a, i.e.

dX(t) = pdt t o dw,, (18.1)
X(0)=a (18.2)

We are primarily interested in the one-dimensional marginal distribution for
| Xp(t), i.e. the distribution at timet of the X-process, absorbed at the point 3.
i The distribution of Xs(t) is o course a mixed distribution in the sense that it
. has a point mass at X = # (the probability that the process is absorbed prior
- to timet) and a density. This density has its support on the interval (3, oo) if
. a> (3, whereas the support is the interval (—oo, 8) if a < 8. We now cite our
main result concerning absorption densities.

Proposition 18.3 The density fs(z;t,a) d the absorbed process Xg(t), where
X is defined by (18.1)-(18.2), is given by

- 8 ﬂ
fa(z;t,a) = o(z; ut T a,0vt) — exp{_. (l —)} o(z;pt — ot 28,0v/71).

B The support d this density is the interval (8,00) if a > 3, and the interval
' (~00,8) if a < B.

We end this section by giving the distribution for the running maximum
(minimum) processes.

Proposition 18.4 Consider the process X defined by (18.1)-(18.2), and let M
(m) denote the running maximum (minimum) processes as in Definition 18.1.
Then the distribution functions for M(t) (m(t)) are given by the following
expressions, which holdfor x > a and X < a respectively.

Fue(e) =N (5—:—\[;’2) —exp{2- EE;;_QZ}N( z Uoi;ut)’

Frw(@) =N (x_’:rf_;“t) +exp {2, u(xa; a) } N (x _af/; ut) _
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18.2 Out Contracts

In this section, we will undertake a systematic study o the relations between
a "standard” contingent clam and its different "barrier” versons. This will
provide us with some basic insights and will also give us a number o easy for-
mulas to use when pricing various barrier contracts. As usua we consider the
standard Black—Scholes model

dS =aSdttToSdW,
dB = rBdt,

with fixed parameters a, a, and r.
We fix an exercisetime T and we consider as usual a contingent claim 2 o
the form
2 =8(S(T)). (18.3)

We denote the pricingfunctiond 2 by F(t,s; T, ®), often suppressingthe para-
meter T. For mnemo-technical purposeswe will also sometimes use the notation
®(t,s),i.e. the pricing function (as opposed to the function defining the claim)
isgivenin bold.

18.2.1 Down-and-Out Contracts

Fix a real number L < $(0), which will act as the barrier, and consider the
following contract, which we denote by Zr0:

e If the stock price stays above the barrier L during the entire contract
period, then the amount 2 is paid to the holder of the contract.

e |f the stock price, at sometime beforethe delivery time T, hitsthe barrier
L, then the contract ceasesto exist, and nothing is paid to the holder of
the contract.

The contract Z10 is cdled the "down-and-out” verson o the contract 2
above, and our main problem isto price Zro. More formally we can describe
Z10 as follows.

Definition 18.5 Takeasgivena T-contract 2 = ®(S(T)). Then the T-contract
Zro is defined by

_ [®(S(T)), if S(t)>L forallte(0,T),
ZLo = { 0, : if S(t) < L for somet € [0,T]. (18.4)
Concerning the notation, L as a subscript indicates a "down"-type contract,
whereas the letter O indicatesthat we are considering an "out" claim. You may
also consider other types d barrier specifications and thus construct a “down-
and-in" verson o the basic contract 2. A "down-and-in" contract starts to
exist the first time the stock price hits a lower barrier. Going on we may then
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consder up-and-out as well as upand-in contracts. All these types will be given
precise definitions and studied in the following sections.

i In order to price 210 we will have use for the function &, which is the
¥ original contract function @ in (18.3) "chopped off" below L.

| Definition 18.6 For a fized function & thefunction ®r, is defined by

_ ] ®(z), forx>L
[ = ) )
L(z) {  torx <L (18.5)

R Inother words, ®7,(x) = ®(z)-1{x > L), wherel denotesthe indicator function.
. For further use we note that the pricing functiona F(t,S; ®) islinear in the
F ®-argument, and that the "chopping" operation aboveis also linear.

Lemma 18. 7 For all reals a and 3, and all functions® and ¥, we have

F(t,s;a®t 8¥) = aF(t,s;®) T BF(t,s; ¥),
(a® T p¥), = a®, T 57,

Proof For Fthelinearity followsimmediately from the risk neutral valuation
i formulatogether with the linearity o the expectation operator. The linearity of
k the chopping operation is obvious. O

Our main result is the following theorem, which tells us that the pricing
¢ problem for the down-and-out version o the contract @ is essentially reduced
to that of pricing the nonbarrier claim ®r. Thus, if we can price a standard
t (nonbarrier) claim with contract function ®;, then we can aso price the down-
¥ and-out version of the contract @.

:. Theorem 18 8 (Pricingdown-and-out contracts) Considera&ed T-claim
. 2= 3(S(T)). Then the pricing function, denoted by Fro, d the corresponding
t down-and-out contract Zro ¢s given, for s > L, by

L 27 /o? 12
Fro(t,s;®) = F(t,s®L) — (;) F (t, =i @L)_ (18.6)
| Here we have used the notation
r=r— %02.

Proof Without loss o generality we may set t = 0 in (18.6). Assume then
that S(0) = s > L, and recall that S; denotes the process S with (possible)
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absorption at L. Using risk neutral valuation we have
Fro(0,58) = e TES, [Z10] = e "TES, [(D(S(T)) I {0 nf 5(t)> L}]

=e"TE, [@L(SL (T))- I {0 inf S(t) > L}]
=e " TES, [8.(SL(T))].

It remains to compute the last expectation, and we have
Q = :
B, @151 = [ er@hiz)dz,
L

where h is the density function for the stochastic variable S.(T").
From standard theory we have

S(T) = exp{lns + 7T + oW (T)} = XD,
where the process X is defined by

dX(t)y=Fdttodw(e),
X(0) =1Ins.

Thus we have
Sc(t) = exp{Xr(t)},
O We may write

oo

ES, [0.4(Sy(T))] = / () /() da,

In

where f is the density o the stochastic variable Xi, 1,(T). This density is,
however, given by Proposition 18.3 as

f(x) = ¢ (x; 7T+ 1ns, a\/T)

2f(lns—InL
—exp{—r(n—‘:z—)}so (z;FT—lns+2lnL,a\/T)

. L 27 /a? 2
=<p(z;rT+lns,a\/T) - (;) w(x;FT+1n (L?),a\/f).
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Thus we have

oo

EQ, [®,,(S(T))] = / () (2) b

In

=/ ®L(e%)p (X; FT+Ins,a\/T) dx
L

In

21"/02 0o L2
- (E) / D (e®)p (m; 7T +1n (—) ,oﬁ) dz
s InL s

= /oo ®r(e®)p (:c; FT+lns,U\/T) dz

— 00

_ (£>2 ™ 1o (z;me(E;) ,aﬁ) .

L1

Inspecting the last two lines we see that the density in the first integral is the
density of X (T) under the usual martingale measure Q, given the starting value
S(0) = s. The density in the second integral is, in the same way, the density
(under Q) of X (T), given the starting point S(0) = L2/ S.Thus we have

- L 27 /a?
B8, r(SuT)] = B, o) - (£) BS80S

which gives us the result. a

We again emphasize the point d this result.

The problem of computing the price for a down-and-out claim reducesto
the standard problem of computing the priceof an ordinary (related) claim
without a barrier.

For future use we aso note the fact that down-and-out pricing is a linear
operation.

Corollary 189 For any contract functions ® and ¥, and for any real numbers
a and S, the following relation holds.

Fro(t,s;a® + g¥) = aFrolt, s; ®) + BFro(t, s;¥).

Proof The result follows immediately from Theorem 18.8 together with the
linearity of the ordinary pricing functional F' and the linearity d the chopping
operation. a
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18.2.2 Up-and-Out Contracts

We again consider a fixed T-contract o the form 2 = & (S(T)), and we now
describe the up-and-out version o 2. Thisis the contract which at the time d
delivery, T, will pay 2 if the underlying price process during the entire contract
period has stayed below the barrier L. If, at some time during the contract
period, the price process exceeds L, then the contract is worthless. In formal
terms this reads as follows.

Definition 18.10 Take as given the T-wntmct 2 = & (S(T)). Then the
T-contract ZL© 15 defined by

ZLO _ ®(S(T)), #fS(t)<L foralltel0,T], (18.7)

0, if S(¢) > L for somet € [0,T]. )
The pricing functional for ZX€ is denoted by F-©(t,s; ®), or according to our
earlier notational convention, by ®X9(t,s).

L as a superscript indicates an "up'-type contract, whereas the superscript O
indicates that the contract isan "out" contract. Asin the previous sections we
will relate the up-and-out contract to an associated standard contract. To this
end we need to define, for a fixed contract function &, the function ®%, which is
the function ® "chopped off" above L.

Definition 18.11 For a fized function & thefunction &~ is defined by

L — q)(l‘)v <L
o0 ={"0) g5t 089

I n other words, ®%(z) = ®(z) - I{x <L).

The main result d this section is the following theorem, which is paralle to
Theorem 18.8. The proof is almost identical.

Theorem 18.12 (Pricing up-and-out contracts) Consider a fized T-clam
2= ®(S(T)). Then the pricing function, FL©, o the corresponding up-and-out
contract 219 is given, for S <L, by

27 /o2 L2
FLO(t, s, @) = F(t,s,®%) - (;) F(t, —3~,<I>L) (18.9)

where we have wed the notation
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18.2.3 Examples

In this section we will use Theorems18.8 and 18.12, together with the linearity
lenma 18.7, to give a systematic account of the pricing of afairly wide class
d barrier derivatives, including barrier call and put options. Let us define the
followingstandard contracts, whichwill be the basic building blocksin thesequel.

Definition 18. 13 Fiz a delivery time T. For fized parameters K and L define
the claims ST, BO, H, and C by

ST(z) ==z, Vzx (18.10)
BO(z)=1, Vz (18.11)
.mmm={a Z;;i (18.12)
C(z;K) =max[z - K,0]. (18.13)

Thecontract ST (ST for "stock™) thus givesthe owner (the price of) one unit o
the underlying stock at delivery time T, whereas BO is an ordinary zero coupon
bond paying one at maturity T. The H-contract (H stands for the Heavisde
function) gives the owner one if the value d the underlying stock exceeds L at
delivery time T, otherwise nothing is paid out. The C-claim is d course the
ordinary European call with strike price K. We note in passing that H(z; L) =
Hi(z).

We now list the pricing functionsfor the standard contracts above. The value
d ST at timet isd course equa to the value d the underlying stock at the
sametime, whereasthe valued BO at t ise="(T—%), The valued C isgiven by
the Black—Scholesformula, and the value of H iseasily calculated by using risk
neutral valuation. Thus we have the following result.

Lemma 18.14 The contracts (18.10)-(18.13) with delivery time T are priced
at timet as follows (with the pricing function in bold).

ST(t,s) = s,

BO(t,s) = e 7T,

HT -9 +1n(s/L)]

—. /T __1
ovi —1 1

H(t,s; L) = ‘e_'(T"t)NI-
L
C(t,s;K)=c(t, 5K),

where ¢(t, s; K ) is the usual Black-Scholes formula.

We may now put this machinery to some use and start with the smple case
d valuing a down-and-out contract on a bond. This contract will thus pay out
l1dollar at timeT if thestock priceisabovethelevd L during the entire contract
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period, and nothing if the stock price at some time during the period is bdow
or equal to L.
A direct application d Theorem 18.8 gives us the formula

L 2?/62 L2
Fro (t,5;BO) = F(t,s; BOL) — (;) F (t,?;BOL) .

Obvioudy we have BOg(z) = H(z; L) for al x so we have the following result.

Lemma 18.15 The down-and-out bond with barrier L is priced, for s > L, by
the formula

) S AL 2 |
BO;o(t,s) =H(t,s; L) — (;) H (t, < L) , (18.14) !
where H(t, s; L) is given by Lemma 18.14.

We continue by pricing a down-and-out contract on the stock itself (nooption
isinvolved). Thus we want to compute Fro(t, s; ST) and Theorem 18.8 gives us |

L 27 /a2
, o L 5. . “u,;‘{, (—) ( _ ) (1815) \
Fro(t,s;ST)=F(t,s;8TL) — \ 8 F\¢t,—;8T./ . 13
A quick look at afigure gives us the relation
STi(x) =L.H(z; L)t C(z;L).

Substituting this into (18.15) and using linearity (Lemmal8.7) we get

STro(t,s)
= Fro(t,s; ST)
, A\ 27/e* I2 \
- =F(t,5LH(xL) +C(%L)) - s, F kt,:;;LH(f; L) + C(x; L))

—L.F(t,s; H(x L))~ L- (-’;-)waz F (t, 5;; Hx; L))

+F (1,506 L)) - (_L_)"’” i F(t’lé;c(*;”) .
8

Summarizing we have the following.
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Lemma 18.16 The down-and-out contract on the underlying stock is given by

8

27 /o2 2
+C(t,s; L) — Amv OA#.WWHV,

L)

L 27/0? L2
mH.N\OAﬂ,.wV "N\.mﬂﬁumwhv -L- Alv mAﬂulm-“bv

where H and C are given by Lemma 18.14.

We now turn to a more interesting example—a down-and-out European call
with strike price K. From the main proposition we immediately have

27 /o2
mﬂho A.P .mw Qﬂ*w va ".mu Qf mw QHA*M Mﬂvv .| Amv mu Aﬂu .Hl.wwo.hﬁuf Nﬂvv ,

’ (18.16)

and we have to treat the two cases L < K and L > K separately. The result is
as follows. ,

Proposition 18.17 (Down-and-out call) The down-and-out European call
option is priced as follows:

For L< K:

L)

L 27 /a2 L2
Cro(t,s; K) = C(t,s;K) — A v C A? |T~Av . (18.17)
For L > K:
Cro(t, s; K) = C(t,s; K) + (L — K)H(t, s, L)
27/a? 2 2
- Amv T Aﬁ,hlwwv +(L-KH Aﬁ WEVW .
s s s
(18.18)

Proof For L < K it is easily seen (draw a figure) that Cr(z, K) = C(z,K),
so from (18.16) we get

L 27 [o? L?
Cro(t,s; K) = F(t,8,C(x K)) — AMV F Aﬁ MMQT: va ,
which proves (18.17).
For L > K the situation is slightly more complicated. Another figure
shows that
Ci(z; K) = C(z; L) + (L ~ K)H(z; L)-
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Putting this relation into (18.16), and using the linear property d pricing, we |
get (18.18). O

Aswe haveseen, almost all results arefairly easy consequencesd thelinearity
o the pricing functional. In Section 9.1 we used thislinearity to provethe stand-
ard put-call parity relation for standard European options, and we can now
derive the put-call parity result for down-and-out options.

Drawing a figurewe see that P(z; K )= K — xt C(z; K) ,s0, in terms o the
standard contracts, we have

P(z;K) = K - BO(z) — 8T(z) + C(z; K).
Using Corollary 189 we immediately have the following result. Note that when
L = 0 we have the usua put-call parity.
Proposition 18.18 (Put-call parity) The down-and-out put price Pro, and
call price Crp, are related by the formula
Pro(t,s;K) = K - Bro(t,s) ~ STro(t, 8) + Cro(t, s; K). (18.19)

Here Bro and STyo are given by Lemmas 1815 and 18.16, whereas Cro is
given hy Proposition 18.17.

We end this section by computing the price d a European up-and-out put
option with barrier L and strike price K.

Proposition 18.19 (Up-and-out put) The price of an up-and-out European
put option is given hy the following formulas.
If L> K, then fors < L:
(L 27 /o2 L2
PLO(t, 5, K) = P(t,s; K) — (;) P (t, —8—;K) . (18.20)
If L> K, then for s <L:
PLO(t,s;K)=P(t,s;L)— (K — L)H(t,s; L)

_ (é)wag {p (t, %L) (K -L)H (t, L?z;L)}
+ {1 - (%)2;’/62} (K — L)e™"(T-%), (18.21)

Proof If L > K then PL(s;K) = P(s;K), and then (18.20) follows
immediately from Proposition 18.12.
If L <K then it iseadsly seen that

PX(z) = P(x; L)+ (K — L) - BO(z) — (K — L) - H(z; L).

Linearity and Proposition 1812 give us (18.21). a l'
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183 In Contracts

I'n thissection we study contractswhich will start to exist if and only if the price
- o the underlying stock hits a prespecified barrier level at some time during the
. contract period. We thus fix a standard T-claim o the form 2= & (S(T")), and
we also fix a barrier L. We start by studying the "down-and-in" version o 2,
which is defined as follows:

¢ If the stock price stays above the barrier L during the entire contract
period, then nothing is paid to the holder of the contract.

e If the stock price, at sometime beforethe delivery time T, hits the barrier
L, then the amount 2 is paid to the holder of the contract.

We will write the down-and-in versond 2 as Zr;, and the forma definition
is as follows.

Definition 18.20 Take as given the T-contract 2 = & (S(T)). Then the
T-contract Zr; is defined by

2= { 0, if S(t) > L for alte[0T],

®(8(T)), if S(t) <L for somet < [0,T). (18.22)

The pricing function for Zr; s denoted by Fr;(¢,s;®), or sometimes by
.1(t,3).

Concerning the notation, L as a subscript indicates a "down" contract,
whereas the subscript I denotes an "in" contract. Pricing a down-and-in con-
. tract turns out to be fairly easy, since we can in fact price it in terms o the
! corresponding down-and-out contract.

Lemma 18.21 (In-out parity)
Fri(t,89) = F(t,8®) — Fro(t,s;®), Vs

Proof If, at timet, you havea portfolioconsistingd a down-and-out versiond
2 aswdl asa down-and-inversion of 2 (withthe same barrier L) then obviously
you will receive exactly Z at time T. We thus have

F(t,s;9) = Fi(t,5;®) T Fro(t,s; ®).
O

We can now formulate the basic result.

- Proposition 18.22 (Pricing down-and-in contracts) Consider a fized
E T-contract 2 = 9(S(T)). Then the price d the corresponding down-and-in
contract Zry is given by

8

L 27 /o L? )
FLl(t’3;9)=F(t13;q’L)+< ) F(t,—s—;‘I’L .
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Proof From the equality ® = ®;, + &~ we have
F(t,5;,®) = F(t,s;®L) + F(t,s; 9F).
Now use this formula, the lemma above, and Theorem 18.8. O »

The treatment of "upand-in" contractsis d course parallel to down-and-in
contracts, so we only give the basic definitions and results. We denote the |
upand-in version o 2 by 2%, and the definitionof ZL7 isas follows:

e If the stock price stays below the barrier L during the entire contract
period, then nothing is paid to the holder of the contract.

e If thestock price, at sometime beforethe delivery time T, hits the barrier
L, then the amount 2 is paid to the holder o the contract.

Corresponding to Lemma18.21, we have
FU(t, 5;8) = F(t,s;®) — F9(t,5,®), vs (18.23)

and from this relation, together with the pricing formula for up-and-out
contracts, we have an easy valuation formula.

Proposition 18.23 (Pricing up-and-in contracts) Consider a fized T-
contract 2 = @ (S(T")). Then the price d the corresponding up-and-in contract
ZLI 45 given by

’ L 27 /o2 I?
FL(t,5,®) = F(t,s;®1) + (;) F <t, —3—-;<I>L>

We end this section by giving, as an example, the pricing formula for
a down-and-in European call with strike price K.

Proposition 18.24 (Down-and-in European cdl) For s > L the down-
and-in European call option is priced asfollows:

ForL <K:
27 /a2

— L 2
CLI(t’s’K)_ (;) C(t,l'; ,K)
For L > K:

27 /o2

Cu(t,s;K)=(§) {C(,L;;K) +(L—K)H(t,£;;L>}
- (L - K)H(t,s;L).
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- 184 Ladders
Let ustake as given
' e Afiniteincreasing sequenced rea numbers

?l O=qp<a; <---<apn.

This sequence will be denoted by a.
e Another finite increasing sequence d real numbers

,0=Wﬂo<51<"'<ﬂN-

This sequence will be denoted by 3.

| Note that the number N isthe samein both sequences. Theinterval [a,, an+1)
¢ will play an important role in the sequel, and we denote it by Dy, with Dy
b defined as Dy = [an,00). For a fixed delivery time T we will now consider
| anew type o contract, called the " (a,8)-ladder”, which is defined as follows.

b Definition 18.25 The (o, 8)-ladder with delivery time T is a T-claim 2,
- described by

N , \

Z= Zﬂn -I {supS(t) € Dn} . (18.24)
. n=0 T

In other words, if the realized maximum o the underlying stock during the

 contract period fallswithintheinterval D,,, thenthe payout at T is 3,. A typical

' ladder used in practiceisthe forward ladder call with strike price K. For this

L contract a is exogenoudy specified, and § is then defined as

Br, = max [a, — K,0]. (18.25)

The a-sequencein this case acts as a sequence d barriers, and the ladder call
dlowsyou to buy (at time T) the underlying asset at the strike price K, while
. dling it (at T )at the highest barrier achieved by the stock priceduring the con-
b tract period. The ladder call isintimately connected to the lookback forward call
- (e the next section), to which it will converge as the a-partition is made finer.

The general (a,f)-ladder is fairly easy to value analytically, athough the
actual expressions may look formidable. To see this let us define the following
siesd up-and-in contracts.

Definition 18.26 For a given pair (a,8), the series of contracts Zg,..., 2N is
defined by
Zo=0p-1 {supS(t) Z.ao} ,
t<T

.Z‘n = (:Bn - ﬂ'n—-l) T {Sups(t) = Om} » M =1’ - N.
t<T
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The point o introducing the 2,-contracts is that we have the following
obvious relation N
Z=Y Z,.
=0

Thus aladder issimply asum o aseriesd up-and-incontracts. We see that
infact Z,, isan up-and-in contract on 3, — 8,—1 bonds, with barrier a,. Thuswe
may usethe results of the preceding sectionstovalue 2, Theresult isasfollows. |

Proposition 18.27 (Ladder pricing formula) Consider an (a,8)-ladder
with delivery time T. Assume that S(t) = s and that Mg(t) € D,,. Then the
price II (t), d the ladder is given by

N
H(t) = Bm + E '7nFanI (t,s;B0O),

n=m+1

where ¥, = Bn — Bn-1, and

Fanl (t s: BO) = (0‘_")2;/”2 e—r(T—t) + e—r(T—t)N [F(T — t) +In (S/Qn)]
b s

ovT -t
= 2 ~
_ amr(@-t) (O 2/ [T — t) —In(s/an)
e &) ¥ ==
Proof Exercisefor the reader. a

18.5 Lookbacks

Lookback options are contracts which at the delivery time T dlow you to take
advantage o the realized maximum or minimum of the underlying price process
over the entire contract period. Typical examplesare

S(T) — minS(t) lockback call,
t<T

max S(t) — S(T) lookback put,

t<T

max [ltn<aizc S(t) — K,O| forward lookback call,

max [K - Itréig S(t),0| forward lookback put.

We will confine ourselves to give a sketch d the pricing o a lookback put;
for further results see the Notes below.
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From general theory, the price d the lookback put at t =0 isgiven by
= TTEQ -
HO0)=e ™ FE [ltnsa%c S(t) S(T)]
— =T Q _ T pQ
e™E [rtnsalTx S(t)] e " E~ [S(T)).

With §(0) = s, the last term iseasily obtained as
e "TE?[S(T)] = s,

it remainsto compute the term E< [max,<r §(¢)]. To thisend we recall that
S(t) isgiven by
S(t) = exp{| nst#t+ oW(t)} = eX®,

where

dX =7dt + o dW,
X(0) =Ins.
Thus we see that
Ms(T) = eMx(T)

and the point isd course that the distribution for Mx(T) is known to usfrom
Proposition 18.4. Using this proposition we obtain the distribution function, F,
for Mx (T)as

for dl z > Ins. From this expresson we may compute the density function

f = F’, and then the expected valueis given by
Q = EQ |eMx(T)] ~ * .
E [rtnsa%c S(t)] E [e ] /1 N e’ f(z)dz

After a seriesdf elementary, but extremely tedious, partial integrations we end
up with the following result.

Proposition 18.28 (Pricing formula for lookback put) The price, att =0,
of the lookback put is given by

2 2
(0) = —sN [—d] +se TN [—d + a\/f] +sg;N [d] —se"T;—rN [—d + cr\/T] ,

where
_ T+ 10T

d=
ovT
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18.6 Exercises
In all exercises below we assume a standard Black—Scholes mode!.

Exercise 18.1 An "al-or-nothing" contract, with delivery date T, and strike '
price K, will pay you the amount K, if the price o the underlyingstock exceeds

thelevel L at sometime during the interval [0,t]. Otherwiseit will pay nothing.

Compute the price, at t < T, o the all-or-nothing contract. In order to avoid

trivialities, we assumethat S(s) < L for all s <t.

Exercise 18. 2 Consider a binary contract, i.e. a T-claim o the form
X = Ii 5(ST),

whereasusual 1 istheindicator function. Compute the priced thedown-and-out
verson d the binary contract above, for all possible values o the barrier L.

Exercise 18.3 Consider a general down-and-out contract, with contract func-
tion ®, as descibed in Section 18.2.1. We now modifiy the contract by adding a
fixed “rebate” A, and the entire contract is specified as follows:

e If S(t)>L for all t <T then &(S(T)) is paid to the holder.
o If S(t) <L for somet < T then the holder receives the fixed amount A.

Derive a pricing formulafor this contract.
Hint: Use Proposition 18.4.

Exercise 18.4 Use the exercise above to price a down-and-out European call
with rebate A.

Exercise18.5 Derive a pricing formula for a down-and-out version o the T
contract X = ®(5(T)), when S has a continuousdividend yield 6. Specidizeto
the case of a European call.

18.7 Notes

Most df the concrete results above are standard. The general Theorem 18.8 and
its extensions seem, however, to be new. For barrier options we refer to Rubin-
stein and Reiner (1991), and the survey in Carr (1995). Two standard papers on
lookbacks are Conze and Viswanathan (1991), and Goldman et al. (1979). See
also Musiela and Rutkowski (1997).
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19
STOCHASTIC OPTIMAL CONTROL

19.1 An Example

Le us consider an economic agent over a fixed time interval [0,7]. At time
t =0 the agent is endowed with initial wealth =, and his/her problem is how to
1 dlocate investments and consumption over the given time horizon. We assume
that the agent's investment opportunities are the following:

J
|
|

e The agent can invest money in the bank at the deterministic short rate o
interest r, i.e. he/she has access to the risk free asset B with

ki

dB=rBdt. (19.1)

e Theagent caninvest in arisky asset with price process.S;, wherewe assume
that the S-dynamics are given by a standard Black—Scholes model

dS=aSdtt+sSdw. (19.2)

W\& denote the agent's relative portfolio weightsat timet by u? (for the riskless
asset), and u} (for the risky asset) respectively. His/her consumption rate at
timet is denoted by ¢;.
; We restrict the consumer's investment-consumption strategies to be sdf-
financing, and as usual we assume that we live in a world where continuous
- trading and unlimited short selling is possible. If we denote the wealth o the
. consumer at time t by X;, it now follows from Lemma 6.4 that (after a slight
rearrangement of terms) the X-dynamics are given by

dX; = X; [ulr T ula] dt - ¢, dt T uloX, dW;. (19.3)

Theobject of the agent isto choose a portfolio-consumptionstrategy in such
away asto maximizehis/her total utility over [0,77, and we assumethat this

L utility isgiven by
T
E[ / F(t, ;) dt + 8(X7)| | (19.4)
0

. where F is the instantaneous utility function for consumption, whereas @ is a
“legacy” function which measures the utility of having some money left at the
- end d the period.

A natural constraint on consumption is the condition

>0, Vt>0, (19.5)
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and we dso have o coursethe constraint
u +up =1, Vt>0. (19.6)

Depending upon the actual situation we may be forced to impose other con-
straints (it may, say, be natural to demand that the consumer's wealth never
becomes negative), but we will not do this at the moment.

We may now formally state the consumer's utility maximization problem as
follows:

T
max F [/ F(t,c;)dt + ®(XT) (19.7)
uY,uC 0 :
o, dX; = X, [ufr + ufa] dt — ¢, dt + ulo X, dW,, (19.8)
Xo = Xg, (199) A
>0, Vt>0, (19.10)
u) +ul =1, Vt=0. (19.11)

A problemd thiskind isknown as astochastic optimal control problem.
In this context the process X is caled the state process (or state variable),
the processes u%, u?, ¢ are called control processes, and we have a number o
control constraints. In the next sections we will study a fairly general class
o stochastic optimal control problems. The method used is that of dynamic
programming, and at the end o the chapter we will solve a verson o the
problem above.

19.2 The Formal Problem
We now go on to study afairly general classof optimal control problems. To this

end, let u(t,x,u) and o(t, x, u) be given functions o the form
p: Ry x R® x R* — R™,
o: Ry x R® x RF — R™*¢,

For a given point zo- € R" we will consider the following controlled
stochastic differential equation:

dX;=pu (t,Xt,'u,t) dt + o (t, Xt u,) AWz, (19.12)
Xo = Zo. (1913)
We view the n-dimensional process X asastate process, whichwearetrying

to "control" (or "steer'). We can (partly) control the state process X by choosing
the k-dimensional control process u in a suitable way. W is a d-dimensional




THE FORMAL PROBLEM 273

f Wieng process, and we must now try to give a precise mathematical meaning
P to the forma expressions (19.12)—(19.13).

Remark 19.2.1 In this chapter, where we will work under a fixed measure, all
| Wieng processes are denoted by the letter W.

» Our first modeling problem concernsthe classdf admissible control processes.
In most concretecasesit isnatural to requirethat the control processu isadapted
tothe X process. In other words, at timet the value u; o the control processis
oy dlowed to "depend” on past observed vaues o the state process X. One
t natural way to obtain an adapted control processis by choosing a deterministic
| function g(t, )

g: R, x R* — RF,

and then defining the control process u by
Ut =g (t, Xt)

Sxh afunction g is called a feedback control law, and in the sequel we will
| restrict oursalves to consider only feedback control laws. For mnemo-technical
| purposes we will often denote control laws by u(t, x), rather than g(¢,z), and
,} writew; = u(¢, X¢). We use boldfacein order toindicate that uisafunction. In
¢ contragt to this we use the notation « (italics) to denote the value o a control
§ & acertaintime. Thus u denotes a mapping, whereas u denotes a point in R¥,
f  Suppose now that we have chosen a fixed control law u(t, ). Then we can
F insart U into (19.12) to obtain the standard SDE

dXt =Uu (t, Xt, ll(t, Xt)) dt +o (t, Xt, U(t, Xt)) th (1914)

In mog concrete cases we also have to satisfy some control constraints,
and we mode this by taking as given a fixed subset U € R* and requiring that
y; € U for each t. We can now definethe classof admissible control laws.

Definition 19.1 A control law u is caled admissible if
e u(t,z)csUforadlte Ry andal x e R".
e For any given initial point (t,X) the SDE
dX, = p (s, X5, u(s, X,)) ds+ o (s, X,, u(s, X)) dW,,
Xt =X
hes a unique solution.
1 The dass d admissible control laws is denoted by /.

Far agiven control law u, the solution process X will of course depend on the
initid value x, as wdl as on the chosen control law u. To be precise we should
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therefore denote the process X by X=, but sometimeswe will suppress x or u.
We note that eqn (19.14) looksrather messy, and since we will also have to deal

with the 118 formula in connection with (19.14) we need some more streamlined
notation.

Definition 19.2 Consider egn (19.14), and let ' denote matrix transpose.
e For any fized vector u € R¥, the functions u*, o%, and C* are defined by

l‘u(tv .’L‘) = /J'(t’ Z, u)’
o*(t,r) = o(t, z,u),
C*(t,z) = o(t, z,u)o(t,z,u).

-2

e For any control law u, the functions p*, a¥, CY(t,x), and F"(t,x) are
defined by

ph(t, ) = p(t, z,u(t, z)),
o"(t,z) = o(t,z,u(t, z)),
C"(t,z) = o(t,z,u(t, z))o(t, z, u(t, z)),
FY(t,x)= F(¢,x,u(t, x)).

For any fired vector u € RK, the partial differential operator A' is
defined by

Zu(t-’v 226‘%)

e For any control law u, the partial differential operator d" is defined by

=R+ Y Ot g

»J—

Given a control law u we will sometimes write eqn (19.14) in a convenient
shorthand notation as

dXP = pedt T o dw,. (19.15) !

For a given control law u with a corresponding controlled process X" we
will also often use the shorthand notation u; instead of the clumsier expression
u(t, X).

The reader should be aware 0 the fact that the existence assumption in
the definition above is not at al an innocent one. In many cases it is natural
to consider control laws which are "rapidly varying", i.e. feedback laws u(t, x)
which are very irregular as functions o the state variable z. Inserting such an
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irregular control law into the state dynamicswill eesily give us a very irregular
drift function x (t,x,u(t,x)) (as a function o x), and we may find ourselves
outside the nice Lipschitz situation in Proposition 5.1, thus leaving us with a
highly nontrivial existence problem. The reader is referred to the literature for
details.

We now go on to the objective function of the control problem, and therefore
We consider as given a pair o functions

F:R; xR"x R* - R,
®:R" - R.

Now we define the value function o our problem as the function

Jo U - R,
defined by
T
Jo(u) =F [/ F@t, XM w)dt+@(X7)|,
0

where X" is the solution to (19.14) with the given initial condition X, = zo.
Our formal problem can thus be written as that of maximizing Jo(u) over
dl u € Y, and we definethe optimal value Jy by

Jo = sup Jo(u).
ueu
| If there exists an admissible control law u with the property that
Jo(t) = Jo,

thenwe say that uisan optimal control law for the given problem. Notethat,
. as for any optimization problem, the optimal law may not exist. For a given
concrete control problem our main objective is d course to find the optimal
control law (if it exists), or at least to learn something about the qualitative
. behavior of the optimal law.

19.3 The Hamilton—Jacobi—Bellman Equation
Given an optimal control problem we have two natural questionsto answer:

(@) Doesthere exist an optimal control law?
(b) Given that an optimal control exists, how do we find it?

- In this text we will mainly be concerned with problem (b) above, and the meth-
- odology used will be that o dynamic programming. The main idea is to
; embed our original probleminto a much larger classd problems, and then to tie
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all these problemstogether with a PDE known asthe Hamilton—Jacobi—Bellman
equation. The control problem is then shown to be equivaent to the problem d
finding a solution to the HIB equation.

We will now describe the embedding procedure, and for that purpose we
choose afixed point t in time, with 0 <t < T. We d so choose a fixed point x in
the state space, i.e. X € R". For this fixed pair (t,z) we now definethe following
control problem.

Definition 19.3 The control problem P(t,z) is defined as the problem to
maximize

E

t,z

T
/ F(s, X2 u,)ds + & (X2) |, (19.16)
t

given the dynamics

dX3 = p(s, X;' u(s, X)) ds to (s, X3 u(s, X)) AW, (19.17)
X=X, (19.18)

and the constmints
u(s,y) €U, V(s,y) € [t,T] x R™. (19.19)

Observethat we use the notation s and y above because the letters t and x
are aready used to denote the fixed chosen point (t,z).

We note that in terms o the definition above, our original problem is the
problem P(0, zy). A somewhat drastic interpretation of the problem P(¢,x) is
that you have fallen adeep at time zero. Suddenly you wake up, noticing that
the time now ist and that your state process while you were adeep has moved
to the point x. You now try to do as well as possible under the circumstances, so
you want to maximize your utility over the remaining time, given the fact that
you start at timet in the state x.

We now define the value function and the optimal value function.

Definition 19.4

e Thevalue function
J: Ry xR"xU—-R

is defined by

J(t,z,u) =

/ F(s, X®,u,)ds + & (X2)

given the dynamzcs (19.17)-(19.18).
e Theoptimal value function

V:R, xR">R
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is defined by
V(¢ x) =sup J(t x,u).
uel

O

" Thus J (%, x, u) isthe expected utility of using the control law u over thetime
interval [t,T), giventhefact that you start in state x at timet. Theoptimal vaue
function gives you the optimal expected utility over [t,T] under the same initial
conditions.

The main object of interest for us is the optimal vaue function, and we
mw go on to derive a PDE for V. It should be noted that this derivation is
largely heuristic. We make some rather strong regularity assumptions, and we
disregard a number o technical problems. We will comment on these problems
later, but to see exactly which problems we are ignoring we now make some basic
assumptions.

Assumption 19.3.1 We assume thefollowing:

1. There exists an optimal control lav u.
2. The optimal valuefunction V is regular in the sense that V € C1:2,
3. A number d limiting proceduresin thefollowing argumentscan lejustified.

. W\e now go on to derive the PDE, and to thisend wefix (t,x) € (0,T) X R™.
I Furthermore we chooseareal number h (interpretedasa "smal” timeincrement)
 such that t T h < T. We choose a fixed but arbitrary control law u, and define
- the control law u* by

. u(s,y), (s,y) €[t t+h] x R",
vy = {ﬁ(s,y), (s,y) € (¢ +4,T] x R,

= In other words, if we use u* then we use the arbitrary control u during the time
E interval [t,t + h], and then we switch to the optimal control law during the rest
d the time period.
'» The wholeidead dynamic programming actually boilsdown to the following
| procedure;

e First, given the point (t,z) as above, we consider the following two
strategies over the time interval [t, T}:
Strategy |. Usethe optimal law 1.
Strategy II. Usethe control law u* defined above.

e We then compute the expected utilities obtained by the respective
strategies.

e Finaly, using the obvious fact that Strategy | by definition has to be at
least as good as Strategy II, and letting h tend to zero, we obtain our
fundamental PDE.

We now carry out this program.
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Expected utility for strategy |: Thisistrivial, since by definitionthe utility
isthe optimal one given by J(t,z,u) = V (¢, X).

Expected utility for strategy II: We divide the time interval [t, T into two
parts, the intervals [t,t + h] and (t+ h, T, respectively.
e The expected utility, using Strategy II, for theinterval [t,t+ h) isgiven by

t+h
E,; . A F(s,X},u,) dy .

e In the interval [t+ A T] we observe that at time t T h we will be in
the (stochastic) state Xy ,. Since, by definition, we will use the optimal
strategy during the entire interval [t + h,T] we see that the remaining
expected utility at tlmet+ h isgiven by V(t+ h, X3 ). Thus the expected
utility over the interval [t h, T, conditional on the fact that at timet we
arein state x, is given by

Et,:c [V(t + ha Xt“+h)]'

Thus the total expected utility for Strategy II is

t+h
Et,-"? [ F(S, X:,uﬂ) ds+ V(t + h, Xtu+h)] .
t

Comparing the strategies: We now go on to compare the two strategies, and
since by definition Strategy | isthe optimal one, we must have the inequality

t+h

V(t,z) > E,, [ F(s, X} u,)ds+V(t+h,X +h)] (19.20)

We also notethat theinequality signisdueto thefact that the arbitrarily chosen
control law u which we use on the interval [t,t * h] need not be the optimal one.
In particular we have the following obvious fact.

Remark 19.3.1 We have equality in (19.20) if and only if the control law u is
an optimal law u. (Note that the optimal law does not have to be unique.)

Since, by assumption, V is smooth we now use the It6 formula to obtain (with
obvious notation)

Vet n X2 = Vitx) +/ { (8, X2) T A"V (s, X“)} ds

t+h
+ / V.oV (s, X2)a® dW,. (19.21)
t
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If we apply the expectation operator F; . to thisequation, and assume enough
integrability, then the stochastic integral will vanish. We can then insert the res-
ulting equation into the inequality (19.20). The term V (¢, x) will cancel, leaving
us with the inequality

E,

t,x

t+h aV
/ [F (5, X3, 00) + S5, X2) + AV s, X;‘)] ad <0. (1922
t

Going to the limit: Now we divide by h, move h within the expectation and
let h tend to zero. Assuming enough regularity to dlow us to take the limit
within the expectation, using the fundamental theorem o integral calculus, and
recaling that X, = x, we get

F(t,z,u)t %(t, z) T A*V(t,z) <0, (19.23)

where u denotes the value of thelaw u evaluated at (t,x), i.e. u=u(t, x). Since
the control law u was arbitrary, this inequality will hold for all choicesdf u € U,
and we will have equality if and only if u = @(t,x). We thus have the following
equation:

%’(t,x) +sup {F(t,z,u) Fduv (t,x)) =0.

During the discussion the point (t,x) was fixed, but since it was chosen as an
arbitrary point we see that the equation holdsin fact for all (t,x) € (0,T) x R".
Thus we have a (nonstandard type of) PDE, and we obviousy need some
" boundary conditions. One such condition is easily obtained, since we obviousy
(why?) have V(T,z) = ®(z) for al x € R". We have now arrived at our god,
namely the Hamilton-Jacobi-Bellman equation, (often referred to as the HIB
equation.)

Theorem 19.5(Ham | t on- Jacobi - Bel | nan equation) Under Assumption
19.3.1, thefollowing hold:

1 V satisfies the Hamilton-Jacobi-Bellman equation
Vv u n
= (t,2) + sup {F(t,z,u) + A"V (t,2)} =0, V(t,z)€(0,T)xR
ot uelU
V(T,z) = ®(x), VzeR".

2. For each (t,x) € [0,T] x R the supremum in the HJB equation above is
attained by u = (¢, x).
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Remark 19.3.2 By going through the arguments above, it is easily seen that
we may alow the constraint set U to be time- and state-dependent. If we thus
have control constraints o the form

u(t,z) e U(t,z), Vt,x

then the HJIB equation still holds with the obvious modification o the
supremum part.

It isimportant to note that this theorem has the form o a hecessary con-
dition. It saysthat if V isthe optima value function, and if 4 is the optimal
control, then V satisfies the HIB equation, and (¢, z) realizes the supremum
in the equation. We also note that Assumption 19.3.1isan ad koc assumption.
One would prefer to have conditionsin terms o the initial data i, a, F, and ®
which would guarantee that Assumption 19.3.1 is satisfied. This can in fact be
done, but at a fairly high price in terms of technical complexity. The reader is
referred to the specialist literature.

A gratifying, and perhaps surprising, fact isthat the HIB equation also acts ;
as a sufficient condition for the optimal control problem. This result is known
as the verification theorem for dynamic programming, and we will use it
repeatedly below. Note that, as opposed to the necessary conditions above, the
verification theorem is very easy to prove rigorously. '

Theorem 19.6 (Verification theorem) Suppose that we have two functions
H(t,z) and g(t,x), such that ‘

¢ H is sufficiently integrable (sse Remark 19.3.4 bdow), and solves the HIB
equation

OH (, 2) + sup {F(t,,u) + A*H(,2)} =0, V(t,z) € (0,T) x R"
ot uelU
H(T,z) = ®(z), VzeR"

e Thefunction g is an admissible control law.
e For each fized (t,X), the supremum in the expression

SUB {F(t,z,u) + A*H(t,z)}
u€
is attained by the choiceu = g(t,x).

Then thefollowing hold:

1. The optimal valuefunction V to the control problem is given by
V(t,x) = H(t,z).

2. There exists an optimal control law u, and infact (t, X) = g(t, ).
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Remark 19.3.3 Notethat we have used the letter H (instead d V) in the HIB
equation above. This is because the letter V by definition denotes the optimal
vaue function.

; Proof Assume that H and g axe given as above. Now choose an arbitrary
control law u € U, and fix a point (t,x). We define the process X ¥ on the time
| interval [t, T as the solution to the equation

dX2 = p¥ (5, XY) dst 0% (s,X2) dW,,
X=X

b Inserti ngthe process X “ into thefunction H and using the 1t6 formulawe obtain
T (oH
X = Hen) + [ {Gxm + (v (o3} as
T
+/ V.H(s, X1)o"(s, X3) dW,.
t
i Since H solves the HJB equation we see that
H .
-aa—t(t, z)+ F(t,z,u) + A*H(t,z) <0
| for all »w € U, and thus we have, for each s and P-a.s, the inequality

Y (s, x)+ (4°H) (2, X¥) < —F(s, X2

} From the boundary condition for the HIJB equation we aso have H(T, X}) =
®(X}), so we obtain the inequality

T T
H(t,z) > / F¥(s, X)ds + ®(XF) — / V. H(s, XYo! dW,.
¢ ¢

| Taking expectations, and assuming enough integrability, we make the stochastic
I integral vanish, leaving us with the inequality

N T
H(t,z)> B, / F(s, X%)ds +v<1>(xg)] = J(t, 2, ).
t

i Since the control law u was arbitrarily chosen this gives us

H(t,x) > supJ(t,x,u) = V(t,z). (19.24)
uely
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To obtain the reverse inequality we choose the specific control law u(t, x) =
g(t,z). Going through the same calculations as above, and using the fact that
by assumption we have

%{(t,x) +F9t,x) T d%H(t,x) =0,

we obtain the equality
T
H(t,z)=E,, [/ F8(s,X8)ds + ®(X%)| = J(t,z,8). (19.25)
t

On the other hand we have the trivial inequality
V(t,z) 2 It z,8), (19.26)
so, using (19.24)-(19.26), we obtain
H(t,z) 2 V(t,z) 2 I (¢, z,8) = H(¢,z).
This shows that in fact
H(t,z) =V(t,z) = J(t,z,8),
which provesthat H=V, and that gs isthe optimal control law. a

Remark 19.3 4 The assumption that H is “sufficiently integrable” in the the-
orem above is made in order for the stochastic integral in the proof to have
expected valuezero. Thiswill bethecaseif, for example, H satisifesthe condition

VH(s,X)a%(s, X2) € £2,

for dl admissible control laws.

Remark 19.35 Sometimes, instead of a maximization problem, we consider a
minimization problem. Of course we now make the obvious definitions for the
vaue function and the optimal value function. It is then easily seen that all the
results above still hold if the expression

sup {F(t,z,u) T d"V (t,x))
uelU

in the HJB equation is replaced by the expression
inf {F(t,z,u) + ACV(t,x)).

Remark 19.3.6 In the Verification Theorem we may dlow the control con-
straint set U to be state and time dependent, i.e. d the form U (t, x).
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19.4 Handling the HIB Equation

In this section we will describe the actual handling of the HIB equation, and in
the next section wewill study aclassical example—thelinear quadratic regulator.
We thus consider our standard optimal control problem with the corresponding
HJB equation:

ov
—(t,x) + sup {F(t,z,u) +duV (t,x)} =0,
5 (%) ueU{ ( ) (t,x)} (19.27)

V(T,x) = ®(z).

Schematically, we now proceed as follows

1 Consider the HIB equation as a PDE for an unknown function V.
! 2 Hx an arbitrary point (t,x) € [0,T] x R" and solve, for this fixed choice
o (t,x), the static optimization problem

max [F(t,x,u) + AuV(t,z))

Note that in this problem u is the only variable, whereast and = are
considered to be fixed parameters. The functions F, i, o, and V are
considered as given.

3. Theoptimal choiced u, denoted by 4, will of course depend on our choice
o t and x, but it will also depend on the function V and its various
partial derivatives (which are hiding under the sign duV). To highlight
these dependencies we write 11 as

a=1a(,z;V). (19.28)

4. The function 4(t,x; V) isour candidate for the optimal control law, but
since we do not know V this description isincomplete. Therefore we sub-
stitute the expression for ¢ in (19.28) into the PDE (19.27), giving us
the PDE

%VT(t, x) + Fe(t,x) + A%V (t,z) =0, (19.29)
V(T,z) = &(x). (19.30)

5. Now we solve the PDE above! (Seethe remark below.) Then we put the
solution V into expression (19.28). Using the verification theorem 19.6 we
can now identify V as the optimal value function, and 4 as the optimal
control law.

Remark 19.4.1 Thehard work of dynamic programmingconsistsin solvingthe
highly nonlinear PDE in step 5 above. There are o course no general analytic
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methods available for this, so the number d known optimal control problems
with an analytic solution is very small indeed. In an actual case one usualy tries
to guessa solution, i.e. we typically make an ansatz for V, parameterized by a
finite number o parameters, and then we use the PDE in order to identify the
parameters. The makingd an ansatz is often helped by the intuitive observation
that if there is an analytical solution to the problem, then it seems likely that
V inherits some structural properties from the boundary function ® as wel as
from the instantaneous utility function F.

For a genera problem there is thus very little hope o obtaining an analytic
solution, and it is worth pointing out that many d the known solved control
problemshave, to someextent, been "rigged” in order to be analytically solvable.

19.5 The Linear Regulator
We now want to put the ideasfrom the previous section into action, and for this

purpose we study the most well known of al control problems, namely the linear
quadratic regulator problem. In this classical engineering example we wish to
minimize r
E |:/g {X{QXt + uiRut} dt + X;}HXT )
(where’ denotes transpose) given the dynamics
dXt = {AXt + But} dt + Cth

One interpretation of this problem is that we want to control a vehicle in such
a way that it stays close to the origin (the terms z'Qz and =’ Hz) while at the
same time keeping the "energy" «/ Ru small.

As usual X; € R" and u; € R*, and we impose no control constraintson u.
The matrices Q, R, H, A, B, and C are assumed to be known. Without loss o
generality we may assumethat Q, R, and H are symmetric, and we assumethat
R is positive definite (and thus invertible).

The HJIB equation now becomes

[ % (tx)F inf {xX'Qx T w'Ru¥ [V.V](t,z) [AxT Buj}

1 % ’
+ 5 = axi 6117] (t, .’B) [CC ]i,j - 07
V(T,x)=«'Hz.

For each fixed choiced (tx) we now have to solve the static unconstrained
optimization problem to minimize

v Rut [V, V](t,z) [Az T Buy].
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i Since, by assumption, R > 0 we get the solution by setting the gradient equal
to zero, thus giving us the equation

2'R = —(V,V)B,
which gives us the optimal « as

| Here we s clearly (compare point 2 in the scheme above) that in order to
| ue this formula we need to know V, and we thus try to make an educated
k' guess about the structure of V. From the boundary value function =/ Hz and

# the quadratic term z'Qz in the instantaneous cost function it seems reasonable

b to assumethat V isa quadratic function. Consequently we make the following

| ansatz:

V(t,2) = 2'P(t)e T q(t),
where we assumethat P(¢) is a deterministic symmetric matrix function o time,

b whereas ¢(t) isa scalar deterministic function. It would of course also be natural
. to include a linear term o the form L(¢)z, but it turns out that this is not

necessary.
With thistrial solution we have, suppressing the t-variableand denoting time
- derivatives by a dot,

ov
ot
V.V(t,x) =2z'P,
ViV (t,z) =2P
% =—-R B Pz.

(t,x) = ' Pz + 4,

Inserting these expressionsinto the HJB equation we get
' Pr+§+2'Qr+'’PBR*RR™B'Px + 22/ PAx
— 22/ PBR™'B'Pz + ) P4[CC");; = 0.
Y

| \\e note that the last term above equals tr[ C'PC], where tr denote the trace of
} amatrix, and furthermore we see that 2z’ PAz = z'A'Px + &' PAz (thisisjust
i} cosmetic). Collecting terms gives us

2 {P +Q-PBR'B'P+AP+ PA} z+G+tfC'PC)=0.  (19.31)

it thisequation isto hold for al x and all t then firstly the bracket must vanish,
§ leaving us with the matrix ODE

P=PBR'B'P-AP-PA-Q.
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We are then left with the scalar equation
g = —tr[C'PC].

We now need some boundary valuesfor P and g, but these follow immediately |
from the boundary conditions d the HJB equation. We thus end up with the |
following pairs o equations:

P=PBR'B'P- AP - PA-Q,
(19.32)

P(T)=H.
G = —tr[C'PC|,
{ : P (19.33)
g(T)=0.

The matrix equation (19.32) is known as a Riccati equation, and there are
powerful algorithms available for solving it numerically. The equation for g can
then be integrated directly.

Summing up we see that the optimal value function and the optimal control

law are given by the following formulas. Note that the optimal control is linear
in the state variable.

T
V(t,2) = o' P) + / ££[C"P(s)C] ds, (19.34)

a(t,r) = —R"B'P(t)z. (19.35) -

19.6 Optimal Consumption and Investment
19.6.1 A Generalization

In many concreteapplications, in particular in economics, it isnatural to consider

an optimal control problem, wherethestate variableis constrainedto stay within

a prespecified domain. As an exampleit may be reasonable to demand that the

wealth o an investor is never dlowed to become negative. We will now generaize

our class d optimal control problemsto adlow for such considerations. '
Let us therefore consider the following controlled SDE:

dX; = p(t, X, ue) dt + o (t, X¢, ue) WS, (19.36)
XO = o, (19'37)

where as before we impose the control constraint «, € U. We also consider as
given a fixed time interval [0,T7], and a fixed domain D C [0,7] x R", and the
basic idea is that when the state process hits the boundary 8D o D, then the
activity isat an end. It is thus natural to define the stopping time by

7 =inf {t > 0|(t,X¢) € D} AT,
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where X A y = min]z, y]. We consider as given an instantaneous utility function
F(t,x,u) and a "bequest function" &(¢,X), i.e. a mapping ® : 9D — R. The
control problem to be considered is that of maximizing

E [/OT F(s, X u,)ds + ® (7, X;‘)} (19.38)

In order for this problem to be interesting we have to demand that X, € D, and
the interpretation is that when we hit the boundary 8D, the game is over and
we obtain the bequest ® (1, X;). We see immediately that our earlier situation
corresponds to the case when D = [0,T] x R™ and when & is constant in the
t-variable.

In order to analyze our present problem we may proceed asin the previous
sections, introducing the value function and the optimal value function exactly
as before. The only new technical problem encountered is that of considering
a stochastic integral with a stochastic limit of integration. Since this will take
us outside the scope d the present text we will confine ourselvesto giving the
results. The proofs are (modulo the technicalities mentioned above) exactly as
before.

Theorem 19.7 (HJB equation) Assume that

e The optimal value functionV isin C12.
e An optimal law u exists.

Then the following hold:
1. V satisifies the HIB equation

! %/(t, x) +sup {F(t,z,u) T A*V(t,2)} =0, V(t,z)€ D,
uelU

l V(t,x)=®(t,x), V(tx) <€ bD.

2. For each (t,z) € D the supremum in the HIJB equation above is attained
by u = u(t, x).

Theorem 19.8 (Verification theorem) Suppose that we have two functions
H(t,x) and g(¢, X), such that

o H is sufficiently integrable, and solvesthe HIB eguation

g (t,z) + sup {F (t, z, ﬂ) + A*H(t,z)} =0, V(t,z)€ D,
ot uel
H(t,x)=®(@,x), VY(tx)<caD.

e The function g is an admissible contraol law.
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e For each fized (t,x), the supremum in the expression sredw |

sulr}{F(t,a:, u) T duH(t,x)} 200 |
u€e

is attained by the choiceu = g(t, ). -
Then thefollowing hold: '

1. The optimal vauefunction V to the control problem is given by
V(t,z) = H(t,z).
2. There exists an optimal control law 1, and infact 4(t, x) = g(¢, z).

19.6.2 Optimal Consumption

In order toillustrate the technique we will now go back to the optimal consump-
tion problem at the beginning d the chapter. We thus consider the problem of
maximizing

E [ /0 "R dt + (X)) (19.39)
given the wealth dynamics
dX; = X; [u?r + utla] dt — ¢, dt + ulo X, dW,. (19.40)
As usual we impose the control constraints

20, Vi>0,
wWul=1 WVt>0.

In a control problem o this kind it is important to be aware o the fact
that one may quite easily formulate a nonsensical problem. To take a simple
example, suppose that we have & = 0, and suppose that F is increasing and
unbounded in the c-variable. Then the problem above degenerates completely. It
does not possess an optimal solution at all, and the reason is of course that the
consumer can increase his/her utility to any given leve by simply consuming an
arbitrarily large amount at every t. The consequenced this hedonistic behavior
is o course the fact that the wealth process will, with very high probability,
become negative, but this is neither prohibited by the control constraints, nor
punished by any bequest function.

Anelegant way out o thisdilemmaisto choosethedomain D o the preceding
sectionasD = [0,T] x {z|x > 0). With r defined asabovethis means, in concrete
terms, that

T=inf{t>0|X;=0}AT.
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A natural objective function in this case is thus given by

E [ /0 " P, c) dt] , (19.41)

which automatically ensures that when the consumer has no wealth, then al
activity is terminated.

We will how analyze this problem in some detail. Firstly we notice that we
can get rid o the constraint ¢+ u! = 1 by defining a new control variablew as
w = !, and then substituting 1 — w for «°. This gives us the state dynamics

dX, = we [or — r] X, dt T (r X, — &) dt T wo X, dW, (19.42)

and the corresponding HJB equation is

oV v BV 1, 4,0V _

5 +c2?)flu?ER {F(t, ¢)+wz(a —r) B + (rz ~ c)% + gT WSy =0,
V(T,z)=0,
V(t,0)=0.

We now specializeour exampleto the case when F isd the form
F(t,c) = e %,

where 0 < v < 1. The economic reasoning behind this is that we now have
an infinite marginal utility at ¢ = ¢. This will force the optimal consumption
plan to be positive throughout the planning period, a fact which will facilitate
the analytical treatment of the problem. In terms o Remark 19.4.1 we are thus
"rigging” the problem.
The static optimization problem to be solved w.r.t. ¢ and w isthus that o
maximizing
2
=8ty + - %+ _ a_y_+12 20°V
e %" Twz(a—r) 5 (rx--¢) 5 | 5" wWoo vl
and, assuming an interior solution, the first-order conditions are
v =%V, (19.43)

V. a-r

w = -
- Vg 02

, (19.44)

where we have used subscriptsto denote partial derivatives.
We again seethat in order toimplement the optimal consumption—investment
plan (19.43)—-(19.44) we need to know the optimal valuefunction V. Wetherefore
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suggest a trial solution (see Remark 19.4.1), and in view o the shape d the
instantaneous utility functioniit is natural to try a V-functiond the form
V(t,z) = e %h(t)z", (19.45)
where, because d the boundary conditions, we must demand that
h(T) = 0. (19.46)

Givena V o thisform we have (using - to denote the time derivative)

%V = e Othg? — e~ ¥thy?, (19.47)
g—‘; = ye Sthg? 1) (19.48)
2

%x—‘: =v(y—1)e *hz7"2 (19.49)

Inserting these expressions into (19.43)—(19.44) we get

a—r
o?(1—5)’
&(t,z) = zh(t)~ /-, (19.51)

W(t, x) = (19.50)

Thislooksvery promising: weseethat the candidate optimal portfolio isconstant
and that the candidate optimal consumptionruleislinear in the wealth variable.
In order to use the verification theorem we now want to show that a V-function
o theform (19.45) actually solvesthe HIB equation. We thereforesubstitute the
expressions (19.47)—(19.51) into the HJB equation. This gives us the equation

2 {h(t) + Ah(t) + Bh(t)~"/ (1'7)} =0,

where the constants A and B are given by

_e=r? 1y@-r)
A= map T IR0y
B=1-+.

If this equation is to hold for al x and al t, then we see that h must solve
the ODE

h(t) + AR(t) + Bh(t)=/0-" =o. (19.52)
h(T) = 0. (19.53)
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An equation o this kind is known as a Bernoulli equation, and it can be
Dlved explicitly (seethe exercises).

Summing up, we haveshownthat if wedefineV asin (19.45) with h defined as
thesolution to (19.52)-(19.53), and if we definew and & by (19.50)—(19.51), then
V satisfiesthe HIB equation, and w, & attain the supremum in the equation. The
verificationtheorem then tells us that we have indeed found the optimal solution.

19.7 The Mutual Fund Theorems

- In this section we will briefly go through the ""Merton mutual fund theorems”,
p originaly presented in Merton (1971).

19.71 The Case with No Risk Free Asset

We consider a financial market with n asset prices Si,...,S,. To start with we

do not assume the existence o a risk free asset, and we assume that the price

vector process S(t) has the following dynamics under the objective measure P.
dS = D(S)adt + D(S)o dW. (19.54)

Here W is a k-dimensiona standard Wiener process, a is an n-vector, a is an

n X k matrix, and D(S) isthe diagonal matrix

D(S) = diag[S1,...,85n).
In more pedestrian terms this means that
dSi = S,-ai dt + SiO',; dVV,

where o; istheith row o the matrix o.

We denote the investment strategy (relative portfolio) by w, and the con-
sumption plan by c. If the pair (w,c) is self-financing, then it follows from the
S-dynamicsabove, and from Lemma6.4, that the dynamicsd the wealth process
X are given by

dX = Xw'adt — cdt + Xw'o dW. (19.55)

We dso take as given an instantaneous utility function F(¢, c), and we basically

want to maximize T
E [/ F(t,ce) dt] ,
0

where T is some given time horizon. In order not to formulate a degenerate
problem we also impose the condition that wealth is not dlowed to become
negative, and as before this is dealt with by introducing the stopping time

r=inf{t >0|X; =0} AT.
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Our formal problem is then that of maximizing

E [/OT F(t,ct) dt]

given the dynamics (19.54)—(19.55), and subject to the control constraints

Y wi=1, _ (19.56)

c>0. (19.57)
Instead o (19.56) it is convenient to write
dw=1,

where e is the vector in R" which has the number 1 in all components, i.e.
e=(Q,...,1).
The HJIB equation for this problem now becomes

V tz,8)+ sup  {F(t,c)+ AUV (t,z,8)} =0,
ot >0 -

e'w=l,c

V(T,z,s)=0,
V(t,0,8)=0.

I nthe general case, whenthe parametersa and o are dlowed to be functions
o the price vector process S, the term AV (¢,z,s) turns out to be rather
forbidding (see Merton’s original paper). It will in fact involvepartial derivetives
to the second order with respect to dl the variables x, s1, ..., $x.

If, however, we assume that a and ¢ are deterministic and constant over
time, then we see by inspection that the wealth process X is a Markov process,
and sincethe price processesdo not appear, neither in the objectivefunction nor
in the definition o the stopping time, we draw the conclusion that in this case
X itself will act as the state process, and we may forget about the underlying
S-processcompletely.

Under these assumptions we may thus write the optimal vaue function as
V'(t,x), with no s-dependence, and after some easy calculationsthe term A%*V
turns out to be

oV _ 8V 41, . FV

C,w = ) —_ —
ATV xwa—ax Caz waGN—azz,

where the matrix £ is given by
T =g0'.

We now summarize our assumptions.
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Assumption 19.7.1 We assume that

e the vector « is constant and deterministic,

e the matriz o is constant and deterministic,

e the matrix ¢ has rank n, and in particular the matriz 3 = g0’ is positive
definite and invertible.

if We note that, in terms o contingent claims anaysis, the last assumption
I means that the market is complete. Denoting partial derivatives by subscripts
l we now have the following HIB equation
Vi(t,z) + sup {F(t o) T (zw'a — )Vu(t,x) T 1 122w/ SwV,.(t,z)} =0,
w'e=1 c
V(T,z)=0,
V(t,0)=0.

If we relax the constraint we = 1, the Lagrange function for the static
L optimization problem is given by

L =F(t,¢) T (aw'a — o)V, (t,x) T 1 1220 SwVoa(t, X) + A (1- w'e)

i Assuming the problem to be regular enough for an interior solution we see that

o (1) = Valt, ).
 The first order condition for w is

2oV, T 22V, 'S = A,
. 0 wecan solvefor win order to obtain

_ A zVy
=1 [x%z e— ma] . (19.58)

Usdng therelation éw = 1 thisgives A as

22Vye + 2Vee'T
e’T-le ’

and inserting this into (19.58) gives us, after some manipulation,

8»&:

. ‘ 1 —1 Vz ’2 1
= 6,2_162 e+ szE [e’Z 1ee - a] . (19.59)
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To see more clearly what is going on we can write this expression as
w(t) =g+ Y(t)h, (19.60)

where the fixed vectorsg and h are given by

- 1 :
9= e le, (19.61) |
/-1
h=x-1 [Z;_l‘:e - a] , (19.62)
whereasY is given by
Y(t) = Va(t, X(2)) (19.63)

X()Vae(t, X(t))

Thus we see that the optimal portfolio is moving stochastically along the one-
dimensional "optimal portfolioline"

g+ sh,
in the (n — 1)-dimensional "portfolio hyperplane” A, where

A={weR"|ew=1}.

We now make the obvious geometric observation that if we fix two points on
theoptimal portfolio line, say the points w® = g+ah and w° = g+ bh, then any
point w on the line can be written as an affine combination d the basis points
w2 and wP. An easy calculation shows that if w® =g+ sh then we can write '

w® = pw® + (1 - p)u’,

where
_s5-b

u= - b
The point of al thisisthat we now have an interesting economic interpretation o
the optimality results above. Let us thus fix w2 and w® as above on the optimal
portfolio line. Since these points are in the portfolio plane A we can interpret
them as the relative portfoliosdf two fixed mutual funds. We may then write
(19.60) as

Ww(t) = p(t)w® + (1 — pt))wb, (19.64)
with v b
put) = L:
a—2b

Thus we see that the optimal portfoliow can be obtained as a“super portfolio”
where we allocate resources between two fixed mutual funds.
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‘heorem 19.9 (Mutual fund theorem) Assume that the problemis regular
nough to allow for an interior solution. Then there exists a one-dimensional
arameterized family of mutual funds, given by w® =g+ sh, whereg and h are
efined by (19.61)-(19.62), such that the following hold:

1 For each fized s the relative portfolio w® stays fized over time.
2. For any fized choice of a # b the optimal portfolio w(t) is, for all values

of t, obtained by allocating all resources between the fized funds w® and

wb, ie.

W(t) = p* () T (e’
w@® e =1
3. Therelative proportions (p, p?) of the portfolio wealth allocated to w® and
WP respectively are given by

poiy =100

a-Y(t)

a-b"

po(t) =
whereY is given by (19.65).

19.7.2 The Case with a Risk Free Asset
Agan we consider the model
dS = D(S)adt T+ D(S)o dW (1), (19.65)

with the same assumptions as in the preceding section. We now also take as
given the standard risk free asset B with dynamics

dB=rBdt.

Formally we can denote this as a new asset by subscript zero, i.e. B = So, and
then we can consider relative portfoliosd the form w = (wo, ws, ..., wy) where
o course ngi = 1. Since B will play such a specia roleit will, however, be
convenient to eliminate wy by the relation

n
wo=1-Y w,
1

and then use the letter w to denote the portfolio weight vector for the risky
assetsonly. Thus we use the notation

w= (wl,- --,wn)l,
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and we note that this truncated portfolio vector is dlowed to take any vaue
in R™.

Given this notation it iseasily seen that the dynamicsd a saf-financing port-
folio are given by

=X- {Zw,-aw <I—Zw,~) r} dt —cdt + X - w'o dW.
1 1 T
That is,
dX =X -vw(a—re)dt+ (rX —c)dt + X - w'odW, (19.66)

where as before e € R" denotes the vector (1,1,...,1)".
The HIB equation now becomes

Vi(t,z) ST {F(t,c) T 4>V (t,2)}=0,
>0, we

V(T,x)=0,
V(t,0)=0,
N

where

AV = 2w (a — re)Va(t,z) T (rx— )Va(t,z) + 2T SwV, (t, 7).

Thefirst order conditionsfor the static optimization problem are

aoF

'at;'(t, C) = Vx(t, .’l}),
Ve

Ve

v
o

W= T Ha-re

and again we have a geometrically obvious economic interpretation. | *

Theorem 19.10 (M utual fund theorem) Given assumptions as above, the
following hold:

1. The optimal portfolio consists o an allocation between two fized mutual
funds w® and wf.

2. The fund w® consists only of the risk free asset.

3. The fund wf consists only o the risky assets, and is given by

wf =2 Ya-re).




EXERCISES 297

4. At each t the optima relative alocation d wedth between the funds is
given by

Va(t, X (1))
WO _ - X6 x0)
pO(t) =1-p/ (1).

Note that this result is not a corollary of the correspondingresult from the
previous section. Firstly it was an essential ingredient in the previous results
pthat the volatility matrix of the price vector was invertible. In the case with a
I riskless asset the volatility matrix for the entire price vector (B, Sy, ...,8,) isof
f course degenerate, since its first row (having subscript zero) is identically equal
¥ to zero. Secondly, even if one assumes the results from the previoussection, i.e.
- that the optimal portfoliois built up from two fixed portfolios, it is not at all
obvious that one o these basis portfolios can be chosen so as to consist o the
risk free asset alone.

19.8 Exercises
Exercise 19.1 Solve the problem o maximizing logarithmic utility

T
[ [/ e~ %In(c;)dt T K .In(X7) ,
0

given the usual wealth dynamics
dX; = X; [ulr T u}a] dt - ¢, dt tuloX, dWs,
and the usual control constraints
¢ 20, VE>0,
ud+ui =1, Vt>0.
Exercise 19.2 A Bernoulli equation is an ODE o the form
@ T Az T Biz® =0,

where A and B are deterministic functionsd time and ais a constant.
If a=1thisisalinear equation, and can thus easily be solved. Now consider
the case a # 1 and introduce the new variabley by

pe=x; %
Show that y satisfies the linear equation

gt A- a)Acye + (1-a)B:=0.
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Exercise 19.3 Use the previous exercise in order to solve (19.52)—(19.53)
explicitly.

Exercise 19.4 The following example is taken from Bjork et al. (1987). We
consider a consumption problem without risky investments, but with stochastic
pricesfor various consumption goods.
N = the number o consumption goods,
pi(t) = price, at t, o good i (measured as dollars per unit per unit time),
p(t) =[p1(®),...,pn (1),
¢;i(t) = rate o consumptiond good i,
c(t) = [er(t),. .., en ()],
X (t) = weslth process,
r = short rate o interest,
T =time horizon.

We assume that the consumption price processes satisfy
dpi = pi(p) &t + V20:(p) AW;

where Wy, ..., W, areindependent. The X-dynamics become

dX =rXdt — cpdt,

and the objective is to maximize expected discounted utility, as measured by

E [/OTF(t,ct)dt] ,

where 7 is thetime o ruin, i.e.

r=inf{t>0;X; =0} AT.

(@) Denote the optimal value function by V(¢,z,p) and write down the
relevant HIB equation (including boundary conditionsfor t = T and
X =0).

(b) Assumethat Fis o theform

N
F(t,c) =e™* H c
i=1
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where§ > 0,0 < o; <l and a = Zf’ai < 1. Show that the optimal
value function and the optimal control have the structure

V(t,z,p) = e %tz2a—2G(t, p),
X o
alt,e,p) = 5 - AP G, p),

where G solves the nonlinear equation

oG TG~ o, 9 ¥ 222_9_.
E+(ar—6)G’+(1— a)A'G +Z“‘a, zi:”"apﬂ‘o’
G(T,p)=0, peR".

If you find thistoo hard, then study the smpler case when N = 1.
(c) Now assume that the price dynamics are given by GBM, i.e.

dp; = pip; dt + V2p;o; AW;.
Try to solve the G-equation above by making the ansatz

G(t,p) = g(t) f(p)-

Warning: This becomes somewhat messy.
Exercise 19.5 Consider as before state process dynamics

dXt = u(t,Xt,ut) dt +o (t,Xt,ut) th

| and the usual restrictions for u. Our entire derivation o the HIB equation has
- 9 far been based on the fact that the objective functionis o the form

T
/ F(t, Xy, us) dt + B(X7).
0

. Sometimesit isnatural to consider other criteria, like the expected exponential

utility criterion
T
E [exp {/ F(t, Xt, ut) dt + @(XT) .
0

For this case we define the optimal value function as the supremum o

T
E,, [exp {/ F(s,Xs,us)dt-l-‘I)(XT)}:l
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Follow the reasoningin Section 19.3in order to show that the HIB equation for
the expected exponential utility criterion is given by

O (o) owp (V (4, 2)F (6,2, 0) + AV ()} =0,
V(T, x) = 2.

Exercise 19.6 Solve the problem to minimize

T
E [exp{/ ufdt+X%}
0

given the scalar dynamics

dX = (az +u)dt + o dW

wherethe control u is scalar and there are no control constraints.
Hint: Make the ansatz

V(t,z) = ANz’ +B(t)
Exercise 19. 7 Study the general linear-exponential —qudratic control problem
of minimizing

T
E [exp {/ {X{QX: + u;Ru,} dt + X}HXT}]
0

given the dynamics

dXt = {AXt + But} dt + Cth

Exercise 19.8 The object of this exercise is to connect optimal control to
martingale theory. Consider therefore ageneral control problem of minimizing

T
E [ / F(t, X2, up) dt + & (X2)
0

given the dynamics
dX, = p(t, Xe,us) dt T o (t, Xe, ug) AW, i

and the constraints
u(t,x) € U.
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Now, for any control law u, define the total cost process C(t; u) by

t T
Clt;n) = / F(s, X2,u,)ds + B, x / F(s, X%, u,)dt + & (X2 |
0 t

ie.
14
C(t; ) =/0 F(s, X", u,)dst 7@, X2, u).

. Use the HJB equation in order to prove the following claims:

() If uisan arbitrary control law, then C is a submartingale.
(b) If uisoptimal, then C isa martingale.

19.9 Notes

Standard referenceson optimal control are Fleming and Rishel (1975) and Krylov
(1980). A very clear exposition can befound in @ksendal (1995). For more recent
work, using viscosity solutions, see Fleming and Soner (1993). The classica
papers on optimal consumption are Merton (1969) and Merton (1971). See also
Karatzas et al. (1987), and the survey paper Duffie (1994). For optimal trading
under constraints, and its relation to derivative pricing see Cvitanié¢ (1997) and
- referencestherein. See also the book by Korn (1997). Thereisaso a "martingale
i approach" to optimal investment problems. See Cox and Huang (1989) for the
! complete market case. Basic papers on the incomplete market case are He and
Pearson (1991), Karatzas et al. (1991), and Kramkov and Schachermayer (1999).
A very readable overview o theincomplete market case, containing an extensive
bibliography, is given in Schachermayer (2002).
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BONDS AND INTEREST RATES

21 Zero Coupon Bonds

In this chapter, we will begin to study the particular problems which appear
when wetry to apply arbitrage theory to the bond market. The primary objects
o investigation are zero coupon bonds, also known as pure discount bonds,
of various maturities. All payments are assumed to be made in a fixed currency
which, for convenience, we choose to be US dollars.

Definition 2.1 A zero coupon bond with maturity date T, aso caled
a T-bond, is a contract which guarantees the holder 1 dollar to ke paid on the
date T. The price at timet d a bond with maturity date T is denoted by p(¢, T).

The convention that the payment at the time o maturity, known as the
principal value or face value, equals one is made for computational con-
venience. Coupon bonds, which give the owner a payment stream during the
interval [0,7 are treated below. These instruments have the common property,
that they providethe owner with a deterministic cash flow, and for this reason
they are also known asfixed income instruments.

We now make an assumption to guarantee the existenced a sufficiently rich
and regular bond market.

Assumption 2011 We assume thefollowing:

e There exists a (frictionless) market for T-bonds for every T > 0.

e Therelation p(t,t) =1 holdsfor al t.

e For each fized t, the bond price p{t,T) is differentiable w.r.t. time d
maturity T.

Note that the relation p(t,t) = 1 aboveis necessary in order to avoid arbitrage.
The bond price p(t, T) is thus a stochastic object with two variables, t and T,
and, for each outcome in the underlying sample space, the dependence upon
these variablesis very different.

e For afixed valued t, p(¢, T) isafunction o T. Thisfunction providesthe
prices, at the fixed time t, for bonds o all possible maturities. The graph
o thisfunctioniscalled "the bond pricecurveat t”, or "the term structure
at t”. Typically it will be a very smooth graph, i.e. for each t, p(¢, T) will
be differentiablew.r.t. T. The smoothness property isin fact a part o our
assumptions above, but this is mainly for convenience. All models to be
considered below will automatically produce smooth bond price curves.

e For afixed maturity T, p(t, T) (asafunction oft) will beascalar stochastic
process. This process gives the prices, at different times, o the bond with
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fixed maturity T, and the trgjectory will typically be very irregular (likea
Wiener process).

Wethusseethat (our picture of) the bond market is different from any other
market that we have considered sofar, in thesensethat the bond market contains
| aninfinite number o assets (one bond type for each time d maturity). The basic
god in interest rate theory isroughly that d investigatingthe relations between
dl these different bonds. Somewhat more precisaly we may pose the following
generd problems, to be studied below:

e What is a reasonable mode! for the bond market above?

e Whichrelations must hold between the price processesfor bondsd different
maturities, in order to guarantee an arbitrage free bond market?

e |sit possibleto derive arbitrage free bond pricesfrom a specificationd the
dynamicsd the short rate of interest?

e Givena model for the bond market, how do you compute pricesd interest
rate derivatives, such as a European call option on an underlying bond?

20.2 Interest Rates
. 20.21 Definitions

- Given the bond market above, we may now define a number o interest rates,
and the basic construction is as follows. Suppose that we are standing at timet,
and let usfix two other pointsintime, Sand T, witht < S<T. Theimmediate
project isto write a contract at timet which alows usto make an investment o
one (dollar) at time S, and to have a deterministicrate o return, determined
at the contract time t, over the interval [ST]. This can easily be achieved as
follows

1. At timet we sdll one S-bond. Thiswill give us p(t, S) dollars.

2. We use thisincome to buy exactly p(t, S)/p(t,T) T-bonds. Thus our net
investment at time t equals zero.

3. At time Sthe S-bond matures, so we are obliged to pay out one dollar.

4. AttimeT the T-bonds mature at one dollar a piece, so we will receive the
amount p(t, S)/p(t, T) dollars.

5. The net effect o all thisisthat, based on a contract at t, an investment
o onedollar at time S has yidded p(t, S)/p(t,T) dollarsat time T.

6. Thus, at time t, we have made a contract guaranteeing a riskless rate o
interest over the future interval [ST]. Such an interest rate is called a
forward rate.

We now go on to compute the relevant interest rates implied by the con-
struction above. We will use two (out of many possible) waysd quoting forward
rates, namely as continuously compounded rates or as simple rates.

The simple forward rate (or LIBOR rate) L, isthesolutionto the equation

p(t,S)
p(t,T)’
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whereas the continuousy compounded forward rate R is the solution to the
eauation
R(T-5) _ P&, 5)
p(t,T)
The simplerate notation isthe one used in the market, whereasthe continuously
compounded notation is used in theoretical contexts. They ared courselogicaly
equivalent, and the forma definitions are as follows.

Definition 20.2

1. The simple forward rate for [ST] contracted at t, henceforth referred
to asthe LIBOR forward mte, is defined as

o P(tT) = p(t,5)
Lm&ﬂ—-szﬁﬁﬁT

2. The simple spot rate for [S,T], henceforth referred to as the LIBOR
spot rate, is defined as

p(Sa T) -1

S P )

3. The continuously compounded forward rate for [ST] contracted at t
is defined as

, __logp(t,T) — logpl(t,S)
R(t; 8, T)= % .
4. The continuously compounded spot rate, R(S,T), for the period
[S,T] is defined as

_ _logp(S,T)
R(5,T) = T— 5
5. Theinstantaneousforward rate with maturity T, contracted at t,
is defined by
dlogp(t, T
#e,1) = -2ePbT)
6. The instantaneous short rate at timet is defined by.
r(t) = f(t, ).

We note that spot rates are forward rates where the time o contracting
coincides with the start o the interval over which the interest rate is effective,
i.e. t = S. The instantaneous forward rate, which will be o great importance
below, is the limit d the continuously compounded forward rate when S — T. °
It can thus be interpreted as the riskless rate d interest, contracted at t, over
the infinitesimal interval [T,T +d7).

We now go on to define the money account process B.
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Definition 20.3 The money account process is defined by

B, = exp {/Otr(s) ds} ,

{dB(t) =r(t)B(t) dt,

i.e.

B(0)=1

: The interpretation d the money account is the same as before, i.e. you may
think o it as describing a bank with a stochastic short rate o interest. It can
d=0 be shown (see below) that investing in the money account is equivalent to
investing in a self-financing "rolling over" trading strategy, which at each time't
conggsentirely o "just maturing” bonds, i.e. bondswhich will mature at t +dt.
As an immediate consequenced the definitions we have the following useful

formulas.

Lemma 204 Fort <s<T we have

T
p(t, T.)‘= p(t, s) - exp {—/ ft,u) du} ,

T
p(t,T) = exp {—/t f(t,s) ds} .

If we wish to make a modd for the bond market, it is obvious that this can
be done in many different ways.

and in particular

o We may specify the dynamics o the short rate (and then perhaps try to
derive bond prices using arbitrage arguments).

¢ We may directly specify the dynamics d all possible bonds.

¢ We may specify the dynamicsd all possible forward rates, and then use
Lemma 20.4 in order to obtain bond prices.

All these approachesare d course related to each other, and we now go on to
present asmall “toolbox” d resultsto facilitate the analysisbelow. Theseresults
will not be used until Chapter 23, and the proofs are somewhat technical, so the
next two subsections can be omitted at a first reading.

2022 Relations beween df (t,T), dp(¢, T), and dr(t)
We will consider dynamicsd the following form:

Short rate dynamics

dr(t) = a(t) dt + b(t) dW (¢). (20.1)
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Bond price dynamics

dp(t,T) = p(t, T)m(t, T) dt + p(¢, T)v(t, T)dwW (¢). (20.2) 1
Forward rate dynamics
df (t, T) = a(t, T)dt T o(t, T) dW(2). (20.3) i |

The Wiener process W isalowed to be vector valued, in which casethevolat-
ilitiesw(t,T) and (¢, T) are row vectors. The processes a(t) and b(t) are scalar
adapted processes, whereas m(t, T), v(t,T), a(t,T), and o(t,T) are adapted
processes parameterized by time of maturity T. The interpretation of the bond
price equation (20.2) and the forward rate equation(20.3) isthat these are scalar
stochastic differential equations (in thet-variable) for each fixed time of maturity
T. Thus (20.2) and (20.3) are both infinite dimensional systems of SDEs.

We will study theformal relations which must hold between bond pricesand
interest rates, and to thisend we need a number o technical assumptions, which
we collect below in an "operational™ manner.

Assumption 20.2.1

1 For each fized w,t all the objectsm(t,T), v(t,T), a(t,T) and o(t,T) are
assumed to ke wntinuously differentiable in the T-variable. This partial
T-derivative is sometimes denoted by mr (¢, T), etc.

2. All processes are assumed to ke regular enough to alow us to differentiate
under the integral sign as well as to interchange the order d integration. |

The main result is as follows. Note that the results below hold, regardliess
of the measure under consideration, and in particular we do not assume that
markets are free o arbitrage.

Proposition 20.5
1. If p(t, T) satisfies (20.2), thenfor the forward rate dynamics we have

df (t, T) = a(t, T)dt+ o(t, T) dW(2),
where a and o are given by

{a(t7 T) :'UT(taT) . ’U(t,T) - mT(t’T)v
o(t,T)=—vr(t,T).

(20.4) |
2. Iff (1, T) satisfies (20.3) then the short rate satisfies
dr(t) = a(t) dt + b(t) dW (1),
where

a(t) = fr(t,t) + a(t,t), i
e (209) |
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3. If f (1, T) satisfies (20.3) then p(t, T) satisfies
dp(t,T)= p(t, T){r(t) T A, T) T }||S(t, 1)} dt + p(t, T)S(t, T) AW (t),
where || - || denotes the Euclidean norm, and

{A(t, T)=-J, a(t,s)ds,

S(t,T)=- ftT o(t,s)ds.

(20.6)

Proof Thefirst part of the proposition isleft to the reader (seethe exercises).
For the second part we integrate the forward rate dynamicsto get

t
r(t) = (0,t) + t)ds + /0 o(s,t)dW (s). (20.7)

. Now we can write
¢
a(s,t) = afs, s) +/ ar(s,u)du,

¢
o(s,t) =a(s,s) + / or(s,u)du,

| and, inserting this into (20.7), we have
t t gt
r(t) =f(0,t)+/ a(s,s)ds'l'/ / oar(s,u)duds
0 0 Js

+&t o(s,s)dW, + /Ot /st or(s,u) dudW,.

| Changing the order o integration and identifying terms we obtain the result.

f For the proof o thethird part we give a slightly heuristic argument. The full
t formal proof, see Heath et al. (1987), is an integrated version o the proof given
¢ here, but the infinitesimal version below is (hopefully) easier to understand.
} Using the definition of the forward rates we may write

p(t, T) =" T 1{ , (20.8)
- whaeY isgiven by h
‘ Y(t,T)=- / " ft,9) ds. (20.9)
"' From the 1t6 formula we then obtain thef bond dynamicsas

dp(t, T) = p(t, T)dY (¢, T) + Lp(t, T) (dY (¢, T))?, (20.10)
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and it remainsto compute dY (t, T). We have

dY (£, T) = —d ( /t i) ds) ,

and the problem isthat in the integral thet-variable occursin two places: asthe
lower limit o integration, and in theintegrand f (t,s). Thisisasituation that is
not covered by the standard It formula, but it is easy to guessthe answer. The
t appearing as the lower limit of integration should give riseto the term

g— (/tT f(t,s) ds) dt.

Furthermore, since the stochastic differential is a linear operation, we should be
alowed to moveit inside the integral, thus providing us with the term

T
(/ df(t,s)ds) .

dy (t,T) = —-g-t- (/T f(t,s) ds) dt — /T df(t,s)ds,

We have therefore arrived at

which, using the fundamental theorem of integral calculus, aswdl asthe forward
rate dynamics, gives us

T T
dY (¢, T) = f(t, 1) dt — / a(t, s) dt ds — / o(t, 5) AW, ds.
t t

We now exchangedt and dW; with dsand recognizef (t,t) astheshort rate (),
thus obtaining
dY (t,T) = r(t) dt + A(t,T) dt T S(t,T) dW;,
with A and S as above. We therefore have
(@Y (6, 1)* = IS¢, DI dt,

and, substituting all thisinto (20.10), we obtain our desired result. O

2023 An Alternative View d the Money Account

The object o thissubsectionisto show (heuristically) that the risk free asset B
can in fact be replicated by a sdlf-financing strategy, defined by "rolling over”
just-maturing bonds. This isa "folklore" result, which is very easy to provein
discrete time, but surprisingly tricky in a continuoustime framework.
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Let us consider a self-financing portfoliowhich at each timet consistsentirely
d bonds maturing x unitsdf time later (wherewe think of x as a small number).
At time t the portfolio thus consists only o bonds with maturity t + x, so the
vadue dynamicsfor this portfoliois given by

dp(t,t + )

V) =V 1 R

(20.11)
where the constant 1 indicates that the weight of the t +x-bond in the portfolio
equals one. We now want to study the behavior o this equation as x tends to
zero, and to this end we use Proposition 20.5 to obtain

o dp(t,t+z)

oo {r(t) + At,t +z) + %llS(t,t+z)||2} dt + S(t,t + z) dW (¢).

Letting x tend to zero, (20.6) gives us
v

li_rRJA(t,t+x) =0,
lim S(t,t+x) =0.

. Furthermore we have -
‘ }il%p(tvt +z)=1,"

and, substituting al this into egn (20.11), we obtain the value dynamics
dvV () =r(@)V(¢) dt, (20.12)

which we recognize as the dynamics o the money account.

The argument thus presented is of course only heuristical, and it requires
some hard work to makeit precise. Note, for example, that the rolling over port-
folio above does not fall into the general framework o sdf-financing portfolios,
developed earlier. The problem is that, although at each time t, the portfolio
only consistsdf one particular bond (maturing at t+ X), over an arbitrary short
timeinterval, the portfoliowill usean infinitenumber o different bonds. I n order
to handle such a situation, we need to extend the portfolio concept to include
measure valued portfolios. This is done in Bjork et al. {1997a), and in Bjork
et d. (1997b) the argument above is made precise.

20.3 Coupon Bonds, Swaps, and Yields

In most bond markets, there are only a relative small number of zero coupon
bonds traded actively. The maturities for these are generaly short (typically
between haf a year and two years), whereas most bonds with a longer time to
maturity are coupon bearing. Despite this empirical fact we will still assumethe
existenced a market for all possible pure discount bonds, and we now go on to
introduce and price coupon bonds in terms o zero coupon bonds.
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2031 Hxed Coupon Bonds

The simplest coupon bond is the fixed coupon bond. Thisis a bond which,
at some intermediary points in time, will provide predetermined payments
(coupons) to the holder o the bond. The formal description is as follows:

e Fix anumber of dates, i.e. pointsin time, Ty,....,T,. Here Ty isinterpreted
as the emission date o the bond, whereas T, ..., T, are the coupon dates.

e AttimeT;, i =1,...,n, the owner o the bond receives the deterministic
coupon ¢;.

e At time T,, the owner receives the face value K.

’ We now go on to compute the price of this bond, and it is obvious that the

coupon bond can be replicated by holding a portfolio of zero coupon bonds with
maturities T3, i = 1,...,N. More precisely we will hold ¢; zero coupon bonds o
maturity 7;, ¢ =1 ...,n—-1,and K + ¢, bondswith maturity 75, so the price,
p(t), at atimet < 73, of the coupon bond isgiven by

p(t) = K -p(t,T,) + icz -p(t, T). (20.13)

i=1

Very often the coupons are determined in terms of return, rather than in
monetary (e.g. dollar) terms. The return for the ith coupon is typicaly quoted
as a simple rate acting on the face value K, over the period [T;-;, T;}. Thus, if,
for example, the ith coupon has a return equal to r;, and the face value is K,
this means that

ci =ri(Ti — Ti-1)K.

For a standardized coupon bond, the time intervals will be equally spaced, i.e.

Ti =T +id,

and the coupon rates rq,...,r, Will be equal to a common coupon rate r. The
price p(t) o such a bond will, for t < T3, be given by

p(t) = K (p(t, T.) +7é En:p(t, Tz-)> - (20.14)

i=1

20.3.2 Floating Rate Bonds

There are various coupon bonds for which the value o the coupon is not fixed
at the time the bond isissued, but rather reset for every coupon period. Most
often the resetting is determined by some financial benchmark, like a market
interest rate, but there are also bonds for which the coupon is benchmarked
against a nonfinancial index.
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As an example (to be used in the context d swaps below), we will confine
oursalvesto discussing one d the smplest floating rate bonds, where the coupon
rate r; is set to the spot LIBOR rate L(T;_;,T;). Thus

¢ = (:T; - T'—-l)L(T'i—laTi)K,

and we note that L(T;—;,T;) isdetermined already at time T;_1, but that ¢; is
not delivered until at time T;. We now go on to compute the value o this bond
a sometimet < Ty, in the case when the coupon dates are equally spaced,
with T; — T;—1 = 6, and to this end we study the individual coupon ¢;. Without
loss d generality we may assumethat K =1, and inserting the definition o the
~ LIBOR rate (Definition 20.2) we have

c: = 1 —p(n;l,Ti) - 1 -1
' op(Ti-1, o) p(Ti-1, 1)

!b‘ Thevalue at t, of theterm —1 (paid out at T3), is of courseequal to

“p(t, Ti)a

E and it remains to compute the value of the term 1/p(Ti_1,T3), which is paid

. out at T;.

‘ Thisis, however, easily done through the following argument:

;e Buy, attimet, one T;_s-bond. This will cost p(¢, T;—1).

a At time T;_, you will recaeive the amount 1. I

o Invest thisunit amount in Ti-bonds. Thiswill giveyou exactly 1/p(T;-1,T5)
bonds.

a At T; the bonds will mature, each at the face value 1. Thus, at time T;,
you will obtain the amount

[ >

1
p(Ti—l,Ti) .
. This argument shows that it is possible to replicate the cash flow above, using
| asdf-financing bond strategy, to the initial cost p(t, T;-1). Thus the value at t,

d obtaining 1/p(Ti-1,T;) at Ts, is given by p(¢,T;—1), and the value at t o the
L coupon ¢; is

p(t) T'-—l) _p(tv CFt)'
Summing up all the terms we finally obtain the following valuation formula

for the floating rate bond:

n -
p(t) =p(t, Tn) + Y [p(t, Ti-1) — p(t, Ti)] = p(t, To)- (20.15)
=1 '
In particular we see that if t = T, then p(Tp) = 1. The reason for this (perhaps

surprisingly easy) formulais o course that the entire floating rate bond can be
replicated through a self-financing portfolio (seethe exercises).
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20.3.3 Interest Rate Swaps

In this section we will discuss the smplest d dl interest rate derivatives, the
interest rate swap. This is basicaly a scheme where you exchange a payment
stream at a fixed rate 0 interest, known as the swap rate, for a payment
stream at a floating rate (typically a LIBOR rate).

Thereare many versonsd interest rate swaps, and wewill study theforward
swap settled in arrears, which is defined as fallows. We denote the principal
by K, and the swep rate by R. By assumption we have a number d equadly
spaced dates Ty, . . . , T, and payment occursat the dates Ty, . . ., T, (not at Tp).
If you swap a fixed rate for a floating rate (in this case the LIBOR spot rate),
then, at time T;, you will receive the amount

KSL(Ti-1, To),

which isexactly K¢;, where ¢; isthe ith coupon for the floating rate bond in the
previous section. At T; you will pay the amount

KéR.
The net cash flow at T; is thus given by
K& [L(T;_1,Ti) - R),
and using our results from the floating rate bond, we can compute the vaue at
t <Tp o thiscash flow as ,
R 5 7 A S

Kp(t, Ti_1) - K(1+ SR)p(t, T5).
Thetotal vaueII (t), at t, o the swap is thus given by

() =K [p(tTi1) -~ (L+6R)p( T,

i=1
and we can ssimplify this to obtain the following result.
Proposition 20.6 Theprice, for t <Tp, d the swap aove is given by

I (t) = Kp(t, To) - K ) _ dip(t, T3),

=1

where
d;=RS§, i=1l...,n-1,
do=1+R5.

The remaining question is how the swap rate R is determined. By definition
it is chosen such that the vaue d the swap equals zero at the time when the
contract is made. We have the following easy result.
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Propostion 20.7 If, by convention, we assume that the contract is written at
t =0, the swap rate is given by

g = P0To) ~p(0, T)
§37p0.T;)

In the case that Ty = 0 this formula reduces to

_ 1-p(0,T;,)
~8§y.1p(0,T)

20.3.4 Yield and Duration

i Consider a zero coupon T-bond with market price p(t, T). We now look for the
bond's "internal rate of interest”, i.e. the constant short rate o interest which
will give the same valueto this bond as the value given by the market. Denoting
thisvalue o the short rate by y, we thus want to solve the equation

p(t’ T) = e——y-(T—t) -1,

where the factor 1 indicates the face value o the bond. We are thus led to the
following definition.

Definition 20.8 The continuously compounded zer o coupon yield, y(¢, T), is
given by
logp(t, T
y(t,T) = —%—)-
For a fized t, the function T — y(t,T) is called the (zero coupon) yield curve.

We note that the yield y(¢, T) is nothing more than the spot rate for the
interval [t7]. Now let us consider a fixed coupon bond of the form discussed in
Section 20.3.1where, for simplicity o notation, we includethe face valuein the
coupon ¢, We denote its market value at t by p(t). In the same spirit as above
we now look for itsinternal rate o interest, i.e. the constant value o the short
rate, which will give the market value d the coupon bond.

Definition 20.9 The yield to maturity, y(¢t,T), of a fized coupon bond at
time t, with market pricep, and paymentse; atT; fori =1,...,n,is defined as
the value of y which solves the equation

p(t) =Y cie VT,
i=1

An important concept in bond portfolio management is the "Macaulay
duration”. Without loss o generality we may assumethat t = 0.
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Definition 20. 10 For the fized coupon bond above, with pricep att = 0, and
yield to maturity y, theduration, D, is defined as

n -—
_ Sl Ticie™v™
P

The duration is thus a weighted average o the coupon dates o the bond,
where the discounted valuesd the coupon paymentsare used as weights, and it
will in a sense provide you with the "mean time to coupon payment”. Assuch it
isan important concept, and it al'so actsa measured the sensitivity o the bond
price w.r.t. changesin the yield. Thisis shown by the following obvious result.

Proposition 20. 11 With notation as aove we have

dp d ~ —yT;
_— Cie Yyii = -,-D D, 20.16
B o) .

Thuswe seethat duration isessentially for bonds(w.r.t. yield) what delta (see
Section 9.2) isfor derivatives(w.r.t. the underlying price). The bond equivalent
of the gammais convexity, which is defined as

8%p

ay?’

D

20.4 Exercises

Exercise 20.1 Aforward rateagreement (FRA)isacontract, by convention
entered into at t = 0, where the parties (alender and a borrower) agree to let
a certain interest rate, R*, act on a prespecified principal, K, over some future
period [ST]. Assuming that the interest rate is continuously compounded, the
cash flow to the lender is, by definition, given as follows:

e AttimeS -—K.

o AttimeT: KeR'(T-85)
The cash flow to the borrower is o coursethe negative d that to the lender.

(a) Compute for any timet < S, the value, II (), o the cash flow abovein
terms o zero coupon bond prices.

(b) Show that in order for the value o the FRA to equal zero at t = O, the
rate R* hasto equal the forward rate R(0; S, T) (comparethis result to
the discussion leading to the definition of forward rates).

Exercise 20.2 Provethefirst part o Proposition 20.5.
Hint: Apply thelIté formulatothe processlog p(t, T), writethisin integrated
form and differentiate with respect to T.

Exercise 203 Consider a coupon bond, starting at Ty, with face vaue K,
coupon paymentsat 7y, ..., T, and afixed coupon rate r. Determinethe coupon
rate r, such that the price o the bond, at Ty, equalsits face value.
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Exercise 20.4 Derive the pricing formula (20.15) directly, by constructing a
salf-financing portfolio which replicates the cash flow o the floating rate bond.

Exercise 20.5 Let {y(0,T); T > 0} denote the zero coupon yidd curve at
t=0. Assume that, apart from the zero coupon bonds, we aso have exactly

ore fixed coupon bond for every maturity T. We make no particular assump-

tionsabout the coupon bonds, apart from the fact that al coupons are positive,

and we denote the yield to maturity, again at timet = O, for the coupon bond
# with maturity T, by yar (0, T). We now have three curves to consider: the for-
| wad rate curve f (0, T), the zero coupon yield curve y(0,T), and the coupon
yield curve yar(0,T). The object of this exerciseis to see how these curves are
connected.

{(a) Show that

f(O,T)=y(0,T)+T.3yS%T)'

(b) Assume that the zero coupon yield cuve is an increasing function o T
Show that this impliesthe inequalities

YM (03 T) S y(Oa T) _<_ f (Oa T)’ VT,

(with the opposite inequalities holding if the zero coupon yield curve i
decreasing). Give a verba economic explanation o the inequalities.

l Exercise 20.6 Prove Proposition 20.11.

Exercise 20.7 Consider a consol bond, i.e. a bond which will forever pay on
unitd cashatt =1,2,.... Suppose that the market yield y is constant for al
maturities.

(a) Compute the price, at t =0, of the consol.
‘1‘ (b) Derive a formula (in terms o an infinite series) for the duration of th
" consol.
' (c) Use (a) and Proposition 20.11 in order to compute an analytical formul
t for the duration.
‘B¢ (d) Compute the convexity d the consol.

20.5 Notes
Fabozzi (1995), and Sundaresan (1997) are standard textbooks on bond market:
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211 Generalities

In thischapter, we turn to the problem d how to model an arbitrage free family
o zero coupon bond price processes {p(-, T); T > 0).

Since, at least intuitively, the price, p(¢,T), should in some sense depend
upon the behavior o the short rate d interest over theinterval [ tT7], a natural
starting point isto give an a priori specificationd the dynamicsd theshort rate
O interest. This hasin fact been the "classicd" approach to interest rate theory,
so let us model the short rate, under the objective probability measure P, asthe
solution o an SDE o the form "

dr(t) = u(t,r(t))dt + o(t,r(t)) dW (¢). (21.1)

Theshort rate d interest istheonly object givena priori, sothe only exogenoudy
given asset is the money account, with price process B defined by the dynamics

dB(t) = r(t)B(t) dt. (212)

As usual we interpret this as a model o a bank with the stochastic short rate
o interest ». The dynamicsd B can then be interpreted as the dynamics o
the value o a bank account. To be quite clear let us formulate the above as a
formalized assumption.

Assumption 2. 1.1 We assume the existence o one exogenously given (locally
risk free) asset. The price, B, of this asset has dynamics given by egn (21.2),
where the dynamics of », under the objective probability measure P, are given by
egn (21.1).

Asin the previouschapter, we make an assumption to guarantee the existence
o asufficiently rich bond market.

Assumption 2. 1.2 We assume that there exists a market for zero coupon
T-bonds for every value of T.

We thus assume that our market contains all possible bonds (plus, o course,
the risk free asset above). Consequently, it is a market containing an infinite
number o assets, but we again stress the fact that only the risk free asset is
exogenoudly given. In other words, in this mode the risk free asset is considered
as the underlying asset whereas all bonds are regarded as derivatives d the
"underlying" short rater. Our main goal isbroadly toinvestigatethe relationship
which must hold in an arbitrage free market between the price processesd bonds
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with diierent maturities. Asa second step we also want to obtain arbitrage free
prices for other interest rate derivativessuch as bond options and interest rate
Sveps

Since we view bonds as interest rate derivativesit is natural to ask whether
k. the bond prices are uniquely determined by the given r dynamicsin (21.1) and
# the condition that the bond market shall befree d arbitrage. This question, and
| its answer, are fundamental.

Quedtion:
Are bond prices uniqudy determined
by the P-dynamicsaof the short rater?

Answer:

No!

For the reader who has studied Chapter 15, this negative result should be
. fairly obvious. The arguments below are parallel to those d Section 15.2, and
| the results are in fact specia cases d the genera results in Section 15.4. If
i you have already studied these sections you can thus browse quickly through
the text until the term structure equation (21.2). In order to keep this part of
. the book self-contained, and since the discussion is so important, we will (with
. some gpologies) give the full argument.

Let us start by viewing the bond market in the light o the meta-
theorem8.3.1. We seethat in the present situation the number M d exogenoudy
given traded assets excluding the risk free asset equals zero. The number R o
random sources on the other hand equalsone (we have one driving Wiener pro-
cess). From the meta-theorem we may thus expect that the exogenoudy given
market isarbitrage free but not complete. The lack of completenessisquite clear:
. dnce the only exogenoudly given asset is the risk free one we have no possibility
*d forming interesting portfolios. The only thing we can do on the a priori given
market issimply to invest our initial capital in the bank and then sit down and
wait while the portfolio value evolves according to the dynamics (21.2). It is
thus impossible to replicate an interesting derivative, even such a simple one as
aT-bond.

Another way o seeingthis problem appearsif wetry to priceacertain T-bond
using the technique used in Section 7.3. In order to imitate the old argument we
would assume that the price d a certain bond isd the form F(t,r(t)). Then we
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would liketo form a risk free portfolio based on this bond and on the underlying
asset. The rate d return o this risk free portfolio would then, by an arbitrage
argument, have to equal the short rate o interest, thus giving us some kind .
d equation for the determination d the function F. Now, in the Black—Scholes
model the underlying asset wasthestock S, and at first glance this would corres-
pond to r in the present situation. Here, however, we have the magjor difference
between the Black—Scholes model and our present model. The short rate o
interest r isnot the priced atraded asset, i.e. there is no asset on the market
whose price process is given by r. Thus it is meaningless to form a portfolio |
"based on r". Since there sometimes is a lot o confusion on this point let us
elaborate somewhat. We observethen that the English word "price” can be used
in two related but different ways.

The first way occurs in everyday (informal) speech, and in this context it
is not unusual (or unreasonable) to say that the short rate o interest reflects
the price d borrowing money in the bank. In particular we often say that it is
expensive to borrow money if the rate o interest is high, and cheap when the
rate o interest islow.

The second (formalized) use o the word "price” occurs when we are dealing
with price systemsin the context of, for example, general equilibrium theory. In
thissetting theword "price” hasa much more precise and technical meaning than
in everyday language. Firstly a priceis now measured in a unit like, say, pounds
sterling. The short rate d interest, on the contrary, is measured in the unit
(time)~!, though for numerical reasonsit is sometimes given as a precentage.
Secondly the price o an asset tells you how many pounds sterling you have to
pay for one unit o the asset in question. If, say, the priced ACME INC. stock
is 230 pounds this meansthat if you pay 230 pounds then you will obtain one
share in ACME INC. If, on the other hand, the short rate of interest is 11%,
this does not mean that you can pay 11 (unitsd what?) in order to obtain one
unit of some asset (what would that be?).

Thisdoesnot at all imply that the everyday interpretation o theinterest rate
as "the priced borrowing money" iswrong. Thisaspect o theshort rate already
appearsin fact in the equation, dB = rB dt, for the money account, where it is
obviousthat if r is high, then our debt to the bank grows at a high rate.

When we use the word "price” in this text it is exclusvely as in the second
formalized meaning above, and a doppy usage will easily lead to nonsense and
chaos.

To sum up:

e The price o a particular bond will not be completely determined by the
specification (21.1) o the r-dynamics and the requirement that the bond
market isfree o arbitrage. ;

e The reason for thisfact isthat arbitrage pricingisawaysacased pricing
aderivativein terms of the priced some underlying assets. In our market
we do not have sufficiently many underlying assets.
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We thus fail to determine a unique price o a particular bond. Fortunately this
(perhapsdisappointing) fact does not mean that bond prices can take any form
whatsoever. On the contrary we have the following basic intuition.

ldea2L 11

e Prices of bonds with different maturities will have to satisfy certain
internal consistency relations in order to avoid arbitrage possibilities
on the bond market.

o If we take the price of one particular "benchmark” bond as given then
the prices of all other bonds (with maturity prior to the benchmark) will
ke uniquely determined in terms of the price of the benchmark bond (and
the r-dynamics).

Thisfact isin complete agreement with the meta-theorem, sincein thea priori

given market consisting of one benchmark bond plus the risk free asset we will
have R = M = 1 thus guaranteeing compl eteness.

2.2 TheTerm Structure Equation
To makethe ideas presented in the previoussection more concrete we now begin

~our forma treatment.

Assumption 2L21 We assume that there is a market for T-bonds for every
choice of Tand that the market is arbitrage free. We assume furthermore that,
for every T, the price of a T-bond has the form

p(t,T) = F(t,r(t); T), (21.3)
where F is a smooth function of three real variables.

Conceptually it is perhaps easiest to think o F as a function o only two
variables, namely r and t, whereas T is regarded as a parameter. Sometimes we
will therefore write FT(t,r) instead o F(t,7;T). The main problem now is to
find out what FT may look like on an arbitrage free market.

Just asin the case of stock derivatives we have a smple boundary condition.
At thetime d maturity a T-bond isdf courseworth exactly 1 pound, so we have
| the relation
: F(T,r;T)=1, forallr. (21.9)

Note that in the equation above the letter r» denotes a real variable, while at
+ thesametime r is used as the name o the stochastic processfor the short rate.
" To conform with our general notational principles we should really denote the
stochastic process by a capital letter like R, and then denote an outcome o R
by the letter r. Unfortunately the use of r asthe name d the stochastic process
sams to be so fixed that it cannot be changed. We will thus continue to use r
asaname both for the process and for a generic outcome d the process. Thisis
somewhat doppy, but we hope that the meaning will be clear from the context.
In order to implement the ideas above we will now form a portfolioconsisting
d bonds having different times o maturity. We thusfix two times o maturity S




lmn

320 SHORT RATE MODELS

and T. From Assumption 21.2.1 and the 1t6 formula we get the following price
dynamicsfor the T-bond, with corresponding equations for the S-bond.

dFT = FTardt+ Flor dW, (21.5)
where, with subindices» and t denoting partial derivatives,

_ FT + uFT + 10?FF

7T , (21.6)
T .
or = "Flf; . (21.7)
Denocting the relative portfolio by (ug, ur) we have the following value dynamics
for our portfolio.
dFT dF$

and inserting the differentia from (21.5), as wel as the corresponding equation
for the S-bond, gives us, after some reshuffling of terms,

dV =V - {uror + ugas} dt +V - {uror + usog} dw. (21.9)
Exactly as in Section 7.3 we now define our portfolio by the equations

ur +ug =1, (21.10)
uror + usog = 0. (21.11)

With this portfolio the dW-term in (21.9) will vanish, so the value dynamics
reduce to

dV =V - {ugar T ugas} dt. (21.12)
The system (21.10)—(21.11) can easily be solved as
up = ——25 (21.13)
agr—0og
ug = —% (21.14)
s = or —og ’ .
and substituting this into (21.12) gives us
av=v. {M} dt. (21.15)
or —og

Using Proposition 7.6, the assumption o no arbitrage now implies that this

portfolio must have a rate of return equal to the short rate d interest. Thus we

have the condition
agoT — ATo0s

or—o5 = r(t), for all t, with probability 1, (21.16)

|
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or, written differently,

as(t) = rt) _ or(t) = r(t)
os(t) or(t)
The interesting fact about egn (21.17) is that on the left-hand side we have a
stochastic process which does not depend on the choice o T, whereas on the
right-hand side we have a process which does not depend on the choice d S.

The common quotient will thus not depend on the choiced either T or S, so we
have thus proved the following fundamental result.

Proposition 21.1 Assume that the bond market isfree d arbitrage. Then there
exists a process A such that the relation

ar(t) —r(t)
UT(t)

holdsfor all t andfor every choice d maturity timeT.

(21.17)

= A(®) (21.18)

Observe that the process A is universal in the sense that it is the same A
which occurs on the right-hand side of (21.18) regardlessdf the choiced T. Let
us now take a somewhat closer look at this process.

In the numerator o (21.18) we have the term ar(t) — r(¢). By egn (21.5),
ar(t) isthe local rate o return on the T-bond, whereas r is the rate of return
d the risk free asset. The difference ar(t) — r(t) is thus the risk premium of
the T-bond. It measuresthe excess rate d return for the risky T-bond over the
riskless rate d return which isrequired by the market in order to avoid arbitrage
possibilities. In the denominator of (21.18) we have o (1) i.e. the local volatility
d the T-bond.

Thus we see that the process A has the dimension "risk premium per unit of
volatility". The process X is known as the market price of risk, and we can
paraphrase Proposition 21.1 by the following slogan:

e In a no arbitrage market all bonds will, regardless of maturity
time, have the same market priceof risk.

Beforewe moveon, abrief word d warning: the name "market priced risk” is
in somesense rather appealing and reasonable, but it isimportant to realize that
the market priced risk isnot a pricein the technical (general equilibrium) sense
reserved for the word "price” in the rest o this text. We do not measure A in
SEK, and A is not something which we pay in order to obtain some commodity.
Thusthe usage o the word "price” in this context isthat of informal everyday
language, and one should be careful not to overinterpret the words "market
price d risk" by assuming that properties holding for price processesin generd
equilibrium theory aso automatically hold for the process A.

We may obtain even more information from egn (21.18) by inserting our
earlier formulas (21.6)-(21.7)for ar and or. After some manipulation we then
obtain one o the most important equations in the theory d interest rates—the
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so called "term structure equation”. Since this equation is so fundamental we
formulate it as a separate result.

Proposition 21. 2 (Term structure equation) In an arbitrage free bond
market, FT will satisfy the term structure equation

FT + {u—Xu) FT+ 142FT . rFT =0,
{ t {,LL ) r 2 r (2119)

FU(T,r)y=1.

The term structure equation isobvioudy closdly related to the Black—Scholes
equation, but it is a more complicated object due to the appearance d the
market price of risk A. It follows from egns (21.6), (21.7), and (21.18) that X is
o the form A = A(¢,r) so the term structure equation is a standard PDE, but
the problem isthat A is not determined within the modd. In order to be able
to solve the term structure equation we must specify A exogenously just as we
have to specify ¢ and o.

Despite this problem it is not hard to obtain a Feynman—Kaé representation
o FT. Thisisdone by fixing (t,r) and then using the process

exp { - /ts r(u)du} FT(s,7(s)). (21.20)

If we apply the Ito formulato (21.20) and usethefact that FT satisfiesthe term
structure equation then, by using exactly the same technique as in Section 5.5,
we obtain the following stochastic representation formula.

Proposition 21. 3 (Risk neutral valuation) Bond prices are given Ly the
formula p(t,T) = F(t,r(t); T) where

F(t,r;T) = E, [e— i f<’)d3] . (21.21)

Here the martingale measure Q and the subscriptst, r denote that the expectation
shall ke taken given thefollowing dynamicsfor the short rate:

dr(s) = {u— Ao}ds+ o dW(s), (21.22)
r(t) =r. (21.23)

The formula (21.21) hasthe usual natural economic interpretation, which is
most easily seen if we writeit as

F(t,r;T) = E, [e— TREOLLE 1] . (21.24)
We seethat the valuedof a T-bond at timet is given asthe expected vaue o the

final payoff o one pound, discounted to present value. The deflator used is the
natural one, namely exp{— ftT r(s) ds), but we observe that the expectation is
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not to be taken using the underlying objective probability measure P. Instead we
must, as usual, use the martingale measure Q and we see that we have different
martingale measures for different choicesdf .
i The main difference between the present situation and the Black—Scholes
b setting is that in the Black—Scholes model the martingale measure is uniquely
b determined. It can be shown (see Chapters 13 and 15) that the uniquenessdf the
. martingalemeasure is due to the fact that the Black—Scholes model is complete.
In the present case our exogenoudly given market is not complete, so bond prices
will not be uniquely determined by the given (P-)dynamicsd the short rater.
L To express this fact more precisdly, the various bond prices will be determined
| partly by the P-dynamics of the short rate d interest, and partly by market
forces. The fact that there are different possible choicesdf A smply meansthat

' there are different conceivable bond markets all of which are consistent with the

given r-dynamics. Precisely which set of bond price processeswill be realized by
an actual market will depend on the relations between supply and demand for
bondsin this particular market, and these factorsarein their turn determined by
such things as the forms o risk aversion possessed by the various agents on the
market. In particular this meansthat if we make an ad koc choiced X (e.g. such
as A = 0) then we have implicitly made an assumption concerningthe aggregate
risk aversion on the market.

We can also turn the argument around and say that when the market has
. determined the dynamics d one bond price process, say with maturity T, then
I the market has indirectly specified A by egn (21.18). When A is thus deter-
. mined, all other bond priceswill be determined by the term structure equation.
Expressed in another way: all bond prices will be determined in terms of the
basic T-bond and the short rate of interest. Again we see that arbitrage pricing
dwaysis a case o determining prices of derivativesin terms of some a priori
given price processes.

There remains one important and natural question, namely how we ought
to choose A in a concrete case. This question will be treated in some detail, in
Section 22.2, and the moral is that we must go to the actual market and, by
usng market data, infer the market's choice o A.

] The bonds treated above are o course contingent claims d a particularly
| smple type; they are deterministic. Let us close this section by looking at a
more general type of contingent T-claim o the form

X = &(r(T)), (21.25)

where ® issomereal valued function. Using the sametype d arguments as above
it iseasy to see that we have the following result.

Proposition 21.4 (General term structure equation) Let X ke a contin-
gent T-claim d the form X = ®(r(T)). In an arbitrage free market the price
II(t; @) will ke given as

II(¢; ®) = F(t,r(t)), (21.26)
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where F solves the boundary value problem
Fo+{p— o} F, + }o°F,, ~rF =0,
{ F(T,r) = ®(r).
Furthermore F has the stochastic representation

(21.27)

‘ T
F(t,r;T) = Egr [exp {~/ r(s) ds} x ®(r(T))|, (21.28)

where the martingale measure Q and the subscriptst, r denote that the expecta-
tion shall te taken using thefollowing dynamics:

dr(s) = {z — Ao}ds T o dW(s), (21.29)

21.3 Exercises
Exercise 21.1 We take as given an interest rate model with the following
P-dynamics for the short rate.

dr(t) = p(t, r(t)) dt + o (t, r(t)) dW(E).
Now consider a T-clam o the form X = &(»(T")) with corresponding price
process II (t).

(@) Show that, under any martingale measure Q, the price process1I (t) has
alocal rate of return equal to the short rate o interest. In other words,
show that the stochastic differential of II(t) is of theform

dII (t) = r()II () dt T onll (t) dW(2).
(b) Show that the normalized price process

_I()
-0
isa Q-martingale.
Exercise 21.2 Theobject o thisexerciseisto connect the forward rates defined
in Chapter 20 to the framework above.

(a) Assumingthat we are dlowed to differentiate under the expectation sign,

show that
Efr(t) [r(T) exp {— ftT r(s) ds}].

E2., [exp { — [T r(s) ds‘}]

£(6,T) =

(b) Check that indeed r(t) = f(t,t).
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Exercise 21.3 (Swap a fixed rate vs. a short rate) Consider the following
verson d an interest rate swap. The contract is made between two parties, A
and B, and the payments are made as follows.

e A (hypothetically) invests the principal amount K at time 0 and lets it
grow at a fixed rate of interest R (to be determined below) over the time
interval [0,T].

e Attime T the principal will have grown to K 4 SEK. A will then subtract
the principal amount and pay the surplus K — K4 to B (at time T).

¢ B (hypothetically) invests the principal at the stochastic short rate of
interest over the interval [0,T].

e At time T the principal will have grown to Kg SEK. B will then subtract
the principal amount and pay the surplus K — Kg to A (at timeT).

The swap rate for this contract is now defined asthe value, R, o the fixed rate
which gives this contract the value zero at t = 0. Your task is to compute the
swap rate.

Exercise 21.4 (Forward contract) Consider a model with a stochastic rate
d interest. X aT-claim X d theform X = &(r(T)), and fix a point in time,
wheret < T. From Proposition 21.4 we can in principle compute the arbitrage
free pricefor X if we pay at timet. We may also consider a forward contr act
(s=eSection 7.6.1) on X contracted at t. This contract works as follows, where
we assumethat you are the buyer d the contract.

e At time T you obtain the amount X SEK.

e Attime T you pay the amount K SEK.

e The amount K isdetermined at t.

Theforward pricefor X contracted at t isdefined as the vaue of K which
givesthe entire contract the value zero at timet. Givea formulafor the forward
price.

21.4 Notes

The exposition in thischapter isstandard. For further information, seethe notes
at the end of the next chapter.
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MARTINGALE MODELS FOR THE SHORT RATE

2.1 &dynamics

Let us again study an interest rate model where the P-dynamics o the short
rate o interest are given by

dr(t) = u(t, r(t)) dt + a(t, r(t)) dW. (22.1)

As we saw in the previous chapter, the term structure (i.e. the family o bond
price processes) will, together with dl other derivatives, be completely determ-
ined by the general term structure equation

F, 4+ {p— Ao} F, + L6*F,, —rF =0,
{ b+ {p= Ao} Fr+ 307 For (22.2)

F(T,r) = 8(r),

as soon as we have specified the following objects:

e Thedrift term p.
¢ Thediffusonterm a.
o The market price o risk A.

Consider for a moment a to be given a priori. Then it is clear from (22.2) that
it isirrelevant exactly how we specify 4 and A per se. The object, apart from o,
that really determines the term structure (and al other derivatives) is the term
p— Ao inegn (22.2). Now, from Proposition 21.4 werecall that theterm p—Xuis
precisely the drift term of theshort rate o interest under the martingale measure
Q. Thisfact is so important that we stressit again.

Result 2 1.1 Thetermstructure, aswell asthe prices of all other interest rate
derivatives, are completely determined by specifying ther-dynamicsunder the
martingale measure Q.

Instead of specifying ¢ and A under the objective probability measure P
we will henceforth specify the dynamics o the short rate r directly under the
martingale meaure Q. This procedureis known as martingale modeling, and
the typical assumption will thus be that r under Q has dynamics given by

dr(t) = u(t,r(t)) dt + a(t, r(®)) dW (t), (22.3)

where ¢ and a are given functions. From now on the letter & will thus aways
denotethedrift term of the short rate df interest under the martingale measureQ.
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In the literature there are a large number o proposals on how to specify
- the Q-dynamicsfor r. We present a (far from complete) list d the most popular
. modds If a parameter istime dependent thisiswritten out explicitly. Otherwise
dl parameters are constant.

1. VaaEeK
dr=(b—ar)dt+odW, (a>0), (22.49)
2. Cox-Ingersoll-Ross (CIR)
dr = a(b—r)dt +ordW, (22.5)
3. Dothan
dr = ardt + ordW, (22.6)
4. Black-Derman-Toy
dr = 8(t)rdt + o(t)r dW, (22.7)
5. Ho-Lee
dr = ©(t)dt + o dW, (22.8)
6. Hull-White (extended VasiEek)
dr = (8(t) — a(t)r) dt T o(t) dW, (a(t) > 0), (22.9)
7. Hull-White (extended CIR)
dr = (O(t) — a(t)r) dt + o(t)v/FdW (a(t) > 0). (22.10)

| y 22.2 Inversion of the Yided Curve

[l Let us now address the question d how we will estimate the various model
F parameters in the martingale models above. To take a specific case, assume
i that we have decided to use the VasiEek model. Then we have to get values for
a, b, and a in some way, and a natural procedure would be to look in some

# textbook dealing with parameter estimation for SDEs. This procedure, however,

is unfortunately completely nonsensical and the reason is as follows.

We have chosen to model our r-process by giving the Q-dynamics, which
means that a, b, and ¢ are the parameters which hold under the martingale
measure Q. When we make observationsin the real world we are not observingr
under the martingale measure Q, but under the objective measure P. This means
that if we apply standard statistical proceduresto our observed datawe will not
get our Q-parameters. What we get instead is pure nonsense.

Thislooksextremely disturbing but thesituation isnot hopeless. It isin fact
possibleto show that the diffuson termisthe same under P and under Q, so 'in
principle" it may be possibleto estimatediffusion parameters using P-data. (The
reader familiar with martingale theory will at this point recall that a Girsanov
transformation will only affect the drift term o a diffusion but not the diffuson
term.)
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When it comesto the estimation of parameters affecting the drift term of r
we have to use completely different methods.
From Section 15.6 we recall the following moral:

Question:

Who chooses the martingale measur e?

Answer:

The market!

Thus, in order to obtain information about the Q-drift parameters we have
to collect price information from the market, and the typical approach is that
o inverting the yield curve which works as follows (See the more detailed
discussion in Section 15.6.)

e Choose a particular model involving one or several parameters. Let us
denote the entire parameter vector by a. Thus we write the r-dynamics |
(under Q) as

dr(t) = u(t,r(t); a)dt + o(t, r(t); o) dW(2). (22.11)

e Solve, for every conceivabletime o maturity T, thetermstructure equation

FT + uFT + 1o*FL —rFT =0,
' ' (22.12)
"FT(T,r) =1.
I'n this way we have computed the theoretical term structure as
p(t,T;a)=FT(t,r;a).

Note that the form of the term structure will depend upon our choice of
parameter vector. We have not made this choice yet.

e Collect price data from the bond market. In particular we may today (i.e.
at t = 0) observe p(0, T) for all valuesd T. Denote this empirical term
structure by {p*(0,T); T > 0).

e Now choosethe parameter vector ain such away that thetheoretical curve
{p(0,T;a); T > 0) fits the empirical curve {p*(0,T); T >0} as wel as
possible (accordingto someobjectivefunction). Thisgivesusour estimated
parameter vector a*.
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e |nsert a*into u anda. Now we have pinned down exactly which martingale
measure we are working with. Let us denote the result o inserting a* into
pand a by u* and o* respectively.

¢ We have now pinned down our martingale measure Q, and we can go on
to compute pricesd interest rate derivatives, like, say, X =T'(r(T")). The
price process is then given by II(¢; T') = G(¢, (t)) where G solves the term
structure equation

{Gt +u*Gr+ 10" G —rG =0,

22.13
G(T,r) = T(r). (22.13)

If the above program is to be carried out within reasonabletime limitsit is
d coursed great importance that the PDEs involved are easy to solve. It turns
out that some o the models above are much easier to deal with analytically than
theothers, and thisleads ustothesubject d so called affine term structures.

22.3 Affine Term Structures
22.3.1 Definition and Ezxistence
Definition 22.1 If theterm structure {p(t,T); 0 <t < T, T > 0) hastheform

p(t,T) = F(t,r(t); T), (22.14)

where F has theform
F(t,r;T) = eA®D-BEDY", (22.15)

and where A and B are deterministic functions, then the modd is said to possess
an affine term structure (ATS).

Thefunctions A and B aboveare functionsd thetwo real variablest and T,
but conceptually it iseasier to think o A and B as being functionsoft, while T
servesas a parameter. It turns out that the existenced an affine term structure
is extremely pleasing from an analytical and a computational point of view, so
it is of considerable interest to understand when such a structure appears. In
particular we would like to answer the following question:

e For which choicesd w and a in the Q-dynamics for » do we get an affine
term structure?

We will try to give at least a partial answer to this question, and we start by
investigating some of the implicationsd an affine term structure. Assume then
that we have the Q-dynamics

dr(t) = p(t,r(t)) dt + o(t, r(t)) AW (t) (22.16)

and assumethat this model actually possessesan ATS. In other words we assume
that the bond prices have the form (22.15) above. Using (22.15) we may easily
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compute the various partial derivativesd F, and since F must solve the term
structure equation (21.19), we thus obtain

Ae(t,T) - {1 By(t,T)} r — pu(t,r)B(t, T) T 1o?(t,r)B*(t,T) = 0. (22.17) |

The boundary value F(T,r; T) = 1implies

{A(Tv T) =0,

‘ (22.18)
B(T,T) =0.
Equation (22.17) gives us the relations which must hold between A, B, 4, and a
in order for an ATSto exist, and for a certain choiced p and o there may or may
not exist functions A and B such that (22.17) issatisfied. Our immediatetask is
thus to give conditionson g and a which guarantee the existence d functions A
and B solving (22.17). Generally speaking thisis a fairly complex question, but
we may give a very nice partial answer. We observe that if x4 and & are both
affine (i.e. linear plus a constant) functionsd r, with possibly time dependent
coefficients, then egn (22.17) becomes a separable differential equation for the
unknown functions A and B.

Assumethusthat ¢ and o have the form

{N(t, r) = a(t)r + B(t),
a(t,r) = /y(t)r +4(t).

Then, after collecting terms, (22.17) transforms into

(22.19)

Au(t,T) — B(t)B(t, T) + 36(t)B*(¢, T)
— {14 By(t,T) + () B(t,T) — 3v(t)B*(t,T)} r=0.  (22.20)
This equation holdsfor al t, T, and r, so let us consider it for a fixed choice o
T and t. Since the equation holdsfor all valuesd r the coefficient o r must be
equal to zero. Thus we have the equation

Bi(t,T) t a(t)B(t,T) - Lv(t)B2(t,T) = -1 (22.21)

Since the r-termin (22.20) is zero we see that the other term must also vanish,
giving us the equation

A(t,T) = B(t)B(¢,T) — 15(t)B*(t, T). (22.22)

We may thus formulate our main result.
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Proposition 22.2 (Affine term structure) Assume that ¢ and a are o

the form
{M(t, r) = a(t)r + B(t),
o(t,r) = /y({t)r + 3(¢).

Then the modd admits an ATS o theform (22.15), where A and B satisfy the
system

(22.23)

{Bt(t,T) to(t)B(t,T) - 34(t)B(t,T) = -1, (22.24)
B(T,T)=0.
{At(t, T) = B(t)B(t, T) — 36(t)B2(t, T), (22.25)
A(T,T) =0.

We note that egn (22.24) isa Ricatti equation for the determination d B which
does not involve A. Having solved egn (22.24) we may then insert the solution
B into eqn (22.25) and simply integrate in order to obtain A.

An interesting question isif it isonly for an affine choiced u and o2 that we
get an ATS. Thisis not generally the case, but it can fairly easily be shown that
if we demand that x and u? are time independent, then a necessary condition
for the existence o an ATS is that p and &2 are affine. Looking at the list of
moddsin the previoussection we see that all modelsexcept the Dothan and the
Black—-Derman-Toy models have an ATS.

2232 A Probabilistic Discussion

There are good probabilistic reasons why some o the modelsin our list are
eader to handle than others. We see that the models of VasEek, Ho-Lee and
Hull-White (extended Vasi¢ek) all describe the short rate using a linear SDE.
| Such SDEs are easy to solve and the corresponding r-processes can be shown to
be normally distributed. Now, bond prices are given by expressions like

T
p(0,T)=F [exp {—-/0‘ r(s) ds}] , (22.26)

and the normal property of r isinherited by the integral foT r(s)ds (an integral
isjust asum). Thuswe seethat the computation o bond pricesfor a model with
a normally distributed short rate boils down to the easy problem o computing
the expected value o a log-normal stochastic variable. This purely probabilistic
program can in fact be carried out for all the linear modelsabove (theinterested
reader isinvited to do this), but it turnsout that from a computational point of
view it iseasier to solve the system o equations (22.24)—-(22.25).

In contrast with the linear models above, consider for a moment the Dothan
mode. This model for the short rate is the same as the Black—Scholes model for
the underlying stock, so one is easily led to believe that computationally this
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is the nicest model conceivable. This is, however, not the case. For the Dothan
model the short rate will be log-normally distributed, which meansthat in order
to compute bond prices we are faced with determining the distribution o an
integral fOT r(s)ds o log-normal stochastic variables. It is, however, a sad fact
that asum (or an integral) o log-normally distributed variablesis a particularly
nasty object, S0 this model leads to great computational problems. It also has
the unreasonable property that the expected value d the money account equals
plus infinity.

As for the Cox-Ingersoll-Ross model and the Hull-White extension, these
modelsfor theshort rate are roughly obtained by taking thesquare o thesolution
o alinear SDE, and can thus be handled analytically (see the exercisesfor a
smplified example). They are, however, quite a bit messer to deal with than
the normally distributed models. See the notes.

From a computational point of view thereisthusalot to besaid in favor of a
linear SDE describing the short rate. The price we haveto pay for these models
isagain the Gaussian property. Since the short rate will be normally distributed
this means that for every t there is a positive probability that r(t) is negative,
and this is unreasonable from an economic point o view. For the Dothan model
on the other hand, the short rateislog-normal and thus positive with probabil-
ity 1. It isalso possibleto show that the Cox-Ingersoll-Ross model will produce
astrictly positive short rate process. See Rogers (1995) for a discussion on these
problems.

We end thi s section with acomment on the procedured calibrating the model
to data described in the previoussection. If we want a completefit between the
theoretical and the observed bond prices this calibration procedureis formally
that of solving the system o equations

p(0,T;a)=p*(0,T) foral T>0. (22.27)

We observethat thisisan infinitedimensional system d equations (oneequation
for each T) with o as the unknown, so if we work with a model containing a
finite parameter vector a (likethe Vasiéek model) there is no hope o obtaining a
perfect fit. Now, oned the main goalsd interest rate theory isto compute prices
of various derivatives, like, for example, bond options, and it iswdl known that
the price o a derivative can be very sensitive with respect to the price o the
underlying asset. For bond options the underlying asset is a bond, and it isthus
disturbing if we have a model for derivative pricing which is not even able to
correctly price the underlying asset.

This leads to a natural demand for models which can be made to fit the
observed bond data completely, and thisisthe reason why the Hull-Whitemodel
has become so popular. In this model (and related ones), we introduce an infin-
ite dimensional parameter vector a by letting some or al parameters be time
dependent. Whether it is possible to actually solve the system (22.27) for a con-
crete model such as the Hull-White extension o the VadEek model, and how
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this is to be done in detail, is of course not clear a priori but has to be dealt
with in a deeper study. We carry out thisstudy for the Hull-White model in the
next section.
: I't should, however, be noted that theintroduction o an infinite parameter, in
L order tofit theentireinitial term structure, hasitsdangersin termsd numerical
i instability of the parameter estimates.
14 There is aso a completely different approach to the problem of obtaining a
perfect fit between today's theoretical bond prices and today's observed bond
| prices. This is the Heath-Jarrow—-Morton approach which roughly takes the
' observed term structure as an initial condition for the forward rate curve, thus
- automatically obtaining a perfect fit. This mode will be studied in the next
chapter.

22.4 Some Standard Modds

¢ In this section we will apply the ATS theory above, in order to study the most
common affine one factor models.

I 2241 The Vasidek Modd

8 To illustrate the technique we now compute the term structure for the Vasigek
‘: i model

' dr = (b —ar)dt + o dW. (22.28)
Before starting the computations we note that this model has the property o

being mean reverting (under Q) in the sense that it will tend to revert to the
mean level b/a. Equations (22.24)—-(22.25) become

{Bt(t’ T) - aB(t,T) = -1, (22.29)
B(Tv T) =0.
_ 142R2
{At(t,T) = bB(t,T) — 30B*(t, T), (22.30)
A(T,T) =0.

- Equation (22.29) is, for each fixed T, asimple linear ODE in the t-variable. It
can easily be solved as

1 NEREE
_ = _ a—a(T-t)
B(t,T) = {1-e72" )} (22.31)
Integrating egn (22.30) we obtain
o2 T T
AT =+ / B%(s,T)ds - b / B(s,T)ds, (22.32)
t t

and, substituting the expression for B above, we obtain the following result.
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Proposition 22.3 (TheVasi¢ek ter m structure) Inthe VasiEek model, bond

prices are given by
p(t, T) = eAGT)=BET)r ()

where

B(,T) = clz {1 - e_“(T‘t)},

{B(t,T) - T+1} (@b~ 10?) _ a?B(tT)
a? 4a

At,T)=

For the Vasiéek model, there is also an explicit formulafor European bond
options. See Proposition 22.9.

224.2 The Ho-Lee Modd
For the Ho-Lee model the ATS equations become

Bt(t, T) == —1,
{B(T, T) =0.
Ai(t,T) = O(t)B(t,T) - 302B%(t,T),
{A(T,T) =0.
These are easily solved as
B(t,T)=T=t,~
T
AR,T) = / O(s)(s ~ T)ds +

L dro ey
o? (T-1)
2 3

It now remains to choose © such that the theoretical bond prices, at t =0, fit
the observed initial term structure {p*(0,7); T >0). We thus want to find ©
such that p(0,T) = p*(0,T) for al T > 0. Thisis left as an exercise, and the

solution is given by
o(t) = W‘g,lgrt) + ot

where f*(0,t) denotes the observed forward rates. Plugging this expression into
the ATS gives us the following bond prices.

Proposition 224 (The Ho—Leeter m structure) For the Ho-Lee model, the
bond prices are given by

* ol ’
.1 = 20 e {0 - 0700 - GeT - 07 - @ - 0 1)}

For completeness we aso give the pricing formula for a European call on an
underlying bond. We will not derive this result by solving the pricing PDE (this
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isinfact very hard), but instead we refer the reader to Chapter 24 where we will
present a rather general option pricing formula (Proposition 24.11). It isthen an
easy exerciseto obtain the result bdow as a specid case.

Proposition 225 (Bond options) For the Ho-Lee model, the priceatt, of a
t  European call option with strike price K and exercise date T, on an underlying
i S-bond, we have the following pricing formula:

c(t,T,K,S)=p(t,S)N(d) — p(t, T)-K . N(d - o), (22.33)
ik where . .5) .
- pt,S)
op=0(S~T)VT. (22.35)

2243 The CIR Model

The CIR mode is much more difficult to handle than the Vasiéek model, since
. we have to solve a Riccati equation. We cite the following resullt.

Proposition 226 (TheCIlRtermstructure) The term structure for the
CIR model is given by

FT(t,r) = Ao(T — t)e~BT-Or,

Ll where

2™ — 1)
B(z) =
@) (v+a)(e* -1)+ 2y’
A 2yelatniz/a) 12/
ole) = [(7 Ta)@E -1 T 27] !
and

v =+va?+202.
| It is possible to obtain closed form expressions for European call options on

. zero coupon bonds within the CIR framework. Since these formulas are rather
. complicated, we refer the reader to Cox-Ingersoll-Ross (19856).

| 2244 The Hull-White Model
+In this section we will make a fairly detailed study d a smplified version d the
Hull-White extension d the Vasiéek model. The Q-dynamicsd the short rate
are given by

dr = {6(t) — ar}dt T o dW (2), (22.36)
where a and o are constants while 8 is a deterministic function d time. In this
modd we typically choose a and ain order to obtain a nice volatility structure
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whereas 8 is chosen in order to fit the theoretical bond prices {p(0,T); T > 0)
to the observed curve {p*(0,T); T > 0).
We have an affine structure so by Proposition 22.2 bond prices are given by

p(t,T) = eAT-BEDr®) (22.37)

where A and B solve

{Bt(t, T)=aB(¢,T) -1, (22.38)

B(T,T) =0.
ATT) 0. (22.39)

The solutions to these equations are given by

{At(t,T) = 6(t)B(t, T) - 30?B(¢, T),

B(t, T) = -2 {1 - e—9<T-t)} , (22.40)
A(t,T) = / . {30°B*(s,T) — ©(s)B(s,T)} ds. (22.41)

Now we want to fit the theoretical prices above to the observed prices and it
is convenient to do this using the forward rates. Since there is a one-to-one
correspondence (see Lemma 20.4) between forward rates and bond prices, we
may just as well fit the theoretical forward rate curve{f (0,T); T > 0} to the
observed curve {f*(0,T); T >0}, where of course f* is defined by F*(t,T) =
—(8logp*(t,T))/AT. In any affine model the forward rates are given by

f(0,T) = Br(0,T)r(0) — Ar(0,T), (22.42)
which, after inserting (22.40)—(22.41), becomes

T
f(0,T) =e*Tr(0) + /0 e~ T-9)Q(s)ds — % (1- e—aT)Z. (22.43)

Given an observed forward rate structuref * our problemisto find a function &
which solves the equation

T —a(T-s 2 -aTy2
f*(O, T) = e_“Tr(O) +/ e T )e(S)dS - ;—az (1— e T) y YT >0.
0

(22.44)
Oneway o solving (22.44) isto write it as

[0, T) = z(T) — g(T), (22.45)
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where X and g are defined by
{ & = —az(t) + B(t),
(L‘(O) = T(O)’
g(t) = —22 (1-e)?= 32(0 t). (22.46)

: We now have

O(T) = &(T) + az(T) = £#(0,T) + §(T) + az(T)
= f£(0,T) + ¢(T) + a {f*(0,T) + 9(T)}, (22.47)

o we have in fact proved the following result.
| Lemma 22.7 Fixan arbitrary bond curve {p*(0,T); T > 0), subject only to the

® condition that p*(0,T) is twice differentiable w.r.¢. T. Choosing® according to

(22.47) will then produce a term structure {p(0,T); T > 0} such that p(0,T) =
p*(0, T)foral T > 0.

By choosing 6 according to (22.47) we have, for a fixed choice o a and o,
* determined our martingale measure. Now we would like to compute the theoret-
g icd bond prices under this martingale measure, and in order to do this we have
B to substitute our choicedf © into egn (22.41). Then we perform the integration

and substitute the result as wdl as egn (22.40) into egn (22.37). This leads to
E some exceedingly boring calculations which (of course) are left to the reader.
The result is as follows.

Proposition 22.8 (The Hull-Whiteterm structure) Consider the Hull-
White modd with a and a fized. Having inverted the yield curve by choosing ©
according to (22.47) we obtain the bond prices as

p(t, T) = r(,1) exp {B(t, T)f*(0,t) — ng(t, T) (1 — e_2"t) - B(t, T)r(t) ¢,

p*(0,%)
(22.48)
where B is given by (22.40).

We end this section by giving, for the Hull-White, as well as for the Vasicek
model, the pricing formulafor a European call option with time d maturity T
and strike price K on an S-bond, whered course T < S. We denote this price
by c(t,T,K,S). At the present stage the reader is not encouraged to derive the
formula below. In Chapter 24 we will instead present a technique which will
greatly simplify computations o this kind, and the formula will be derived with
| relative ease in Section 24.6 (see Proposition 24.13). Note that the bond prices
8 p(t,T) and p(t,S) below do not have to be computed at time t, since they can
} be observed directly on the market.
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Proposition 22.9 (Bond options) Using notation as aove we have, bothfor
the Hull-White and the VadbBsk models, thefollowing bond option formula:

c(t, T, K, S) = p(t, S)N(d) — p(t,T) - K - N(d — 0,), (22.49)
where . " S) .
- P, o) =
d= P log {p(t, T } + 599 (22.50)
1 o?
—2l1_e-a(S-T)| /2 [1_ o—2a(T—t)
op =~ {1 e } \/2a {1-e } (22.51)

225 Exercises

Exercise 22.1 Consider the VasEek model, wherewealwaysassumethat a > 0.

(a) Solvethe VadkEek SDE explicitly, and determine the distribution o r(¢).
Hint: The distribution is Gaussian (why?), so it is enough to compute
the expected value and the variance.

(b) Ast — oo, thedistribution o (t) tends to a limiting distribution. Show
that thisisthe Gaussian distribution Nb/a,o/v/2a). Thus we see that,
in the limit, » will indeed oscillate around its mean reversion leve b/a.

(c) Now assumethat r(0) isastochastic variable, independent of the Wiener
process W, and by definition having the Gaussian distribution obtained
in (b). Show that thisimpliesthat r(t) has the limit distribution in (b),
for all valuesoft. Thus we have found the stationary distribution for the
VasEek modd.

(d) Check that the density function d the limit distribution solvesthe time
invariant Fokker—Planck equation, i.e. the Fokker—Planck equation with
the (dI%)-term equal to zero.

Exercise22.2 Show directly that the VasEek modd has an affine term struc-
ture without using the methodology o Proposition 22.2. Instead use the
characterization o p(t,T) as an expected value, insert the solution o the SDE
for r, and look at the structure obtained.

Exercise 22.3 Try to carry out the program outlined above for the Dothan
model and convince yoursdf that you will only get a mess.

Exercise 22.4 Show that for the Dothan model you have E< [B(t)] = .
Exercise 22.5 Consider the Ho-Lee model

dr = 6(t)dt + o dW(2).

Assume that the observed bond prices at t = 0 are given by {p*(0,T); t > 0).
Assume furthermore that the constant ¢ is given. Show that this model can be
fitted exactly to today's observed bond prices with © as

af*
oT

o(t) = ==(0,t) + o°t,
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where f* denotes the observed forward rates. (The observed bond price curveis
assumed to be smooth.)

Hint: Usethe affine term structure, and fit forward rates rather than bond
prices (thisislogically equivalent).

Exercise 22.6 Use the result o the previous exercise in order to derive the
bond price formulain Proposition 22.4.

Exercise 22.7 It is often considered reasonable to demand that a forward rate

t curveawayshasan horizontal asymptote, i.e. that limg_, o T (t,T) existsfor al t.

. (Thelimit will obviously depend upon t and r(t).) The object d this exercise is

to show that the Ho-Lee model is not consistent with such a demand.

(@) Compute the explicit formula for the forward rate curve f (t,T) for the
Ho—Lee moddl (fitted to the initial term structure).

(b) Now assumethat the initial term structure indeed has a horizontal asymp-
tote, i.e. that limr_ f*(0,T) exists. Show that this property is not
respected by the Ho—Lee model, by fixing an arbitrary timet, and showing
that f (t,T) will be asymptotically linear in T.

Exercise 22.8 The object o this exerciseisto indicate why the CIR model is
connected to squares d linear diffusions. Let Y be given as the solution to the
following SDE:

dY = (2aY +o?) dt + 20VY dW, Y (0) = yo.

Definethe process Z by Z(t) = /Y (t). It turnsout that Z satisfies a stochastic
differential equation. Which?

22.6 Notes

Basic papers on short rate models are Vasi¢ek (1977), Hull and White (1990},
Ho and Lee (1986), Cox et d. (1985b), Dothan (1978), and Black et a. (1990).
For extensionsand notes on the affine term structure theory, see Duffie and Kan
(1996). An extensiveanalysisd the linear quadratic structure o the CIR mode
can be found in Magshoodi (1996). The bond option formula for the Vasi¢ek
model wasfirst derived by Jamshidian (1989). For examplesd two-factor models
se Brennan and Schwartz (1979, 1982), and Longstaff and Schwartz (1992).
Rogers (1997) shows how it is possible to generate a wide class o short rate
models by modelingthe state price density directly under P and using resolvents.
A completely different approach to interest rate theory is givenin Platen (1996)
where the short rate is derived as a consequence d an entropy related principle.
See also Platen and Rebolledo (1995). For an overview d interest rate theory see
Bjork (1997).
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23.1 The Heath-Jarrow-M orton Framework

Uptothis point we have studied interest modelswheretheshort rater istheonly
explanatory variable. The main advantages with such models are as follows:

e Specifying r as the solution d an SDE dlows us to use Markov process
theory, so we may work within a PDE framework.

e In particular it is often possible to obtain analytical formulas for bond
pricesand derivatives.

The main drawbacks d short rate models are as follows:

e From an economic point of view it seems unreasonableto assumethat the
entire money market is governed by only one explanatory variable.

e |t is hard to obtain a redlistic volatility structure for the forward rates
without introducing a very complicated short rate model.

e Asthe short rate model becomes more redlistic, the inversion o the yield
curve described above becomes increasingly more difficult.

These, and other considerations, have led various authors to propose models
which use more than one state variable. One obvious idea would, for example,
be to present an a priori modd for the short rate as wdl as for some long
rate, and one could d course also model one or severa intermediary interest
rates. The method proposed by Heath—Jarrow—-Morton (HIM) is at the far end
o this spectrum—they choose the entire forward rate curve as their (infinite
dimensional) state variable.

We now turn to the specification o the HIM framework. We start by
specifying everything under a given objective measure P.

Assumption 23.1.1 We assume that, for every fized T > 0, the forward
mte f(-,7") has a stochastic differential which under the objective measure P
is given by

df(t,T) = a(t, T)dt + o(t, T) dW (), (23.1)

F(0,T) = f*(0,T), (23.2)

where W is a (d-dimensional) P-Wiener process whereasa(-, T) and o(-, T) are
adapted processes.

Note that conceptually egn (23.1) is one stochastic differential in the t-variable
for each fixed choice o T. The index T thus only serves as a "mark™ or “para-
meter” in order to indicate which maturity we are looking at. Also note that we
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uxe the observed forward rated curve {f*(0,T); T > 0} astheinitia condition.
This will automatically give us a perfect fit between observed and theoretical
b bond pricesat t =0, thus relieving us o the task d inverting the yield curve.

Remark 23 11 It isimportant to observe that the HIM approach to interest
ratesis not a proposal d a specific model, like, for example, the Vasi¢ek model.
It isinstead aframework to be used for analyzing interest rate models. Every
short rate model can be equivalently formulated in forward rate terms, and for
evay forward rate model, the arbitrage free price d a contingent T-claim X will
dill be given by the pricing formula

I(o; &) = E° [exp{-/Tr(s)ds} XJ )
0

where the short rate as usual isgiven by r(s) =f (s, s).

Suppose now that we have specified a, o and {f*(0,T); T > 0}. Then we have
soecified the entire forward rate structure and thus, by the relation

T
p(t,T>=exp{— / f(t,s) ds}, (233)

we have in fact specified the entire term structure {p(t,T); T>0, 0<t<T).
Since we have d sources d randomness (onefor every Wiener process), and an
infinite numMber o traded assets (one bond for each maturity T), we run a clear
risk o having introduced arbitrage possibilities into the bond market. The first
question we poseisthus very natural: How must the processesaand ¢ berelated
- inorder that the induced system of bond prices admits no arbitrage possibilities?
The answer is given by the HIM drift condition below.

Theorem 231 (HJM drift condition) Assume that the family d forward
ratesisgiven by (23.1) and that the induced bond market is arbitragefree. Then
there exists a d-dimensional column-vector process

A) = (D), -, M)
with the property thatfor all T > 0 andfor alt < T, we have

.
a(t, T) = o(t,T) / o(t, s) ds - a(t, TIA(). (23.4)

In these formulas ' denotes transpose.

Proof From Proposition 20.5 we have the bond dynamics

dp(t, T) = p(t,T) {r(t) + A(t,T) + 1||S(t, D)I|*} dt + p(t, T)S(t, T) dW (1),
(23.5)
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where

T
{A(t, T) = - [ a(t,s)ds, (23.6)

St,T) =~ [T o(t,s)ds.
The risk premium for the T-bond is thus given by

A(t,T) + 31IS(t, T)I,

and, applying Result 15.6.1, we conclude the existence o a d-dimensiond
column-vector process A such that

d
AR T) + 5ISEDIE =Y Sit, TIX().

i=1

Taking the T-derivative o this equation gives us egn (23.4). O

23.2 Martingale Modeling

We now turn to the question d martingale modeling, and thus assume that the
forward rates are specified directly under a martingale measure Q as

df (t, T) = a(t, T)dt T o(t, T) dW (2), (23.7)
f(0,T) = f*(0,T), (23.8)

where W is a (d-dimensional) Q-Wiener process. Since a martingale measure
automatically provides arbitrage free prices, we no longer have a problem d
absence of arbitrage, but instead we have another problem. This is so because
we now have the following two different formulasfor bond prices

T
p(0,T) =exp{— | s ds},
p(0,T) = E? [exp {- / . (s) ds}] ,
0

wherethe short rate r and the forward rates f are connected by r(¢) = f (t,t). In
order for these formulasto hold simultaneously, we have to impose some sort of
consistency relation between a and ain the forward rate dynamics. The result
is the famous HIM drift condition.

Proposition 23.2 (HJM drift condition) Under the martingale measure Q,
the processes a and o must satisfy the following relation, for every t and
every T > t.

a(t,T) = o(t, T) /t " ot ds. (23.9)
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Proof A short and brave argument isto observe that if we start by modeling
directly under the martingale measure, then we may apply Proposition 23.1 with
A =0. A more detailed argument is as follows.

From Proposition 20.5 we again have the bond price dynamics

dp(t, T) = p(t,T) {r(t) + A(t,T) + 3|IS(¢, T)||*} dt + p(t, T)S(¢, T) dW ().

We also know that, under a martingale measure, the local rate of return has to
equa the short rate r. Thus we have the equation

r() + A T) + 3IS¢ DI = (o),
which gives us the result. O

¢ Themoral of Proposition 23.2 isthat when we specify the forward rate dynamics
(under Q) we may freely specify the volatility structure. The drift parameters
are then uniquely determined. An "algorithm" for the used an HIM model can
be written schematically as follows:

1. Specify, by your own choice, the volatilitiesea (¢, T).
2. Thedrift parameters d the forward rates are now given by

T
a(t,T) = oft, T)/ a(t,s) ds. (23.10)
t

3. Go to the market and observe today's forward rate structure
{*(0,T); T > 0}.

4. Integrate in order to get the forward rates as

t

f(&,T) = £20,T) + /0 o(s, T)ds + /0 t o(s,T) dW(s). (23.11)

5. Compute bond prices using the formula

T
p(t,T) =exp {—/; f(t,s) ds} . (23.12)

6. Usethe results above in order to compute prices for derivatives.

To see at least how part o this machinery works we now study the simplest
exampleconceivable, which occurswhen the processo isa deterministic constant.
With a dight abuse o notation let us thus write ¢(t,T) = o, where o > 0.
Equation (23.9) gives us the drift process as

at,T)=0 /tTcrds = o%(T - t), (23.13)
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so egn (23.11) becomes

F@&,T) = £5(0,T) + /0 t oX(T — 8)ds + /O t o dW (s), (23.14)

ie.

f@&,T) = f*(0,T) + o*t (T - —;—) + oW (2). (23.15)

In particular we seethat r isgiven as

r(t) = f(t,t) = f*(0,t) + azg +oW(t), (23.16)
so the short rate dynamics are
dr(t) = {fr(0,t) 6%t} dt + o dw(r), (23.17)

which is exactly the Ho-Lee model, fitted to the initial term structure. Observe
in particular the ease with which we obtained a perfect fit to the initial
term structure.

23.3 The Musiela Parameterization

In many practical applicationsit is more natural to usetimeto maturity, rather
than time of maturity, to parameterize bonds and forward rates. If we denote
running time by t, time d maturity by T, and time to maturity by X, then we
havex =T —t, and in terms o x the forward rates are defined as follows.

Definition 23.3 For al x > 0 the forward rates r(t,X) are defined by
the relation

r(t,x) =f(t,t + X). (23.18)

Suppose now that we have the standard HIM-type model for the forward rates
under a martingale measure Q

df(t,T) = a(t,T) dt + o(t, T) dW (t). (23.19)

The question is to find the Q-dynamics for r(¢,z), and we have the following
result, known as the Musiela equation.

Proposition 23.4 (The Musiela equation) Assume that the forward rate
dynamics under Q are given by (23.19). Then

dr(t,z) = {Fr(t,x) T D(t,x)) dt T oo(t, ) AW (2), (23.20)
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where
oo(t,z) = a(t,t t X),

D(t’ X) = UO(t, X) ‘/(;m UO(t) s)' ds,

_9
T oz’

Proof Using adlight variation o the It6 formulawe have
of
dr(t,z) = df(t,t + z) + 5—7—,(1:, t+xz)dt,

where the differentia in the term df (t,t + ) only operates on the first t. We
thus obtain

dr(t,z) = aft,t+z)dt T o(t,t +x)dw () + %r(t, z) dt,

and, using the HIM drift condition, we obtain our result. O

The point o the Musiela parameterization is that it highlights egn (23.20)
as an infinite dimensional SDE. It has become an indispensibletool o modern
interest rate theory.

23.4 Exercises
Exercise 23.1 Show that for the Hull-White mode

dr = (§t)-ar)dt +odw,
the corresponding HIM formulation is given by
df (t, T) = a(t, T)dt t ge=2T-% aw

Exercise 23.2 (Gaussianinterest rates) Takeasgivenan HIM model (under
the risk neutral measure Q) of the form

df (t,T) = a(t, T)dt T o(t, T) dW(t),

where the volatility o(t, T) isa deterministic functiond t and T.

(&) Show that al forward rates, as wdl as the short rate, are normally
distributed.
(b) Show that bond prices are log-normally distributed.
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Exercise 23.3 Consider the domestic and a foreign bond market, with bond
prices being denoted by pa(t,T) and ps(t,T) respectively. Take as given a
standard HIM model for the domestic forward rates fq(¢, T), dof the form

dfd(t, T) = ad(t, T) dt + O'd(t, T) dW(t),

where W is a multidimensional Wiener process under the domestic martingale
measure Q. The foreign forward rates are denoted by f¢(t,T), and their
dynamics, still under the domestic martingale measure Q, are assumed to be
given by

dfe(t,T) = ay(t, T)dt + os(t,T)dW(t).

Note that the same vector Wiener process is driving both the domestic and
the foreign bond market. The exchange rate X (denoted in units of domestic
currency per unit o foreign currency) has the Q dynamics

dX(t) = u(t)X(t)dt + X(t)ox (t) dW(2).

Under a foreign martingale measure, the coefficient processes for the foreign
forward rates will o course satisfy a standard HIJM drift condition, but here
we have given the dynamics o fy under the domestic martingale measure Q.
Show that under this measure the foreign forward rates satisfy the modified
drift condition

T
ap(t,T)=o04(t,T) {/t. o¢(t,s)ds — a&(t)}.

Exercise 23.4 With notation as in the exercise above, we define the yield
spread g(t, T) by

g(t’ T) = ff(t, T) - fd(t,T)'
Assumethat you are given the dynamicsfor the exchange rate and the domestic

forward rates as above. You are aso given the spread dynamics (again under the
domestic measure Q) as

dg(t, T) = ay(t, T) dt + og(t, T) dW(t).

Derive the appropriate drift condition for the coefficient processa, in terms o
o4, 04 and ox (but not involving oy).

Exercise 23.5 A consol bond is a bond which forever pays a constant con-
tinuous coupon. We normalize the coupon to unity, so over every interval with
length dt the consol pays1-d¢. Nofacevaueisever paid. The price C(t), at time
t, o the consol isthe value o this infinite stream o income, and it is obviousy

(why?) given by
C(t) = / p(t,s) ds.
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Now assume that bond price dynamics under a martingale measure Q are
given by

dp(t, T) = p(t, T)r(t)dt + p(t, T)v(t, T) dW(2),
where W isa vector valued Q-Wiener process. Lbe the heuristic arguments given
in the derivation of the HIM drift condition (see Section 20.2.2) in order to show
that the consol dynamics are of the form

dC(t) = (Ct)r(t) - 1) dtFoc(t)dW (1),

oc(t) = /t ” p(t, s)v(t,s)ds.

235 Notes

The basic paper for this chapter is Heath et d. (1987). The Musiela paramet-
erization was first systematically investigated in Musiela (1993), and developed
further in Brace and Musiela (1994). Consistency problemsfor HIM models and
families of forward rate curves were studied in Bjork and Christensen (1999),
Filipovié (1999), and Filipovié¢ (2001). The question of when the short rate in a
HIM mode isin fact Markovian was first studied in Carverhill (1994) for the
cased deterministic volatiliy, and for the case of a short rate depending volatility
structureit wassolved in Jeffrey (1995). The more general question when a given
HIMmodel admitsarealization in terms of afinitedimensional Markovian diffu-
son was, for various special cases, studied in Ritchken and Sankarasubramanian
(1995), Cheyette(1996), Bhar and Chiarella (1997), Inui and Kijima (1998),
Bjork and Gombani (1999), and Chiarella and Kwon (2001). The necessary and
sufficient conditions for the existence of finite dimensional Markovian realisa-
tions in the general case were first obtained, using methods from differential
geometry, in Bjork and Svensson (2001). This theory has then been developed
further in Bjork and Landén (2002), and Filipovié and Teichmann (2001). A
survey is given in Bjork (2001). In Shirakawa (1991), Bjork (1995), Bjork et d.
(1997a,b), and Jarrow and Madan (1995) the HIM theory has been extended to
more general driving noise processes. Thereisa growingliterature on defaultable
bonds. See Merton (1974), Duffie and Singleton (1994), Leland (1994), Jarrow
et d. (1997) and Lando (1997). Concerning practical estimation of the yield
curve see Anderson et al. (1996).
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CHANGE OF NUMERAIRE*

24.1 Introduction

Consider a given financial market (not necessarily a bond market) with the
usua locally risk free asset B, and a risk neutral martingale measure Q. As
noted in Chapter 10 a measure is a martingale measure only relative to some
chosen numeraire asset, and we recall that the risk neutral martingale measure,
with the money account B as numeraire, has the property o martingalizing all
processesd the form S(t)/B(t) where Sisthe arbitrage free price processd any
(nondividend paying) traded asset.

In many concrete situations the computational work needed for the determ-
ination o arbitrage free prices can be drastically reduced by a clever change
o numeraire, and the purpose d the present chapter, which to a large extent
followsand is inspired by Geman et al. (1995), is to analyze such changes. See
the Notes for the more bibliographicinformation.

To get some feeling for where we are heading, let us consider the pricing
problem for a contingent claim X, in a modd with a stochastic short rate r.
Using the standard risk neutral valuation formula we know that the price at
t=0d X isgiven by

I(0; X) = B9 [~ i 4. x]. (24.1)

The problem with this formula from a computational point o view is that in
order to compute the expected value we haveto get hold o the joint distribution
(under Q) o the two stochastic variables fOT r(s)dsand X, and finaly we have
tointegrate with respect to that distribution. Thuswe haveto compute a double
integral, and in most cases this turns out to be rather hard work.

Let us now make the (extremely unrealistic) assumption that r and X are
independent under Q. Then the expectation above splits, and we have the
formula

I(0; X) = EQ [e" @ dS] EQ[x),

which we may write as
n(o; X) = p(0,T) - E? [X]. (24.2)

We now note that (24.2) isa much nicer formula than (24.1), since
e We only have to compute the single integral E€ [X] instead of the double
integral E9 [exp {' fOT r(s) ds} . X].
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e The bond price p(0,T) in formula (24.2) does not have to be com-
1 puted theoretically at all. We can observe it (at t = 0) directly on the
oo bond market.

The drawback with the argument aboveisthat, in most concrete cases, r and
X are not independent under Q, and if X isa contingent claim on an underlying
bond, thisis of course obvious. What may be less obvious is that even if X is
aclam on an underlying stock which is P-independent o r, it will still be the
cae that X and r will be dependent (generically) under Q. The reason is that
under Q the stock will have r as its local rate o return, thus introducing a
Q-dependence.

This is the bad news. The good news is that there exists a general pricing
formula (see Proposition 24.8), a special case o which reads as

I1(0; X) = p(0,T) - ET [X)]. (24.3)

' Here ET denotes expectation w.r.t. the so-caled forward neutral measure Q7T
which we will discuss below. We will also discuss more general changes
d numeraire.

24.2 Generalities

We now proceed to the formal discussion of numeraire changes, and we start by
setting the scene.

Assumption 24.2.1 We consider an arbitrage free market model with asset
prices So, S1,-..,5, where Sp is assumed to be strictly positive.

Sometimes, but not always, we will need to assume that all prices are
Wiener driven.

Condition 24.2.1 Under P, the S-dynamics are of the form
dSi(t) = a;(t)Si(t) dt + S;(t)o:i(t)dW (), i=0,...,n,

where the coefficient processes are adapted and W is a multidimensional standard
i P-Wiener process.

Remark 24.2.1 Wedo not necessarily assumethe existenced ashort rate and
a money account. If the model admits a short rate and a money account they

will as usual be denoted by r and B, respectively.

From a mathematical point o view, most of the results concerning changes o
numeraire are really special cases o the First Fundamental Theorem and the
associated pricing formulas. Thus the difference between the present chapter
and Chapter 10 is more one d perspective than one d essence. We now recall
some facts from Chapter 10 and start with the Invariance Lemma.
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Lemma 24.1 (Invariancelemma) Let 3 be any strictly positive 1t6 process,
and define the normalized process Z with numeraire 8, by Z = S§/8. Then h
is S-self-financing if and only if h is Z-self-financing, i.e. with notation asin
Chapter 10 we have

dvS(t;h) = h(t)dS(t) (24.4)
if and only if

dVZ(t;h) = h(t)dZ(t). (24.5)
Proof Followsimmediately from the It6 formula .|

We make two remarks on the Invariance Lemma.

e A process B satisfying the assumptions above is sometimes called a A
"deflator process”.
m e \Wehaveassumedthat S and 8 arelt6 processes. Thisisnot important, and
‘ the Invariance Lemma does in fact hold also in a general semimartingale
setting.
e Observe that at this point we do not assume that the deflator process 8
isthe price processfor a traded asset. The Invariance Lemma will hold for
any positive process 8 satisfying the assumptions above.

From Chapter 10 (see summary in Section 10.7) we now recal the First
Fundamental Theorem and the corresponding pricing formula.

Theorem 24.2 Under the assumptions above, the following hold:

e The market model is free of arbitrage if and only if there exists a
martingale measure, @Q° ~ P such that the processes

So(t)  Si(t) Sn(t)
So(t)”  So(t)” 7 So(t)

are (local) martingales under (.
e |n order to avoid arbitrage, a T-claim X must be priced according to the
formula

I(t; X) = So(t)E° [W)((T_)

ft] , (24.6)

where E° denotes expectation under Q.

In most o our applications earlier in the book we have used the money
account B as the numeraire, but in many applications the choice o another
asset as the numeraire asset can greatly facilitate computations. A typical
example when this situation occurs is when dealing with derivatives defined
in terms o severa underlying assets. Assume for example that we are given
two asset prices S; and Sz, and that the contract X to be priced isd the form
X =®&(91(T) S2(T)), where® isagivenlinearly homogenous function. Using
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the standard machinery, and denoting the risk neutral martingale measure by
Q° we would have to compute the price as

II(t; X) = B [~ 5 @ %0(5(T), 55(T)| 7] ,

which essentially amounts to the calculation o a triple integral. If we instead
use S; as numeraire, with martingale measure @', we have

I(t; X) = S1()E* [¢ (Z2(T))| F4] (24.7)

where p(z) = ®(1, z) and Z;(¢) = S2(t)/S1(t). In thisformulawe note that the
factor S1(t) is the price o the traded asset $; at timet, so this quantity does
not have to be computed—it can be directly observed on the market. Thus the
computational work is reduced to computing a single integral. We aso note the
important fact that in the Z economy we have zero short rate.

Example 24.3 Asan exampled the reasoning above, assumethat, we have two
stocks, 1 and Sy, with price processesd the following form under the objective
probability measure P

dS; (t) = a1 S1(t)dt T Sy (t)oy dW (2), (24.8)
dS;(t) = azS2(t)dt T Sa(t)oz AW (2). (24.9)

Here ay,a2 € R and 01,02 € R? are assumed to be deterministic, and W is
assumed to be a two dimensional standard Wiener process under P. We assume
absenced arbitrage.

The T-claimto be priced isan exchange option, which givesthe holder the
right, but not the obligation, to exchangeone S, sharefor one S; shareat timeT.
Formally this meansthat the claimisgiven by Y = max [Sy(T") — S1(T), 0], and
we note that we have alinearly homogeneouscontract function. It isthus natural
touseone d the assets as the numeraire, and we choose S;. From Theorem 24.2,
and using homogeneity, the priceis given by

0I(t; Y) = S1(t) B [max [Z5(T) - 1, ol 7l

with Zy(t) = S2(t)/S1(t) and with E* denoting expectation under QL. We are
thus in fact valuing a European call option on Z;(T"), with strike price K = 1.in
aworld with zero short rate.

We now have to compute the Q! dynamics of Z, but this turns out to be
very easy. From Ito, the P-dynamics d Z, are o the form

dZy(t) = Zo(t) (. ) dt T Za(t) {02 — o1} AW (1),
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where we do not care about the preciseform o the dt-terms. Under @* we know
that Z, is a martingale, and since the volatility terms do not change under a
Girsanov transformation we obtain directly the @ dynamics as
dZ,(t) = Z2(t) {02 — 01} AW'(2), (24.10)
where Wt is Q1-Wiener. We can write this as
dZs(t) = Za(t)o dW (1),
where W is a scalar Q*-Wiener processand

o= lloz - ou]|.

Using the Black—Scholes formula with zero short rate, unit strike price and
volatility a, the price d the exchange option is thus given by the formula

1(t; X) = S (t) {Z2(t)N[d1] — Nld:]} (24.11)
= Sa(t)N[di1] - S1(t)Nda), (412

where

e e o (28) o).
de = dy — VT —1t.

If, instead df using a two dimensional standard Wiener process, we model the
stock price dynamicsas

Sy (t) = 1 S1 (t)dt T S1(t)oy dW; (2),

dS(t) = e2Sa(t) dt T Sa(t)or dWo(1),

where W, and W, are scalar P-Wiener with local correlation p, and thus o; and
oy are scalar constants, then it is easy to see that the rdlevant volétility to use
in the formulaabove is given by

o= \/;f + 0% — 2p010,.

Note that we made no assumption whatsoever about the dynamics d the short
rate. The result above thus holds for every possible specification o the short

rate process.




CHANGING THE NUMERAIRE 353

We will give several other concrete examplesbdow, but first we will investig-
ate how we changefrom one choiced numeraire to another, i.e. how wedetermine
the appropriate Girsanov transformation. This will be donein the next section.

Remark 24.2.2 Sincethere sometimes seemsto be confusion around what isa
bona fide choice o numeraire, let us recall some pointsin the derivation o the
First Fundamental Theorem:

e Inthebasicverson d thetheorem (Theorem 10.9) we assumed that Sy was
arisk freetraded asset with zeroratedf return. It wasacrucial ingredient
in the proof that we were dlowed to invest in this risk free asset.

e For the general case we used thetraded asset Sy asthe numeraire. In the
normalized economy this provided us with a traded asset Zy which was
risk free with zero rate o return. The Invariance Lemma then dlowed us
to use the basic version of Theorem 10.9 to complete the proof.

e The point of these commentsisthat the Invariance Lemmaistrue for any
deflator process 3, but when it comesto the existenced martingale meas-
ures and pricing, we must use a numeraire which isthe price processd a
traded asset without dividends.

e |n particular, if we want to use numeraireslike
e a nonfinancial index,

e aforward or futures price process,

e the price process d a traded asset with dividends,

then we must carry out a careful separate analysis, since in these cases
we do not have access to a standard version o the First Funda-
mental Theorem.

24.3 Changing the Numeraire

Supposethat for a specific numeraire So we have determined the corresponding
(not necessarily unique) martingale measure Q°, and the associated dynamics
d the asset prices (and possibly also the dynamics o other factors within the
model). Suppose furthermore that we want to change the numerairefrom Sg to,
say, S1- An immediate problem is then to find the appropriate Girsanov trans-
formation which will take usfrom Q° to Q, where Q! isthe martingale measure
corresponding to the numeraire S;. This problem will for example turn up in
connection with the LIBOR market models treated later in the book.

This problem is in fact quite easily solved, and to see this, let us use the
pricing part o Theorem 24.2 for an arbitrary choiced T-claim X. Wethen have

T1(0; X) = So(0)E® [?«%T_)] , (24.13)
and also
1(0; X) = S;(0) E! [5%1,—)] . (24.14)
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Denoting by L}(T) the Radon-Nikodym derivative

Q!

LYT) = 0 ‘on’\.FT, (24.15)
we can write (24.14) as
I1(0; X) = S1(0)E° [ S)((T) LO(T)] (24.16)
and we thus have
So(0)E® [ s)((:r)] $1(0)E° [ ey L})(T)] , (24.17)

for all (sufficiently integrable) T-claims X. We thus deduce that

So(0) _ 51(0)

5@ ~ 5@ O

SO we obtain
50(0) S1(T)

51(0)  So(T)’
which is our candidate as a Radon—Nikodym derivative. The obvious choice of
the induced likelihood processis of course given by

Ly(T) =

=388 0s1s7

This looks promising, since the process S1(t)/So(t) is a Qo-martingale (why?),
and we know that any likelihood process for the transition from Q°® to @* has
to be a Qo-martingale. In more formal terms we have the following proposition.

Proposition 24.4 Assume that Q° is a martingale measurefor the numeraire
Sp (on Fr) and assume that S; is a positive asset price process such that
S1(t)/So(t) is a true Qo-martingale (and not just a local one). Define @' on
Fr by the likdihood process

L§(t) = g"% g:,g; <t<T. (24.18)

Then Q! is a martingale measurefor S;.

Proof We have to show that for every (sufficiently integrable) arbitrage free
price process II, the normalized process II (t) /S1(t) is a Q1-martingale. Now, if
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IT is an arbitrage free price process then we know that I1/Sp is a Q'-martingale
and for s <t we have the following calculation, where we use the Abstract
Bayes’ Formula:

lﬁm Eﬂ%m%%fq Eﬂ%%%%{%%fﬁ
b [sl(t) ’]= s Z10)

3 E[ahln]_28-& _ ne

Ly(s) Li(s) — Su(s)’

Since we have determined the relevant likelihood process, we can identify the
Girsanov kernel.

Proposition 24.5 Assume absence of arbitrage and that Condition 24.2.1
is in force. Denote the corresponding QV-Wiener process by W". I'hen the
Qo-dynamicsof the likelihood process L} are given by

LY(H) = L3(t) {01 (t)- ou()} dWO(2). (24.19)

Thus the Girsanov kernel ¢} for the transition from @° to Q! is given by the
volatility difference

Ph(t) = o1(t) — oo (t)- (24.20)

Proof The result follows immediately from applying the 1t6 formula to
(24.18). O

244 Forward Measures

In this section we specializethe theory developed in the previoussection to the
case when the new numeraire chosen is a bond maturing at time T. As can be
expected this choicedf numeraireis particularly useful when dealingwith interest
rate derivatives.

2441 Using the T-bond as Numeraire

Suppose that we are given a specified bond market model with a fixed (money
account) martingale measure Q. For a fixed time of maturity T we now choose
the zero coupon bond maturing at T asour new numeraire.

Definition 24.6 For a fixed T, the T-forward measure Q' is defined as the
martingale measure for the numeraire process p(t,T).
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In interest rate theory we often have our models specified under the risk neutral
martingale measure Q with the money account B as the numeraire. \We then
have the following explicit descriptionQ .

Proposition 24.7 If Q denotes the risk neutral martingale measure, then the
likelihood process

T
LT(t)=dd—%-, onF, 0<t<T
is given by
_ pt,T)
LT(t) = BOpO.T)" (24.21)

In particular, if the Q-dynamics of theT-bond are Wiener driven, i.e. of the form
dp(t,T) = r(t)p(t, T) dt + p(t, T)v(t, T) dW (), (24.22)

where W is a (possibly multidimensional) Q Wiener process, then the LT
dynamics are given by

dLT(t) = LT (t)v(t, T) dW (t), (24.23)

i.e. the Girsanov kernel for the transition fromQ to QT is given by the T-bond
volatility (¢, T) . -

Proof The result follows immediately from Proposition 24.4 with QT = Q!
and Q° =Q. O

Observing that P(T,T) = 1 we have the following useful pricing formula as an
immediate corollary of Proposition 24.2.

Proposition 24.8 For any T-claim X we have
(t; X) = p(t, T)ET [X| F), (24.24)

where ET denotes integration w.r.t. QT.

Note again that the price p(t,T) does not have to be computed. It can be
observed directly on the market at timet.
A natural question to ask is when Q and QT coincide.

Lemma 24.9 TherelationQ = QT holdsif and only if 7 is deterministic.

Proof Exercisefor the reader. O
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244.2 An Expectation Hypothesis

We now make a small digressionto discussthe forward rate processf (t,T). The
economic interpretation of f (t, T) isthat thisistherisk freerated return which
| e may have on an investment over the infinitesimal interval [T,T +dT] if the
b contract is made at t. On the other hand, the short rate »(T') isthe risk freerate
- o return over the infinitesimal interval [T,T +dT], if the contract is made at
T. Thusiit is natural to view f (t,T) (which can be observed at t) as an estim-
ate d the future short rate »(T'). More explicitly it is sometimesargued that if
the market expects the short rate at T to be high, then it seems reasonable to
assumethat the forwardratef (t,T) isalso high, since otherwisethere would be
profitsto be made on the bond market.

Our task now isto determine whether this reasoning is correct in a more pre-
csesense, and to thisend we study the most formalized version of the argument
above, known as the "unbiased expectation hypothesis' for forward rates. This
hypothesisthen says that in an efficient market we must have

f(t,T) = E[r(T)| 7, (24.25)

i.e. the present forward rate is an unbiased estimator of the future spot rate. If
we interpret the expression "an efficient market™" as "an arbitrage free market"
then we may use our general machinery to analyze the problem.

First we notice that there is no probability measureindicated in (24.25), so
we have to make a choice.

Of coursethereis no reason at all to expect the hypothesisto be true under
the objective measure P, but it is often claimed that it holds "in a risk neutral
world". This more refined version o the hypothesis can then be formulated as

f(t,T) = E? [r(T)| 7, (24.26)
where Q is the usual risk neutral martingale measure. In fact, also this ver-
sion o the expectation hypothesisis in general incorrect, which is shown by the
following result.

Lemma 24.10 Assumethat, for al T >0 we have r(T)/B(T) € L'(Q). Then,

for every fired T, the processf (t,T) isa QT-martingalefor 0 <t < T, and in
particular we have

ft,T) = ET [r(T)| F). (24.27)

Proof Using Proposition 24.24 with X = (T') we have

II(t; X ) = EQ [T(T)e“ SFr(s)ds

F) = plt, DE[r(D)) 7).
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This gives us

ET [r(T)| F] = E“ [r(T)e‘ ST r(s)ds

A

;

#

p(t,T)

1 0 T
- el = _f¢ r(s)ds
(¢, T)E [ oT*

0

1 a T
- — R | f r(s)ds
PGT) L [e

——sz(t,T)' O

We thus see that the expectation hypothesis is fase dso under Q, but true
under QT. Note, however, that we have different QT for different choicesd the
maturity date T.

24.5 A General Option Pricing Formula

The object d this section is to give a fairly general formulafor the pricing o
European call options, and for the rest d the section we basicaly folow Geman
et al. (1995). Assume therefore that we are given a financid market with a
(possibly stochastic) short rate r, and astrictly positive asset price processS(t).

The option under consideration is a European call on § with date
maturity T and strike price K. We are thus considering the T-claim

X =max [S(T) - K, 0], (24.28)

and, for readability reasons, we confine ourselvesto computing the option price
I(¢; X) at timet = 0.

The main reason for the existenced alarge number d explicit option pricing
formulasis that the contract function for an option is piecewise linear. We can
capitalize on thisfact by using a not so wel-knowntrick with indicator functions.
Write the option as

X =[8(T) - K] - I1{S(T) > K},
where | isthe indicator function, i.e.

Hsmzx={y 52k

Denoting the risk neutral martingale measure by Q, we obtain
I1(0; X) = E9 [B~X(T) [S(T) — K] I{S(T) > K}]
= E° [e- J& () deg(T) . 1 {S(T) > K}]

_ KE® [e— @) ds . 1 g(T) > K}] .
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In the first term above, we use the measure Q° havi ng Sas numeraire, and for
the second term we use the T-forward measure. From Theorem 24.2 and Pro-
position 24.8 we then obtain the following basic option pricing formula, whichis
asubstantial extension of the standard Black—Scholes formula.

Propostion 24.11 (General option pricing formula) Given the assump-
tions above, the option price isgiven by

I(0; X) = 8(0)Q° (S(T) = K) — Kp(0,T)Q" (8(T) > K). (24.29)
Here QT denotes the T-forward measure, whereas QS denotes the martingale
measurefor the numeraire process S(t).

In order to use this formulain a real situation we have to be able to compute
the probabilities above, and the standard condition which ensures computabil-
ity turns out to be that volatilities should be deterministic. Hence we have the
following assumption.

Assumption 24.5.1 Assume that the process Zg,r defined by

- Zsr(t) = p—(m (24.30)
has a stochastic differential d the form
dZS,T(t) = ZS,T(t)mS,T(t) dt + ZS,T(t)O's,T(t) dW(t), (2431)

where the volétility process os,r(t) is deterministic.

Thecrucia point hereisd coursethe assumption that the row-vector process
os,r isdeterministic. Note that the volatility process as always is unaffected by
achanged measure, so we do not haveto specify under which measure we check
the condition. It can be done under P as wdl as under Q.

We start the computations by writing the probability in the second term o
(24.29) as

QT(S(T) > K) = QT (pfq(,,T%) > K) —QT(Zsr(T) > K).  (24.32)

Since Zg,r is an asset price, normalized by the price d a T-bond, it isa QT
martingale, so its QT-dynamics are given by

dZs,r(t) = Zs,r(t)os,r(t) AW (¢). (24.33)

Thisis basically GBM, driven by a multidimensional Wiener process, and it is
easy to see that the solution is given by

5(0)

ZS‘T(T) = p(0,T)

T T
exp{—§ [ oszir@ae+ [ :Os,z*(t)dWT(t)}- (24.34)
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In the exponent we have a stochastic integral and a deterministic time integral.
Since the integrand in the stochastic integral is deterministic, an easy extension
o Lemma 4.15 shows that the stochastic integral has a Gaussian distribution
with zero mean and variance

T
52 1(T) = / los,r(t)]? dt. (24.35)
0

The entire exponent is thus normally distributed, and we can write the
probability in the second term in (24.29) as

QT (8(T) 2 K) = N[dy,

where v )
4 - B(S)/Kp(0,T)) - 373,(T)

2 VTE2(T)

Sincethefirst probability termin (24.29) isa QS-probability, it isnatural towrite
the event under consideration in terms o a quotient with S in the denominator.
Thus we write

(24.36)

Q(S(T) 2 K)=Q° Trs 71{—) =Q° (YS,T(T) < %) . (2437)

where Yg r is defined by

pt,T) _ 1
S@t)  Zsr(t)

Under Q° the process Ys r has zero drift, so its @5-dynamics are of the form

dYs (t) = YS,T (t)(ss,T (t) dw?s (t)

YS,T,(i) =

Since Ys,r = ZS‘}, an easy application of Itd’s formula gives us dgr(t) =
—os,r(t). Thus we have

p(0,T) 1 /T 2 /T s
Y. = - —
s ="gigy ™72 )y losrl O dt = J osT® AW,
and again we have a normally distributed exponent. Thus, after some
simplification,
Q°(S(T) 2 K) = Nldi],

dy=da+ \/Ezs,T(T). (24.38)

We have thus proved the following result.

where
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Proposition 24.12 (Geman— El Karoui~Rochet) Under the conditions
gven in Assumption 24.5.1, the price d the cal option defined in (24.28) is
given by theformula

I1(0; X) = S(0)N[dy] — K - p(0, T)N|da). (24.39)
Heed, and d; are givenin (24.36) and (24.38), respectively, whereas Eg,T(T)
is defined by (24.35).

246 The Hull—White M odel

As a concrete application of the option pricing formula o the previous sec-
tion, we will now consider the case o interest rate options in the Hull-White
modd (extended Vasi¢ek). To this end recdl that in the Hull-White model the
Q-dynamicsd r are given by

dr = {®(t) — ar) dt t o dW. (24.40)
From Section 22.3 we recall that we have an affine term structure
p(t, T) = eA®T)-BED)r(®), (24.41)

where A and B are deterministic functions, and where B is given by
L 1 —a(T-t)
B(tT)=; { l1—e } . (24.42)

The project is to price a European call option with exercise date 7; and
strike price K, on an underlying bond with date o maturity Ty, whereT) < Ts.
In the notation o the general theory above this means that T = 77 and that
S(t) = p(t, Tz). We start by checking Assumption 24.5.1, i.e. if the volatility, o,

| d the process
p(t Tz)
Z{t) = 24.43
©= pem) (2449
isdeterministic. (Intermsd the notation in Section 24.5 Z correspondsto Zg r
and o, corresponds to og,1.)
Inserting (24.41) into (24.43) gives

Z(t) = €exp {A(t’ TZ) - A(ts Tl) - [B(ta T2) - B(t, Tl)] 1"(t)}'

Applying the Ité formula to this expression, and using (24.40), we get the
Q-dynamics

dZ(t) = Z(t) {--.} dt T Z2(t) . 0. (t) AW, (24.44)
where

0.(t) = -0 [B(t, T) — B(t,T1)] = %e“t [eT2 — e~°T1], (24.45)
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Thus &, isin fact deterministic, so we may apply Proposition 24.12. \WWe obtain
the following result, which aso holds (why?) for the Vasi¢ek model.

Proposition 24.13 (Hull-White bond option) In the Hull-White model
(24.40) the price, att = 0, of a European call with strike price K, and time
of maturity T3, on a bond maturing at 7> ¢s given by the formula

IN(0; X) = p(0, To)N[da] — K - p(0, T3)N[ds), (24.46)
where ,
In (p(0, T2)/Kp(0, T1)) — $2
dy = , 24.47
2 \/ﬁ ( )
dy =dy + VX2, (24.48)
2 2

2 _ o _ a—2aTy _ a—a(Ty-Ty)

2= s {1-e ) {1 e~ T } : (24.49)

We end the discussion o the Hull-White model, by studying the pricing
problem for a claim d the form

Z = 9(r(T)).
Using the T-bond as numeraire Proposition 24.8 gives us
1(t; £) = p(t, T)ET [#(r(T))| 7], (24.50)

so we must find the distribution of #(T') under QT, and to this end we will use
Theorem 24.5 (with Q asQ® and QT as Q). We thus need the volatility o the
T-bond, and from (24.41)—(24.42) we obtain bond prices (under Q) as

dp(t, T) = r(®)p(t, T) dt + v(t, T)p(t, T) AW, (24.51)
where the volatility v(¢, T) is given by
v(t,T)=—-0B(t,T). (24.52)

Thus, using Theorem 24.5 and the fact that the money account B has zero
volatility, the Girsanov kerne for the transition from Q to QT is given by

(PT(t) = _UB(th)'
The @QT-dynamics of the short rate are thus given by
dr = [6(t) — ar — ¢®B(¢,T)] dt + o dWT, (24.53)

where WT is a QT-Wiener process.
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We observe that, since v(¢, T) and ©(t) are deterministic, r is a Gaussian
process, so the distribution of (T') is completely determined by its mean and
varianceunder Q. Solving the linear SDE (24.53) gives us

r(T) = =T~ 4 /T o= o(T—s) [6(s) - 023(87.11)] i
r t
to /t 6~(T=2) G (g). (24.54)
We can now compute the conditional Q"-varianced =(T), o2(t,T), as
T 2
o2(t, T) = o /t e=2a(T=8) g5 = ;—a {1 - e-2“(T-‘>} . (24.55)

I Note that the QT-mean of r(T), m.(t,T) = ET [r(T)| F], does not haveto be
} computed at all. We obtain it directly from Lemma 24.10 as

mr(t1 T) = f(t’ T)a

which can be observed directly from market data.
Under QT, the conditional distribution o =(T) is thus the normal distribu-
tion N[f (t,T),o.(t,T)], and performing the integration in (24.50) we have the

8 final result.

Proposition 24.14 Given the assumptions aove, the price d the clam X =
®(r(T)) isgiven by

o L6 X) =p(t,T) M} dz, (24.56)

, [z
,/_“_2(t T / q’(z)e"p{ 202(¢,T)

where a%(t, T)is given by (24.55).

24.7 The General Gaussian Model
I'n this section we extend our earlier results, by computing pricesdf bond options

'} ina general Gaussian forward rate model. We specify the model (under Q) as

df (¢, T) = a(t,T)dt + o(t, T) dW (2), (24.57)
where W is a d-dimensional Q-Wiener process.
Assumption 24.7.1 We assume that the volatility vector function
o(t,T) = [o1(t,T),...,04(t,T)]

is adeterministic function d the variablest and T.
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Using Proposition 205 the bond price dynamics under Q are given by
dp(t, T) = p(t, T)r(t)dt + p(t, T)v(t, T) dW (t), (24.58)

where the volatility is given by
T
o(t,T) = — / o(t, ) ds. (24.59)
t

We consider a European call option, with expiration date Tp and exercise
price K, on an underlying bond with maturity 77 (whered courseTp < Ti). In
order to compute the price d the bond, we use Proposition 24.12, which means
that wefirst haveto find the volatility o1, 1, o the process

2(t) = BBT)
p(t, T
An easy calculation showsthat in fact

T
o1y, 1 (t) = v(t, Th) — v(t, To) = - L o(t,s)ds. (24.60)

Thisisclearly deterministic, so Assumption 24.5.1 is satisfied. We now have the
following pricing formula.

Proposition 24.15 (Option pricesfor Gaussianforwardrates) The price,
att =0, d the option

X =max [p(To,T1) - K,0Q]

is given by
I1(0; X') = p(0, T1)N(di1] — K . p(0, To)N[d], (24.61)
where

In (p(0, T1)/Kp(0, Tv)) + 553, r,
1= ' '

\/Zg'l,To
dy =d; — \IE%I,TO,

To . . .
2
Eg"1,To =/0 ||0T1,To(s)ll ds,

and o, 1, iSgiven by (24.60).

Proof Followsimmediately from Proposition 24.12. O
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248 Caps and Floors

The object o thissectionisto present one o the most traded o all interest rate
derivatives—the cap—and to show how it can be priced.

Aninterest rate cap isa financial insurancecontract which protects you from
having to pay morethan a prespecified rate, the cap rate, even though you have
aloan at a floating rate d interest. There are also floor contracts which guar-
antee that the interest paid on a floating rate loan will never be bdow some
predetermined floor rate. For simplicity we assume that we are standing at
timet =0, and that the cap isto bein force over theinterval [0,T]. Technicaly
speaking, a cap is the sum o a number o basic contracts, known as caplets,
which are defined as follows

e Theinterval [0,77] issubdivided by the equidistant points

0=To,T1,...,Tn=T.

We use the notation 6 for the length & an elementary interval, i.e.
§=T; - T;,_,. Typicdly, 6 isaquarter o ayear, or hdf ayear.

e The cap is working on some principal amount d money, denoted by K,
and the cap rate isdenoted by R.

e The floating rate o interest underlying the cap is not the short rate r,
but rather some market rate, and we will assume that over the interval
[T;-1,T;) it isthe LIBOR spot rate L(T;_1,T;) (see Section 20.2).

e Caplet i is now defined as the following contingent claim, paid at Ti,

X; = K§ max[L(T;_1,T;) — R,0). (24.62)

We now turn to the problem o pricing the caplet, and without lossdf gener-

ality we may assume that K = 1. We will also use the notation z+ = max|z, 0],
0 the caplet can be written as

b

E X =6L-R)T,
Fk where L = L(T;-1,T;). Denoting p(T;—1,T;) by p, and recaling that
1 1-p
] L==—2FX
pé
we have .

X=§L-R*=5(L-R* =5(? —R)+

= (R-aem) = (Bom) S E (L)

[ ]
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where R* = 1+ 6R. It is, however, easily seen (why?) that a payment o
(R*/p) (1/R*) - p)T at time T; is equivalent to a payment of R* ((1/R*) — p)*
attimeT;_,.

Consequently we see that a caplet is equivalent to R* put options on an
underlying T;-bond, where the exercise date o the option is at T;—; and the
exercise priceis1/R*. An entire cap contract can thus be viewed as a portfolio
d put options, and we may usethe earlier results d the chapter to computethe
theoretical price.

A different approach to the pricing o caplets (and hence o caps) isto view
the caplet claim in (24.62) as a formal option directly on the LIBOR rate, and
noting that the LIBOR. forward rate L(t; T;, T:+1) is a martingale under QT+,
This approach will be investigated in some detail in the chapter on LIBOR
market models below.

24.9 Exercises

Exercise 24.1 Derive a pricing formula for European bond options in the
Ho-Lee moddl. >

Exercise 24.2 A Gaussian Interest Rate M odel
Take as given a HIM modd (under the risk neutral measure Q) d the form

df (t, T) = a(t, T)dt t oy - (T = £)dW; (t) T o2 6727 dWy(2),

where o7 and o3 are constants.

(a) Derivethe bond price dynamics.
(b) Computethe pricing formulafor a European call option on an underlying
bond.

Exercise 24.3 Prove that a payment o (1/p) (A —p)t at time T; is equival-
ent to a payment of (A — p)* at time T;_;, wherep = p(Ti—1,Ti), and A isa
deterministic constant.

Exercise 24.4 Prove Lemma 24.9.

Exercise 24.5 Use the technique above in order to prove the pricing formula
of Proposition 22.5, for bond options in the Ho—Lee model.

24.10 Notes

Thefirst usage d a numeraire different from the risk free asset B was probably
in Merton (1973), where however the techniqueis not explicitly discussed. The
first to explicitly use a change o numeraire change was Margrabe (1978), who
(referring to a discussion with S, Ross) used an underlying stock as numeraire
in order to value an exchange option. The numeraire change is also used in
Harrison and Kreps (1979), Harrison and Pliska (1981) and basically in all later
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works on the existence of martingale measures in order to reduce (as we did
in Chapter 10) the general case to the basic case d zero short rate. In these
papers, the numeraire change as such is however not put to systematic use as
an instrument for facilitating the computation of option prices in complicated
modds In the context of interest rate theory, changes o numeraire were then
used and discussed independently by Geman (1989) and (in a Gaussian frame-
work) Jamshidian (1989), who both used a bond maturing at afixedtime T as
numeraire. A systematic study of general changes o numeraire has been carried
out by Geman, El Karoui and Rochet in a series o papers, and many o the
results above can be found in Geman et al. (1995). For further examplesd the
change o numeraire technique, see Benninga et al. (2002).



25
LIBOR AND SWAP MARKET MODELS

In the previous chapters we have concentrated on studying interest rate models
based on infinitesimal interest rates like the instantaneous short rate and the
instantaneousforward rates. Whilethese objects are nice to handle from a math-
ematical point o view, they have two main disadvantages:

e The instantaneous short and forward rates can never be observed in
red life.

e If you would like to calibrate your model to cap- or swaption data, then
thisistypically very complicated from a numerical point of view if you use
one o the "instantaneous" models.

A further fact from rea life, which has been somewhat disturbing from a
theoretical point o view is the following:

e For avery long time, the market practice has beento valuecaps, floors, and
swaptions by using aformal extension d the Black (1976) model. Such an
extension is typically obtained by an approximation argument where the
short rate at one point in theargument isassumed to be determinstic, while
later on in the argument the LIBOR rate is assumed to be stochastic. This
isdf courselogically inconsistent.

e Degpite this, the market happily continuesto use Black-76 for the pricing
o caps, floors, and swaptions.

In asituation like this, where market practice seemsto be at odds with academic
work there are two possible attitudes for the theorist: you can join them (the
market) or you can try to beat them, and since the fixed income market does
not seem to collapse becaused the use d Black-76, the moreredlistic alternative
seemsto be to join them.

Thus there has appeared a natural demand for constructing logically consist-
ent (and arbitrage free!) models having the property that the theoretical prices
for caps, floors and swaptions produced by the model are o the Black-76 form.
This project hasin fact been carried out very successfully, starting with Miltersen
et al. (1997), Brace et al. (1997) and Jamshidian (1998). The basic structure of
the modelsis as follows:

e |nstead of modelinginstantaneousinterest rates, we model discrete mar-
ket rateslike LIBOR ratesin the LIBOR market moddls, or forward swap
rates in the swap market models.

e Under a suitable choice of numeraire(s), these market rates can in fact be
modeled log normally.
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e The market models will thus produce pricing formulas for caps and floors
(the LIBOR models), and swaptions (the swap market models) which are
o the Black-76 type and thus conforming with market practice.
} e By construction the market modelsare thus very easy to calibrate to mar-
. ket datafor caps/floors and swaptions respectively. They are then used to
price more exotic products. For this later pricing part, however, we will
typically have to resort to some numerica method, like Monte Carlo.

25.1 Caps. Definition and Market Practice
In this section we discuss LIBOR caps and the market practice for pricing and

l quoting these intruments. To this end we consider a fixed set of increasing
maturities Ty, T1, ..., Ty and we definea;, by

ai=Ti—T,;_1,~ i=1,...,N.

. The number o; is known as the tenor, and in a typical application we could for
. example have all o; equal to a quarter of a year.

. Definition 25.1 We let p;(t) denote the zero coupon bond price p(t, T:) and let
. L;(¢t) denote the LIBOR forward rate (see Section 20.2), contracted at t, for the
pHIOd [T'_l,Ti], i.e.

L,(t) = i s pi—l(t) —.p'l(t)

, i=1,...,N. 25.1
a; pi(t) (25.1)

i Werecall that a cap with cap rate R and resettlement dates Tg,...,Ty is
- acontract which at time T; givesthe holder o the cap the amount

X,; = 0; - mMax [L,‘(T'_l) - R, O] , (25.2)

i for eech i=1,...,N. The cap is thus a portfolio d the individual caplets
4 Xi,...,Xn.Wenotethat theforward rate L;(T;—1) aboveisin fact the spot rate
1 at timeT;_; for the period [T;-1, T3], and determined already at time T;_;. The
t] amount Xi is thus determined at 7;_1 but not payed out until at time Ti. We

k| d<onotethat, formally speaking, the caplet X; isacall option on the underlying

Spot rate.
The market practice isto use the Black-76 formulafor the pricing of caplets.

Definition 25.2 (Black's Formula for Caplets) The Black-76 formula for
the caplet

X; = a; - max[L(T;_1,T;) — R,0], (25.3)
is given by the expression

CaplP(t) = o; - pi(t){Li()N[d1] - RN[dp]}, i=1,...,N, (25.4)
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where

__ 1 L®)) 1o _
dy = = m[ln( 7 )+ 2o,?(T t)], (25.5)
dy = di — o3/T; — t. (25.6)

The constant o; is known as the Black volatility for caplet No. i. In order to ’
make the dependence on the Black volatility o; explicit we will sometimes write
the caplet price as CaplP (t;a,).

It isimplicit in the Black formula that the forward rates are lognormal (under
some probability measure), but until recently there was no firm theoretical
base for the use o the Black-76 formula for caplets. One o the main goas
of this chapter is precisely that o investigating whether it is possible to build
an arbitrage free model object which produces formulas o the Black type for
caplet prices.

In the market, cap prices are not quoted in monetary terms but instead in
terms o implied Black volatilities, and these volatilitiescan furthermore be
quoted as flat volatilities or as spot volatilities (also known as forward
volatilities). They are defined as follows.

Let us consider a fixed date t, the fixed set o dates Ty, Th,...,Tn where
t < Ty, and afixed cap rate R. We assume that, for eachi = 1,..., N, there
isatraded cap with resettlement dates Tp, 11, .. ., T;, and we denote the corres-
ponding observed market price by Cap™. From this data we can easily compute
the market pricesfor the corresponding caplets as

Capl™(t) = Capj"(t) — Capi®;(t), i=1,...,N, (25.7)
with the convention Capg*(t) = 0. Alternatively, given market data for caplets |
m we can easily compute the corresponding market data for caps.

Definition 25.3 Given market price data as above, the implied Black volatilities
are defined as follows.

e Theimplied flat volatilities @;,...,n5 are defined as the solutions of the
equations

Cap{™(t) = 2 CaplB(t;5;), i=1,...,N. (25.8)
k=

e The implied forward or spot volatilities a,,...,8n5 are defined as solu-
tion.~of the equations

Capl™(t) = Capl®(t;5;), i=1,...,N. (25.9)

A sequence of implied volatilities 4,...,8n (flat or spot) is called a volatility
term structure. Note that we use the same notation &; for flat as well as for
spot volatilities. 1n applications this will be made clear by the context.
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Summarizingtheformal definitionabove, theflat volatility &; isvolatility implied
by the Black formulaif you use the same volatility for each caplet in the cap
with maturity T;. The spot voldtility o; isjust the implied volatility from caplet
No. i. The difference between flat and forward volatilitiesis thus similar to the
difference between yields and forward rates. A typical shape d the volatility
term structure (flat or spot) for caps with, say, a three months tenor is that it
has an upward hump for maturities around two-three years, but that the long
end o the curve is downward doping.

25.2 TheLIBOR Market Model

We now turn from market practice to the construction o the so called LIBOR
market models. To motivate these modelslet usconsider the theoretical arbitrage
free pricing of caps. The pricee;(t) o acaplet No. ¢ isd courseon the one hand
given by the standard risk neutral valuation formula

(1) = a;EQ [e=Jo i r(®)ds
Capli(t) = o E [e ’ ma.X[Li(T'—l)_RaO]‘]:t], i=1,...,N,

bﬁt it is much more natural to use the T; forward measureto obtain
Capl;(t) = a;p;() ET [max [Li(Ti—1) - R, 0| 7], i=1...,N, (25.10)

where ETs denotes expectation under the QT+. In order to have a more compact
notation we will from now on denote QT¢ by Q'.
Thefocal point o the LIBOR models is the following simple result.

Lemma 254 For every i=1,...,N, the LIBOR process L; is a martingale
under the corresponding forward neasure QT¢, on the interval [0,T;_1]-

Proof We have

_ pi-1(t)
o Lalt) i)
The process 1isobvioudy a martingale under any measure. The process p;—1/p;
is the price of the T;—1 bond normalized by the numeraire p;. Since p; is the
numeraire for the martingale measure QT+, the process p;_1/p; is thus trivially
amartingale on the interval [0, T;—1]. Thus o;L; isa martingale and hence L; is
also a martingale. O

The basic idea is now to define the LIBOR rates such that, for each i, Li(T)
will be lognormal under "its own" measure Q*, since then all caplet pricesin
(25.10) will be given by a Black type formula. In order to do this we consider
the following objects as given a priori:

e A set of resettlement dates Ty, ..., TN.
e An arbitrage free market bond with maturities Ty, ..., Tn.
e A k-dimensiona Q"-Wiener process WN.
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e Foreachi =1,...,N a deterministic function d time o;(t).

e An initial nonnegativeforward rate term structure L;(0),...,Ln(0).

e For eechi = 1,...,N, we define Wi as the k-dimensiond Q'-Wiener
process generated by WN under the Girsanov transformation QN — Q'.

Definition 25.5 If the LIBOR forward rates have the dynamics
dLi(t) = Li(t)oi(t) dWi(r), i=1...,N, (25.11)
where W' is Q'-Wiener as described above, then we say that we have a discrete

tenor LIBOR market model with volatilitiesoy,...,o0n.

From the definition above it is not obvious that, given a specification o
01,-..,0N, there existsa correspondingLIBOR market model. In order to arrive
at the basic pricing formulas a quickly as possiblewe will temporarily ignorethe
existence problem, but we will come back to it bdow and thus provide the
missing link.

25.3 Pricing Capsin the LIBOR Model \

Given a LIBOR market model, the pricing o a caplet, and hence also a cap, is
trivial. Since L; in (25.11) is just a GBM we obtain

Li(T) = L(t) - 7 @)W @)-3 [T s e,

Since o; is assumed to be deterministic this implies that, conditional on F,
L;(T) islognormal, i.e. we can write

L; (T) =L; (t)ey" ®T) ,

where Y;(¢, T) is normally distributed with expected value

T
mi(t,T) = -% /t llos(s)|? ds, (25.12)

and variance T

¥2(t,T) = /t llo:(8)|I ds. (25.13)
Using these results and (25.10), a simple calculation gives us the pricing formula
for caps. Alternatively we seethat the expectation E' for the cap pricein (25.10)

isjust the call price, within the Black—Scholesframework, in a world with zero
short rate on an underlying traded asset with lognormal distribution as above.

Proposition 25.6 Inthe LIBOR market model, the caplet prices are given by

Capli(t) = a; - pi(t) {Li()N[d1] — RN[dg]}, i=1,...,N, (25.14)
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where
1 Lit)\ 1
g = Ysop .
= S [ln( o )+221(t,fr, 1)}, (25.15)
dy = di - Si(t, Ty1), (25.16)

with £; defined by (25.13).
We thus see that each caplet priceis given by a Black type formula

Remark 25.3.1 Sometimesit is more convenient working with a LIBOR model
d the form
dLi(t) = L,‘(t)O’i(t) dWi(t), t=1,...,N, (25.17)

where a;(t) is a scalar deterministic function, W' is a scalar Q*-Wiener process.
Then the formulas abovestill hold if we replace ||o;||2 by ¢%. We can aso dlow
for correlation between the various Wiener processes, but this will not affect the
pricing of caps and floors. Such a correlation Wil however affect the pricing of
more complicated products.

25.4 Teminal Measure Dynamicsand Existence

We now turn to the question whether there dways exists a LIBOR market model
for any given specification o the deterministic volatilitiesoy,...,o5. In order
to even get started we first have to specify all LIBOR rates Lq,..., Ly under
one common measure, and the canonical choiceis the terminal measure QN.
Our problem is then basically that of carrying out a two stage program:

e Specify all LIBOR rates under QN with dynamics o the form
dLi(t) = Li(t)pi(t, L(t)) dt + Li(t)os(t) dWN (), i=1,...,N, (25.18)

where L(t) = [Ly(t),..., Ly (t)]", and p; issome deterministic function.
e Show that, for some suitable choice o py,...,un, the QN dynamicsin
(25.18) will imply @* dynamicsd the form (25.11).

In order to carry out this program we need to see how WV istransformed into
Wi as we change measure from QN to Q. We do this inductively by studying
the effect of the Girsanov transformation from Q* to Q*~1.

Remark .41 We have a small but irritating notational problem. LIBOR
rates are typically denoted by the letter “L”, but thisisalso a standard notation
for a likelihood process. In order to avoid confusion we therefore introduce the
notational convention that, in this chapter only, likelihood processes will be
denoted by the letter n. In particular we introduce the notation

d@’

0 on Fy fori,j=1,...,N (25.19)

ni(t) =
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In order to get someidea d how we should choose the QN drifts o the LIBOR
ratesin (25.18) wewill now performsomeinformal calculations. We thus (inform-
aly) assume that the LIBOR dynamics are d the form (25.18) under QN and
that they are also o the form (25.11) under their own martingale measure. From
Proposition 24.4 we know that the Radon—Nikodym derivativen] is given by

-3 3
and in particular
n t()=a;. Iz)Tlg) =a; (1t asLi(2)), (25.21)

wherea; = p;(0)/pi—1(0). From thisformulawe can now easily compute the 7} ~*

dynamics under @Q* as
~H(t) = @i dL(1). (25.22)

Assuming (still informally) that the L;-dynamics are as in (25.11), and using
(25.1) we then obtain

A (t) = @iy Li(t)os (t) dW* () (25.23)
_ 1) ) i

= g0, — ( oo®) ) o:(t) dW*(t) (25.24)

- n:f‘l(t)a,-ain—::;ll—w (”;zt()t) -1 o;()dWi(t). (25.25)

Using (25.21) we finally obtain

T..(4)
\v)

dni~l(t) = 1(t) aiLs —EBY () dWE(Y). (25.26)
2
Thus, the Girsanov kernel for 5~ is given by
o;Li(t)
m A (t) (2527)

so from the Girsanov Theorem, we have the relation

aiLi(t) oF(t)dt T awi-1(z).

AW () = 1T a; Li(t)

(25.28)

Applying this inductively we obtain

dWit) = — ""‘L"(t) X(t) dt + AW (), 25.29
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and plugging this into (25.11) we can finally obtain the QN dynamics o L,
(see (25.30)).

All this was done under the informal assumption that there actually existed
aLIBOR modd satisfying both (25.11) and (25.18). We can however easily turn
' the argument around and we have the following existence result.

Proposition 25.7 Consider a given volatility structure oy, 0n, Where each a,
is assumed to ke bounded, a probability measure QN and a standard QN- Wiener
‘ processWN. Define the processes Ly, ..., Ly by

N
> mak(t)a: (t)> dt + Li(t)o;(t)dW™N (¢),

k=i+1

(25.30)
i fori=1,..., N where we use the convention 2%(. ..) =0. Then the @*-dynamics
d L; are given by (2511). Thus there ezists a LIBOR modd with the given

dLi(t). = —Li(?) (

i § volatility structure.

Proof Giventhat (25.30) hasasolutionfori =1,..., N, and that the Girsanov

kernd in (25.27) satisfiesthe Novikov condition, the proof consistsof exactly the

calculations above. Asfor the existencedf a solution o (25.30), thisistrivial for
i = N since then the equation reads

dLy(t) = Li(t)on (t) AW (2),

which is just GBM and since o is bounded a solution does exist. Assume now
| that (25.30) admits a solution for k =i +1,..., N. We can then write theith
component o (25.30) as

dLi(t) = Ly(t)pi [t, Lita (), . . ., Ly (£)] dt + Li(T)oi () dW N (2),
where the point is that u; does only depend on L for k =i +1,...,N and

not on L;. Denoting the vector (L;t1,...,Lx) by LY, wethus havethe explicit
solution

L) = L) exo [ t (1l 2409 = Gl ) s}

X exp{/ot Wi [s, Lﬁ_l(s)] dWN(s)} ,

thus proving existence by induction. It also follows by induction that, given an
initial positive LIBOR term structure, all LIBOR rate processeswill be positive.
From this we seethat the Girsanov kernel in (25.27) is aso bounded and thus it
satisifiesthe Novikov condition. O
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Remark 25.4.2 Sometimesit is more convenient working with a LIBOR model
o the form

dL;(t) = Li(t)os(t) dW;(t), i=1,...,N, (25.31)

where o;(t) is a scalar deterministic function, W; is a scalar Q*-Wiener process,
and where we assume a given correlation structure dW;(t) dW;(t) = p;;. This
can easily be obtained by a small variation o the arguments above, and egn
(25.30) isthen replaced by

o _onLi(t) &t
dL;(t) = —L;(t) (kg_;n #’h(t)ai(t)ak(t)pik) dt + Li(t)ou(t) dW (2),

(25.32
where W/ is the QN-wiener process generated by W; under the Girsanov
transformation Q* — QN.

25.5 Calibration and Simulation

Suppose that we want to price some exotic (i.e. not a cap or a floor) interest
rate derivative, like a Bermudan swaption, performing this with a LIBOR model
means that we typically carry out the following two steps:

e Use implied Black volatilitiesin order to calibrate the model parameters
to market data.

¢ Use Monte Carlo (or some other numerical method) to price the exotic
instrument.

In this section we mainly discussthe calibration part, and only comment briefly
on the numerical aspects. For numerics and simulation see the Notes.

Let us thus assumethat, for the resettlement dates Ty, ..., Tn, We are given
an empirical term structure o implied forward volétilities, &4,...,ax ie. the
implied Black volatilities for all caplets. For simplicity we assume that we are
standing at timet = 0. Comparing the Black formula (25.4) with (25.14) we see
that in order to calibrate the model we have to choose the deterministic LIBOR
volatilitieso1(+),...,on(-), such that

1 Ti—1 o
= / loi(s)|2ds, i=1,...,N. (25.33)
n [1] L H

Alternatively, if we use a scalar Wiener process for each LIBOR rate we must
choose the scalar function o;(-) such that

N 1 Ti-1
g; = —/ o(s)ds, i=1,...,N. (25.34)
T Jo
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Thisis obvioudy a highly underdetermined system, so in applicationsit is
common to make some structural assumption about the shape o the volatility
| functions. Below is a short and incomplete list d popular specifications. We use
I the formalism with a scalar Wiener processfor each forward rate, and we recall
that L; liveson thetimeinterval 0 <t < T;-;. We dso introduce the temporary
| conventionthat 7, =0

1 Foreachi=1,...,N, assumethat the corresponding volatility is constant
intime, i.e. that

oi(t) =0
for0<t<T;_;.
2. Foreachi=1,...,N, assumethat o; is piecewise constant, i.e. that
oi(t) =0y, forTj1<t<Ty; j=0,...,i-1.

3. Asin item 2, but with the requirement that the volatility only depends
on the number o resettlement dates left to maturity, i.e. that

a‘ij=ﬂi—j! fOI".I}'_1<tSfI},]:O,,...,i—l,,

where B1,..., 8y arefixed numbers.
4. Asinitem 2, with the further specification that

o = iV fOl‘Tj-1<t$1}',]':O,...,i-—1,

where §; and «; are fixed numbers.
5. Assume somesimplefunctional parameterizedform d the volatilitiessuch
as for example

O'i(t) = q,-(T,-_l - t)eﬂ‘(Ti-z—t)

where ¢;(-) is some polynomial and g; is a real number.

| Assuming that the model has been calibrated to market data, Monte Carlo
simulation is the standard tool for computing pricesd exotics. Since the SDEs
(25.30) and (25.32) are too complicated to dlow analytical solutions, we haveto
resort to simulation of discretized versons d the equations.

The simplest way to discretize (25.30) isto introduce a grid d length h and

i
|
t use the following recursive Euler scheme:

| Y opLi(nh)
F L,((n+ l)h) = Lt(nh) _ L,(nh) Z _ Oglg\nh)
' k=i+1 1 + axLi(nh)

+ Li(nh)oi(nh) (W ((n T 1)) - WV (nk)}. (25.35)

ai(nh)a;(nh)) h
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However, from the point d view d numerica stability it is preferableto use
a discretization of the SDE for In{L;). Using It6 we easily obtain

N
dInLi(t) = — (%a?(t) +ait)ott) S M) dt + o4(8) AW (8).
k=i+1 "~ " apLi(t)
(25.36)
The point o thisisthat we now have a deterministic diffusion part, which leads

to improved convergence d the correspondingdiscrete scheme

oLy (nh)

k=i+1 1 + agLg(nh) a,-(nh)o—k(nh))

In L;((n + 1)h) = In L;(nh) — h(%agz(nh) +

toi(nh) {(WN((n T 1)h) - WV (nh)}. (25.37)

25.6 The Discrete Savings Account

In the LIBOR models discussed above there exists a forward neutral martingale
measure Q*=QT: for each i=1,..., N, but so far we have not seen any risk |
neutral measure QB for the bank account B, (alsoknown as the savings account)
and in fact we have not even seen a bank account processin the model. A natural
question isthereforeto investigatewhether the LIBOR model will automatically
imply a money account processB, aswell asa corresponding risk neutral measure
QE. ,
In thiscontext it is, however, not quite clear what one would mean by a bank
account. Since we are working in continuoustime, one possibility is to look for
a continuous bank account o the form we have seen earlier in the book, i.e. one
with dynamics

dB(t) = r(t)B() dt,

where r is the continuously compounded short rate. However, since we have
modeled discrete forward rates it would be unnatural to mix those with a con-
tinuously compounded short rate, so the natural choice would be to look for a
bank account which is resettled at the points Tp, ..., Tn.

In order to construct the bank account we recall that the essential property
isthat it should be riskless on a local time scale, i.e. riskless between T,, and
T for each n. The obvious way to achieve this is by forming the discretely
rebalanced sdf financing portfolio specified by constantly rolling over the bond
o the shortest remaining maturity. More formally, supposethat we are standing
at Tp and consider the following portfolio strategy:

1. At Ty invest one unit o money into the T3 bond.
2. At T1 sl the T3 bond and invest everythingin the Tz bond.
3. Repeat this procedure recursively until Ty.
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Denoting the value o this sdf financing portfolio by B we immediately have

B(T»)

BIN) = o7, Ty’

n=0,...,N-1, (25.38)

I and using the relation p(T,, Tw) = [1+ anL(T,, Tx)] ™" we obtain the discrete
B dynamics as

B(Ty) =1, (25.39)
B(Tx) = (1 + anL(Ty, Tn)) B(Ty), (25.40)
@8 or, more explicitly L .
B(T) _ g}m (25.41)
¥ aternatively,
B(T,) = I[;[l + ek 1 L(Tk, Tie41)] - (25.42)

We note that B isindeed locally risk free in the sense that B(Tx) is known

dready at time T, i.e. asa discrete time process B is predictablein the sense o
Appendix C.

We can now easily determine the martingle measure corresponding to the
discrete saving account.

Proposition 25.8 The Radon-Nikodym derivative for the change from QN to
QB is given by R
) d
d—gN_ =p(0,Tn)B(Tn), on Fry (25.43)
Proof From Proposition 24.4 we have (on Fr, )

dQ? . B(Ty)  B(0)
dQN ~ p(Tn,Tn) p(0,Tx)’

and since P(Tn,Tn) = 1 and B(0) = 1 we have the result. a

25.7 Swaps

b \We now move from the LIBOR Market Modelsto the the Swap Market Models.
E Condder afixed set o resettlement dates Ty, T4, - . . , Ty, With the usual notation
o; = T; — T;—,. From Section 20.3.3 we recall that in an interest rate swap, a
st o floating rate payments (the floating leg) are exchanged for a set of fixed
payments (the fixed leg). The terminology for swaps aways refers to the fixed
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leg, s0 the holder 0 a reciever swap with tenor Ty — T, will, at the dates
Tn+1,-.-,Tn, receive the fixed leg and pay the floating leg. For a payer swap
the paymentsdo in the other direction. For short we will refer to thisswap as a
T, X (Ty — T,,) swap. We now make this precise.

Definition 25.9 The paymentsinaT, x(Tnx—T,) payer swap are as follows:
e Payments will be made and received at Tnt1, Tn+2,...,IN.

» For every elementary period [T;, Ti+1], ¢ =n,..., N — 1, the LIBOR rate
L1 (T3) is set at time T; and the floating leg
ai+1 - Liy1(T3), (25.44)
isreceived at Tiy.-
¢ For the same period the fized leg
[0 79 K (2545)

is payed at T;41-
It is easy to see (exercise for the reader) that the arbitrage free value, at
1 <T,, d the floating payment made at T; is given by

p(ta T‘ll) - p(t,T'i+1)’
s0 the total vaue d the floating side at timet for t < T, equals

N-1

3" [p(t, Ti) — p(t, Tir)) = pa(t) — P (2).

i=n

Thetotal vdue at timet d the fixed side equals

N-1 N
> p(t Tia)oi K =K ) aipi(t),
(=11 i=n+1

so the net value PSN(t; K) o the T, X (Ty — T,,) payer swap at timet < Ty, is
thus given by

N

PS5 K) =pa(t) —pn(t) ~ K ) cupilt). (25.46)
i=n+1

From Section 20.3.3we recall the following definition.

Definition 25.10 Thepar or forward swap rate RY (t) of the T, x (T —T5)
swap is the value of K for which PSN(¢; K)=0, i.e.

Ny Pnlt) —pN(2)
R, (t) = —E fi " a,-pi(t). (25.47)
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Thefirst crucial observation to make at this point is that in the formulafor the
par swap rate we can interpret the denominator Z?‘:n 1 a;p;(t) as the value, at
t d atraded asset, namely as a buy-and-hold portfolio consisting, for each i, of
a; units o the zero coupon bond maturing at T;. This object is so important
that we give it a separate name.

Definition 25.11 For each pair n,k with n < k, the process SE(t) is defined by

k
Skt) = > aip(t,T.). (25.48)

i=n+1
Sk is referred to as the accrual factor or asthe present value of a basis
point.
With this terminology we can expressthe par swap rate as

RN(t) = %@,\ 0<t<Th. (25.49)

In the market there are no quoted prices for different swaps. Instead there
are market quotes for the par swap rates RY, and we see that from these we can
easily compute the arbitrage free price for a payer swap with swap rate K by
the formula

PSY (t;K) = (RY () - K)SY (). (25.50)

25.8 Swaptions: Definition and Market Practice
The definition of a swaption (short for "swap option”) is as follows.

Definition 25.12 A T,, x (Tn — T,)) payer swaption with swaption strike
K is a contract which at the exercise date T;, gives the holder the right but not
the obligation to enter into a Ty, x (Ty — Ty,) swap with the fized swap rate K .

We thus see that the payer swaption is a contingent T,,-claim XY defined by
XY = max[PSY (Tn; K);0] , (25.51)

which, using (25.49), we can write as
XN = max[RN(Ty,) - K ;0] SN (T.,). (25.52)

Expressed in the numeraire S, the swaption is thus formally a cal option on
RY with strike price K. The market practice is to compute swaption prices by
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using aformal extension o the Black-76 formulaand to quote pricesin terms o
the implied Black volétilities.

Definition 25.13 (Black's Formula for Swaptions) The Black-76 formula
for aT, X (Ty —T,) payer swaption with strike K is defined as

PSN, (¢) = SN (){RY (t)N[d1] — KN[dz]}, (25.53)
where
3 1 RN(@#)\ 1 _
dy = P [111( 7 ) + Eaﬁ,N(Tn t)] , (25.54)
dy=dy — onnVTn — 1. (25.55)

The constant o, & is known as the Black volatility . Given a market price for
the swaption, the Black volatility implied by the Black formula is referred to as
the implied Black volatility.

As was the case with the Black formula for caps, the Black swaption formula
has been used by the market for a long time, without any explicit coherent
underlying model. Our task is thus to build an arbitrage free model with the
property that the theoretical pricesderived within the model have the structure
o the Black-76 formula above.

25.9 The Swap Market Models

From (25.52) it isclear that the natural choice d numerairefor swaptions isthe
accrual factor S, and since the accrual factor has an intepretation as the value
d atraded asset it is a bona fide choice d numerairefrom the point of view o
martingale measures. We now have the following ssmple but important result.

Lemma 25.14 Denote the martingale measure for the numeraire Sk by Q%.
Then the forward swap rate RE is a QX -martingale.

Proof This follows immediately from the fact that Rk is the value of a sdf
financing portfolio (along T;, bond and a short T} bond), divided by the value
d the sdf-financing portfolio S&. O

Thus the forward swap rate, like the LIBOR rates earlier, is a martingale under
a suitable choice d numeraire, and the accrual factor plays the same role for
swap market models as the bond prices did for the LIBOR models. The basic
ideain the swaption market model which we will discuss bdow isthen smply to
model the forward swap rates RY lognormally as GBM under the appropriate
measures.

Definition 25.15 Given the resettlement dates Ty, T, Tn, consider a fized sub-
set N of all positive integer pairs (nk) such that 0 < n < k < N. Consider
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furthermore, for each (nk) € A, a deterministic function of time opni(-). A
swap market model with the volatilities o, % is then specified by assuming
that the par swap rates have dynamics of the form

dRE(t) = RE(t)onk(t) dWE(t), (n,k) €N, (25.56)

where W is (possibly multidimensional) Wiener under QX.

Remark 25.9.1 Becaused the interrelations between different par swap rates,
we cannot model all possible swap rates RE for 0 < n < k < N simultaneously,
D in a concrete model we have to restrict ourselvesto modeling only a subset
| N o al par swap rates. In a model with N +1 maturity dates we can only hope
to model N independent swap rates, and typical choicesd N are given by the
j following examples:

e A regular swap market model is specified by modeling, for a fixed N,
the par swap rates RY,RY,...,RY ie.

N ={(0,N),(1,N),...,(N —1,N)}.

e A reverse swap market model is specified by moddling, for a fixed N,
the swap rates R}, RZ,..., RY ie.

N ={(0,1),(0,2),...,(0,N)}.

25.10 Pricing Swaptionsinthe Swap Market Model
Given a swap market model, the pricing o a T, X (T~ — T,) swaption issurpris-

ingly trivial. Formula (24.6) immediately gives us the following pricing formula
for the payer swaption (regardlessd the specific form o the model):
PSNY () = SN (t) - E™N [max [RY(Ty) - K;0)| 7], 0<t<T, (2557)
Since RY, defined in (25.56), is just GBM we obtain
RN(T,) = RN(t) - efi™ onn(@)dWY (o) -4 [ llom, ()| ds (25.58)

" Furthermore, Since o; is assumed to be deterministic this implies that, condi-
'~ tional on F;, RN (T, islognormal, i.e. we can write

Li(T,) = RY (t)eY,f" #Tw)

where Y,V (¢, T,,) is normally distributed with expected value

1 (T
ml =3 [ lonn(e)iPds, (25.59)
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and variance i
Siw= [ lonn(s)IP ds (25.60)
t

Asfor the LIBOR model, a Simplecal culation easily gives usthe swaption pricing
formula.

Proposition 25.16 In the swap market modd (25.56), theT,, X (Tw —T5,) payer
swaption price with strike K is given by

PSN/ () = S (t) {RY (¢)N[d1) - KN[d]}, (25.61)
where
N
w- b(B0) ],
dy =di — Zp N (25.63)

We thus see that each swaption priceis given by a Black type formula.

Remark 25.10.1 Sometimesit is more convenient working with a swap market
model d the form

dRY (t) = R} (t)on,n(t) AW, (2), (25.64)

where oy, v (t) is a scalar deterministic function, W) isa scalar Q*-Wiener pro-
cess. Then the formulas above still hold if we replace ||, ||* by o2 . We can
alsodlow for correlation between the various Wiener processes, but thiswill not
affect the swaption prices. Such a correlation will however affect the pricing o
more complicated products.

In this section, we have modeled each par swap rate RX as GBM under it's
own martingale measure Q¥, and thisled to the Black formulafor swaptions. In
order to price more exotic products we will typically have to resort to numerical
methods like Monte Carlo, and then there is a need to specify the dynamics d
the relevant par swap rates under a single martingale measure. This will be done
in the next two sections.

25.11 Drift Conditions for the Regular Swap Market M odel

In a regular swap market model, we model RY for afixed Nand0 < n< N-1,
so the obvious choice of a common measure for all swap rates is Q¥_;, which
is nothing else (why?) than the Ty-forward measure QT~. Our problem is to
determine the various drift terms, and sincethisis somewhat messy it turns out
to be convenient to have Ty 1 asthelast payment date rather than T. We will
thus model RY'*?, ..., RN and our problem isto determine the drift terms of
these par swap rates under the terminal measure Q,’g“.
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1 Since the diffusion term of RY+! will be the same under QY+ as under
L QN+, the QN dynamicsdof RY*! are of the form

dRN+! = pN+H1RN+1 4t + RN 10y v in dWRHY, (25.65)

i where WYt isa QN+ Wiener process, and our problem is to determine the
drift term pN+1,

i The determination o the par swap drifts involves solving a backward linear
* difference equation, and for completeness sake we now recall a general result for
such equations.

Proposition 25.17 The linear backward difference equation
Tp = An+1$n+1 + bn+1, n= 0, gy N - 1, (2566)
has the solution

N N-1 J
Tp = ( II Aj) TN+ Y ( II Ak>bj+1, (25.67)

j=n+1 j=n \k=n+1

with the convention [Ty, a; =1
Proof Exercisefor the reader. O

We may now state and provethe drift condition.

Proposition 25.18 Under the terminal measure Q¥*!, the RN+ dynamics
are of the form

dRY*! = pl* R+ 4t + RY oy v g1 dWHH, (25.68)

where the drift termis given ky

M,Jffl _é: jUn,N+1<Pn,
where
= Zin | {
Pn = 'é_ H (1 + akRk)] Otj+1Rj+10';+.1,
i=n 7" lk=n+1 (25.69)
and where Z,, is defined by
Z, = n (25.70)
PN+1
Before going on with the proof we recall that we consider a regular swap
market modd for RY*1, RN+ ... RN+, and since the super index N + 21 will

be the same throughout the argument we henceforth suppress the superindex.
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Instead of RN+, QN+, and pll+! we will thus write R,, @, and p, and
similarly for dl other terms.
For easy reference we also recall the following relations:

R, = E_’_‘_-ﬂil, (25.71)
Pn
N+1
Sn = Z a;pi, (2572)
i=n+1
dR,, = R0, dW,, (25.73)

where W, is Q,,-Wiener.

Proof Westart by noticingthat Sy = pn+1, S0 @n isinfact the T4 forward
measure with numeraire py+1. From Proposition 24.4 we know that, with

L,(t) = %, on F,

we have
Ln(t) = 1 Zn(t),
where
Zo=n . e =2Z1(0). (25.74)
DN+1

Since L, isa @y martingaleit must have @n dynamicsd the form
dZ,, = Z,¢}, dWx, (25.75)
so from (25.73), (25.65), and Girsanov’s Theorem it follows that
fin = —0nPn. (25.76)

It thus remains to determine the process ¢, and to do this we must determine
the Z,, dynamics from (25.74). From (25.72) we have

Sn = Snt1 + Cny1Pn+1,

so from (25.74) we have

Zn = Znt1 + apyr - DL (25.77)
DPN4+1

From (25.71) we have
Pn+1 = Rnt18n+1 + PN41,
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and plugging this into (25.77) gives usthe recursion

Zp = Zn41 (1 + ant1Rni1) + anga. (25.78)
. From thisformula, (25.65), and (25.75) we obtain the @~ dynamics
dZy = Zny1 (1 + Gns1Rnt1) @1 AWN + Znt10nt1Ru410ns1 AWy, (25.79)

where we have used the fact that, under Qn, Z, has zero drift. We thus have

Z
dZn = Zn ;ﬂ {(1 + ans1Rns1) Phy1 + i1 Rug10npa ) dWy,  (25:80)
n

0 from (25.75) we obtain the following recursion for ¢y,.

Z,

& n+1 &

= 1 y

{ on="7 {1+ ont1Rns1) Phps + Ons1Rnr10nt1} (25.81)
¢ .

From Proposition 25.17 we obtain the solution

N-1/ j
eh=> ( II ak) bj+1,

j=n \k=n+1l

where

Z Z;
ax = —— (14 axRy), bjs1= ;’1 aj+1Rj410541.
k-1 i

A simple calculation gives us

Jj 7. J
H ak‘—“Z—J H (1 + arRy)
k=n+1 " k=n+1

and we are done. O

25.12 Concluding Comment

It can be shown that, given a swap market model, the LIBOR rates will not be
lognormal. Thus LIBOR market models and swap market models are in general
incompatible.
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25.13 EXxercises
Exercise 25.1 Provethat the arbitragefreevalueatt < T,, o the T;4+; claim

@i+1* Liy1(T3)
isgiven by
p(t, T‘lz) - p(t1 T"H-l)'

Exercise 25.2 Convince yoursdf that the swap measure Q¥_, equals the
forward measure QT

Exercise 25.3 Show that the arbitrage free price for a payer swap with swap
rate K is given by the formula

PS;(t; K) = (R (t) - K) 87/ (0).
Exercise 25.4 Prove Proposition 25.17.

25.14 Notes

The basic papers on the LIBOR and swap market models are Miltersen et al.
(1997), Braceet al. (1997), and Jamshidian (1997).Since these basic papers vere
published there has appeared a huge literature on the subject. Very readable
accounts can be found in Hunt and Kennedy (2000), Pelsser (2000) and the
almost encyclopedic Brigo and Mercurio (2001).
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FORWARDS AND FUTURES

ERN

Condgder a financial market o the type presented in the previous chapter, with
| an underlyingfactor process X, and with a (possibly stochastic) short rater. (If
r isstochastic we includeit, for brevity of notation, asone component of X.) We
assume that the market is arbitrage free, and that pricing is done under some
fixed risk neutral martingale measure Q (with, as usual, B as numeraire).

Let us now consider a fixed simple T-claim Y, ie. a clam o the form
. YV =¥(X7), and assume that we are standing at timet. If we buy Y and pay
' today, i.e. at time t, then we know that the arbitrage free price is given by

It Y) = G, X T, Y), (26.1)
where the pricing function G is given by
T
G(t,z;T,Y) = Eth [y - exp {—/ r(s) ds}] ’ (26.2)
t

and the payment streams are as follows:

1 Attimet we pay II(t; V) to the underwriter o the contract.
2. At time T we receive Y from the underwriter.

There are two extremely common variations o this type o contract, namely
forwards and futures. Both these contracts have the same claim Y as their
underlying object, but they differ from our standard contract above by the way
in which payments are made.

26.1 Forward Contracts

We will start with the conceptually easiest contract, which is the forward con-
tract. Thisisan agreement between two parties to buy or sell acertain underlying
dam at afixed time T in the future. The difference between a forward contract
and our standard claimsstudied so far isthat for aforward contract al payments
L are made at time T. To be more precise we give a definition.

' Definition 26.1 Let Y ke a contingent T-claim. A forward contract on Y,
contracted at ¢, with time of delivery T, and with the forward price
f (t;T,Y), is defined by thefollowing payment scheme:

m The holder d the forward contract receives, at time T, the stochastic
amount Y from the underwriter.
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e The holder of the contract pays, at time T, the amount f(t;T,Y) to the
underwriter.

e The forward price f(t;T,Y) is determined at timet.

e The forward price f(t;T,Y) is determined i n such a way that the price of
the forward contract equals zero, at the timet when the contract is made.

Forward markets are typically not standardized, so forward contracts are
usually traded as OTC ("over the counter") instruments. Note that even if the
value of a specific forward contract equals zero at the time t o writing the
contract, it will typically have a nonzero market vaue which varies stochastically
in the time interval [t7).

Our immediate project isto give a mathematical formalization o the defin-
ition above, and to derive a theoretical expression for the forward price process
f(t;T,Y). This turns out to be quite simple, since the forward contract itself is
a contingent T-claim &, defined by

E=Y - f(tT,Y).

We are thus led to the following mathematical definition o the forward price
process.

Definition 26. 2 Let Y be a contingent T-claim as above. By theforward price
process we mean a process f(tiT,Y) of the form f(t;T,V)=f(t.X;T,)),
where f is some determinstic function, with the property that

ney - ¢ XT,Y)) =0. (26.3)
Writing the forward price as f (t,X¢; T,Y) formdizes the fact that the forward
price is determined at t, given the information that is availableat that time.

We now have the following basic formulafor the forward price process.

Proposition 26.3 The forward price process is given by any of the following
expressions:

f:1,9) = T8 (26.0)

f&T,Y) = f(t, X T, Y), (26.5)

where

1 +T
ft,o;T,Y) = ME?, [y : exp{—/t r(s) dsH, (26.6)

ft,z;T,¥)=EL, [V (26.7)
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Proof Using (26.3) and risk neutral valuation we immediately have the
following identities, where we write f (¢, z) instead of f(t,X;T,Y)

T
O0=T(5Y - f(t, Xs)) = B, [D’ - f{t, X)) 'exp{—/t r(s) dS”

L

‘ h: E2,. [y-exp{— ft Tr(s) ds}] - B2, [f(t,Xt).exb{— /t Tr(s) ds}]

A
4

] @ T
,}'3 =1 Y) — f(t, Xt)Ef’?Xt [exp {—/t r(8) ds}]
PE=TI(t; V) — (1, Xe)p(t, T).

:, This immediately gives us (26.4)-(26.6). The relation (26.7) then follows
from (26.6). O

, Note that when dealing with forward contracts there is some risk of conceptual
confusion. If we fix ¢, T and ), and let s be a fixed point in timewitht < s < T,
* then there will be two different prices.

1. The forward price f (s; T,)) which is paid to the underwriter at time T
for a forward contract made at time s.

2. The (spot) price, at time s, of a fixed forward contract, entered at timet,
and with time T of delivery. Thisspot price iseasily seen to be equal to

(s;Y) - p(s, T)f (& T, ).

26.2 Futures Contracts

A futures contract is very much likea forward contract in the sense that it isan
agreement between two parties to buy or sell a certain claim at a prespecified
time T in the future. The principal difference between the two contracts liesin
the way in which payments are being made. We first give a verbal definition of
the futures contract.

Definition 26.4 Let Y ke a contingent T-claim. A futures contract on Y,
with time of delivery T, isafinancial asset with thefollowing properties:

(i) Ateverypoint o timet with0 <t <T, there ezists in the market a quoted
object F(t; T,Y), lcnown as thefutures pricefor Y att, for delivery at T.

(i) AtthetimeT d delivery, the holder d the contract pays F(T; T,Y) and
receivesthe claim .

(#¢t) During an arbitrary time interval (s,t] the holder o the contract receives
the amount F(t;T,Y) — F(s; T,Y).

(iv) The spot price, at any timet prior to ddivery, d obtaining the futures
contract, is by definition egqual to zero.
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A rough way o thinking about afuturescontract istoregard it asaforward con-
tract where the payments are made continuously in time in the way described
above, rather than all payments being made at time T. As the forward price
increased, you would then get richer, and as the forward price decreased you
would lose money. The reason that this way o looking at the futures contract is
not entirely correct isthe fact that if we start with a standard forward contract,
with its associated forward price process f , and then introduce the above pay-
ment schemeover time, thiswill (through supply and demand) affect the origina
forward price process, so generically we will expect the futures price process F
to be different from the forward price processf . The payment schedule aboveis
known as "marking to market"; it isorganized in such a way that the holder o
a futures position, be it short or long, is required to keep a certain amount o
money with the broker as a safety margin against default.

Futures contracts, as opposed to forward contracts, are traded in a stand-
ardized manner at an exchange. The volumes in which futures are traded over
the world are astronomical, and one o the reasons for this is that on many
markets it is difficult to trade (or hedge) directly in the underlying object. A
typical example is the commodity market, where you actually have to ddiver
the traded object (tonsd copper, timber, or ripening grapes), and thus are not
dlowed to go short. In these markets, the futures contract is a convenient fin-
ancial instrument which does not force you to physically deliver the underlying
object, whilestill making it possiblefor you to hedge (or speculate) against the
underlying object.

We now note some properties o the futures contract:

¢ From (ii) and (iv) aboveit isclear that we must have

/ F(T;T,Y)=). (26.8)
Thusthereisreally noeconomicreasonto actually deliver either the under-
lying claim or the payment at time T. Thisis also an empirical fact; the
vast mgjority of all futures contracts are closed before the time d ddlivery.

e If you enter a futures contract at timet with a correspondingfutures price
F(t;T,Y), this does not mean that you are obliged to deliver Y at time
T at the price F(t; T, Y). The only contractual obligation is the payment
stream defined above.

a The namefuturespriceisthereforesomewhat unfortunatefromalinguistic
point of view. If today's futures price is given by F(¢t;T,Y) (witht <T)
this does not mean that anyone will ever pay theamount F(¢; T,Y) in order
to obtain some asset. It would perhaps be more clear to refer to F(t;T,))
as the futures quotation.

e Since, by definition, the spot price o a futures contract equals zero, there
isno cost or gain o entering or closing a futures contract.

e If the reader thinks that a futures contract conceptually is a somewhat
complicated object, then the author isinclined to agree.
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, We now turn to the mathematical formaization o the futures contract, and
¢ it should by now be clear that the natural model for a futures contract is an
t asset with dividends.

Definition 26,5 The futures contract on an underlying T-claim Y is a fin-
ancial asset with a price processII (t)and a dividend process D(t) satisfying the
following conditions:

D(t) = F(;T,)). (26.9)
F(T;T,Y) = ). (26.10)
m(t)=0, Vt<T. (26.11)

| 1t now remainsto investigatewhat the futures price processlookslike. Thisturns
} out to be quite simple, and we can now prove the main result o the section.

Proposition 26.6 Let) ke agiven contingent T-claim, and assume that market
prices are obtained from the fized risk neutral martingale measure Q. Then the
following hold:

e The futures price processis given by
F(t;T,Y) = By, V). (26.12)

o If the short rate is deterministic, then the forward and the futures price
processes coincide, and we have

{(6T,Y) = F&;T,¥) = EZy V. (26.13)

| Proof From Proposition 16.14, it follows that the discounted gains process

I (t) t
Z _ .
G (t)——Bt + /0 B, dF(s;T,Y)
has the representation
dG?Z = h, AW,

for some adapted process h. In our case we furthermore have I (t)= 0 for all t,
0 we obtain the representation

1

dF(tT,Y) = hy dW,.
B‘t : d

Multiplying by B; on both sides we get
dF(t,T,y) = Btht th,

which impliesthat F(¢;T,)Y) isa Q-martingale. Using the martingale property,
the fact that we are in a Markovian framework (seelLemma 5.9), and (26.10),
we obtain

F(T,Y) = B2, [F(T;T,Y)] = EZx, V),
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which proves the first part o the assertion. The second part follows from the

fact that QT = Q when the short rate is deterministic (seeLemma24.9). O |

26.3 EXxercises

Exercise 26.1 Suppose that Sis the price process d a nondividend paying
asset. Show that theforward pricef (t,x; T,Y) forthe T-clam Y = Sr is given by

St
p(t,T)

Exercise 26.2 Supposethat Sis the price processd a dividend paying asset
with dividend process D.

(@) Show that the forward price f (t,X; T, Sr) is given by the cost of carry
formula

f(t,z;T,Sr) = p_(t:}—ﬁ (St — Egz [/tT exp{-— /ts r(u) du} dDS:D

Hint: Usethe cost d carry formulafor dividend paying assets.
(b) Now assume that the short rate r is deterministic but possibly time-
varying. Show that in this case the formula above can be written as

T T
f(t,x;T,Sr)= p(%tT) —Ef,?z [/t exp{—/s r(u)du} dD,].‘

Exercise 26.3 Suppose that Sis the price process o an asset in a standard
Black—Scholesmodel, with r asthe constant rate d interest, and fix a contingent
T-claim ®(S(T)). Weknow that thisclaim can be replicated by a portfolio based
on the money account B, and on the underlying asset S Show that it is dso
possible to find a replicating portfolio, based on the money account and on
futures contracts for S(T').

f(t, z; T, ST) =

26.4 Notes

For a wedth o information on forwards and futures, see Hull (1997) and
Duffie (1989).

be
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MEASURE AND INTEGRATION*

! The purpose o this appendix isto give an introduction to measure theory and
I to the associated integration theory on general measure spaces.

A.l Setsand Mappings

L Let X be an arbitrary set. We then say that X is finite if it contains only
finitely many elements. If X is not finite, we say that it is infinite. We will use
the notation f : X — Y to denote a function (or "mapping") f which takes
vauesin Y and which has domain X. If we apply the f to an element x € X,
we denote the function vaue by f(x).

Definition A.l Let X and Y be setsand let
f: X->Y
ke a given mapping.
1. The mapping f isinjective if, for all x and z in X it holds that
etz = f(z)# ()

2. The mapping f issurjectiveif, for ally € Y, there exists anx € X such
that

Y = f(z).
3. The mapping f isbijectiveif it is both injective and surjective
4. Theimage of X under f, is denoted by Im(f), and defined by

Im(f) = {f(=); z € X}.

5. For any set B C Y, the inverse image or pullback of B under f, is
denoted by f~1(B), and defined by

f7Y(B) ={z; f(z) € B).

We also say that B islifted tof ~*(B).
6. In particular, for every y €Y we write

) = {z; f (@) =y} .
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7. For any set A C X the direct image o B under f is denoted by f(A),

and defined by
f(A)={f(=); € A}.

Note that the inverse image o a set aways exists (although it could be the
empty set) even if the function f does not have an inverse. For our purposes
the inverse image concept is much more important than the direct image. The

following very useful result showsthat the set algebraic operations are preserved
under the inverse image.

Proposition A2 The following relations always hold:
1 ForanyA,B CY we have
F7(AnB) = 7Y (A) N f7H(B).
2. Forany A,BCY we have
fH(AUB) = fTH (AU FHB).
3. For any BC Y we have
@)=t @B

where ¢ denotes the complement.

4. For any indexed collection {B,} of setsinY we have

Yer
1 (ﬂB'y) = nf_l(Bw)-
~er yer . .

5. For any indexed collection {B’Y}'yer of setsinY we have

s (UB'7> = LJf'—1 (By)-
~el’ ~yer

Proof We leavethe proof to the reader. O

We define the set of natural numbersastheset N ={1,2,...), and the set &
integersZ as Z = {0, 1, £2,...). Usng N we can givea nameto the "smalles"
type o infiniteset.

Definition A.3 Aninfinite set X iscountable if there exists a bijection
f:N-X.

If X isinfinite but not countable, it is said to be uncountable.
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Note that in our definition a countable set is alwaysinfinite. The intuitive inter-
pretation o thisisthat a countable set has "as many" elementsas N, whereas
an uncountable set has "more" elementsthan N. If X is countable we may, for
eech n € N definez, € X by z, = f(n).Snce f is a bijection we can thus
write X as

X = {z1,x2,23,...},

vweseethat in thissense we can really count dff the elementsin X, one-by-one.
3 A countable set isthus an infiniteset, but in asenseit is "amost finite", and
thus very easy and nice to handle. In mathematics in general and in particular
in probability theory, the difference between countable and uncountable sets is
crucial, and therefore it is important to be able to tell if a set is countable or
not. The following result isa good start in that direction.

f

Proposition A.4 The set Q of rational numbers is countable.

Proof It isenough to show that the set Q@ o positive rational numbers is
countable, and we do this by first representing each rational number p/q by the
integer lattice point (p,g) € R?. We now prove that this set of integer lattice
pointsis countable by ssimply presenting a scheme for counting them.

The scheme begins with (1,1),(2,1),(1,2),(1,3),(2,2), (3,1), (4,1),(3,2),
and if the reader draws a two-dimensional graph o this scheme, she will easily
see how to continue. O

This simple idea can be extended considerably.

Proposition A.5 Assume that we give a countable family {X,};o; o sets,
where each set X, is countable. Then the union |J;2, X» is countable.

Proof Because d the countability assumption, the set X; can be written as
{z:i1, Zi2, Zi3, . . . ), S0 the set X; can be bijectively mapped into theinteger lattice
points of theform (i 1), (i 2), (i 3),.... Thusthe union |J;2; X» can be mapped
bijectively onto the entire set of positiveinteger lattice pointsin R? and we have
already proved that this set is countable. O

The most important example of an uncountable set isthe set o real numbers.

Proposition A.6 The set R of real numbers is uncountable.

Proof Omitted. O

A.2 Measuresand Sigma Algebras

Let X be a set and let us denote the class o all subsets of X by 2X. More
formally we thus see that 2% , commonly known as the power set of X, isa
set, the elements o which are subsets o X.

We now want to formalize the idea o a mass distribution on X, and the
reader may think o a large plate (the set X) with mashed potatoes on it. For
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every subset A € X we would now like to define the nonnegative real number
u{A) as "theamount of mashed potatoeswhichliesontheset A" or "the measure
of A". However, when one tries to formalize this intuitively simple notion, one
encounters technical problems, and the main problem is the fact that in the
generic situation, there exist subsets A € X which axe so "nasty" that it is
mathematically impossible to define u{A). Typically we are therefore forced to
define the measure u(A) only for certain "nice" subsets A € X. These "nice’
sets are called "measurablesets”, and the technical concept needed isthat of a
sigma-algebra (or o-algebra). In order to definethis concept, let 3be a family
of subsets o X, i.e.3 C 2X.

Definition A.7 A family 3 of subsets of X is a o-algebra if the follow-
ing hold:

1.
OEs.
2.
AeF = A°eF.
3. "
A €F, forn=12,... = |JA, eF.

=1

4.

e <]
A €F, forn=12,... = (A €F.
i=1
Thus a a-algebracontains the empty set, and isclosed under complement, count-
able unions, and countable intersections. In fact, it isonly necessary to require
that F is closed under complements and countable unions (see the exercises).
Note that the conditions (3) and (4) only concern countable unions.
Trivial examples o a-algebras are

F=2XF={0Xx}.

Definition A.8 A pair (X,F) where X is a set and F is a a-algebra on X
is called a measurable space. The subsets of X which are in 3 are called
3-measurabl e sets.

We are now in a position to define the concept of a (nonnegative) measure.

Definition A.9 A finite measure 4 on a measurable space (X, ) is a mapping
n:F — Ry,

such that

1.
#(A) >0, VAeF.
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1(0) = 0.
3 IfA, € FV¥n=1,2,... and A;NA; =0 fori# j, then

o0 o0
Hu (U An) = Zl“(An)-
n=1 n=1

The intuitive interpretation o (2) is obvious; there is no mass on the empty set.
If A and B are digoint set, it is also obvious that the mass on A U B equals
- the sums o the masseson A and B. The condition (3) above is an extension
o this property to the case o an infinite collectiond sets, and is known as the
- sigma-additivity o the measure.

Generally speaking, it is a hard problem to construct nontrivial measures,
} and we will come back to this below. In our applications, we will typicaly be
| given a measure which is defined a priori.

i Definition A.10 A measurespace isatriple (X,3,u), wherep is a measure
b on the measurable space (X,3).

A.3 Integration

Let (X,3,1) be a measure space, and let f : X — R be a given function.
} The object of the present section isto give a reasonable definition o the formal
expression

[ 1@ dute) (A1)
and we do thisin a couple o smple steps.

® Definition A.ll For an arbitrary A C X the indicator function I4 is
R defined by

‘ _f1, fzxeA,

Ia(=) ‘{ 0, ifze A

- If f =c-I4 wherecisareal number and A is measurable, then there is a very
| natural definitiond (A.1), namely
/ f (x) du(z) = / c. Ia(z)dp(z) = c- p(A), (A.2)
D¢ X
ie.

the "area under the graph o f” = "the base”" . "the height" = u(4) - c.

] Observethat we must demand that A is F-measurable, since otherwisethe right-
hand sided (A.2) isnot defined. This also gives usa natural definition o linear
combinationsd indicator functions.
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Definition A 12 A mapping f : X — Rissimple if it can be written as

n

f@)=> cn-Ia,(), (A-3)

i=1
where A4,,..., A, are measurable and ¢4,...,c, are real numbers.
Definition A 13 For a simple function, asin (A.3), the integral is defined by

/ﬂﬂ@@=2%u%&
X i=1

We now want to extend thisintegral concept to functions which are not smple.
Let ustherefore consider an arbitrary nonnegative function. The intuitive idea
is now to carry out the following program:

e Approximate f from below by simple functions, i.e. find simple f,, n =
1,2,..., such that f,(z) T f(x)for al x.

e Definetheintegral o f asthelimit o theintegrals d the approximating
simple functions, i.e.

| f@au@) =tim [ () duto).

The problem with this natural idea is the fact that not al functions can be
wdl approximated by simple functions, so we cannot define the integral for an
arbitrary function.

Instead we have to be contented with defining the integral concept (A.l) for
those functions f which can be approximated by smple functions. This is the
classof measurable functions, and the forma definitionis as follows.

Definition A 14 A function f : X — Ris3-measurable if, for every interval
| C Rit holds that f~(I) € 3, i.e. if it holds that
{xe X;f(x)el)eF,

for all intervals |. We will often write this as f € 3.

When testing if a given function is measurable, the following result is often o
great use.

Proposition A 15 The following properties are equivalent:

1.
f is3-measurable.

{xe X;f(x)<a)e3, YaeR

e, - = . |

fr
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{xeX;f(x)<a)eF, VaeR
{re X;f(x)>a)e3, VaeR.

{xeX;f(x)>a)eF, VaeR.
Proof Use Proposition A.2. |

| The following important result shows that measurability is preserved under the
k. most common operations.

L Proposition A.16 Assume that f and g are measurable on a measurable space
. (X,33) Then the following hold:

1. For all real numbers a and 8 the functions

af+Bg, f-g
are measurable.
2. If g(x) # 0 for al x, then f
g
is measurable.
3. If {fa},—; is a (countable) sequence of measurable functions, then the
functions

Sup fn, inf fn, limsupfn, liminf fp,
n n n n
are measurable.
Proof The proof isomitted. O

i We can now go on to define the integral d a nonnegativefunction on a measure
- Space.

Definition A.17 Let f : X — R be nonnegative and measurable on the measure
space (X,3,p). Theintegral off w.r.t. u over X isthen defined by

/ f(z) du(z) = sup / o(z) du(z), (A4)
X '4 X

| where the supremumis over the class of simple functionsy such that 0 < ¢ <f.

We now want to extend this definition to functions which are not necessarily
I nonnegative. Let therefore f be an arbitrary measurablefunction. It then follows
| from Proposition A.16 that aso |f| is measurable, since we can write

f=f-f,
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where
f+=ma.x[f,0], f‘=ma.x[—f,0]

Definition A.18 A measurable function f isintegrable, which we will write
asf € L' (X,3p),

J M@ du(z) < oo.
For an integrable function f, the integral over X is defined by

/X f (x) du(z) = /X f(z)dp(z) - /Xf"(x)du(w)-

If Ais any measurable set, the integral off over A is defined by
[ 1@ @ = [ 1@ du),

We will often write [, f(x)du(z) as [y f(z)u(dz) or as [y fdp. When the
underlying measure space is unambiguous, we will write L' as shorthand for
LY (X, F,p).

Example A.19 We now give a simple but important example d a measure
space. Let X betheset o natural numbersand let 3be the power set. On this
space we now define the counting measure v by ‘

v(A) = the number of pointsin A. (A.5)
In other words, the counting measure puts unit mass on every single natural

number. We immediately see that on (N,2V,v), every real valued function will
be measurable, and a function f isintegrableif and only if

g )] < co.

Theintegral o any f € L! iseasily seen to be given by

/ (@) du(z) = 3 f(n).
X n=1

Thus we see that our integration theory also alows us to treat ordinary sums |
asintegrals.

We now have some very natural properties d the integral. The proof is not 1
trivial and is omitted. ’
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Proposition A 20 The following relations hold:

1. For any f,ge L' (X,F,u) and any real numbersa and 3 it holds that
[ (@1(@) + po(e)) du() =a [ 1@)au(@)+5 [ olo) duta).
X X X

2. If f(x)< g(z) for all x, then

/ﬂﬂ@@s/dﬂMW-
X X

3. For any functionin L! it holds that

]Aﬂww@

smeww.

One o the most striking properties of the integral concept defined above is

the surprising ease with which it handles convergence problems. The three basic
results are as follows.

Theorem A 21 (TheFatou Lemma) Let {f.}or; be a sequence of measur-
able functions such that

fa>0, n=12,...
and
Jim_ fa(z) = f(x), Y2 EX,

for some limit function f. Then

[ 1(@)duta) < timit | (o) du(o).
X X

Theorem A 22 (Monotone Convergence) Let {fn}o, be a sequence of
measurable functions such that

1. The sequence is nonnegative, i.e.
20, n=12...
2. The sequence is increasing, i.e. for all x we have
fil@) < fo(@) £ -+ < fu(2) < frmr(@) <o

Then, defining the function f by

f(®) = lim fa(2),
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it holds that
[ $@ dutz) =tim [ fu(a) dpto)
X X

Theorem A.23 (The L ebesgue Dominated Convergence Theorem) Let
{fn}or, be a sequence of measurable functions such that

fa(@) = f(2)

for some limit function f. Suppose that there exists a nonnegative functiong € L* |
such that,
|fn(2)] < g(z), VM Yz E€X.

Then
| f@)au(a) =tim | fa(z) du(a).
X X

A.4 Sigma-Algebrasand Partitions

The purpose o this section is to give some more intuition for the measurability
concept for functions. We will do this by considering the simplest case o a
sigma-algebra, namely when it is generated by a partition.

Definition A.24 A partition P of the space X is a finite collection of sets
{A1,A4,,...,A) such that

1. The sets cover X, i.e

2. The sets are digjoint, i.e.
it = AiNA;=0.

The sets Ay,..., A, are called the components of P, and the sigma-algebm
consisting of all possible unions (including the empty set) of the componentsin P
is denoted by o (P). This sigma-algebra is called the sigma-algebra gener ated
by P.

We now have a result which shows (in this restricted setting) what measurability
for a function "really means".

Proposition A.25 Let P be a given partition of X. A function f : X — Ris |

o (P)-measurable if and only i ff is constant on each component of P.

Proof First assumethat f is measurable, and consider a fixed but arbitrarily
chosen real number y. Since f is measurable we know that f~(y) isin o(P)

S0 it isa union o some o the componentsd P. If the union is nonempty this |

Cal
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i means precisdly that f =y on that union, so in particular it takes the constant
B vaduey on all componentsin the union. The converseis trivial. O

I The sigma-algebrasthat we are going to consider later on in the text, are in
[ generadl not generated by partitions. They are typically much more complic-
i ated, so the proposition above is o little "practical™ interest. The point of the
- discussion concerning partitions is instead that when you informally think
about sigma-algebras, it is very fruitful to have this simple case at the back o
¥ your head.
‘ As an example, we see directly from Proposition A.25 why we must restrict
f oursalvestointegrating measurable functionsonly. The problem with a nonmeas-
Eurable function isthat the function is varying too wildly compared with the fine
| structure of the sigma-algebra. In particular this implies that a nonmeasurable
. function cannot be well approximated by simple functions.
I It is dso very instructive to see exactly what goes wrong when we try to
integrate nonmeasurabl e functions. Even for a nonmeasurablefunction f we can
| d coursein principle definethe integral by (A.4), but thisintegra will not have
. the nice propertiesin Proposition A.20. See the exercisesfor concrete examples.

A5 Setsof Measure Zero

Consider again a measure space (X,3,p). If N € 3and u(N) = 0, we say that
. N isanull set. If acertain property holds for all x € X except for on a null
' set, then we say that the property holdsalmost everywhere (w.r.t. p), and in
. shorthand we write “u-a.e.”. For example, if we write

>0, pae.

this means that there exists a null set N such that f (x) > 0 for all x € N©. It is
easy to see that if f and g are integrable, and f = g, amost everywhere, then

for every A € 3Bwe have
[ rau=[ ga
A A

In fact, there is an important conversed this statement, which showsthat you
can test whether two functions are equal almost everywhere or not, by testing
their integrals. We omit the proof.

Proposition A.26
e Assume that f and g are integrable and that

/Afdu=/Agdu,

for every A€ 3, then f =g, p-a.e.
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e Assumethat f and g are integrable and that

/fde/gdu,
A A

for every A€ F, thenf >g, p-a.e.

A.6 The L? Spaces

Let p beareal number with 1 < p < co. WedefinethefunctionclassLP (X, F, i)
as the class o measurablefunctionsf such that

[ @)P dute) < oo,
X

and for f € L? we define the LP-norm || f||,, by

i1 = ( [ 1P du(x))l/ g

For p= cathe norm is defined by
If lloo = esssup|f] = inf{ MeR; |f] £ M, a.e.}.

The two main inequalitiesfor L? spaces are the Minkowski and the Holder |
inequalities. '

Proposition A 27 The following hold for 1 < p < oo.
1. The Minkowski inequality:

1f + llp < Ifllpit lglp-

2. The Holder inequality:
/X 1£(@)9(2) du(@) < 1 £llp - lglla-

where p and q are conjugate, i.e. 1/p+1/g=1.

From the Minkowski inequality it followsthat if we identify functionswhich are
equal almost everywhere, then L? isanormed vector space. If {f,} isa sequence
d functionsin L? and f isafunctionin L? such that

f n f asn— 00,
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then we say that f, convergesto f in L? and we write

5 f

Definition A.28 A sequence {f»},, of functionsin L? is a Cauchy sequence
if, for all e <0 there exists aninteger N such that

”fn - fM“ <k,

for all n,m> N.

It is easy to see (provethis) that if f, convergesto some f in L? then {f,},, is
Ceauchy. The converseis not necessarily true for generally normed spaces, but it
isin fact true for the L? spaces.

Proposition A.29 Every LP space, for 1 < p < oo, iscompletein the sense
that every Cauchy sequence converges to some limit point. In other words, if
{fn} is a Cauchy sequence in L?, then there ezists a (unique) element f € L?
such that f,—f in L?.

We will mainly be dealing with L! and L?, and for L? there is furthermore an
inner product, which is the natural generalizationd the scalar product on R".

Definition A.30 For any two elements f and g in L? we define the inner
product (f,g) by

(f.0) = /X £(@) - 9(z) du(z).

It is easy to see the inner product is bilinear (i.e. linear in each variable) and
that the inner product is related to the L2 norm by

Ifll2 = V(£, F)-

The vector space structure, the inner product and the completeness of L2,
ensuresthat L2 is a Hilbert space.

A.7 Hilbert Spaces

Hilbert spaces are infinite dimensiona vector spaces which generdizethe finite
dimensional Euclidian spaces R".

Definition A.31 Consider a real vector space H A mapping (,) :H X H — R,
is caled an inner product on H if it has the following properties:

e |tis bilinear, i.e. foranya,f< Rand f,g,he H

(af + B9, h) = a(fa h) +,B(g’ h)
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and

(h,ef tBg) = alh, f) + B(h, g)-
e It is symmetric, i.e.
(f,9)=1(9,f), Vf,geH.

e Itis positive definite, i.e.
(f,f) >0, foralf eH withequality if and only iff =0.

The inner product generaizes the standard scalar product on R™ and in
particular it induces a normand the concept o orthogonality.

Definition A32
e For anyf € H the norm off is denoted by ||f || and defined by

Il = V(£ f).
e Two vectorsf,g € H are said to be orthogonal if f,g =0. We write this
asf Lg.
e For any linear subspace M € H we define its orthogonal complement
Mt as

Mt ={feH; f1 M}.

We interpret |||l as "the length ", and the following result shows that the
norm concept really is a norm in the technical sense o satisfying the triangle

inequality.
Proposition A.33
e For all f, g € H the Cauchy-Schwartz inequality holds, ¢.e.

9l < 15 - gl

e Thenorm| .| satisfies thetriangle inequality, i.e. for anyf,g e H we
have

If +gll < Il + Hlgll-

Proof To prove the Cauchy-Schwartz inequality we note that for al f,ge H
and s € R we have (f —sg.f —sg) = ||f — sg[? > 0. We thus have [[f |2 +
llgli® — 2s(f,g) = 0. Minimizing this over al real numbers s and plugging in the
optimal s in the inequality gives us the Cauchy inequality. To provethe triangle
inequality, write ||f T g||2 as (f +g, f+ g) and expand using the bilinearity and
Cauchy—-Schwartz. O

St
S€

sai
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A vector space with an inner product is caled an inner product space, and on
I such a space we may use the induced norm to define the concept o a Cauchy
| sequence and o completeness (asfor the LP spaces above).

i Definition A 34 A Hilbert spaceisaninner product space which is complete
% under the induced norm || . ||

We note that L? (X,3,u) above is a Hilbert space and it is in fact the most
. important example d a Hilbert space. The sngle most important result for
Hilbert spacesis probably the projection theorem. The proof is omitted.

Theorem A 35 Assume that M is a closed linear subspace of a Hilbert
sace H.

e Assumethat f is a fized vector in H. Consider the optimization problem
miz [|f — gl

Then there exists a unique solutionij and it i s characterized by the condition
that

f-§gLlM.

o We have the decomposition of H as
H=Mo M.

The direct sumsign @ meansthat H = M + M+ and that M N M+ = {0}.

The optimal ¢ above is called the orthogonal projection o f onto M. We
| see that the optimal "error vector” f — g is perpendicular to the subspace M,
exactly like the situation in R™.

Definition A 36 A linear mapping F : H + Riscalled alinear functional.
For any f € H we sometimes write F f rather than F(f). A linear functional is
said to be bounded if there exists a constant K such that

|[F(f)| < K| fll, VfeH.

It isrelatively easy to see that a linear functional is bounded if and only if it is
continuous. It is also easy to see that if we choose a fixed f € H and define the
mapping F : H — R by

Fg=(f9), VYfeH, (A.6)

then Fis a bounded linear functional. The next result, shows that all bounded
linear functionals on a Hilbert space are d this form.
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Theorem A.37 (Riesz Representation Theorem)
Assume that
F:H—-R

is a bounded linear functional. Then there exists a uniqueg € H such that

Ff=(f49), VfeH

Proof DefineM by M = ker[F] = {f e H; Ff =0}. The M is a closed
subspace and we can decomposeH as H = M + M. From the definition o M
it isclear that F restricted to M~ islinear with trivial kerndl. It isthus a vector
space isomorphism between M+ and R, so M+ has to be one-dimensiona and
we can write M+ = Rgo for some go € M+. Now define g by

. _ Fgo

I Tool2*
Then (go,g) = Fgo S0 by linearity we have Ff = (f,g) for all f € M and hence
(exactly why?) alsofor dl f € H. 0

Note that we have to assume that the linear functional F is bounded, i.e. con- ‘

tinuous. On a finite dimensional Euclidian space R™, al linear functionalsare
continuous, but on a Hilbert space there may exist linear functionals which
are not continuous. It is only for the continuous ones that we have the Riesz
representation above.

A.8 Sigma-Algebras and Generators

As usual we consider some basic space X. Let S be some a priori given class of
subsets o X, i.e. SC 2%, where Sis not assumed to be a sgma-algebra. The
question is whether there is some natural way o extendingSto a sigma-algebra.
We can o course dways extend Sto the power algebra2X, but in most applica-
tionsthisisgoing too far, and instead we would like to extend Sin some minimal
way to a sigma-agebra. This minimal extension can in fact always be achieved,
and intuitively one is easily led to something like the following argument:

e Assume, e.g. that Sis not closed under complement formation. Then
we extend Sto & by adjoining to S all sets which can be written as
complements o setsin S. Thus &1 isclosed under complements.

e If Sisa sigmaagebra then we are finished. If it is not, then assume for
examplethat it isnot closed under countable unions. We then extend S; to
S» by adjoiningto &; all countable unionsd setsin S;. Thus S; is closed
under countable unions.

e |t can now very wdl happen that S; is not closed under complement form-
ation (or under countable intersections). In that case we extend S2 to S3
by adjoiningto 8, all complements o setsin Sa.

e Andthuswegoon....

fo
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Inthisway, it perhaps seemslikely that "at last" we will obtain the (unique?)
minimal extension d S to a sigma-algebra. Unfortunately the method is not
constructive (unlessdf course X isfinite) so we need a more indirect method.

Proposition A.38 Let {F,; a € A} be anindexed family of sigma-algebras on
some basic set X, where A is some index set, i.e. for eacha € A F, is a
sigma-algebra. Define 3 by
F=)Fa
acA
Then 3 is a sigma-algebra.

Proof The proof isleft to the reader as an exercise. O

We can now go back to our family S above.

Proposition A.39 Let S be an arbitrary family of subsets of X. Then there
exists a unique minimal extension of S to a sigma-algebra. More precisely, there
exists a G C 2% such that
e g extends S, i.e. SCG.
e G isasigma-algebra on X.
e G isminimal, i.e. if F is any sigma-algebra on X such that S C F, then
9CF.

Proof DefineG by

g:mfa

where the intersection is taken over al sigma-algebras3such that S € 3. It
follows from Proposition A.38that G is a sigma-algebra, it obvioudy extends S
and from the construction we easily see (why?) that it is minimal. O

Definition A.40

e The sigma-algebra G in the previous proposition is called the sigma-
algebra generated by S, and we write

G =0{S}.

e The family Sis called a generator system for 9.
e If {F,; yeT'}isanindexed family of sigma-algebras on X, we denote by

V Fo,

| ‘ yell

the smallest sigma-algebra which contains each 3,.
o If {f; v€TI} is an indexed family of real valued functions on X, we
denote by

g=0’{f'y; 'YEF},
the smallest sigma-algebra G such that £, is measurable for eachy €T
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It isimportant to understand that even if the elementsin a generator system
S are "dmple" (in some sense), the sigma-algebra generated by S can be very
complicated.

Wefirst give some rather trivial examples:

1. If X istheinterval [0,1] and S= {[0,1/2]} it iseasy to seethat a{ S) = 4

21f X = N and S is the class o al singleton sets d N, i.e.
S={{n); ne N), then ¢ {S} =2".

We now come to the single most important sigma-algebra.

Definition A 41 If the set X is given by X = R" then we define the Bord
algebra B(R") asthe sigma-algebra whichis generated by the class of open sets
on R". The elements on the Borel algebra are called Borel sets.

The Borel algebrais an extremely complicated object and the reader should be
aware d the following facts.

e Thereis no "constructive" definition d the Borel algebra. In other words,
it is not possibleto give anything like a concrete description o what "the
typical Bord set" looks like.

e The Bore algebra is strictly included in the power algebra. Thus there
exist subsets o R" which are not Borel sets.

e However, all subsetsd R" which ever turn up "in practice' are Bord sets.
Reformulating this, one can say that it is enormoudy hard to construct
a set which is not a Borel set. The pedestrian can therefore, and without
danger, informally regard a Borel set as "an arbitrary subset" o R".

There are alarge number o alternative waysd generating the Bordl algebra.
By recalling that a set isopen if and only if its complement isclosed it iseasily
seenthat the Borel algebrais also generated by the classd all closed sets. Bdow
isalist o somed the most common generator systemsfor the Borel algebraon
R. The extensionsto R" are obvious.

Proposition A 42 The Borel algebra B(R) can be defined in any of the
following ways:

B(R) = o {open sets),

B(R) = o {closed sets),

B(R) = a{intervals of the type (a,b]),
B(R) = a{intervals of the type (a,b)),
B(R) = o {intervals o the type [a}]},

ar

g
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B(R) = o{intervals d the type [a,b)),
B(R) = o {intervals o the type (—m,b)),
B(R) = o {intervals of the type (~co,b]},
B(R) = o {intervals of the type [a,00)},
B(R) = o {intervals of the type (a,00)},
B(R) =o{all intervals).

At first glance it seems impossible to prove any results at all about the Borel
algebra, since we do not have a constructive definition d it. The reason that we
have any control over the class d Bord sets is the fact that it is the minimal
extenson o theclassd dl intervals, and this can be seen in the following useful
dternative characterization d the classd measurable functions.

Proposition A.43 Let (X,F) be a measurable space and letf : X = R ke a
given function. Then f is 3-measurable if and only if f~}(B) € F for every
Borel set B € R.

Proof If f ~}(B) € F for every Borel set B C R, then f is measurablesincein
particular it liftsintervalsback to measurablesets. Assume now that f is meas-
urable. We then have to show that f liftsarbitrary Borel setsto 3-measurable
sets. To do this, definethe classG o subsets R by

G={BCR; f}(B)eF}.

Theclassg isthusthe classd "good" subsets d R which do lift back to meas-
urable sets on X. We now want to prove that every Borel set is a good set, i.e.
that B C G. Now, using Proposition A.2 it is not hard to prove (do this!) that
G is a sigma-algebra. Since f was assumed to be measurable, it lifts intervals
back to measurable sets, so G does in fact contain all intervals. Thus ¢ is a
sigma-algebracontaining all intervals, but sincethe Borel algebraisthe smallest
sigma-algebracontaining all intervalsit must hold that B C G which was what
we wanted to prove. O

A particularly important exampled a measurablespaceis (R,B(R)), and areal
valued function f : R — R which is measurable w.r.t. B(R) is cadled Bord
measurable or a Bore function. The following result shows that there are
plenty of Borel functions.

Proposition A.44 Every continuous function f : R" — R is Borel measurable.

Proof Thisfollowsimmediately from the fact that a function is continuous if
and only if it lifts open sets to open sets. O

From Proposition A.16 it folows that every function that we can construct,
by starting with continuous functions and then using the standard algebraic
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operations and limiting procedures, will be a Bord function. It does in fact
require a considerable amount o creativity to construct a function which is not
a Bord function, so the reader can with very little danger interpret "a Bore
function” as "an arbitrary function”.

As an important consequenced Proposition A.43 we see that measurability
is preserved under composition with Borel functions.

Proposition A.45 Assume that f : X — R is a 3-measurable mapping, and
that g : R — Ris a Borel function. Then the composite mapping h = go f
defined by h(z) = g(f(x)) is9-measurable.

Proof Easy exercisefor the reader. O

A.9 Product measures

Let (X,3,p) and (Y,G,v) be two measure spaces. We now want to construct a
measureon the product space X x Y aong the same lines as when we construct
the area measure on R? from the length measure on R.

Definition A.46 A measurablerectangleisaset Z C X XY of the form
Z=AxB,
where A € 3 and B € G. the product sigma-algebra9® g is defined by
F ® G = o {measurable rectangles) .

There is now a natural definition of the measure o a measurable rectangle,
namely X (A X B) = "the base times the height"= u(A) - v(B). Thus we have
defined a product measure on the classd measurablerectangles, and the follow-
ing result showsthat this measure can in fact be extended to the entire product
sigma-algebra.
Proposition A.47 There exists a unique measure X on {X xY,F®G}
such that

XA x B)= u(A) v(B),
for every measurable rectangle A x B. This measure is caled the product
measure and denoted by X = u X v.

We end this section by formulating a very useful result which shows
that instead o integrating w.r.t. the product measure we can perform iter-
ated integrals.

Theorem A .48 (The Fubini Theorem) Consider the product measure space
{X xY,3®G,pxv}andlet f: X XY — R beameasurable mapping. Assume
either that f isintegrable over X xY or that f is nonnegative. Then we have

[ sawxn = [ [ senaw)|awe = [ | fen )| oo,

fu

fu
if
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Notethat included in the Fubini Theorem is the statement that the function

T— /Y f(z,y)dv(y)

is F-measurable, and correspondingly for the other integral.
The Fubini Theorem may o course be extended to any finite product space.

A.10 The Lebesgue Integral
On the class o intervals on R we have a natural length measure m defined by

m ([a,b])=b-a.

The obviousquestion iswhether thislength measure can be extended to a proper
measure on the Borel algebra. That this is indeed the case is shown by the
following highly nontrivial result.

Proposition A.49 On the measurable space (R,B) there exists a unique meas-
ure m with the property that for any interval [a,b]

m([ab])=b-a

Thismeasureis caled the (scalar) L ebesgue measure, and by taking products
we can easily form the n-dimensional Lebesgue measure on R".

Equipped with the Lebesgue measurewe can now start integrating real vaued
functions defined on thereal line. We know that all continuousfunctionsare Borel
measurable, and at this point we could encounter a problem, since for continuous
functions we also have the Riemann integral. If afunction f is continuous and
if Aisafiniteinterval we can form two integrals, namely

/A f(z)dm(z), (Lebesgue),

and
/ f (5)dz, (Riemann),
A

and if we are unlucky these integral concepts could differ. Happily enough, it
can be proved that whenever the Riemann integral is wel defined, it will coin-
cide with the Lebesgue integral. The advantage d using the Lebesgue integral
instead of the Riemann integral is that the Lebesgue theory dlows us to integ-
rate al Bord functions, whereas the Riemann integral only alows usto integrate
Riemann integrable functions (which is a much smaller class). Furthermore, a
pointwise convergent sequence d nonnegative Riemann integrablefunctions may
convergeto a limit function for which the Riemann integral is not even defined,
whereasthe classd Borel functionsis closed under pointwise convergence.
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All The Radon—Nikodym Theorem

Oned the big breakthroughsin arbitrage pricing came from the realization that
absence o arbitrage is very closaly connected to the existence d certain abso-
lutely continuous measure transformations. The basic mathematical tool is the
Radon-Nikodym Theorem which we will prove below, and although our prime
application will be in the context o probability theory, we present the theory
for arbitrary finite measures.

Definition A 50 Consider a measurable space (X,F) on which there are
defined two separate measures g and v

o If, for all A €3, it holds that
w(A) =0 = v(A)=0, (A7)

then v is said to be absolutely continuous with respect to 4 on 3 and
we write this as v << p.

o If wehave both p << v and v << u, then p and v are said to beequivalent
and we write g ~ v.

o If there exists two events, A and B such that
*x ANB=90
* p(B)=0 and v(4)=0.
Then p and v are said to be mutually singular, and we write u L v.

We now give some simple examples o these concepts.

Example A 51

e The simplest example o absolute continuity occurs when X isfiniteor at

most countable, say X = N, and 3= 2%X = 2V, Every measure p on N

isdf coursedetermined by its point masses u(n), n € N, and the relation
v <<y simply means that

p(n)=0 = v(n)=0.

e L et i be “Poisson(c)-measure”, defined by its point masses on the natural

numbers, as
n

u(n) =e'°;—r, neN,

and let v be Lebesgue measure on the positive real line. Then, viewed as

measures on (R, B(R)), we have 1 L v since g puts al its mass on N
whereas v putsall its masson R N N€,

Consider a fixed measure space (X,F,p), and let f : X -+ R be a nonneg-
ative measurable mapping in L! (X,F, p). We can then define a new measure v
on (X,F), by setting

v(4) % /A f@)du(z), AcF. (A8)
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It now followsfairly easily that v isa measure on ( X ,F, p) and from the defin-
ition it also follows directly that v << x on F. Thus, (A.8) provides us with
away d constructing measures which are absolutely continuous w.r.t. the base
| measure i, and a natural question is whether all measures which are absolutely
i continuous w.r.t. p are obtained in this way. The affirmative answer to this
question is given by the following central result.

Theorem A.52 (The Radon-Nikodym Theorem) Consider the measure
space (X ,F, p), where we assume that u is finite, i.e. that (X)) < co. Assume
that there exists a measure v on (X, F) such that v << g on F. Then there
exists a nonnegative function f : X — R such that

f is F-measurable, (A.9)
[ @) dute) < oo (4.10)
u(A)=/Af(x)du(x), forall Ae F. (A1)

The function f is called the Radon-Nikodym derivative of v w.r.t. u. It is
uniquely determined p-a.e. and we write

f=)= SZ—EZ;, (A.12)
or alternatively,
dv(x) = f(x) du(z). (A.13)

Proof We sketch a proof which isdue to von Neumann. Define a new measure
X by setting A(4) = p(A) FTv(4), for dl A € B.For any g € L2 (\) wecan define
the linear mapping ® : X — R by

%(9) = | o(z)dv(z),
X
and by the triangle and Cauchy-Schwartz inequalities we have
Joaa| < [ lolav< [ 1glax < VAR - lglzace

Thus, from the Riesz Representation Theorem there existsan f € L2 (X) such
that &(g) = (g, f)for al ge L2 (X), i.e.

|2(9)l =

/gdu=/gfd,\, Vge L2 (\). (A.14)
X X
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By choosingg = I4 for arbitrary A € 3and using thefact that 0 < v(A) < A(A)
we seethat 0 < f <1 We now write (A.14) as

/Xydv=/ngdV+/ngdu,

/g(l—f)dv=/ gfdu, VYge LZ()). (A.15)
X X

Since this holdsfor all g € L2 (A) and in particular for all indicator functions, we
can writethison "differential form" (seetheexercisesfor a justificationdf this) s

ie.

(1- f)dv =1 dpu.

It is now tempting to multiply through by (1— f)~! to obtain

N
dV—z-f_—lfT)'dﬂ,

and thus to define the Radon—Nikodym derivative by f /(1 - f), but the prob-
lem is o course what happens when f = 1 Define therefore A by A =
{z € X; f(z) =1}, and set g=I4. From (A.15) we obtain

Jrau=[a-naw=o

and (sincef > 0) thisimpliesthat u(A) = 0. We now use the assumption that
v << p to deducethat also v(A) = 0, so we can safely write

f
dv = ———dg,
a-nr
and we see that the Radon—Nikodyrn derivativeisin fact given by
v__f
dp  (1-f) |

=

Example A .53 Going back to Example A.51 weconsider the casewhen X = N,
and 3= 2", and we recdl that the relation v << u means that

p(m)=0 = v(n)=0.

Thus, given u and v with v << y, the problem o finding a Radon—Nikodym
derivative f will in this case boil down to the problem o finding an f such that

v(n) = f(n)u(n), Vn € N. (A.16) !
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We see that for those n where u(n) # 0 we can solve (A.16) by defining f (n) as

_ vn)
0= Ly’

so the only problem occurs when p(n) = 0. However, from the absol ute continu-
ity it followsthat v(n) = 0 whenever u(n) = 0, so for those n equation (A.16)
becomes

0=f(n)-0

and we see that for those n we can define f arbitrarily, say by putting f (n) = 17.
Consequently f is not uniquely defined, but we see that the set whereit is not
uniquely defined (i.e. for those n where p(n) = 0) has s measure zero.

It isimportant to redlize that the concept o absolute continuity is defined
relative to the given sigma-agebra. If, for example, ¢ € 3then it could well
happen that ¢ << v on G while it does not hold that p << v on 3. A trivial
exampleis given by setting X = {1, 2, 3}, and defining

F=2%X ¢={x,0,{1},{2,3}}

and

p)=2, p2)=0 u@B)=2

v(1)=8, v(2)=5  v(3)=13.
Here we obviously do not have v << p on F, since u(2) = 0 whilev(2) # 0. We
do however, have v << 1 on G with () Radon-Nikodym derivative given by

4 forn=1,
f(n)=<9 forn=2,
9 forn=3.

(Notein particular that f is 8-measurable.)

We thus see that if we enlarge the sigma-algebrawe may lose absolute con-
tinuity, but if ¥ << u on some measurablespace (X,F) and G & F, thenv << y
asoon 8.

A.12 Exercises
Exercise A.l Prove Proposition A.2.

Exercise A.2 Which d the properties stated in Proposition A.2 are till valid
(and which are not necessarily valid) if we replacef —! with f in expressionslike
f-!(auB)etc.?

Exercise A.3 Show that in the definition d a sigma-algebra, the closedness
property under countable intersections in fact follows from the other defining
properties.
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Exercise A.4 Let u be a measure. Show formally, using the axioms d a
measure, that the following relations hold for all measurable sets A and B.

1(AU B) = p(A) + u(B) — (AN B),
B C A= p(AN B°) = u(A) — u(B).

Exercise A.5 Let X be a finite set X = {z1,...,zx} and define 3 as the
power algebra 2X. Let furthermore p be a measureon (X,3) and define p, by
pn = p({z,}), i.e. p, denotes the masson the point z,,. Let f beany real vaued
nonnegative function, and show in detail, by using Definition A.17 that :

K
/ f@) du(z) = F@n)pn.
X i=1

Exercise A.6 Define X by X = (0,2} and define Bby 3= {0,,[0,1), [1,2}}.
Define a measure i by setting

©([0,1)) =1, /"([LZ]) =1, u([o, 2]) =2,
and define the functionsf,g: X — Rby f(z) =x and g(z) =2 - =.

(@) Show that f and g are not measurable.
(b) Despitethefact that neither f nor g is measurable we now define

def 8]
[ 1@ du(@) Esup [ plo)duto)
X X
where the supremum is taken over all nonnegative measurable smple H
functions ¢ such that ¢ < g. We make the corresponding definition {!
for g. Now compute and compare [ f dp, [, gdp and [, (f + g) dp.

Exercise A.7 The object o this exerciseis to show that a measurable func-
tion can be wel approximated by simple functions. Let thereforef : X — R
be a nonnegative measurable function on some measurable space (X,F), and
also assume that there exists some constant M such that 0 < f(z) < M for
al x € X. Show that for every n there exists a simple function f, such that
f(X) < falz) <F(x)F1/nforall x € X.

Hint: Consider setsdf theform{x € X; k/n < f (x) < (k+1)/n}.

Exer cise A.8 Continuing the exercise above, show that there exists an increas-
ing sequenced simple functions f,, such that f.(z) T f (x) for all x € X. '

Exercise A.9 Fill in the details in the proof o Proposition A.33.
Exercise A.10 Prove proposition A.38.

Exercise A .|l Describethesigma-algebraon R whichisgenerated by the class
o al singleton sets, i.e. of al setsd the form {z}, wherex € R.
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Exercise A.12 Prove Proposition A.45 by using Proposition A.43.

Exercise A.13 Let {F,; n=1,2,...} beasequenced sigma-algebrason some
common space X. Doesit dways hold that

o0
= Uz
i=1
isasigma-algebra? What if the sequenceisincreasing?

Exercise A.14 Consider two measures y and v with v << u. For any functions
ge L'(v) and f € L(p) we define the "differential equality”

gdv =fdpy, (A.17)

as being shorthand for
/ f (x)dv(z) = / g(z)du(z), VA€3.
A A

(a) Prove that ~
dv
= — dv=fd
f an & p
(b) Show that for any h € L!(gdv) it holds that
gdv=Ffdp = hgdv=hfdu
(c) Assumethat A << v << g and provethe "chan rule"

D _ v
dg ~ dv dy’

(d) Assumingv ~ u, prove that
e _ (dv7
dv ~\dp/ .
A.13 Notes

Royden (1988) gives a very clear and readable presentation d measure theory,
and also treats point set topology and basic functional analysis.
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Appendix B
PROBABILITY THEORY* 1 isirf
and
A probability space is ssmply a measure space (R, 3,P) where the measure P
has the property that it has total mass equal to unity, i.e.
P(2) =1 and
The underlying space € often is referred to as the sample space, and the
elementsd the sigma-algebra 3 are called events.
3
B.l Random Variablesand Processes valu
I'n this section we will discuss random variables and random processes. Def
Definition B.l A random variable X is a mapping - E[X
X: Q>R
such that X is3-measurable. - For
Remark B.l.l As the reader probably has observed, the letter X, which in
the previous chapter was used to designate a measure space, is now used as the
name of a random variable. This is an unfortunate clash o notation, but since
each use  the letter X is standard within its respective area d application | _We
we will simply accept this. There is however no risk d confusion: from now on intey
the measure space will dways be a probability space, and thus denoted by R. forn
Theonly used X will be asa namefor arandom variable or a random process. are
The interpretation of a random variableis as follows: Pro
e Somewhere, hidden from us, a point w € £ in the sample space is rane
"randomly" chosen by, say, the God o Chance.
e We are not dlowed to observe w directly, but we are dlowed to observe |
measurements on the sample space, i.e. we can observe the real number
X (w), which gives us partial information about w. \ Pro
Definition B.2 Thedistribution measure ux for a random variable X isa
measure on (R,B) defined by We.
is tk
px(B)=P({we; X(w)eB)), BebhB, Pro
1
i.e. valu
px(B) = P(X™'(B)). expe
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The (cumulative) distribution function of X is denoted by Fx and defined by
Fx(x)=P{w € Q; X(w)dx}).

Notethat since X isassumed to be measurable, theevent{w € Q; X(w) € B)
isin Bsoits P measureis well defined. We will oftenwritethisevent as{ X € B)
and then the definition o the distribution measure becomes

nx(B) = P(X € B),
and the distribution function can be written as
Fx(r)=P(X<z), z€R
We now go on to introduce the measure theoretic definition o an expected

value.

Definition B.3 For any X € L!(Q,F,P) its expected value, denoted by
E[X], is defined by

B[X] = /n X(w)dP(w).

For X € L2 the variance is defined by
Var[X] = E[(X - E[X])z] ,

We note that the definition above gives the expected value and the variance as
integralsover the (abstract) samplespace ). The following result connectsthese
formulasto the standard elementary formulas where expectations and variances
are computed as integrals over the redl line.

Proposition B.4 Let g : R — R be a Borel function such that the composite
random variable g(X) isintegrable. Then we have

Elg(X)] = /Q o(X (@) dP(w) = /R o(2) dux ().

Proof We leave the proof as an exercise. See the exercisesfor hints. O

We note that thefirst equality above holds by definition. The point o the result
is thus the second equality. The careful reader notes (with satisfaction) that, by
Proposition A.45, the measurability of g(X) is guaranteed.

In order to convince the reader that the framework above redly is d some
value, we will now prove a useful result which shows that in some cases an
expected value can be computed in terms o an ordinary Lebesgue integral.
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Proposition BS Let X ke a nonnegative random variable. Then it holds that

E[X]:/Ooop(x'zt)dt.

Proof By using the Fubini Theorem we have 0<
X (w) oro

E[X] = /ﬂ X(w)dP(w) = /Q [ /0 1 dt] dP(w) .
:/Q [/wa{t < X(w)}-dt] dP(w) = /Ooo [/ﬂl{t < X(w)}dP(w)| dt 00;1

=/0°° [/A dP(w)] dt,

where the event A, ={ X > t}. We thus have

ElX] =/0°°P(At)dt=/:oP(X > t)dt.

We now go on to the concept o a random process.
Definition B6 A random process on the probability space (,F,P) is a

mapping
X:Ry xQ— R, as
par
such thatfor eecht € Ry the mapping cas
by
X(,):Q— R,
par

is F-measurable.

We interpret X (t,w) as "the value at timet given the outcomew", and we will
a0 use the alternative notation X (w).

. wh
Note the following:
e For each fixed t the mapping
wr— X (t,w), anc
which we also denote by X, isarandom variable.
e For each w € €2 the mapping wh

| t— X(t,w)

@
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isa deterministic function of time. This function, which we may draw
as a graph, iscaled the realization or trajectory o X for the outcome
w. When we observe a random process over time (like the evolution d a
stock price) we thus see the trgjectory d asingle w.

In the definition above we have defined processes only on the time interval
0 <t < o0, but we can d course consider processesdefined on just a subinterval
or on the integers (a "discretetime process”).

B.2 Partitions and Information

Consider a sample space €2 and a given partition P = {44,...,Ax} d R We
can now give an intuitive interpretation o P in information terms along the
following lines:

e Someone (the God o Chance?) chooses a point w in the sample space. We
do not know exactly which point has been chosen.

e What we do get information about, is exactly which component o P that
w belongsto. Moreformally one can think o this as an experiment where
we are alowed to observe the random variable Y defined by

K
Y(w) = D_n. 14, (W).
i=1

If we observe Y{w) = n then we know with certainty that w liesin A,

We thus see that having access to a certain partition can be interpreted
as having access to a certain amount o information. We note that the trivial
partition P ={R) correspondsto "no information at all". The other extreme
case occurs when 2 isfinite, say @ = {ws,...,wn}, and the partition is given
by F = {{wn},{w2},...,{w~}}. Thiscase correspondsto "full information".

I n some caseswe may even comparetheinformational content in two separate
partitions. Consider, as an example, the space Q2 = [0, 1} with two partitions

Pl = {Al’ A27 A3) A4} )

where
1 11 13 3
Ay = [0,5)’ A2 = [5,-2-)’ Aaz[-z-,z)’ Ay = [Z,I:I
and
P2 = {BlaB27B3}a
where

1 13 3
Bl— [0y§)9 B2" [5’2), B3= [Zal] .
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It is now natural to say that P; contains more information than P, since the
partition P; has been obtained by subdividing somed the componentsd P, into
smaller pieces. There is thus a natural partial order relation between different
partitions o a given sample space, and in the example above we say that P; is
finer than Pa.

Definition B 7 For a given sample space 2, a partition S is said to ke finer
than a partition P if every component in P is a union d componentsin S.

Theinterpretation of thisisdf coursethat “S contains moreinformationthan P”.

Consider again the sample space 2 and some given but otherwise arbitrary
mapping f : @ — R. For simplicity we assume that f only takes finitely many
vaues, and we denotethese valuesby z;,x2,...,Zx. Theinterpretationisthat f
isa measurement on §2 and that we gain knowledgeabout the (unknown) sample
point w by observing the measurement f (w). We now note that f generates a
natural partition P{f) defined by

P(f) ={A,..., Ak},

where
Ap={weQ; flw)y=z,}, n=12...,K.

i.e.
Ay = f_l(mn), n=12,...,K.

It isthen natural to interpret the partition P(f) as "the information generated
by f”, sinceby observingf we can exactly tell in which component o P(f) that
wlies.

We aso seethat given the information in P(f), i.e. given information about
in which componentsw lies, we can exactly determine the valuef (w). Thereason
for thisis of coursethat f isconstant on each component on P{f) and we can
easily generalize this observation to the following definition and lemma.

DefinitionB.8 A given mapping f : € + R is cdled measurable w.r.t a
partition P if and only if it is constant on the components d P.

Lemma B9 Take asgiven a samplespace?, afinite vdued mappingf : @ — R
and a partition P. 1ff isP-measurable then the value off is completely determ-
ined by the information in P in the sense that if we know in which component
d P it islocated, then we know thefunction valuef (w).

Consider again the sample space €2 and a finite vaued mappingf : © — R.
If we also are given another mapping g : R — R and defineh : € — R by
h{w) = g(f (w)), then it isobviousthat h generates lessinformation than f, i.e.
that P(f) is finer than P(h), which aso can be expressed by saying that h is
constant on the components in P(f), i.e. h is P(f)-measurable. There is aso
a converse o this result which will have important generalizationslater on in
the text.

o
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Proposition B.10 Consider a fized 2 and two finite valued mappings f : 2 —
Rand h : @ — R. Assume that h is P(f)-measurable. Then there exists a
functiong: R— Rsuchthat h=go f.

Proof Exercisefor the reader. .|

- B.3 Sigma-algebrasand Information

Let us again consider the sample space 2 and a give partition P. We note the
following facts:

e The partition P generates a natural sigma-algebra, namely o {P}.

e From o {P} we can easly reconstruct the original partition P, since the
components o P are precisdly the atoms in o{ P), i.e. the setsiin o {P}
which have no proper subsets (apart from 8) in o{ P).

e If 3Band Sare two partitions, then

S isfinerthan P
if and only if
Pcs.
e For any mapping f : @ — R it holds that

f is P-measurable
if and only if
f is o {P}-measurable.

As long as we are working with finite partitions it isthus logicaly equivaent if
we work with partitions or if we work with the corresponding sigma-algebras.
From atechnical point o view, however, the sigma-algebraformalismis superior
to the partition formalism, since a sigma-algebrais closed under the usual set
theoretic operations. Furthermore; our development d measure theory demands
that we have a sigma-algebra as the basic object. Thus, even if the intuitive
information concept is perhaps most natural to formulate within the partition
framework, it turns out that thesigma-algebraformalismisvastly superiorin the
long run. It should also be emphasized that the equivaence between partitions
and sigma-algebrasonly holds when the partition is finite. In the general case,
there is Ssmply no alternative to the sigma-algebraformalism.

We will therefore, henceforth, formalizethe intuitive information concept in
terms o sigma-algebras,and in particular we will interpret the relation

GCF
between two sigma-algebras ¢ and 3as

“G contains less information than F.”
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Let us again take a sample space  as given, and consider a mapping {2 :
X — R. We recall an earlier definition:

Definition BIl The sigma-algebra a{ X) is defined as the smallest sigma-
algebra 3 such that X is 3-measurable.

Wewill refer toaf{ X)) as "the sigma-algebragenerated by X”. Technically speak-
ing it is the intersection o all sigma-algebras G such that X is 8-measurable,
but we can in fact give a more explicit representation.

Proposition B 12 We have the representation

o{X}={X"YB); BeB(R)}.

Proof Exercisefor the reader. O L‘

Definition B 13 Let X be an arbitrary family of mappings from§ to R. Then

a{K} is defined as the smallest sigma-algebra G such that X isG-measurable for
all X e K.

We now have a genera result for sigmaalgebras, which is pardld to
Proposition B.10 for partitions. The proof is not easy and therefore omitted.

Proposition B 14 Let X;,..., Xy begiven mappings X,, : © — R, and assume i

that a mapping Z : @ — R iso {Xi,...,Xn}-measurable. Then there ezists a
Borel function f : RN -+ R such that for all w ¢ @ we have

X(w) = f(X1(w), ..., Xn(w)) -

This proposition thus formalizesthe ideathat if a random variable X is measur-
able w.r.t. a certain sgma-algebra then "the value o the variable is completely
determined by the information contained in the sigma-algebra”.

We now pass on to random processes, and note that every random process
generates an entire family d interesting sigma-algebras.

Definition B.15 Let {X;; t > 0} be a random process, defined on the probabil-
ity space (©2,3,P). We then define the sigma-algebra generated by X over
the interval [0t] by

FX =0{X,; s<t}.

The intuitive interpretation is that “FX is the information generated by
observing X over the time interval [0,t]". There is in general no very expli-

cit description of F#%, but it is not hard to show that FX is generated by al -

eventsd theform {X, € B} for all s <t and all Borel sets B.
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If Z isarandom variablethen, based on the discussionsabove, we interpret
the statement

“Z is F{-measurable”

"Z isafunction o the entire X-trajectory over theinterval [0,t] ."

From the definition it isimmediately clear that
s<t => FXcCFL,

0 every random process X will in this way generate an increasing family o
sigma-algebras. We now generalizethis concept.

Definition B.16 A filtration F = {F:}:>0 on the probability space (€2, F, P)
is anindexed family of sigma-algebras on € such that

FCF, Vt=0.

s<t => FXcFk

Given a filtration F as above, the sigma-algebra F, is defined as

-Foo=V]:t

t>0

A filtration thus formalizes the idea  an nondecreasing information flow over
time. We now introduce one d the most basic conceptsfor stochastic processes.

Definition B.17 Consider a given filtration £ = {F:}+>0 on some probability
space, and a random process X on the same space. We say that the process X is
adapted to the filtration F if

X eF, Vt>0.

The interpretation o this definitionisthat "For every fixed t, the processvaue
X; is completely determined by the information F; that we have access to at
time t". Alternatively we can say that "an adapted process does not look into
the future”. We note in passing that the process X is aways adapted to the
internal filtration F¥ generated by X.
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Example B 18 Let Z be any random processwith continuoustrajectories, and
define the filtration 3 asthe internal filtration 7, = FZ. The following processes
are adapted:

X, =sup|Z,|, i
8<t

Xy = Zt/2’
t
Xt —'=/ Za ds.
0
The processes
Xt = Z4a, We

t+2
Xt = / Zs ds
0

for
are not adapted.
In a typical financid application, the filtration F is generated by the observed : Pr
asset prices. A natural requirement for a portfolio strategy is that the port- ‘; enl
folio decision, i.e. taken at timet, is only dlowed to depend upon the public ‘
information that we have access to at timet (by observing asset prices). The
formalization d this idea is to demand that the portfolio strategy should be ;
adapted. 3 Pr

B4 Independence

We consider again a given probability space (€2, 7, P), and recal the standard
definition d independent events.

Definition B 19 Two events A, B € 3 are independent if

P(AN B) = P(4) - P(B).

We now generdize this definition to sigmaagebras, random variables and
processes.

Definition B 20
e Two sigma-algebras G, H € 3 are independent if

P(GN H) = P(G) - P(H),
forall Geg and all H € H.
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e Two random variables X and Y are independent if the sigma-algebras
a{X) and a{Y) areindependent.

e Two stochastic processes X and Y are independent if the sigma-algebras
a{X;; t>0) and a{Y;; t >0) are independent.

e Anindexed family {G.; v € T'} of sigma-algebras, where G, € 3 for each
~ € T' are mutually independent if

P(ﬂ Gn) ~T1P@G),
=1

i=1

for every finite sub collection Gi,...,G, where G; € G,, and where
v # v; fori # j. The extension to random variables and processes is
the obvious one.

We note that two random variablesX and Y are independent if and only if
P(Xe€eB, &Y € B;) =P(X € By)- P(Y € By),

for al Borel sets B; and Bs.
We now formulate and sketch the proof d a very useful result.

Proposition B.21 Suppose that the random variables X and Y are independ-
ent. Assume furthermore that X, Y, and XY areinL?!. Then we have

E[X-Y]=E[X] E[Y]. (B.1)

Proof We do the proof in severa steps.
1. Choosearbitrary A € ¢{X) and B € a{Y). Then we have

Ell4 - Is] = Ellans] = /A __dP()= P(ANB)
= P(A) - P(B) = E[l4] - E[Ig].

Thus the proposition holds for indicator functions.

2. From the previous item and from the linearity d the integral it follows
that (B.l) holds for al simplefunctions (check thisin detail).

3. In the general case we can WLOG (without loss d generdlity) assume
that X and Y are nonnegative. In that casethere exist (see the exercises)
sequences {X,,} and {Y,} d smple random variables such that

X,1X, Xn€o{X},
Y,1Y, Y.co{Y}.
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From item 2 above we have
E[X, -Y,] = E[X,)] - E[Y,].

Now we let n — oo and use the Monotone Convergence Theorem. O 1
We aso have the following smple but useful corollary.

Coradllary B.22 If X and Y are independent random variables, and i ff and
g are Borel functions, then f(X] and g(Y") are independent. In particular, if
f(X), g(Y), and f(X)g(Y) arein L?, then

E[f(X) - 9(Y)] = E[f(X)] - E[g(Y)].

Proof Exercisefor the reader. my

B.5 Conditional Expectations

Apart from the concept o independence, the most important concept in probab-
ility theory isthat of conditional expectation. We will need to treat this concept
in its most general (but aso most useful) version, namely that of a conditional
expectation given a sigma-algebra. We start, however with a more elementary
discussion in order to motivate the more abstract arguments later on.

Consider a fixed probability space (2, F, P), and suppose that Aand B are
events in 3Bwith P(B) # 0. We recall the elementary definition o conditional
probability.

Definition B.23 The probability of A, conditional on B is defined by

P(ANB)

P(A|B) = P(B)

(B.2)

The intuition behind this definition is as follows:

e The probability for any event A isthe fraction o the total masswhich is

located on A, so o
_ P4
PA=P@)

e When we condition on B, we know that B has happened. Thus the effect-
ive sample space is how B rather than Q. This explains the normalizing
factor in the nominator o (B.2).

e The only part of A that can occur if we know that B has occurred is !
precisdy AN B.

What we are looking for is now a sensible definition of the object

EfX|4],

int

vay

Frc
put

Th



CONDITIONAL EXPECTATIONS 433

where X is a random variable and G is a sigma-algebra included in 3. The
interpretation should be that E[X|G] is "the expectation d X given that we
have access to the information in G”. It is not trivial to formalize this rather
| Vague notion, so we start with some heuristics.

We therefore recall that the unconditional expected value is given by

BX) = [ X(0)P(du),

ie. E[X) is a weighted average d the vaues d X, where we have used the
"probabilities’ P(dw) as weights.

Suppose now that we have obtained information about the outcome d the
randomexperiment, in thesensethat we know that sample pointw isintheset B.
The natural definition d the expected value o X given B is then obtained by
taking the weighted average o X over the new effective sample space B. We
must d course normalize the probability measure so that we have total mass
equal to unity on the new space B. Thus we normalizethe probabilitiesas

P(dw)
P(B)’

and we may thus define the object E[ X | B].

Definition B 24 Suppose B € 3 with P(B) > 0, and that X € L (R, F,P).
Then "the conditional expectation of X given B" is defined by

E[X|B] = 'j—,(%) /B X () dP(w).

We now consider a slightly more general case, where we are given a finite par-
tition P = {4s,...,Ax} with A, € 3for n=1,...,K. Having access to the
information contained in P is, according to our earlier discussion, equivalent to
knowing exactly in which of the components Ay, ..., Ak that the outcomew lies.
Now consider the following schedule:

e Someone (theGod d Chance?) chooses "randomly” a pointw inthesample
space. We do not know exactly which point has been chosen.

e We are informed about in exactly which component o the partition that
w lies.

e As soon as we know in which component w lies, say for example in A,
then we can compute the conditional expectation d X given A, according
to the formula above.

From this we see that exactly which conditional expectation that we will com-
pute, will depend in which component that w lies. We may therefore define
a mapping from £2 to the real line by

wr— E[X|A,], fweAd, n=1,...,K.

This leads us to the following definition.
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Definition B2 With assumptionsas above, and also assuming that P(A,,) >0
for all n, we define E[X|P], “the conditional expectation of X given the
information in P" by

— K
E[X|P|(w) =Y _ IDa,(w)E[X| A, (B.3)
: n=1
%.e
E[X|P](w) = ﬁ / X(w)DPP(w), whenwe A, (B.4)
An

We note that the object E[X|P] is not a real number but a mapping from
QtoR,ie. itisarandomvariable. We aso note that, by definition, E{ X| P]
is constant on each component of P, i.e. it is o {P}-measurable.

We would now like to extend the definition above to the case when we con-
dition on a general sigma-algebra, and not only on a finite partition. This is
however not entirely straightforward, and a major problem with the definition
above is that we had to assume that P(A4,) > 0 for al n, since otherwise we
divide by zeroin(B 4). Wetherefore have to take a more indirect approach, and
start by listing some important properties d the conditional expectation above.

Proposition B 26 Assume that (,F,P), x, and P are as above. Define the
sigma-algebra G € 3 by G = o {P}. Then the conditional expectation E[X|P]
is characterized as the unique random variable Z on (2, F, P) with the following
properties:

(i) Z isG measurable.
(ii) For every € G it holds that

/ Z(w) dP(w) = / X(w)dP(w)
G G

Proof Exercisefor the reader. o

The point o this result isthat it characterizes the conditional expectation in
a way which does not require the components o P to have strictly positive
probabilities. In fact, the conditions (i)—(ii) above can be formulated for any
sigma-algebra G even if G is not generated by a finite partition. This is the
starting point for our final definition of conditional expectations.

Definition B 27 Let (R,F,P) be a probability space and X a random variable
in L' (Q,F,P). Let furthermore G e a sigma-algebra such that ¢ C 3. 1f Z is
a mndom variable with the properties that

(i) Z isG-measurable.
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(ii) For every G € G it holds that

/ Z(w)DPP(w) = / X(w)DPP(w). (B.5)
A A

Then we say that Z isthe conditional expectation of X giventhesigma-
algebra G. In that case we denote Z by the symbol

E[X|gG].

The price that we have to pay for this very general definition o conditional
expectation isthat we have a nontrivial existence problem, sinceit is not imme-
diately clear that in the general casethere will alwaysexist a random variable Z
as above. We note that X itsdf will obviously adways satisfy (ii), but in the
general case it will not satisfy (i). We do however have an existence result, and
the proof is a nice application o the Radon—Nikodym Theorem.

Theorem B.28 Let (Q,F,P), X, and G be as in Definition B.27. Then the
following hold:

e There will always exist a random variable Z satisfying conditions (3)-(%i)
above.

e Thevariable Z isunique, i.e. if bothY and Z satisfy (i)-(ii) thenY = Z,
P-a.s.

Proof Definethe measurev on (2,G) by

uG) & /G X (w)dP(w).

Trivialy wethen have v « P and weseedirectly by inspectionthat if wedefine Z
by

_
~apP’
then Z will be Q-measurableand it will have the property that

Z on G,

U(G) = /G ZdP,

/ZdP=/XdP, ,
G G

forall Ge g. a

In passingwe notethat if G isthetrivial sgma-agebrag = {2, 8} thenit follows
directly from the definition above (provethis!) that

E[X|G] = E[X].




436 PROBABILITY THEORY

We now have some natural and simple rules for calculating conditiona
expectations.

Proposition B.29 The following hold:
X <Y = E[X|]<E[Y|g], P-as, (B.6)
ElaX *+ BY|G] = «E[X|G) T BE[Y|G], Va,fcR. (B.7)

Proof The relation (B.6) follows more or less directly from Proposition A.26.

In order to prove (B.7) we define Z by Z = aE[X|G] T BE[Y|G]. Then Z is v

obvioudy S-measurable and we only have to show that for every G € G we have
/ («E[X|G] + BE[Y|G])dP = / (aX + BY)dP.
G e

Using the definition of the conditional expectation and linearity, the right-hand
side d the above becomes

/(aE[X|g]+ﬁE[Y|g])dP=a/ E[X|g]dP+ﬂ/ E[Y|G|dP
G ’ G G

=a/XdP+ﬂ [vap= [ (ax +pv)aP
G JG JG

O

One d the most important and frequently used properties d conditional
expectetion isthe ruled iterated expectations.

Proposition B.30 Assume the setting above and also assume that the sigma-
algebra % satisfies % C ¢ C 3. Then the following hold:

E[E[X|G]| H] = E[X|H], (B-8)
E|X] = E[E[X|g]]. (B.9)

Proof We start by noting that (B.9) is a specia case d (B.8) since E[X] =
E[X|H] whereH isthe trivid sigma-agebra. In order to prove (B.8) we define
Z by Z = E[X|H]. We now have to show that Z is %-measurable and that for
al events H € X we have

/ Zap = / E[X|G)dP. (BIO)
H H

The measurability is immediately clear (why?). As for (B.IO) we note that
snceHCGgwehaveHe H=HegG s

/HE[XIg]dP=/HXdP=/HE[X|’H]dP=/HZdP.

! E
] i
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Suppose now that X is G-measurable. We have earlier said that the intuitive
interpretation o thisisthat X is uniquely determined by the information con-
tained in G. When we conditionon g thisshould imply that we know X and thus
can treat it as deterministic (conditionallyon G). Thisintuitionisformalized by
the following result, where we leave the proof as an exercise.

Proposition B 31 | X isG-measurable and if X, Y, and XY areinL?, then

E[X|G]|=X, P-as. (B.11)
E[XY|G]= X E[Y|G], P-as. (B.12)

b There is a Jensen inequality aso for conditional expectations.

Proposition B 32 Assumethat f : R— Ris convex and that X and f(X) are
integrable. Then

f (E[X|G]) < E[f(X)IG], P-as.

Assume that X and Y are defined on the same space (R, 7, P). Then we can
define the conditional expectationd Y, given X.

Definition B 33 For any integrableY and for any X, we define

ElY X] ¥ ElY|o{X}].

Since E[Y| X] by this definition automatically is a{ X|-measurable, Proposi-
tion B.14 guaranteesthat there exists a Borel function g such that

E[Y}| X]) =9¢(X), P-as. (B.13)
using this g we may now define conditional expectationson the distribution side

instead d on the €2 side.
Definition B 34 We define the object E[Y|X = z] by

E[Y|X =1]=g(z), z€R,

where g is given by (B.13).

From the lav d iterated expectations and Proposition B.4 we obtain the
following result, which should be wdl known from elementary probability theory.

Proposition B 35 If ux denotes the distribution measurefor X then, for any
random variable Y :

ElY] = /R E[Y|X=‘:c]d;ktx(:c).
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If X and G areindependent, i.e. if o{ X) and G are independent sigma-algebras,
then it seemsreasonableto expect that G does not contain any informationabout
X. The technical formulation o this intuition is as follows.

Proposition B.36 Assume that X is integrable, and that X and G are
independent. Then
E[ Y] X]=E[Y].

Proof Left asan exercise. O

It is wdl known that E[X] is the optima mean square deterministic predictor
o X. The corresponding result for conditional expectations is as follows.

Proposition B.37 Let (2,F,P) be a given probability space, let G ke a sub-
sigma-algebra o f 3 and let X be a square integrable random variable.
Consider the problem of minimizing

E[(x -2,

where Z is allowed to vary over the class of all square integrable 6-measurable
random variables. The optimal solution Z is then given by

Z = E[X|G]
Proof Left to the reader. See the exercisesfor a hint. O

In geometrical terms this means that E[X|G] is the orthogonal projection (in
L2 (R,3,P)) d X onto the closed subspace L? (R,G, P). For square integrable
random variablesone may in fact use this as the definition o the conditiona
expectation. This definition can then be extended from L2 to L! by continuity,
since L? is dense in L.

B.6 Equivalent Probability Measures

In this section we discuss absol ute continuity and equivalencefor the particular
case d probability measures. The results in this section will be heavily used in
Chapter 10.

Let therefore P and Q be probability measureson (€2, F). We immediately
have the following simple result.

Lemma B.38 For two probability measures P and Q, the relation P~ Q on 3
holds if and only if

P(A=1% QA)=1, foral Ae3. (B.14)

Proof Exercisefor the reader. O .
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Inthe context d probability measureswe thus noticethat athough two equiva-
ent measures P and Q may assign completely different probabilitiesto a fixed
event A, but all events which axe impossible under P (i.e. P(A) = 0) are dso
- impossible under Q. Equivalently, all events which are certain under P (i.e.
" P(A = 1)), are also certain under Q. It also followsdirectly (provethis!) from
the definition that if an event A has strictly positive P-probability, then it also
has strictly positive Q-probability (and vice versa).

From the Radon—Nikodym Theorem weknow that Q << Pon the probability
| space (2, F) if and only if there exists 3-measurable mapping L : @ — Ry
such that

/ Q) = / L(w)dP) (B.15)
A A
foral A € F. SinceQ isa probability measure L must aso havethe property that

/LdP=1,
o .

EF[L]=1.
In other words, the Radon—Nikodym derivative L is a nonnegative random vari-
ablewith EP[ L= 1, and it isoften referred to as the likelihood r atio between

Q and P. Written in terms o expected values, it follows from (B.15) that, for
any random variable X € L*(Q) we have

E9X]=EF[L- X]. (B.16)

ie

Suppose now that Q << P on 3and that we also have a smaller sigma-
algebraG C 3. We then have two Radon-Nikodym derivatives, L* on 3, and
L9 on G, and these are typicaly not equal, since L¥ will generically not be
G-measurable. The following result shows how they are related.

Proposition B.39 Assume that Q <« P on 3 and that G € 3. Then the
Radon- Nzkodym derivatives L¥ and L9 are related by

L9 = EP[L7|G]. (B.17)

Proof We have to show that EP[L”|§] is G-measurable (which is obvious)
and that, forany G € G,

/G dQ = /G EF[L7|g]dP.

This, however, follows immediately from the trivial calculation

/dQ:/LFdP=/EP[Lf|g] dP,
el G el
where we have used the fact that G € ? C F. ]
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Example B 40 To see an example o the result above let © = {1,2,3} and
define

F=29 G¢={Q0,{1},{2,3}}
and
P(3)=1,

Ph=% P@=4, i
% )=3%  QB)=3

Q1) = Q2
We see directly that

ro=3 re=3 re=3

and it is obvious that L is not 8-measurable. Since P({2,3}) = 3/4, and
Q({2,3}) = 2/3, the local scalefactor on {2,3} is9/8, so LY is given by

=% 1°@=% @)=}
and we also have the simple calculation

5717 2,9y - AL G FATO) 2

The formula (B.16) gives us expectations under Q in terms d expectations |
under P, and a natural question is how conditional expected valuesunder Q are |

related to conditional expectations under P. The following very useful result,
known asthe "Abstract Bayes Formuld' solvesthis problem.

Proposition B 41 (Bayes Theorem) Assume that X is a random variable
on (2, F,P), and let Q be another probability measure on (R,3)with Radon—
Nikodym derivative

-4
L= P " F.

Assume that X € L! (R, 3,Q) and that G is a sigma-algebra with G € 3. Then

EP[L-X|G] ~r
Q ==_t7 =17 -
ER[X|G] = EP[L]G] " Q-a.s. (B.18) |
Proof Westart by proving that

ER[X|G)- EP[L|G) = EF[L-X|G], P-as. (B.19) |l

We show this by provingthat for an arbitrary G € G the P-integral o both sides
coincide. The left-hand side becomes

[ Beixiq)- EP(Liglap = [ EP[L- B2 X1G)|6]aP
e 3 Je  °

= [r-oxigar = [ pox19149 = [ xda. |

Int:
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Integrating the right-hand side we obtain
/EP[L-XIQ] dP=/L-XdP(=/XdQ.
e - G * e]

Thus (B.19) holds P-a.s. and since Q « P dso Q-a.s. It remains to show that
EFP[L|G] # 0 Q-as. but this falows from the calculation

Q(EP[LIG)=0) = / =/ LdP
{EP[L|g]=0} {EP(L|g}=0}

=/ EP[L|G)dP =0.
{EP[L|g]=0}

B 7 Exercises
Exercise B.l Prove Proposition B.4 by carrying out the following steps:

e Prove the proposition in the case when g = I4 where A is an arbitrary
Borel set.

e Provethat the proposition holds when g is a ssimple function.

e You can WLOG assumethat g is honnegeative (why?),so now approximate
g by smple functions.

Exercise B 2 Prove Proposition B.IO.

Exercise B.3 Prove Proposition B.12.

Exercise B 4 Prove Corallary B.22.

Exercise B5 Prove Proposition B.26.

Exercise B.6 Prove (B.6) by usng Proposition A.26.

Exercise B 7 Prove Proposition B.31 by first proving it when X is an indic-
ator function, then extend by linearity to smple functions and at last by
approximating X with a sequenced smple functions.

Exercise B.8 Prove Proposition B.31 by the following steps:

e Choose a fixed X.

e Show that for any A € a{ X) you have E[I4|G] = E[l,).

e Extend by linearity to smple a{X }-measurable functionsand at last by
approximating X with a sequenced smple functions.

Exercise B.9 Let h: R — R beafunctionsuch that h> 0, k' >0 and h(0) =O0.
Assumethat X is a nonnegative random variable. Provethat

E[h(X)] = /0 " R@OPX > t)dt.
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Exercise B.10 Prove Proposition B.36 by starting with the casewhen X =14
and then do the usual steps.

ExerciseB.l1 Prove Proposition B.37 by going along the following lines:

e Provethat the "estimation error" X —E[X|§] isorthogonal to L* (&9, P)
in the sensethat for any Z € L? (R, G, P) we have

E[Z - (X - E[X|G])] =0.
o Now prove the proposition by writing
X -Z=(X - E[X|6]) - (E[X|4] - 2)
and usethe result just proved.

B.8 Notes

For the mathematician, Durrett (1996) isavery good standard referenceon prob- - J

ability theory. For the economist (and also for many mathematicians) the recent
text by Jacod and Protter (2000) is the perfect, and amazingly far reaching,
reference.
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Appendix C
MARTINGALES AND STOPPING TIMES*

C.l Martingales

Let (Q, F, P,E) be afiltered probability space, and let X be a random process
in continuousor discretetime.

Definition Cl The process X isan3-martingale if

1 X is 3-adapted.
2 X, e L! for eacht.
3. For every s and t with 0 < s <t it holds that

Xs =F [th .7'-3] y P-a.s.

If the equality signis replaced by < (>) then x is said to be a submartingale
(supermartingal e).

Note that the martingal e property is aways with respect to some givenfiltration.
In all honesty it should be mentioned that while martingale theory in discrete
time isa fairly straightforward activity, martingale theory in continuoustimeis
sometimes rather complicated and there are lots d highly nontrivia technica
problems. In order for the theory to work wdl in continuous time we typically
want our processesto have right continuoustrajectories with left limits, and we
also need to assumethat thefiltration F hassomeregularity properties. However,
in amogt al concrete situations these technical problems can be taken care of,
50 with almost no danger the reader can safely forget about the technicalities.
For the rest o this book we ssimply ignore these problems. Bdow we only give
proofsfor the discrete time case. The proofs for the continuous time results are
typically obtained by sampling the continuous time processes at discrete points
in time and then performing a limiting argument.

It followsimmediately from the definition, that a martingaleis characterized
by the property that the conditional expectationsd a forward increment equals
Z€ero, i.e. that

E[X: - X,|F,)=0, forals<t.

For martingales in discrete time, it is in fact enough to demand that the
martingale property holds for one single time step.

Proposition C.2 An adapted integrable discrete time process{X,; n=0,1,...}
is a martingale w.r.t. the filtration {F,; n=20,1,...} if and only if

E[Xn1|Fal = Xn, n=01,2,....
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Proof Easy exercise. O

Two d the most common types o martingales are the following.

Example C.3 Let Y be any integrable random variable on the filtered space
(Q,3,P,£), and define the process X by

X, =E[Y|F], t>0. (C.1)

Then it isan easy exerciseto seethat X isan F;-martingale. In particular, this
implies that on a compact interval [0,T] any given martingale M is aways
generated by itsfinal value Mz by the formula

M,=E[Mr|F], 0<t<T. (C2)

Note that this only holdson a finite closed interval. The more complicated case

o an infinite or open interval will be discussed beow.

Example C.4 If X is a process with independent increments on (Q,3,P,E),
and if dso E[X; — X,] =0, for al s,t, then X isa martingale.

Example C.5 Let {Z,; n=1,2,...} be a family d independent integrable

random variables, and define the discrete time process X by

n

Xn=) Z, (C.3)

i=1

then X isa martingale w.r.t. thefiltration FX,

There is a close connection between martingale theory, the theory o con-
vex functions, and the theory o harmonic functions. The correspondence is as
follows

Martingaletheory Convex theory Harmonic theory

martingale linear function harmonic function
submartingale convex function  subharmonic function
supermartingale concave function  superharmonic function

We will not go deeper into this, but from convexity theory we recognize

directly the structure o the following result.
Proposition C.6 Let X be a process on (2, F, P,F)

e If X isamartingaleand i ff : R— Ris a convex (concave) function such
that f(X.) is integrable for all t, then the processY defined by

Y, = f(Xt)a

is a submartingale (supermartingale).
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e If X is a submartingale and if f : R — R is a convex nondecreasing
function suchthat f(X,) isintegrable for all t, then the processY defined by

Y;E = f(Xt)’
is a submartingale.
Proof Jensen's inequality for conditional expectations. a

On every finiteinterval [0,7], every martingale X isd the form
X =E[XT|ft]’

and a natural question is if every martingale X aso on the infinite interval
[0,00] has a representation o this form, i.e. if there dways exists some random
variable X, such that

X, =E[Xool Fi]. (C4)

In general the answer is no, and a symmetric random wak on the integersis
a typical counter example. In order to have a representation of the form (C.4)
one needs some further integrability of X. We will not prove the most general
(and hard) version o the results but for compl eteness, sake we will cite the most
general convergencetheorem without proof.

Theorem C.7 Suppose that X is a submartingale satisfying the condition

supE [X}H] < 0.
20 -

Then there exists a random variable Y such that X; — Y, P-a.s.
We now move to the more manageabl e quadratic case.
Definition C.8 A martingale X is called square integrableif there exists a
constant M such that
E[X}] <M, foralltel0,00).

We now have the following nice result.

Proposition C.9 (Martingale Convergence) Assume that x is a square
integrable martingale. Then there exists a random variable, which we denote
by Xoo, such that X; — X, in L2 and P-a.s. ast — oco. Furthermore We have
the representation

Xy = E[Xoo|Fi], forallt>0. (C.5)

Proof Since x — x? is convex, the process X? is a submartingale, which
implies that the mapping m: = E [Xf] is nondecreasing. The assumption that
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X issguare integrableisthus equivalent to the existenced areal number ¢ < oo
such that m; T ¢. We will now prove L2-convergence by showing that X; is
Cauchy in L2. We have

E (X, - X.) ] E [X2 - 2X, X, + X?]

=E [E[X? - 2X, X, T X2| 7]

= E [X7] - 2E[X.E [ X:| £,]] T E [X2]
=E[X}]-E[X}]=m-m,
Since m; — c it follows that m, is Cauchy and thus that X; is Cauchy in L2
SinceL 2 is completethisimpliesthe existence o a random variable Y € L? such

that X; — Y in L2. The aimost sure convergencethen follows from Theorem C.7
In order to prove {C.5), it is enough (why?) to show that for every s and every

A€ F; we have
/XsdP=/YdP,
A A

and thisfollowseasily from the fact that for every t > s the martingal e property

impliesthat
/XsdP=/Xth.
A A

If nowt — oo, it follows (how?) from the L2-convergence that, ast — oo, |

/Xth—>/YdP. O
A A

we have

C.2 Discrete Stochastic Integrals

In this section, we discuss briefly the simplest type o stochastic integration,
namely integration o discrete time processes. This will thus serve as an intro-
duction to the more complicated Wiener case later on, and it is aso important
in its own right. The central concept hereis that o a predictable process.

Definition C10 Consider a filtered space (Q,F,P,F) in discrete time, i.e.
n=0,1,2,....

e A random process X is 2-predictable if, for each n, X,, is F,—1
measurable. Here we use the convention F_; = Fg.
o For any random process X , the increment process AX is defined by
(AX)p = X;, — Xy, (C.6)

with the convention X_; = 0.
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e For any two processes X and Y , the discrete stochasticintegral process
X xY isdefined by

(X %Y)n = i Xp(AY):. (1)
k=0

Instead of (X *Y), we will sometimes write f;* X, 4.

Note that a predictable processis "known one step ahead in time". The reason
why we define AX by "backward increments” isthat in thisway AX is adapted,
whenever X is.

The main result for stochastic integrals is that when you integrate a
predictable process X w.r.t. a martingale M, the result is a new martingale.

Proposition C.11 Assume that the space (2, F, P,3) carries the processes X
and M where X is predictable, M is a martingale, and X,,(AM), isintegrable
for each n. Then the stochastic integral X « M is a martingale.

Proof Left asan exerciseto the reader. O

C.3 Likdihood Processes

Martingale theory is closely connected with absol utely continuous measuretrans-
formations and arbitrage theory. This will be discussed in detail in Chapter 10
and here we will only state some basic facts.

We consider a filtered probability space (€2, 3,P,F) on a compact interval
[0,T]. Suppose now that Lt is some nonnegative integrable random variable
in Fr. We can then define a new measure Q on Fr by setting

dQ=LrdP, on Fr,

and if
EP [LT] =1,

the new measure will also be a probability measure.

From its definition, Ly will be the Radon-Nikodymderivatived Q w.r.t. P
on Fr so Q<< Pon Fr. Hencewe will dso have Q << Pon F foralt < T
and thus, by the Radon-Nikodym Theorem, there will exist a random process
{Ls; 0 <t <T) defined by

dQ

L=

on F;. (C.8)

The L process is known as the likelihood processfor the measure transform-
ation from Pto Q and it has the following fundamental property, which will be
used frequently.
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Proposition C 12 With assumptions as above, the likelihood process L, defined
by (C.8) is a (P, F)-martingale.

Proof The statement follows directly from Proposition B.39. O |

Using the likelihood process, we can also characterize a Q-martingale in terms
o the P measure.

Proposition C13 A process Mis a Q-martingale if and only if the process
L-M isaP-martingale.

Proof Exercisefor the reader. O

C4 Stopping Times

Consider again a filtered space (2, F, P,F) and a martingale X on the space.
A natural question, which we will encounter in connection with American
options, is whether the martingale property also holds when the deterministic
times are replaced by stochastic times, i.e. whether we aways have the equality

E[Xr| Fs] = Xs, (C.9)

whereSand T are random times with S< T. It is rather clear that we cannot
expect a strong theory unlesswe restrict the study to those random times which
in some sense are adapted to the information flow given by the filtration. These
are the so called stopping times.

Definition C 14 A stopping time w.r.t. the filtration £ is a nonnegative i

random variable T such that

{T<t}eF, foreveryt>D0. (C.10)

A stopping time is thus characterized by the fact that at any time t we can, g
based upon the information available at t, decide whether T has occurred or
not. This definition may seem a bit abstract, but in most concrete situationsit -

is very easy to see whether a random time is a stopping time or not. A typical
example of a stopping time is obtained if X is an adapted discrete time process
and we define T as a hitting time i.e. we define T by

T % inf {n > 0; X, € 4},

where A C R is some Borel set. T is thus the first time when X enters into {;

the set A, and intuitively it is obvious that we can decide whether the event
{T < n} has occurred, based upon observationsd X at the times0,1,2,...,n.

Sii
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Thus T is a stopping time, and we obtain a forma proof by choosing a fixed n
and noting that

{T(w) £ n) ={X(w) € A, for omet <n) = tg%{Xt €A).

Since X is adapted we have {X; € A) € F, C Fpn, 0{T < n) € Fn.
A typical example o a random time which is not a stopping time is given by

T(w) =sup{n 2 0; X, € A).

Inthisdefinition, T isthusthelast timethat X visits A, and it isagain intuitively
obvious that in the generic case we cannot decide whether T has occurred or not
based upon the basisd observationsupon Xp, X1, ... X, since thiswould imply
that at time n we aready know if X will visit A or not at sometime in the
future.

In order to be ableto even formulatethe equality (C.9) we must definewhat
we mean by the expression Fr for a stopping time T. Intuitively the interpreta-
tion isd coursethat Fr = "the information generated by the flow F up to the
random time 7™, but it is not obvious how to formalize this in mathematical
terms. The generaly accepted definition is the following.

Definition C.15 Let T be an F stopping time. The sigma-algebra Fr is defined
as the class of events satisfying

A€ Fu, (Ca1)
AN{T <t} e F, forallt=>0. . (C12)

We now have some natural results.

Proposition C.16 Let S and t be stopping times on the filtered space
(Q,F,P,F), and let X be an adapted process, which in the continuous time
case is assumed to have trajectories which are either left- or right-continuous.
Define v and A by x Vy = max[x, y] and x Ay =min[x,y] for any real number,
and defineSV T by (SV T)(w) = S(w) V T(w). Then the following hold:

e If ST, P-a.s. then Fg C Fr.

e SVT and X AT are stopping times.

o If T is P-a.s. finite or if X, is well defined in Fe, then Xr is
Fr-measurable.

Proof The first two items are left as easy exercises, and we prove the third
item only for the discretetime case. To show that X is Fr-measurable we have
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to show that {Xr € B} € Fr for every Borel set B, so we thus have to show
that for every nwe have {Xr € B)N{T < n) € F,. We obtain

N N
{Xre By {T <n}={Xre B}n|J{T=k}=J {Xx € B}n{T=k)).
k=0 k=0 (C.13)

Since X isadapted and T is a stopping time, {X, € B) and {T =k) arein
Fi. whichisincluded in F,. O

We now prove that the martingale property is stable under stopping.

Proposition C.17 Let X be a martingale and let T be a stopping time. Then
the stopped process X7, defined by

XT = Xgns, (C.14)
is a martingale.

Proof Weonly givethe proof for the discretetime case. For thiswe definethe -
processh by h, =1 {n<T), Nn=0,1,2..., where | denotesthe indicator d
the event within the bracket. Now, {n<T)={T <n}*={T <n-1}°. Since
T isastopping timewethusseethat h, € F,_1 0 h ispredictable. Furthermore
we have the obvious equality

n
XT =3 m(AX)
k=0

so from Proposition C.11 we seethat X7 is a martingale. O I

Wefinish by stating afairly general version o the "optional sampling theorem"
which showsthat the martingale property is preserved under random sampling,
but we only give the proof for a smple special case.

Theorem C.18 (The Optional Sampling Theorem) Assume that X is a
martingale satisfying

SUpE [X?] < o0
£>0

Let Sand T be stopping times such that S<T. Then
E|[Xr|Fs)= Xs, P-us. (C.15)

If X is a submartingale satisfying the same integrability condition then (C.15)
holds with = replaced by >.

is .
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Proof We will be content with proving the result in discrete time and for the
case when X is a martingale, the submartingale case being a bit harder. From
Proposition C.9 it follows that there exists an integrable random variable Y
such that

X.=E[Y|F)], n=01,.... (C.16)

It isthus enough (why?) to show that for any stopping time T we have
E Y| Fr] = Xr,

i.e. we have to show that for every A € Fr we have

/YdP:/XTdP.
A A

By writing A as A = U, (AN{T =n)), noting that AN{T =n) € F,, and
using (C.16) we obtain

oo [ o]
YdP = / YdP = / X dP=/X dP. (|
/A n%% AN{T=n} Z AN{T=n} AT

n=0

C.5 Exercises

Exercise C.l Show that for any integrable random variable Y on a filtered
space (2, 3,P, F), the process X defined by

isa martingale.

Exercise C.2 Let {Z,} beasequenced i.i.d. (independentidentically distrib-
uted) random variables with finite exponential momentsd all orders. Define the
functiong : R — R by

¢(\) = E [e*"],

and define the process X by

Xn=

eASn
=, where S, = i:Zk.
[N 4
Provethat X isan F,-martingale, where 7, =0 {Z;; i =1,...,n).

Exercise C.3 Prove that, for any stopping time T, Fr, defined by (C.IO) is
indeed a sigma~algebra.

Exercise C.4 Prove Proposition C.11
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Exercise C.5 Prove Proposition C.6.

Exercise C.6 Show that in discrete time, the defining property {T <t} € F;
for a stopping time, can be replaced by the wesker condition

{T:n) € F,, fordln.
Exercise C.7 Provethefirst two itemsin Proposition C.16.

Exercise C.8 A Wiener process W is a continuoustime process with Wy = 0,
continuous trajectories, and Gaussian increments such that for s <t the incre-
ment Wy — W, is normaly distributed with mean zero and variance t — s.
Furthermore the increment W, — W, is independent o F;, where the filtration
isthe internal one generated by W.

(i) Show that W isa martingale.
(ii) Show that W2 —t isa martingale.
(iii) Show that for any real number A

exp(AW; — 1 A1)

isa martingale.
(iv) For b < 0 < a we define the stopping time T as the first time that W
hitsone o the "barriers' a or b, i.e.

T =inf {n > 0; X, =a, or X, =b}.
Define p, and py as

p. = P(W hits the a barrier before hitting the b barrier,)
py = P (W hits the b barrier before hitting the a barrier,)

$0 pa = P(Wr = a) and pp = P(Wr = b). Use the fact that every
stopped martingale is a martingale to infer that E[Wr| = 0, and show

that
-b a

pa:a—b, Fb=a+b'
You may, without proof, use thefact that P(T <o) =1
(v) Use the technique above to show that

E[T] = |ab|.

(vi) Let T beas aboveand let b= —a. Use the Optional Sampling Theorem, :

Proposition C.17and item (iii) aboveto show that the Laplace transform
¢{A) d thedistribution o T isgiven by

oA =E [e')‘T] = e_"‘/ﬁ, A2>0.

Exer cise C.9 Prove Proposition C.13.
Hint: Use the Bayes Formula (B.18).
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AA 67
AaA* 74
Aaa A%, 274
absolutely continuous measures, 416
absorbed process, 254
density of, 255
accrual factor, see interest rate swap
adapted, 39, 429
adjoint operator, 74
ffineterm structure, 329, 331
arbitrage, 7, 16, 27, 92
ATS, see ffineterm structure

backing out parameters, 222
backward equation, see Kolmogorov
barrier contract, 254—267
down-and-in
European call, 266
general pricing formula, 265
down-and-out, 256
bond, 262
European call, 263
general pricing formula, 257
put-call parity, 264
stock, 263
in-out-parity, 265
ladder, 267—268
definition of, 267
pricing, 268
up-and-in
general pricing formula, 266
up-and-out
European put, 264
general pricing formula, 260
Bayes theorem. 440
bijective mapping, 395
binomial algorithm, 23
binomial model, 5-25
multiperiod, 15-25
pricing, 24
single period, 5-14
pricing, 12
Black's formula
for caplets, 369
for futures options, 104
for swaptions, 382

INDEX

Black—Scholes
equation, 97, 171

formulafor European call options, 101

model, 89, 169174
absenced arbitragein, 170
completenessof, 112-117, 172
with dividends, see dividends
bond options, see interest rate models
bonds, 302-303, 315
bond price dynamics, 306
consol, 315
convexity, 314
coupon bond, 302
discount, 302
duration, 313
facevalue, 302
fixed coupon, 310
floating rate, 311
maturity, 302
principal value, see face value
yield
to maturity, 313
zero coupon, 313
zero coupon, 302
Borel
algebra, 412
set, 412
bull spread, 131

calibration, 222
cap, 365
caplet, 369
Cauchy sequence, 407
Cauchy-Schwartzinequality, 408
change of numeraire, 348-367
complete market, 10, 18, 31, 111-120,
188, 238
definiton of, 111
conditional expectation, 432-438
consol, see bonds
consumption process, 83
contingent claim, 3, 9, 17, 30, 90
hedgeable, 111
reachable, 10, 18, 111, 188
simple, 90
contract function, 9, 17, 90
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control process, see optimal control

convexity, see bonds

cost of carry, 234, 394
countable set, 396

counting measure, 402
currency derivatives, 239-253

including foreign equity, 242-248

pricing formula, 245

pure currency contracts, 239242

option pricing, 241
pricing formulas, 241

deflator, 350
delta, 124
for European call, 125
for European put, 132
for underlying stock, 129
hedging, 126-130
A, see delta
delta neutral, see portfolio
derivative, 3, 90
diffusion, 36
diffusion term, 36
dividends, 85-87, 225—238
compl eteness, 238
continuous yield, 85, 232-235
pricing equation, 234
risk neutral valuation, 234
cumulative, 85
discrete, 225-231
jump condition, 226
pricing equation, 228
risk neutral valuation, 230
general continuous, 235-237
pricing equation, 236
risk neutral valuation, 236

with stochastic short rate, 237

drift term, 36
duration, see bonds

dynamic programming, see optimal

control
Dynkin operator, 67

EMM, 136, see martingale measure

equivalent measures, 416
exchangerate, 239

Q-dynamicsof, 241
expectation hypothesis, 357
exponential utility, 299
eyfE [Y|Fe], 42

Farkas’ Lemma, 27
Fatou's Lemma, 403

feedback control law, see optimal control

Feynman-Ka¢ formula, 69-71, 77, 78
filtration, 39, 429
financial derivative, 9
First Fundamental Theorem, 29, 137,
141, 144, 150
fixed income instrument, 302
floor, 365
flow of information, see filtration
Fokker—Planck equation, 74
forward
contract, 1, 102, 325, 389
price, 2, 102, 389
formula, 390
relation to futures price, 393
priceformula, 103
price, relation to futures price, 103
forward equation, see Kolmogorov
forward measure, 349, 355
forward rate agreement, 314

forward rate of interest, see interest rates

Fubini's theorem, 414
futures
contract, 103, 391
options on, 103
price, 103, 391
formula, 393
relation to forward price, 393
priceformula, 103
price, relation to forward price, 103
FiX, 39, 428

gain process, 86, 234
gamma, 124
for European call, 125
for European put, 132
for underlying stock, 129
hedging, 126-130
T", see gamma
gamma neutral, see portfolio
GBM, see geometric Brownian motion
geometric Brownian motion, 63-65
expected value of, 65
explicit solution for, 65
Girsanov
kernel, 162
theorem, 160
converseof, 164
transformation, 158—-165
greeks, 123

Holder inequality, 406

Hamilton-Jacobi-Bellman equation, see
optimal control

Hansen-Jagannathan bounds, 201
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ine
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in
in
in
in,
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in
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Heath—Jarrow—Morton (HIM), see
interest rate models

heaviside, 261
hedge, 111
Hessian, 61
Hilbert space, 407410
HJB, see Hamilton—Jacobi—Bellman
H- Lee, see interest rate models
homogeneous contract, 185

pricing equation, 186
Hull-White, see interest rate models

implied parameters, 222
incomplete market, 205224
multidimensional, 214-223
pricing equation, 217
risk neutral valuation, 217
scalar, 205
pricing equation, 211
risk neutral valuation, 212
with stochastic interest rate, 218-219
pricing equation, 219
risk neutral valuation, 219
independence, 430
indicator function, 399
infinitesimal operator, 67
information, 38—40
injective mapping, 395
integral, 399404
interest rate models
Black—Derman-Toy, 327
CIR, 327, 339
bond prices, 335
Dothan, 327, 338
Gaussian forward rates, 363-364
bond options, 364
HJIM, 340
drift condition, 341, 342
forward rate dynamics, 340
Ho-Lee, 327, 338, 344
bond options, 335
bond prices, 334
Hull-White, 327, 345, 361
bond options, 338, 362
bond prices, 337
LIBOR market model, 368—-379
definition of, 372
swap market model, 382-387
definition of, 383
two-factor models, 339
Vasiéek, 327, 338
bond options, 338
bond prices, 334
interest rate swap, 312, 325, 379-381
accrual factor, 381
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forward swap, 312
forward swap rate, 380
par swap rate, 380
pricing, 312
swap rate, 312
swap rate formula, 313
interest rates, 303-305, 315
forward rate, 303, 324
continuously compounded, 304
dynamics of, 306
expectation hypothesis, 357
instantaneous, 304
LIBOR, 304
simple, 304
LIBOR, 369
short rate, 88, 304
dynamics of, 305, 316, 326
spot rate
continuously compounded, 304
LIBOR, 304
simple, 304
invariancelemma, 143, 350
inversion o the yield curve, 327
Ité operator, 67
Itd's formula, 47, 48, 55, 61
for correlated W, 56
multidimensional, 54

Kolmogorov
backward equation, 73
backward operator, 67
forward equation, 74
Kreps—Yan Separation Theorem, 140

£2,40

L ebesgue dominated convergence
theorem, 404

Lebesgueintegral, 415

LIBOR, see interest rates

likelihood process, 447

likelihood ratio, 439

linear functional, 409

lookback contract, 268-270

pricing a lookback put, 269
L? gpace, 406

market priced risk, 181, 200, 210-214,
216, 220223, 248-252, 321

domestic, 248
foreign, 250

martingale, 43, 443-451
characterization o diffusion as, 44
connection to optimal control, 300
convergence, 445
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martingale (cont.)
definition of, 443
harmonic characterization of, 60
integral representation of, 154-158
optional sampling of, 450
PDE characterization of, 72
square integrable, 445
stochastic integral as, 44
stopped, 450
martingale measure, 8, 9, 29, 100, 136,
183, 213, 218, 220223, 234, 236,
322, 324
martingale modeling, 326
martingale probabilities, 17
Maximum likelihood estimation, 165
maximum option, see option
measurabl e function, 400
measurable set, 398
measure, 398
measure space, 399
meta-theorem, 118
Minkowski inequality, 406
money account, 305
monotone convergence theorem, 403
multidimensional model, 175-204
absence o arbitrage, 193
completenessof, 190, 195
hedging, 188-190, 196
market prices of risk, 200
pricing equation, 182, 186, 199
reducing dimension of, 184-188
risk neutral valuation, 198
stochastic discount factor, 201
with stochastic interest rate, 218-219
pricing equation, 219
risk neutral valuation, 219
Musidla
equation, 344
parameterization, 344
mutual funds, see optimal
consumption-investment
Mx(t), 254
mx(t), 254

NA, see No Arbitrage
NFLVR, see No Free Lunch with
V anishing Risk

no arbitrage, 140
no freelunch with vanishing risk, 140
normalized economy, 142
Novikov condition, 163
numeraire

change of, 348-367

likelihood processfor, 354
choice of, 353
process, 350

INDEX

ODE, 37
optimal consumption-investment,288-301
asinglerisky asset, 288-291
mutual fund theorem
with a risk free asset, 296
without a risk free asset, 295
several risky assets, 291-301
stochastic consumption prices, 298
optimal control, 271-301
control constraint, 273
control law
admissible, 273
feedback, 273
control process, 272
dynamic programming, 275
Hamilton—Jacobi—Bellmanequation,
279, 287
martingal e characterization, 300
optimal value function, 276
state process, 272
the linear regulator, 284
value function, 276
verification theorem, 280, 287
option
American, 106-108
American call, 90, 108
American put, 108
Asian, 116
barrier, see barrier contract
binary, 253
binary quanto, 253
European call, 2, 89
pricing formula, 101
exercise date, 2, 89
exercise price, 89
general pricing formula, 359, 361
lookback, 116, see lookback contract
on bonds, see interest rate models
on currency
pricing formula, 241
on dividend paying asset, see dividends
on foreign equity, 243
pricing formula, 246
on futures, 103
pricing formula, 104
on maximum o two assets, 191
time of maturity, 89
to exchange assets, 187, 351
to exchange currencies, 253
orthogonal projection, 409
OTC instrument, 98

partial differential equation, 67-79
partition, 404




PDE, see partial differential equation
portfolio, 6, 15, 27, 80-87, 143
admissible, 135
buy-and-hold, 122
delta neutral, 124
dynamics, 83, 84, 86, 87
gain process, 86
gamma neutral, 129
hedging, 10, 18, 111, 188
locally riskless, 93, 96
Markovian, 83
relative, 84, 87
replicating, 111, see hedging
self-financing, 16, 81, 83, 135, 143
with dividends, 86
strategy, 83
value process, 83, 86, 143
portfolio—consumptionpair, 83
self-financing, 83
power set, 397
probability
measure, 422
Space, 422
product measure, 414-415
projection theorem, 409
Ift; X/, 90
put—all parity, 123
for currency options, 253
for equity with dividends, 237

QT, 349
quanto products, 239

Radon—-Nikodym
derivative, 417
theorem, 417
random process, 424
realization of, 425
trgjectory of, 425
random source, 118
random variable, 422
composite, 423
distribution measure of, 422
expected value, 423
rate of return, 89
rho, 124
for European call, 125
p, see rho
Riccati equation, 286
Riesz representation theorem, 410
risk adjusted measure, 100, see
martingale measure
risk free asset, 88
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risk neutral
measure, see martingale measure
valuation, 8, 11, 148, 322
running maximum, 254
density of, 255
running minimum, 254
density of, 255

SDE, see stochastic differential equation
SDF, see stochastic discount factor
Second Fundamental Theorem, 33, 146,
151, 198
SEK, 1
several underlying, see multidimensional
model
short rate, 88
sigma-algebra, 398
simplefunction, 400
singular measures, 416
Spot rate, see interest rates
state process, see optimal control
stochastic differentia equation, 62
GBM, 63
linear, 66
stochastic discount factor, 34, 149, 201
stochastic integral, 40-42
discrete, 447
stopping times, 448451
straddle, 131
submartingale, 43,443
connectionto optimal control, 300
subharmonic characterization of, 60
supermartingale, 43, 443
surjective mapping, 395
swaption
Black's formulafor, 382
definitionof, 381

T-claim, 90
term structure equation, 322, 323
theta, 124
for European call, 125
8, see theta
trace of a matrix, 61
triangle inequality, 408
two-factor models, see interest rate
models

uncountable set, 396

value process, 7, 135, 143
Vasiéek, see interest rate models
vega, 124

for European call, 125
V, see vega
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verification theorem,
see optimal control

volatility, 88, 104-105

Black, 370, 382

flat, 370

forward, 370

historic, 105

implied, 106

matrix, 176
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smile, 106
spot, 370

Wiener process, 36
correlated, 55-59
correation matrix, 56

yield, see bonds






