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PREFACE TO THE SECOND EDITION 

One of the main ideas behind the first edition of this book was to provide 
a reasonably honest introduction to arbitrage theory without going into abstract 
measure and integration theory. This approach, however, had some clear draw- 
backs: some topics, like the change of numeraire theory and the recently 
developed LIBOR and swap market models, are very hard to discuss without 
using the language of measure theory, and an important concept like that of 
a martingale measure can be fully understood only within a measure theoretic 
framework. 

, For the second edition I have therefore decided to include some more advanced 
material, but, in order to keep the book accessible for the reader who does not 
want to study measure theory, I have organized the text as follows: 

The more advanced parts of the book are marked with a star *. 
1' The main parts of the book are virtually unchanged and kept on an 

elementary level (i.e. not marked with a star). 
f The reader who is looking for an elementary treatment can simply skip 
1' the starred chapters and sections. The nonstarred sections thus constitute 

a self-contained course on arbitrage theory. 

The organization and contents of the new parts are as follows: 

I have added appendices on measure theory, probability theory, and mar- 
tingale theory. These appendices can be used for a lighthearted but honest 
introductory course on the corresponding topics, and they define the pre- 
requisites for the advanced parts of the main text. In the appendices there 
is an emphasis on building intuition for basic concepts, such as measur- 
ability, conditional expectation, and measure changes. Most results are 
given formal proofs but for some results the reader is referred to the 
literature. 

8 There is a new chapter on the martingale approach to arbitrage theory, 
where we discuss (in some detail) the First and Second Fundamental The- 
orems of mathematical finance, i.e. the connections between absence of 
arbitrage, the existence of martingale measures, and completeness of the 
market. The full proofs of these results are very technical but I have tried 
to provide a fairly detailed guided tour through the theory, including the 
Delbaen-Schachermayer proof of the First Fundamental Theorem. 

r Following the chapter on the general martingale approach there is a s e p  
mate chapter on martingale representation theorems and Girsanov trans- + formations in a Wiener framework. Full proofs are given and I have also 
added a section on maximum likelihood estimation for diffusion processes. 
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As the obvious application of the machinery developed above, there is 
a chapter where the Black-Scholes model is discussed in detail from the 
martingale point of view. There is also an added chapter on the martingale 
approach to multidimensional models, where these are investigated in some 
detail. In particular we discuss stochastic discount factors and derive the 
Hansen-Jagannathan bounds. 
The old chapter on changes of numeraire always suffered from the restric- 
tion to a Markovian setting. It has now been rewritten and placed in its 
much more natural martingale setting. 
I have added a fairly extensive chapter on the LIBOR and swap market 
models which have become so important in interest rate theory. 
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PREFACE TO THE FIRST EDITION 

The purpose of this book is to present arbitrage theory and its applications to 
pricing problems for financial derivatives. It is intended as a textbook for gradu- 
ate and advanced undergraduate students in finance, economics, mathematics, 
and statistics and I also hope that it will be useful for practitioners. 

Because of its intended audience, the book does not presuppose any previous 
knowledge of abstract measure theory. The only mathematical prerequisites are 
advanced calculus and a basic course in probability theory. No previous know- 
ledge in economics or finance is assumed. 

The book starts by contradicting its own title, in the sense that the second 
chapter is devoted to the binomial model. After that, the theory is exclusively 
developed in continuous time. 

The main mathematical tool used in the book is the theory of stochastic 
differential equations (SDEs), and instead of going into the technical details con- 
cerning the foundations of that theory I have focused on applications. The object 
is to give the reader, as quickly and painlessly as possible, a solid working know- 
ledge of the powerful mathematical tool known as It6 calculus. We treat basic 
SDE techniques, including Feynman-KaE representations and the Kolmogorov 
equations. Martingales are introduced at an early stage. Throughout the book 
there is a strong emphasis on concrete computations, and the exercises at the 
end of each chapter constitute an integral part of the text. 

The mathematics developed in the first part of the book is then applied to 
arbitrage pricing of financial derivatives. We cover the basic Black-Scholes the- 
ory, including delta hedging and "the greeks", and we extend it to the case 
of several underlying assets (including stochastic interest rates) as well as to 
dividend paying assets. Barrier options, as well as currency and quanto products, 
are given separate chapters. We also consider, in some detail, incomplete 
markets. 

! American contracts are treated only in passing. The reason for this is that 
i the theory is complicated and that few analytical results are available. Instead 
i I have included a chapter on stochastic optimal control and its applications to 

optimal portfolio selection. i 

1 Interest rate theory constitutes a large pfU3 of the book, and we cover the 
, basic short rate theory, including inversion of the yield curve and affine term 

structures. The Heath-Jarrow-Morton theory is treated, both under the object- 
ive measure and under a martingale measure, and we also present the Musiela 
parametrization. The basic framework for most chapters is that of a multifactor 

k 
model, and this allows us, despite the fact that we do not formally use measure 
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theory, to give a fairly complete treatment of the general change of numeraire 
technique which is so essential to modern interest rate theory. In particular 
we treat forward neutral measures in some detail. This allows us to present 
the Geman-El Karoui-Rochet formula for option pricing, and we apply it to 
the general Gaussian forward rate model, as well as to a number of particular 
cases. 

Concerning the mathematical level, the book falls between the elementary text 
by Hull (1997), and more advanced texts such as Duffie (1996) or Musiela 
and Rutkowski (1997). These books are used as canonical references in the 
present text. 

In order to facilitate using the book for shorter courses, the pedagogical 
approach has been that of first presenting and analyzing a simple (typically 
one-dimensional) model, and then to derive the theory in a more complicated 
(multidime~sional) framework. The drawback of this approach is of course that 
some arguments are being repeated, but this seems to be unavoidable, and I can 
only apologize to the technically more advanced reader. 

Notes to the literature can be found at the end of most chapters. I have tried 
to keep the reference list on a manageable scale, but any serious omission is 
unintentional, and I will be happy to correct it. For more bibliographic informa- 
tion the reader is referred to Duffie (1996) and to Musiela and Rutkowski (1997) 
which both contain encyclopedic bibliographies. 

On the more technical side the following facts can be mentioned. I have tried to 
present a reasonably honest picture of SDE theory, including Feynman-Kat r e p  
resentations, while avoiding the explicit use of abstract measure theory. Because 
of the chosen technical level, the arguments concerning the construction of the 
stochastic integral are thus forced to be more or less heuristic. Nevertheless I 
have tried to be as precise as possible, so even the heuristic arguments are the 
"correct" ones in the sense that they can beaompleted to formal proofs. In the 
rest of the text I try to give full proofs of all mathematical statements, with 
the exception that I have often left out the checking of various integrability 
conditions. 

Since the Girsanov theory for absolutely continuous changes of measures 
is outside the scope of this text, martingale measures are introduced by the 
use of locally riskless portfolios, partial differential equations (PDEs) and the 
Feynrnan-KaE representation theorem. Still, the approach to arbitrage theory 
presented in the text is basically a probabilistic one, emphasizing the use of 
martingale measures for the computation of prices. 

The integral representation theorem for martingales adapted to a Wiener 
filtration is also outside the scope of the book. Thus we do not treat market 
completeness in full generality, but restrict ourselves to a Markovian framework. 
For most applications this is, however, general enough. 
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t INTRODUCTION 

1.1 Problem Formulation 
The main project in this book consists in studying theoretical pricing models for 
those financial assets which are known as financial derivatives. Before we give 
the formal definition of the concept of a financial derivative we will, however, by 

, means of a concrete example, introduce the single most important example: the 
1 European call option. 

i: Let us thus consider the Swedish company C&H, which today (denoted by 
I t = 0) has signed a contract with an American counterpart ACME. The contract 

stipulates that ACME will deliver 1000 computer games to C&H exactly six 
months from now (denoted by t = T). Furthermore it is stipulated that C&H 
will pay 1000 US dollars per game to ACME at the time of delivery (i.e. at 
t = T). For the sake of the argument we assume that the present spot currency 
rate between the Swedish krona (SEK) arid the US dollar is 8.00 SEK/$. 

One of the problems with this contract from the point of view d C&H is 
that it involves a considerable currency risk. Since C&H does not know the 
currency rate prevailing six months from now, this means that it does not know 
how many SEK it will have to pay at t = T. If the currency rate at t = T is 
still 8.00 SEK/$ it will have to pay 8,000,000 SEK, but if the rate rises to, say, 

I 8.50 it will face a cost of 8,500,000 SEK. Thus C&H faces the problem of how 
"0 guard itself against this currency risk, and we now list a number of natural 

strategies. 

The most naive stratgey for C&H is perhaps that of buying $1,000,000 
today at the price of 8,000,000 SEK, and then keeping this money (in a 
Eurodollar account) for six months. The advantage of this procedure is 
f course that the currency risk is completely eliminated, but there are 

also some drawbacks. First of all the strategy above has the consequence 
of tying up a substantial amount of money for a long period of time, but 
an even more serious objection may be that C&H perhaps does not have 
access to 8,000,000 SEK today. 

2. A more sophisticated arrangement, which does not require any outlays at 
all today, is that C&H goes to the forward market and buys a forward 
contract for $1,000,000 with delivery six months from now. Such a con- 
tract may, for example, be negotiated with a commercial bank, and in the 
contract two things will be stipulated. 

The bank will, at t = T, deliver $1,000,000 to C&H. 
C@H will, at t = T, pay for this delivery at the rate of K SEK/$. 
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The exchange rate K,  which is called the forward price, (or forward 
exchange rate) at t = 0, for delivery at t = T, is determined at t = 0. By 
the definition of a forward contract, the cost of entering the contract equals 
zero, and the forward rate K is thus determined by supply and demand on 
the forward market. Observe, however, that even if the price of entering the 
forward contract (at t = 0) is zero, the contract may very well fetch a nonzero 
price during the interval [0, TI. 

Let us now assume that the forward rate today for delivery in six months 
equals 8.10 SEK/$. If C&H enters the forward contract this simply means that 
there are no outlays today, and that in six months it will get $1,000,000 at the 
predetermined total price of 8,100,000 SEK. Since the forward rate is determined 
today, C&H has again completely eliminated the currency risk. 

However, the forward contract also has some drawbacks, which are related 
to the fact that a forward contract is a binding contract. To see this let us look 
at two scenarios. 

Suppose that the spot currency rate at t = T turns out to be 8.20. Then 
C&Hcan congratulate itself, because it can now buy dollars at the rate 8.10 
despite the fact that the market rate is 8.20. In terms of the million dollars 
at stake C&Hhas thereby made an indirect profit of 8,200,000-8,100,000 = 
100,000 SEK. 
Suppose on the other hand that the spot exchange rate at t = T turns out 
to be 7.90. Because of the forward contract this means that C&H is forced 
to buy dollars at the rate of 8.10 despite the fact that the market rate is 
7.90, which implies an indirect loss of 8,100,000-7,900,000 = 200,000 SEK. 

3. What C&H would like to have of course is a contract which guards it 
against a high spot rate at t = T, while still allowing it to take advantage 
of a low spot rate at t = T. Such contracts do in fact exist, and they 
are called European call options. We will now go on to give a formal 
definition of such an option. 

Definition 1.1 A European call option on the amount of X US dollars, with 
strike price (exercise price) K SEK/$ and exercise date T is a contract 
written at t = 0 with the following properties. 

The holder of the contract has, exactly at the time t = T ,  the right to buy 
X US dollars at the price K SEK/$. 
The holder of the option has no obligation to buy the dollars. 

Concerning the. nomenclature, the contract is called an option precisely 
because it gives the holder the option (as opposed to the obligation) of buy- 
ing some underlying asset (in this case US dollars). A call option gives the 
holder the right to buy, wheareas a put option gives the holder the right to sell 
the underlying object at a prespecified price. The prefix European means that 



the option can only be exercised at exactly the date of expiration. There also 
exist American options, which give the holder the right to exercise the option 
at any time before the date of expiration. 

Options of the type above (and with many variations) are traded on options 
markets all over the world, and the underlying objects can be anything from 
foreign currencies to stocks, oranges, timber or pig stomachs. For a given under- 
lying object there are typically a large number of options with different dates of 
expiration and different strike prices. 

We now see that CtYHcan insure itself against the currency risk very elegantly 
by buying a European call option, expiring six months from now, on a million 
dollars with a strike price of, for example, 8.00 SEK/$. If the spot exchange rate 
at T exceeds the strike price, say that it is 8.20, then CtYH exercises the option 
and buys at 8.00 SEK/$. Should the spot exchange rate at T fall below the strike 
price, it simply abstains from exercising the option. 

Note, however, that in contrast to a forward contract, which by definition 
has the price zero at the time at which it is entered, an option will always 
have a nonnegative price, which is determined on the existing options market. 
This means that our friends in CBH will have the rather delicate problem of 
determining exactly which option they wish to buy, since a higher strike price 
(for a call option) will reduce the price of the option. 

One of the main problems in this book is to see what can be said from a 
theoretical point of view about the market price of an option like the one above. 
In this context, it is worth noting that the European call has some properties 
which turn out to be fundamental. 

I r Since the value of the option (at T)  depends on the future level of the 
spot exchange rate, the holding of an option is equivalent to a future 

I stochastic claim. 
r The option is a derivative asset in the sense that it is defined in terms 

., of some upderlying financial asset. 

Since the value of the option is contingent on the evolution of the exchange 
I rate, the option is often called a contingent claim. Later on we will give a 

precise mathematical definition of this concept, but for the moment the informal 
definition above will do. An option is just one example of a financial derivative, 
and a far from complete list of commonly traded derivatives is given below: 

European calls and puts 
American options 

r Forward rate agreements 
r Convertibles 
r Futures 
r Bonds and bond options 
r Caps and floors 
r Interest rate swaps 

R 



4 INTRODUCTION 

Later on we will give precise definitions of (most of) these contracts, but at 
the moment the main point is the fact that financial derivatives exist in a great 
variety and are traded in huge volumes. We can now formulate the two main 
problems which concern us in the rest of the book. 

Main Problems: Take a fixed derivative as given. 

What is a "fair" price for the contract? 
Suppose that we have sold a derivative, such as a call option. Then we 
have exposed ourselves to a certain amount of financial risk at the date of 
expiration. How do we protect ("hedge") ourselves against this risk? 

Let us look more closely at the pricing question above. There exist two natural 
and mutually contradictory answers. 

Answer ,l: "Using standard principles of operations research, a reasonable price 
for the derivative is obtained by computing the expected value of the discounted 
future stochastic payoff." 

Answer 2: "Using standard economic reasoning, the price of a contingent claim, 
like the price of any other commodity, will be determined by market forces. In 
particular, it will be determined by the supply and demand curves for the market 
for derivatives. Supply and demand will in their turn be influenced by such factors 
as aggregate risk aversion, liquidity preferences, etc., so it is impossible to say 
anything concrete about the theoretical price of a derivative." 

The reason that there is such a thing as a theory for derivatives lies in the 
following fact. 

Main Result: Both answers above are incorrect! It is possible (given, of course, 
some assumptions) to talk about the "correct" price of a derivative, and this price 
is not computed by the method given in  Answer 1. 

In the succeeding chapters we will analyze these problems in detail, but we 
can already state the basic philosophy here. The main ideas are as follows. 

Main Ideas 
A financial derivative is defined in terms of some underlying asset which 
already exists on the market. 
The derivative cannot therefore be priced arbitrarily in relation to 
the underlying prices if we want to avoid mispricing between the 
derivative and the underlying price. 
We thus want to price the derivative in a way that is consistent with the 
underlying prices given by the market. 
We are not trying to compute the price of the derivative in some "absolute" 
sense. The idea instead is to determine the price of the derivative in terms 
of the market prices of the underlying assets. 
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THE BINOMIAL MODEL 

In this chapter we will study, in some detail, the simplest possible nontrivial 
I model of a financial market-the binomial model. This is a discrete time model, 
a but despite the fact that the main purpose of the book concerns continuous time ! $ models, the binomial model is well worth studying. The model is very easy to 
: understand, almost all important concepts which we will study later on already 

appear in the binomial case, the mathematics required to analyze it is at high 
\ school level, and last but not least the binomial model is often used in practice. 

I 
2.1 The One Period Model 
We start with the one period version of the model. In the next section we will 
(easily) extend the model to an arbitrary number of periods. 

2.1.1 Model Description 

Running time is denoted by the letter t,  and by definition we have two points 
in time, t = 0 ("today") and t = 1 ("tomorrow"). In the model we have two 
assets: a bond and a stock. At time t the price of a bond is denoted by Bt, 
and the price of one share of the stock is denoted by St. Thus we have two price 
processes B and S. 

The bond price process is deterministic and given by 
C 

Bo = 1, 

B 1 = l + R .  

The constant R is the spot rate for the period, and we can also interpret the 
existence of the bond as the existence of a bank with R as its rate of interest. 

The stock price process is a stochastic process, and its dynarnical behavior is 
described as follows: 

s . u, with probability p,. 
S1 = 

s . d, with probability pd. 

I, It is often convenient to write this as 
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1 FIG. 2.1. Price dynamics 

\ 

where Z is a stochastic variable defined as 

z = {  u, with probability p,. 
d, with probability pd. 

We assume that today's stock price s is known, as are the positive constants 
u ,  d, p, and pd. We assume that d < u ,  and we have of course p, + pd = 1. We 
can illustrate the price dynamics using the tree structure in Fig. 2.1. 

2.1.2 Portfolios and Arbitrage 

We will study the behavior of various portfolios on the (B, S) market, and to 
this end we define a portfolio as a vector h = (x, y). The interpretation is that 
x is the number of bonds we hold in our portfolio, whereas y is the number of 
units of the stock held by us. Note that it is quite acceptable for x and y to 
be positive as well as negative. If, for example, x = 3, this means that we have 
bought three bonds at time t = 0. If on the other hand y = -2, this means that 
we have sold two shares of the stock at time t = 0. In financial jargon we have 
a long position in the bond and a short position in the stock. It is an important 

F 
assumption of the model that short positions are allowed. 

Assumption 2.1.1 W e  assume the following institutional facts: 

Short positions, as well as fractional holdings, are allowed. In  mathematical 
terms this means that every h E R2 is an allowed portfolio. 
There is no bid-ask spread, i.e. the selling price is equal to the buying price 
of all assets. 
There are no transactions costs of trading. 
The market is completely liquid, i.e. it is always possible to  buy and/or sell 
unlimited quantities on the market. In particular it is possible to  borrow 
unlimited amounts from the bank (by selling bonds short). 
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! 
i Consider now a fixed portfolio h = (x, y). This portfolio has a deterministic 

market value at t = 0 and a stochastic value at t = 1. 

Definition 2.1 The value process of the portfolio h is defined by  

or, in more detail, 

V: = x(1+ R) + ysZ. 

Everyone wants to make a profit by trading on the market, and in this context 
a so called arbitrage portfolio is a dream come true; this is one of the central 
concepts of the theory. 

Definition 2.2 A n  arbitrage portfolio i s  a portfolio h with the properties 

V: > 0, with probability 1. 

-. 

An arbitrage portfolio is thus basically a deterministic money making 
machine, and we interpret the existence of an arbitrage portfolio as equivalent to 
a serious case of mispricing on the market. It is now natural to investigate when a 
given market model is arbitrage free, i.e. when there are no arbitrage portfolios. 

Proposition 2.3 The model above is  free of arbitrage if and only if the following 
conditions hold: 

d < ( l + R ) < u .  (2.1) 

Proof The condition (2.1) has an easy economic interpretation. It simply says 
that the return on the stock is not allowed to dominate the return on the bond 
and vice versa. To show that absence of arbitrage implies (2.1), we assume that 
(2.1) does in fact not hold, and then we show that this implies an arbitrage oppor- 
tunity. Let us thus assume that one of the inequalities in (2.1) does not hold, so 
that we have, say, the inequality s ( l +  R) > su. Then we also have s ( l  + R) > sd 
so it is always more profitable to invest in the bond than in the stock. An arbit- 
rage strategy is now formed by the portfolio h = (s, -I), i.e. we sell the stock 
short and invest all the money in the bond. For this portfolio we obviously have 
V t  = 0, and as for t = 1 we have 

which by assumption is positive. 
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Now assume that (2.1) is satisfied. To show that this implies absence of 
arbitrage let us consider an arbitrary portfolio such that Voh = 0. We thus have 
x + ys = 0, i.e. x = -ys. Using this relation we can write the value of the 
portfolio at t = 1 as 

h - ys [u - (1 + R)] , if Z = u. 
- {ys id- ( l+R) l ,  i f Z = d .  

1 Assume now that y > 0. Then h is an arbitrage strategy if and only if we have 
i the inequalities 

but this is impossible because of the condition (2.1). The case y < 0 is treated 
similarly. 

At first glance this result is perhaps only moderately exciting, but we may 
write it in a more suggestive form. To say that (2.1) holds is equivalent to saying 
that 1 + R is a convex combination of u and d, i.e. 

where q,, qd > 0 and q, + qd = 1. In particular we see that the weights q, and 
qd can be interpreted as probabilities for a new probability measure Q with the 
property Q(Z = u) = q,, Q(Z = d) = qd. Denoting expectation w.r.t. this 
measure by EQ we now have the following easy calculation 

We thus have the relation 

which to an economist is a well-known relation. It is in fact a risk neutral 
valuation formula, in the sense that it gives today's stock price as the discounted 
expected value of tomorrow's stock price. Of course we do not assume that the 

i agents in our market are risk neutral-what we have shown is only that if we 
I use the Q-probabilities instead of the objective probabilities then we have in fact 

a risk neutral valuation of the stock (given absence of arbitrage). A probability 
measure with this property is called a risk neutral measure, or alternatively 
a risk adjusted measure or a martingale measure. Martingale measures 
will play a dominant role in the sequel so we give a formal definition. 
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Definition 2.4 A probability measure Q is called a martingale measure if 
the following condition holds: 

1 

B1 so = - 
l + R  EQ [&I. 

I We may now state the condition of no arbitrage in the following way. 

Proposition 2.5 The market model is arbitrage free if and only if there exists 
a martingale measure Q.  

For the binomial model it is easy to calculate the martingale probabilities. 
The proof is left to the reader. 

Proposition 2.6 For the binomial model above, the martingale probabilities are 
given by  

( l + R ) - d  

u - ( l + R )  
u - d  

2.1.3 Contingent Claims 
I 

Let us now assume that the market in the preceding section is arbitrage free. 
We go on to study pricing problems for contingent claims. 

Definition 2.7 A contingent claim (financial derivative) is any stochastic 
variable X of the form X = @ ( Z ) ,  where Z is the stochastic variable driving the 
stock price process above. 

We interpret a given claim X as a contract which pays X SEK to the holder of 
1 the contract at time t = 1. See Fig. 2.2, where the value of the claim at each node 

is given within the corresponding box. The function @ is called the contract 
function. A typical example would be a European call option on the stock with 
strike price K. For this option to be interesting we assume that sd < K < su.  If ' Sl > K then we use the option, pay K to get the stock and then sell the stock 

FIG. 2.2. Contingent claim 
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on the market for su,  thus making a net profit of su - K. If S1 < K then the 
option is obviously worthless. In this example we thus have 

and the contract function is given by 

Our main problem is now to determine the "fair" price, if such an object 
exists at all, for a given contingent claim X. If we denote the price of X at time 

1 t by n(t; X), then it can be seen that at time t = 1 the problem is easy to solve. 
In order to avoid arbitrage we must (why?) have 

and the hard part of the problem is to determine n(0; X). To attack this problem 
we make a slight detour. 

Since we have assumed absence of arbitrage we know that we cannot make . 
money out of nothing, but it is interesting to study what we can achieve on the 
market. 

Definition 2.8 A given contingent claim X is said to be reachable i f  there 
&ts a portfolio h such that 

v: = x, 
i with probability 1. In that case we say that the portfolio h is a hedging portfolio 

or a replicating portfolio. If all claims can be replicated we say that the market 
is complete. 

If a certain claim X is reachable with replicating portfolio h, then, from 
a financial point of view, there is no difference between holding the claim and - holding the portfolio. No matter what happens on the stock market, the value 
of the claim at time t = 1 will be exactly equal to the value of the portfolio at 
t = 1. Thus the price of the claim should equal the market value of the portfolio, 
and we have the following basic pricing principle. 

Pricing principle 1 If a claim X is reachable with replicating portfolio h ,  then 
1 the only reasonable price process for X is given by 

The word "reasonable" above can be given a more precise meaning as in the 
following proposition. We leave the proof to the reader. 
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Proposition 2.9 Suppose that a claim X is reachable with replicating 
portfolio h. Then any price at t = 0 of the claim X ,  other than voh, will lead t o  
an arbitrage possibility. 

We see that in a complete market we can in fact price all contingent claims, 
so it is of great interest to investigate when a given market is complete. For the 
binomial model we have the following result. 

Proposition 2.10 Assume that the general binomial model is free of arbitrage. 
Then it is also complete. 

Proof We fix an arbitrary claim X with contract function @, and we want to 
show that there exists a portfolio h = (x, y) such that 

If we write this out in detail we want to find a solution (x, y) to the following 
system of equations 

(1 + R)x + suy  = @(u), 

(1 + R)x + sdy  = @(d). 

Since by assumption u < d, this linear system has a unique solution, and a simple 
calculation shows that it is given by 

2.1.4 Risk Neutral Valuation 

Since the binomial model is shown to be complete we can now price any contin- 
gent claim. According to the pricing principle of the preceding section the price 
at t = 0 is given by 

n(oi x) = v:, 
- 

and using the explicit formulas (2.2)-(2.3) we obtain, after some reshuffling 
of terms, 
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Here we recognize the martingale probabilities qu and qd of Proposition 2.6. 
If we assume that the model is free of arbitrage, these are true probabilities (i.e. 
they are nonnegative), so we can write the pricing formula above as 

The right-hand side can now be interpreted as an expected value under the mar- 
tingale probability measure Q, so we have proved the following basic pricing 
result, where we also add our old results about hedging. 

Proposition 2.11 If the binomial model is free of arbitrage, then the arbitrage 
free price of a contingent claim X is  given by 

Here the martingale measure Q is  uniquely determined by the relation 

and the explicit expression for qu and qd are given in Proposition 2-6. Further- 
more the claim can be replicated using the portfolio 

1 u@(d)  - d@(u) x=-. 
1+R u - d  ' (2.6) 

1 . @(u> - @(dl y = -  
s u - d  ' (2.7) 

We see that the formula (2.4) is a "risk neutral" valuation formula, and that 
the probabilities which are used are just those for which the stock itself admits 
a risk neutral valuation. The main economic moral can now be summarized. 

Moral 
The only role played by the objective probabilities is that they determine 
which events are possible and which are impossible. In more abstarct prob- 
abilistic terminology they thus determine the class of equivalent probability 
measures. See Chapter 10. 
When we compute the arbitrage free price of a financial derivative we carry 
out the computations as if we live in a risk neutral world. 
This does not mean that we de facto live (or believe that we live) in a risk 
neutral world. 
The valuation formula holds for all investors, regardless of their attitude 
towards risk, as long as they prefer more deterministic money to less. 
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' 8  The formula above is therefore often referred to as a "preference free" 
valuation formula. 

We end by studying a concrete example. 

Example 2.12 We set s = 100, u = 1.2, d = 0.8, p, = 0.6, pd = 0.4 and, for 
computational simplicity, R = 0. By convention, the monetary unit is the US 
dollar. Thus we have the price dynamics 

so = 100, 

s1={ 120, with probability 0.6. 
80, with probability 0.4. 

If we compute the discounted expected value (under the objective probability 
measure P) of tomorrow's price we get 

I ,  1 - E ~  [Sl] = 1 - [I20 -0.6 + 80 0.41 = 104. 
l + R  

This is higher than the value of today's stock price of 100, so the market is risk 
averse. Since condition (2.1) obviously is satisfied we know that the market is 
arbitrage free. We consider a European call with strike price K = 110, so the 
claim X is given by 

x = {  10, if s1 = 120, 0, if S = 80. 

Using the method of computing the price as the discounted expected values 
under the objective probabilities, i.e. "Answer 1" in Section 1.1, this would give 

II(0; X) = - [lo. 0.6 + 0 )0.4] = 6. 
1 + 0  

Using the theory above it is easily seen that the martingale probabilities are 
given by q, = qd = 0.5, thus giving us the theoretical price 

1 
II(0; X) = - [lo - 0.5 + 0 0.51 = 5. 

1+0 

We thus see that the theoretical price differs from the naive approach above. 
If our theory is correct we should also be able to replicate the option, and from 
the proposition above the replicating portfolio is given by 

1.2 - 0  - 0.8 10 
2 = = -20, 

1.2 - 0.8 
1 10- 0 1 

y=-. = - 
100 1.2 - 0.8 4' 
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In everyday terms this means that the replicating portfolio is formed by 

I 
borrowing $20 from the bank, and investing this money in a quarter of a share 
in the stock. Thus the net value of the portfolio at t = 0 is five dollars, and at 

I 
I 

t = 1 the value is given by 

so we see that we have indeed replicated the option. We also see that if anyone 
is foolish enough to buy the option from us for the price $6, then we can make 
a riskless profit. We sell the option, thereby obtaining six dollars. Out of these 
six we invest five in the replicating portfolio and invest the remaining one in the 
bank. At time t = 1 the claims of the buyer of the option are completely balanced 
by the value of the replicating portfolio, and we still have one dollar invested in 
the bank. We have thus made an arbitrage profit. If someone is willing to sell 
the option to us at a price lower than five dollars, we can also make an arbitrage 
profit by selling the portfolio short. 

We end this section by making some remarks. 
First of all we have seen that in a complete market, like the binomial model 

above, there is indeed a unique price for any contingent claim. The price is given 
by the value of the replicating portfolio, and a negative way of expressing this 
is as follows. There exists a theoretical price for the claim precisely because of 
the fact that, strictly speaking, the claim is superfluous-it can equally well be 
replaced by its hedging portfolio. 

Second, we see that the structural reason for the completeness of the bino- 
mial model is the fact that we have two financial instruments at our disposal 
(the bond and the stock) in order to solve two equations (one for each possible 
outcome in the sample space). This fact can be generalized. A model is com- 
plete (in the generic case) if the number of underlying assets (including the bank 
account) equals the number of outcomes in the sample space. 

If we would like to make a more realistic multiperiod model of the stock 
market, then the last remark above seems discouraging. If we make a (non- 
recombining) tree with 20 time steps this means that we have 220- lo6 
elementary outcomes, and this number exceeds by a large margin the number of 
assets on any existing stock market. It would therefore seem that it is impossible 
to construct an interesting complete model with a reasonably large number of 
time steps. Fortunately the situation is not at all as bad as that; in a multiperiod 
model we will also have the possibility of considering intermediary trading, 
i.e. we can allow for portfolios which are rebalanced over time. This will give 
us much more degrees of freedom, and in the next section we will in fact study 
a complete multiperiod model. 
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2.2 The Multiperiod Model 

2.2.1 Portfolios and Arbitrage 
The multiperiod binomial model is a discrete time model with the time index t 
running from t = 0 to t = T, where the horizon T is fixed. As before we have two 
underlying assets, a bond with price process Bt and a stock with price process St. 

We assume a constant deterministic short rate of interest R, which is inter- 
preted as the simple period rate. This means that the bond price dynamics are 
given by 

The dynamics of the stock price are given by 

here Zo, . . . , are assumed to be i.i.d. (independent and identically distrib 
uted) stochastic variables, taking only the two values u and d with probabilities 

P(zn = u)  = PU, 

P(Zn = d) = pd. 
I 

We can illustrate the stock dynamics by means of a tree, as in Fig. 2.3. 
Note that the tree is recombining in the sense that an "upn-move followed by a 
"down"-move gives the same result as a "down"-move followed by an "up7'-move. 

We now go on to define the concept of a dynamic portfolio strategy. 

Definition 2.13 A portfolio strategy is a stochastic process 

{ht=(xt,yt); t = l , . . . , T )  

such that ht is a function of So, S1,. . . , St-1. For a given portfolio strategy h we 
set ho = hl by convention. The value process corresponding to the portfolio h 
is defined by 

&h = xt(1 + R )  +ytSt. 

The interpretation of the formal definition is that xt is the amount of money 
which we invest in the bank at time t - 1 and keep until time t. We interpret 
yt as  the number of shares that we buy at time t - 1 and keep until time t. 
We allow the portfolio strategy to be a contingent strategy, i.e. the portfolio we 
buy at t is allowed to depend on all information we have collected by observing 
the evolution of the stock price up to time t. We are, however, not allowed to 
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FIG. 2.3. Price dynamics 

look into the future. The entity Kh above is of course the market value of the 
portfolio (xt, yt) (which has been held since t - 1) at time t. 

The portfolios which primarily interest us are the self-financing portfolios, 
i.e. portfolios without any exogenous infusion or withdrawal of money. In prac- 
tical terms this means that in a self-financing portfolio strategy the accession 
of a new asset has to be financed through the sale of some other asset. The 
mathematical definition is as follows. 

Definition 2.14 A portfolio strategy h is said to be self-financing i f  the 
following condition holds for all t = 0, .  . . ,T - 1 

The condition above is simply a budget equation. It says that, at each time t ,  
the market value of the "old" portfolio (xt, yt) (which was created at t - 1) equals 
the purchase value of the new portfolio (xt+l, ~ t + ~ ) ,  which is formed at t (and 
held until t + 1). 

We can now define the multiperiod version of an arbitrage possibility. 

Definition 2.15 A n  arbitrage possibility is a self-financing portfolio h with 
the properties 
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We immediately have the following necessary condition for absence of 
arbitrage. 

Lemma 2.16 If the model is free of arbitrage then the following conditions 
necessarily must hold. 

! d < ( l + R ) < u .  (2.8) 

The condition above is in fact also sufficient for absence of arbitrage, but this 
I fact is a little harder to show, and we will prove it later. In any case we assume 

6 
that the condition holds. 

Assumption 2.2.1 Henceforth we assume that d < u, and that the condition 
(2.8) holds. 

As in the one period model we will have use for "martingale probabilities" 
which are defined and computed exactly as before. 

I Definition 2.17 The martingale probabilities q, and qd are defined as the 
probabilities for which the relation 

holds. 

Proposition 2.18 The martingale probabilities are given 

2.2.2 Contingent Claims 

We now give the formal definition of a contingent claim in the model. 

Definition 2.19 A contingent claim is a stochastic variable X of the form 

& where the contract function @ is some given real valued function. 

The interpretation is that the holder of the contract receives the stochastic 
+ amount X at time t = T. Notice that we are only considering claims that are 

"simple", in the sense that the value of the claim only depends on the value ST 
of the stock price at the final time T. It is also possible to consider stochastic 

I payoffs which depend on the entire path of the price process during the interval 
[O,T], but then the theory becomes a little more complicated, and in particular / the event tree will become nonrecombining. 
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Our main problem is that of finding a "reasonable" price process 

for a given claim X, and as in the one period case we attack this problem by 
means of replicating portfolios. 

Definition 2.20 A given contingent claim X is said to be reachable if there 
exists a self-financing portfolio h such that 

with probability 1. In that case we say that the portfolio h is a hedging portfolio 
or a replicating portfolio. If all claims can be replicated we say that the market 
is (dynamically) complete. 

Again we have a natural pricing principle for reachable claims. 

Pricing principle 2 If a claim X is reachable with replicating (seIf-financing) 
portfolio h ,  then the only reasonable price process for X is given by 

Let us go through the argument in some detail. Suppose that X is reachable 
using the self-financing portfolio h. Fix t and suppose that at time t we have 
access to the amount Fh. Then we can invest this money in the portfolio h, 
and since the portfolio is self-financing we can rebalance it over time without 
any extra cost so as to have the stochastic value V$ at time T. By definition 
V -  = X with probability 1, so regardless of the stochastic movements of the 
stock price process the value of our portfolio will, at time T, be equal to the 
value of the claim X. Thus, from a financial point of view, the portfolio h and 
the claim X are equivalent so they should fetch the same price. 

The "reasonableness" of the pricing formula above can be expressed more 
formally as follows. The proof is left to the reader. 

Proposition 2.21 Suppose that X is reachable using the portfolio h. Suppose 1 
furthermore that, at some time t ,  it is possible to buy X at a price cheaper than 
(or to sell it at a price higher than) yh. Then it is possible to make an arbitrage 1 
profit. 

We now turn to the completeness of the model. 

Proposition 2.22 The multiperiod binomial model is complete, i.e. every clairiz 
can be replicated by a self-financing portfolio. I 

It is possible, and not very hard, to give a formal proof of the proposition, 
using mathematical induction. The formal proof will, however, look rather messy 1 
with lots of indices, so instead we prove the proposition for a concrete example, 1 
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using a binomial tree. This should (hopefully) convey the idea of the proof, and 
the mathematically inclined reader is then invited to formalize the argument. 

Example 2.23 We set T = 3, So = 80, u = 1.5, d = 0.5, p, = 0.6, pd = 0.4 
and, for computational simplicity, R = 0. 

The dynamics of the stock price can now be illustrated using the binomial 
tree in Fig. 2.4, where in each node we have written the value of the stock price. 

We now consider a particular contingent claim, namely a European call on 
the underlying stock. The date of expiration of the option is T = 3, and the 
strike price is chosen to be K = 80. Formally this claim can be described as 

X = max [ST - K, 01. 

We will now show that this particular claim can be replicated, and it will be 
obvious from the argument that the result can be generalized to any binomial 
model and any claim. 

The idea is to use induction on the time variable and to work backwards in 
the tree from the leaves at t = T to the root at t = 0. We start by computing the 
price of the option at the date of expiration. This is easily done since obviously 
(why?) we must have, for any claim X ,  the relation 

This result is illustrated in Fig. 2.5, where the boxed numbers indicate the price 
of the claim. Just to check, we see that if S3 = 90, then we exercise the option, 

i 

FIG. 2.4. Price dynamics 
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pay 80 to obtain the stock, and then immediately sell the stock at market price 
90, thus making a profit of 10. 

Our problem is thus that of replicating the boxed payoff structure at t = 3. 
Imagine for a moment that we are at some node at t = 2, e.g. at the node 
Sz = 180. What we then see in front of us, from this particular node, is a simple 
one period binomial model, given in Fig. 2.6, and it now follows directly from 
the one period theory that the payoff structure in Fig. 2.6 can indeed be replic- 
ated from the node S2 = 180. We can in fact compute the cost of this replicating 
portfolio by risk neutral valuation, and since the martingale probabilities for this 
example are given by q, = qd = 0.5 the cost of the replicating portfolio is 

In the same way we can consider all the other nodes at t = 2, and compute the 
cost of the corresponding replicating portfolios. The result is the set of boxed 
numbers at t = 2 in Fig. 2.7. 
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FIG. 2.7. 

<I FIG. 2.8. 

What we have done by this procedure is to show that if we can find a self- 
financing portfolio which replicates the boxed payoff structure at t = 2, then it is 
in fact possible to replicate the original claim at t = 3. We have thus reduced the 
problem in the time variable, and from now on we simply reproduce the construc- 
tion above, but this time at t = 1. Take, for example, the node S1 = 40. From 
the point of view of this node we have a one period model given by Fig. 2.8, and 
by risk neutral valuation we can replicate the payoff structure using a portfolio, 
which at the node & = 40 will cost 

1 

1 + 0  
- [5 -0.5 + 0 e0.51 = 2.5. 

In this manner we fill the nodes at t = 1 with boxed portfolio costs, and then 
we carry out the same construction again at t = 0. The result is given in Fig. 2.9. 

I 
We have thus proved that it is in fact possible to replicate the European call 

option at an initial cost of 27.5. To check this let us now follow a possible price 
path forward through the tree. 
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We start at t = 0, and since we want to reproduce the boxed claim (52.5, 2.5) 
at t = 1, we can use Proposition 2.4 to compute the hedging portfolio as 
XI = - 22.5, yl = 518. The reader should check that the cost of this portfolio 
is exactly 27.5. 

Suppose that the price now moves to S1 = 120. Then our portfolio is worth 

Since we now are facing the claim (100, 5) at t = 2 we can again use Proposi- 
tion 2.4 to calculate the hedging portfolio as 2 2  = -42.5, y2 = 951120, and the 
reader should again check that the cost of this portfolio equals the value of our 
old portfolio, i.e. 52.5. Thus it is really possible to rebalance the portfolio in 
a self-financing manner. 

We now assume that the price falls to S 2  = 60. Then our portfolio is worth 

Facing the claim (10, 0) at t = 3 we use Proposition 2.4 to calculate the hedging 
portfolio as 2 3  = -5, y3 = 116, and again the cost of this portfolio equals the 
value of our old portfolio. 

Now the price rises to S3 = 90, and we see that the value of our portfolio is 
given by 

-5 (1 + 0) + .90 = 10, 

which is exactly equal to the value of the option at that node in the tree. In 
Fig. 2.10 we have computed the hedging portfolio at each node. 

If we think a bit about the computational effort we see that all the value 
computations, i.e. all the boxed values, have to be calculated off-line. Having 
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done this we have of course not only computed the arbitrage free price at t = 0 for 
the claim, but also computed the arbitrage free price, at every node in the tree. 

The dynamic replicating portfolio does not have to be computed off-line. As 
in the example above, it can be computed on-line as the price process evolves 
over time. In this way we only have to compute the portfolio for those nodes 
that we actually visit. 

We now go on to give the general binomial algorithm. In order to do this we 
need to introduce some more notation to help us keep track of the price evolu- 
tion. It is clear from the construction that the value of the price process at time 
t can be written as 

St = ~ u ~ d ~ - ~  , k = O  ,..., t, 

where lc denotes the number of upmoves that have occurred. Thus each node in 
the binomial tree can be represented by a pair (t, k) with k = 0,. . . , t. 

Proposition 2.24 (Binomial algorithm) Consider a T-claim X = @(ST). 
Then this claim can be replicated using a self-financing portfolio. If &(k) denotes 
Me value of the portfolio at the node (t, k) then &(k) can be computed recursively 
by the scheme 



whem z%e martingale pmbabilitzes q, and qd am given by 
I 

With the notation as above, the hedging portfolio is given by 

Il I n  particular, the arbitrage free price of the claim at t = 0 is given by Vo(0). 
I From the algorithm above it is also clear that we can obtain a risk neutral 

valuation formula. 

Proposition 2.25 The arbitrage free price at t = 0 of a T-claim X is given by 

where Q denotes the martingale measure, or more explicitly 

Proof The first formula follows directly from the algorithm above. If we let Y 
denote the number of upmoves in the tree we can write 

and now the second formula follows from the fact that Y has a binomial 
distribution. 

We end this section by proving absence of arbitrage. 

Proposition 2.26 The condition 

is a necessary and suficient condition for absence of arbitrage. 

Proof The necessity follows from the corresponding one period result. Assume 
that the condition is satisfied. We want to prove absence of arbitrage, so let 
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us assume that h (a potential arbitrage portfolio) is a self-financing portfolio 
satisfying the conditions 

P(V$ 2 0) = 1, 

P(V$ > 0) > 0. 

&om these conditions, and from the risk neutral valuation formula, it follows 

1 
V ~ h  = (1 + R)T 

. E~ [v-] > 0, 

which shows that h is not an arbitrage portfolio. 0 

2.3 Exercises 
Exercise 2.1 

(a) Prove Proposition 2.6. m' (b) Show, in the one period binomial model, that if lI(1;X) # X with 
probability 1, then you can make a riskless profit. 

Exercise 2.2 Prove Proposition 2.21. 

Exercise 2.3 Consider the multiperiod example in the text. Suppose that at 
time t = 1 the stock price has gone up to 120, and that the market price of the 
option turns out to be 50.0. Show explictly how you can make an arbitrage profit. 

Exercise 2.4 Prove Proposition 2.24, by using induction on the time horizon T. 

For the origins of the binomial model, see Cox, Ross and Rubinstein (1979), and 
Rendleman and Bartter (1979). The book by Cox and Rubinstein (1985) has 
become a standard reference. 
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A MORE GENERAL ONE PERIOD MODEL 

In this chapter, we will investigate absence of arbitrage and compf&eness in 
slightly more general terms than in the binomial model. To keep things simple we 
will be content with a one period model, but the financial market and the under- 
lying sample space will be more general than for the binomial model. The,point 
of this investigation of a simple case is that it highlights some very basic and 
important ideas, and our main results will in fact be valid for much more general 
models. 

3.1 The Model 
We consider a financial market with N different financial assets. These assets 
could in principle be almost anything, like bonds, stocks, options or whatever 
financial instrument that is traded on a liquid market. The market only exists 
at the two points in time t = 0 and t = 1, and the price per unit of asset No. i 
at time t will be denoted by St.  We thus have a price vector process St, t = 0 , l  
and we will view the price vector as a column vector, i.e. 

st = [ " ] 
SF 

The randomness in the system is modeled by assuming that we hpve 
sample space R = {w l ,  . . . , W M )  and that the probabilities P(w4 ,  *= 1 
are all strictly positive. The price vector So is assumed to be deterministic and 
known to us, but the price vector at time t = 1 depends upon the outcome 
w E R, and S:(wj) denotes the price per unit of asset No. i at time t = 1 if wj 
has occurred. 

We may therefore define the matrix D by 

I S? ( ~ 1 )  s? ( ~ 2 )  ' ' s: ( W M )  

s?(wl )  sf(-) ' ' ' S?(WM) 
D =  
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We can also write D as 

where dl,. . . , dM are the columns of D. 

3.2 Absence of Arbitrage 

We now define a portfolio as an N-dimensional row vector h = [hl,. . . , hN] 
with the interpretation that hi is the number of units of asset No. i that we buy 
at time t = 0 and keep until time t = 1. 

Since we are buying the assets with deterministic prices at time t = 0 and 
selling them at time t = 1 at stochastic prices, the value process of our portfolio 
will be a stochastic process v , ~  defined by 

. , 

There are various (more or less equivalent) variations of the concept of an 
arbitrage portfolio, and in the present setting the following will do nicely. 

Definition 3.1 The portfolio h is an arbitrage portfolio i f  it satisfies the 
conditions 

v: < 0, 

V: 2 0, with probability 1. 

With obvious notation we can write this as 

We now go on to investigate when the market model above is free of arbitr- 
! age possibilities, and the main technical tool for this investigation is the 
I Farkas Lemma. i ' Lemma 3.2 (Farkas' Lemma) Suppose that do, dl,.  . . , dM are column vec- 
: tors in  RN.  Then exactly one of the two following problems possesses a solution: 

Problem 1: Find nonnegative numbers z l ,  . . . , ZM such that 
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1 Problem 2: Find a row vector h E R~ such that 

hdo < 05 

h d j 2 0 ,  j= l ,  ..., M. . z h , L  b' 
8 A 

I Proof Let K be the set of all nonnegative linear combinations of dl , .  . . , d ~ .  
It is easy to see that K is a convex cone containing the origin. Exactlfr*'one of 

I 

i 
the following cases can hold: 

The vector 4 belongs to K. This means that Problem 1 above has 
a solution. 
The vector 4 does not belong to K. Then, by the separation theorem for 
contex sets, there exists a hyperplahe H such that do is strictly on one 
side of H whereas K is on the other side. Letting h be defined as a normal 
vector to H pointing in the direction where K lies, this means that Problem 
2 has a solution. - .  

We can now formulate our first result. 

Proposition 3.3 The market is arbitrage free if and only if there &t non- 
negative numbers 21,. . . , ZM such that the folloun'ng vector equality holds: 

M 

& = Czjf i (wj ) .  
j=1 

On component form this wads as 
A .  

N 

S, = X ~ S ~ ( W , ) : .  i* 1, ..., N. 

Proof From the definition it follows that the market is arbitrage free if and 
only if the following system of ineq~ oes not possess a solution h E R ~ .  

where d l ,  . . . , dM are the columns of the a r k  d &b~ve.~fio'm the Farkas Lemma 
(with 4 = So) we thus infer the e of nonnegative numbers zl , . . . , z~ 
such that l s ,  , 

M 
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We can now give an economic interpretation of this result by defining the 
real nonnegative numbers ql, . . . , q~ by 

/r 
In this way we may interpret 91,. . . , q~ as a probability distribution on S1 

by setting Q(w,) = qi, and we can reformulate our previous result. 

Proposition 3.4 The market is arbitrage free if and only i f  there exists a 
probability dzstribution Q on 0 and a real constant P such that 

Such a measure, or probability distribution Q is called a martingale measure, 
or a risk neutral distribution, or a risk adjusted distribution. 
' 

A natural question is now whether there exists a natural economic inteiprkt- 
ation of the factor p above. In order to obtain such an interpretation, we now 
make the additional assumption that there exists a risk free investment altern- 
ative among the basic assets S1,. . . , SN, and we assume that this is in fact asset 

1 No. 1. By a risk free investment we simply mean that the price at time t = 1 is 
deterministic, and by scaling we may thus assume that S: (wj) = 1, j = 1,. . . , M. 
In other words, S1 is a zero coupon bond with principal equal to one. 

The first component of the equality (3.3) then becomes 

s, '=p-1, 
i and we may thus write 

1 p-'- 
1 + R' 

I ' 

1 F where r is the risk free interest rate. Plugging this into the general formula 
i ! (3.3) we have the following result, which in its far reaching generalizations is 
I 

F known as "the first fundamental theorem of mathematical finance". 

Proposition 3.5 (First Fundamental Theorem) Assume that there exists a 
risk free asset, and denote the corresponding risk free interest rate bg R. Then 

1 the market is arbitrage free i f  and only i f  there exists a measure Q such that 

1 
So = i = - q j , ~ ~ [ s ~ ] .  (3.4) 

The economic interpretation is thus that today's asset prices are obtained 
as the expected value (under Q) of tomorrow's asset prices, discounted wi th  
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the risk free rateit The formula is also referred to as a 'lisk-neutral" pricing 
formula. The terminology "martingale measure" stems from the fact that, for 
every i = 1,. . . , N the process 

and 

Thus, in particular, Q is a martingale measure for the sunderlying assets. At 
time tb = 1 the value of the claim X is known, so in order to avoid arbitrage 

is a sc~called martingale under the measure Q. We will come back later to 
martingales in much more detail, but in the present setting it just means that 

3.3 Martingale Pricing 
In this section, we will study how to price financial derivatives or, in tech- 
nical terms contingent claims. We take the previously studied market model 
as given and we assume for simplicity that there exists a risk free asset. In 
order to highlight the, role of the risk free asset, we denote its price process 
by Bt and we may thus regard Bt as a bank account,$ where our money (or 
our debts) grow at the risk free rate. (In the previous section we thus had 
B = S1.) 

I 

Definition 3.6 A contingent claim is any random variable X ,  defined on 0. 

The interpretation is that a contingent claim X represents2 a stochastic 
amount of money which we will obtain at time t = 1. Our main problem is 
now to determine a "reasonable" price TI(@ X), at time t = 0 for a given claim 
X,  and in order to do this we must give a more precise meaning to the word 
"reasonable" above. 

More precisely we would like to price the claim X consistently with the 
underlying a priori given assets S1,. . . , SN, or put in other words, we would like 
to price the claim X in such a way that there are no arbitrage opportunities 
on the extended market consisting of TI, S1,.  . . , SN. This problem is, however, 
easily solved. The extended market is arbitrage free if and only if there exists 
some martingale measure Q such that 

1 n(o; x) = -EQ [n(i; x)] , 
l + R  
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we must have n(1; X) = X. Plugging this into the equation above we have the 
following result. 

Proposition 3.7 Consider a given claim X .  In onler to avoid arbitrage, X 
must then be priced acconling to the formula 

whew Q is a martingale measure for the underlying market. 

We see that this formula extends the corresponding risk neutral pricing 
formula (3.4) for the underlying assets. 

The pricing formula (3.5) looks very nice, but there is a problem: if there exist 
several different martingale measures then we will have several possible arbit- 
rage free prices for a given claim X. This has to do with the (possible lack of) 
completeness of the market. 

3.4 Completeness 

In this section, we will discuss how it is possible to generate payment streams at 
t = 1 by forming portfolios in the underlying. 

Assumption 3.4.1 W e  assume that the market S1,. . . , SN is arbitrage free and 
that there exists a risk free asset. 

Definition 3.8 Consider a contingent claim X .  If there exists a portfolio h, 
based on the underlying assets, such that 

V! = X, with probability 1. (3.6) 

then we say that X is replicated, or hedged by h. Such a portfolio h is called 
a replicating, or hedging portfolio. If every contingent claim can be replicated, we 
say that the market is complete. 

It is easy to characterize completeness in our market, and we have the 
following result. 

Proposition 3.9 The market is complete i f  and only i f  the rows of the matrix 
D span R ~ ,  i.e. if and only if D has rank M .  

Proof For any portfolio h, we view the random variable V: as a row vector 
[v,~(wI), . . . , v ~ ( w ~ ) ]  and with this notation we have 

V: = hD. 
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The market is thm complete if and only if, for every random variable X,  (viewed 
as a row vector in RM) the equation 

has a solution. But hD is exactly a linear combination of the rows of D with the 
components of h as coefficients. 

The concept of a replicating portfolio gives rise to an alternative way of 
pricing contingent claims. Assume namely that the claim X can be replicated by 
the portfolio h. Then there is an obvious candidate as the price (at time t = 0) 
for X,  namely the market price, at t = 0, of the replicating portfolio. We thus 
propose the natural pricing f o d a  

Here there is a possibility that may get us into trouble. There may very well 
exist two different hedging portfolios f and g, and it could in principle happen 
that Vt # Vt. It is, however, easy to see that this would lead to an arbitrage 
possibility (how?) so we may disregard that possibility. 

The pricing formula (3.8) can also be written in another way, so let us assume 
that h replicates X. Then, by definition, we have 

and from (3.8) we obtain 

However, on our arbitrage free market we also have the pricing formula (3.4) 

1 
s o  = i ; 4 r ? i ~ Q [ ~ x ] .  (3.11) 

,,i 

Combining this with (3.9)-(3.10) we obtain the pricing formula 

which is exactly the formula given by, Proposition 3.7. Thus the two pricing 
approaches coincide on the set of hedgable claims. 

In Proposition 3.9 we obtained one characterization of complete markets. 
There is another characterization which connects completeness to martingale 
measures. This result, which we give below in our simple setting, is known as 
"the second fundamental theorem of mathematical finance". 
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Proposition 3.10 (Second Fundamental Theorem) Assume that the model 
is arbitrage free. Then the market is complete i f  and only i f  the martingale 

1 measure is unique. 

Proof From Proposition 3.9 we know that the market is complete if and only 
if the rows of D span the whole of RM, i.e. if and only if 

Im[D*] = R", 
I 

where we view the transpose matrix D* as a mapping from RN to RM. On the 
other hand, from Proposition 3.3 and the assumption of absence of arbitrage we 
know that there exists a solution (even a nonnegative one) to the equation 

so = Dz. 

This solution is unique if and only if the kernel (null spack) of'D is! trivial, i:e. 
if and only if 

Ker [Dl = 0. 

We now recall the following well known duality result: 

v (I~[D*J)?, Ker[D] . 

Thus Ker[D] = 0 if and only if Im[D*] = RM, i.e. the market is complete if and 
only if the martingale measure is unique. ' -$ . ; 

We may now summarize our findings. 

Proposition 3.11 The following hold: 

' a  The market is arbitmge free i f  and only i f  there exists a martingale 
1 measure Q. 
1 .a7 The market is complete i f  and only i f  the martingale measure is unique. 
' For any claim X ,  the only prices which are consistent with absence of 

arbitmge are of the form 
I t i  1 ,  . -  9 L ,  7 I rjv, 

' 1 
II(0; X) = - E~ [XI , 

c ?. l + R >  *, 
(3.13) 

where Q is a martingale measure for the underlying market. 
1 a If the market is incomplete, then different choices of martingale measures 

I Q in  the formula (3.13) will generically give rise to different prices. ., .. 
a If X is replicable then, even i n  an incomplete market, the price i n  (3.13) 

I 
, will not depend upon the particular choice of martingale measure Q. If X 

4, . is replicable, then 
1 v," -.---.-EQ[Aq, 

PC l + R  
. for d l  martingale measures Q and for all replicating portfolios h. r 

- pp 
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3.5 Stochastic Discount Factors 
In the previous sections we have seen that we'can price finmcial derivatives by 
using martingale measures and the formula 

In some applications of the theory (in particular in asset pricing) it is common 
to write this expected value directly under the objective probability measure P 
instead of under Q. 

Recalling the notation pi = P(w,) and qi = Q(wi), i = 1,. . . , M, and the 
assumption that pi > 0 for i =  1,. . . , M, we may define a new random 
variable on R. 

Definition 3.12 The random variable L on R is defined by 

Thus L gives us the likelihood mtio between the measures P and Q, and 
in more general situations it is known as the Radon-Nikodym derivative of Q 
w.r.t. P. 

Definition 3.13 Assume absence of arbitrage, and fi a martingale measure Q.  
With notations as above, the stochastic discount factor (or "state price 
deflator") is the mndom variable A on 0 defined by 

We can now express our arbitrage free pricing formulas in a slightly 
different way. 

Proposition 3.14 The arbitrage free price of any claim X is given by the 
formula 

n(o;x) = E ~ [ A . x ] ,  (3.15) 

whem A is a stochastic discount factor, 
h 

Proof Exercise for the reader: 
" 1,' 

We see that there is a on+twone correspondence between stochastic discount 
factors and martingale measures, and it is largely a matter of taste if you want 
to work with A or with Q. The advantage of working with A is that you form- 
ally stay with the objective measure P. The advantage with working under Q is 
that the decomposition of A in (3.14) gives us important structural information, 
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t i  
I \ and in more complicated situations there exists a deep theory (see "Girsanov 
I F transformations" later in the text) which allows us to have complete control over 

z ,  

1 " the class of martingale measures. 

'1 FIom an economic point of view, the stochastic discount factor is precisely an 
r Arrow-Debreu state price system, which gives the price A(w,) to the primitive 
i 

claim Xi which pays 1 if wi occurs, and zero otherwise. 

3.6 Exercises 

Exercise 3.1 Prove that Q in Proposition 3.7 is a martingale measure also for 
the price process n(t; X), i.e. show that 

i 

where B is the risk free asset. 

Exercise 3.2 Prove the last item in Proposition 3.11. 
I 
( Exercise 3.3 Prove Proposition 3.14. 
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4.1 Introduction 
The purpose of this book is to study asset pricing on financial markets in 
continuous time. We thus want to model asset prices as continuous time 
stochastic processes, and the most complete and elegant theory is obtained if 
we use diffusion processes and stochastic differential equations as our 
building blocks. What, then, is a diffusion? 

Loosely speaking we say that a stochastic process X is a diffusion if its 
local dynamics can be approximated by a stochastic difference equation of the 
following type: 

X ( t  + At) - X ( t )  = p ( t ,  X ( t ) )  At + u ( t ,  X ( t ) )  Z ( t ) .  (4.1) 

Here Z ( t )  is a normally distributed disturbance term which is independent of 
everything which has happened up to time t ,  while p and cr are given determ- 
inistic functions. The intuitive content of (4.1) is that, over the time interval 
[t, t + At], the X-process is driven by two separate terms. 

A locally deterministic velocity p (t, X ( t ) ) .  
A Gaussian disturbance term, amplified by the factor cr ( t ,  X ( t ) ) .  

The function p is called the (local) drift term of the process, whereas a is 
called the diffusion term. In order to model the Gaussian disturbance terms we 
need the concept of a Wiener process. 

Definition 4.1 A stochastic process W is called a Wiener process i f  the 
following conditions hold: 

1. W ( 0 )  = 0. 
2. The process W has independent increments, i.e. if r < s I t < u then 

W ( u )  - W(t)  and W ( s )  - W ( r )  are independent stochastic variables. 
3. For s < t the stochastic variable W(t)-  W ( s )  has the Gaussian distribution 

N [0, -1. 
4. W has continuous trajectories. 

Remark 4.1.1 Note that we use a somewhat old fashioned notation, where 
N [p,  cr] denotes a Gaussian distribution with expected value ,u and standard 
deviation a. 

In Fig. 4.1 a computer simulated Wiener trajectory is shown. 
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F IG.  4.1. A Wiener trajectory 

We may now use a Wiener process in order to write (4.1) as 

X(t + At) - X(t )  = p ( t ,  X( t ) )  At + a ( t ,  X( t ) )  AW(t), (4.2) 

where AW(t) is defined by 

AW(t) = W ( t  + At) - W ( t ) .  
i 

Let us now try to make (4.2) a bit more precise. It is then tempting to divide 
the equation by At and let At tend to zero. Formally, we would obtain 

~ ( t )  = P ( t ,  X( t ) )  + a ( t ,  X( t ) )  (4.3) 
X(O) = a, (4.4) 

dW 
u(t) = - 

dt 

is the formal time derivative of the Wiener process W .  
If u were an ordinary (and well defined) process we would now in principle 

be able to solve (4.3) as a standard ordinary differential equation (ODE) for 
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each v-trajectory. However, it can be shown that with probability 1 a Wiener 
trajectory is nowhere differentiable (cf. Fig. 4.1), so the process v cannot even 
be defined. Thus this is a dead end. 

Another possibility of making eqn (4.2) more precise is to let At tend to 
zero without first dividing the equation by At. Formally we will then obtain the 
exwession 

dX(t) = p (t, X(t)) dt + u (t, X(t)) dW(t), 

X(0) = a, 

and it is now natural to interpret (4.5) as a shorthand version of the following 
integral equation 

t t 
~ ( t )  = a + 1 p (s, X(s)) ds + 1 0 (9, X(s)) dW(s). (4.6) 

In eqn (4.6) we may interpret the ds-integral as an ordinary Riemann integral. 
The natural interpretation of the dW-integral is to view it as a Riemann-Stieltjes 
integral for each W-trajectory, but unfortunately this is not possible since one 
can show that the W-trajectories are of locally unbounded variation. Thus the 
stochastic dW-integral cannot be defined in a naive way. 

As long as we insist on giving a precise meaning to eqn (4.2) for each 
W-trajectory separately, we thus seem to be in a hopeless situation. If, 
however, we relax our demand that the dW-integral in eqn (4.6) should be 
defined trajectorywise we can still proceed. It is in fact possible to give a global 
(L2-)definition of integrals of the form 

for a large class of processes g. This new integral concept-the so called It6 
integral-will then give rise to a very powerful type of stochastic differential 
calculus-the It6 calculus. Our program for the future thus consists of the 
following steps: 

1. Define integrals of the type 

2. Develop the corresponding differential calculus. 
3. Analyze stochastic differential equations of the type (4.5) using the 

stochastic calculus above. 

4.2 Information 

Let X be any given stochastic process. In the sequel it will be important to 
define "the information generated by X" as time goes by. To do this in a rigorous 
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! fashion is outside the main scope of this book, but for most practical purposes 
the following heuristic definitions will do nicely. See the appendices for a precise 
treatment. 

Definition 4.2 The symbol 3: denotes "the information generated by X on the 
interval [0, t] ", or alternatively "what has happened to X over the interval [0, t] ". 

E 
If, based upon observations of the trajectory { X ( s ) ;  0 5 s 5 t ) ,  it is possible to 

: decide whether a given event A has occurred or not, then we write this as 

or say that "A is 3: -measurable". 
If the value of a given stochastic variable Z can be completely determined 

given observations of the trajectory { X ( s ) ;  0 5 s 5 t ) ,  then we also write 

z E 3:. 

a If Y is a stochastic process such that we have 

Y (t)  E 3: 

for all t 2 0 then we say that Y is adapted to the filtration {F:),,~. - 
The above definition is only intended to have an intuitive content, since 

a precise definition would take us into the realm of abstract measure theory. 
Nevertheless it is usually extremely simple to use the definition, and we now 
give some fairly typical examples. 

1. If we define the event A by A = { X ( s )  < 3.14, for all s 5 9) then we have 
t A E 3:. 

e t2. For the event A = { X ( 1 0 )  > 8 )  we have A E 35. Note, however, that we 
do not have A E 3$, since it is impossible to decide if A has occurred or 

B ik ' not on the basis of having observed the X-trajectory only over the interval 
"\ [0,9]. 

: 3. For the stochastic variable 2, defined by 

I 5 

z = 1 X ( s ) d s ,  
A 

I we have Z E F:. 
6 4. If W is a Wiener process and if the process X is defined by 

X (t) = sup W ( s )  , 
sst 

then X is adapted to the W-filtration. 
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5. With W as above, but with X defined as 

X(t) = sup W (s), 
s<t+l 

X is not adapted (to the W-filtration). 

4.3 Stochastic Integrals 

We now turn to the construction of the stochastic integral. For that purpose we 
consider as given a Wiener process W, and another stochastic process g. In order 
to guarantee the existence of the stochastic integral we have to impose some kind 
of integrability conditions on g, and the class J2 turns out to be natural. 

Definition 4.3 

(i) We say that the process g belongs to the class E2 [a, b] if the following 
conditions are satisfied. 

J: E [ ~ ~  (s)] ds < m. 
The process g is adapted to the Fy -filtration. 

(22) We say that the process g belongs to the class E2 if g E E2 [O, t] for 
all t > 0. 

Our object is now to define the stochastic integral J: g(s) dW(s), for a process 
g E E2 [a, b], and this is carried out in two steps. 

Suppose to begin with that the process g E E2 [a, b] is simple, i.e. that there 
exist deterministic points in time a = to < tl < < tn = b, such that g is 
constant on each subinterval. In other words we assume that g(s) = g(tk) for 
s E Itk, tk+l). Then we define the stochastic integral by the obvious formula 

Remark 4.3.1 Note that in the definition of the stochastic integral we take 
so called forward increments of the Wiener process. More specifically, in the 
generic term g(tk) [W(tk+l) - W(tk)] of the sum the process g is evaluated at 
the left end tk of the interval [tk,tk+l] over which we take the W-increment. 
This is essential to the following theory both from a mathematical and (as we 
shall see later) from an economical point of view. 

For a general process g E E2 [a, b] which is not simple we may schematically 
proceed as follows: 

1. Approximate g with a sequence of simple processes gn such that 
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2. For each n the integral J: gn(s) dW(s) is a well-defined stochastic variable 
Z,, and it is possible to prove that there exists a stochastic variable Z 
such that Zn + 2 (in L ~ )  as n + oo. 

3. We now define the stochastic integral by 

= lim 
,,-m Ja 

gn(s) 

The most important properties of the stochastic integral are given by the 
following proposition. In particular we will use the property (4.12) over and 
over again. 

Proposition 4.4 Let g be a process satisfying the conditions 

g is adapted to the Fy-filtmtion. (4.11) 

I Then the following relations hold: 

ds. 

I Proof A full proof is outside the scope of this book, but the general strategy 
is to start by proving all the assertions above in the case when g is simple. This 
is fairly easily done, and then it "only" remains to go to the limit in the sense 
of (4.9). We illustrate the technique by proving (4.12) in the case of a simple g. 
We obtain 

1 rn-1 1 

k=O 

Since g is adapted, the value g(tk) only depends on the behavior of the Wiener 
process on the interval [0, tk]. Now, by definition W has independent increments, il 
so [W(tk+l) - W(tk)] (which is a forward increment) is independent of g(tk). 



STOCHASTIC INTEGRALS 

Remark 4.3.2 It is possible to define the stochastic integral for a process g 
satisfying only the weak condition 

For such a general g we have no guarantee that the properties (4.12) and (4.13) 
hold. Property (4.14) is, however, still valid. 

I 4.4 Martingales 
The theory of stochastic integration is intimately connected to the theory of mar- 
tingales, and the modern theory of financial derivatives is in fact based mainly on 
martingale theory. Martingale theory, however, requires some basic knowledge 
of abstract measure theory, and a formal treatment is thus outside the scope of 
the more elementary parts of this book. 

Because of its great importance for the field, however, it would be unreason- 
able to pass over this important topic entirely, and the object of this section is 
to (informally) introduce the martingale concept. The more advanced reader is 
referred to the appendices for details. 

Let us therefore consider a given filtration ("flow of information") {Ft}t20, 
where, as  before, the reader can think of Ft as the information generated by all 
observed events up to time t. For any stochastic variable Y we now let the symbol 

denote the "expected value of Y ,  given the information available at time t". 
A precise definition of this object requires measure theory, so we have to be con- 
tent with this informal description. Note that for a fixed t, the object E [Yl Ft] 
is a stochastic variable. If, for example, the filtration is generated by a single 
observed process X ,  then the information available at time t will of course depend 
upon the behavior of X over the interval [0, t], so the conditional expectation 
E [Yl Ft] will in this case be a function of all past X-values {X(s): s 5 t). We 
will need the following two rules of calculation. 

Proposition 4.5 

lf Y and Z are stochastic variables, and Z is Ft-measurable, then 

E [Z. Y(Ft]  = Z. E [Y(&]. 
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If Y is a stochastic variable, and i f  s < t ,  then 

1 The first of these results should be obvious: in the expected value E [ Z  . Y I Ft] we 
condition upon all information available time t. If now Z E Ft, this means that, 
given the information Ft, we know exactly the value of Z, so in the conditional 
expectation Z can be treated as a constant, and thus it can be taken outside the 
expectation. The second result is called the "law of iterated expectations", and 
it is basically a version of the law of total probability. 

We can now define the martingale concept. 

Definition 4.6 A stochastic process X is called an (Ft)-martingale i f  the 
following conditions hold: 

X is adapted to the filtration {3t)t20. 

For all t 
E[ lX( t ) I l  < 00. 

For all s and t with s 5 t the following relation holds: 

A process satisfying, for all s and t with s 5 t ,  the inequality 

is called a supermartingale, and a process satisfying 

is called a submartingale. 

The first condition says that we can observe the value X ( t )  at time t, and the 
second condition is just a technical condition. The really important condition is 
the third one, which says that the expectation of a future value of X, given the 
information available today, equals today's observed value of X. Another way of 
putting this is to say that a martingale has no systematic drift. 

It is possible to prove the following extension of Proposition 4.4. 

Proposition 4.7 For any process g E E2 [s, t] the following hold: 

i p- 

1 As a corollary we obtain the following important fact. 
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Corollary 4.8 For any process g E L2, the process X ,  defined by 

is an (3tw)-martingale. In other words, modulo an integrability condition, every 
stochastic integral is a martingale. 

Proof Fix s and t with s < t .  We have 

The integral in the first expectation is, by Proposition 4.4, measurable w.r.t. 
37, so by Proposition 4.5 we have I 

[I' g ( r )  d W ( r )  3r = g(7) d W ( r ) ,  I I I' 
Ftorn Proposition 4.4 we also see that E J~~ g ( r )  d W ( r )  1 3 ~ ]  = 0, so we obtain I 

We have in fact the following stronger (and very useful) result. 

Lemma 4.9 Within the framework above, and assuming enough integrability, 
a stochastic process X (having a stochastic differential) is a martingale i f  and 
only if the stochastic differential has the form 

i. e. X has no dt-term. 

Proof We have already seen that if dX has no dt-term then X is a martingale. 
The reverse implication is much harder to prove, and the reader is referred to 
the literature cited in the notes below. O 1  
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4.5 Stochastic Calculus and the It6 Formula 
Let X be a stochastic process and suppose that there exists a real number xo 
and two adapted processes p and u such that the following relation holds for 
all t 2 0. 

where a is some given real number. As usual W is a Wiener process. To use a less 
cumbersome notation we will often write eqn (4.16) in the following form: 

In this case we say that X has a stochastic differential given by (4.17) with 
an initial condition given by (4.18). Note that the formal string dX(t) = 
p(t )  dt + u(t) dW(t) has no independent meaning. It is simply a shorthand ver- 
sion of the expression (4.16) above. From an intuitive point of view the stochastic 
differential is, however, a much more natural object to consider than the cor- 
responding integral expression. This is because the stochastic differential gives 
us the "infinitesimal dynamics" of the X-process, and as we have seen in Sec- 
tion 4.1, both the drift term p(s) and the diffusion term u(s) have a natural 
intuitive interpretation. 

k Let us assume that X indeed has the stochastic differential above. Loosely 
speaking we thus see that the infinitesimal increment dX(t) consists of a loc- 
ally deterministic drift term p(t) dt plus an additive Gaussian noise term 
u(t) dW(t). Assume furthermore that we are given a C1'2-function 

and let us now define a new process Z by 

I 

P 1 
Z(t) = f (t, X(t)). 

I We may now ask what the local dynamics of the Z-process look like, and at first it 
seems fairly obvious that, except for the case when f is linear in x, Z will not have 
a stochastic differential. Consider, for example, a discrete time example where 
X satisfies a stochastic difference equation with additive Gaussian noise in each 
step, and suppose that f (t, x) = ex. Then it is clear that Z will not be driven by 

;- additive Gaussian noise-the noise will in fact be multiplicative and log-normal. - 
i It is therefore extremely surprising that for continuous time models the stochastic 

differential structure with a drift term plus additive Gaussian noise will in fact be 
preserved even under nonlinear transformations. Thus the process Z will have 

t a stochastic differential, and the form of dZ is given explicitly by the famous 
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It6 formula below. Before turning to the It6 formula we have to take a closer 
look at some rather fine properties of the trajectories of the Wiener process. 

As we saw earlier the Wiener process is defined by a number of very simple 
probabilistic properties' It is therefore natural to assume that a typical Wiener 
trajectory is a fairly simple object, but this is not at all the case. On the 
contrary-one can show that, with probability 1, the Wiener trajectory will 
be a continuous function of time (see the definition above) which is nondifferen- 
tiable at every point. Thus a typical trajectory is a continuous curve consisting 
entirely of corners and it is of course quite impossible to draw a figure of such 
an object (it is in fact fairly hard to prove that such a curve actually exists). 
This lack of smoothness gives rise to an odd property of the quadratic variation 
of the Wiener trajectory, and since the entire theory to follow depends on this 
particular property we now take some time to study the Wiener increments a bit 
closer. 

Let us therefore fix two points in time, s and t with s < t, and let us use the 
handy notation 

Using well-known properties of the normal distribution it is fairly easy to obtain 
the following results, which we will use frequently 

E [AW] = 0, 

E[(Aw)~] = At, 

Var[AW] = At, (4.21) 

We see that the squared Wiener increment (Aw(t)12 has an expected value 
which equals the time increment At. The really important fact, however, is 
that, according to (4.22), the variance of [ A W ( ~ ) ] ~  is negligible compared to its 
expected value. In other words, as At tends to zero [Aw(t)12 will of course also 
tend to zero, but the variance will approach zero much faster than the expected 
value. Thus [Aw(t)12 will look more and more "deterministic" and we are led 
to believe that in the limit we have the purely formal equality 

[dw(t)12 = dt. (4.23) 

The reasoning above is purely heuristic. It requires a lot of hard work to turn the 
I relation (4.23) into a mathematically precise statement, and it is of course even 

harder to prove it. We will not attempt either a precise formulation or a precise 
proof. In order to give the reader a flavor of the full theory we will, however, 
give another argument for the relation (4.23). 
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I Let us therefore fix a point in time t and subdivide the interval [0, t] into n 
equally large subintervals of the form [k;, (k + I):], where k = 0,1,. . . , n - 1. 
Given this subdivision, we now define the quadratic variation of the Wiener 

4 

and our goal is to see what happens to Sn as the subdivision becomes finer, i.e. 
as n -+ m. We immediately see that 

n 

= C [ii - ( i-  l)?] =t. 
n i=l 

1 Using the fact that W has independent increments we also have 

Thus we see that E [Sn] = t whereas Var[S,] -t 0 as n -+ oo. In other words, as 
n -+ m we see that S, tends to the deterministic limit t. This motivates us 

write 

equivalently, 
[dw12 = dt. (4.26) 

Note again that all the reasoning above has been purely motivational. In this 
text we will have to be content with accepting (4.26) as a dogmatic truth, and 
now we can give the main result in the theory of stochastic calculus-the It6 

F j  formula. 
Theorem 4.10 (Itb's formula) Assume that the process X has a stochastic 
diferential given by 

1 dX (t)  = p(4) d t  + u(t) dW (t)  , (4.27) 

where p and a are adapted processes, and let f be a C192-function. Define the 
process Z by Z ( t )  = f ( t ,  X ( t ) ) .  Then Z has a stochastic differential given by 
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Remark 4.5.1 In the statement of the theorem above we have, for readability 
reasons, suppressed a lot of variables. The term p df ldx, for example, is 
shorthand notation for 

a f 
'(t) az (t' X(t)) 

and correspondingly fqr the other terms. 

Proof A full formal proof is outside the scope of this text, so we only give 
a heuristic proof (see Remark 4.5.2). If we make a Taylor expansion including 
second order terms we obtain 

af af 1d2f 2 1d2f d f=-d t+-dX+-- (dX)  +- - (d t )2+a2fd tdX.  (4.29) 1 
at ax 2 ax2 2 at2 atax 

By definition we have 

dX(t) = p(t) d t  + o(t) dW (t) , 

so, at least formally, we obtain 

(dx12 = p2 (dt12 + 2pu (dt)(dW) + u2 (dw12. 

The term containing (dt)2 above is negligible compared to the dt-term in (4.27), 
and it can also be shown that the (dt)(dW)-term is negligible compared to the 
dt-term. Furthermore we have ( d ~ ) ~  = dt from (4.23), and plugging in all this 
into the Taylor expansion (4.29) gives us the result. 

It may be hard to remember the It6 formula, so for practical purposes it is 
often easier to copy our "proof" above and make a second order Taylor expansion. 

Proposition 4.11 (ItB's formula) With assumptions as in Theorem 4.10, d f 
is given by 

d f  d f  1 a
2
f df = - d t +  - d ~ +  -- (dx12 

at dx 2 dx2 (4.30) 

whew. we use the following formal multiplication table. 

(dt12 = 0, 
dt . dW = 0, 
(dw12 = dt. 

Remark 4.5.2 As we have pointed out, the "proof" of the It6 formula above 
does not at all constitute a formal proof. We end this section by giving an outline 
of the full proof. What we have to prove is that, for all t, the following relation 
holds with probability one: 

(4.31) 

Bibliothek 
Bielefeld 
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We therefore divide the interval [0, t] as 0 = to < tl < . < t, = t into n equal 
j subintervals. Then we have 

n-1 

f (t, X(t)) - f (0, X(0)) = C f (tk+l, ~ ( t * + 1 ) )  - f (tk, X(tk)) . (4.32) 
k=O 

Using Taylor's formula we obtain, with subscripts denoting partial derivatives 

i and obvious notation, 

f (tk+l, X(tk+l)) - f (tk, X(tk)) 

= ft (tk, X(tk)) At + fx (tkr X(tk)) Axk (4.33) 
) + i f x x  (tk, X(tk))  AX^)^ + Qk,  

where Qk is the remainder term. Furthermore, we have 

AXk = X(tk+l) - X(tk) = l:+' '(s) ds f rk+' U(S) dW(8) 
t t k  (4.34) 

= p(tk)At + U(tk)AWk + S k ,  

where Sk is a remainder term. From this we obtain 

I ( ~ x k ) ~  = p2(tk) ( ~ t ) ~  + 2p(tk)~(tk)AtAWk + u2(tk) ( A W ~ ) ~  + p k ,  (4.35) 

6 where Pk is a remainder term. If we now substitute (4.33)-(4.35) into (4.32) we 
1 obtain, in shorthand notation, 

6 f (t, X(t)) - f (0, X(0)) = I1 + 12  4- 13 + 314 + $Ki + K2 + R, 
L. 

I 

where 
f 

I1 = Ck ft(tk)At, 12  = C k  fx(tk)~(tk)At, 

P 13 = Ck fx(tk)u(tk)AWk7 k k 14 = x k  fxx(tk)u2(tk) (awk12 , 
Kl = Ck f ~ ~ ( t r ) p ~ ( t r )  , KZ = Ck fr~(tr)~(tr;)~(tle)AtAWk, 

: R = c ~ I Q ~ + ~ ~ + P ~ ) .  

I Letting n + oo we have, more or less by definition, 

I 

I 
I1 + f' (s,X(s)) d., I 2  - f x  (s, X(s)) P(S) ds, 

~3 Is fx (s, ~ ( s ) )  ~ ( s )  d ~ ( s ) .  

Very much as when we proved earlier that C ( A W ~ ) ~  -r t, it is possible to 
show that 
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and it is fairly easy to show that K1 and Kz converge to zero. The really hard 
part is to show that the term R, which is a large sum of individual remainder 
terms, also converges to zero. This can, however, also be done and the proof 
is finished. 

4.6 Examples 
In order to illustrate the use of the It6 formula we now give some examples. All 
these examples are quite simple, and the results could have been obtained as 
well by using standard techniques from elementary probability theory. The full 
force of the It6 calculus will be seen in the following chapters. 

The first two examples illustrate a useful technique for computing expec- 
ted values in situations involving Wiener processes. Since arbitrage pricing to 
a large extent consists of precisely the computation of certain expected values 
this technique will be used repeatedly in the sequel. 

Suppose that we want to compute the expected value E [Y] where Y is some 
stochastic variable. Schematically we will then proceed as follows: 

1. Try to write Y as Y = Z(to) where to is some point in time and Z is 
a stochastic process having an It6 differential. 

2. Use the It6 formula to compute dZ as, for example, 

3. Write this expression in integrated form as 

4. Take expected values. Using Proposition 4.4 we see that the dW-integral 
will vanish. For the ds-integral we may move the expectation oper- 
ator inbide the integral sign (an integral is "just" a sum), and we 
thus have 

r t  

Now two cases can occur: 
(a) We may, by skill or pure luck, be able to calculate the expected 

value E[p(s)] explicitly. Then we only have to compute an ordin- 
ary Riemann integral to obtain E [Z(t)], and thus to read off E [Y] = 
E [Z(to)l 

(b) If we cannot compute E [p(s)] directly we have a harder problem, but 
in some cases we may convert our problem to that of solving an ODE. 
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Example 4.12 Compute E [w4(t)]. 

Solution: Define Z by Z(t) = W4(t). Then we have Z(t) = f( t ,X(t))  where 
X = W and f is given by f (t, x) = x4. Thus the stochastic differential of X 
is trivial, namely d X  = dW, which, in the notation of the It6 formula (4.28), 
means that p = 0 and a = 1. Furthermore we have af /& = 0, af /ax = 4x3, 
and d2 f /ax2 = 12x2. Thus the It6 formula gives us 

dZ(t) = 6w2(t) dt + 4w3(t) dW(t), 

Z(0) = 0. 

I Written in integral form this reads 

t t 

Z(t) = O +  6 l  w2(s )ds  + 4 1  w3(s)dW(s). 

I Now we take the expected values of both members of this expression. Then, by 
Proposition 4.4, the stochastic integral will vanish. Furthermore we may move 
the expectation operator inside the ds-integral, so we obtain 

I 

E (Z(t)] = 6 & E [w2(s)] ds. 

Now we recall that E [w2(s)] = s, so in the end we have our desired result 

t 

E [w4(t)] = E [ ~ ( t ) ]  = 6 1  s d s  = 3t2. 
0 

Example 4.13 Compute E [eaw(t)]. 
a1 
r- Solution: Define Z by Z(t) = eaW(t). The It6 formula gives us 

I" dZ(t) = ia2eaW(t) dt + aeaw(t) dW(t), 

so we see that Z satisfies the stochastic differential equation 

dZ(t) = ;a22(t) dt + aZ(t)  dW(t), 

E Z(0) ='I. 

In integral form this reads 

k l t  t 
~ ( t )  = 1 + -a2 Jo ~ ( s ) ( d s )  + a Jo ~ ( s )  d ~ ( s ) .  

2 



52 STOCHASTIC INTEGRALS 

Taking expected values will make the stochastic integral vanish. After moving 
the expectation within the integral sign in the ds-integral and defining m by 
m(t) = E [Z(t)] we obtain the equation 

1 
m(t) = 1 + -a2 l m(s) (ds). 

2 

This is an integral equation, but if we take the t-derivative we obtain the ODE 

Solving this standard equation gives us the answer 

E [effw(t)] = E [Z(t)] = m(t) = eff2'I2. 

It is natural to ask whether one can "compute" (in some sense) the value of 
a stochastic integral. This is a fairly vague question, but regardless of how it is 
interpreted, the answer is generally no. There are just a few examples where the 
stochastic integral can be computed in a fairly explicit way. Here is the most 
famous one. 

Example 4.14 Compute 
rt 

Solution: A natural guess is perhaps that W(s)dW(s) = W2(t)/2. Since 
It6 calculus does not coincide with ordinary calculus this guess cannot possibly 
be true, but nevertheless it seems natural to start by investigating the process 
Z(t) = W2(t). Using the It6 formula on the function f(t,x) = x2 and with 
X = W we get 

dZ(t) = dt + 2W(t) dW(t). 

In integrated form this reads 

so we get our answer 

We end with a useful lemma. 
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Lemma 4.15 Let a(t) be a given deterministic function of time and define 

X(t) = & ~ ( s )  dW(s). (4.36) 

Then X(t) has a normal distribution with zero mean, and variance given by 

t 

var[x( t ) l=  02(s) ds. 
0 

This is of course an expected result because the integral is "just" a linear 
combination of the normally distributed Wiener increments with deterministic 
coefficients. See the exercises for a hint of the proof. 

4.7 The Multidimensional It6 Formula 

Let us now consider a vector process X = (XI, .  . . , Xn)*, where the component 
X, has a stochastic differential of the form 

d 

dXi (t) = p. (t) dt + oij (t) dW, ( t )  
j-1 

and Wl, . . . , Wd are d independent Wiener processes. 
Defining the drift vector p by 

P =  [ : I ] ,  

Pn 

the d-dimensional vector Wiener process W by 

W =  ["', 
Wd 

and the n x d-dimensional diffusion matrix o by 

011 012 . . - f f ld  

.=[? 1 : :  ".I, 
ffnl ffn2 0 .  ffnd 

we may write the X-dynamics as 

dX(t) = p(t) dt  + u(t) dW(t). 
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Let us furthermore define the  process Z b y  

where f : R+ x Rn 
4 R is a C112 mapping. Then,  using arguments as above, it 

can be  shown that the  stochastic differential d f is given b y  

wi th  the  extended multiplication rule (see the  exercises) 

(dWi)  ( d W j )  = 0,  for i # j .  

Writ ten out in full (see the  exercises) this gives us the following result. 

Theorem 4.16 (It6's formula) Let the n-dimensional process X have dynam- 
ics given by 

d X ( t )  = p( t )  dt  + n(t) d W ( t ) ,  

with notation as above. Then the following hold: 

The process f ( t ,  X ( t ) )  has a stochastic diflerential given by 

Here the row vector ui is the ith row of the matrix a ,  i.e. 

gi = [ail,. . . g i d ] ,  

and the matrix C is defined by 

C = aa*, 

where * denotes transpose. 
Alternatively, the differential is given by the formula 

with the formal multiplication table 

(dt)2  = 0, 
d t  . d W  = 0, 
(dwi12 = dt ,  i = 1 ,..., d ,  
dWi . d W j  = 0 ,  i # j. 
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Remark 4.7.1 (ItB's formula) The It6 formula can also be written as 

a f  1 
d f { + p i + t r * H l  z=1 X i  

where H denotes the Hessian matrix 

@ f H . . -  - 
a3 - axiaxj ' 

and tr denotes the trace of a matrix. The trace is defined, for any square 
matrix A, as the sum of the diagonal elements, i.e. 

t r ~  = CA,. - i 

See the exercises for details. 

4.8 Correlated Wiener Processes 

Up to this point we have only considered independent Wiener processes, but 
sometimes it is convenient to'build models based upon Wiener processes which 
are correlated. In order to define such objects, let us therefore consider d 
independent standard (i.e. unit variance) Wiener processes Wl, . . . , Wd. Let 
furthermore a (deterministic and constant) matrix 

611 612 . . . bid 

6 =  

6n1 bn2 . - .  6nd 

be given, and consider the n-dimensional processes W, defined by 

w = a w ,  

w =  [". 
Wn 

d 

w,=C&wj,  i = l ,  ..., n. 
j=1 
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Let us now assume that the rows of 6 have unit length, i.e. 

= l  i = 1 ,  ..., n, 1 
where the Euclidean norm is defined as usual by 

Then it is easy to see (how?) that each of the components Wl,  . . . , W, separ- 
ately are standard (i.e. unit variance) Wiener processes. Let us now define the 
(instantaneous) correlation matrix p of W by 

We then obtain 

Definition 4.17 The process W ,  constructed as above, is called a vector of 
correlated Wiener processes, with correlation matrix p. 

Using this definition we have the following It6 formula for correlated Wiener 
processes. 

Proposition 4.18 (ItB's formula) Take a vector Wiener process W = 
(Wl, . . . , W,) with correlation matrix p as given, and assume that the vector pro- 
cess X = (XI, .  . . , Xk)* has a stochastic differential. Then the following hold: 

For any C1t2 function f ,  the stochastic diferential of the process f (t, X ( t ) )  
is given by 
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with the formal multiplication table 

(dt12 = 0, 
dt .dWi=O, i = l ,  ..., n, 
dWi. dWj = pijdt. 

I If, in particular, k = n and dX has the structure 

where pl, . . . , pn and u1,. . . , un are scalar processes, then the stochastic 
F diferential of the process f (t, X(t)) is given by 

2,3=1 

We end this section by showing how it is possible to translate between the 
two formalisms above. Suppose therefore that the n-dimensional process X has 
a stochastic differential of the form 

dX(t) = p(t) dt + u(t) dW (t), 

d 

= pi (t) dt + C oij (t) d Wi (t) 
j=1 

Thus the drift vector process p is given by 

and the diffusion matrix process u by 

W is assumed to be d-dimensional standard vector Wiener process (i.e. with 
indenendent com~onents) of the form 
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The system (4.38) can also be written as 1 
dXi (t)  = pi ( t )  dt + ui (t)  dW ( t ) ,  

where, as usual, ui is the ith row of the matrix u. Let us now define n new scalar 
Wiener processes Wl, . . . , W,, by 

We can then write the X-dynamics as 

As is easily seen, each Wi is a standard scalar Wiener process, but Wl, . . . , ~d 

are of course correlated. The local correlation is easily calculated as 

Summing up we have the following result. 

Proposition 4.19 The system 

d 

dXi (t)  = f i  (t)  dt + C gij (t)  d Wi (t)  , 

dt. 

where Wl, . . . , Wd are independent, may equivalently be written as 

where Wl, . . . , Wd have the local correlation matrix p. The connections 
between (4.41) and (4.42) are given by the following expressions: 
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4.9 Exercises 

Exercise 4.1 Compute the stochastic differential dZ  when 

(b) Z(t) = g(s) dW(s), where g is an adapted stochastic process. 

, (d) Z(t) = eox(t), where X has the stochastic differential 

dX(t) = pdt  + adW(t) 

(p  and 0 are constants). 
(e) Z(t) = X2(t), where X has the stochastic differential 

dX(t) = aX(t)  dt + aX(t) dW (t) . 

Exercise 4.2 Compute the stochastic differential for Z when Z(t) = l/X(t) 
and X has the stochastic differential 

dX (t) = cuX (t) dt + uX(t) d W (t) . 

By using the definition Z = X--l you can in fact express the right hand side of 
dZ entirely in terms of Z itself (rather than in terms of X). Thus Z satisfies 
a stochastic differential equation. Which one? 

Exercise 4.3 Let a(t)  be a given deterministic function of time and define the 

X( t )=  a(s)dW(s). I' (4.43) 

Use the technique described in Example 4.13 in order to show that the 
characteristic function of X(t) (for a fixed t) is given by 

E [ eiux(t) 1 = exp { - - U22 l g 2 ( 4 d s ) >  I 4  E ~1 (4.44) 

thus showing that X(t) is normally distributed with zero mean and a variance 

t 

VW[X(~)] = J 02(s) ds. 
0 

Exercise 4.4 Suppose that X has the stochastic differential 

dX(t) = aX(t)  dt + a(t)  dW(t), 

where a is a real number whereas o(t) is any stochastic process. Use the technique 
in Example 4.13 in order to determine the function m(t) = E [X(t)] . 



60 STOCHASTIC INTEGRALS 

Exercise 4.5 Suppose that the process X has a stochastic differential 

d X  (t) = p(t) dt + a(t) dW (t) , 

and that p(t) > 0 with probability one for all t. Show that this implies that X 
is a submartingale. 

Exercise 4.6 A function h(xl,. . . , x,) is said to be harmonic if it satisfies the 
condition 

d2h Ce  =o. 
r=l 

It is subharmonic if it satisfies the condition 

" d2h C @  20. 
a=1 

Let Wl, . . . , W, be independent standard Wiener processes, and define the 
process X by X(t) = h(Wl(t), . . . , Wn(t)). Show that X is a martingale (sub- 
martingale) if h is harmonic (subharmonic). 

Exercise 4.7 The. object of this exercise is to give an argument for the 
formal identity 

dWl . dW2 = 0, 

when Wl and W2 are independent Wiener processes. Let us therefore fix a time 
t, and divide the interval [0, t] into equidistant points 0 = to < tl < . . - < tn = t, 
where ti = t. We use the notation 

Awi ( tk )=Wi ( tk ) -Wi ( tk - l ) ,  2=1,2. 

Now define Q, by 
n 

Qn = C ~ w l ( t k )  . Aw2(tk). 
k=l 

Show that Qn -, 0 in L2, i.e. show that 

E(Qn1 = 0, 

Var[Qnl+ 0. 

Exercise 4.8 Let X and Y be given as the solutions to the following system of 
stochastic differential equations. 

d X = a X d t - Y d W ,  X(0) =xo, 

dY = a Y d t + X d W ,  Y(O)=yo. 



NOTES 

I Note that the initial values xo, yo are deterministic constants. 

(a) Prove that the process R defined by R(t) = X2(t)+Y2(t) is deterministic. " 
(b) Compute E [X(t)] . 

Exercise 4.9 For a n x n matrix-A, the trace of A is defined as 

(a) If B is n x d and C is d x n, then BC is n x n. Show that 

[ fi (b) With assumptions as above, show that 

!t 
& (c) Show that the It6 formula in Theorem 4.16 can be written as 

where H denotes the Hessian matrix 

1 Exercise 4.10 Prove all claims in Section 4.8. 

4.10 Notes 
As a (far reaching) introduction to stochastic calculus and its applications, 
0ksendal (1995) and Steele (2001) can be recommended. Standard references 
on a more advanced level are Karatzas and Shreve (1988), and Revuz and Yor 
(1991). The theory of stochastic integration can be extended from the Wiener 
framework to allow for semimartingales as integrators, and a classic in this field 
is Meyer (1976). Standard references are Jacod and Shiryaev (1987), Elliott 
(1982), and Dellacherie and Meyer (1972). An alternative to the classic approach 
to semimartingale integration theory is presented in Protter (1990). 
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DIFFERENTIAL EQUATIONS 

5.1 Stochastic Differential Equations 
Let M(n, d) denote the class of n x d matrices, and consider as given the following 
objects. 

A &dimensional (column-vector) Wiener process W. 
A (column-vector valued) function p : R+ x Rn + Rn. 
A function a : R+ x Rn + M(n, d). 
A real (column) vector xo E Rn. 

We now want to investigate whether there exists a stochastic process X which 
satisfies the SDE 

dXt = p (t, Xt) dt + a (t, Xt) dWt, 

xo = $0. 

ii To be more precise we want to find a process X satisfying the integral equation 

xt = xo + lo p (s, XI) ds + u (s, X,) dW,, for all t 2 0. 
Jo  

(5.3) 

The standard method for proving the existence of a solution to the SDE above 
is to construct an iteration scheme of Cauchy-Picard type. The idea is to define 
a sequence of processes XO, X1, X2, .  . . according to the recursive definition 

x:" = xo + p (s, X:) ds + u (s, X:) dW,. I 
Having done this one expects that the sequence {Xn)r=l will converge to some 
limiting process X,  and that this X is a solution to the SDE. This construction 
can in fact be carried out, but as the proof requires some rather hard inequalities 
we only give the result. 

Proposition 5.1 Suppose that there exists a constant K such that the following 
conditions are satisfied for all x, y and t: 
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k Then there exists a unique solution to the SDE (5.1)-(5.2). The solution has the 
following properties: 

1. X is FtW -adapted. 

1 
2. X has continuous trajectories. 
3. X is a Markov process. 
4. There exists a constant C such that 

f' 
1 E [IlXtl12] 5 ceCt (1 + llxoIl2). (5.9) 

kg The fact that the solution X is 3y-adapted means that for each fixed t ,  

I 
the process value Xt is a functional of the Wiener trajectory on the interval 
(0, t ]  , and in this way an SDE induces a transformation of the space C[O, oo) 
into itself, where a Wiener trajectory W.(w) is mapped to the corresponding 
solution trajectory X.(w). Generically this transformation, which takes a Wiener 
trajectory into the corresponding X-trajectory, is enormously complicated and it 

Ph is extremely rare that one can "solve" an SDE in some LLexplicit" manner. There 
are, however, a few nontrivial interesting cases where it is possible to solve an 

t SDE, and the most important example for us is the equation below, describing 
'I 1 1 the so-called geometric Brownian motion (GBM). 

2) 
5.2 Geometric Brownian Motion 

Pn Geometric Brownian motion will be one of our fundamental building blocks for 
i the modeling of asset prices, and it also turns up naturally in many other places. 

3) The equation is one of two natural generalizations of the simplest linear ODE 
and looks as  follows: 

hre 
Geometric Brownian motion: 

ne 

dXt = aXt dt + o x t  dWt, (5.10) 

XO = 20. (5.11) 

Writing in a slightly sloppy form we can write the equation as 

xt = (a + owt) xt, 

where w is "white noise", i.e. the (formal) time derivative of the Wiener pro- 
cess. Thus we see that GBM can be viewed as a linear ODE, with a stochastic 
coefficient driven by white noise. See Fig. 5.1, for a computer simulation of GBM 

.2 and X(0) = 1. The smooth line is the graph of the expected 
t] = 1 .eat. For small values of u, the trajectory will (at least 
close to the expected value function, whereas a large value 
large random deviations. This can clearly be seen when we 

compare the simulated trajectory in Fig. 5.1 to the three simulated trajectories 
in Fig. 5.2 where we have u = 0.4. 
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I I I 
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FIG. 5.1. Geometric Brownian motion: a = 1, a = 0.2 

01 I I 

0 ' 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

FIG. 5.2. Geometric Brownian motion: a = 1, a = 0.4 
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E 
Inspired by the fact that the solution to the corresponding deterministic linear 

equation is an exponential function of time we are led to investigate the process 
2, defined by Zt = In Xt, where we assume that X is a solution and that X is 
strictly positive (see below). The It6 formula gives us 

1 

Thus we have the equation 

! This equation, however, is extremely simple: since the right-hand side does not 
I contain Z it can be integrated directly to 

which means that X is given by 

,- 
Strictly speaking there is a logical flaw in the reasoning above. In order for 

; Z to be well defined we have to assume that there actually exists a solution X 
to eqn (5.10) and we also have to assume that the solution is positive. As for the 
existence, this is covered by Proposition 5.1, but the positivity seems to present 
a bigger problem. We may actually avoid both these problems by regarding the 
calculations above as purely heuristic. Instead, we define the process X by the 
formula (5.12). Then it is an easy exercise to show that X thus defined actually 
satisfies the SDE (5.10)-(5.11). Thus we really have proved the first part of the 
following result, which will be used repeatedly in the sequel. The result about 
the expected value is an easy exercise, which is left to the reader. 

Proposition 5.2 The solution to the equation 

is given by  
X(t) = xo . exp { ( a  - +a2) t + uw(t)) .  (5.15) 

i The expected value is given by 

\ E [Xt]  = xOePt. (5.16) 
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I 5.3 The Linear SDE 
In this section, we will study the linear SDE, which in the scalar case has the 
form 

dXt = aXtdt + udWt, 

i (5.17) xo = so. 

This equation turns up in various physical applications, and we will also meet it 
below in connection with interest rate theory. 

In order to get some feeling for how to solve this equation we recall that the 

dxt -- 
dt 

- axt + ut, 

. where u is a deterministic function of time, has the solution 

1 If we, for a moment, reason heuristically, then it is tempting to formally divide 
eqn (5.17) by dt. This would (formally) give us 

I and, by analogy with the ODE above. one is led to coniecture the formal solution 

Generally speaking, tricks like this will not work, since the solution of the 
ODE is based on ordinary calculus, whereas we have to use It6 calculus when 
dealing with SDEs. In this case, however, we have a linear structure, which 
means that the second order term in the It6 formula does not come into play. 
Thus the solution of the linear SDE is indeed given by the heuristically derived 
formula above. We formulate the result for a slightly more general situation, 
where we allow X to be vector-valued. 

Proposition 5.3 Consider the n-dimensional linear SDE - 

where A is an n x n matrix, b is an Rn-valued deterministic function (in column- 
vector form), a is a deterministic function taking values in M(n, d), and W a 
d-dimensional Wiener process. The solution of this eauation is aiven bu 
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! Hew we have used the matrix exponential eAt, defined by 

Proof Defining the process X by (5.20) and using the It6 formula, it is easily 
seen that X satisfies the SDE (5.19). See the exercises for some details. 

In the exercises you will find results about the moments of Xt as well as 
details about the matrix exponential. 

5.4 The Infinitesimal Operator 

Consider, as in Section 5.1, the n-dimensional SDE 
I 

dXt = ,U (t, Xt) dt + u (t, Xt) dWt . (5.21) 

t 
Through the It6 formula, the process above is closely connected to a partial 
differential operator A, defined below. The next two sections are devoted to 
investigating the connections between, on the one hand, the analytical properties 
of the operator A, and on the other hand the probabilistic properties of the 
process X above. 

Definition 5.4 Given the SDE in (5.21), the partial diferential operator A, 
referred to as the infinitesimal operator of X, is defined, for any function 
h ( ~ )  with h E c ~ ( R ~ ) ,  by 

where as before 
C(t, x) = u(t, x)u*(t, 5). 

This operator is also known as the Dynkin operator, the It6 operator, 
or the Kolmogorov backward operator. We note that, in terms of the / infinitesimal generator, the It6 formula takes the form 

i 

df(t,Xt) = {g + df) dt + [Vxf]udWt, 

where the gradient V, is defined for h E c'(R~) as  
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5.5 Partial Differential Equations 
In this section, we will explore the intimate connection which exists between 
stochastic differential equations and certain parabolic partial differential equa- 
tions. Consider for example the following so-called Cauchy problem. 

We are given three scalar functions p(t, x), a(t, x) and @(x). Our task is to 
find a function F which satisfies the following boundary value problem on 
[0, T] x R: 

Now, instead of attacking this problem using purely analytical tools, we will pro- 
duce a so called stochastic representation formula, which gives the solution 
to (5.22)-(5.23) in terms of the solution to an SDE which is associated to (5.22)- 
(5.23) in a natural way. Thus we assume that there actually exists a solution F 
to (5.22)-(5.23). Let us now fix a point in time t and a point in space x. Having 
fixed these we define the stochastic process X on the time interval [t, T ]  as  the 
solution to the SDE 

and the point is that the infinitesimal generator A for this process is given by 

which is exactly the operator appearing in the PDE above. Thus we may write 
the boundary value problem as 

Applying the It6 formula to the process F (s, X(s)) g' lves us 
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Since, by assumption, F actually satisfies eqn (5.26), the time integral above will 
vanish. If furthermore the process cr(s, X,)(aF/dx)(s, X,) is sufficiently integ- 
rable and we take expected values, the stochastic integral will also vanish. The 
initial value Xt = x and the boundary condition F(T, x) = @(x) will eventually 
leave us with the formula 

F(t, $1 = Et,, [@ ( X T ) ~  , 

where we have indexed the expectation operator in order to emphasize that the 
expected value is to be taken given the initial value Xt = x. Thus we have 
proved the following result, which is known as the Feynman-KaE stochastic 
representation formula. 

Proposition 5.5 (Feynman-KaE) Assume that F is a solution to the bound- 
ary value problem 

aF 1 ,  d 2F  
-(t,x) +p(t,x)-- + -u (t,x)-(t,x) = 0, 

a x  2 ax2 

F(T,x) = @(x). 

Assume furthermore that the process 

d F  
4 . 7  xs)z(s, x8) 

is in E2 (see Definition 4.3), where X is defined below. Then F has the 

F( t7  2) = Et,, [@ (XT)] (5.29) 

where X satisfies the SDE 

dXs = / l ( ~ ,  Xs) ds + U(S, Xs) dWs, (5.30) 

Xt = X. (5.31) 

Note that we need the integrability assumption o ( s , ~ , ) g ( s , X , )  E L2 in 
order to guarantee that the expected value of the stochastic integral in (5.28) 
equals zero. In fact the generic situation is that a boundary value problem of the 
type a b o v e a  so-called parabolic problem-will have infinitely many solutions, 
(see John 1982). It will, however, only have one "nice" solution, the others being 
rather "wild", and the proposition above will only give us the "nice" solution. 

We may also consider the closely related boundary value problem 

d F  1 d 2 F  
-(t,x) +p(t,x)- + -02(t,x)-(t,x) - rF(t ,x) = 0, 

ax2 (5.32) 
ax  2 

F(T,x)=@(x) ,  (5.33) 



DIFFERENTIAL EQUATIONS 

where r is a given real number. Equations of this type appear over and over 
again in the study of pricing problems for financial derivatives. Inspired by the 
ODE technique of integrating factors we are led to multiply the entire eqn (5.32) 
by the factor erS, and if we then consider the process Z(s) = e-'" F (s, X(s)), 
where X as before is defined by (5.30)-(5.31), we obtain the following result. 

Proposition 5.6 (Feynman-KaE) Assume that F is a solution to the bound- 
ary value problem 

O F  aF 1 a2F 
-(t,x) +p(t,x)- + -u2(t,x)-(t,x) - rF(t,x) = 0, 
at ax 2 ax2 

F(T,x) = cP(x). (5.35) 

Assume furthermore that the process a(s, x,) (s, X,) is in it2, where X is 
defined below. Then F has the representation 

F(t , x) = e-r(T-t) E,,, [a (XT)] , 

where X satisfies the SDE 

dXs = p(~ ,X , )ds  + a(~,Xs)dWs, 

xt = x. 

Example 5.7 Solve the PDE 

aF 1 ,d2F 
a ( t , ~ ) + - ~  - i - ( t , ~ ) = O ,  

2 6x 
F(T, x) = x2, 

where a is a constant. 

Solution: From Proposition 5.5 we immediately have 

F( t ,  2) = Et,, [X$] 7 

where . [ # ,  ,: 

Xttf 

, .< dX, =O.ds+udW,, 
c xt = x. 

This equation can easily be solved, and we have 
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so XT has the distribution N [ x ,  o m ] .  Thus we have the solution 

F(t ,  X )  = E [x$] = Var [XT] + { E  [ x T ] } ~  

= 0 2 ( ~  - t )  + x2. 

Up to now we have only treated the scalar case, but exactly the same 
arguments as above will give us the following result. 

Proposition 5.8 Take as given 

A (column-vector valued) function p : R+ x Rn + Rn. 
A function C : R+ x Rn 

-t M(n,  n ) ,  which can be written in the form 

c(t, X )  = b(t, x) (T*(~,  x ) ,  

for some function u : R+ x Rn -t M ( n ,  d). 
A real valued function @ : R" + R. 
A real number r .  

Assume that F : R+ x Rn -t R is a solution to the boundary value problem 

a F  1 a 2 ~  
- ( t , ~ ) +  E r ( t , ~ ) ~ ( t . x ) +  5 C Cij(t.2)- (t, X )  - T F ( ~ ,  X )  =o, 

i , j=l  ax,axj 

F(T ,  x )  = @(x).  

Assume furthermore that the process 

n 
a F  

C o j ( s ,  xs)-(s ,  xs) 
i=l axi 

is in f2 (see Definition 4.3), where X is defined below. Then F has the 

F( t , x )  = e-r(T-t)~t,, [a ( X T ) ] ,  (5.39) 

where X satisfies the SDE 

dXs = p(s, X s )  dt + U ( S ,  X s )  dWs, (5.40) 

Xt = X .  (5.41) 

We end this section with a useful result. Given Lemma 4.9 the proof is easy and 
left to the reader. 
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Proposition 5.9 Consider as given a vector process X w 
a function F( t ,  x). Then, modulo some integrability COI 

ing hold: 

ith gene! 
rlditions, 

rator 
the 

The process F(t ,  X t )  is a martingale relative to the filtration FX if and 
onlu i f  F satisfies the PDE I 

The process F ( t ,  X t )  is a martingale relative to the 
only if, for every ( t , x )  and T 2 t ,  we have 

F ( t ,  4 = Et,, [F(T, X T ) ~ .  

5.6 The Kolmogorov Equations 

We will now use the results of the previous section in order to derive some 
classical results concerning the transition probabilities for the solution to an 
SDE. The discussion has the nature of an overview, so we allow ourselves some 
latitude as to technical details. 

Suppose that X is a solution to the equation 
i 

dXt = At,&) dt + ~ ( t ,  xt) dWt, (5.42) 

with infinitesimal generator d given by 

where as usual 
C(t,z) = a( t ,x )u*( t ,  x). I 

I 

Now consider the boundary value problem 

($ + du) (s, ar) = 0, ( 8 ,  Y) E (0, T) x Rn, I I 
~ ( T , ! / ) = I B ( Y ) ,  Y E R n ,  

where IB is the indicator fundion of the set B. From Proposition 5.8 we 
immediately have 

~ ( 3 ,  Y )  = E*,, [ I B ( ~ T ) ]  = ~ ( X T  E B 1x8 = Y ), 

where X is a solution of (5.42). This argument can also be turned around, and 
we have thus (more or less) proved the following result. 
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Proposition 5.10 (Kolmogorov backward equation) Let X be a solu- 
tion to eqn (5.42). Then the transition probabilities P(s, y; t, B) = 
P (Xt E B IX(s) = y) are given as the solution to the equation 

(g + M )  (3, Y; t, B) = 0, (s, Y) E (0, t) x Rn, (5.43) 

P(t, Y; t, B) = IB(Y). (5.44) 

Using basically the same reasoning one can also prove the following corresponding 
result for transition densities. 

Proposition 5.11 (Kolmogorov backward equation) Let X be a solution 
to eqn (5.42). Assume that the measure P(s, y; t, dx) has a density p(s, y; t, x) dx. 
Then we have 

(2 + AP) (s, Y; t, x) = 0, (s, r) E (0, t) x Rn, (5.45) 

p(s, y; t, x) -+ d,, as s -t t. (5.46) 

The reason that eqns (5.43) and (5.45) are called backward equations is that 
the differential operator is working on the "backward variables" (s, y). We will 
now derive a corresponding L'forward" equation, where the action of the differ- 
ential operator is on the "forward" variables (t, x). For simplicity we consider 
only the scalar case. 

We assume that X has a transition density. Let us then fix two points in time 
s and T with s < T. Now consider an arbitrary "test function", i.e. an infinite 
differentiable function h(t, x) with compact support in the set (s, T) x R. From 
the It6 formula we have 

ah * ah 
[ h ( ~ ,  XT) = h(s, xS)+ J (% + h) (t, x t )  dt + az(t9 x t )  dwt. 

Applying the expectation operator E,,, 1.1, and using the fact that, because of 
the compact support, h(T, x) = h(s, x) = 0, we obtain 

JW lT p(s, y; t, X) (: + A) h(t, X) dz dt = 0. 
-00 

Partial integration with respect to t (for &) and with respect to x (for A) gives us 

IT h(t,x) (-: +A*) p(s,y; t,x) dxdt = 0, 

where the adjoint operator A* is defined by 

a 
(A* f )  (t, X) = -- 

1 a* 
ax C(t, x)f (t. x)l + 2 a [c2(t, x)f (t, 41 - 
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Since this equation holds for all test functions we have shown the follow- 
ing result. 

Proposition 5.12 (Kolmogorov forward equation) Assume that the solu- 
tion X of eqn (5.42) has a transition density p(s, y; t ,  x). Then p will satisfy the 
Kolmogorov forward equation 

This equation is also known as the Fokker-Planck equation. The 
multidimensional version is readily obtained as 

a p  
~ ( s ,  s; t. 5) = A*P(s, Y; t ,  x ) ,  

where the adjoint operator A* is defined by 

Example 5.13 Let us consider a standard Wiener process with constant 
diffusion coefficient o, i.e. the SDE 

dXt = u dWt. 
I 
I 

The Fokker-Planck equation for this process is 

and it is easily checked that the solution is given by the Gaussian 
densitv 

Example 5.14 Consider the GBM process 

The Fokker-Planck equation for this process is 
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I , A change of variables of the form x = ey reduces this equation to an equation 
, with constant coefficients, which can be solved by Fourier methods. For us it is 

perhaps easier to get the transition density directly by solving the SDE above. 
See the exercises below. 

5.7 Exercises 

b, Exercise 5.1 Show that the scalar SDE 

has the solution 

X(t) = eat . xo + a ea(t-s) dWs, I' (5.49) 

by differentiating X as defined by eqn (5.49) and showing that X so defined 
actually satisfies the SDE: 

Hint: Write eqn (5.49) as 

where 

and first compute the differentials dZ, dY and dR. Then use the multidimen- 
sional It6 formula on the function f (y , z, r )  = y + z . r. 
Exercise 5.2 Let A be an n x n matrix, and define the matrix exponential eA 

by the series 

E This series can be shown to converge uniformly. 

(a) Show, by taking derivatives under the summation sign, that 
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(b) Show that 
eO = I, 

where 0 denotes the zero matrix, and I denotes the identity matrix. 
(c) Convince yourself that if A and B commute, i.e. AB = BA, then 

eA+B = eA . eB = eB . eA. 

Hint: Write the series expansion in detail. 
(d) Show that eA is invertible for every A, and that in fact 

[&I -' = .-A. 

(e) Show that for any A, t and s 

eA(t+8) = eAt . eAs 

(f) Show that 
(&)* = eA* 

Exercise 5.3 Use the exercise above to complete the details of the proof of 
Proposition 5.3. 

Exercise 5.4 Consider again the linear SDE (5.19). Show that the 
expected value function m(t) = E[X(t)], and the covariance matrix 
C(t) = { C O V ( X , ( ~ ) , X ~ ( ~ ) ) } ~ , ~  are given by 

m(t) = eAtzo + eA(t-s)b(s) ds, l 
C(t) = eA(t-8)u(s)u*(s)eA*(t-s) ds, 

where * denotes transpose. 

Lt 
Hint: Use the explicit solution above, and the fact that 

C(t) = E [XtX,*] - m(t)m*(t). 

Geometric Brownian motion constitutes a class of processes which is closed under 
a number of nice operations. Here are some examples. 

Exercise 5.5 Suppose that X sati&ea the SDE 

dXt = axt dt + uXt dWt . 

Now define Y by Yt = x!, where /3 is a real number. Then Y is also a GBM 
process. Compute dY and find out which SDE Y satisfies. 
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Exercise 5.6 Suppose that X satisfies the SDE 

dXt = axt dt + axt dWt, 

and Y satisfies 
d& =y&dt+b&d%,  

where V is a Wiener process which is independent of W. Define Z by Z = X/Y 
and derive an SDE for Z by computing dZ  and substituting Z for X/Y in the 
right hand side of dZ. If X is nominal income and Y describes inflation then Z 
describes real income. 

Exercise 5.7 Suppose that X satisfies the SDE 

dXt = axt dt + u X ~  dWt, 

and Y satisfies 
d& = 7&dt+6&dWt. 

Note that now both X and Y are driven by the same Wiener process W. Define 
Z by Z = X/Y and derive an SDE for Z. 

Exercise 5.8 Suppose that X satisfies the SDE 

dXt = axt dt + axt dWt, 

and Y satisfies 
d& = y&dt+6xd&,  

where V is a Wiener process which is independent of W. Define Z by Z = X . Y 
and derive an SDE for Z. If X describes the price process of, for example, IBM 
in US$ and Y is the currency rate SEK/US$ then Z describes the dynamics of 
the IBM stock expressed in SEK. 

Exercise 5.9 Use a stochastic representation result in order to solve the 
following boundary value problem in the domain [0, T] x R: 

aF aF 1 a2F - + px- + -&2- = at ax 2 ax2 0, 

F(T, x) = ln(x2). 

Here p and a are assumed to be known constants. 

Exercise 5.10 Consider the following boundary value problem in the domain 

aF aF 1 a2F 
- + p(t,x)- + -a2(t,x)- + k(t,x) = 0, at ax 2 ax2 

F(T, x) = @(x). 

Here p, a, k and @ are assumed to be known functions. 
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Prove that this problem has the stochastic representation formula 

F( t ,  2) = Et,, [@(XT)] + Et,, [k(s ,  Xs)] ds, 

where as usual X has the dynamics 

6' 
dX,  = p(s, X,) ds + U ( S ,  X,) dW,, 

xt = x. 

Hint: Define X as above, assume that F actually solves the PDE and 
consider the process Z, = F ( s ,  X, ) . 
Exercise 5.11 Use the result of the previous exercise in order to solve 

aF 1 a2F - + -x2- 
at 2 ax2 

+ x = o ,  

F(T,  x )  = ln(x2). 

Exercise 5.12 Consider the following boundary value problem in the domain 
[O,T] x R. 

aF aF  1 a2F 
-+p(t ,x)-+ - a2(t,x)-  +r(t , x )F  = 0 ,  at ax 2 8x2 

F ( T , x )  = @(x) .  

Here p(t , x) , a( t  , x )  , r (t , x )  and @(x)  are assumed to be known functions. Prove 
that this problem has a stochastic representation formula of the form 

~ ( t ,  x )  = E~~ F(xT)eJ: r(8J*)*8] , 

by considering the process Z, = F(s ,  X,) x exP [c r(u, Xu)  du] on the time 
interval [t, TI. 

Exercise 5.13 Solve the boundary value problem 

aF 1 ,d2F 1 d2F 
-(t, ~ , y )  + -a - ( t ,x ,y)  + -62-(t,x,y) = 0, at 2 ax2 2 a y 2  

F (T ,  x , y )  = xy- 

Exercise 5.14 Go through the details in the derivation of the Kolmogorov 
forward equation. 

Exercise 5.15 Consider the SDE 

dXt = a d t  + udWt,  
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where a and a are constants. 

(a) Compute the transition density p(s, y ;  t ,  x), by solving the SDE. 
(b) Write down the Fokker-Planck equation for the transition density and 

check the equation is indeed satisfied by your answer in (a). 

Exercise 5.16 Consider the standard GBM i 
dXt = dt + gXt dWt 

and use the representation 

Xt = xs exp { [ a  - $a2] (t - s) + o [Wt - W,]) 

D in order to derive the transition density p(s, y ;  t, x) of GBM. Check that this 
density satisfies the Fokker-Planck equation in Example 5.14. 

5.8 Notes 
All the results in this chapter are standard and can be found in, for example, 
Karatzas and Shreve (1988), Revw and Yor (1991), Bksendal (1995). For an 
encyclopedic treatment of the probabilistic approach to parabolic PDEs see 
Doob (1984). 
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PORTFOLIO DYNAMICS 

6.1 Introduction 
Let us consider a financial market consisting of different assets such as stocks, 
bonds with different maturities, or various kinds of financial derivatives. In this 
chapter we will take the price dynamics of the various assets as given, and the 
main objetive is that of deriving the dynamics of (the value of) a so-called self- 
financing portfolio. In continuous time this turns out to be a fairly delicate task, 
so we start by studying a model in discrete time. We will then let the length of 
the time step tend to zero, thus obtaining the continuous time analogs. It is to 
be stressed that this entire section is only motivating and heuristic. The formal 
definitions and the corresponding theory will be given in the next section. 

Let us thus study a financial market, where time is divided into periods of 
length At, and where trading only takes place at the discrete points in time 
nAt,  n = 0,1, . . .. We consider a fixed period [t, t + At). This period (where 
of course t = nAt for some n )  is henceforth referred to as "period t". In the 
sequel we will assume that all assets are stocks, but this is purely for linguistic 
convenience. 

Definition 6.1 

N = the number of different types of stocks. 

hi(t) = number of shares of type i held during the period [t, t + At). 

h(t)  = the portfolio [hl ( t ) ,  . . . , hN(t)]  held during period t .  

c(t) = the amount of money spent on consumption per unit time 

during the period [t, t + At).  

Si(t) = the price of one share of type i during the period [t, t + At).  

V ( t )  = the value of the portfolio h at time t. 

The information and the decisions in the model are structured as follows: 

At time t ,  i.e. at the start of period t ,  we bring with us an "old" portfolio 
h(t - At) = {hi(t - At) ,  i = 1,.  . . , N) from the previous period t - At. 
At time t we can observe the price vector S( t )  = (S l ( t ) ,  . . . , SN(t ) ) .  
At time t ,  after having observed S( t ) ,  we choose a new portfolio h(t),  to 
be held during period t .  At the same time we also choose the consumption 
rate c(t) for the period t. Both h(t) and c(t) are assumed to be constant , 
over the period t. 
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Remark 6.1.1 Note that, so far, we only consider nondividend paying assets. 
The case of dividend paying assets is slightly more complicated, and since it will 
only be used in Chapter 16, we omit it from our main discussion. See Section 6.3 
for details. 

We will only consider so called self-financing portfolio-xonsumption pairs 
; (h, c), i.e. portfolios with no exogenous infusion or withdrawal of money (apart 

of course from the c-term). In other words, the purchase of a new portfolio, as 
well as all consumption, must be financed solely by selling assets already in the 
portfolio. 

To start the analysis we observe that our wealth V(t), i.e. the wealth at the 
start of period t,  equals the value of the old portfolio h(t - At). Thus we have 

N 

V(t) = C hi (t - At)Si (t) = h(t - At)S(t), (6.1) 
a=1 

where we have used the notation 

for the inner product in RN.  Equation (6.1) simply says that at the beginning 
of period t our wealth equals what we get if we sell our old portfolio at today's 
prices. We may now use the proceeds of this sale for two purposes: 

Reinvest in a new portfolio h(t). 

i Consume at the rate c(t) over the period t. 

G The cost of the new portfolio h(t), which has to be bought at today's prices, is 
given by 

N 

whereas the cost for the consumption rate c(t) is given by c(t)At. The budget 
equation for period t thus reads 

If we introduce the notation 

AX(t) = X(t) - X(t  - At), 

for an arbitrary process X, we see that the budget equation (6.2) reads 
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Since our goal is to obtain the budget equation in continuous time it is now 
tempting to let At -+ 0 in eqn (6.3) to obtain the formal expression 

S(t) dh(t) + c(t) dt = 0. 

This procedure is, however, not correct, and it is important to understand why 
that is so. The reasons are as follows: 

All stochastic differentials are to be interpreted in the It6 sense. 
The It6 integral g(t) dW(t) was defined as the limit of sums of the type 

C d t n )  [W(tn+~) - W(tn)l, 

where it was essential that the W-increments were forward differences. 
In eqn (6.3) we have a backward h-difference. 

In order to get It6 differentials we thus have to reformulate eqn (6.3). This is 
done by adding and subtracting the term S(t  - At)Ah(t) to the left-hand side, 
and the budget equation now reads 

S(t  - At)Ah(t) + AS(t)Ah(t) + c(t)At = 0. 

Now, at last, we may let At + 0 in the budget equation (6.4), giving us 

S(t) dh(t) + dh(t) dS(t) + c(t) dt = 0. 

Letting At -+ 0 in eqn (6.1) gives us 

V(t> = h(t)S(t), 

and if we take the It6 differential of this expression we get 

dV(t) = h(t) dS(t) + S(t) dh(t) + dS(t) dh(t). 

To sum up, eqn (6.7) is the general equation for the dynamics of an arbitrary 
portfolio, and eqn (6.5) is the budget equation which holds for all self-financing 
portfolios. Substituting (6.5) into (6.7) thus gives us our desired object, namely 
the dynamics of (the wealth of) a self-financing portfolio. 

dV(t) = h(t) dS(t) - ~ ( t )  dt. 

In particular we see that in a situation without any consumption we have the 
following V-dynamics: 

dV(t) = h(t) dS(t). 
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Remark 6.1.2 The natural economic interpretation of eqn (6.9) is of course 
that in a model without any exogenous income, all change of wealth is due to 
changes in asset prices. Thus (6.8) and (6.9) seem to be rather self-evident, and 
one may think that our derivation was rather unneccesary. This is, however, not 

' the case, which we realize if we recall that the stochastic differentials in (6.8) 
and (6.9) are to be interpreted in the It8 sense, where it is important that the 
integrator increment d S ( t )  is a forward increment. If we had chosen to define 
our stochastic integral in some other way, e.g. by using backward increments 

e done), the formal appearance of (6.8)-(6.9) would have 
The real content, on the other hand, would of course have 

6.2 Self-financing Portfolios 

Having gone through the derivations of the preceding section there are some 
natural questions. 

1. In which sense ( L ~ ,  P-as., etc.) is the limiting procedure of letting At + 0 
to be interpreted? 

2. Equation (6.8) is supposed to be describing the dynamics of a self-financing 
portfolio in continuous time, but what is "continuous time trading" 
supposed to mean "in reality"? 

The answer to these questions is simply that the preceding reasoning has only 
been of a motivating nature. We now give a purely mathematical definition of 
the central concepts. The interpretations of the concepts are of course those of 
the preceding section. 

Definition 6.2 Let the N-dimensional price process { S ( t ) ;  t 2 0 )  be given. 
1. A portfolio strategy (most often simply called a portfolio) is any 3:- 

adapted N-dimensional process {h ( t ) ;  t 2 0) .  
2. The portfolio h is said to be Markovian if i t  is of the form 

h ( t )  = h( t ,  S ( t ) ) ,  

for some function h : R+ x R~ + RN. 
3. The value process vh wmsponding to the portfolio h is given by 

N 

vh(t) = C h , ( t ) ~ , ( t ) .  (6.10) 
i=l 

4. A consumption process is any 3:-adapted one-dimensional process 

onsumption pair ( h ,  c) is called self-financing if the value 
process vh satisfies the condition 

N 

d v h ( t )  = C h,(t) dS,(t)  - e( t )  dt ,  (6.11) 
i=l 
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i.e. if 
d v h  (t) = h(t) dS(t) - c(t) dt. 

Remark 6.2.1 Note that, in general, the portfolio h(t) is allowed to depend 
upon the entire past price trajectory {S(U); u < t). In the sequel we will almost 
exclusively be dealing with Markovian portfolios, i.e. those portfolios for which 
the value at time t depends only on today's date t and today's value of the price 
vector S(t). 

For computational purposes it is often convenient to describe a portfolio in 
relative terms instead of in absolute terms as above. In other words, instead of 
specifying the absolute number of shares held of a certain stock, we specify the 
relative proportion of the total portfolio value which is invested in the stock. 

Definition 6.3 For a given portfolio h the corresponding relative portfolio u 
is given by 

where we have 
N 

i=l 

The self-financing condition can now easily be given in terms of the relative 
portfolio. 

Lemma 6.4 A portfolio-consumption pair (h, c) is self-financing if and only if 

N 

dvh(t) = vh(t )  c ui(t)% - c(t) dt. 
i=l si(t) . 

In the future we will need the following slightly technical result which roughly 
says that if a process looks as if it is the value process of a self-financing portfolio, 
then it actually is such a value process. 

Lemma 6.5 Let c be a consumption process, and assume that there exist a scalar 
process Z and a vector process q = (ql, . . . , qN) such that 

Now define a portfolio h by 
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Then the value process vh is given by vh = 2, the pair ( h ,  c )  is self-financing, 
and the corresponding relative portfolio u is given by u = q. 

Proof By definition the value process vh is given by Vh(t)  = h ( t ) S ( t ) ,  so 
eqns (6.15) and (6.16) give us 

Inserting (6.17) into (6.16) we see that the relative portfolio u corresponding to 
' hisgivenby u=q.Inserting (6.17) and (6.16) into (6.14) weobtain 

d v h ( t )  = C hi (t)  dS* (t) - ~ ( t )  d t ,  
i=l 

I which shows that (h, c) is self-financing. 

6.3 Dividends 
This section is only needed for Chapter 16. We again consider the setup and 
notation of Section 6.1, with the addition that the assets now may pay dividends. 

Definition 6.6 W e  take as given the processes Dl ( t) ,  . . . , D N ( ~ ) ,  where Di ( t)  
denotes the cumulative dividends paid to the holder of one unit of asset i 
during the interval (0, t].  If Di has the structure 

dD; ( t )  = 6; ( t)  dt, 
1 

for some phcess hi, then we say that asset i pays a continuous dividend yield. 

The dividends paid to the holder of one unit of asset i during ( s ,  t] are thus 
given by Di( t )  - Di(s ) ,  and in the case of a dividend yield we have 

i t 
Di (t)  = 1 6, ( s )  ds. 

I We assume that all the dividend processes have stochastic differentials. 
We now go on to derive the dynamics of a self-financing portfolio, and as 

usual we define the value process V by 

The difference between the present situation and the nondividend paying case 
is that the budget equation (6.2) now has to be modified. We have to take 
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into account the fact that the money at our disposal at time t now consists of 
two terms: 

The value of our old portfolio, as usual given by 

h(t - At)S(t). 

The dividends earned during the interval (t - At, t]. These are given by 

N 

C hi (t - At) [Di(t) - Di (t - At)] = h(t - At) AD(t). 
i=l 

The relevant budget equation is thus given by 

h(t - At)S(t) + h(t - At)AD(t) = h(t)S(t) + c(t)At. 

Going through the same arguments as in Section 6.1 we end up with the 
following dynamics for a self-financing portfolio: 

N N 

dV(t) = hi (t) dSi (t) + hi (t) dDi (t) - c(t) dt, 
i=l i=l 

and we write this as a formal definition. 

Definition 6.7 

1. The value process vh is given by 
I 

N 

vh(t )  = C hi(t)Si(t). 
d = l  

2. The (vector valued) gain process G is defined by 

G(t) = S( t )  + D(t). 

3. The portfolio-consumption pair (h, c) is called self-financing if 

N 

dvh(t)  = C hi(t) dGi (t) - ~ ( t )  dt. 
2=1 

With notation as above we have the following obvious result. 
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Lemma 6.8 I n  terms of the relative portfolio weights, the dynamics of 
a self-financing portfolio can be expressed as 

N 

dvh (t)  = V( t )  . %(t)  dC.0 - c ( t )  d t .  (6.22) 
i=l Si(t) 

6.4 Exercise 
Exercise 6.1 Work out the details in the derivation of the dynamics of 
a self-financing portfolio in the dividend paying case. 

I 

1 . c  

~1oidi)'llqx:' ,I+ 1 " ' 7 'a 

* I  

I .  

i ' 
I ,  ( , I ,  r , ,kj2  J. (?)'&Is 

, ,:ryi"$t & I  -. 
. c , i c;ris 4;hi;;'il v,,&:' . .  , I 

, + . i ' ,  = * j*v,*#rl: r , q + r ? ,  ,f f." ' , ' I  i 
, .. 

', 3 -.:+ "*>, , t" 2_L7"rb,: , I 4 ,  . 
? I "  

I $ , .  

1 



ARBITRAGE PRICING 

7.1 Introduction 
In this chapter, we will study a special case of the general model set out in the 
previous chapter. We will basically follow the arguments of Merton (1973), which 
only require the mathematical machinery presented in the previous chapters. For 
the full story see Chapter 10. 

Let us therefore consider a financial market consisting of only two assets: a 
risk free asset with price process B, and a stock with price process S. What, 
then, is a risk free asset? 

Definition 7.1 The price process B is the price of a risk free asset i f  it has 
the dynamics 

d B ( t )  = r ( t ) B ( t )  dt, (7.1) 

where r is any adapted process. 

The defining property of a risk free asset is thus that it has no driving 
dW-term. We see that we also can write the B-dynamics as 

so the B-process is given by the expression 

A natural interpretation of a riskless asset is that it corresponds to a bank with 
the (possibly stochastic) short rate of interest r .  An important special case 
appears when r is a deterministic constant, in which case we can interpret B as 
the price of a bond. 

We assume that the stock price S is given by 

d S ( t )  = S(t)cr (t, S(t))  d t  + S ( t ) a  (t, S ( t ) )  d W ( t ) ,  (7.2) 

where w is a Wiener process and a and a are given deterministic functions. The 
reason for the notation W ,  instead of the simpler W, will become clear below. 
The function a is known as the volatility of S, while cr is the local mean rate 
of return of S .  
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Remark 7.1.1 Note the difference between the risky stock price B, as modeled 
above, and the riskless asset B. The rate of return of B is formally given by 

This object is locally deterministic in the sense that, at time t ,  we have 
complete knowledge of the return by simply observing the prevailing short rate 

; r(t) .  Compare this to the rate of return on the stock S. This is formally given by 

and this is not observable at time t. It consists of the terms a (t, S ( t ) )  and 
a ( t ,  S ( t ) ) ,  which both are observable at time t ,  plus the "white noise" term 
( d ~ ( t ) / d t ) ,  which is random. Thus, as opposed to the risk free asset, the stock 

, has a stochastic rate of return, even on the infinitesimal scale. 

The most important special case of the above model occurs when r ,  a and a 
are deterministic constants. This is the famous Black-Scholes model. 

Definition 7.2 The Black-Scholes model consists of two assets with dynam- 
ics given bg 

d B ( t )  = r B ( t )  d t ,  
- 'i 

d S ( t )  = aS(t) d t  + a S ( t )  d ~ ( t ) ,  

where r ,  a, and a are deterministic constants. 

7.2 Contingent Claims and Arbitrage 
We take as given the model of a financial market given by eqns (7.1)-(7.2), 
and we now approach the main problem to be studied in this book, namely the 
pricing of financial derivatives. Later we will give a mathematical definition, but 
let us at once present the single most important derivative-the European call 
option. 

Definition 7.3 A European call option with exercise price (or strike price) 
K and time of maturity (exercise date) T on  the underlying asset S is a 
contract defined by the following clauses. 

. The holder of the option has, at time T ,  the right to buy one share of the 
underlying stock at the price K SEK from the underwriter of the option. 
The holder of the option is in no way obliged to buy the underlying stock. 
The right to  buy the underlying stock at the price K can only be exercised 
at the precise time T .  



I 

90 ARBITRAGE PRICING 

Note that the exercise price K and the time of maturity T are determined 
at the time when the option is written, which for us typically will be at t = 0. 
A European p u t  option is an option which in the same way gives the holder 
the right to sell a share of the underlying asset at a predetermined strike price. 
For an American call option the right to buy a share of the underlying asset 
can be exercised at any time before the given time of maturity. The common 
factor of all these contracts is that they all are completely defined in terms of the 
underlying asset S, which makes it natural to call them derivative instruments 
or contingent claims. We will now give the formal definition of a contingent 
claim. 

Definition 7.4 Consider a financial market with vector price process S .  
A contingent claim with da te  of maturi ty (exercise date) T ,  also called 
a T-claim, is any stochastic variable X E 3;. A contingent claim X is called a 
simple claim if it is of the form 

X = @(S(T)). The function @ is called the contract function. 

The interpretation of this definition is that a contingent claim is a contract, 
which stipulates that the holder of the contract will obtain X SEK (which can be 
positive or negative) at the time of maturity T. The requirement that X E 3; 
simply means that, at time T, it will actually be possible to determine the 
amount of money to be paid out. We see that the European call is a simple 
contingent claim, for which the contract function is given by 

@(x) = max [x - K, 01. 

The graphs of the contract functions for European calls and puts can be seen in 
Figs 7.1 and 7.2. It is obvious that a contingent claim, e.g. like a European call 
option, is a financial asset which will fetch a price on the market. Exactly how 
much the option is worth on the market will of course depend on the time t and 
on the price S(t)  of the underlying stock. Our main problem is to determine a 
"fair" (in some sense) price for the claim, and we will use the standard notation 

w t ;  XI, 

for the price process of the claim X, where we sometimes suppress the X. In the 
case of a simple claim we will sometimes write n(t; a). 

If we start at time T the situation is simple. Let us first look at the particular 
case of a European call 

1. If S(T) 2 K we can make a certain profit by exercising the option in order 
to buy one share of the underlying stock. This will cost us K SEK. Then 



CONTINGENT CLAIMS AND ARBITRAGE 

FIG. 7.1. Contract function. European call, K = 100 

FIG. 7.2. Contract function. European put, K = 100 

! we immediately sell the asset on the stock exchange at the price S(T), 
thus giving us a net profit of S(T) - K SEK. 

2. If S(T) < K the option has no value whatsoever. 

Thus we see that the only reasonable price ll (T) for the option at time T is 
given by 

ll (T) = m a .  [S(T) - K,  01. (7.6) 
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Exactly the same way we see that for a more general contingent claim X, we 
have the relation 

n(T; X) = X, (7.7) 

and in the particular case of a simple claim 

For any time t < T it is, however, far from obvious what the correct price is for 
a claim X. On the contrary it seems to be obvious that there is no such thing 
as a "correct" or "fair" price. The price of an option, like the price of any other 
asset, is of course determined on the (option) market, and should therefore be 
an extremely complex aggregate of, for example, the various attitudes to risk 
on the market and expectations about the future stock prices. It is therefore an 
extremely surprising fact that, given some fairly mild assumptions, there is a 
formula (the BlackScholes formula) which gives the unique price of the option. 
The main assumption we will make is that the market is efficient in the sense 
that it is free of arbitrage possibilities. We now define this new and central 

E concept. 

Definition 7.5 A n  arbitrage possibility on a financial market is a sev-financed 
portfolio h such that 

W e  say that the market is arbitrage free if there are no arbitrage possibilities. 

An arbitrage possibility is thus essentially equivalent to the possibility of 
making a positive amount of money out of nothing without taking any risk. It 
is thus essentially a riskless money making machine or, if you will, a free lunch 
on the financial market. We interpet an arbitrage possibility as a serious case of 
mispricing in the market, and our main assumption is that the market is efficient 
in the sense that no arbitrage is possible. 

Assumption 7.2.1 W e  assume that the price process IT(t) is such that there 
are no arbitrage possibilities on the market consisting of ( B ( t ) ,  S(t), II (t)).  

A natural question now is how we can identify an arbitrage possibility. The 
general answer to this question requires quite a lot of fairly heavy probabilistic 
machinery which the more advanced reader will find in Chapter 10. Happily 
enough there is a partial result which is sufficient for our present purposes. 
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Proposition 7.6 Suppose that there exists a self-financed portfolio h, such that 
the value process vh has the dynamics 

dvh( t )  = k(t)vh(t) dt, (7.12) 

where k is an adapted process. Then it must hold that k(t) = r(t) for all t, or 
there exists an arbitrage possibility. 

Proof We sketch the argument, and assume for simplicity that k and r are 
constant and that k > r. Then we can borrow money from the bank at the 

I rate r. This money is immediately invested in the portfolio strategy h where it 
will grow at the rate k with k > r. Thus the net investment at t = 0 is zero, 
whereas our wealth at any time t > 0 will be positive. In other words we have an 

I arbitrage. If on the other hand r > k, we sell the portfolio h short and invest this 
money in the bank, and again there is an arbitrage. The cases with nonconstant 
and nondeterministic r and k are handled in the same way. 

The main point of the above is that if a portfolio has a value process whose 
dynamics contain no driving Wiener process, i.e. a locally riskless porfolio, 
then the rate of return of that portfolio must equal the short rate of interest. 
To put it in another way, the existence of a portfolio h is for practical purposes 
equivalent to the existence of a bank with k as its short rate of interest. We can 
then paraphrase the lemma above by saying that on an arbitrage free market 
there can only be one short rate of interest. 

We now return to the question of how the price process H(t; X) for a con- 
tingent claim X can behave, and the main idea is the following. Since the claim 
is defined entirely in terms of the underlying asset(s), we ought to be able to 
price it in terms of the price of the underlying asset(s) if arbitrage possibilities 
are to be avoided. Thus we are looking for a way to price the derivative in a way 
which is consistent with the price process of the underlying asset. 

I To take a simple example, it is quite obvious that for a European call we 
i must have the relation ll (t) 5 S(t) in an arbitrage free market, because no 

one in their right mind will buy an option to buy a share at a later date at 
price K if the share itself can be bought cheaper than the option. For a more 
formal argument, suppose that at some time t we actually have the relation 
n ( t )  > S(t). Then we simply sell one option. A part of that money can be 
used for buying the underlying stock and the rest is invested in the bank (i.e. 
we buy the riskless asset). Then we sit down and do nothing until time T. In 
this way we have created a self-financed portfolio with zero net investment at 
time t. At time T we will owe max [S(T) - K, 0] to the holder of the option, but 
this money can be paid by selling the stock. Our net wealth at time T will thus 
be S(T) - max [S(T) - K, 01, which is positive, plus the money invested in the 
bank. Thus we have an arbitrage. 

It is thus clear that the requirement of an arbitrage free market will impose 
some restrictions on the behavior of the price process H(t; X). This in itself is not 
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terribly surprising. What is surprising is the fact that in the market specified by 
eqns (7.1)-(7.2) these restrictions are so strong as to completely specify, for any 
given claim X, the unique price process n(t ;  X) which is consistent with absence 
of arbitrage. For the case of simple contingent claims the formal argument will 
be given in the next section, but we will now give the general idea. 

To start with, it seems reasonable to assume that the price II(t; X) at time 
I t in some way is determined by expectations about the future stock price S(T). 

Since S is a Markov process such expectations are in their turn based on the 
present value of the price process (rather than on the entire trajectory on [0, t]). 

I We thus make the following assumption. 

Assumption 7.2.2 We assume that 

1. The derivative instrument in question can be bought and sold on a market. 
2. The market is free of arbitrage. 
3. The price process for the derivative asset is of the form 

where F is some smooth function. 

Our task is to determine what F might look like if the market consisting of 
S(t), B(t) and II(t; X) is arbitrage free. Schematically we will proceed in the 
following manner: 

1. Consider a, a, a, F, and r as exogenously given. 
2. Use the general results from Section 6.2 to describe the dynamics of the 

value of a hypothetical self-financed portfolio based on the derivative 
instrument and the underlying stock (nothing will actually be invested 
in or loaned by the bank). 

3. It turns out that, by a clever choice, we can form a self-financed portfo- 
lio whose value process has a stochastic differential without any driving 
Wiener process. It will thus be of the form (7.12) above. 

4. Since we have assumed absence of arbitrage we must have k = r. 
5. The condition k = r will in fact have the form of a partial differential 

equation with F as the unknown function. In order for the market to be 
efficient F must thus solve this PDE. 

6. The equation has a unique solution, thus giving us the unique pricing 
formula for the derivative, which is consistent with absence of arbitrage. 

7.3 The Black-Scholes Equation 
In this section we will carry through the schematic argument given in the previous 
section. We assume that the a priori given market consists of two assets with 
dynamics given by 

dB(t) = rB(t) dt, (7.14) 

dS(t) = S(t)a (t, S(t)) dt + S(t)u (t, S(t)) d ~ ( t ) ,  (7.15) 
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where the short rate of interest r is a deterministic constant. We consider a 
simple contingent claim of the form 

and we assume that this claim can be traded on a market and that its price 
process II (t) = II(t; @) has the form 

for some smooth function F. Our problem is to find out what F must look like 
in order for the market [S(t), B(t), II (t)] to be free of arbitrage possibilities. 

I 
We start by computing the price dynamics of the derivative asset, and the 

It8 formula applied to (7.17) and (7.15) g' ives us 

dII (t) = a, (t)II (t) dt + a, (t)H (t) d ~ ( t ) ,  (7.18) 
I a 
i where the processes a,(t) and a,(t) are defined by 

- 

Here subscripts denote partial derivatives, and we have used a shorthand 
notation of the form 

and similarly for the other terms above. 
Let us now form a portfolio based on two assets: the underlying stock and 

the derivative asset. Denoting the relative portfolio by (us, u,) and using eqn 
(6.13) we obtain the following dynamics for the value V of the portfolio. 

d~ = V{U, [adt  + u d ~ ]  +u, [a,dt + a T d w ] )  (7.21) 

/ 1 where we have suppressed t. We now collect dt- and dl - terms to obtain 

dV = V [u,a + u,a,] dt + V [usu + u,ur] d l .  (7.22) 

The point to notice here is that both brackets above are linear in the arguments 
us and u,. Recall furthermore that the only restriction on the relative portfolio 
is that we must have 

U, + u r  = 1, 
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for all t. Let us thus define the relative portfolio by the linear system of equations 

us +u, = 1, 

u,u + U,UT = 0. 

Using this portfolio we see that by its very definition the driving dw-term in 
the V-dynamics of eqn (7.22) vanishes completely, leaving us with the equation 

dV = V [u,a + u,a,] dt. 

Thus we have obtained a locally riskless portfolio, and because of the requirement 
that the market is free of arbitrage, we may now use Proposition 7.6 to deduce 
that we must have the relation 

usa + u,a, = r. 

This is thus the condition for absence of arbitrage, and we will now look more 
closely at this equation. 

It is easily seen that the system (7.23)-(7.24) has the solution 

0, us = - 
u, -a' 

-u 
u, = -, 

a, - a 

which, using (7.20), gives us the portfolio more explicitly as 

S(t)Fs(t, SO)) 
= 

S(t)F.(t, S(t)) - F(t, S(t)) ' 

%(t) = 
-F(t, S(t)) 

S(t)Fs(t, S(t)) - F(t, S(t)) ' 

Now we substitute (7.19), (7.29) and (7.30) into the absence of arbitrage 
condition (7.26). Then, after some calculations, we obtain the equation 

Ft (t, S(t)) + rS(t)F' (t, S(t)) + ;a2 (t, S(t)) S 2 ( t ) ~ s s  (t, S(t)) - rF (t, S(t)) = 0. 

Furthermore, from the previous section we must have the relation 

II (T) = @(S(T)) . 

These two equations have to hold with probability 1 for each fixed t. Furthermore 
it can be shown that under very weak assumptions (which trivially are satisfied 
in the Black-Scholes model) the distribution of S(t) for every fixed t > 0 has 
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support on the entire positive real line. Thus S(t) can take any value whatsoever, 
eo F has to satisfy the following (deterministic) PDE. 

Ft(t, s) + rsF,(t, s) + !js2a2(t, s)F,,(t, s) - rF( t ,  s) = 0, 

F(T, s) = @(s). 

Summing up these results we have proved the following proposition, which is 
in fact one of the most central results in the book. 

Theorem 7.7 (Black-Scoles Equation) Assume that the market is specified 
by eqns (7.14)-(7.15) and that we want to price a contingent claim of the form 
(7.16). Then the only pricing function of the form (7.17) which is consistent 
with the absence of arbitrage is when F is the solution of the following boundary 
value problem in the domain [0, TI x R+. 

Ft(t,s) + rsF,(t, s) + ;s2a2(t, s)F,,(t, s) - rF(t ,  s) = 0, (7.31) 

F(T, s) = @(s). (7.32) 

Before we go on to a closer study of the pricing equation (7.31) let us make 
a few comments. 

First, it is important to stress the fact that we have obtained the price of the 
claim X in the form ll(t; X) = F(t ,  S(t)),  i.e. the price of the claim is given as 
a function of the price of the underlying asset S. This is completely in line with 
the basic idea explained earlier, that the pricing of derivative assets is a question 
of pricing the derivative in a way which is consistent with the price of the 
underlying asset. We are thus not presenting an absolute pricing formula for 
X .  On the contrary, derivative pricing is all about relative pricing, i.e. pricing 
the derivative asset in terms of the price of the underlying asset. In particular 
this means that in order to use the technique of arbitrage pricing at all we must 
have one or several underlying price processes given a priori. 

Second, a word of criticism. At a first glance our derivation of the pricing 
equation (7.31) seems to be fairly convincing, but in fact it contains some rather 
weak points. The logic of the argument was that we assumed that the price 
of the derivative was a function F of t and S(t). Using this assumption we 
then showed that in an arbitrage free market F had to satisfy the Black-Scholes 
equation. The question now is if we really have good reasons to assume that 
the price is of the form F( t ,  S(t)).  The Markovian argument given above sounds 
good, but it is not totally convincing. 

A much more serious objection is that we assume that there actually exists a 
' market for the derivative asset, and in particular that there exists a price process 
I for the derivative. This assumption of an existing market for the derivative is 

crucial for the argument since we are actually constructing a portfolio based on 
the derivative (and the underlying asset). If the derivative is not traded then the 
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portfolio cannot be formed and our argument breaks down. The assumption of 
an existing price for the derivative is of course innocent enough in the case of a 
standard derivative, like a European call option, which de facto is traded in large 
volumes. If, however, we want to price an OTC ("over the counter") instrument, 
i.e. an instrument which is not traded on a regular basis, then we seem to be in 
big trouble. 

Happily enough there is an alternative argument for the derivation of the 
pricing equation (7.31), and this argument (which will be given below) is not 
open to the criticism above. The bottom line is that the reader can feel safe: 
equation (7.31) really is the "correct" equation. 

Let us end by noting an extremely surprising fact about the pricing equa- 
tion, namely that it does not contain the local mean rate of return a(t ,  s) of 
the underlying asset. In particular this means that, when it comes to pricing 
derivatives, the local rate of return of the underlying asset plays no role whatso- 
ever. The only aspect of the underlying price process which is of any importance 
is the volatility u(t, s). Thus, for a given volatility, the price of a fixed derivat- 
ive (like a European call option) will be exactly the same regardless of whether 
the underlying stock has a lo%, a 50%, or even a -50% rate of return. At a 
first glance this sounds highly counter-intuitive and one is tempted to doubt the 
whole procedure of arbitrage pricing. There is, however, a natural explanation 
for this phenomenon, and we will come back to it later. At this point we can only 
say that the phenomenon is closely connected to the fact that we are pricing the 
derivative in terms of the price of the underlying asset. 

7.4 Risk Neutral Valuation 
Let us again consider a market given by the equations 

dB(t) = rB(t) dt, 

dS(t) = S(t)a (t, S(t)) dt + S(t)a (t, S(t)) d ~ ( t ) ,  

and a contingent claim of the form X = 3 (S (T) ) .  Then we know that the 
arbitrage free price is given by ll(t; *) = F(t, S(t)) where the function F is the 
solution of the pricing equations (7.31)-(7.32). We now turn to the question of 
actually solving the pricing equation and we notice that this equation is precisely 
of the form which can be solved using a stochastic representation formula B la 
Feynman-KG. Using the results from Section 5.5 we see that the solution is 
given by 

F(t, s) = e-r(T-t) E ~ ' S  [*(X(T))I 9 

where the X process is defined by the dynamics 

dX(u) = rX(u) du + X(U)U(U, X(u)) dW(u), 

X(t) = s, 
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I where W is a Wiener process. The important point to note here is that the SDE 
I (7.36) is of precisely the same form as that of the price process S .  The only, but 

important, change is that whereas S has the local rate of return a, the X-process 
has the short rate of interest r as its local rate of return. 

The X-process above is logically just a technical tool, defined for the moment, 
1 and in particular we can name it as we please. In view of the resemblance between 

1 X and S it is rather tempting to call it S instead of X.  This is perfectly acceptable 
as long as we do not confuse the "real" S-process of (7.34) with the "new" 
S-process, and one way to achieve this goal is by the following procedure. 

Let us agree to denote the "objective" probability measure which governs our 
real model (7.33)-(7.34) by the letter P. Thus we say that the P-dynamics of 
the S-process are that of (7.34). We now define another probability measure Q 
under which the S-process has a different probability distribution. This is done 
by defining the Q-dynamics of S as 

d S ( t )  = r S ( t )  dt  + S ( t ) a  ( t ,  S ( t ) )  d W ( t ) ,  (7.38) 

where W is a Q-Wiener process. In order to distinguish the measure under which 
we take expectations we introduce some notational conventions. 

Notation convention 7.4.1 For the rest of the text, the following conventions 

a We identify the expectation operator by letting E denote expectations taken 
under the P-measure whereas EQ denotes expectations taken under the 

a We identify the Wiener process. T h w  w will denote a P- Wiener process, 
whereas W will denote a Q- Wiener process. 

The convention on W has the advantage that it is possible, at a glance, to 
decide under which measure a certain SDE is given. We will work much more 
often under Q than under P, and this is the reason why the Q-Wiener process 

/ W has a simpler notation than the P-Wiener pricess W. Using this notation we 
may now state the following central result for derivative pricing. 

Theorem 7.8 (Risk Neutral  Valuation) The arbitrage free price of the 
claim 9 ( S ( T ) )  is given by n(t; 9)  = F ( t ,  S ( t ) ) ,  where F is given by the formula 

F (t , s) = e-r(T-t) E$ [@(S(T))], (7.39) 

where the Q-dynamics of S are those of (7.38). 

There is a natural economic interpretation of the formula (7.39). We see 
that the price of the derivative, given today's date t and today's stock price s, 
is computed by taking the expectation of the final payment E$ [@(S(T ) ) ]  and 
then discounting this expected value to present value using the discount factor 
e-r(T-t). The important point to note is that when we take the expected value we 
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are not  to do this using the objective probability measure P. Instead we shall 
use the Q-measure defined in (7.38). This Q-measure is sometimes called the 
risk adjusted measure but most often it is called the martingale measure, 
and this will be our terminology. The reason for the name is that under Q the 
normalized process ( S ( t ) / B ( t ) )  turns out to be a Q-martingale. In the deeper 
investigation of arbitrage pricing, which will be undertaken in Chapter 10, the 
Q-measure is the fundamental object of study. We formulate the martingale 
property as a separate result. 

Proposition 7.9 (The Martingale Property) In the Black-Scholes model, 
the price process II ( t )  for every traded asset, be it the underlying or derivative 
asset, has the property that the normalized price process 

is a martingale under the measure Q. 

Proof See the exercises. CI 

The formula (7.39) is sometimes referred to as the formula of risk neutral 
valuation. Suppose that all agents are risk neutral. Then all assets will command 
a rate of return equal to the short rate of interest, i.e. in a risk neutral world 
the stock price will actually have the Q-dynamics above (more precisely, in this 
case we will have Q = P). Furthermore, in a risk neutral world the present value 
of a future stochastic payout will equal the expected value of the net payments 
discounted to present value using the short rate of interest. Thus formula (7.39) 
is precisely the kind of formula which would be used for valuing a contingent 
claim in a risk neutral world. Observe, however, that we do not assume that 
the agents in our model are risk neutral. The formula only says that the value 
of the contingent claim can be calculated as if we live in a risk neutral world. 
In particular the agents are allowed to have any attitude to risk whatsoever, as 
long as they all prefer a larger amount of (certain) money to a lesser amount. 
Thus the valuation formula above is preference free in the sense that it is valid 
regardless of the specific form of the agents' preferences. 

7.5 T h e  Black-Scholes Formula 

In this section we specialize the model of the previous section to the case of the 
Black-Scholes model, 

d B ( t )  = r B ( t )  dt, (7.40) 

where cr and a are constants. From the results of the previous section we know 
that the arbitrage free price of a simple claim @ ( S ( T ) )  is given by 
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where the Q-dynamics of S are given by 

dS(u) = rS(u) du + oS(u) dW(u), (7.43) 

S(t) = s. (7.44) 

In this SDE we recognize our old friend GBM from Section 5.2. Using the results 
from Section 5.2 we can thus write S(T) explicitly as 

S(T) = sexp {(r - $a2) (T - t j  + o (W(T) - W(t))) . (7.45) 

Thus we have the pricing formula 

00 

F(t ,  s) = e-r(T-t) J _ _  @ (seZ) f (2) dz, (7.46) 

where Z is a stochastic variable with the distribution 

N [(r - f 02
) (T - t),  o m ]  , 

and f is the corresponding density function. 
Formula (7.46) is an integral formula which, for a general choice of contract 

function a, must be evaluated numerically. There are, however, a few particular 
cases where we can evaluate (7.46) more or less analytically, and the best known 
of these is the case of a European call option, where @ has the form @(x) = 
max [x - K, 01. In this case we obtain 

00 

; E?~ [max [seZ - K, 0]] = 0 .  Q (seZ 5 K) + L(f) (seZ - K )  f (z) dz. (7.47) 

After some standard calculations we are left with the following famous result 
which is known as the Black-Scholes formula. 

Proposition 7.10 The price of a European call option with strike price K and 
time of maturity T is given by the formula II (t) = F(t ,  S(t)), where 

F(t, s) = s N  [dl(t, s)] - e - r ( T - t ) ~ ~  [d2(t, s)]. (7.48) 

Here N is the cumulative distribution function for the N [O,1] distribution and 

dl(t, 3) = o m  {ln (a) + (r + i u 2 )  (T - t) ) , (7.49) 

d2(t, S) = dl(t, s).- o m .  (7.50) 

The graph of the Black-Scholes pricing function (the unit of time is chosen 
to be one year) is shown in Fig. 7.3. 



ARBITRAGE PRICING 

FIG. 7.3. The Black-Scholes price of a call option: 
K = 100, a = 0.2, T - t = 0.25 

7.6 Options on Futures 
The purpose of this section is to derive the Black formulas for options written 
on a futures contract. Our discussion here will be rather brief, and for more 
institutional and technical information the reader is referred to Chapter 26 (and 
the Notes), where the contracts are discussed in more detail. 

7.6.1 Forward Contracts 
Consider a standard Black-Scholes model, a simple T-claim X = @(ST), and 
assume that we are standing at time t. A forward contract on X, made at t ,  is 
a contract which stipulates that the holder of the contract pays the deterministic 
amount K at the delivery date T, and receives the stochastic amount X at T. 
Nothing is paid or received at the time t, when the contract is made. Note that 
forward price K is determined already at time t. It is customary to use the 
notation K = f (t; T, X), and our primary concern is to compute f (t; T, X). 

This is, however, easily done. We see that the entire forward contract is 
a contingent T-claim Y of the form 

and, by definition, the value of Y at the time t when the contract is made equals 
zero. Thus we have 

n ( t ;  x - K )  = o, 

which leads to 

n(t; X) = n ( t ;  K ) .  rcjY 8i (78 
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Using risk neutral valuation we immediately have II(t; K )  = e - T ( T - t ) ~  and 
i n(t; x) = e-~(T-t) x E?', [XI, so we have proved the first part of the following 

result. The second part is left as an exercise. 

Proposition 7.11 The forward price f (t; T, X), contracted at t, on the T-claim 
X is given by 

f (t; T, X) = EfS [XI. (7.51) 

In particular, if X = ST the corresponding forward price, denoted b y  f (t; T), is 
given by 

f (t; T)  = er(T-t)~t .  (7.52) 

Remark 7.6.1 Note the difference between the forward price f (t; T, X) which 
is a sum to be paid at T,  for a forward contract entered at time t, and the spot 
price of the entire forward contract. This latter price is zero at the time t when 
the contract is made, but at any subsequent time s > t it will typically have a 

1 nonzero value. 

7.6.2 Futures Contracts and the Black Formula 

With the same setup as the previous section we will now discuss a futures 
contract on X. This contract is very close to the corresponding forward contract 
in the sense that it is still a contract for the delivery of X at T. The difference is 
that all the payments, from the holder of the contract to the underwriter, are no 
longer made at T. Let us denote the futures price by F(t; T, X); the payments 
are delivered continuously over time, such that the holder of the contract over 
the time interval [s, s + As] receives the amount 

F ( s  + As; T, X) - F(s; T, X) 

from the underwriter. Finally the holder will receive X, and pay F(T; T, X), at 
the delivery date T. By definition, the (spot) price (at any time) of the entire 
futures contract equals zero. Thus the cost of entering or leaving a futures con- 
tract is zero, and the only contractual obligation is the payment stream described 
above. See Chapter 26 for more details, and for a proof of the following result. 

Proposition 7.12 If the short rate is deterministic, then the forward and the 
futures price processes coincide, and we have 

We will now study the problem of pricing a European call option, with exer- 
cise date T,  and exercise price K ,  on an underlying futures contract. The futures 
contract is a future on S with delivery date TI, with T < TI. Options of this 
kind are traded frequently, and by definition the holder of this option will, at the 
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exercise time T, obtain a long position in the futures contract, plus the stochastic 
amount 

X = max[F(T; T I )  - K, 01. 

Since the spot price of the futures contract equals zero, we may, for pricing 
purposes, forget about the long futures position embedded in the option, and 
identify the option with the claim in (7.54). 

We now go on to price the futures option, and we start by using 
Proposition 7.12 and eqn (7.52) in order to write 

X = e'(Tl -TI [ST - e-'(Tl -TI K, 0 1 .  

Thus we see that the futures option consists of e'(Tl-T) call options on the 
underlying asset S, with exercise date T and exercise price e-r(T1-T)~. Denoting 
the price at T of the futures option by c, the stock price at t by s, and the futures 
price F ( t ;  T I )  by F ,  we thus have, from the Black-Scholes formula, 

, = e~(Tl -TI I S  [ d l ]  - e-'(~-f Ie-'(T1 -TI KN [d2]]  

where dl and d2 are obtained from the Black-Scholes dl and dz by replacing k 
with e-r(Tl-T)~.  Finally we may substitute s = ~ e - ' ( ~ l - ~ ) ,  and simplify, to 
obtain the s*called "Black-76 formula". 

Proposition 7.13 (Black's formula) The price, at t ,  of a European call 
option, with exercise date T and exercise price K ,  on a futures contract (on 
an underlying asset price S )  with delivery date TI is given by 

C = e-r(T-t) [ F N [ d l ]  - KN[d2] ] ,  

where F is the fiturns price F = F ( T ;  T I ) ,  and 

ln (f)  + 3 a 2 ( ~  - t )  
dl = 

u r n  
, 

d2 = dl - 0-. 

7.7 Volatility 

In order to be able to use the theory derived above in a concrete situation, we 
need to have numerical estimates of all the input parameters. In the Black- 
Scholes model the input data consists of the string s ,  r ,  T, t ,  and u. Out of these 
five parameters, s, r, T, and t can be observed directly, which leaves us with the 
problem of obtaining an estimate of the volatility u. Here there are two basic 
approaches, namely to use "historic volatility" or "implied volatility". 



VOLATILITY 

Suppose that we want to value a European call with six months left to maturity. 
' 

An obvious idea is to use historical stock price data in order to estimate u. Since, 
in real life, the volatility is not constant over time, one standard practice is to 
use historical data for a period of the same length as the time to maturity, which 
in our case means that we use data for the last six months. 

In order to obtain an estimate of u we assume that we have the stand- 
ard Black-Scholes GBM model (7.4) under the objective measure P. We 
sample (observe) the stock price process S at n + 1 discrete equidistant points 
to, tl, . . . , t,, where At denotes the length of the sampling interval, i.e. At = 
ti - ti-1. 

We thus observe S(to), . . . , S(t,), and in order to estimate u we use the fact 
that S has a log-normal distribution. Let us therefore define € 1 .  . . . . E, bv 

Fkom (5.15) we see that 51,. . . ,En are independent, normally distributed random 

E [<,I = (a - iu2)  At, 

Var[<,] = u 2 ~ t .  

Usine: elementarv statistical theorv we see that an estimate of u is given bv 

where the sample variance S! is given by 

The standard deviation. D, of the estimate u* is a~~roximativelv given bv 
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7.7.2 Implied Volatility 

Suppose again that we want to value a European call with six months left to 
maturity. An argument against the use of historical volatility is that in real life 
volatility is not constant, but changes over time, and thus we want an estimate 
of the volatility for the coming six months. Using historical volatility we will, 
however, only obtain an estimate for the volatility over the past six months. If, 
furthermore, our objective is to price our option consistently with respect to 
other assets which are already priced by the market, then we really should use 
the market expectation of the volatility for the next six months. 

One way of finding the market expectation of the volatility is by getting mar- 
ket price data for another six month "benchmark" option, written on the same 
underlying stock as the option which we want to value. Denoting the price of 
the benchmark option by p, the strike price by K ,  today's observed value of 
the underlying stock by s, and writing the Black-Scholes pricing formula for 
European calls by c(s, t ,  T, r, a, K),  we then solve the following equation for a 

p = C(S, t, T, r, a, K). 

In other words, we try to find the value of a which the market has implicitly 
used for valuing the benchmark option. Ths value of a is called the implied 
volatility, and we then use the implied volatility for the benchmark in order to 
price our original option. Put another way, we price the original option in terms 
of the benchmark. 

We note that implied volatilities can be used to test (in a nonstandard way) 
the Black-Scholes model. Suppose, e.g. that we observe the market prices of a 
number of European calls with the same exercise date on a single underlying 
stock. If the model is correct (with a constant volatility) then, if we plot implied 
volatility as a function of the exercise price, we should obtain a horizontal straight 
line. Contrary to this, it is often empirically observed that options far out of 
the money or deep into the money are traded at higher implied volatilities than 
options at the money. The graph of the observed implied volatility function thus 
often looks like the smile of the Cheshire cat, and for this reason the implied 
volatility curve is termed the volatility smile. 

Remark 7.7.1 A call option is said to be "in the money" at time t if St > K,  
and "out of the money" if St < K. For put options the inequalities are reversed. 
If St = K the option is said to be "at the money". 

7.8 American options 
Up to now we have assumed that a contract, like a call option, can only be 
exercised exactly at the exercise time T. In real life a large number of options 
can in fact be exercised at any time prior to T. The choice of exercise time is 
thus left to the holder of the contract, and a contract with this feature is called 
an American contract. 
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To put it more formally, let us fix a final exercise date T and a contract 
function @. The European version of this contract will, as usual, pay the amount 
@(ST) at time T to the holder of the contract. If the contract, on the other hand, 
is of the American type, then the holder will obtain the amount @(St )  if heishe 
chooses to exercise the contract at time t. The situation is complicated further by 
the fact that the exercise time t does not have to be chosen a priori (i.e. at t = 0). 
It can be chosen on the basis of the information generated by the stock price 
process, and thus the holder will in fact choose a random exercise time r .  
The exercise time (or rather exercise strategy) T has to be chosen such that the 
decision on whether to exercise the contract at time t or not, depends only upon 
the information generated by the price process up to time t. The mathematical 
formulation of this property is in terms of so called "stopping times", but we 
will not go further into this subject. 

American contracts are thus more complicated to analyze than their 
European counterparts, since the holder of the contract has to decide on an 
optimal exercise strategy. Mathematically this means that we have to solve 
the "optimal stopping problem" 

m u  [EQ [e-"@(ST)]], 

where T is allowed to vary over the class of stopping times. Problems of this kind 
are quite hard to solve, and analytically they lead to so called "free boundary 
value problems" (or variational inequalities) instead of the corresponding para- 
bolic PDEs for the European counterparts. The mathematics of this lies outside 
the scope of this book, but it may be of interest to know that for American 
contracts practically no analytical formulas are at hand. See the Notes below for 

One situation, however, is very easy to analyze, even for American contracts, 
and that is the case of an American call option on a nondividend paying under- 
lying stock. Let us consider an American call option with final exercise date T 
and exercise price K. We denote the pricing function for the American option 
by C(t, s) and the pricing function for the corresponding European option (with 
the same T and K) by c(t, s). 

First, we note that we have (why?) the trivial inequality 

C(t ,  s) L c(t, s). (7.56) 

Second, we have, for all t < T, the less obvious inequality 

c(t, s) 2 s - ~ e - ' ( ~ - ~ ) .  (7.57) 

To see why this inequality holds it is sufficient to consider two portfolios, A 
and B. A consists of a long position in the European option, whereas B consists 
of a long position in the underlying stock and a loan expiring at T, with face 
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value K .  Denoting the price of A and B at any time t by At and Bt respectively, 
it is easily seen that AT 2 BT regardless of the value of ST (analyze the two 
cases ST 2 K and ST < K). In order to avoid arbitrage possibilities we then 
must have At 2 Bt for all t 5 T, which is precisely the content of (7.57). 

Furthermore, assuming a positive rate of interest, we have the trivial 
inequality 

s - ~ e - ' ( ~ - ~ )  > s - K, Vt < T, 

so we end up with the inequality 

C(t, s) > s - K,  W < T. 

On the left-hand side we have the value of the American option at time t ,  
whereas the right-hand side gives us the value of actually exercising the option at 
time t. Since the value of the option is strictly greater than the value of exercising 
the option, it can thus not be optimal to exercise the option at time t. Since this 
holds for all t < T,  we see that it is in fact never optimal to exercise the option 
before T, and we have the following result. 

Proposition 7.14 Assume that r > 0. For an American call option, written on 
an underlying stock without dividends, the optimal exercise time I- is given by 
I- = T. Thw the pnce of the Arnericczn option coincides with the price of the 
corresponding European option. 

For American call options with discrete dividends, the argument above can 
be extended to show that it can only be optimal to exercise the option either at 
the final time T or at one of the dividend times. The American put option (even 
without dividends) presents a hard problem without an analytical solution. See 
the Notes below. 

7.9 Exercises 

Exercise 7.1 Consider the standard Blacl-Scholes model and a T-claim X of 
the form X = 3(S(T)). Denote the corresponding arbitrage free price process 
by II (t). 

(a) Show that, under the martingale measure Q, ll (t) has a local rate of 
return equal to the short rate of interest r .  In other words show that 
ll (t) has a differential of the form 

dII (t) = r . II (t) dt + g(t) dW(t). 

Hint: Use the Q-dynamics of S together with the fact that F satisfies 
the pricing PDE. 

(b) Show that, under the martingale measure Q, the process Z(t) = 
(II (t) /B(t)) is a martingale. More precisely, show that the stochastic 
differential for Z has zero drift term, i.e. it is of the form 

dZ(t) = Z(t)uz(t) dW (t). 
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Determine also the diffusion process az(t) (in terms of the pricing 
function F and its derivatives). 

Exercise 7.2 Consider the standard Black-Scholes model. An innovative com- 
pany, F&H INC,  has produced the derivative "the Golden Logarithm", 
henceforth abbreviated as the GL. The holder of a GL with maturity time 
T, denoted as GL(T), will, at time T, obtain the sum lnS(T). Note that if 
S(T) < 1 this means that the holder has to pay a positive amount to F&H INC. 
Determine the arbitrage free price process for the GL(T). 

Exercise 7.3 Consider the standard Black-Scholes model. Derive the Black- 
Scholes formula for the European call option. 

Exercise 7.4 Consider the standard Black-Scholes model. Derive the arbitrage 
free price process for the T-claim X where X is given by X = {s(T)}@. Here P 
is a known constant. 

Hint: For this problem you may find Exercises 5.5 and 4.4 useful. 

Exercise 7.5 A so called binary option is a claim which pays a certain amount 
if the stock price at a certain date falls within some prespecified interval. Oth- 
erwise nothing will be paid out. Consider a binary option which pays K SEK to 
the holder at date T if the stock price at time T is in the inerval [a, PI. Determine 
the arbitrage free price. The pricing formula will involve the standard Gaussian 
cumulative distribution function N. 

Exercise 7.6 Consider the standard Black-Scholes model. Derive the arbitrage 
free price process for the claim X where X is given by X = (S(Tl)/S(To)). The 
times To and TI are given and the claim is paid out at time TI. 

Exercise 7.7 Consider the American corporation ACME INC. The price 
process S for ACME is of course denoted in US$ and has the P-dynamics 

d S  = a S d t  +aSdw1,  

where a and a are known constants. The currency ratio SEK/US$ is denoted by 
Y and Y has the dynamics 

dY = PY dt + 6Y dw2, 

where w2 is independent of w1. The broker firm F&H has invented the deriv- 
ative "Euler". The holder of a T-Euler will, at the time of maturity T, obtain 

x = ln [{z(T)}~] 

in SEK. Here Z(t) is the price at time t in SEK of the ACME stock. 
Compute the arbitrage free price (in SEK) at time t of a T-Euler, given 

that the price (in SEK) of the ACME stock is z. The Swedish short rate is 
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Exercise 7.8 Prove formula (7.52). 

Exercise 7.9 Derive a formula for the value, at s, of a forward contract on the 
T-claim X, where the forward contract is made at t, and t < s < T. 

7.10 Notes 

The classics in the field are Black and Scholes (1973), and Merton (1973). The 
modern martingale approach to arbitrage pricing was developed in Harrison and 
Kreps (1981), and Harrison and Pliska (1981). A deep study of the connections 
between (various formulations of) absence of arbitrage and the existence of a 
martingale measure can be found in Delbaen and Schachermeyer (1994). 

For a wealth of information on forward and futures contracts, see Hull (1997) 
and DufFie (1989). Black's formula was derived in Black (1976). For American 
options see Barone-Adesi and Elliott (1991), Geske and Johnson (1984) and 
Musiela and Rutkowski (1997). The standard reference for optimal stopping I 

problems is Shiryayev (1978), and a very readable exposition can be found in 
Bksendal (1995). Option pricing with stochastic volatility is discussed in Hull , 

and White (1987), and Leland (1985) studies the consequences of introducing 
transaction costs. 



"$4' " 

8 
c 

Y 
COMPLETENESS AND HEDGING 

8.1 Introduction 

In the previous chapter we noticed that our derivation of the pricing 
equation (7.31) was somewhat unsatisfactory, and a major criticism was that 
we were forced to assume that the derivative asset a priori possessed a price 
process and actually was traded on the market. In this chapter we will look 
at arbitrage pricing from a somewhat different point of view, and this altern- 
ative approach will have two benefits. First it will allow us to dispose of the 
annoying assumption above that the derivative is actually traded, and second it 
will provide us with an explanation of the surprising fact that the simple claims 
investigated earlier can be given a unique price. For a more detailed discussion 
see Chapters 10, 12, and 15. 

We start with a fairly general situation by considering a financial market with 
a price vector process S = (S1,. . . , SN), governed by an objective probability 
measure P. The process S is as usual interpreted as the price process of the 
exogenously given underlying assets and we now want to price a contingent 
T-claim X. We assume that all the underlying assets are traded on the market, 
but we do not assume that there exists an a priori market (or a price process) for 
the derivative. To avoid trivialities we also assume that the underlying market 

Definition 8.1 We say that a T-claim X can be replicated, alternatively that 
it is reachable or hedgeable, if there ezists a self-financing portfolio h such 

v h ( ~ )  = X, P - a.s. (8.1) 

In this case we say that h is a hedge against X. Alternatively, h is called a 
replicating or hedging portfolio. If every contingent claim is reachable we say 
that the market is complete. 

Let us now consider a fixed T-claim X and let us assume that X can be replicated 
by a portfolio h. Then we can make the following mental experiment: 

I 1. Fix a point in time t with t 5 T. 
2. Suppose that we, at time t, possess vh( t )  SEK. 
3. We can then use this money to buy the portfolio h(t). If furthermore we 

follow the portfolio strategy h on the time interval [t, T] this will cost us 
nothing, since h is self-financing. At time T the value of our portfolio will 
then be V h ( ~ )  SEK. 
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4. By the replication assumption the value, at time T, of our portfolio will 
thus be exactly X SEK, regardless of the stochastic price movements over 
the interval [t, TI. 

5. From a purely financial point of view, holding the portfolio h is thus 
equivalent to the holding of the contract X. 

6. The "correct" price of X at time t is thus given by n(t ;  X) = vh(t). 

For a hedgeable claim we thus have a natural price process, n( t ;  X) = Vh(t), 
and we may now ask if this has anything to do with absence of arbitrage. 

Proposition 8.2 Suppose that the claim X can be hedged using the portfolio h. 
Then the only price process n(t; X) which is consistent with no arbitrage is given 
by n( t ;  X) = vh(t) .  Furthermore, if X can be hedged by g as well as by h then 
Vg(t) = vh( t )  holds for all t with probability 1. 

Proof If at some time t we have n(t ;  X) < vh(t )  then we can make an arbitrage 
by selling the portfolio short and buying the claim, and vice versa if H(t; X) > 
Vh(t). A similar argument shows that we must have Vg(t) = vh(t) .  

8.2 Completeness in  t h e  Black-Scholes Model 

We will now investigate completeness for the generalized Black-Scholes model 
given by 

dB(t) = rB(t) dt, (8-2) 

dS(t) = S(t)a (t, S(t)) dt + S(t)a (t, S(t)) dW(t), (8.3) 

where we assume that a (t, s) > 0 for all (t, s). The main result is the following. 

Theorem 8.3 The model (8.2)-(8.3) is complete. 

The proof of this theorem requires some fairly deep results from probability the- 
ory and is thus outside the scope of this book. We will prove a weaker version of 
the theorem, namely that every simple claim can be hedged. This is often quite 
sufficient for practical purposes, and our proof of the restricted completeness 
also has the advantage that it gives the replicating portfolio in explicit form. We 
will use the notational convention h(t) = [ho (t), h* (t)] where h0 is the number 
of bonds in the portfolio, whereas h* denotes the number of shares in the under- 
lying stock. We thus fix a simple T-claim of the form X = (P(S(T)) and we now 
want to show that this claim can be hedged. Since the formal proof is of the form 
"consider the following odd construction", we will instead start by presenting a 
purely heuristic (but good) argument. This argument is, from a formal point of 
view, only of motivational nature and the logic of it is rather unclear. Since the 
argument is only heuristic the logical flaws do not matter, since in the end we 
will in fact present a rigorous statement and a rigorous proof. Before we start the 
heuristics, let us make more precise what we are looking for. Using Lemma 6.5 
we immediately have the following result. 
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Lemma 8.4 Suppose that there exists an adapted process V and an adapted 
process u = [uO, u*] with 

u0 (t) + u* (t) = 1, (8.4) 
such that 

i dV(t) = V(t) {uo(t)r + u*(t)cw(t, S(t))) dt + V(t)u*(t)o(t, S(t)) d ~ ( t ) ,  

V(T) = @(S(T)). 
(8.5) 

Then the claim X = @(S(T)) can be replicated using u as the relative portfolio. 
The corresponding value process is given by the process V and the absolute 
portfolio h is given by 

hO(t) = uO(t)V(t) 
B(t) ' 

(8.6) 

i h*(t) = u* (t)V(t) 
S(t) - (8.7) 

(! ' 
Our strategy now is to look for a process V and a process u satisfying the 

conditions above. 

Begin Heuristics 

We assume what we want to prove, namely that X = @(S(T)) is indeed r e p  
licable, and then we ponder on what the hedging strategy u might look like. 
Since the S-process and (trivially) the B-process are Markov processes it seems 
reasonable to assume that the hedging portfolio is of the form h(t) = h(t, S(t)) 
where, with a slight misuse of notation, the h in the right member of the equality 
is a deterministic function. Since, furthermore, the value process V (we suppress 
the superscript h) is defined as V(t) = hO(t)B(t) + h*(t)S(t) it will also be a 
function of time and stock price as 

V(t> = F(t ,  S(t)), (8.8; 

where F is some real valued deterministic function which we would like to knou 
more about. 

Assume therefore that (8.8) actually holds. Then we may apply the Iti 
formula to V in order to obtain the V-dynamics as 

dV = {Ft + aSFs + ~ u ~ s ~ F , , )  dt + aSF, dW, (8.9' 

where we have suppressed the fact that V and S axe to be evaluated at time t 
whereas a, cr and F are to be evaluated at (t, S(t)). Now, in order to make (8.9 
look more like (8.5) we rewrite (8.9) as 

{Ft + oSF, + if S2F.. 
dV = V SF, 

v } dt + v ycrdW. (8.10 



114 COMPLETENESS AND HEDGING 

Since we have assumed that X is replicated by V we see from (8.10) and (8.5) 
that u* must be given by 

(remember that we have assumed that V(t) = F(t, S(t)), and if we substitute 
(8.11) into (8.10) we get 

Comparing this expression to (8.5) we see that the natural choice for u0 is 
given by 

uo = Ft + ;a2s2 F,, 
r F  7 (8.13) 

but we also have to satisfy the requirement u0 + u* = 1 of (8.4). Using (8.11) 
and (8.13) this gives us the relation 

Ft+ia2S2F,, - F-SF, - 
r F  F '  

which, after some manipulation, turns out to be the familiar Black-Scholes 
equation 

Ft + rSF, + $a2s2~,, - rF = 0. (8.15) 

Furthermore, in order to satisfy the relation F(T, S(T)) = iP(S(T)) of (8.5) 
(remember that we assume that V(t) = F (t, S(t))) we must have the boundary 
value 

F (T, s) = @(s), for all s E R+ . (8.16) 

End Heuristics 

Since at this point the reader may well be somewhat confused as to the logic 
of the reasoning, let us try to straighten things out. The logic of the reasoning 
above is basically as follows: 

We assumed that the claim X was replicable. 
Using this and some further (reasonable) assumptions we showed that they 
implied that the value process of the replicating portfolio was given as 
V(t) = F(t,  S(t)) where F is a solution of the Black-Scholes equation. 

This is of course not at all what we wish to achieve. What we want to do is 
to prove that X really can be replicated. In order to do this we put the entire 
argument above within a logical parenthesis and formally disregard it. We then 
have the following result. 
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Theorem 8.5 Consider the market (8.2)-(8.3), and a contingent claim of the 
form X = @ ( S ( T ) ) .  Define F as the solution to the boundary value problem 

i Ft + rsF, + ~ a 2 s 2 ~ , ,  - r F  = 0,  
(8.17) 

F ( T ,  s) = @(s).  

Then X can be replicated by the relative portfolio 

u O( t )  = F( t ,  S ( t ) )  - S(t)FS(t, S(t ) )  
F( t ,  S ( t ) )  

7 

u*(t)  = S(t)Fd(t,  S ( t ) )  
F ( t ,  S ( t ) )  . 

The corresponding absolute portfolio is given by 

hO(t)  = F( t ,  S ( t ) )  - S(t)Fs(t ,  S ( t ) )  
B ( t )  

7 (8.20) 

h*(t) = S ( t ) ) ,  (8.21) 

and the value process V h  is given by 

v h ( t )  = F ( t ,  S ( t ) ) .  (8.22) 

Proof Applying the It6 formula to the process V ( t )  defined by (8.22) and 
performing exactly the same calculations as in the heuristic argument above, 
will show that we can apply Lemma 8.4. 

The result above gives us an explanation of the surprising facts that there 
actually exists a unique price for a derivative asset in the Black-Scholes model 
and that this price does not depend on any particular assumptions about indi- 
vidual preferences. The arbitrage free price of a derivative asset is uniquely 
determined simply because in this model the derivative is superfluous. It can 
always be replaced by a corresponding "synthetic" derivative in terms of a 
replicating portfolio. 

Since the replication is done with P-probability 1, we also see that if a con- 
tingent claim X is replicated under P by a portfolio h and if P* is some other 
probability measure such that P and P* assign probability 1 to exactly the same 
events (such measures P and P* are said to be equivalent),  then h will replicate 
X also under the measure P*. Thus the pricing formula for a certain claim will 
be exactly the same for all measures which are equivalent to P .  It is a well known 
fact (the Girsanov theorem) in the theory of SDEs that if we change the measure 
from P to some other equivalent measure, this will change the drift in the SDE, 
but the diffusion term will be unaffected. Thus the drift will play no part in the 
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pricing equation, which explains why a does not appear in the Black-Scholes 
equation. 

Let us now list some popular claims and see which of them will fall into the 
framework above. 

X = max [S(T) - K, 0] (European call option) (8.23) 

X = S(T) - K (Forward contract) (8.24) 

T 

X = max 1; 1 S(t) dt - K,  0 (Asian option) 1 
L J 

X = S(T) - inf S(t) (Lookback contract) 
O S t l T  

(8.26) 

We know from Theorem 8.3 that in fact all of the claims above can be replicated. 
For general claims this is, however, only an abstract existence result and we 
have no guarantee of obtaining the replicating portfolio in an explicit form. The 
point of Theorem 8.5 is precisely that, by restricting ourselves to simple claims, 
i.e. claims of the form X = @(S(T)), we obtain an explicit formula for the 
hedging portfolio. 

It is clear that the European call as well as the forward contract above are 
simple claims, and we may thus apply Theorem 8.5. The Asian option (also 
called a mean value option) as well as the lookback present harder problems 
since neither of these claims is simple. Instead of just being functions of the 
value of S at time T we see that the claims depend on the entire S-trajectory 
over the interval [0, TI. Thus, while we know that there exist hedging portfolios 
for both these claims, we have presently no obvious way of determining the shape 
of these portfolios. 

It is in fact quite hard to determine the hedging portfolio for the lookback, 
but the Asian option belongs to a class of contracts for which we can give a 
fairly explicit representation of the replicating portfolio, using very much the 
same technique as in Theorem 8.5. 

Proposition 8.6 Consider the model 

dB(t) = rB(t) dt, (8.27) 

dS(t) = S(t)a (t, S(t)) dt + S(t)a (t, S(t)) d ~ ( t ) ,  (8.28) 

and let X be a T-claim of the fown 

where the process Z is defined by 
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for some choice of the deterninistic function g. Then X can be replicated using 
a relative portfolio given by 

where F is the solution to the boundary value problem 

Ft +srF,  + i s 2 a 2 ~ , ,  +gFz - r F  = 0, 

F ( T ,  s, z )  = Q(s ,  z ) .  

' The corresponding value process V is given by V ( t )  = F( t ,  S ( t ) ,  Z ( t ) ) ,  and F 
has the stochastic representation 

where the Q-dynamics are given by 

Proof The proof is left as an exercise for the reader. Use the same technique 
as in the proof of Theorem 8.5. 

Again we see that the arbitrage free price of a contingent claim is given as 
the expected value of the claim discounted to the present time. Here, as before, 

I the expected value is to be calculated using the martingale measure Q instead 
of the objective probability measure P. As we have said before, this general 
structure of arbitrage free pricing holds in much more general situations, and as 
a rule of thumb one can view the martingale measure Q as being defined by the 
property that all traded underlying assets have r as the rate of return under Q. 
It is important to stress that it is only traded assets which will have sr  as the 
rate of return under Q. For models with nontraded underlying objects we have 
a completely different situation, which we will encounter below. 

8.3 Completeness-Absence of Arbitrage 

In this section, we will give some general rules of thumb for quickly determining 
whether a certain model is complete and/or free of arbitrage. The arguments 
will be purely heuristic. 
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Let us consider a model with M traded underlying assets plus the risk 
free asset (i.e. totally M + 1 assets). We assume that the price processes of 
the underlying assets are driven by R "random sources". We cannot give a precise 
definition of what constitutes a "random source" here, but the typical example 
is a driving Wiener process. If, e.g. we have five independent Wiener processes 
driving our prices, then R = 5. Another example of a random source would be 
a counting process such as a Poisson process. In this context it is important to 
note that if the prices are driven by a point process with different jump sizes 

I 
then the appropriate number of random sources equals the number of different 
jump sizes. 

When discussing completeness and absence of arbitrage it is important to 
I realize that these concepts work in opposite directions. Let the number of ran- 

dom sources R be fixed. Then every new underlying asset added to the model 
(without increasing R) will of course give us a potential opportunity of creating 
an arbitrage portfolio, so in order to have an arbitrage free market the number 
M of underlying assets must be small in comparison to the number of random 
sources R. 

On the other hand we see that every new underlying asset added to the model 
gives us new possibilities of replicating a given contingent claim, so completeness 
requires M to be great in comparison to R. 

We cannot formulate and prove a precise result here, but the following rule 
of thumb, or "mett+theorem", is nevertheless extremely useful. In concrete cases 
it can in fact be given a precise formulation and a precise proof. See Chapters 10 
and 14. We will later use the meta-theorem when dealing with problems con- 
nected with nontraded underlying assets in general and interest rate theory in 
particular. 

Meta-theorem 8.3.1 Let M denote the number of underlying traded assets i n  
the model excluding the risk free asset, and let R denote the number of random 
sources. Generically we then have the following relations: 

1. ,The model is arbitrage free i f  and only i f  M 5 R. 
2. The model is complete if and only i f  M 1 R. 
3. The model is complete and arbitrage free i f  and only i f  M = R. 

As an example we take the Black-Scholes model, where we have one under- 
lying asset S plus the risk free asset so M = 1. We have one driving Wiener 
process, giving us R = 1, so in fact M = R. Using the meta-theorem above we 
thus expect the Black-Scholes model to be arbitrage free as well as complete and 
this is indeed the case. 

8.4 Exercises 
Exercise 8.1 Consider a model for the stock market where the short rate of 
interest r is a deterministic constant. We focus on a particular stock with price 
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process S. Under the objective probability measure P we have the following 
dynamics for the price process. 

dS(t) = aS(t)  dt + oS(t) dW(t) + 6S(t-) dN(t). 

Here W is a standard Wiener process whereas N is a Poisson process with 
intensity A. We assume that a, o ,  6 and X are known to us. The d N  term is to 
be interpreted in the following way: 

Between the jump times of the Poisson process N, the S-process behaves 
just like ordinary geometric Brownian motion. 

1 If N has a jump at time t this induces S to have a jump at time t. The 
, size of the S-jump is given by 

S(t) - S(t-) = 8 .  S(t-). 

Discuss the following questions: 

t (a) Is the model free of arbitrage? 
F (b) Is the model complete? 

(c) Is there a unique arbitrage free price for, say, a European call option? 
(d) Suppose that you want to replicate a European call option maturing in 

January 1999. Is it posssible (theoretically) to replicate this asset by a 
portfolio consisting of bonds, the underlying stock and European call 
option maturing in December 2001? 

Exercise 8.2 Use the Feynman-KaT: technique in order to derive a risk neutral 
valuation formula in connection with Proposition 8.6. 

Exercise 8.3 The fairly unknown company F&H INC. has blessed the market 
with a new derivative, "the Mean". With "effective period" given by [TI, T2] the 
holder of a Mean contract will, at the date of maturity T2, obtain the amount 

1 T2 
- S(u) du. 
T2 - Tl , 

Determine the arbitrage free price, at time t, of the Mean contract. Assume 
that you live in a standard Black-Scholes world, and that t < TI. 
Exercise 8.4 Consider the standard Black-Scholes model, and n different 
simple contingent claims with contract functions @I, .  . . ,a,. Let 

n 

v = hz (t)S.(t) 
i=l 

denote the value process of a self-financing, Markovian (see Definition 6.2) port- 
folio. Because of the Markovian assumption, V will be of the form V(t, S(t)). 
Show that V satisfies the Black-Scholes equation. 
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8.5 Notes 
Completeness is mathematically closely related to rather deep results about the 
possibility of representing martingales as sums of stochastic integrals. Using 
this connection, it can be shown that the market is complete if and only 
if the martingale measure is unique. This is developed in some detail in 
Chapters 10 and 14. See also Harrison and Pliska (1981) and Musiela and 
Rutkowski (1997). 
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PARITY RELATIONS AND DELTA HEDGING 

9.1 Parity Relations 

Consider the standard Black-Scholes model. As we know from general theory 
(Theorem 8.3) this model allows us to replicate any contingent claim using a 
portfolio based on the underlying asset and the risk free asset. For a nontrivial 
claim the structure of the hedging portfolio is typically quite complicated, and 
in particular it is a portfolio which is continuously rebalanced. For practical 
purposes this continuous rebalancing presents a problem because in real life 
trading does have a cost. For managerial purposes it would be much nicer if we 
could replicate a given claim with a portfolio which did not have to be rebalanced, 
in other words a portfolio which is constant over time. Such a portfolio is known 
as a buy-and-hold portfolio. 

If we insist on using only B and S in our replicating portfolio we cannot r e p  
licate any interesting claims using constant portfolios, but if we allow ourselves 
to include some derivative, like a European call option, in our hedging portfolio, 
then life becomes much simpler, and the basic result we will use is the following 
trivial linear property of pricing. 

Proposition 9.1 Let iP and !IJ be contract functions for the T-claims X = 
cP(S(T)) and Y = Q ( S ( T ) ) .  Then for any real numbers a and P we have the 
following price relation: 

n ( t ;  aiP + p.Ji) = aII(t;  i P )  + PII(t; 9 ) .  (9.1) 

Proof This follows immediately from the risk neutral valuation formula (7.39) 
and the linear property of mathematical expectation. 

To set notation let c( t ,  s; K, T, r, a)  and p(t,  s; K, T, r, o) denote the price at 
time t given S ( t )  = s of a European call option and a European put option 
respectively. In both cases T denotes the time of maturity, K the strike price, 
whereas r and a indicate the dependence on model parameters. From time to 
time we will freely suppress one or more of the variables ( t ,  s ,  K, T, r, a ) .  Let us 
furthermore consider the following "basic" contract functions: 

@ s ( x )  = x,  (9.2) 

iPB(x) 1 ,  (9.3) 

i P C , K ( ~ )  = max [x  - K, O] . (9.4) 
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The corresponding claims at the time of maturity give us one share of the stock, 
$1, and one European call with strike price K respectively. For these claims the 
prices are given by 

Let us now fix a time of maturity T and a T-claim X of the form X = 
@(S(T)), i.e. a simple claim. It is now clear that if @ is a linear combination of 
the basic contracts above, i.e. if we have 

then we may price @ in terms the prices of the basic contracts as 

Note also that in this case we may replicate the claim @ using a portfolio consist- 
ing of basic contracts that is constant over time, i.e. a "buy-and hold" portfolio. 
More precisely the replicating portfolio consists of 

a shares of the underlying stock, 
zero coupon T-bonds with face value $1, 

.yj European call options with strike price Ki, all maturing at T. 

The result above is of course interesting only if there is a reasonably large class 
of contracts which in fact can be written as linear combinations of the basic 
contracts given by (9.2), (9.3), and (9.4). This is indeed the case, and as a first 
example we consider the European put option with strike price K ,  for which the 
contract function cPpSK is defined by 

@ p , ~ ( x )  = max [K - x, 01. (9.10) 
$5 
, h 

It is now easy to see (draw a figure!) that 

so we have the following secalled put-call parity relation. 
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Proposition 9.2 (Put-call parity) Consider a European call and a European 
put, both with strike price K and time of maturity T .  Denoting the corresponding 
pricing functions by c ( t ,  s) and p(t ,  s), we have the following relation: 

i In particular, the put option can be replicated with a constant (over time) port- 
folio consisting of a long position in a zero coupon T-bond with face value K ,  a 
long position in a European call option and a short position in one share of the 
underlying stock. 

I It is now natural to pose the following more general question. Which contracts 
can be replicated in this way using a constant portfolio consisting of bonds, call 
options and the underlying stock? The answer is very pleasing. 

Proposition 9.3 Fix an arbitrary continuous contract function with compact 
support. Then the corresponding contract can be replicated with arbitrary pre- 
cision (in sup-norm) using a constant portfolio consisting only of bonds, call 
options and the underlying stock. 

Proof It is easily seen that any affine function can be written as a linear 
combination of the basic contract functions. The result now follows from the 

: fact that any continuous function with compact support can be approximated 
uniformly by a piecewise linear function. 

9.2 T h e  Greeks 

Let P ( t ,  s )  denote the pricing function at time t for a portfolio based on a single 
underlying asset with price process St. The portfolio can thus consist of a pos- 
ition in the underlying asset itself, as well as positions in various options written 
on the underlying asset. For practical purposes it is often of vital importance to 
have a grip on the sensitivity of P with respect to the following. 

1. Price changes of the underlying asset. 
2. Changes in the model parameters. 

In case 1 above we want to obtain a measure of our risk exposure, i.e. how the 
value of our portfolio (consisting of stock and derivatives) will change given 
a certain change in the underlying price. At first glance case 2 seems self- 
contradictory, since a model parameter is by definition a given constant, and 
thus it cannot possibly change within the given model. This case is therefore not 

I 
t one of risk exposure but rather one of sensitivity with respect to misspecifications 
! of the model parameters. 

We introduce some standard notation. 
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Definition 9.4 

aP e = -  
at '  

All these sensitivity measures are known as "the greeks". This includes V, 
which in this case is given the Anglo-Hellenic pronounciation "vega" . A portfolio 
which is insensitive w.r.t. small changes in one of the parameters above is said to 
be neutral, and formally this means that the corresponding greek equals zero. A 
portfolio with zero delta is said to be delta neutral, and correspondingly for the 
other greeks. In the next section we will study various hedging schemes, based 
upon the greeks, but first we present the basic formulas for the case of a call 
option. See Figs 9.1-9.5 for graphs of the greeks as functions of the underlying 
stock price. 

Proposition 9.5 For a European call with strike price K and time of maturity 
T we have the following relations, with notation as in the Black-Scholes formula. 

FIG. 9.1. Delta for a European call 
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FIG. 9.4. Theta for a European call 
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FIG. 9.5. Rho for a European call 

Proof Use the Black-Scholes formula (7.48) and take derivatives. The (brave) 
reader is invited to carry this out in detail. The calculations are sometimes quite 
messy. 

9.3 Delta and Gamma Hedging 
As in the previous section, let us consider a given portfolio with pricing function 
P(t ,  s). The object is to immunize this portfolio against small changes in the 
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underlying asset price s. If the portfolio already is delta neutral, i.e. if 

1 then we are done, but what can we do in the more interesting case when Ap # O? 
' One possibility is of course to sell the entire portfolio, and invest the sum thus 

obtained in the bank, but this is in most cases neither practically feasible, nor 
preferable. 

A more interesting idea is to add a derivative (e.g. an option or the underlying 
asset itself) to the portfolio. Since the price of a derivative is perfectly correlated 
with the underlying asset price, we should be able to balance the derivative 
against the portfolio in such a way that the adjusted portfolio becomes delta 
neutral. The reader will recognize this argument from the derivation of the Black- 
Scholes PDE, and the formal argument is as follows. 

We denote the pricing function of the chosen derivative by F( t ,  s), and 
x denotes the number of units of the derivative which we will add to the a priori 
given portfoli~. The value V of the adjusted portfolio is then given by 

/ In order to make this portfolio delta neutral we have to choose x such that 
aV/ds = 0, and this gives us the equation 

5 which, with obvious notation, has the solution 

Example 9.6 Let us assume that we have sold a particular derivative with 
pricing function F(t, s), and that we wish to hedge it using the underlying asset 

I itself. In (9.22) we now have P = -1 . F, whereas F is replaced by s, and we get 
1 the equation 
I 
I 

with the solution 

We thus see that the delta of a derivative gives us the number of units of the 
underlying stock that is needed in order to hedge the derivative. 

It is important to note that a delta hedge only works well for small changes in 
the underlying price, and thus only for a short time. In Example 9.6, what we did 
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FIG. 9.6. Linear apprcarimation of .a European call 

was to approximate the pricing function F(t ,  s) with its tangent, and in Fig. 9.6 
this is illustrated for the case when F is the pricing function of a European call 
option. AF equals the slope of the tangent. 

In Fig. 9.1 we have a graph of the delta of a European call, as a function of 
the underlying stock price. As time goes by the value of s (and t) will change, 
and thus we will be using an old, incorrect value of A. What is done in practice is 
to perform a discrete rebalanced delta hedge, which for the example above 
can be done dong the following lines: 

Sell one unit of the derivative at time t = 0 at the price F(0, s ) .  
Compute A and buy A shares. Use the income from the sale of the 
derivative, and if necessary borrow money from the bank. 
Wait one day (week, minute, second). The stock price has now changed 
and your old A is no longer correct. 
Compute the new value of A and adjust your stock holdings accordingly. 
Balance your account by borrowing from or lending to the bank. 
Repeat this procedure until the exercise time T. 
In this way the value of your stock and money holdings will approximately 
equal the value of the derivative. 

It is in fact not hard to prove (see the exercises) the following asymptotic result. 

Proposition 9.7 In a continuously rebalanced delta hedge, the value of the stock 
and money holdings will replicate the value of the derivative. 

In a (discrete) scheme of the kind above we face a dilemma concerning the 
frequency of the rebalancing points in time. If we rebalance often, we will 
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have a very good hedge, but we will also suffer from high transaction costs. 
The reason why we have to rebalance is that delta changes as the underlying 
price changes, and a measure of the sensitivity of A with respect to s is of course 
given by r = aA/as = a2P/as2. See Fig. 9.2 for a graph of the gamma of 
a European call. If gamma is high we have to rebalance often, whereas a low 
gamma will allow us to keep the delta hedge for a longer period. It is thus prefer- 
able to form a portfolio which, apart from being delta neutral, is also gamma 
neutral. 

In order to analyze this in some generality, let us again consider an a priori 
given portfolio with price function P(t ,  s). For future use we state the following 
trivial but important facts. 

Lemma 9.8 For the underlying stock, the delta and gamma are given by 

As = 1, 

rs = 0. 

From the fact that the gamma of the underlying stock equals zero, it follows that 
we cannot use the stock itself in order to change the gamma of the portfolio. Since 
we want the adjusted portfolio to be both delta and gamma neutral, it is also 
obvious that we need two different derivatives in the hedge. Let us thus ~IX two 
derivatives, e.g. two call options with different exercise prices or different times 
of maturity, with pricing functions F and G. We denote the number of units of 
the derivatives by XF and XG respectively, and the value of the hedged portfolio 
is now given by 

V = P(t ,  S) + XF . F(t ,  S) + XG . G(t, s). 

In order to make this portfolio both delta and gamma neutral we have to choose 
XF and XG such that the equations 

av -=  
a s  0, 

a2v -- 
as2 - O, 

are satisfied. With obvious notation we thus obtain the system 

A p + x F . A F + x G . A G = 0 ,  (9.24) 

F p + x F  .rF + x G . r G  =0,  (9.25) 

which can easily be solved. 



130 PARITY RELATIONS AND DELTA HEDGING 

It is natural, and very tempting, to construct a delta and gamma neutral 
hedge by the following two step procedure: 

1. Choose XF such that the portfolio consisting of P and F is delta neutral. 
This portfolio will generally not be gamma neutral. 

2. Now add the derivative G in order to make the portfolio gamma neutral. 

The problem with this scheme is that the second step in general will destroy the 
delta neutrality obtained by the first step. In this context we may, however, use 
the fact that the stock itself has zero gamma and we can thus modify the scheme 
as follows: 

1. Choose XF such that the portfolio consisting of P and F is gamma neutral. 
This ~~ortfolio will generally not be delta neutral. 

2. Now add the underlying stock in order to make the portfolio delta neutral. 

Formally the value of the hedged portfolio will now be given by 

and, using the lemma above, we obtain the following system. 

This system is triangular, and thus much simpler than the system (9.24)-(9.25). 
The solution is given by 

Using the technique described above one can easily derive hedging schemes in 
order to  make a given portfolio neutral with respect to any of the greeks above. 
This is, however, left to the reader. 

9.4 Exercises 
Exercise 9.1 Consider the standard Black-Scholes model. Fix the time of 
maturity T and consider the following T-claim X: 
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This contract can be replicated using a portfolio, consisting solely of bonds, stock 
and European call options, which is constant over time. Determine this portfolio I as well as the arbitrage free price of the contract. 

Exercise 9.2 The setup is the same as in the previous exercise. Here the 
contract is a secalled straddle, defined by 

Determine the constant replicating portfolio as well as the arbitrage free price 
of the contract. 

Exercise 9.3 The s e t u ~  is the same as in the ~revious exercises. We will now 
I SD 

ext 
?d "bull spread" (see F 
take advantage of an 

pig. 9.7). with this 
increase in the ma: 

cont 
rket 

! car 
rhile 

1, to a 
being 

[ protected from a decrease. d he contract is defined by 

We have of course the relation A < B. Determine the constant replicating 
portfolio as well as the arbitrage free price of the contract. 

I Exercise 9.4 The setup and the problem are the same as in the previous 
exercises. The contract is defined by 
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By definition the point C divides the interval [ A , q  in the middle, i.e B = 
(A + C)/2. 

Exercise 9.5 Suppose that you have a portfolio P with Ap = 2 and rp = 3. 
You want to make this portfolio delta and gamma neutral by using two deriv- 
atives F and G, with AF = -1, rF = 2, AG = 5 and I'G = -2. Compute the 
hedge. 

Exercise 9.6 Consider the same situation as above, with the difference that now 
you want to use the underlying S instead of G. Construct the hedge according 

r J to the two step scheme descibed in Section 9.3. 

I Exercise 9.7 Prove Proposition 9.7 by comparing the stock holdings in the 
continuously rebalanced portfolio to the replicating portfolio in Theorem 8.5 of 
the previous chapter. 

Exercise 9.8 Consider a self-financing Markovian portfolio (in continuous time) 
containing various derivatives of the single underlying asset in the Black-Scholes 
model. Denote the value (pricing function) of the portfolio by P(t ,  s). Show that 
the following relation must hold between the various greeks of P. 

Hint: Use Exercise 4. 

Exercise 9.9 Use the result in the previous exercise to show that if the portfolio 
is both delta and gamma neutral, then it replicates the risk free asset, i.e. it has 
a risk free rate of return which is equal to the short rate r. 

Exercise 9.10 Show that for a European put option the delta and gamma are 
given by 

Hint: Use put-all parity. 

Exercise 9.11 Take as given the usual portfolio P, and investigate how you can 
hedge it in order to make it both delta and vega neutral. 
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THE MARTINGALE APPROACH 
TO ARBITRAGE THEORY* 

In this chapter, we consider a market model consisting of N + 1 a priori given 
asset price processes So, SI, . . . , SN. Typically we specify the model by giving the 
dynamics of the asset price processes under the objective probability measure P, 
and the main problems are as follows. 

Fundamental Problems 10.1 

1. Under what conditions is the market arbitrage free? 
2. Under what conditions is the market complete? 

We attack the fundamental problems above by presenting the "martingale 
approach" to financial derivatives. This is, so far, the most general approach 
existing for arbitrage pricing, and it is also extremely efficient from a computa- 
tional point of view. The answers to the problems above are given by the famous 
so called First and Second Fundamental Theorems of Mathematical Fin- 
ance, which will be .treated below. However; while these results are extremely 
general and powerful, they are also quite deep, necessarily involving hard results 
from functional analysis, so at some points we only present the main structural 

I ideas of the proofs. For full proofs the reader is directed to the references in the 
Notes. For the benefit of the reader who does not want to go deeply into the 
theory, we give a summary of the results in Section 10.7. That section can be 
read without reading the rest of the chapter. 

10.1 The Case with Zero Interest Rate 
We will start by considering the special case when one of the assets on the market 
is a risk free asset with zero rate of return. This may sound very restrictive, but 
we will later show how the general case easily can be reduced to this special case. 

As the basic setup we thus consider a financial market consisting of N exo- 
genously given risky traded assets, and the asset price vector is as usual 

S(t) = ] . (10.1) 

We also assume that there exists a risk free asset with price process So(t). This 
will be our numeraire, and in this section we assume that in fact it is constant, 
i.e. it has zero rate of return. 
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Assumption 10.1.1 We assume that 

So(t) = 1, for all t 2 0. 

The So asset ean thus be interpreted as a money account in a bank with zero 
short rate. In the most general version of the theory, the risky price processes are 
allowed to be general semimartingales, but for our purposes it will be enough to 
assume that all price processes possess stochastic differentials with a finite num- 
ber of driving Wiener processes. Our fundamental problems are to find out under 
what conditions the market described above is free of arbitrage possibilities, and 
under what conditions it is complete. 

Before starting a formal discussion of this project we have to be a bit more 
precise about the set of admissible portfolios. Let us on a preliminary basis define 
a naive portfolio process as any adapted process h(t) = [ho(t), hl(t), . . . , h ~ ( t ) ] .  
It then turns out that in order to construct a reasonable theory, the class of 
naive self financing portfolios is simply too big, and we have in fact the following 
strongly negative result. 

Theorem 10.1 If at least one of the assets S1,. . . , SN has a digusion term 
which is nonzero at all times, and if naive portfolio strategies are admitted, then 
the model admits arbitrage. 

Proof The idea of the proof is based upon the so called "doubling strategy" 
for the roulette. In this strategy you start by investing one dollar on black. If you 
win you stop, having won one dollar. If you lose, you bet another two dollars, 
and if you win in this bet your total gain is again one dollar. If you lose again 
you bet another four dollars, etc. Thus, as soon as you win you stop, and as 
long as you lose you double your bet. In this way, and as long as the roulette has 
positive probability for black coming up (it does not have to be evenly balanced), 
you will eventually (i.e. with probability one) win, and your net profit will be 
one dollar. 

This is an arbitrage on the roulette, and the reason that this does not work 
well in practice, like in Monte Carlo, is that it requires you to have unlimited 
credit, since at some points in the game you will have lost an enormous amount 
of money before eventually winning one dollar. Also, the time spent until you 
win is a priori unbounded although it is finite with probability one. Thus the 
probability is high that the sun (and you) has died until you get your dollar. 

In real life you do not have unlimited credit, but within our theoretical frarne- 
work credit is unlimited, and it is in fact quite simple to use our market model 
to imitate the Monte Carlo roulette wheel and the doubling strategy above in 
finite time. If you want the play to be over at t = 1 you simply invest at the 
discrete times 1 - lln; n = 1,2, . . . . You start by investing one dollar in the 
risky asset, financing by a bank loan, and then you stop as soon as you gain on 
the investment and you double your investment as long as you lose (all the time 
financing by a bank loan). It is then easy to see that you can in fact repeat this 
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arbitrage strategy an infinite number of times on any bounded interval, so with 
probability one you will become infinitely rich. 

In order to have a reasonable theory we must thus restrict the class of admis 
sible strategies to a smaller class where these doubling strategies are excluded. 
There are many ways of doing this and a commonly used one is given below. In 
order to have a compact notation we will use hs ( t )  as shorthand for the part of 
the portfolio which is connected to the risky assets, i.e. hs( t )  = [h l ( t ) ,  . . . , hN( t ) ] ,  
and we can thus write the entire portfolio h as h = [ho, hs] .  

Definition 10.2 

For any process h = [ho, hs] ,  its value process V(t;  h )  is defined by 

1 
P 

or in  compact form 

C' An  adapted process hs  is called admissible i f  there exists a nonnegative 
real number a (which may depend on the choice of h s )  such that 

l o  h s (u )  d S ( u )  L -a, for all t E [O, T ] .  (10.5) 

A process h ( t )  = [ho(t) ,  h s ( t ) ] ,  is called an admissible portfolio process 
i f  h s  is admissible. 
A n  admissible portfolio is said to be self-financing, if 

Comparing with Definition 6.2, we note that formally the self financing 
condition should be 

but since in our case So - 1, we have dSo = 0 so the self financing condition 
reduces to (10.7). This is a simple but important fact, which is highlighted by 
the following result. 
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Lemma 10.3 For any adapted process h s  satisfying the admissibility condition 
(10.5)) and for any real number x, there exists a unique adapted process ho, 
such that: 

The portfolio h defined by h = [ho, hs] is self financing. 
The value process is given by 

In particular, the space KO of portfolio values, reachable at time T by means of 
a self financing portfolio with zero initial cost is given by 

h o  = { iT hs ( t )  dS(t) 1 hs is admissible . 1 
Proof Define ho by 

Then, by t h e  definition of the value process, we obviously have 

and from this we obtain directly 

which shows that h is self financing. The last item is now obvious. 

We stress the fact, that the simple characterization of the zero cost reachable 
claims in (10.9) depends crucially on our assumption that So = 1. 

10.2 Absence of Arbitrage 
We consider the market model (10.1) over the finite time interval [0, TI, still with 
the assumption that So = 1. 

We now give the formal definition of a martingale measure. 

Definition 10.4 A probability measure Q on .FT is called an equivalent mar- 
tingale measure for the market model (10.1), the numeraire S1 ,  and the time 
interval [0, TI, i f  it has the following properties: 

Q is equivalent to P on 3T. 
All price processes SO,  S1, . . . , SN are martingales under Q on the time 
interval [0, TI. 
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An equzvalent martzngale measure will often be referred to as just "a martingale 
measure" or as "an EMM". If Q P has the property that So, SI,  . . . , SN are 
local martingales, then Q i s  called a local martingale measure. 

1 We note that by our assumption above, So is trivially always a martingale. From 
an informal point of view, the main result of the entire arbitrage theory is the 
following not very precisely formulated Theorem. 

Theorem 10.5 (The First Fundamental Theorem) The model i s  arbitrage 
free essentially if and only if there exists a (local) martingale measure Q. 

This widely quoted result has the nature of a "Folk Theorem" in the sense 
that it is known to everyone and that, apart from the diffuse term "essentially", 
it is correct. Below we will discuss exactly what we mean with "essentially" in 
the formulation above, and we will also give more exact formulations of it. A 
full proof of a precise version of the First Fundamental Theorem is very hard 
and technical, and thus to a large extent outside the scope of the book. The 
main ideas, however, are quite simple and straightforward. We will present these 
ideas and we will also point out where the technical problems appear. The reader 
interested in the full story is referred to the Notes. 

10.2.1 A Rough Sketch of the Proof 

In this section we will informally discuss the main ideas of the proof of the First 
Fundamental Theorem, and we will also point out the problems encountered. 
The proof consists of two parts: 

Existence of an EMM implies absence of arbitrage. 
Absence of arbitrage implies existence of an EMM. 

The first part is rather easy, whereas the second part is very hard. 

I: Existence of an EMM implies absence of arbitrage. This part is in 
fact surprisingly easy. To see this, let us assume that there does indeed exist a 
martingale measure Q. In our Wiener driven world this implies (see the Girsanov 
Theorem in Chapter 11) that all price processes have zero drift under Q, i.e. their 
Q dynamics are of the form 

dSi(t) = ~,( t )u , ( t )  dwQ(t) ,  z = 1, . . . , N ,  (10.10) 

where WQ is some multidimensional Q-Wiener process and c, is some adapted 
row vector process. 

We now want to prove that there exist no arbitrage possibilities, so we assume 
that for some self financing process h, which we for the moment assume to be 
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uniformly bounded, the corresponding value process satisfies the relations 

We are thus viewing h as a potential arbitrage portfolio, and in order to prove 
absence of arbitrage we thus want to show that V(0, h) > 0. 

Since Q N P we see that we also have the relations 

Since h is self financing we have (remember that dSo = 0) 

and thus (by the boundedness assumptions) we see that V(t; h) is a Q-martingale. 
In particular we then have 

However, (10.13)-(10.14) imply that EQ [V(T; h)] > 0, so V(0; h) > 0. We 
have thus shown that (10.11)-(10.12) implies V(0; h) > 0, thereby proving the 
nonexistence of a bounded arbitrage portfolio. 

For the case of a possibly unbounded, but of course still admissible, portfolio 
we have to resort to more delicate arguments. One can then show that, since the 
value process is bounded from below it is in fact a supermartingale. Thus 

V(0; h) 2 E~ [V(T; h)] > 0, 

and the proof of this part is finished. 

11: Absence of arbitrage implies existence of an EMM. This is the really 
difficult part of the first fundamental theorem. It requires several hard results 
from functional analysis, but the basic ideas are as follows. 

In order to avoid integrability problems we assume that all asset price pro- 
cesses are bounded and we interpret "arbitrage" as "bounded arbitrage". We 
thus assume absence of arbitrage and we want to prove the existence of an 
EMM, or in more technical terms we would like to prove the existence of a 
Radon-Nikodym derivative L on 37- which will transform the P-measure into a 
martingale measure Q. Inspired from the simple one period model discussed in 
Chapter 3 it is natural to look for some sort of convex separation theorem, and to 
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this end we need to put our problem within a more functional analytical setting. 
Since the Radon-Nikodym derivative L should be in L1, it is natural to try to 
utilize duality between Lm and L1 so therefore we define the following sets, with 
L1 denoting L1 (52,FT, P) and Lm denoting Lm (R,FT, P). (Recall that ICo is 
the space of all claims which can be reached by a self financed portfolio at zero 

K : = K : ~ ~ L ~ ,  (10.15) 

L y  = the nonnegative random variables in L*, (10.16) 

C = K: - L y .  (10.17) 

The space K: thus consists of all bounded claims which are reachable by a self 
financing portfolio at zero initial cost. The set C are those claims which are 
dominated by the claims in IC, so every claim in C can be reached by self-financing 
portfolio with zero initial cost if you also allow yourself to throw away money. 

Since we have assumed absence of arbitrage we deduce that 

c n ~ ~  = (0). (10.18) 

Now, both C and L T  are convex sets in Lm with only one point in common, so at 
this point (which is the crucial point of the argument, see below) one would like 
to refer to a convex separation theorem to guarantee the existence of a nonzero 
random variable L E L1 such that 

EP [LX] 2 0, for all X E L+w, (10.19) 

EP [LX] 5 0, for all X G C. (10.20) 

Assume for the moment that this part of the argument can be carried out. From 
(10.19) we can then deduce that in fact L 2 0, and by scaling we can choose 
L such that EP [L] = 1. We can thus use L as a Radon-Nikodym derivative 
to define a new measure Q by dQ = L d P  on FT, and Q is now our natural 
candidate as a martingale measure. 

Although the main ideas above are good, there are two hard technical 
problems which must be dealt with: 

Since L1 is not the dual of L" (in the norm topologies) we can not use a 
standard convex separation theorem. An application of a standard Banach 
space separation theorem would provide us with a linear functional L E 
(Lm )* such that (X, L) 2 0 for all X E L T  and (X, L) 5 0 for all X in C, 
but since L1 is strictly included in (LOO)* we have no guarantee that L can 
be represented by an element in L1. We thus need a stronger separation 
theorem than the standard one. 
Supposing that the duality problem above can be resolved, it remains to 
prove that L is strictly positive (not only nonnegative), since otherwise we 
may only have Q << P but not Q - P. 
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10.2.2 Precise Results 

We now move on to a more formal discussion of the various versions of the First 
Fundamental Theorem. For the main proof we follow Delbaen-Schachermayer 
(1994). This will force us to use some results and concepts from functional ana- 
lysis which are outside the present text, and the reader is referred to Rudin (1991) 
for general information. The new ingredients of the full proof are as follows: 

We introduce a variation of the concept of no arbitrage, namely "No Free 
Lunch with Vanishing Risk". 
In order to obtain a duality between L1 and Lm we consider the weak* 
topologies instead of the norm topologies. 
We use the Kreps-Yan separation Theorem. 

As a first step, it turns out that the standard definition of absence of arbitrage 
is a bit too restrictive to allow us to deduce the existence of an EMM, so we 
need to modify this concept slightly. 

Definition 10.6 With notation as i n  the previous section, we say that the model 
admits 

No Arbitrage (NA) i f  
CnL? = {O), 

No Free Lunch with Vanishing Risk (NFLVR) if 

where C denotes the closure of C i n  Lm. 

The no arbitrage condition is the same as before, whereas NFLVR is a slightly 
wider concept. If NFLVR does not hold then there will exist a nonzero claim 
X E L y  and a sequence Xn E C such that (Xn - XI < l l n  for all n, so in 
particular X, > -1ln. Thus; for each n there exists a self financing (zero ini- 
tial cost) portfolio generating a claim which is closer then l l n  to the arbitrage 
claim X, while the downside risk is less than l ln .  This is almost an arbitrage. 

As a second step we consider the weak* topology on LM generated by L1. 
It is well known (see Rudin (1991)) that with the weak* topology, the dual of 
Loo is L1 so we are now in a nice position to apply a separation theorem. More 
precisely we will need the following deep result. 

Theorem 10.7 (Kreps-Yan Separation Theorem) If C is weak* closed, 
and i f  

C n L y = { o ) ,  

then there exists a random variable L E L1 such that L is P almost surely strictly 
positive, and 

E~ [L . X] 1 0, for all X E C. 



ABSENCE OF ARBITRAGE 141 

Proof For a proof and references see Schachermayer (1994). 

We are now almost in business, and we see that in order for the Kreps-Yan 
Theorem to work we need to assume No Arbitrage and we also need assump 
tions which guarantee that C is weak* closed. Happily enough we have the 
following surprising result from Delbaen-Schachermayer (1994) which shows that 
the closedness of C in fact follows from NFLVR. The proof is very hard and 
therefore omitted. 

I Proposition 10.8 If the asset price processes are uniformly bounded, then the ' 
condition NFLVR implies that C is weak* closed. 

I We can now state and prove the main result. 

Theorem 10.9 (First Fundamental Theorem) Assume that the asset price 
/ process S is bounded. Then there exists an equivalent martingale measure if and I only if the model satisfies NFLVR. 

Proof The only i f  part is the easy one, and the proof is already given in 
Section 10.2.1. Before going on we recall the definitions of IC and C and from 
(10.15)-(10.17). For the i f  part we assume NFLVR. This implies that C is weak* 

1 closed and it also (trivially) implies No Arbitrage, i.e. C n L y  = ( 0 ) .  We may 
thus apply the Kreps-Yan Separation to deduce the existence of a random 
variable L E L1 such that L is P almost surely strictly positive, and 

E P [ L . X ]  1 0 ,  for all X E C. (10.23) 

By scaling we can choose L such that E P  [L] = 1. We may thus use L as a 
Radon-Nikodym derivative to define a new measure Q by dQ = L d P  on 3 ~ ,  
and Q is now our natural candidate as a martingale measure. It follows from 
(10.23) and the definition of IC that E~ [LX] 5 0 for all X E K. Since K: is a 
linear subspace this implies that in fact EQ [XI = EP [ L X ]  = 0 for all X E IC. In 
order to prove the martingale property of Si for a fixed i, we choose fixed s and 
t with s < t ,  well as an arbitrary event A E 3,. Now consider the following 
self-financing portfolio strategy: 

Start with zero wealth and do nothing until time s. 
At time s buy IA units of asset No. i. Finance this by a loan in the bank. 
At time t sell the holdings of asset No. i and repay the loan. Put any 
surplus in the bank and keep it there until time T. 

Since the short rate equals zero, the initial loan (at time s )  in the bank is 
paid back (at time t )  by the same amount, so at time t the value of our portfolio 
is given by V(t ;  h) = IA [Si ( t)  - Si (s ) ] .  Since the short rate equals zero this will 
also be the value of our portfolio at time T. Thus we have IA  (S i ( t )  - S i ( s ) )  E IC 
so we must have EQ [IA ( S i ( t )  - Si (s ) ) ]  = 0 ,  and since this holds for all s ,  t and 
A E 3, we have proved that Si is a Q martingale. 
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In most applications, the assumption of a bounded S process is far to restrict- 
ive. The Delbaen-Schachermayer Theorem can however easily be extended to a 
more general case. 

Theorem 10.10 Assume that the asset price process S is locally bounded. Then 
there exists an equivalent local martingale measure zf and only if the model 
satisfies NFLVR. 

Remark 10.2.1 We note that in particular the result above will hold if the 
S process has continuous trajectories. It will also hold for an S process with 
jumps as long as the jumps are bounded. The case of an S process which is 
not locally bounded such as for example a process with lognormally distributed 
jumps at exponentially distributed times is much more difficult, and in such 
a case NFLVR is only equivalent to the existence of an equivalent measure Q 
such that S becomes a so called "sigma-martingale" under Q. See the Notes for 
references. 

10.3 The General Case 
We now relax the assumption that So E 1, and go on to consider a market model 
consisting of the price processes 

S O , ~ ~ , . - . , S N ,  
i 

where we make the following assumption. 

Assumption 10.3.1 We assume that So(t) > 0 P-a.8. for all t 2 0. 
The main problem is to give conditions for absence of arbitrage in this model, 

and these are easily obtained by moving to the "normalized" economy where we 
use So as a numeraire. 

Thus: instead of looking at the price vector process S = [So, Sl, . . . , SN] we 
look at the relative price vector process S(t)/So(t), where we have used So as the 
numeraire price. This object will be studied in more detail in Chapter 24. 

Definition 10.11 The normalized economy (also referred to as the 
"2-economy ") is defined by the price vector process 2, where 

s ( t >  Z(t) = - 
S o  (t) ' 

i. e. 

The point of this is that in the Z economy we have a risk free asset 20 r 1, 
with zero rate of return, so the simple idea is to apply the results from the 
previous sections to the 2 economy. 

First, however, we have two price systems to keep track of: the S-system and 
the 2-system, and before going on we have to clarify the relations between these 
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systems. In particular, for any portfolio process h there will be associated two 
value processes, one in the S system and one in the Z system, and we thus need 
to introduce some notation. 

Definition 10.12 

A portfolio strategy is any adapted (n + 1)-dimensional process 

h ( t )  = [ho (t) ,  hl ( t)  , . - - 7  hn (t)] 

I The S-value process vs(t; h )  corresponding to the portfolio h is given 

n 

vS(t; h )  = C h, ( t )~ , ( t ) .  (10.25) 
i=O 

J The Z-value process vZ(t; h )  corresponding to the portfolio h is given by 

( p A portfolio is said to be admissible i f  i t  is admissible i n  the sense of 
Definition 10.2 as a Z portfolio. 

1 f., An admissible portfolio is said to be S-self-financing zf 

n 

d v s  (t; h )  = C hi (t)  dSi (t). (10.27) 
i=O 

L An  admissible portfolio is said to be Z-self-financing if 

n 

d v Z  (ti h )  = C hi( t )  dZi( t ) .  (10.28) 
i=O 

We can also make the obvious definitions of a given T-claim being S-reachable 
and Z-reachable, respectively. 

The intuitive feeling is that the concept of a self-financing portfolio should 
not depend upon the particular choice of numeraire. That this is indeed the case 
is shown by the following "Invariance Lemma". 

Lemma 10.13 (Invariance lemma) With assumptions and notation as 
above, the following hold: 

(i) A portfolio h is S-self-financing i f  and only i f  it is 2-self-financing. 
(ii) The value processes vS and vZ are connected by 

I vZ(t; h) = - 1 - vS(t; h) .  
So (t)  
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(iii) A claim Y is S-reachable if and only if the claim 

is 2-reachable. 
The model is Z arbitrage free if and only zf it is S arbitrage free. 

Proof Items (ii) and (iii) are obvious. Thus it only remains to prove the self 
financing result, and for simplicity we assume that all processes possess stochastic 
differentials driven by a finite number of Wiener processes. Assume therefore that 
the portfolio h is S-self-financing. Denoting the scalar product between vectors 
by the "scalar dot" ., using the notation P = So, and suppressing the t-variable, 
we have from this assumption that 

1 I 

2 = P-~S, (10.29) 

vS = h . ~ ,  (10.30) 

vZ = p-fvS, (10.31) 

dvS = h . d ~ .  (10.32) 

We now want to prove that in fact 

Using the It6 formula on Z = P-'S, we thus want to prove that 

d v Z  = /3-'h. dS  + h s dp-' + h - dSdp-l. (10.33) 

Now, from- (10.31) we have 

Substituting (10.30) and (10.32) into this equation gives 

d v Z  = /3-'h . dS  + h - s dp-' + dp-'h . dS, 

which is what we wanted to prove. 

We may now formulate and prove the main result concerning absence of 
arbitrage. 

Theorem 10.14 (The First Fundamental Theorem) Consider the market 
model So, S1,. . . , SN where we assume that So(t) > 0, P-a.s. for all t 2 0. 
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' 
Assume furthermore that So, S1,. . . , SN are locally bounded. Then the following 

I conditions are equivalent: 
The model satisfies NFLVR. 
There exists a measure Q N P such that the processes 

z o , z l , .  .. ,ZN,  

defined through (lO.24), are local martingales under Q .  

Proof This follows directly from the Invariance Lemma and from 
p Theorem 10.10. 

Remark 10.3.1 From now on we will use the term "martingale measure" to 
/ denote the (not necessarily unique) local martingale measure of Theorem 10.14. 

; 10.4 Completeness 
In this section we assume absence of arbitrage, i.e. we assume that there exists a 
(local) martingale measure. We now turn to the possibility of replicating a given 
contingent claim in terms of a portfolio based on the underlying assets. This 
problem is most conveniently carried out in terms of normalized prices, and we 
have the following useful lemma, which shows that hedging is equivalent to the 
existence of a stochastic integral representation of the normalized claim. 

b Lemma 10.15 Consider a given T-claim X .  Fix a martingale measure Q and 
assume that the normalized claim X/So(T) is integrable. If the Q-martingale M ,  
defined bu 

admits an integral representation of the form 

then X can be hedged in  the S-economy. Furthermore, the replicating portfolio 
, (ho, hl , .  . . , h ~ )  lis given by (10.35) for (hl,.  . . , h K ) ,  whereas ho is given by 
: ho(t) = M(t) - c,N_I hi(t)Zi(t). 

Proof We want to hedge X in the S economy, i.e. we want to hedge X/So(T) in 
the Z economy. In terms of normalized prices, and using the Invariance Lemma, 
we are thus looking for a process h = (ho, hl, . . . , h ~ )  such that 
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where the normalized value process is given by 

N 

vZ(t; h)  = ho(t) 1 + C h,(t)&(t). 
i=l 

A reasonablk guess is that M = vZ, so we let M be defined by (10.34). 
Furthermore we define (h l ,  . . . , h N )  by (10.35), and we define ho by 

N 

ho(t) = M(t )  - C hs(t)Z*(t). 
r = l  

Now, from (10.38) we obviously have M = vZ, and from (10.35) we get 

N 

dvZ = d M  = C h, dZ,, 
i=l 

which shows that the portfolio is self financing. Furthermore we have 

which shows that X is replicated by h. 

We thus see that, modulo some integrability considerations, completeness is 
equivalent to the existence of a martingale representation theorem for the dis- 
counted price process. Thus we may draw on the deep results of Jacod (1979) 
from semimartingale theory which connect martingale representation properties 
for Z with the extremal points of the set of martingale measures. 

Theorem 10.16 (Jacod) Let M denote the (convex) set of equivalent mar- 
tingale measures. Then, for any f i ed  Q € M ,  the following statements are 
equivalent. 

Every Q local martingale M has dynamics of the form 

N 

dM( t )  = C hi (t)  dZi(t). 
i=l 

Q is an extremal point of M .  

We then have the second fundamental theorem of mathematical finance. 

Theorem 10.17 (The Second Fundamental Theorem) Assume that the 
market is arbitrage free. Then the market is complete i f  and only i f  the martingale 
measure is unique. 
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Proof If the martingale measure Q is unique then M is a singleton M = {Q) 
so Q is trivially an extremal point of M. Thus the Jacod Theorem provides 
us with a stochastic integral representation of every Q-martingale, and it then 
follows from Lemma 10.15 that the model is complete. The other implication 
follows easily from (10.56) of Proposition 10.25. 

Remark 10.4.1 The reader may find the proof given above rather abstract, 
and we provide two alternatives: 

A more functional analytic proof of the Second Fundamental Theorem 
would be roughly as follows: The market is unique if and only if the set C 

t of reachable claims at zero initial cost has codimension one, i.e. if 

Lw = C $ R . Y  

for some Y E Lm. This implies that the separating hyperplane implied 
by the Kreps-Yan Theorem (10.7) is ,unique and thus that the martingale 
measure is unique. 
In Section 14.3 we provide a self-contained and complete proof of the 
Second Fundamental Theorem for the special case of purely Wiener driven 

I models. 

10.5 Martingale Pricing 

We now turn to the pricing problem for contingent claims. In order to do this, 
we consider the "primary" market So, Sl, . . . , SN as given a priori, and we fix a 
T-claim X. Our task is that of determining a "reasonable" price process II(t; X) 
for X, and we assume that the primary market is arbitrage free. There are two 
main approaches: 

1 The derivative should be priced in a way that is consistent with the 
prices of the underlying assets. More precisely we should demand that the 
extended market II( ; X )  , So, 4 , .  . . , SN is free of arbitrage possibilities. 
If the claim is attainable, with hedging portfolio h, then the only 

t 
reasonable price is given by n(t;  X) = V(t; h). 

1 
In the first approach above, we thus demand that there should exist a martin- 

gale measure Q for the extended market II (X) , So, Sl, . . . , SN. Letting Q denote 
such a measure, assuming enough integrability, and applying the definition of a 
martingale measure we obtain 

We thus have the following result. 
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Theorem 10.18 (General Pricing Formula) The arbitrage free price pro- 
cess for the T-claim X is given by 

n(t; X )  = S O ( ~ ) E ~  - [ so?T) I .I (10.41) 

where Q is the (not necessarily unique) martingale measure for the a priori given 
market So, S1, .  . . , S N ,  with So as the numemire . 

Note that different choices of Q will generically give rise to different price 
processes. 

In particular we note that if we assume that if SO is the money account 

where r is the shorturate, then (10.41) is reduced to the familiar "risk neutral 
valuation formula". 

Theorem 10.19 (Risk Neutral Valuation Formula) Assuming the ezist- 
ence of a short rate, the pricing formula takes the form 

, n(t; X )  = EO [e- r(s) d s ~ I  F~] , (10.42) 

where Q is a (not necessarily unique) martingale measure with the money account 
as the numemire. 

For the second approach to pricing let us assume that X can be replicated 
by h. Since the holding of the derivative contract and the holding of the replic- 
ating portfolio are equivalent from a financial point of view, we see that price of 
the derivative must be given by the formula 

n ( t ;  X )  = V ( t ;  h). (10.43) 

One problem here is what will happen in a case when X can be replicated bv 1 - - 
two different portfolios, and one would also like to know how this'formula is 
connected to (10.41). 

Defining n ( t ;  X )  by (10.43) we see that n(t; X )  /So( t )  = V Z ( t )  and 
since, assuming enough integrability, vZ is a &-martingale, we see that also 
ll(t; X) /So( t )  is a Q-martingale. Thus we again obtain the formula (10.41) and 
for a attainable claim we have in particular the formula 

V ( t ;  h) = so(t)EQ [ 14, (10.44) 

which will hold for any replicating portfolio and for any martingale measure Q. 
Thus we see that the two pricing approaches above do in fact coincide on the set 
of attainable claims. In Section 10.7 we will summarize our results. 

v 
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I 10.6 Stochastic Discount Factors 

I In the previous sections we have seen that we can price a contingent T-claim X 
' by using the formula 

1 where Q is a martingale measure with the money account as a numeraire. In some 
applications of the theory (in particular in asset pricing) it is common to write 
this expected value directly under the objective probability measure P instead 

I of under Q. This can easily be obtained by using the likelihood process L, where 
1 as usual L is defined on the interval [0, T ]  through 
I 

Using the Abstract Byes' Formula we can now write (10.45) as 

which naturally leads us to the following definition. 

Definition 10.20 Assume the existence of a short rate r .  For any fixed martin- 
gale measure Q ,  let the likelihood process L be defined by (10.46). The stochastic 
discount factor (SDF) process A, corresponding to Q ,  is defined as 

We thus see that there is a one-to-one correspondence between martingale 
measures and SDFs. We have now more or less proved the following result. 

Proposition 10.21 Assume absence of arbitrage. With notation as above, the 
following hold: 

For any suficiently integrable T-claim X ,  the arbitrage free price is 
given by 

For any arbitrage free asset price process S(derivative or underlying) the 
process 

A(t>s(t) (10.49) 

is a (local) P-martingale. 
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The P-dynamics of A is given by 

Proof The remaining details of the proof are left to the reader. 0 

Although SDFs and martingale measures are logically equivalent, it is often 
convenient to be able to switch from one to the other. The main advantage of 
using the martingale measure formalism is that it provides us with a canonical 
decomposition of the SDF as the (inverse) bank account multiplied by the like- 
lihood process L, and we can then use the deep and well established theory for 
likelihood processes (see Chapter 11). 

We may.,also, in the obvious way, define stochastic discount factors for other 
choices of the numeraire then the money account. 

An alternative approach to SDFs is to define an SDF as any nonnegative ran- 
dom process A possessing the property that S(t)A(t) is a (local) P-martingale for 
every asset price process S. The First Fundamental Theorem can then be restated 
as the equivalence between absence of arbitrage and the existence of an SDF. 

10.7 Summary for t h e  Working Economist 

In this section we summarize the results for the martingale approach. We con- 
sider a market model consisting of the asset price processes So, Sl, . . . , SN on 
the time interval [O,T]. The "numeraire process" So is assumed to be strictly 
positive. Modulo some technicalities we then have the following results. The first 
provides conditions for absence of arbitrage. 

Theorem 10.22 (First Fundamental Theorem) The market model is f i e  
of arbitrage if and only if  there exists a martingale measure, i.e. a measure 
Q N P such that the processes 

are (local) martingales under Q. 

For the case when the numeraire is the money account we have an alternative 
characterization of a martingale measure. The proof is a simple application of 
the It6 formula. 

Proposition 10.23 If the numeraire So is the money account, i.e. 

where r is the (possibly stochastic) short rate, and if we assume that all processes 
are Wiener driven, then a measure Q N P is a martingale measure if  and only 
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if all assets So, S I ,  . . . , SN have the short rate as their local rates of return, i.e. 
if the Q-dynamics are of the form 

dSi ( t )  = Si ( t ) r ( t )  d t  + Si ( t )a i ( t )  d w Q ( t ) ,  (10.51) 

where WQ is a (multidimensional) Q-  Wiener process. 

The second result gives us conditions for market completeness. 

Theorem  10.24 (Second  Fundamenta l  T h e o r e m )  Assuming absence of 
arbitrage, the market model is complete if and only if the martingale measure 
Q is unique. 

As far as pricing o f  qontingent claims is concerned the theory can be 
summarized as fpllows. 

Proposition 10.25 

, 1. In order to avoid arbitrage, X must be priced according to the formula 

n(t; x) = so( t )~Q - [ so?T) I (10.52) 

e: where Q is a martingale measure for [So, &, . . . , S N ] ,  with So as the 
numeraire. 

2. In  particular, we can choose the bank account B(t) as the numeraire. Then 
B has the dynamics 

d B ( t )  = r ( t ) B ( t )  dt ,  (10.53) 

where r is the (possibly stochastic) short rate process. In  this case the 
pricing formula above reduces to 

n(t; X )  = EQ [ e - s : r ( s ) d s ~ I  F ~ ]  . (10.54) 

3. Different choices of Q will generically give rise to diferent price processes 
for a jked claim X .  However, if X is attainable then all choices of Q will 
produce the same price process, which then is given by 

H(t;  X )  = V(t;  h ) ,  (10.55) 
5 

where h is the hedging portfolio. Different choices of hedging portfolios (zf 
such exist) will produce the same price process. 

4. In particular, for every replicable claim X it holds that 

~ ( t ;  h) = EQ [ e - J T r ( s ) d s ~ I  ~ t ]  . 
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Summing up we see that in a complete market the price of any derivative 
will be uniquely determined by the requirement of absence of arbitrage. The 
price is unique precisely because the derivative is in a sense superfluous-it can 
equally well be replaced by its replicating portfolio. In particular we see that the 
price does not depend on any assumptions made about the risk-preferences of 
the agents in the market. The agents can have any attitude towards risk, as long 
as they prefer more (deterministic) money to less. 

In an incomplete market the requirement of no arbitrage is no longer suffi- 
cient to determine a unique price for the derivative. We have several martingale 
mevures, all of which can be used to price derivatives in a way consistent with 
no arbitr~ge. The question which martingale measure one should use for pricing 
has a very simple answer: The martingale measure is chosen by the market. 

Schematically speaking the price of a derivative is thus determined by two 
major factors. 

1. We require that the derivative should be priced in such a way as to 
not introduce arbitrage possibilities into the market. This requirement is 
reflected by the fact that all derivatives must be priced by formula (10.52) 
where the same Q is used for all derivatives. 

2. In an incomplete market the price is also partly determined by aggregate 
supply and demand on the market. Supply and demand for a specific deriv- 
ative are in turn determined by the aggregate risk aversion on the market, 
as well as by liquidity considerations and other factors. All these aspects 
are aggregated into the particular martingale measure used by the market. 

Let us now assume that we have specified some model under the objective 
probability measure P. This means that we have specified the P-dynamics of all 
asset prices in the primary market. We may also have specified the P-dynamics of 
some processes which are not price processes, like the inflation rate, the unem- 
ployment rate, or the outside temperature (which influences the demand for 
electric energy). 

In order to be able to  apply the theory developed above, it is then clear that 
we need the following tools: 

We need to have full control of the class of equivalent measure transform- 
ations that can be made from a given objective measure P. 
Given an equivalent measure Q (a potential martingale measure), we must 
be able to write down the Q-dynamics of all processes under consideration. 
We need theorems which allow us to write certain stochastic variables ( t y p  
ically contingent claims) as stochastic integrals of some given processes 
(typically normalized asset prices). 

All these tools are in fact provided by the following mathematical results 
which are the objects under study in the next chapter. 

a The Martingale Representation Theorem for Wiener processes. 
The Girsanov Theorem. 



NOTES 

10.8 Notes 
The martingale approach to arbitrage pricing was developed in Harrison 
and Kreps (1979), Kreps (1981), and Harrison and Pliska (1981). It was 
then extended by, among others, Duffie and Huang (1986), Delbaen (1992), 
Schachermayer (1994), and Delbaen and Schachermayer (1994). In this chapter 
we follow closely Delbaen and Schachermayer (1994) for the case of loc- 
ally bounded price processes. The general case of unbounded price processes 
and its connection to sigma-martingales was finally resolved in Delbaen and 
Schachermayer (1998), which also contains further bibliographic information on 
this subject. Rudin (1991) is a standard reference on functional analysis, which 
is also treated in Royden (1988). 

Stochastic discount factors are treated in Duffie (2001), and in most modern 
textbooks on asset pricing such as Cochrane (2001). 
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THE MATHEMATICS O F  THE 
MARTINGALE APPROACH* 

Iri this ,chapter, we will present the two main workhorses of the martingale 
approach to arbitrage theory. These are: 

The Martingale Representation Theorem, which shows that in a Wiener 
world every martingale can be written as a stochastic integral w.r.t. the 
underlying Wiener process. 
The Girsanov Theorem, which gives us complete control of all absolutely 
continuous measure transformations in a Wiener world. 

11.1 Stochastic Integral Representations 
Let us consider a fixed time interval [O,T], a probability space ( M , F ,  P), 
with some filtration {Ft't),,o, and an adapted vector Wiener process W = 
(WI,. . . , Wd)*. Now fix a vector process h = (hi,. . . , hd) which is "integrable 
enough" (e.g. h E E2 is enough) and a real number xo. If we now define the 
process M by 

then we know that M is a martingale. In other words: under mild integrability 
conditions, every stochastic integral w.r. t . a Wiener process is an Ft-martingale. 
A very natural and important question is now whether the converse holds, i.e. 
if every Ft-adapted martingale M can be written in the form (11.1). If this is 
indeed the case, then we say that M has a stochastic integral representation 
w.r.t. the Wiener process W. 

It is not hard to see that in the completely general case, there is no hope for 
a stochastic integral representation w.r.t. W for a general martingale M. As a 
counterexample, let W be scalar (i.e. d = 1) and consider, apart from W, also 
a Poisson process N, with constant intensity A, where N is independent of W. 
Now define the filtration by Ft = 3FN,  i.e. Ft contains all the information 
generated by W and N over the interval [0, t]. 

It is now very easy to see that the process M defined by 

is an &-martingale. If we look at the trajectories of M,  they consist of straight 
lines with downward slope A, interrupted at exponentially distributed points 
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I in time by positive jumps of unit size. From this it is obvious that M can 
possess no stochastic integral representation of the form (11.1), since any such 

, representation implies that M has continuous trajectories. The intuitive reason 
is of course that since M is independent of W, we cannot use W in order to 
represent M. 

From this example it is clear that we can only hope for a stochastic integ- 
ral representation result in the case when {.Ft}t,o is the internal filtration 

1 generated by the Wiener process W itself. We start with the following basic 
1 representation for Wiener functionals, which in turn will give us our martingale 

representation result. 

Theorem 11.1 (Representation of Wiener Functionals) Let W be a 
d-dimensional Wiener process, and let X be a stochastic variable such that 

X E F F ,  
E [ [XI ]  < m. 

Then there exist uniquely determined .Ftw-adapted processes hl, . . . , hd, such that 
X has the representation 

X = E [XI + 1 ' h, ( s )  d Wi ( s )  
i=l 0 

Under the additional assumption 

f 

1 then hl, . . . , hd are i n  E2 

Proof We only give the proof for the L2 case, where we present the main ideas 
of a particularly nice proof from Steele (2001). For notational simplicity we only 
consider the scalar case. 

We start by recalling that the GBM equation 

has the solution 
X - -+u2t+uwt 

t - e  

Writing the SDE on integral form as 
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and plugging (11.3) into (11.4) we obtain, after some reshuffling of terms, 

Using the same argument we easily obtain, for s 5 t, 

where the important point is that the integral is only over the interval [s, t]. Thus 
any stochastic variable Z of the form 

Z = exp {a(Wt - W,)) 

will have a representation of the form 

where h E 0 outside [s, t]. From this it follows easily (see the exercises) that any 
variable Z of the form 

where 0 5 to 5 tl 5 . . . 5 t, 5 T, has a representation of the form 

It is now fairly straightforward to see that also any variable of the form 

n 

z = n exp {iok (WT. - WT.-,)} 9 (11.8) 
k=l 

where i is the imaginary unit, has a representation of the form (11.7). At this 
point we may use Fourier techniques to see that the set of variables of the form 
(11.8) is dense in the (complex) space L2(FT), and from this one can deduce 
that in fact every Z E L2(FT) has a representation of the form (11.7). See Steele 
(2001) for the details. 

From this result we now easily obtain the martingale representation theorem. 
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Theorem 11.2 (The Martingale Representation Theorem) Let W be a 
d-dimensional Wiener process, and assume that the filtration % is defined as 

Let M be any Ft-adapted martingale. Then there exist uniquely determined 
Ft-adapted processes hl, . . . , hd such that M has the representation 

If the martingale M is square integrable, then hl, . . . , hd are in  .H2. 

Proof From Theorem 11.1 we have 

The result now follows by taking conditional expectations and using the fact 
that M as well ai the stochastic integral is a martingale. 

It is worth noticing that the martingale representation theorem above is an 
abstract existence result. It guarantees the existence of the processes hl, . . . , hd, 
but it does not tell us what the h process looks like. In fact, in the general case 
we know very little about what exact form of h. The most precise description 
of h obtained so far is via the secalled Clarc-Ocone formula (see the Notes), 
but that requires the use and language of Malliavin calculus so it is outside the 
present text. 

In one special case, however, we have a rather explicit description of the integ- 
rand h. Let us therefore assume that we have some a priori given n-dimensional 
process X with dynamics of the form 

where W is as above, whereas p and a are adapted processes taking values in Rn 

and M(n, d), respectively. Let us now assume that the martingale M is of the 
very particular form M ( t )  = f ( t ,  X ( t ) )  for some deterministic smooth function 
f ( t  , x) . From the It6 formula we then have 

where A is the usual Ito operator. Now; since f ( t , X t )  was assumed to be a 
martingale, the drift must vanish, so in fact we have 
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Written out in more detail this becomes 

where ai is the ith row of a. In this particular case we thus have the explicit 
description of the integrand h as 

(t, X(t))ai (t), i = 1, . . . , d. 

11.2 The Girsanov Theorem: Heuristics 
We now start a discussion of the effect that an absolutely continuous measure 
transformation will have upon a Wiener process. This discussion will lead us to 
the Girsanov Theorem which is the central result of the next section. 

Assume therefore that our space (52, F, P, z) carries a scalar P-Wiener p r e  
cess WP, and that for some fixed T we have changed to a new measure Q on 
FT by choosing a nonnegative random variable LT E FT and defining Q by 

This measure transformation will generate a likelihood process (see Section C.3) 
{Lt; t 2 0) defined by 

L~ = - dQ on F ~ ,  d P  ' 
and from Proposition C.12 we know that L is a P-martingale. 

Since L is a nonnegative P-martingale, and since any (suitably integrable) 
stochastic integral w.r.t. W is a martingale, it is natural to define L as the 
solution of the SDE 

for some choice of the process cp. 
It thus seems that we can generate a large class of natural measure 

transformations from P to a new measure Q by the following prescription: 

Choose an arbitrary adapted process h. 
Define a likelihood process L by 
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Define a new measure Q by setting 

on Ft for all t E [0, TI. 
/ 

By applying the It6 formula we easily see that we can express L as 

L t - e  - J:~.d~;-t.f,t~:ds, 

so L is nonnegative,kvhich is necessary if it is going to act as a likelihood pro- 
cess. If cp is integrable enough (see the Novikov condition below) it is also clear 
(why?) that L is a martingale and the initial condition Lo = 1 guarantees that 
EP [Lt] = 1 .  

To see what the dynamics of WP are under Q, let us first recall that if a 
process X has the dynamics 

then the drift p and (squared) diffusion a has the interpretation of being the con- 
ditional drift and quadratic variation processes respectively. A bit more precisely, 
but still heuristically, we have 

EP [dXt I 3 t ]  = dt, 

E~ [(dxt121 K] = 02 dt, 

where we have the informal interpretation dXt = Xt+dt - Xt. Let us now define 
the process X by X = WP, i.e. we have p = 0 and a = 1 under P. Our task is 
to compute the drift and diffusion under Q and for that we will use the Abstract 
Bayes' Theorem (B.41). Using the fact that L is a P-martingale, and recalling 
that dXt E 3t+dt (see definition above), we obtain 

- - EP [Lt dXt + dLt dXt 1 Ft] 
Lt 

- - E' [Lt dXt 1 h] + EP ( dLt dx t  1 3 t I  
Lt Lt 

i 
Since L is adapted (so Lt E Ft)  and X has zero drift under P, we have 
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Furthermore we have 

dLt dXt = Ltcpt dW; (0. dt + 1 - d ~ : )  = Ltcpt (dw;)' = Ltpt dt. 

Using this and the fact that Ltvt E Ft we get 

EP [dLt dXtI3tl - Ltcpt 
Lt 

- -dt = cpt dt. 
Lt 

Using the fact that under P we have dX? = dt we can also easily compute 
the quadratic variation of X under Q as 

EQ [ ( d ~ t , '  I3t] = EP [~t+dt  . (dxt12 IFt] . - - EP [~ t+dt  . d t l ~ t ]  
fit Lt 

Summing up we have thus obtained the formal relations 

EQ [dXtI 3 t ]  = cpt dt, 

EQ [(dxt)'l f i ]  = 1 .  dt, 

or in other words: 

The process X = wP was, under P, a standard Wiener process with unit 
diffusion term and zero drift. 

o Under the probability measure Q defined above, the drift process for X 
has changed from zero to cp, while the diffusion term remains the same as 
under P (i.e. unit diffusion). 

11.3 The Girsanov Theorem 
Rephrasing the results of the previous discussion, we thus see that we should be 
able to write the P-Wiener process wP as 

where WQ is a Q-Wiener process. This is precisely the content of the Girsanov 
Theorem, which we now formulate. 

Theorem 11.3 (The Girsanov Theorem) Let WP be a d-dimensional 
standard P-Wiener process on (O,F, P,$) and let cp be any d-dimensional 
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j adapted column vector process. Choose a @ed T and define the process L on 

I 
10, TI by 

/ Assume that 
E~ [LT] = 1, 

and define the new probability measure Q on 3 T  by 

1 Then 
[ dw: = cpt dt + dw?, 

where WQ is a Q- Wiener process. 

Remark 11.3.1 An equivalent, but perhaps less suggestive, way of formulating 
the conclusion of the Girsanov Theorem is to say that the process WQ, defined by 

is a standard Q-Wiener process. 

Proof We only give the proof in the scalar case, the multidimensional case 
being a straightforward extension. Using the formulation in Remark 11.3.1 we 
thus have to show that, for s < t and under Q,  the increment W? - W: is 
independent of FS, and normally distributed with zero mean and variance t - s. 
We start by considering the special case when s = 0 and we thus want ta show 
that, for any t ,  W? is normal with zero mean and variance t under Q. Using 
characteristic functions it is thus enough to show that for all t E R+ and u E R 
we have 

EQ [ e i ~ ~ F ]  = e- $t  9 

To show this, let us choose any fixed u, and define the process Z by 
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The dynamics of Z are given by 

dzt = Lt . d(eiuwp) + e i u w p d ~ t  + d(eiuw?) . (11.21) 

From the definitions we have 

dLt = ptLt dw,P, 

dw? = dw; - cpe dt, 

so, remembering that wP is P-Wiener, the It6 formula gives us 

Plugging this, and the L-dynamics above into (11.21), we obtain 

u2 
dZt = iuZt dw; - iuZtcpt dt - -Zt dt + ptZt d ~ ;  + iucptZt dt 

2 
u2 

= {iuZt + cptZt) d w r  - - Zt dt. 
2 

i Since wP is P-Wiener, standard technique gives us 

I 
us 

E~ [Zt] = e - ~ ' ~ ,  

which finishes the proof in the special case when s = 0. 
In the general case we want to prove that for any s 5 t 

and this is equivalent (why?) to proving that 

for every A E 3,. To prove (11.22) we define, for fixed s and A E FS, the process 
{zt; t  L s) by 

! Zt = Lt - IA - e iu(w,Q - w.Q) , 
and then we can proceed exactly as above. 

Remark 11.3.2 The process cp above will often be referred to as the Girsanov 

t kernel of the measure transformation. 
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Remark 11.3.3 In the formulation above we have used vector notation. 
Written on component form, and with obvious notation, the L-dynamics will 
have the form 

d 

dL(t) = L(t) C cp&) d ~ P ( t ) ,  
i=l 

and explicit form of L will be given by 

d t t d 

~ ( t )  = exp ( ~ 1  vi(s) ~WP(S)  - / 0 ~ ~ : ( s ) d s )  j=l 

Since this process is so important it has a name of it's own: 

Definition 11.4 For any Wiener process W and any kernel process cp, the 
Doleans exponential process & is defined by 

& (cp * W) (t) = exp {l cp*(s) d ~ ( s )  - ; Jdf llcp112(~) ds) (11.23) 

With notation as above we thus have 

L(t) = E (cp * W) (t). (11.24) 

Remark 11.3.4 Note that in the Girsanov Theorem we have to assume ad hoc 
that h is such that EP [LT] = 1 or, in other words, that L is a martingale. The 
problem is one of integrability on the process Lcp, since otherwise we have no 
guarantee that L will be a true martingale and in the general case it could in fact 
happen that EP [LT] < 1. A sufficient condition for E~ [LT] = 1 is of course that 
the process L . cp is in E2 but it is not easy to give a general a priori condition 
on cp only, which guarantees the martingale property of L. This problem used 
to occupy a minor industry, and the most general result so far is the "Novikov 
Condition" below. 

Lemma 11.5 (The Novikov Condition) Assume that the Girsanov kernel cp 

EP [e: I: It** ll'dt] < (11.25) 

Then L is a martingale and in particular E~ [LT] = 1. 

There are counter examples which show that the exponent $ in the Novikov 
condition cannot be improved. 
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11.4 The Converse of the Girsanov Theorem 
If we start with a measure P and perform a Girsanov transformation, according 
to (11.16)-(11.20), to defme a new measure Q, then we know that Q << P. 
A natural question to ask is now whether all absolutely continuous meas- 
ure transformations are obtained in this way, i.e. by means of a Girsanov 
transformation. 

It is clear that in a completely general situation, this cannot possibly be 
true, since the Girsanov transformation above is completely defined in terms 
of the Wiener process WP whereas there could be many other processes living 
on (R, 3, P, z). However, in the case where the filtration {3t}t>o is the one 
generated by the Wiener process itself, i.e. in the case when we have no other 
sources of randomness apart from wP, then we have a converse result of the 

I 
I Girsanov Theorem. 

Theorem 11.6 (The Converse of the Girsanov Theorem) Let WP be a 
d-dimensional standard (i.e. zero drift and unit variance independent wmpon- 
ents) P- Wiener process on (R, 3, P, 3) and assume that 

Assume that there exists a probability measure Q such that Q << P on FT. 
Then there exists an adapted process cp such that the likelihood process L has 
the dynamics 

Proof We know from Theorem C.12 that the likelihood process L is a 
P-martingale. Since the filtration is the one generated by WP we deduce from the 
Martingale Representation Theorem (11.2) that there exists a process g such that 

Now we simply define cp by 
1 

and the proof is basically finished. There remains a small problem, namely what 
happens when Lt = 0 but also this can be handled and we omit it. 

This converse result is very good news, since it implies that for the case of a 
Wiener filtration we have complete control of the class of absolutely continuous 

i measure transformations. 
I 

I 11.5 Girsanov Transformations and Stochastic Differentials 
I 1 We will now discuss the effect that a Girsanov transformation has on the dynam- 

ics of a more general It6 process. Suppose therefore that, under the original 
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measure P, we have a process X with P-dynamics 

where w P  is a (possible multidimensional) standard P-Wiener process, and 
where p and c are adapted and suitably integrable. Suppose furthermore that 

i we perform a Girsanov transformation with kernel process cp and transform from 
P to a new measure Q. The problem is to find out what the Q-dynamics of X 
look like. 

This problem is easily solved, since from the Girsanov Theorem we know that 
E we can write 

dw; = cpt d t  + dw,&, 

where W Q  is Q-Wiener. We now simply plug this expression into the X-dynamics 
above, collect the dt-terms and obtain 

dXt = {pt + ctcpt) dt + ctdw,& dt.  

' \  The moral of this is as follows: 

, The diffusion term is unchanged. 
The drift term is changed from p to p + acp. 

11.6 Maximum Likelihood Estimation 

In this section we give a brief introduction to maximum likelihood (ML) estim- 
ation for It6 processes. It is a bit outside the main scope of the book, but since 
ML theory is such an important topic and we already have developed most of 
the necessary machinery, we include it. 

We need the concept of a statistical model. 

Definition 11.7 A dynamic statistical model over a finite time interval [0, T] 
consists of the following objects: 

A measurable space ( f l ,3) .  
A $ow of infornation on the space, formalized by a filtration T = {3t}t20. 

An  indexed family of probability measures {Pa; a E A ) ,  defined on the 
space (R,F) ,  where A is some index set and where all measures are 
assumed to be absolutely continuous on FT w.r.t. some base measure Pa,. 

In most concrete applications (see examples below) the parameter a will be 
a real number or a finite dimensional vector, i.e. A will be the real line or some 
finite dimensional Euclidian space. The filtration will typically be generated by 
some observation process X . 

The interpretation of all this is that the probability distribution is governed 
by some measure Pa, but we do not know which. We do have, however, access 
to a flow of information over time, and this is formalized by the filtration above, 
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so at time t we have the information contained in Ft. Our problem is to try to 
estimate a given this flow of observations, or more precisely: for every t we want 
an estimate at of a, based upon the information contained in 3t, i.e. based on the 
observations over the time interval [O,t]. The last requirement is formalized by 
requiring that the estimation process should be adapted to E, i.e. that at E Ft. 

One of the most common techniques used in this context is that of finding, 
for each t, the ML estimate of a. Formally the procedure works as follows. 

Compute, for each a the corresponding Likelihood process L(a) defined by 

dPa 
Lt (a) = - , on 3 t .  

dPaa 

For each fixed t ,  find the value of a which maximizes the likelihood 
ratio Lt (a). 
The optimal a is denoted by Bt and is called the ML estimate of a based 
on the information gathered over [0, t]. 

As the simplest possible example let us consider the problem of estimating 
the constant but unknown drift of a scalar Wiener process. In elementary terms 
we could naively formulate the model by saying that we can observe a process X 
with dynamics given by 

dXt = a d t  + dWt, 

Xo = 0. 

Here W is assumed to be Wiener under some given measure P and the drift a is 
some unknown real number. Since this example is so simple, we do in fact have 
an obvious candidate (why?) for the estimator process, namely 

In a naive formulation like this, we have a single underlying Wiener process, 
W under a single given probability measure P, and we see that for different 
choices of a we have different X-processes. In order to apply the ML techniques 
we must reformulate our problem, so that we instead have a single X-process 
and a family of measures. This is done as follows. 

Fix a process X which is Wiener under some probability measure Po. In 
other words: under Po, the process X has the dynamics 

where W0 is Po-Wiener. 
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We assume that the information flow is the one generated by observations 
of X ,  

so we define the filtration by setting Ft = 3:. For every real number a, 
we then define a Girsanov transformation to a new measure Pa by defining 
the likelihood process L(a) through 

dLt (a)  = a Lt (a) dXt , 
Lo(a) = 1. 

From Girsanov's Theorem it now follows immediately that we can write 
dWt = a dt + dW,", where W" is a Pa Wiener process. Thus X will have 
the Pa dynamics 

dXt =adt+dW," 

I We now have a statistical model along the general lines above, and we notice 
I 
I that, as opposed to the case in the naive formulation, we have a single process X ,  
1 but the driving Wiener processes are different for different values of a. 

To obtain the ML estimation process for a, we need to compute the likelihood 
process explicitly, i.e. we have to solve (11.26)-(11.27). This is easily done and 
we have 

Lt (a)  = e ".x*-;ff2.t 

We may of course maximize In [Lt (a)] instead of maximize Lt (a)  so our problem 
is to maximize (over a) the expression 

This trivial quadratic optimization problem can be solved by setting the 
a derivative equal to zero, and we obtain the optimal a as 

Thus we see that in this example the ML estimator actually coincides with our 
naive guess above. The point of using the ML technique is of course that in a 
more complicated situation (see the exercises) we may have no naive candidate, 
whereas the ML technique in principle is always applicable. 

11.7 Exercises 
Exercise 11.1 Complete an argument in the proof of Theorem 11.1 by proving 
that if X and Y are random variables of the form 

T 

x = x o + J d  9sdWs7 

T 
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and if g and h have disjoint support on the time axis, i.e. if 

gtht=O, P-a.s .  O S t I T  

then 
T 

= XOYO + 1 1X.h. + Kg.] dWs. 

t Hint: Define the processes Xt and Yt by Xt = xo + So g. dWs and correspond- 
ingly for Y and use the It6 formula. 

Exercise 11.2 Consider the following SDE: 

dXt = af (Xt) dt  + a(&) dWt , 
xo = 20. 

Here f and a are known functions, whereas a is an unknown parameter. We 
assume that the SDE possesses a unique solution for every fixed choice of a. 

Construct a dynamical statistical model for this problem and compute the 
ML estimator process 6t for a, based upon observations of X.  

11.8 Notes 

The results in this chapter can be found in any textbook on stochastic analysis 
such as Karatzas and Shreve (1988), Bksendal (1995), and Steele (2001). 



BLACK-SCHOLES FROM A MARTINGALE 
POINT OF VIEW* 

In this chaper we will discuss the standard Black-Scholes model from the 
martingale point of view. We thus choose a probability space (R, F ,  P,E) car- 

: rying a P-Wiener proces W, where the filtration is the one generated by W, 
i.e. Ft = Fy . On this space we define the model by 

dSt = aSt dt +  US^ dWt, 

dBt = rBt dt. 

Note that for ease of notation the P-Wiener process is denoted by w rather 
than by wP. 

12.1 Absence of Arbitrage 
We now want to see whether the model is arbitrage free on a finite interval [0, TI, 
and for that purpose we use the First Fundamental Theorem (10.22) which says 
that we have absence of arbitrage if and only if there exists a martingale measure I 

Q for our model. We then use the Girsanov Theorem to look for a Girsanov kernel 
process h such that the induced measure Q is a martingale measure. Defining, 

i 
as usual, the likelihood process L by i 

./ 

and setting dQ = LT d P  on FT, we know from Girsanov's Theorem that I 

where W is Q-Wiener. (For ease of notation we write W instead of the earlier 
wQ.) Inserting the above expression into the stock price dynamics we obtain, 
after a collection of terms, the Q-dynamics of S as 

In order for Q to be a martingale measure, we know from (10.51) that the local 
rate of return under Q must equal the short rate. Thus we want to determine 
the process h such that 

a + aht = T.  (12.3) 
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This equation has the simple solution 

and we see that the Girsanov kernel process h is in fact deterministic and 
constant. 

Furthermore, h has an important economic interpretation: In the quotient 

a - r - 
c ' 

the numerator a - r ,  commonly known as the "risk premium" of the stock, 
denotes the excess rate return of the stock over the risk free rate of return 
on the market. In the denominator we have the volatility of the stock, so the 
quotient above has an interpretation as "risk premium per unit volatility" or 
"risk premium per unit risk". This important concept will be discussed in some 
detail later on, and it is known in the literature a s  "the market price of risk". 
It is commonly denoted by A, so we have the following result. 

Lemma 12.1 The Girsanov kernel h is given by 

h=- X 

where the market price of risk X is defined by 

a - r  A=-. 
u 

We have thus proved the existence of a martingale measure and from the First 
Fundamental Theorem we then have the following basic result for the Black- 
Scholes model. 

Theorem 12.2 The Black-Scholes model above is arbitrage free. 

We note in passing that instead of the standard Black-Scholes model above 
we could have considered a much more general model of the form 

dSt = atSt dt + utSt dWt, 

dBt = rtBt dt. 

where a, a, and r are allowed to be arbitrary adapted (but suitably integrable) 
processes with ut # 0 P-a.s. and for all t .  The analysis of this more complicated 
model would be completely parallel to the one carried out above, with the only 
difference that the Girsanov kernel h would now be a stochastic process given 
by the formula 
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As long as this h satisfies the Novikov condition, the market would still be 

Remark 12.1.1 The formal reason for the condition ut # 0 is that otherwise 
the quotient in (12.6) is undefined. Being a bit more precise, and going back to 
the fundamental equation 

at + htut = rt, 

we see that we can in fact solve this equation (and thus guarantee absence of 
arbitrage) as long as the condition 

n t = Q  =$ at=rt .  

is valid. The economic interpretation of this condition is that if at = 0, then the 
stock price is locally riskless with dynamics dSt = Stat dt, so in order to avoid 
arbitrage with the money account B we must have at = rt. 

Consider the standard Black-Scholes model and a fixed T-claim X. F'rom 
Proposition 10.25 we immediately have the usual "risk-neutral" pricing formula 

II(t; X) = e-r(T-t) E~ [XI Ft] , (12.7) 

where the Q-dynamics of S are given as usual by 

dSt = rSr dt + uSt dWt. 

For a general claim we can not say so much more, but for the case of a simple 
claim of the form 

x = @(ST), 

we can of course, write down the Kolmogorov backward equation for the 
expectation and express the price as 

q t ;  X) = F(t, St), 

where the pricing function F solves the Black-Scholes equation. 

aF aF 1 a2F 
- + rs- + -u2s2- - TF = 0, as 2 as2 . . ;  (12.8) 

F(T, s) = @(s). 

The moral of all this is that the fundamental object is the risk neutral 
valuation formula (12.7), which is valid for all possible claims, whereas the 
Black-Scholes PDE is only valid for the case of simple claims. 
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12.3 Completeness 
We now go on to investigate the completeness of the Black-Scholes model, and 
to this end we will use the Second Fundamental Theorem (10.24) which says 
that the market is complete if and only if the martingale measure is unique. We 
have seen in the previous section that there exists a martingale measure and the 
remaining question is whether this is the only martingale measure. 

In the present setting, where the filtration is the one generated by W we know 
from Theorem 11.6 that every absoluteIy continuous measure transformation is 
obtained from a Girsanov transformation, and since the basic equation (12.3) 
has a unique solution, we see that the martingale measure is in fact unique. The 
same argument is valid for the more general model above, and we have thus 
proved the following result. 

Theorem 12.3 The Black-Scholes model (12.1)-(12.2) zs complete. This also 
holds for the more general model (12.4)-(12.5). 

J+om an abstract point of view, the theorem above settles the completeness 
question, but since it is based on the second fundamental theorem, which in 
turn relies on rather abstract martingale theory, the argument is perhaps not 
overly instructive. We will therefore provide a more self contained completeness 
proof, which more clearly shows the use and central importance of the Martingale 
Representation Theorem 11.2. 

We will carry out the argument for the standard Black-Scholes model (12.1)- 
(12.2), but the argument goes through with very small changes also for the 
more general model above. We will use the technique in Lemma 10.15 and in 
terms of the notation of that lemma we identify the numeraire So with the 
money account B,  and Sl with the stock price S. We then define the normalized 
processes Zo and Z1 by 

Let Q be the (unique) martingale measure derived above, and consider an 
arbitrarv T-claim X with 

(For the standard Black-Scholes model we may of course take the factor l/B(T) 
out of the expectation.) We then define the Q-martingale M by 

and it now follows from Lemma 10.15 that the model is complete if we can find 
a process hl ( t )  such that 

dM(t) = hl (t) dZl ( t ) .  (12.10) 
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In order to prove the existence of such a process hl we use the Martingale 

I Representation Theorem 11.2 (under Q), which says that there exists a process 
g(t) such that 

dM(t) = g(t) dW(t), (12.11) 

where W is the Q-Wiener process defined earlier. With the purpose of connecting 
1 (12.11)-(12.10) we now use the Ito formula and the fact that Q is a martingale 

measure for the numeraire B to derive the Q-dynamics of Zl as 

dZl (t) = Zl (t)n dW(t). (12.12) 

We thus have 
1 

dW(t) = - 
21 (t). 

dZl (t), 

and plugging this into (12.11) we see that we in fact have (12.10) satisfied with hl 
defined by 

g(t) hl(t) = - 
.Zl (t) ' 

Again using Lemma 10.15, we have thus proved the following result. 

Theorem 12.4 In the Black-Scholes model (standard as well as extended), 
every T-claim X satisfying 

can be replicated. The replicating portfolio is given by 

where M is defined by (12.9) and g is defined by (12.11). 

This completeness result is much more general than the one derived in 
Chapter 8. The price that we have to pay for the increased generality is that 
we have to rely on the Martingale Representation Theorem which is an abstract 
existence result. Thus, for a general claim it is very hard (or virtually impossible) 
to compute the hedging portfolio in a reasonably explicit way. However, for the 
case of a simple claim of the form 

the situation is of course more manageable. In this case we have 
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and from the Kolmogorov backward equation (or from a Feynman-KaE 
representation) we have M(t) = f (t, S(t)) where f solves the boundary value 
problem 

f (T, s) = e-rT@(s). 

Itd's formula now gives us 

so in terms of the notation above we have 

which gives us the replicating portfolio h as 

We have the interpretation f (t, S(t)) = VZ(t), i.e. f is the value of the nor- 
malized hedging portfolio, but it is natural to express everything in terms of 
the unnormalized value process V(t) rather than in terms of VZ. Therefore, 
we define F(t ,  s) by F(t ,  s) = ert f (t, s) which gives us the following result which 
we recognize from Chapter 8. 

Proposition 12.5 Consider the Black-Scholes model and a T-claim of the form 
X = @(S(T)). Then X can be replicated by the portfolio 

where F solves the Black-Scholes equation 

d F  d F  1 a2F 
- + rs- + -u2s2- - rF = 0, [ at as 2 as2 

firthermore the value process for the replicating portfolio is given by 

V(t) = F(t ,  S(t)). 
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MULTIDIMENSIONAL MODELS: CLASSICAL i r t ,  

I LC) 
APPROACH 

13.1 Introduction 
In this chapter, we will generalize the Black-Scholes model to the case where, 
apart from the risk free asset, we have several underlying risky assets. In the 
present chapter we will carry out the analysis using the "classical" delta-hedging 
approach. In Chapter 14 we will then provide a more complete analysis using 
the martingale methods of Chapter 10. 

We assume that we have n a priori given risky assets ("stocks") with price 
processes Sl (t), . . . , S,(t). The entire asset price vector is denoted by S(t), and 
in matrix notation we will write it as  a column vector 

so, = [ 1;:; ] . 
The main problems are those of pricing and hedging contingent claims of the form 

x = @(S(T)), 

where T as usual is a fixed exercise time. 
In the first sections we will analyze this problem in some detail using the 

"classical approach'' developed in Chapters 7 and 8. In Chapter 14 we will then 
use the martingale machinery developed in Chapter 10 to extend the analysis 
considerably. However, while from a formal point of view, all results obtained by 
the elementary approach in the present chapter are special cases of the results of 
Chapter 14, there is a substantial amount of economic intuition to be gathered 
from the classical approach, so the present chapter is not redundant even for the 
mathematically advanced reader. 

The first problem to be attacked is how to construct a "reasonable" math- 
ematical model for the dynamics of the asset price vector S, and in this context 
we have two demands. We of course want the model to be free of arbitrage pos- 
sibilities, and we also want the model to be such that we have a unique arbitrage 
free price process H(t; X) for any given claim X. 

From the meta-theorem 8.3.1 we know that we may generically expect absence 
of arbitrage if we have at least as many sources of randomness as we have under- 
lying assets, so it is natural to demand that the price vector S should be driven 
by at least n independent Wiener processes. 
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If, on the other hand, we want a unique price process for every claim, then 
we need a complete market model, and according to Meta-theorem 8.3.1 this will 
only occur if we have at least as many assets as we have sources of randomness. 
In order to obtain a nicely behaved model we are thus forced to model the stock 
price dynamics using exactly n independent Wiener processes, and we now go 
on to specify the formal model. 

Assumption 13.1.1 We assume the following: 

Under the objective probability measure P, the S-dynamics are given by 1 
dSi(t) = aj Si (t) dt + Si (t) ) ~ i j  d w j  (t) , (13.1) I 

for i = 1,. . . , n. Here Wl, . . . , wn are independent P- Wiener processes. 4 
The coefficients ai and u,i above are assumed to be known constants. 
The volitility matrix - - -  . -, > V , J X ,  

is nonsingular. 
We have the standard risk free asset with price process B, where 

dB(t) = rB(t) dt. (13.2) 

The assumption that the coefficients are constants is made for ease of expos- 
ition. Later on we will see that we may allow the coefficients to be functions of 
current time and current stock prices, i.e. ai = ai (t, S(t)), uij = oij (t, S(t)). 

In the seauel we will let ~ ( t )  denote the column vector 

and it will be convenient to define the row vector ui as the ith row of the volatility 
matrix a, i.e. 

uj = [Uil,. . . ,Ujn]. 

With this notation we may write the stock price dynamics more compactly as 

dSj(t) = aiSi (t) dt + Si(t)ui dW(t). (13.3) 

It is in fact possible to write the S-dynamics even more compactly. For any 
n-vector x = (xl, . . . , x,) we let D [XI denote the diagonal matrix 
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and we let a denote the column vector 

1 Using this notation we can write the S-dynamics as 

dS(t) = D[S(t)] a d t  + D[S(t)] udW(t). (13.6) 

13.2 Pricing 

We take the market model above as given and we consider a fixed T-claim of 
the form 

@(S(T)). 

, The problem is to find the arbitrage free price process II(t; X) for X, and we will 
' do this by using a slight variation of the technique for the one-dimensional case. 

As before we start by assuming that there actually is a market price process for 
the claim, and that the price process is of the form 

for some deterministic function 

Our problem is to find out what F must look like, in order not to intro- 
duce any arbitrage possibilities, if we are allowed to trade in the derivative 
as well as in the underlying assets. More precisely, we want the market 
[Sl(t), . . . , Sn(t), n(t ;  X)] to be free of arbitrage, and the basic scheme is as 
follows: 

Take the model for the underlying assets, the contract function @, and the 
pricing function F as given. 
Form a self-financing portfolio, based on SI, . . . , Sn, B and F. Since we 
have n + 2 assets, and the portfolio weights must add to unity, this will 
give us n + 1 degrees of freedom in our choice of weights. 
Choose the portfolio weights such that the driving Wiener processes are 
cancelled in the portfolio, thus leaving us with portfolio dynamics of 

, the form 

dV(t) = V(t)k(t) dt. 
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Since we have n driving Wiener processes this will "use up" n degrees of 
freedom. 
Use the remaining degree of freedom in order to force the value dynamics 
to be of the form 

dV(t) = (r + P )  V(t) dt, 

where ,8 is some fixed nonzero real number. In the equation above we think 
of ,8 as being a positive real number, so we are in effect trying to "beat the 
risk free asset" B by constructing a synthetic risk free asset with higher 
rate of return than the money account. It turns out that this is technically 
possible if and only if a certain matrix is nonsingular. 
Since we assume that the market is free of arbitrage possibilities, it is 
impossible to beat the risk free asset in the way described above. Therefore, 
the matrix mentioned above has to be singular. 
The singularity condition of the matrix leads to a PDE for the pricing 
function F ,  and the solution of this PDE is thus the unique arbitrage free 
pricing function for the claim X. 

To put these ideas into action we start by computing the price dynamics of 
the derivative. The multidimensional It6 formula gives us (see Remark 4.7.1), 
after some reshuffling, 

d F =  ~ - a ~ d t + F . u ~ d ~ ,  (13.7) 

where 

Here the arguments t and S(t) have been suppressed, and we have used the 
notation 

Note that Ft and Fi are scalar functions, whereas Fa, is an n x n matrix-valued 
function. 
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We now form a portfolio based on S1,. . . , Sn, B and F. For 5'1,. . . , Sn and F 
we use the notation u1, . . . , un and UF for the corresponding portfolio weights, 
which gives us the weight UB for the money account as 

The dynamics of, the value process for the corresponding self-financing 
portfolio are given by' 

and substituting the expression for UB above, as well as inserting the dynamics 
of the processes involved, gives us 

We now try to choose the weights so that, first of all, the value process is 
locally risk free, i.e. it has no driving Wiener process. This means that we want 
to solve the equation 

II 

Supposing for the moment that this can be done, we now have value dynamics 
of the form 

r n 1 

and now we try to beat the market by choosing the weights such that we obtain 
a rate of return on the portfolio equaling r + P. Mathematically this means that 
we want to solve the equation 

In order to see some structure, we now write these equations in matrix form as 

a1-r ... a n- r  a ~ - r  [ u; ... (13.10) 4 4 



180 MULTIDIMENSIONAL MODELS: CLASSICAL APPROACH 

(note that at is a column vector) where we have used the notation 

Let us now take a closer look at the coefficient matrix in eqn (13.10). Denoting 
this matrix by H ,  we see that it is an (n + 1) x (n + 1) matrix, and we have two 
possibilities to consider, namely whether H is invertible or not. 

If H is invertible, then the system (13.10) has a unique solution for every 
choice of p. In economic terms this means that we are able to form a self-financing 
portfolio with the dynamics 

dV(t) = (r + P)V(t) dt, 

which in turn means that we have constructed a "synthetic bank" with r + /3 as 
its rate of interest. This will of course lead to arbitrage opportunities. We just 
solve the system for, say, p = 0.10, then we borrow a (large) amount of money 
from the bank and invest it in the portfolio. By this arrangement our net outlays 
at t = 0 are zero, our debt to the bank will increase at the rate r ,  whereas the 
value of our portfolio will increase at a rate which is 10% higher. 

Since we assume absence of arbitrage we thus see that H must be singular, 
and in order to see the implications of this we choose, for readability reasons, to 
study its transpose H*, given by 

(recall that a, is a row vector). We can write this somewhat more compactly by 
defining the n-dimensional column vector 1, as 

With this notation we have 

Since H* is singular this means that the columns are linearly dependent, and 
since the matrix a was assumed to be nonsingular we draw the conclusion that 
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the first column of H* can be written as a linear combination of the other 
columns. Thus there exist real numbers XI ,  . . . , An such that 

where U F ~  denotes the j th component of the row vector OF. 

There is an economic interpretation of the multipliers A1,. . . , An as secalled 
"market prices of risk" (cf. standard CAPM theory), and later on we will discuss 
this in some detail. For the moment the main logical point is that eqn (13.14) 
is the equation which will determine the derivative pricing function F. In order 
to use this equation we need, however, to get hold of the A-vector, and as we 
shall see, this vector is determined by the system (13.13). 

Writing (13.13) in vector form we see that the vector 

is the solution of the n x n linear system 

and since a by assumption is nonsingular we see that X is in fact uniquely 
determined as 

X = a" [a - rl,]. (13.15) 

We now want to substitute this expression for X into (13.14), but first we 
rewrite (13.14) in vector form as 

and from the definition of UF in (13.9) we see that we may write UF more 
compactly as 

1 
CF = - [SIFl,. . . , SnFn] U. (13.17) 

F 

Inserting (13.15) and (13.17) into (13.16) and using uo-' 3 I, we obtain the 
relation 

1 
CYF - T = - . [SlFl, . . . , SnFn] [Q - rl,], (13.18) 

F 
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and finally we insert the expression for a~ from (13.8) into (13.18) to obtain, 
after some calculations, 

Note that this equation is a stochastic equation. For ease of reading we 
have suppressed most of the arguments, but if we backtrack we will see that, 
for example, the term rSiFi in the equation above is just shorthand for the 
exmession 

Thus eqn (13.19) must hold, at each t ,  with probability 1 for every possible value 
of the price vector S(t). Now, in our model for the price process it can be shown 
that the support (the set of possible values) for the vector S(t) is the entire set 
R"+ and thus eqn (13.19) must also hold for each deterministic t and s. By a 
standard argument we must also have F(T, S(T)) = @(S(T)), so we have proved 
our main pricing result. 

Theorem 13.1 Consider the contract X = %(S(T)). In order to avoid arbitrage 
possibilities, the pricing function F(t ,  s) must solve the boundary value problem 

Remark 13.2.1 To be more explicit we recall that we can write the quadratic 
term above as 

where 
Cij = [aa*]. .. 

23 

Remark 13.2.2 As in the onedimensional case we notice that the drift 
vector a, of the price process, does not appear in the pricing equation. Again we 
see that the only part of the underlying price process which influences the price of 
a financial derivative is the diffusion matrix a. The reason for this phenomenon 
is the same as in the scalar case and we refer the reader to our earlier discussion 
on the subject. A deeper understanding involves the Girsanov Theorem. See next 
chapter. 
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Remark 13.2.3 In the derivation of the result above we have assumed that the 
drift vector a and the volatility matrix a in the price dynamics eqn (13.1) are 
constant. Going through the arguments it is, however, easily seen that we may 
allow the coefficients to be functions of current time and current stock price, 
i.e. they may be of the form 

(-Y = a(t, S(t)), 

a = a(t, S ( t ) ) .  

If we assume that the volatility matrix a(t, s )  is invertible for each ( t ,  s), then 
Theorem 13.1 will still hold, the only difference being that the term 

in the pricing equation is replaced by the term 

13.3 Risk Neutral  Valuation 

As in the scalar case there is a natural economic interpretation of Theorem 13.1 
in terms of risk neutral valuation. From the Feynman-KaE representation 
theorem 5.8 we may immediately obtain a probabilistic formula for the solution 
to the pricing equation. 

Theorem 13.2 The pricing function F( t ,  s) of Theorem 13.1 has the following 
representation. 

F ( t ,  s) = e-r(T- t )~Q t,s [3(S(T))1. 

Here the expectation is to be taken with respect to the martingale measure Q ,  
defined by the fact that the Q-dynamics of the price process S are given by 

Adhering to the notational convention 7.4.1 the expression E$ [ I  indicates, as 
wual, that the expectation shall be taken under Q ,  given the initial condition 
S ( t )  = s. By  the same convention, W is a Q- Wiener process. 

Again we see that the arbitrage free price of a derivative is given as the dis- 
counted expected value of the future cash flow, and again the main moral is that 
the expected value is not to be taken with respect to the objective probability 
measure P. Instead we must use the martingale measure Q. This martingale 
measure, or risk adjusted measure, is characterized by the following equivalent 
facts. The proof is left as an exercise to the reader. 
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Proposition 13.3 The martingale measure Q is characterized by any of the 
following equivalent conditions: 

1. Under Q every price process II ( t) ,  be it underlying or derivative, has the 
risk neutral valuation property 

II (t)  = e-r(T-t)~zb [II (T)]. 

2. Under Q every price process J I  ( t) ,  be it underlying or derivative, has the 
short rate of interest as its local mte of return, i.e. the Q-dynamics are of 
the form 

dII( t )  = rII(t)  dt + II(t)  an (t)  dW, 

where the volatility vector an is the same under Q as under P. 
3. Under Q every price process JI(t), be it underlying or derivative, has the 

property that the normalized price process 

is a martingale, i.e. it has a vanishing drift coeficient. 

As before we may summarize the moral as follows: 

When we compute arbitrage free prices of derivative assets, we can carry 
out the computations as if we live in a risk neutral world. 
This does not mean that we de facto live, or think that we live, in a risk 
neutral world. 
The formulas above hold regardless of the investor's preferences, and atti- 
tude towards risk, as long as he/she prefers more deterministic money 
to less. 

13.4 Reducing the State Space 
From Theorem 13.1 we see that in order to compute the price of a financial 
derivative based on n underlying assets, we have to solve a PDE with n state 
variables, and for a general case this has to be done by numerical methods. 
Sometimes it is, however, possible to reduce the dimension of the state space, and 
this can lead to a drastic simplification of the computational work, and in some 
cases even to analytical formulas. We will now present a theory which will allow 
us to obtain analytical pricing formulas for some nontrivial multidimensional 
claims which quite often occur in practice. The theory presented here is based on 
an analysis of the pricing PDE, but there also exists a corresponding probabilistic 
theory. See Chapter 24. 

Let us assume that we have the model 
n 

dS i ( t )=o&( t )d t+~ , ( t ) xo ,d~ j ( t ) ,  i = l ,  ..., n. (13.21) 
j=1 
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j We consider a T-claim of the form X = @ ( S ( T ) ) ,  and the crucial assumptions 
i are the following. 

Assumption 13.4.1 

For the rest of the section we assume that the contract function @ is 
homogeneous of degree 1, i.e. that 

@(t  . s )  = t . @(s) ,  

for allt  > 0 and for all s E Rn. 
The volatility matrix o is constant. 

For a homogeneous @ we see that, by choosing t = s;', we have the relation 

@(s l , .  . . , sn) = sn@ -, . . . , ", 1). (:: sn 

This naturally gives us the idea that perhaps also the corresponding pricing 
function F has the same homogeneity property, so we try the ansatz 

( :: sn-1 F( t ,  s l ,  . . . ,an) = snG t ,  -, . . . , -) (13.22) 
an 

where G is some function 

G :  R+ x R~-'  + R.  

First of all, if there is a solution to the pricing PDE of the form (13.22), then it 
has to satisfy the boundary condition 

F ( T , s ) = + ( s ) ,  Vs,  

and translated into G this gives the boundary condition 

G ( T , z ) = \ k ( z ) ,  Vz ,  (13.23) 

where the function \k : Rn-l + R is defined by 

\k(zl , .  . . , zn-1) = @(zl , .  . . , zn-1, 1). (13.24) 

t 
The main problem is now to see whether there is a function G such that the 

ansatz (13.22) satisfies the pricing PDE. We therefore compute the various partial 
derivatives of F in terms of G ,  and substitute the result into the PDE. After some 



186 MULTIDIMENSIONAL MODELS: CLASSICAL APPROACH 

tedious calculations we have the following relations, where for brevity z denotes 
the vector z = (sl/sn, . . . , Is,). Subscripts denotes partial derivatives. 

Ft(t, s) = snGt(t, z), 

Fi(t ,s)=Gi(t ,z) ,  i=1,  ..., n- 1,  

As in Remark 13.2.1 we write the pricing PDE as 

Substituting the expressions above for the partial derivatives of F into 
eqn (13.25) may look fairly forbidding, but in fact there will be many 
cancellations, and we end up with the following PDE for G. 

where 

Oij = ci j + Cnn + Gin + cnj. 
We have thus proved the following result. 

Proposition 13.4 Assume that the contract function is homogeneous of 
degree 1, and that the volatility matrix a is constant. Then the pricing function 
F is given by 

where G(t, 21,. . . , zn-l) solves the boundary value problem 
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Here the matrix D is defined in (13.27), where C is given by Remark 13.2.1. 
The function Q is defined in (13.24). 

The point of this result is that, instead of having to solve a PDE with n 
state variables (and one time variable), we have reduced the problem to that of 
solving a PDE with only n - 1 state variables. 

Remark 13.4.1 The crucial assumption in Proposition 13.4 is of course the 
homogeneity of the contract function, but one may wonder where we used 
the assumption of a constant volatility matrix. The point is that, with a state 
dependent u, the PDE (13.26) is no longer a PDE in only the n - 1 state vari- 
ables zl, . . . ,z,-1, because the matrix D now depends on the entire price vector 
31,. . . , S,. 

It is interesting to note that the PDE satisfied by G is of parabolic type. 
By inspection we see that it can in fact be interpreted as the pricing PDE, in 
a world with zero interest rate, for a claim of the form Y = Q(Z(T)), where the 

, n - 1 underlying price processes satisfy an SDE of the form 
I 

where the drift vector p is as usual of no importance, the process w is an 
(n - 1)-dimensional standard P-Wiener process, and the covariance matrix 

: satisfies 
55* = D. 

Example 13.5 We illustrate the technique of state space reduction by a simple 
example of some practical importance. We consider a model with two underlying 
price processes Sl and S2, satisfying (under P) the following system of SDEs: 

As usual WI and W2 are independent, so in this model the price processes are 
also independent, but this is just for notational simplicity. 

The claim to be studied is an exchange option, which gives the holder the 
right, but not the obligation, to exchange one S2 share for one S1 share at time T. 
Formally this means that the claim is defined by X = max[Sl (T) - S2(T), 01, 
and we see that we have indeed a contract function which is homogeneous of 
degree 1. A straightforward application of Theorem 13.1 would give us the PDE 

Ft + rsiFi + rszF2 + ~ s ~ o f ~ l 1  + 4 s ; ~ : ~ ~ ~  - rF = 0, 

F(T, sl, s2) = max [sl - s2, 01. 
I Using Proposition 13.4 we can instead write 
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where G ( t ,  z )  satisfies 1 
Gt( t ,  z )  + i z 2 G z z  (t, z )  (o: + 0:) = 0, 

G ( T ,  x )  = max [z  - 1,0]. 

We see that this is the pricing equation, in a world with short rate r = 0, for 
a European call option with strike price K = 1 written on a single stock with 
volatility d-2". Thus G can be obtained directly from the Black-Scholes 
formula, and after some minor calculations we get 

I 

where z = 51/52. N is as usual the cumulative distribution function for the I -. - 

N [O,1] distribution and 
I 

d2(t, z )  = dl (t, z )  - \/(o: + oi)(T - t ) .  

13.5 Hedging 1 
When we introduced the model 1 

for the price vector process, one reason for the assumption of an invertible volat- 
ility matrix was that we wanted a complete market, and the goal of this section 
is to show that our model is in fact complete. From Chapter 8 we recall the 
following definition. I 
Definition 13.6 We say that a T-claim X can be replicated, alternatively 
that it is reachable or hedgeable, if there exists a self financing portfolio h 
such that 

vh(T)  = X, P-a.s. (13.30) 

In  this case we say that h is a hedge against X, alternatively a replicating 
portfolio for X. If every contingent claim is reachable we say that the market 
is complete. 

Since we are not using the full probabilistic machinery in this chapter, we 
will not be able to show that we can hedge every contingent T-claim X. As in 
the scalar case, we will "only" be able to prove completeness for simple claims, 
i.e. we will prove that every claim of the form 

can be replicated. For the full story see next chapter. 1 
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Let us thus fix a date of delivery T, and a claim X = (S(T)). We denote 
portfolio weights by uO,ul,. . . ,un,  where ui is the weight on asset i for i = 
1,. . . , n, whereas u0 is the weight on the risk free asset. From Lemma 6.5 it is 

h lea r  that if we can find a process V, and weight processes uO, ul ,.  . . , un such that 

1 then uO, ul, . . . , un is a replicating portfolio for X, and V is the corresponding 
value process. For future use we note that eqns (13.32)-(13.33) can be written as 

The structure of the proof is that we will make an educated guess about 
the nature of the value process V, so we will make an ansatz. Given this 
ansatz we then compute the stochastic differential dV, and at last, compar- 
ing the expression thus obtained to (13.34), we identify the portfolio weights by 
inspection. 

We now go on to produce a natural candidate for the role as value process, 
and to this end we recall from Section 8.1 that, for a hedgeable claim, we should 
have the relation U(t; X) = V(t). 

Thus the obvious candidate as the value process for the replicating portfolio 
(if it exists at all) is the price process H(t; X) for the claim. On the other hand 
we have already computed the price process as 

I where F solves the pricing PDE of Theorem 13.1. 
Let us thus define F as the solution to the pricing PDE, and then define the 

/ process V by V(t) = F (t, S(t)). Our task is to show that V in fact is the value 
process of a replicating portfolio, i.e. to show that the relation (13.31) is satisfied, 
and that the dynamics for V can be written in the form (13.34). Equation (13.31) 
is obviously (why?) satisfied, and using the identity (by definition) F = V, we 
obtain from (13.7) 
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So, from (13.8)-(13.9) 

Comparing the diffusion part of (13.35) to that of (13.34) we see that the natural 
candidates as ul, . . . , un are given by I 

si Fi 
ua (t) = - 

F ' i=1, ..., n. 

Substituting these expressions into (13.35) gives us 1 

and, using the fact that F satisfies the pricing PDE, we obtain 1 

Again using the definition (13.36), this reduces to I 

which is exactly eqn (13.34). We have thus proved the second part of the following 
theorem. 

Theorem 13.7 Assume that the volatility matrix a is invertible. Then the 
following hold: 

The market is complete, i.e. every claim can be replicated. 
For a T-claim X of the form X = ( S ( T ) ) ,  the weights i n  the replicating 
portfolio are given b y  

u0 ( t )  = 1 - E u' (t)  , 
i=l 

where F by definition is the solution of the pricing PDE i n  Theorem 13.1. 
We have only proved that every simple contingent claim can be replicated, so 

we have not proved the first item above in full generality. It can in fact be proved 
that every (sufficiently integrable) claim can be replicated, but this requires the , 

use of more advanced probabilistic tools (the martingale representation theorem 
for Wiener filtrations) and is treated in the next section. 
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13.6 Exercises 

Exercise 13.1 Prove Proposition 13.3. 

1 Exercise 13.2 Check all calculations in the derivation of the PDE in 
Proposition 13.4. 

Exercise 13.3 Consider again the exchange option in Example 13.5. Now 
assume that w1 and w2 are no longer independent, but that the local correlation 
is given by dw1 dW2 = pdt. (We still assume that both Wiener processes have 
unit variance parameter, i.e. that dW; = dw; = dt.) HOW will this affect the 
Black-Scholes-type formula given in the example? 

Exercise 13.4 Consider the stock price model in Example 13.5. The T-contract 
X to be priced is defined by 

where a and b are given positive numbers. Thus, up to the scaling factors a and b, 
we obtain the maximum of the two stock prices at time T. Use Proposition 13.4 
and the Black-Scholes formula in order to derive a pricing formula for this 
contract. See Johnson (1987). 

Hint: You may find the following formula (for x > 0) useful. 

Exercise 13.5 Use the ideas in Section 13.4 to analyze the pricing PDE for a 
claim of the form X = cP(S(T)) where we now assume that is homogeneous of 
degree p, i.e. 

cP(t.s)=tPcP(s), v t > o .  



MULTIDIMENSIONAL MODELS: MARTINGALE 
APPROACH* 

In this chapter, we will now change our point of view and use the martingale 
machinery of Chapter 10 to analyze a multidimensional model which is more gen- 
eral than the one discussed in the previous chapter. This will give more general 
results than those obtained earlier and it will also provide us with an enhanced 
understanding of the pricing and hedging problems for Wiener driven models. 
In particular we will, for the special case of Wiener driven models, produce a 
self-contained proof of the Second Fundamental Theorem. 

Let us thus consider a filtered probability space ( R , 3 ,  P, T )  carrying a 
k-dimensional standard Wiener process W. The basic setup is as follows. 

Assumption 14.0.1 W e  assume the following: 

There are n risky asset S l ,  . . . , S,  given a priori. 
Under the objective probability measure P, the S-dynamics are given by 

f o r i =  1, ..., n. 
The coeficients processes ai and uij above are assumed to be adapted. 
W e  have the standard risk free asset with price process B, where 

dB(t) = r(t)B(t) dt. (14.2) 

The short rate is allowed to be a stochastic adapted process. 

With notation as above we can write this on compact form as 

where D is the diagonal matrix defined in (13.4). 
Note that at this point we do not assume that we have the same number of 

driving Wiener processes as the number of risky assets. Also note that the prob- 
ability space is allowed to carry also other processes than the Wiener process W, 
and thus that the filtration could be generated by other processes beside W. 
For example, we make no assumptions about the distribution of the short rate 
process r or of the processes ai and uij-we only assume that they are adapted. 
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1 In particular this allows for models where these processes are path dependent 
upon the Wiener process, or that they are driven by some other "hidden" state 
variable processes. See below for a particular case. 

Remark 14.0.1 In many applications there are, beside S, other nonfinancial 
variables which may influence r ,  a ,  and IS or the claims under consideration. 
A common situation is when these nonfinancial variables are modeled through 
some (vector) process X with P-dynamics of the form 

Note that we assume that the same P-Wiener process W is driving both S 
and X. This is no serious restriction, since if, e.g. S is driven by w1 and X is 
driven by w2 then we define w as (W1, W2). Note that it is important that 
we assume that the vector process X does not contain any price process. Any 
price component of X should instead be included in S. 

14.1 Absence of Arbitrage 

Our first task is to investigate when our model is free of arbitrage, and to this 
end we use the First Fundamental Theorem 10.22 and look for a martingale 
measure Q with B as the numeraire. Using the Girsanov Theorem 11.16 we 
define a prospective likelihood process L by 

dL(t) = L(t)cp*(t) dW(t), (14.5) 

L(0) = 1, (14.6) 

where cp is some adapted k-dimensional (column-vector) process, and we recall 
from (11.24) that L is given by the Doleans exponential as 

We now define our candidate martingale measure Q by setting dQ = L(T)dP 
on f i ,  and from the Girsanov Theorem we know that we can write 

where W is a standard Q-Wiener process. Plugging (14.7) into the P-dynamics 
(14.3) we obtain the following Q-dynamics of S: 

dS(t) = D [S(t)] [a(t) + c(t)cp(t)] dt + D [S(t)] a(t) dW(t). (14.8) 

From (10.51) we know that, disregarding integrability problems, Q is a 
martingale measure if and only if the local rate of return of each asset equals the 
short rate, i.e. if and only if the equality 

+ IS(t)v(t) = r(t) (14.9) 
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holds with probability one for each t ,  where r is defined by 

In this equation, which we write as 

a,  a, and r are given a priori and we want to solve for cp. Thus, for each t ,  and 
P-as., the n-dimensional vector r ( t )  - a(t)  must be in the image of the diffusion 
matrix u(t) so we have the following result. 

Propos i t ion  14.1 A necessary condition for the absence of arbitmge is that 

with probability one for each t. A suficient condition for absence of arbitrage is 
that there exists a process cp which solves (14.10) and such that E (cp * W) is a 
martingale. 

Note that it is not enough for cp to solve (14.10). We also need enough integ- 
rability to ensure that L is a true martingale (and not just a local one). Hence 
the following definition. 

Def in i t ion  14.2 A Girsanov kernel cp is said to be admissible  i f  it generates 
a martingale measure, i. e. it solves (14.10) and E (cp * W )  is a martingale. 

The integrability problem for L will be discussed further below, as in 
Proposition 14.10. However, the main focus will be on eqn (14.10) and we will 
thus often carry out the arguments "modulo integrability problems". 

Proposition 14.1 is quite general, but it also covers "pathological" models, 
such as those where all assets S l ,  . . . , Sn are identical. In order not to be dis- 
tracted by silly models like that we make the following definition which will 
guarantee that the concept of no arbitrage is structurally stable. 

Def in i t ion  14.3 The model above is said to be generically arbi trage free i f  
it is arbitrage free for every (suficiently integrable) choice of a. 

We then have the following central result. 

Propos i t ion  14.4 Disregarding integrability problems the model is generically 
arbitmge free i f  and only if7 for each t 5 T and P-a.s., the mapping 

is surjective, i.e. i f  and only i f  the volatility matrix u(t) has rank n. 
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From this result it follows in particular that for absence of arbitrage we must 
in the generic case necessarily have n 5 k, i.e. we must have at least as many 
independent Wiener processes as we have risky assets. This is quite in accordance 
with the informal reasoning in the meta-theorem 8.3.1. 

We note that the martingale measure equation (14.10) only involves the 
S-dynamics, and not the dynamics of the extra factor process X (if the model 
includes such a factor). This is of course because the no arbitrage restrictions 
only concern prices of traded assets. 

If our (or the market's) choice of Q is generated by the Girsanov kernel cp, then 
the Q-dynamics of X are of course determined by this Girsanov transformation, 
so we have complete control of the distribution of X under Q. We summarize 
this as a separate result. 

Proposition 14.5 Assuming absence of arbitrage, consider a jhed martingale 
measure Q generated by cp, and denote the corresponding Q- Wiener process by W. 

1 Then the following hold: 

The Q-dynamics of S are 

dS(t) = r(t)D [S(t)] dt + D [S(t)] u(t) dW(t). (14.12) 

- If the model contains an extra factor process X with P-dynamics given by 
(14.4), then the Q-dynamics of X are given by 

dX(t) = {PX (t) + ax (t)cp(t)} dt + ux  (t) dW(t) (14.13) 

14.2 Completeness 
We now go on to obtain conditions for the model to be complete, and in order 
to avoid pathological cases we assume that the model is generically arbitrage 
free. From the Second Fundamental Theorem 10.24, we know that the model is 
complete if and only if the martingale measure is unique, so it is tempting to 
draw the conclusion that we have completeness if and only if eqn (14.10) has a 
unique solution, i.e. if and only if the condition 

Ker[n(t)] = (01, (14.14) 

is satisfied for all t and with probability one. This is, however, not quite true 
and the reason is that, in case of a general filtered probability space, there is 
no guarantee that all equivalent measure transformations are of the Girsanov 
type above. In a general situation, where there are other sources of randomness 
beside the Wiener process W, like say an independent Poisson process N, the 
Girsanov transformation above will only change the measure for the Wiener 
process, but it will not affect the Poisson process. Thus; even if eqn (14.10) has 
a unique solution we do not have a unique martingale measure, since we have no 
restriction on how we are allowed to change the measure for the Poisson process. 
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Put into more economic terms it is fairly obvious that if we consider a claim X 
of the type X = @(N(T)), then it is impossible to hedge this claim if the asset 
prices are driven by the Wiener process alone. 

In order to obtain sharp results we are therefore forced to make the assump 
tion that all randomness in our model is generated by the Wiener process W. 
We then have the following basic result. 

Proposition 14.6 Assume that the model is generically arbitrage free and that 
the filtration 3_ is defined by 

3 t  = FY. (14.15) 

Then, disregarding integrability problems, the model is complete i f  and only if 
k = n and the volatility matrix a(t)  is invertible P-a.s. for each t 5 T. 

Proof Fkom the Converse of the Girsanov Theorem 11.6, we know that under 
the assumption that the filtration is the one generated by the Wiener process, 
every equivalent measure transformation is obtained by a Girsanov transforma- 
tion of the type above. Hence the martingale measure is unique if and only if the 
solution of the "martingale measure equation" (14.10) is unique, and this occurs 
if and only if u(t) is injective, which implies k 5 n. Since we have assumed gen- 
eric absence of arbitrage, we know that n 2 k and that a(t) is surjective. Thus 
k = n and a(t) is invertible. 

14.3 Hedging 
In this section we will discuss the completeness question from the more concrete 
perspective of actually producing hedging strategies for an arbitrary T-claim X. 
This has independent interest and it will also provide us with a new proof 
(within the framework of the present chapter) for the Second Fundamental 
Theorem. The advantage of this alternative proof is that it is much more concrete 
than the rather abstract one given in Section 10.4. The drawback is that we only 
provide the proof for Wiener driven models, whereas the Second Fundamental 
Theorem in fact holds in much more general situations. 

Let us thus again consider the model from (14.3) 

Assumption 14.3.1 We assume that the model is generically free of arbitrage, 
i. e. that 

Im [a(t)] = Rn, (14.17) 

for all t and with probability one. W e  also assume that the model is purely Wiener 
driven, i.e. that Ft = 3tw. 

Since we have assumed absence of arbitrage there exists some (not necessarily 
unique) martingale measure and we choose a particular one, denote it by Q and 
keep it fixed for the rest of the argument. 
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We then choose an arbitrary T-claim X in L1 (Q), and the problem is to find 
a hedging portfolio for X. From Lemma 10.15 we know that X can be hedged if 
and only if the martingale M,  defined by 

admits dynamics of the form 

where as usual Z = SIB, and where h is an adapted (row vector) process 
in Rn. Given our assumption of a purely Wiener driven system it follows from 
the Martingale Representation Theorem 11.2 that there exists an adapted 
k-dimensional (row vector) process g such that 

On the other hand, since the Z process is a (local) martingale under Q, it follows 
easily from It6 that the Q-dynamics are given by 

Plugging (14.21) into (14.19) gives us 

Comparing (14.22) with (14.20) we see that we can hedge X if and only if we 
can solve (at each t and for every w )  the equation 

or, alternatively the equation 

a* (t) D [Z(t)] h* (t) = g* (t) . (14.23) 

In this equation, g is generated by the claim X and we want to solve the equation 
for h. Since D [Z(t)] is nondegenerate diagonal, the equation can be solved if and 
only if 

g*(t) E Im [a*(t)] 

and we have the following result. 

Proposition 14.7 Under Assumption 14.3.1 the model is complete if and only if 

Im [a* (t)] = R ~ .  (14.24) 



198 MULTIDIMENSIONAL MODELS: MARTINGALE APPROACH 

If the model is complete then, using the notation of Chapter 10, the replicating 
portfolio [ho, hs] is given by 

Proof Follows immediately from Lemma 10.15. 

Note that D-' [Z(t)] is just a diagonal matrix with Z;l(t), . . . , Z;l(t) on 
the diagonal. 

We can now easily provide an alternative proof of a restricted version of the 
Second Fundamental Theorem. 

Theorem 14.8 (The Second Fundamental Theorem) Under Assumption 
14.3.1 the model is complete if and only if the martingale measure is unique. 

Proof Using Proposition 14.7 and the standard duality result 

{Im [a* (t)]}' = Ker [ ~ ( t ) ]  

we see that the model is complete if and only if 

Ker [a(t)] = (0) . 

This is, however, precisely the condition for the uniqueness of the martingale 
measure obtained earlier. 

It is instructive to compare these duality arguments with those given in the 
simple setting of Chapter 3, and in particular to the proof of Theorem 3.10, 
to see how much of the structure is carried over from the simple one period 
model to the present general setting. From the discussion above we see that the 
"martingale measure equation" (14.10) and the "hedging equation" (14.23) are 
adjoint equations. Thus absence of arbitrage and completeness are truly dual 
concepts from a functional analytical point of view. 

14.4 Pricing 

Assuming absence of arbitrage, the general pricing formula is, as always, given 
by the risk neutral valuation formula 

where Q is some choice of martingale measure, where the Q-dynamics of S are 
given by 

dS(t) = D [S(t)] r(t) dt + D [S(t)] a(t) d w Q  (t), (14.29) 

and where WQ is Q-Wiener. 
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14.5 Markovian Models and PDEs 

We now apply the martingale approach to the Markovian model discussed in 
the previous chapter. Thus we again introduce Assumption 13.1.1, i.e. we assume 
that k = n, that the vector of returns a as well as the volatility matrix a are 
deterministic and constant over time, that a is invertible and that the filtration 
is the one generated by the Wiener process. Thus S will be a Markov process. 
The general pricing formula is, as always, 

n(t ;  X)  = e - r ( T - t ) ~ Q  [XI Ft] , (14.30) 

where the Q-dynamics of S are given by 

If we now assume that X is a simple claim, i.e. of form X = (S(T)), then, 
since S is Markovian we have 

and thus (exactly why?) the pricing process must be of the form n( t ;  X) = 
F ( t ,  S(t)) for some pricing function F. We can then apply the Kolmogorov back- 
ward equation to the expectation above and we immediately see that the pricing 
function must solve the PDE 

F (T, s)  = @(s). 
(14.31) 

We have thus recovered our old pricing result from Theorem 13.1. 
Turning to hedging, we know from the uniqueness of the martingale measure 

that the market is complete, and thus that there exists a hedging portfolio h = 
(ho, hl, . . . , hn). The value process dynamics are of course given by 

but we also have V(t; h) = F( t ,  S(t))  where F solves the PDE above. Applying 
the It6 formula, this gives us 

n 

dV(t; h) = C Fi (t, S(t)) dS, (t) + (second-order terms) dt. 
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Comparing these two equations we can identify hl, . . . , h, from the dSi terms 
and we see that the hedging portfolio is given by 

aF 
hj(t)=-(t ,S(t)) ,  i = l ,  ..., n, asi 

If we express the portfolio in terms of relative weights, this will once again give 
us the hedge of Theorem 13.7. 

14.6 Market Prices of Risk 

Going back to the general model of Section 14.1 let us assume that the model 
is generically free of arbitrage possibilities, then we know that the "martingale 
measure equation" 

u(t)cp(t) = r(t) - 4 t ) ,  

always possesses a (not necessarily unique) solution cp = (cpl,. . . , cpk)*, where 
cp is the Girsanov kernel used in the transition from P to Q. If we now define 
the vector process X by X = -9, then we can write (14.34) as 

a(t)  - r(t) = a(t)X(t), 

and on component form this becomes 

k 

ai(t)-r( t)=Ca,j( t)Xj( t) ,  i = l ,  ..., n. 
i=l 

As in the simpler setting of Section 13.2 we have an economic interpretation 
of this equation. On the left-hand side we have the excess rate of return over 
the risk free rate for asset No. i, and on the right-hand side we have a linear 
combination of the volatilities o,j of asset No. i with respect to the individual 
Wiener processes WI, . . . , ~ k .  Thus X j  is the "factor loading" for the individual 
risk factor Wj, and this object is often referred to as the "market price of risk 
for risk factor No. j". Roughly speaking one can then say that X j  gives us a 
measure of the aggregate risk aversion in the market towards risk factor No. j. 
The main point to notice here is that the same X is used for all assets. We can 
summarize the situation as follows: 

Under absence of arbitrage there will exist a market price of risk vector 
process X satisfying (14.35). 
The market price of risk X is related to the Girsanov kernel cp through 

cp(t) = -X(t). 
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a In a complete market the market price of risk, or alternatively the 
martingale measure Q, is uniquely determined and there is thus a unique 
price for every derivative. 

1. a In an incomplete market there are several possible market prices of risk pro- 
cesses and several possible martingale measures, all of which are consistent 
with no arbitrage. 

a In an incomplete market, cp, A, and Q are thus not determined by absence ' of arbitrage alone. Instead they will be determined by supply and demand 

kk on the actual market, i.e. by the agents on the market. 

14.7 Stochastic Discount Factors 
Consider again the model in Section 14.1, assume absence of arbitrage, and 
choose a fixed martingale measure Q with corresponding Girsanov kernel cp. In 
Section 10.6 we defined the stochastic discount factor A by 

A(t) = e- So' '('1 d s ~ ( t ) ,  

where L is the likelihood process for the measure transformation from P to Q. 
In the special case of a Wiener driven model we can compute L explicitly as 

~ ( t )  = E (cp * W) (t) = P* (3) dW(s1- 4 li 11~(8) 112 ds 

so in this model we have an explicit expression for A as  

~ ( t )  = ''(8) dW(3)- 4 .fo'{II~(s)ll~+~(~)) d8 (14.37) 

we can of course also express A in terms of the market price of risk process as 

~ ( t )  = e- S. A*(s) dW(s)-i S~{ll~(~)llZ++(~)) ds. (14.38) 

14.8 The Hansen-Jagannathan Bounds 
Assume that we have generic absence of arbitrage, i.e. that a(t) is surjective, so 
the martingale measure equation 

u ( t ) ~ ( t )  = r(t) - 4th (14.39) 

always possesses a solution. As noted above, this is not enough to ensure absence 
of arbitrage, since we must also have a guarantee that there exists an admissible 
solution cp, i.e. a cp such that the induced likelihood process L = E(cp * W) is 
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a true martingale (and not just a local one). Recalling, from Lemma 11.5, the 
Novikov condition 

it is then natural to look for a solution cp to (14.39) with minimal Euclidian norm 
at every t. 

We recall the following result from elementary linear algebra. 

Proposition 14.9 Assume that the n x k matrix A is surjective as a mapping 
A : R~ -+ Rn. For any y E Rn, consider the optimization problem 

Then the following hold: 'I 
A* is injective and A*A is invertible. 
The unique optimal solution of the minimum norm problem is given by 

2 = (A*A)-~ A * ~ .  (14.40) 

Proof Left to the reader as an exercise. 

From this we have the following obvious result. 

Proposition 14.10 Assume that the volatility matrix o(t) is surjective P-a.s. 
for all t .  Then the process @ defined by 

1 @ =  [u*u]- u * [ r - a ] ,  (14.41) 

has the property that, 
Il@(t)ll 5 Il~(t)ll (14.42) 

for all t 
Novikov 

and for every cp which satisfies (14.39). If in  
condition, then the model is free of arbitrage. 

rlar 8 s atisfies 

We may of course use the correspondence X = -cp between the Girsanov kernel cp 1 
and the market price of risk X to formulate a parallel result for market prices of 
risk. we define the minimal market price of risk process as 

i = [u*u]-'a* [a - r], (14.43) 

and we have the inequality 
Ili.(t>ll s IlX(t)ll I 

for all admissible A. . , 
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These simple facts are more or less the essence of what in discrete time 
asset pricing is known as the "Hansen-Jagannathan bounds" (see the Notes). 
To obtain these bounds we consider the price process ~ ( t )  of any asset in the 
model (underlying or derivative), write its P-dynamics on the form 

d.lr(t) = .lr(t)a,(t) dt  + .lr(t)u, (t) d ~ ( t )  

and define its Sharpe Ratio  process by the expression 

%(t> - r(t) 
Ilflr(t)ll ' 

Denoting the P-variance by varP we have the informal interpretation 

llu,(t)1I2 dt = varP [d~(t)/.lr(t)l Ftl 

so the Sharpe Ratio gives us the conditional mean excess rate of return per unit 
of total volatility. 

We now have the following simple but interesting result. 

Proposition 14.11 (The Hansen-Jagannathan Bounds) Assume generic 
absence of arbitrage and define j\ by (14.43). Then the following holds for all 
assets, underlying or derivative, and for all admissible market prices of risk A. 

1 a r l ~ ~ , ~ ~ ~ )  1 5 !li(t)ll 5 llA(t)ll- (14.44) 

Proof The second inequality is already proved so we only have to prove the 
first. Fix any A generating a martingale measure. We then have 

o,(t)A(t> = a,(t> - r(t),  

am(t) - r(t) =- or(t) A(t), 
llun(t)ll Ilur(t)ll 

1 and from the Cauchy-Schwartz inequality in finite dimensional space we obtain 

- r(t) 1 5 1 1 ~ 1 1  - llA(t)ll = llA(t)ll. 
Il%(t) II  0% (t) II  

Since this holds for every A, it holds in particular for i. 
We can now connect this result to the stochastic discount factor A by noting 

that, for our model class, the.dynamics of A are given by 

dA(t) = -~(t)A(t) dt + A(t)cp*(t) d ~ ( t ) ,  (14.45) 
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or alternatively 

A (and cp) also has the interpretation as the volatility vector of the stochastic 
discount factor. The point of this from an economic perspective is that we can 
either view the Hansen-Jagannathan bounds as a lower bound for the stochastic 
discount factor volatility for a given (observed) Sharpe ratio, or as an upper 
bound on the Sharpe ratio for a given (observed) stochastic discount factor 
volatility. 

14.9 Exercises 

Exercise 14.1 Derive (14.46). 

Exercise 14.2 Assume generic absence of arbitrage and prove that any market 
price of risk process X generating a martingale measure must be of the form 

where p(t) is orthogonal to the rows of u(t) for all t. 

14.10 Notes 

The results in this chapter are fairly standard. The Hansen-Jagannathan bounds 
were first derived (in discrete time) in Hansen and Jagannathan (1991). They 
have since then become the subject of a large literature. See the recent text- 
book Cochrane (2001) for an exposition of (mostly discrete time) asset pricing, 
including a detailed discussion of the discrete time HJ bounds, connections to 
the "equity premium puzzle" and an extensive bibliography on the subject. 
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15 

INCOMPLETE MARKETS 

15.1 Introduction 

In this chapter we will investigate some aspects of derivative pricing in incomplete 
markets. We know from the mehtheorem that markets generically are incom- 
plete when there are more random sources than there are traded.assets, and 
this can occur in an infinite number of ways, so there is no "canonical" way 
of writing down a model of an incomplete market. We will confine ourselves to 
study a particular type of incomplete market, namely a "factor model", i.e. a 
market where there are some nontraded underlying objects. Before we go on to 
the formal description of the models let us briefly recall what we may expect in 
an incomplete model. 

Since, by assumption, the market is incomplete we will not be able to hedge 
a generic contingent claim. 
In particular there will not be a unique price for a generic derivative. 

15.2 A Scalar Nonpriced Underlying Asset 

We will start by studying the simplest possible incomplete market, namely a 
market where the only randomness comes from a scalar stochastic process which 
is not the price of a traded asset. We will then discuss the problems which arise 
when we want to price derivatives which are written in terms of the underlying 
object. The model is as follows. 

Assumption 15.2.1 The only objects which are a priori given are the 

, A n  empirically observable stochastic process X ,  which is not assumed to 
be the price process of a traded asset, with P-dynamics given by 

d X ( t )  = ,u ( t ,  X ( t ) )  d t  + (T (t, X ( t ) )  d~ (t). (15.1) 

Here W is a standard scalar P- Wiener process. 
A risk free asset (money account) with the dynamics 

d B ( t )  = r B ( t )  dt, (15.2) 

I where r as usual is the deterministic short rate of interest. 

We now consider a given contingent claim, written in terms of the process X .  
More specifically we define the T-claim y by 
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where @ is some given deterministic function, and our main problem is that of 
studying the price process II(t; y )  for this claim. 

In order to give some substance to the discussion, and to understand the 
difference between the present setting and that of the previous chapters, let us 
consider a specific concrete, interpretation of the model. We may, for example, 
interpret the process X as the temperature at some specific point on the earth, 
say the end of the Palace Pier in Brighton. Thus X(t) is the temperature (in 
centigrade) at time t at the Palace Pier. Suppose now that you want to go to 
Brighton for a holiday, but that you fear that it will be unpleasantly cold at 
the particular time T when you visit Brighton. Then it may be wise to buy 
"holiday insurance", i.e. a contract which pays you a certain amount of money 
if the weather is unpleasant at a grespecified time in a prespecified place. If the 
monetary unit is the pound sterling, the contract function @ above may have 
the form 

In other words, if the temperature at time T is below 20°C (degrees centigrade) 
you will obtain 100 pounds from the insurance company, whereas you will get 
nothing if the temperature exceeds 20°C. 

The problem is now that of finding a "reasonable" price for the contract 
above, and as usual we interpret the word "reasonable" in the sense that there 
should be no arbitrage possibilities if we are allowed to trade the contract. This 
last sentence contains a hidden assumption which we now formalize. 

Assumption 15.2.2 There is a liquid market for every contingent claim. 

If we compare this model with the standard Black-Scholes model, we see many 
similarities. In both cases we have the money acco&t B, and in both cases 
we have an a priori given underlying process. For the Black-Scholes model the 
underlying process is the stock price S, whereas we now have the underlying 
process X ,  and in both models the claim to be priced is a deterministic function 
of the underlying process, evaluated at time T. 

In view of these similarities it is now natural to assume that the results from 
the Black-Scholes analysis will carry over to the present case, i.e. we are (per- 
haps) led to believe that the price process for the claim y is uniquely determined 
by the P-dynamics of the underlying process X. It is, however, very important 
to understand that this is, most emphatically, not the case, and the reasons are 
as follows: 

1. If we consider the a priori given market, which only consists of the money 
account B, we see that the number R of random sources in this case 
equals one (one driving Wiener process), while the number M of traded 
assets (always excluding the money account B) equals zero. F'rom the 
meta-theorem it now follows that the market is incomplete. The incom- 
pleteness can also be seen from the obvious fact that in the a priori given 
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here are no interesting ways of forming self-financing portfolios. - The only strategy that is allowed is to invest all our money in the bank, 
and then we can only sit down and passively watch our money grow at 

a the rate r .  In particular we have no possibility to replicate any interesting 
L derivative of the form @ (X(T)). We thus conclude that, since we cannot 

replicate our claim, we cannot expect to obtain a unique arbitrage free 
price process. '' 2. One natural swategy to follow in order to obtain a unique price for ' the claim X is of course to imitate the scheme for the Black-Scholes 
model. We would assume that the price process II(t;y) is of the form 
n(t;  y )  = F(t ,  X(t)), and then we would form a portfolio based on the 
derivative F and the underlying X. Choosing the portfolio weights such 
that the portfolio has no driving Wiener process would give us a riskless 
asset, the rate of return on which would have to equal the short rate r ,  
and this last equality would finally have the form of a PDE for the pricing 
function F. This approach is, however, completely nonsensical, since in 
the present setting the process X is (by assumption) not the price of a 
traded asset, and thus it is meaningless to talk about a "portfolio based 

?:' on X". In our concrete interpretation this is eminently clear. Obviously 
" you can buy any number of insurance contracts and put them in your 
." portfolio, but it is also obvious that you cannot meaningfully add, e.g. 

15OC to that portfolio. 

We can summarize the situation as follows: 

The price of a particular derivative will not, be completely determined by 
the specification (15.1) of the X-dynamics and the requirement that the 
market [B(t), II(t; y)] is free of arbitrage. 
The reason for this fact is that arbitrage pricing is always a case of pricing 
a derivative in terms of the price of some underlying assets. In our market 
we do not have sufficiently many underlying assets. 

Thus we will not obtain a unique price of a particular derivative. This fact 
does not mean, however, that prices of various derivatives can take any form 
whatsoever. From the discussion above we see that the reason for the incom- 
pleteness is that we do not have enough underlying assets, so if we adjoin 
one more asset to the market, without introducing any new Wiener processes, 
then we expect the market to be complete. This idea can be expressed in the 

Idea 15.2.1 

We cannot say anything about the price of any particular derivative. 
The requirement of an arbitrage free derivative market implies that prices 
of different derivatives (i.e. claims with different contract functions 
or different times of expiration) will have to satisfy certain internal 
consistency relations in order to avoid arbitrage possibilities on the 
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bond market. In terms of our concrete interpretation this means that even 
if we are unable to produce a unique price for a fixed weather insurance 
contract, say the "20°C contract" 

for the fixed date T, there must be internal consistency requirements 
between the price of this contract and the price of the following "25OC 
contract" 

with some expiration date T' (where of course we may have T = T'). 
In particular, if we take the price of one particular "benchmark" derivative 
as a priori given, then the prices of all other derivatives will be uniquely 
determined by the price of the benchmark. This fact is in complete agree 
ment with the meta-theorem, since in an a priori given market consisting of 
one benchmark derivative plus the risk free asset we will have R = M = 1, 
thus guaranteeing completeness. In our concrete interpretation we expect 
that the prices of all insurance contracts should be determined by the price 
of any fmed benchmark contract. If, for example, we choose the 20°C con- 
tract above as our benchmark, and take its price as given, then we expect 
the 25°C contract to be priced uniquely in terms of the benchmark price. 

To put these ideas into action we now take as given two fixed T-claims, y 
and 2, of the form 

where @ and I' are given deterministic real valued functions. The project is to find 
out how the prices of these two derivatives must be related to each other in order 
to avoid arbitrage possibilities on the derivative market. As above we assume that 
the contracts are traded on a frictionless market, and ad in the Black-Scholes 
analysis we make an assumption about the structure of the price processes. 

Assumption 15.2.3 W e  assume that 

there is a liquid, frictionless market for each of the contingent claims y 
and 2. 
the market prices of the claims are of the form 

where F and G are smooth real valued functions. 
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We now proceed exactly as in the Black-Scholes case. We form a portfolio 
based on F and G, and choose the weights so as to make the portfolio locally 
riskless. The rate of return of this riskless portfolio has to equal the short rate 
of interest, and this relation will give us some kind of equation, which we then 
have to analyze in detail. 

From the assumption above, the It8 formula, and the X-dynamics we obtain 
the following price dynamics for the price processes F(t ,  X(t)) and G(t, X(t)). 

d F  = a F F d t  + U F F ~ W ,  (15.4) 

dG = aGGdt  +uGGdw.  (15.5) 

Here the processes aF and UF are given by 

Ft + pFx + $a2 Fxx 
a~ = 

F , 

UFX 
UF = - 

F '  

and correspondingly for a~ and UG. As usual we have suppressed most 
arguments, so in more detail we have, e.g. 

d F  
P F X  = ~ ( t .  X(t))az(t, X(t)). 

We now form a self-financing portfolio based on F and G, with portfolio 
weights denoted by UF and UG, respectively. According to (6.13), the portfolio 
dynamics are given by 

d F  
d V = V  U P . - + u G . -  { F dGG) , 

and using the expressions above we get 

~ v = v { u ~ ~ c ~ F + u ~ ~ c ~ ~ ) ~ ~ + v { u ~ ~ u ~ + u ~ ~ u ~ ) ~ w .  (15.6) 

In order to make this portfolio locally riskless we must choose UF and UG such 
that UF - OF + UG . UG = 0, and we must also remember that they must add 
to unity. Thus we define UF and UG as the solution to the following system of 

i U F + U G = ~ ,  

U ~ . U F + U G - U G  = 0 .  

The solution to this system is given by 

-uG 
UF = - uGi 

I { = uF 
uF - uG' 

I 



A SCALAR NONPRICED UNDERLYING ASSET 209 

1 We now proceed exactly as in the Black-Scholes case. We form a portfolio 
/ based on F and G, and choose the weights so as to make the portfolio locally 
C riskless. The rate of return of this riskless portfolio has to equal the short rate 
[ of interest, and this relation will give us some kind of equation, which we then 
' have to analyze in detail. 

From the assumption above, the It6 formula, and the X-dynamics we obtain 
the following price dynamics for the price processes F(t, X(t)) and G(t, X(t)). 

Here the processes aF and UF are given by 

and correspondingly for a G  and UG. As usual we have suppressed most 
arguments, so in more detail we have, e.g. 

We now form a self-financing portfolio based on F and G, with portfolio 
weights denoted by UF and UG, respectively. According to (6.13), the portfolio 
dynamics are given by 

I and using the expressions above we get 

I in order to make this portfolio locally riskless we must choose UF and UG such 
that UF . UF + UG - UG = 0, and we must also remember that they must add 
to unity. Thus we define UF and UG a s  the solution to the following system of 
equations. 

I U F + U G = ~ ,  

( u F . u F + u ~ . c T ~ = o .  

1 The solution to this system is given by 
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and inserting this into the portfolio dynamics equation (15.6) g' lves us 

(YG - ( Y F  ' U G  d V = V .  
UF - UG 

} dt. 

We have thus created a locally riskless asset, so using Proposition 7.6, absence 
of arbitrage must imply the equation 

After some reshding we can rewrite this equation as 

The important fact to notice about this equation is that the left-hand side does 
not depend on the choice of G, while the right-hand side does not depend upon 
the choice of F. The common quotient will thus depend neither on the choice 
of F nor on the choice of G, and we have proved the following central result. 

Proposition 15.1 Assume that the market for derivatives is free of arbitrage. 
Then there exists a universal process X(t) such that, with probability 1, and for 
all t ,  we have 

regardless of the specific choice of the derivative F .  

There is a natural economic interpretation of this result, and of the process A. 
In eqn (15.7) the numerator is given by (YF - r, and from (15.4) we recognize 
( Y F  as the local mean rate of return on the derivative F. The numerator (YF - r 
is thus the local mean excess return on the derivative F over the riskless rate of 
return r ,  i.e. the risk premium of F. In the denominator we find the volatility UF 

of the F process, so we see that X has the dimension "risk premium per unit of 
volatility". This is a concept well known from CAPM theory, so X is commonly 
called "the market price of risk". Proposition 15.1 can now be formulated in the 
following, slightly more flashy, form: 

In a no arbitrage market all derivatives will, regardless of the specific choice 
of contract function, have the same market price of risk. 

We can obtain more explicit information from eqn (15.7) by substituting our 
earlier formulas for (YF and OF into it. After some algebraic manipulations we 
then end up with the following PDE. 

Ft + { p  - Xu) F, + ~ u ~ F , ,  - TF = 0. 
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This is really shorthand notation for an equation which must hold with probab- 
ility 1, for each t, when all terms are evaluated at the point (t, X(t)). Assuming 
for the moment that the support of X is the entire real line, we can then draw 
the conclusion that the equation must also hold identically when we evaluate it 
at an arbitrary deterministic point (t, x). Furthermore it is clear that we must 
have the boundary condition 

F(T,x) = @(x), Vx E R, 

so we finally end up with the following result. 

Proposition 15.2 (Pricing equation) Assuming absence of arbitrage, the 
pricing function F(t ,  x) of the T-claim Q(X(T)) solves the following boundary 

F t ( t , x ) + d F ( t , x ) - r F ( t , x ) = O ,  ( t , x ) c ( O , T ) x R ,  (15.8) 

F(T,x) = @(x), x E R, (15.9) 

At first glance this result may seem to contradict the moral presented above. 
We have stressed earlier the fact that, because of the incompleteness of the 
market, there will be n o  unique arbitrage free price for a particular derivative. 
In Proposition 15.2, on the other hand, we seem to have arrived at a PDE 
which, when solved, will give us precisely the unique pricing function for any 
simple claim. The solution to this conundrum is that the pricing equation above 
is indeed very nice, but in order to solve it we have to know the short rate of 
interest r ,  as well as the functions p(t, x), u(t, x), @(x), and A(t, x). Of these, 
only r ,  p(t, x), a(t ,  x), and cP(x) are specified exogenously. The market price of 
risk A, on the contrary, is not  specified within the model. We can now make 
Idea 15.2.1 above more precise. 

Firstly we see that, even though we cannot determine a unique price for a 
particular derivative, prices of different derivatives must satisfy internal consist- 
ency requirements. This requirement is formulated precisely in Proposition 15.1, 
which says that all derivatives must have the same market price of risk. Thus, if 
we consider two different derivative assets with price processes F and G, these 
may have completely different local mean rates of return (ap and ac), and they 
may also have completely diierent volatilities (UF and UG). The consistency rela- 
tion which has to be satisfied in order to avoid arbitrage between the derivatives 
is that, at all times, the quotient 

a ~ - T  

OF 
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must equal 

Secondly, let us assume that we take the price process of one particular 
derivative as given. To be concrete let us fix the "benchmark" claim I'(X(T)) 
above and assume that the pricing function G ( t ,  x), for l?(X(T)), is specified 
exogenously. Then we can compute the market price of risk by the formula 

Let us then consider an arbitrary pricing function, say the function F for the 
claim @(X(T)). Since the market price of risk is the same for all derivatives we 
may now take the expression for X obtained from (15.10) and insert this into 
the pricing equation (15.8)-(15.9) for the function F. Now everything in this 
equation is well specified, so we can (in principle) solve it, in order to obtain F. 
Thus we see that the price F of an arbitrary claim is indeed uniquely determined 
by the price G of any exogenously specified benchmark claim. 

We can obtain more information from the pricing equation by applying the 
Feynman-KaE representation. The result can be read off immediately and is as 
follows. 

Proposition 15.3 (Risk neutral valuation) Assuming absence of arbitrage, 
the pricing function F(t ,  x) of the T-claim (P(X(T)) is given by the formula 

where the dynamics of X under the martingale measure Q are given by 

Hem W is a Q- Wiener process, and the subscripts t ,x  indicate as usual that 
X(t) = x. 

Again we have an "explicit" risk neutral valuation formula for the pricing func- 
tion. The arbitrage free price of the claim is given as the discounted value of the 
mathematical expectation of the future claim. As before the expectation is, how- 
ever, not to be taken under the objective measure P, but under the martingale 
("risk adjusted") measure Q. Note that there is a one-to-one correspondence 
between the martingale measure and the market price of risk. Thus, choosing a 
particular X is equivalent to choosing a particular Q. The characterization of Q 
is just the same as in Proposition 13.3. The proof is left to the reader. 
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Proposition 15.4 The martingale measure Q is characterized by any of the 
following equivalent facts: 

The 2ocal mean rate of return of any derivative price process II(t) equals the 
short rate of interest, i.e. the II(t)-dynamics have the following structural 
form under Q 

dII(t) = rII(t) dt + un(t)II(t)dW(t), 

where W is a Q- Wiener process, and a n  is the same under Q as under P. 
With II as above, the process II(t)/B(t) is a Q-martingale, i.e. it has a 
zero drift term. 

As for the pricing equation above, we have to know X in order to compute 
the expected value in the risk neutral valuation formula. Thus, in the present 
context, and in contrast to the Black-Scholes case, the martingale measure Q is 
not (generically) determined within the model. 

It is instructive to see how the standard Black-Scholes model can be inter- 
preted within the present model. Let us therefore assume, in contrast to our 
earlier assumptions, that X is in fact the price of a stock in a BlajckScholes 
model. This of course means that the P-dynamics of X are given by 

for some constants a and u. Thus, in terms of the notation in (15.1), p(t, x) = 
x a and u(t, x) = X.U. Our project is still that of finding the arbitrage free price 
for the claim @(X(T)), and to this end we follow the arguments given above, 
which of course are still valid, and try to find a suitable benchmark claim I?. In 
the present setting we can make a particularly clever choice of l?(X(T)), and in 
fact we define the claim by 

I This is the claim which at time T gives us exactly one share of the underlying 
stock, and the point is that the price process G(t, X(t)) for this claim is particu- 

1 larly simple. We have in fact G(t, X(t)) = X(t), the reason being that the claim 
can be trivially replicated using a buy-and-hold strategy which consists of one 
unit of the stock itself. Note that for this argument to hold we use critically our 
new assumption that X really is the price of a traded asset. Using the identity 
dG = d X  we now trivially obtain the G-dynamics as 

dG = a ~ d t  + U X ~ W .  

Thus, in terms of our earlier discussion we have aG(t, x) = a and uc(t, x) = a. 
We can now determine the market price of risk as ' 

l and the point to note is that, because of our tradability assumption, X is now 
determined within the model. We now go on to the pricing PDE, into which we 
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substitute A given as above. The critical part, AF, of the PDE now becomes 

AF(t, 2) = { ~ ( t ,  2) - X(t,  x)a(t, x)) Fx(t, x) + z)F,,(t, z) 

={ax-T.  ax  F, + ~ x 2 u 2 ~ , ,  
a - r  1 
1 2 2  = rxF, + 5x u F,,, 

so we end up (as expected) with the Black-Scholes equation 

i Ft + rxF, + $x2u2~,, - rF = 0, 

F(T, 2) = @(XI, 

and in the risk neutral valuation formula we will get the old Black-Scholes 

dX = r X d t + u X d W .  

15.3 The Multidimensional Case 
We will now go on to study pricing in a model with more than one nonpriced 
underlying asset. The model is as follows. 

Assumption 15.3.1 The only objects which are a priori given are the 

An empirically obsemrable k-dimensional stochastic process 

which is not assumed to be the price process of a traded asset, with 
P-dynamics given by 

I dXi(t) = pi (t,X(t)) dt + 6i (t, X(t)) dW(t), i = 1 . .  , k, (15.12) 

where w = (Wl, . . . , Wn)* is a standard n-dimensional P- Wiener process. 
A risk free asset (money account) with the dynamics 

dB(t) = rB(t) dt. (15.13) 

I The object is to find an arbitrage free price process for a T-claim y of the form 

Drawing on our experiences from the previous two sections we expect the 
following: 

We cannot say anything precise about the price process of any particular 
contingent claim. 
Different claims will, however, have to satisfy certain internal consistency 
requirements in order to avoid arbitrage on the derivative market. 
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I More precisely, since we now have n sources of randomness we can (gen- 
i erically) specify the price processes of n different "benchmark" claims. 
F; The price processes of all other claims will then be uniquely determined 

by the prices of the benchmarks. 

As usual we assume that there is a liquid market for all contingent claims, 
and in order to use the ideas above we fix exactly n claims yl, . . . , y, of the form 

y i = a i ( t , X ( T ) ) ,  i=1,  ..., n. 

We furthermore assume that the price processes, [111 (t), . . . , Iln(t)], for these 
claims exist, and that they are of the form 

lli(t) = Fi(t, ~ ( t ) ) ,  i = 1, . . . , n. 

Remark 15.3.1 Note that we use superscripts to distinguish between the vari- 
I ous pricing functions. This is done in order to allow us to use subscripts to denote 

partial derivatives. 

These claims are our "benchmarks", and we now study the claim 

1 above, the price of which is assumed to have the form 

0 
Using the same notational conventions as in Section 13.2, the price dynamics 

of the various derivatives are given by 

d F  = a F F d t  + a F F d w ,  

dFi  = a i F i d t + u i F i d w ,  z=l, ..., n, 

where 
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We can now follow the reasoning of Section 13.2 word-for-word. To 
recapitulate, we form a self-financing portfolio based on the price processes 
[B, F, F1,. . . , Fn]. We then choose the weights so as to make the portfolio locally 
riskless, and finally we try to "beat the bank" by forcing the portfolio to have a 
higher rate of return than the short rate r. 

The conclusion will once again be that, in order to have an arbitrage free 
market, the matrix 

must be singular (recall that ui is a row vector). Assuming that the n x n matrix 

is invertible (with probability 1 for each t) we thus deduce the existence of 
multiplier processes XI@, X(t)), . . . , Xn(t, X(t)) such that 

and 

Since the claim @(X(T)) was chosen arbitrarily we see that the risk premium, 
QF - r, of any asset can be written as a linear combination of the volatility 
components, u ~ j ,  of the asset, the important point being that the multipliers 
are the same for all assets. The vector process X(t, X(t)) is (see Sections 13.2 
and 15.2) known as the market price (vector) of risk (cf. CAPM), and we 
see that the individual component X j  has the dimension "risk premium per unit 
of j-type volatility" . 

Using the notational conventions of Section 13.2, the A-vector is determined 
by the equation 

i.e. 

X = u-' [a - rl,]. 
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1 This is precisely eqn (13.15), but in the present setting the volatility matrix a 
and the vector of returns cr are no longer given a priori, so X is not determined 
within the model. We can summarize this as follows: 

a If the derivatives are traded in a no arbitrage market, then there will exist 
a market price of risk vector which is the same for all assets. 

1 a The market price of risk is not determined within the a priori specified 
model. 

a If we exogenously specify the prices of any n assets such that the corres- 
ponding volatility matrix process a is nonsingular with probability 1 for 
all t ,  then the market price of risk will be uniquely determined by this spe- 
cification and by eqn (15.20). Thus all derivatives will be priced in terms 
of the benchmark prices. 

Note that we can choose the (smooth) benchmark pricing functions above in 
any way whatsoever, subject only to the following conditions: 

a The boundary conditions FYT, x) = ai(x),  i = 1, . . . , n are satisfied. 
a The volatility matrix a(t ,  x) is invertible for aJl (t, x). 

The first condition is obvious. The second is the mathematical formulation of the 
requirement that the family of benchmark derivatives is rich enough to span the 
entire space of derivatives. 

We can easily obtain a PDE for derivative pricing, by writing out eqn (15.19) 
in detail. Using (15.16)-(15.17) we obtain, after some simplification, the following 
result. 

Proposition 15.5 (Pricing equation) If the market is arbitrage free, then the 
arbitrage free price process II(t; a )  is given by n( t ;  a )  = F(t ,  X(t)), where F 
solves the boundary value problem 

where X I , .  . . , An are universal in the sense that they do not depend on the specific 
choice of derivative. 

A standard application of the Feynman-KaE technique gives us a risk neutral 
valuation formula. 

Proposition 15.6 (Risk neutral  valuation) If the market is arbitrage free, 
then there exists a martingale measure Q, such that the pricing function F in 
the proposition above can be represented as 
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where the Q-dynamics of the process X are given by 

where AI,  . . . , A, are universal. 

We have the usual characterization of the martingale measure Q .  

Proposition 15.7 The martingale measure Q has the following properties. 

1. Under Q every price process II ( t ) ,  be it underlying or derivative, has the 
risk neutral valuation property 

II (t) = e-r(T-t) E?', [ll (T)] . 

2. Under Q every price process II (t), be it underlying or derivative, has the 
short rate of interest as its local rate of return, i.e. the Q-dynamics are of 
the form 

dII (t)  = rII (t)  d t  f II (t)  un ( t )  d W, 

where the volatility vector un is the same under Q as under P. 
3. Under Q every price process II (t) ,  be it  underlying or derivative, has the 

property that the normalized price process 

is a martingale, i.e. it has a vanishing drift coeficient. 

Remark 15.3.2 The model formulation above also includes the case when 
some, or all, of the X-components, say XI , .  . . , X,, are traded assets (e.g. exo- 
genously given stock prices), whereas the remaining components (if any) are 
nontraded state variables. As a special case we see that if m = k = n, then we 
are back in the case of a complete market treated in Cha~te r  13. 

15.4 A Stochastic Short Rate 
In the theory derived above we have assumed a constant short rate of interest r.  
Let us now assume that we have exactly the same situation as in Section 15.3 
with the following difference. 

Assumption 15.4.1 The short rate of interest is assumed to be a deterministic 
function of the factors, i. e. 

r ( t )  = r ( X ( t ) ) .  (45.22) 

Here we have used a slightly sloppy notation: the r on the left-hand side denotes 
a stochastic process, whereas the r appearing on the right-hand side denotes a 
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deterministic function. We have thus assumed that the factor vector X com- 
pletely determines the short rate, and as a special case we can of course have 
ne of the factors equal to the short rate itself. 

For this model, we can now go through all our earlier arguments once again, 
d we will easily obtain the following version of Proposition 15.5. 

Proposition 15.8 (Pricing equation) The arbitrage free price process II(t; @) 
is given by II(t; @) = F(t,  X(t)), where F solves the boundary value problem 

n 1 $ (pz - F 6.AJ) Fz + 5tr {6Fxx6} - r(x)F = 0, 

F(T, x) = Wx), 

where XI, . . . , An are the same for all derivatives. 

Again a standard application of the Feynman-KG technique gives us a risk 
neutral valuation formula. 

Proposition 15.9 (Risk neutral valuation) There exists a martingale meas- 
ure Q,  such that the pricing function F in the proposition above can be 

F(t, x) = EFX [e- ltf ' (x(u))  d" - @(x(T))] , (15.23) 

where the Q-dynamics of the process X are given by 

dX" {pi - &A} dt + bi dW, i = 1,. . . , k, . h 

and X I , .  . . , An are the same for all derivatives. 

15.5 The Martingale Approach* 
From the martingale point of view the setup and results of this entire chapter 
are in fact already covered (in more generality) in Chapter 14 : Let us however, 
briefly recollect some main points. 

, Since we have assumed that the only asset given a priori is B and that 
X is not the price vector of traded assets, the normalized price process Z 

, is one-dimensional with Z = Zo = BIB = 1. Now: the constant process 
Zo(t) r 1 is a martingale regardless of the choice of measure, so every 

) equivalent measure Q will be a martingale measure 
From Proposition 10.25 we always have the risk neutral valuation formula 
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for any T-claim y and any specification of the short rate process r. In 
particular, r does not have to be of the form r (t, X(t)). 
Denoting a fixed choice of martingale measure by Q, where cp is the cor- 
responding Girsanov kernel and X = -cp the market price of risk, the 
Q-dynamics of X are 

a In general, the market price of risk process X is just an adapted (possibly 
path dependent) process, so generically X will not be a Markov process 
under Q. 
If we assume that the market price of risk is of the form X(t, X(t)), then 
X will be Markovian under the corresponding Q. In this special case we 
can use the PDE methods discussed earlier in the chapter for pricing. 

15.6 Summing U p  

We may now sum up our experiences from the preceding sections. 

Result 15.6.1 

In an arbitrage free market, regardless of whether the market is complete 
or incomplete, there will exist a market price of risk process, X(t), which is 
common to all assets in the market. More precisely, let Il(t) be any price 
process in the market, with P-dynamics 

Then the following holds, for all t ,  and P-a.s. 

In a complete market the price of any derivative will be uniquely determ- 
ined by the requirement of absence of arbitrage. In hedging terms this 
means that the price is unique because the derivative can equally well be 
replaced by its replicating portfolio. Phrased in terms of pricing PDEs and 
risk neutral valuation formulas, the price is unique because a complete 
market has the property that the martingale measure Q, or equivalently 
the market price of risk A, is uniquely determined within the model. 
In an incomplete market the requirement of no arbitrage is no longer suf- 
ficient to determine a unique price for the derivative. We have several 
possible martingale measures, and several market prices of risk. The reason 
that there are several possible martingale measures simply means that 
there are several different price systems for the derivatives, all of which are 
consistent with absence of arbitrage. 
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Schematically speaking the price of a derivative is thus determined by two 

a We require that the derivative should be priced in such a way so as to 
not introduce arbitrage possibilities into the market. This requirement is 
reflected by the fact that all derivatives must be priced by formula (15.11) 
where the same Q is used for all derivatives, or equivalently by the pricing 
PDE (15.8)-(15.9), where the same X is used for all derivatives. 
In an incomplete market the price is also partly determined, in a nontrivial 
way, by aggregate supply and demand on the market. Supply and demand 
for a specific derivative are in turn determined by the aggregate risk aver- 
sion on the market, as well as by liquidity considerations and other factors. 
All these aspects are aggregated into the particular martingale measure 
used by the market. 

When dealing with derivative pricing in an incomplete market we thus have 
to fix a specific martingale measure Q, or equivalently a A, and the question 
arises as to how this is to be done. 

Who chooses the martingale measure? 

, From the discussions above the answer should by now be fairly clear. 

I 

The market! 

The main implication of this message is that, within our framework, it is 
not the job of the theorist to determine the "correct" market price of risk. The 
market price of risk is determined on the market, by the agents in the market, and 
in particular this means that if we assume a particular structure of the market 
price of risk, then we have implicitly made an assumption about the preferences 
on the market. To take a simple example, suppose that in our computations we 
assume that X = 0. This means in fact that we have assumed that the market is 
risk neutral (why?). 

From this it immediately follows that if we have a concrete model, and we 
want to obtain information about the prevailing market price of risk, then we 
must go to the concrete market and get that information using empirical meth- 
ods. It would of course be nice if we were able to go to the market and ask 
the question "What is today's market price of risk?", or alternatively "Which 
martingale measure are you using?", but for obvious reasons this cannot be done 
in real life. The information that can be obtained from the market is price data, 
so a natural idea is to obtain implicit information about the market price of risk 
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using the existing prices on the market. This method, sometimes called "calib- 
rating the model to market data", "backing out the parameters", or LLcomputing 
the implied parameter values", can schematically be described as follows. 

Let us take a concrete model as given, say the one defined by eqn (15.1). We 
assume that we know the exact form of p and a. Our problem is that of pricing 
a fixed claim @(X(T)), and in order to do this we need to know the market price 
of risk X(t, x), and we have to consider two possible scenarios for the derivative 
market, which we are trying to model. 

The first case occurs if there is no existing market for any derivative product 
with X as its underlying object, i.e. no weather insurance contracts for Brighton 
are traded. Then we are stuck. Since the market price of risk is determined by 
the market, then if there is no market, there is no market price of risk. 

The second case occurs if some contracts are already traded. Let us thus 
assume that there exists a market for the claims @((X(T)), i = 1 , .  . . , n. Let 
us furthermore assume that we want to choose our market price of risk from a 
parameterized family of functions, i.e. we assume a priori that X is of the form 

We have thus a priori specified the functional form of X but we do not know which 
parameter vector p we should use. We then carry out the following scheme. We 
are standing at time t = 0. 

Compute the theoretical pricing functions F1(t ,  x) for the claims 
al, .  . . , @,. This is done by solving the pricing PDE for each contract, 
and the result will of course depend on the parameter P, so the pricing 
functions will be of the form 

In particular, by observing today's value of the underlying process, say 
X(0) = xo, we can compute today's theoretical prices of the contracts as 

ni(o; p) = F~(O,ZO; p). 

We now go to the concrete market and observe the actually traded prices 
for the contracts, thus obtaining the observed prices 

where the superscript * indicates an observed value. 
We now choose the "implied" parameter vector P* in such a way that 
the theoretical prices are "as close as possible" to the observed prices, i.e. 
such that 

ni*(0) x IIi(O; P*), i = 1, . . . , n. 
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One way, out of many, of formalizing this step is to determine P* by solving 
the least squares minimization problem 

min [k ( R ( o ; ~ )  - ni*(0) )2] . 
P€Rk 

i=l 

In the theory of interest rates, this procedure is widely used under the name 

I of "the inversion of the yield curve" and in that context we will study it in some 
detail. 

1 As we have repeatedly stressed, the problem of determining the market price 
j of risk is not a theoretical one, but an empirical one. It should, however, be poin- 

ted out that the truth of this statement depends on our particular framework, 
where we have not specified individual preferences at all. An alternative frame- 
work is that of a general equilibrium model, where we have specified the utility 
functions of a number of individuals, and the production functions of a num- 
ber of firms. In such a model all prices, derivative or underlying, as well as the 
market price of risk, will be determined endogenously within the model, so we 
no longer have to go to the market to find A. The price we have to pay for a 

t general equilibrium approach is that we must then specify the individual pref- 
erences, which in turn is essentially equivalent to a specification of the market 

j price of risk. 

15.7 Exercises 

Exercise 15.1 Consider a claim @(X(T)) with pricing function F(t ,  x). Prove 
Proposition 15.4, i.e. prove that d F  under Q has the form 

where W is a Q-Wiener process. 
Hint: Use It6's formula on F, using the Q-dynamics of X. Then use the fact 

that F satisfies the pricing PDE. 

Exercise 15.2 Convince yourself, either in the scalar or in the multidimensional 
case, that the market price of risk process X really is of the form 

Exercise 15.3 Prove Proposition 15.7 

Exercise 15.4 Consider the scalar model in Section 15.2 and a fixed claim 
F ( X ( T ) ) .  Take as given a pricing function G(t,x), for this claim, satisfying 
the boundary condition G(T,x) = I'(x), and assume that the corresponding 
volatility function aG(t,x) is nonzero. We now expect the market [B,G] to be 
complete. Show that this is indeed the case, i.e. show that every simple claim of 
the form @(X(T)) can be replicated by a portfolio based on B and G. 
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Exercise 15.5 Consider the multidimensional model in Section 15.3 and a fixed 
family of claims ai ( X ( T ) )  , i = 1, . . . , n. Take as given a family of pricing func- 
tions Fi(t,x), i = 1,. . . , n, for these claims, satisfying the boundary condition 
FYT, x) = ai (x), i = 1, . . . , n, and assume that the corresponding volatility 
matrix u(t, x) is nonzero. Show that the market [B, F1, . . . , Fn] is complete, 
i.e. show that every simple claim of the form @(X(T)) can be replicated by a 
portfolio based on [B, F1,. . . , Fn]. 

Exercise 15.6 Prove the propositions in Section 15.4. 

15.8 Notes 
As we have seen, in an incomplete market there is generically not a unique price 
for a given claim, and it is impossible to hedge perfectly. A natural idea is then 
to try to find an approximate hedge, and the obvious first choice is to use a 
quadratic loss function. This line of ideas was &st investigated by Follmer and 
Sondermann (1986) and then generalized in Schweizer (1988), Schweizer (1991) 1 
and many other papers. The quadratic hedging approach has subsequently been , 
the object of intensive research and has led to a large and deep literature. For a 
recent overview with an extensive bibliography see Schweizer (2001). One p o s  
sibility of pricing in an incomplete market is to choose, based on some given 
principle, one particular member of the infinite set of possible martingale meas- 
ures. In the quadratic hedging theory one thus ecounters the "minimal martingale 
measure" as well as the "variance optimal measure". The "minimal entropy 1 
measure" is another canonical choice of a martingale measure where an entropy i 
related distance between the objective measure and the martingale measure is 
minimized. This approach was introduced by Miyahara (1997) and developed 
by Frittelli in several papers such as Frittelli (2000). The "Esscher measure", 
discussed in Gerber and Shiu (1994), is related to actuarial mathematics. For a 
utility approach to pricing in incomplete markets see Davis (1997). For textbook 
treatments of incomplete markets, see Bingham and Kiesel (1998) and Dana and 
Jeanblanc (2003). 
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I DIVIDENDS 

F 
The object of the present chapter is to study pricing problems for contingent 
claims which are written on dividend paying underlying assets. In real life the 
vast majority of all traded options are written on stocks having at least one 
dividend left before the date of expiration of the option. Thus the study of 
dividends is important from a practical point of view. Furthermore, it turns out 
that the theory developed in this chapter will be of use in the study of currency 
derivatives and we will also need it in connection with future contracts. 

1 16.1 Discrete Dividends 

1 16.1.1 Price Dynamics and Dividend Stmctuw 

, We consider an underlying asset ("the stock") with price process S, over a fixed 
time interval [0, TI. We take as given a number of deterministic points in time, 
TI, . . ,  ,,where 

, The interpretation is that at these points in time dividends are paid out to the 
holder of the stock. We now go on to construct a model for the stock price process 
as well as for the dividend structure, and we assume that, under the objective 
probability measure P, the stock price has the following dynamics, between 
dividends. 

d S  = a S d t  + aSdW. (16.1) 

To be quite precise we assume that the S-process satisfies the SDE above on 
each half-open interval of the form [Ti+l, Ti), i = 1, . . . , n - 1, as well as on the 
intervals [0, Tn) and [TI, TI. 

The first conceptual issue that we have to deal with concerns the interpreta- 
tion of St as "the price of the stock at time t", and the problem to be handled 
is the following: do we regard St as the price immediately after, or immedi- 
ately before, the payment of a dividend? From a logical point of view we can 
choose any interpretation-nothing is affected in real terms, but our choice of 
interpretation will affect the notation below. We will in fact choose the first 
interpretation, i.e. we view the stock price as the price ex  dividend. If we think 
of the model on an infinitesimal time scale we have the interpretation that, if t 
is a dividend point, dividends are paid out, not at the time point t, but rather 
at t - dt or, if you will, at t-. 

Next we go on to model the size of the dividends. 
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Assumption 16.1.1 We assume as given a deterministic continuous 
function 6[s] 

6 : R + R .  

The dividend 6, at a dividend time t ,  is assumed to have the form 

Note that the assumption above guarantees that the size of the dividend 6 at 
a dividend time t is already determined at t- . The reason that we are using the 
bracket notation 6[St-] instead of the more standard 6(St-) is that in this way 
we avoid some hard-to-read formulas with repeated parenthesis signs later on. 

Our next problem concerns the behavior of the stock price at a dividend point 
t ,  and an easy (but slightly heuristic) arbitrage argument (see the exercises) gives 
us the following result. 

Proposition 16.1 (Jump condition) In order to avoid arbitrage possibilities 
the following jump condition must hold at every dividend point t :  

The stock price structure can now be summarized as follows: 

Between dividend points the stock price process satisfies the SDE 

Immediately before a dividend time t ,  i.e. at t - = t - d t ,  we observe the 
stock price St-. 
Given the stock price above, the size of the dividend is determined as 6[St-1. 
"Between" t - dt and t the dividend is paid out. 
At time t the stock price has a jump, determined by 

16.1.2 Pricing Contingent Claims 

As usual we consider a fixed contingent T-claim of the form 

where @ is some given deterministic function, and our immediate problem is 
to find the arbitrage free price process n(t; X) for the claim X. We will solve 
this problem by a recursive procedure where, starting at T and then working 
backwards in time, we will compute n(t; X) for each intra-dividend interval 
separately. 
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T I I t I T :  
We start by computing II(t; X) for t E [TI, TI. Since our interpretation of the 
stock price is ex dividend, this means that we are actually facing a problem 
without dividends over this interval. Thus, for TI 5 t 5 T, we have lI(t; X) = 
F(t, St) where F solves the usual Black-Scholes equation 

I F (T, s) = *(s). 

In particular, the pricing function at TI is given by F(Tl, s). 

T2 I t  < TI: 
Now we go on to compute the price of the claim for T2 5 t I TI. We start by 
computing the pricing function F at the time immediately before TI, i.e. at 
t = Tl -. Suppose, therefore, that we are holding one unit of the contingent 
claim, and let us assume that the price at time TI- is STl- = S. This is the 
price cum dividend, and in the next infinitesimal interval the following will 
happen: 

The dividend 6[s] will be paid out to the shareholders. 
At time TI the stock price will have dropped to s - 6[s]. 
We are now standing at time TI, holding a contract which is worth 
F(T1, s - 6[s]). The value of F at TI has, however, already been 
computed in the previous step, so we have the jump condition 

It now remains to compute F for T2 I t < TI, but this turns out to be quite 
easy. We are holding a contingent claim on an underlying asset which over 
the interval [T2, TI) is not paying dividends. Thus the standard Black-Scholes 
argument applies, which means that F has to solve the usual Black-Scholes 
equation 

aF d F  1 d 2 F  
- + rs- + -s202- - rF = 0, at as 2 as2 

over this interval. The boundary value is now given by the jump condition 
(16.3) above. Another way of putting this is to say that, over the half-open 
interval [T2, TI), we have F(t, s) = F1(t, s) where F1 solves the following 
boundary value problem over the closed interval [T2, TI]. 

aF1 1 8 2 ~ 1  + rs- + -s202- - rF1 = 0, as 2 as2 

Thus we have determined F on [T2, TI). 
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T 3 5 t < T 2 :  
Now the story repeats itself. At T2 we will again have the jump condition 

and over the half-open interval [T3, T2) F has to satisfy the Black-Scholes 
equation. 

We may summarize our results as follows. 

Proposition 16.2 (Pricing equation) The pricing function F( t ,  s )  is deter- 
mined by the following recursive procedure: 

On the interval [TI, TI F solves the boundary value problem 

I F ( T ,  s )  = +(s)  . 

At each dividend point Ti, F has to satisfy the jump condition 

On every half-open interval of the form [Ti+1,Ti), i = 1,2,.  . . , n - 1, as 
well as on the interval [0, T,), F solves the Black-Scholes equation 

d F  d F  1 d2F 
- + rs- + -s2a2- 
6t 

- rF=O.  
a s  2 as2 

Another way of formulating this result in order to stress the recursive nature 
of the procedure is as follows. 

Proposition 16.3 

On the interval [TI ,  TI we have F ( t ,  s )  = F O ( ~ ,  s), where F0 solves the 
bounda ry value problem 

On each half-open interval [Ti+1, Ti) we have F( t ,  s )  = Fi(t ,  s )  for i = 
1,2,.  . ., where Fi ,  over the closed interval [T+l, Ti], solves the boundary 
value problem { ,Fa 1 d2Fi + rs- + -s2a2- - rFi  = 0,  

d s  2 as2 (16.8) 

F i ( ~ i ,  S )  = Fi-'(Ti, s - 6[s]) .  
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Throughout the entire section we have assumed the standard Black-Scholes 
price dynamics (16.1) between dividends. It is easy to see that we also have the 
following more general result. 

Proposition 16.4 Assume that the stock price dynamics between dividends are 
of the form 

dSt = Sta(t, St)dt + Sta(t, St) dWt. (16.9) 

Assume furthermore that the dividend structure as before is given by 

Then the results of Propositions 16.2 and 16.9 still hold, provided that the 
constant u is replaced by the function u(t, s) i n  the PDEs. 

We now turn to the possibility of obtaining a probabilistic "risk neutral valu- 
ation" formula for the contingent claim above, and as in the PDE approach this 
is done in a recursive manner. 

For Tl 5 t 5 T the situation is simple. Since we have no dividend points left 
we may use the old risk neutral valuation formula to obtain 

r '  Here the Q-dynamics of the stock price are given by 

and we have used the notation F0 to emphasize that in this interval there are 
zero dividend points left. Note that the Q-dynamics of S above are only defined 
for the interval [TI, TI. 

For T2 5 t < TI the situation is slightly more complicated. From Proposition 
16.3 we know that the pricing function, which on this interval is denoted by F1, 
solves the PDE 

We may now apply the Feynman-KaE Theorem 5.6 to obtain the stochastic 
representation 

F' (t, s) = e-r(T1-t)~t,, [F'(TI, XT, - ~ [ x T ~ ] ) ]  

where the process X ,  which at this point only acts as a computational dummy, 
is defined by 

dX = r X d t + o X d W .  (16.12) 
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Notice that the dummy process X is defined by (16.12) over the entire closed 
interval [T2, TI] (whereas the pricing function F1 is the relevant pricing function 
only over the half-open interval [T2, TI)). This implies that X has continuous tra- 
jectories over the closed interval [T2, TI], so in particular we see that XTl- = XT,. 
We may thus rewrite (16.11) as 

F' (t, S) = e-T(T1-t) E ~ , ~  [F'(T~, XTl - - d [ ~ ~ ~ - ] ) ] ,  

still with the X-dynamics (16.12) on the closed interval [T2, TI]. 
Let us now define the Q-dynamics for S over the closed interval [T2,Tl] by 

writing 
d S = ~ S d t + u S d W ,  

for the half-open interval [T2, TI) and adding the jump condition 

ST, = ST,- -  ST,-]. 

In this notation we can now write (16.13) as 

J'l (t, s) = e-'(Tl-t)~Q t , ~ [  F0 ( T  ST^)], 

and, plugging in our old expression for FO, we obtain 

Taking the discount factor out of the expectation, and using standard rules for 
iterated conditional expectations, this formula can be reduced to 

F' (t, s) = e-T(T-t) E:~ [@(ST)]. 

We may now iterate this procedure for each intra-dividend interval to obtain 
the following risk neutral valuation result, which we formulate in its more 
general version. 

Proposition 16.5 (Risk neutral valuation) Consider a T-claim of the fonn 
@(ST) as above. Assume that the price dynamics between dividends are given by 

dSt = a(t ,  St)& dt + ~ ( t ,  &)St dW, 

and that the dividend size at a dividend point t is given by 

b = 6[St-I. 

Then the arbitrage free pricing function F(t ,  s) has the representation 

F(t, s) = e-'(T-t) E$ [@(ST)], 
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where the Q-dynamics of S between dividends are given by 

I dSt = TS~  dt + ~ ( t ,  St)& dW, (16.15) 
1 1 with the jump condition 

St =,St- - 6[St-] 

at each dividend point, i.e. at t = TI, T2, . . . , Tn. 

We endYthis section by specializing to the case when we have the standard 
I Black-Scholes dynamics 

d s  = a S d t + a s d ~  (16.17) 
I 1 between dividends, and the dividend structure has the particularly simple form 

where 6 on the right-hand side denotes a positive constant. 
As usual we consider the T-claim @(ST) and, in order to emphasize the role 

of the parameter 6, we let Fa(t, s) denote the pricing function for the claim a. In 
/ particular we observe that Fo is our standard pricing function for in a model 

with no dividends at all. Using the risk neutral valuation formula above, it is 
not hard to prove the following result. 

Proposition 16.6 Assume that the P-dynamics of the stock price and the divi- 
dend structure are given by (1 6.17)-(16.18). Then the following relation holds: 

Fa(t, S) = Fo(t, (1 - 6)n . s), (16.19) 

where n is the number of dividend points in the interval (t, Tj. 

Proof See the exercises. 

The point of this result is of course that in the simple setting of (16:17)- 
(16.18) we may use our "old" formulas for no dividend models in order to price 
contingent claims in the presence of dividends. In particular we may use the 
standard Black-Scholes formula for European call options in order to price call 
options on a dividend paying stock. Note, however, that in order to obtain these 
nice results we must assume both (16.17) and (16.18). 

16.2 Continuous Dividends 

In this section we consider the case when dividends are paid out continuously 
in time. As usual St denotes the price of the stock at time t, and by D(t) we 
denote the cumulative dividends over the interval [0, t]. Put in differential form 
this means that over the infinitesimal interval (t, t + dt] the holder of the stock 
receives the amount dD(t) = D(t + dt) - D(t). 



16.2.1 Continuous Dividend Yield 

We start by analyzing the simplest case of continuous dividends, which is when 
we have a continuous dividend yield. 

Assumption 16.2.1 The price dynamics, under the objective probability meas- 
ure, are given by 

dSt = St . a(St) dt + St . u(St) d ~ t .  (16.20) 

The dividend structure is assumed to be of the form 

dD(t) = St . 6[St] dt, (16.21) 

where 6 is a wntinuous deterministic function. 

The most common special case is of course when the functions a and u above 
are deterministic constants, and when the function 6 is a deterministic constant. 
We note that, since we have no discrete dividends, we do not have to worry about 
the interpretation of the stock price as being ex dividend or cum dividend. 

The problem to be solved is again that of determining the arbitrage free price 
for a T-claim of the form @(ST) .  This turns out to be quite easy, and we can 
in fact follow the strategy of Chapter 7. More precisely we recall the following 
scheme: 

1. Assume that the pricing function is of the form F (t, St). 
2. Consider a, cr, @, F, 6, and r as exogenously given. 
3. Use the general results from Section 6.2 to describe the dynamics of the 

value of a hypothetical self-financed portfolio based on the derivative 
instrument and the underlying stock. 

4. Form a self-financed portfolio whose value process V has a stochastic 
differential without any driving Wiener process, i.e. it is of the form 

dV(t) = V(t)k(t) dt. 

5. Since we have assumed absence of arbitrage we must have k = r. 
6. The condition k = T will in fact have the form of a partial differential 

equation with F as the unknown function. In order for the market to be 
efficient F must thus solve this PDE. 

7. The equation has a unique solution, thus giving us the unique pricing 
formula for the derivative, which is consistent with absence of arbitrage. 

We now carry out this scheme and, since the calculations are very close to those 
in Chapter 7, we will be rather brief. 

Denoting the relative weights of the portfolio invested in the stock and in 
the derivative by us  and UF, respectively we obtain (see Section 6.3) the value 
process dynamics as 
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where the gain differential dGs for the stock is given by 

dGs = d S  + dD, 
i.e. 

dGs = S(a + 6) dt + a ~ d ~ .  

From the It6 formula we have the usual expression for the derivative dynamics 

d F  = a F ~ d t + a F ~ d W ,  

where 

1 OF 
bF = - '0s-. 

F a s  

Collecting terms in the value equation gives us 

dV = V - {us(a: + 6) + uFffF) dt + V .  {usQ + UFUF) dW, 

and we now determine the portfolio weights in order to obtain a value process 
without a driving Wiener process, i.e. we defme US and UF as the solution to 
the system 

U s 0  + UFUF = 0, 

u S + u F = l .  
4 

This system has the solution r t j  ,% 

QF us  = - 
b F - u 7  

rc~t I'I 
-0 

uF = - 
u F - a '  h n RJ 

, 
and leaves us with the value dyna;mics 

dV = V {uS(a + 6) + uFaF) dt. , I .  

Absence of arbitrage now implies that we must have the equation 



F"" 
with probability 1, for all t, and, substituting the expressions for UF, us, OF, 

and OF into this equation, we get the equation 

The boundary value is obvious, so we have the following result. 1 

Proposition 16.7 The pricing function F(t ,  s) of the claim @(ST) solves the 
boundary value problem 

Applying the Feynman-KaE representation theorem immediately gives us 
a risk neutral valuation formula. 1 
Proposition 16.8 (Pricing equation) The pricing function has the repres- 
entation 

F(t, s) = e-'(T-t)~fs [@(ST)], (16.23) 

where the Q-dynamics of S are given by 

dSt = (r  - 8[St])St dt + u(St)St dWt . (16.24) 1 
In contrast with the case of discrete dividends we see that the appropriate 

martingale measure in the dividend case differs from that of the no dividend 
case. It is left as an exercise to prove the following result. ! 
Proposition 16.9 (Risk neutral valuation) Under the martingale measure. ! 
Q, the normalized gain process 

1 

Note that this property is quite reasonable from an economic point of view: 
in a risk neutral world today's stock price should be the expected value of all 
future discounted earnings which arise from holding the stock. In other words, 
we expect that 

t 

S(0) = [l e-rr dD(r)  + e-"~(t)] , (16.25) 

and in the exercises the reader is invited to prove this "cost of carry" formula. 1 
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As in the discrete case it is natural to analyze the pricing formulas for the 
special case when we have the standard Black-Scholes dynamics 

d S  = a S d t  + uSdW, (16.26) 

, where a and a axe constants. We also assume that the dividend function 6 is 
I a deterministic constant. This implies that the martingale dynamics are given by 

d S  = (r - 6)Sdt + oSdW, (16.27) 

i.e. S is GBM also under the risk adjusted probabilities. Again we denote the 
pricing function by Fa in order to highlight the dependence upon the parameter 6. 
It is now easy to  prove the following result, which shows how to price derivatives 
for a dividend paying stock in terms of pricing functions for a nondividend case. 

Proposition 16.10 Assume that the functions o and 6 are constant. Then, with 
notation as above, we have 

F6 (t , s) = Fo(t, se -6(T-t) 1. (16.28) 

i 
"6.2.2 The General Case 

We now consider a more general dividend structure, which we will need when 
dealing with future contracts in Chapter 26. 

Assumption 16.2.2 The price dynamics, under the objective probability meas- 
ure, are given by 

1 

dSt = St . (St) dt + St ' u (St) d Wt . (16.29) 

The dividend structure is assumed to be of the form 

dD(t) = St . d[St] dt + St-#&] dWt, (16.30) 

where 6 and y are continuous deterministic functions. 

We again consider the pricing problem for a contingent T-claim of the form 

and the only difference from the continuous yield case is that now we have to 
assume that the pricing function for the claim is a function of D as well as S. 
We thus assume a claim price process of the form 

and then we carry out the standard program 1-7 of the previous section. 
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After a large number of simple, but messy and extremely boring, calculations 
which (needless to say) are left as an exercise, we end up with the following result. 

Proposition 16.11 (Pricing equation) The pricing function F(t, s ,  D)  for 
the claim X = @(ST) solves the boundary value problem 

where 

Using the Feynman-KaE technique we have the following risk neutral valuation 
result. 

Proposition 16.12 (Risk neutral valuation) The pricing function has the 
representation 

F(t, s ,  D)  = e-r(T-t)~Q t , , , ~  [@(ST)I, 

where the Q-dynamics of S and D are given by 

Remark 16.2.1 In the expressions of the propositions above we have sup  
pressed St and s in the functions a, a, 6, y. 

The role of the martingale measure is the same as in the previous section. 

Proposition 16.13 The martingale measure Q is characterized by the follow- 
ing facts: 

There exists a market price of risk process X such that the Q-dynamics are 
in the form 

dS = S(a  - Xu) dt + So dW, 

dD = S(6 - Xy) dt + Sy dW. 



EXERCISES 

I The normalized gains process Gz, defined by 

is a Q-martingale. 

This result has extensions to multidimensional factor models. We will not go 
into details, but are content with stating the main result. 

Proposition 16.14 Consader a general factor model of the form in  Sections 
15.3-15.4. If  the market is free of arbitrage, then there will exist universal market 
price of risk processes X = (XI,. . . , Xk)* such that 

For any T-claim X the pricing finction F has the representation 

I The Q-dynamics of the factor processes X1,. . . , xk are of the form 

1 For any price process S (underlying or derivative) with dividend process 

1 I 

D, the normalized gains process 

1 16.3 Exercises 
Exercise 16.1 Prove Proposition 16.1. Assume that you are standing at t -  
and that the conclusion of the theorem does not hold. Show that by trading 

' at t- and t you can then create an arbitrage. This is mathematically slightly 
imprecise, and the advanced reader is invited to provide a precise proof based 
on the martingale approach of Chapter 10. 

Exercise 16.2 Prove the cost-of-carry formula (16.25). 

Exercise 16.3 Derive a cost-of-carry formula for the case of discrete dividends. 

Exercise 16.4 Prove Proposition 16.9. 

Exercise 16.5 Prove Proposition 16.10. 

Exercise 16.6 Consider the Black-Scholes model with a constant continuous 
dividend yield S. Prove the following put-call parity relation, where ca (pa)  
denotes the price of a European call (put). 
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Exercise 16.7 Consider the Black-Scholes model with a constant discrete 
dividend, as in eqns (16.17)-(16.18). Derive the relevant put-call parity for this 
case, given that there are n remaining dividend points. 

Exercise 16.8 Consider the Black-Scholes model with a constant continuous 
dividend yield 6. The object of this exercise is to show that this model is com- 
plete. Take, therefore, as given a contingent claim X = @(S(T)). Show that this 
claim can be replicated by a self-financing portfolio based on B and S, and that 
the portfolios weights are given by 

where F is the solution of the pricing eqn (16.8). 
Hint: Copy the reasoning from Chapter 8, while using the self-financing 

dynamics given in Section 6.3. 

Exercise 16.9 Consider the Black-Scholes model with a constant continuous 
dividend yield 6. Use the result from the previous exercise in order to compute 
explicitly the replicating portfolio for the claim @(S(T)) = S(T). 

Exercise 16.10 Check that, when .y. = 0 in Section 16.2.2, all results degenerate 
into those of Section 16.2.1. 

Exercise 16.11 Prove Propositions 16.11-16.13. 
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CURRENCY DERIVATIVES 

In this chapter, we will study a model which incorporates not only the usual 
domestic equity market, but also a market for the exchange rate between the 
domestic currency and a fixed foreign currency, as well as a foreign equity market. 
Financial derivatives defined in such situations are commonly known as quanto 
products. We will start by studying derivatives written directly on the exchange 
rate X, and then go on to study how to price (in the domestic currency) contracts 
written on foreign equity. 

17.1 P u r e  Currency Contracts 

Consider a situation where we have two currencies: the domestic currency (say 
pounds sterling), and the foreign currency (say US dollars). The spot exchange 
rate at time t is denoted by X(t), and by definition it is quoted as 

units of the domestic currency 
unit of the foreign currency ' 

i.e. in our example it is quoted as pounds per dollar. We assume that the domestic 
short rate rd,  as well as the foreign short rate rf, are deterministic constants, 
and we denote the corresponding riskless asset prices by Bd and Bf ,  respect- 
ively. Furthermore we assume that the exchange rate is modeled by geometric 
Brownian motion. We can summarize this as follows. 

Assumption 17.1.1 We take as given the following dynamics (under the 
objective probability measure P): 

dX = Xax dt + Xux d q  (17.1) 

dBd = rdBd dt, (17.2) 

dBf = rfBf dt, (17.3) 

where ax, ux are deterministic constants, and w is a scalar Wiener process. 

Our problem is that of pricing a currency derivative, i.e. a T-claim 2 of the 
form , 

2 = @(X(T)), 

where @ is some given deterministic function. To take a concrete and important 
example, we can consider the case when 2 = max [X(T) - K, 01, i.e. we have a 
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European call which gives the owner the option to buy one unit of the foreign 
currency at the price K (in the domestic currency). 

At &st glance it may perhaps seem that the problem of pricing the call 
option above is solved by use of the standard Black-Scholes formula, where we 
use domestic rate rd  as the short rate of interest, and the stock price S is replaced 
by the exchange rate X. It is, however, important to understand that this line 
of argument is incorrect, and the reason is as follows. When we buy a stock 
(without dividends), this means that we buy a piece of paper, which we keep 
until we sell it. When we buy a foreign currency (say US dollars) we will, on 
the contrary, not just keep the physical dollar bills until we sell them again. 
Instead we will typically put the dollars into an account where they will grow at 
a certain rate of interest. The obvious implication of this fact is that a foreign 
currency plays very much the same role as a domestic stock with a continu- 
ous dividend, and we will show below that this is indeed the case. First we 
formalize the institutional assumptions. 

Assumption 17.1.2 All markets are frictionless and liquid. All holdings of the 
foreign currency are invested in  the foreign riskless asset, i.e. they will evolve 
according to the dynamics 

dBf = rfBf dt. 

Remark 17.1.1 Interpreted literally this means that, for example, US dollars 
are invested in a US bank. In reality this does not have to be the c a s e U S  dollars 
bought in Europe will typically be placed in a European so called Eurodollar 
account where they will command the Eurodollar rate of interest. 

Applying the standard theory of derivatives to the present situation we have 
the usual risk neutral valuation formula 

n(t ;  2) = e-rdd(T-t)~Q 
t , ,  ~@(X(T))I, 

and our only problem is to figure out what the martingale measure Q looks 
like. To do this we use the result from Proposition 13.3, that Q is characterized 
by the property that every domestic asset has the short rate r d  as its local 
rate of return under Q. In order to use this characterization we have to translate 
the possibility of investing in the foreign riskless asset into domestic terms. Since 
Bf (t) units of the foreign currency are worth Bf (t)-X(t) in the domestic currency 
we immediately have the following result. 

Lemma 17.1 The possibility of buying the foreign currency, and investing it at 
the foreign short mte  of interest, is equivalent to the possibility of investing in  a 
domestic asset with price process Bf, where 

~f (t) = Bf ( t )  . X(t). 

The dynamics of Bf are given by 

dBf = Bf (ax + r f ) d t +  BfaxdW 
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f 
Summing up we see that our currency model is equivalent to a model of a / domestic market consisting of the assets Bd and Bf. It now follows directly from 

the general results that the martingale measure Q has the property that the 
Q-dynamics of Bf are given by 

I where W is a Q-Wiener process. Since by definition we have 

we can use Itb's formula, (17.2) and (17.4) to obtain the Q-dynamics of X as 

d X  = X (rd - rf) dt + Xux dW. (17.6) 

The basic pricing result follows immediately. 

Proposition 17.2 (Pricing formulas) The arbitrage free price II(t; a )  for the 
T-claim 2 = @(X(T)) is given by n(t; a )  = F(t ,  X(t)), where 

and where the Q-dynamics of X are given by 

Alternatively F(t ,x) can be obtained as the solution to the boundary value 

Proof The risk neutral valuation formula (17.7)-(17.8) follows from the stand- 
ard risk neutral valuation formula and (17.6). The PDE result then follows via 
Feynman-K&. 

Comparing (17.8) to (16.27) we see that our original guess was correct: a 
foreign currency is to be treated exactly as a stock with a continuous dividend. 
We may thus drab upon the results from Section 16.2 (see Proposition-16.10), 
which allows us to use pricing formulas for stock prices (without dividends) to 
price currency derivatives. 

Proposition 17.3 (Option pricing formula) Let Fo(t, x) be the pricing 
function for the claim 2 = @(X(T)), in a world where we interpret X as the 
price of an ordinary stock without dividends. Let F(t ,  x) be the pricing function 
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of the same claim when X is interpreted as an exchange rate. Then the following 
relation holds 

F(t ,  x) = Fo(t, xe-'f (T-t)). 

In particular, the price of the European call, 2 =- max [X(T) - K, 01, on the 
foreign currency, is given by the modified Black-Scholes formula 

where 

17.2 Domestic and Foreign Equity Markets 
In this section we will model a market which, apart from the objects of the 
previous section, also includes a domestic equity with (domestic) price Sd, and 
a foreign equity with (foreign) price Sf. The restriction to a single domestic and 
foreign equity is made for notational convenience, and in most practical cases it 
is also sufficient. 

We model the equity dynamics as geometric Brownian motion, and since we 
now have three risky assets we use a three-dimensional Wiener process in order 
to obtain a complete market. 

Assumption 17.2.1 The dynamic model of the entire economy, under the 
objective measure P, is as follows: 

d X  = X a x  dt + Xux d w ,  

dsd = Sd(Yd dt i- Sdad  d w ,  

, ! j  
dSf = Sfaf dt + Sfaf dW, 

, a 

dBd = rdBd dt, 

dBf = rfBf dt, 

where 

is a three-dimensional Wiener process (as usual with independent components). 
Furthermore, the (3 x 3)-dimensional matrix a, given by 

is assumed to be invertible. 
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Remark 17.2.1 The reason for the assumption about cr is that this is the 
necessary and sufficient condition for completeness. See Proposition 17.4. 

Remark 17.2.2 It is also possible, and in many situations convenient, to model 
the market using three scalar correlated Wiener processes (one for each asset). 
See Remark 17.2.4. 

Typical T-contracts which we may wish to price (in terms of the domestic 
currency) are given by the following list: 

A foreign equity call, struck in  foreign currency, i.e. an option to buy 
one unit of the foreign equity at the strike price of K units of the foreign 
currency. The value of this claim at the date of expiration is, expressed in 

I the foreign currency, given by 
I 
i 2f = max [Sf (T) - K, 01. (17.16) 

Expressed in terms of the domestic currency the value of the claim at T is 

I zd = X(T) max [Sf (T) - K, 01. (17.17) 

A foreign equity call, struck in domestic currency, i.e. a European 
option to buy one unit of the foreign equity at time T, by paying K units 
of the domestic currency. Expressed in domestic terms this claim is given 
by 

zd = max [X(T) . Sf(T) - K, 01. (17.18) 

An exchange option which gives us the right to exchange one unit of 
the domestic equity for one unit of the foreign equity. The corresponding 
claim, expressed in terms of the domestic currency, is 

zd = max [X(T) . Sf (T) - Sd(T), 01. (17.19) 

More generally we will study pricing problems for T-claims of the form 

where 2 is measured in the domestic currency. From the general theory of 
Chapter 13 we know that the pricing function F(t ,  x, sd,  s f )  is given by the 
risk neutral valuation formula 

F( t ,  2, sa, sf) = e-Td(T-t)E2z,sd,8f [@(x(T))], 

so we only have to find the correct risk adjusted measure Q. We follow the 
technique of the previous section and transform all foreign traded assets into 
domestic terms. The foreign bank account has already been taken care of, and it 
is obvious that one unit of the foreign stock, worth Sf(t) in the foreign currency, 
is worth X(t) - Sf (t) in domestic terms. We thus have the following equivalent 
domestic model, where the asset dynamics follow from the It8 formula. 
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Proposition 17.4 The original market (17.11)-(17.15) is equivalent to a 
market consisting of the price processes Sd, S f ,  Bf, Bd, where 

Bf (t) = X(t)Bf (t), 

Sf (t) = X(t)Sf (t). 

The P-dynamics of this equivalent model are given by 

dSd = S d  a d dt + Sdud dW , (17.21) 

dSf = Sf (af +ax +of&)  dt + sf (gf +ax) dW, (17.22) 

dBf = Bf ( a x  + r f )  dt + Bfox d w ,  (17.23) 

dBd = rdBd dt. (17.24) 

Here we have used * to denote transpose, so 

Note that, because of Assumption 17.2.1, the volatility matrix above is invertible, 
so the market is complete. 

Since S d ,  Sf, Bf can be interpreted as prices of domestically traded assets, 
we can easily obtain the relevant &-dynamics. 

Proposition 17.5 The Q-dynamics are as follows: 

Proof Equations (17.25)-(17.27) follow from Proposition 13.3. The equation 
for X follows from (17.27), the relation X = B f / ~ f  and It6's formula. A similar 
computation applied to the relation Sf = Sf /X gives us (17.29). 

We can now immediately obtain the risk neutral valuation formula, and this 
can in fact be done in two ways. We can either use (X, Sd, Sf)  as state variables, 
or use the equivalent (there is a one-to-one mapping) set (X, Sd, Sf) .  Which set 
to use is a matter of convenience, depending on the particular claim under study, 
but in both cases the arbitrage free price is given by the discounted expected 
value of the claim under the Q-dynamics. (It is of course quite possible to use 
the set (Bf,  Sd, Sf )  also, but there seems to be no point in doing so.) 
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Remark 17.2.3 In many applications the claim under study is of the restricted 
form 

In this case all partial derivatives w.r.t. sd vanish from the PDEs above. A similar 
reduction will of course also take place for a claim of the form 

We end this section by pricing the contracts (17.16) and (17.18) above. 

Example 17.8 (Foreign call, struck in foreign currency) We recall that 
the value of the claim, at time T, expressed in the foreign currency, is 

zf = max [Sf (T) - K, 01. 

Let us denote the pricing function, again in the foreign currency, for this claim 
at time t, by Ff ( t , s f ) .  (It will obviously not involve x.) Furthermore we 
denote value of the claim at time t, expressed in the domestic currency, by 
Fd(t ,  x, sf). Now an elementary arbitrage argument (which?) immediately gives 
us the relation 

so it only remains to compute ~ f ( t ,  s f )  This, however, is just the value of a 
European call on a stock with volatility IIcf 11, in an economy with a short rate 
equal to rf. Thys the value is given by the Black-Scholes formula, and the pricing 
formula in domestic terms is as follows: 

where 
- 3  , 

See also Remark 17.2.4 for another formalism. 



Example 17.9 (Foreign call, struck in domestic currency) The claim, 
expressed in domestic terms, is given by 

zd = max [x(T) . sf (TI - K, oj 

which we write as 

zd = m a x [ ~ f ( ~ ) -  K,o]. 

As we have seen above, the process sf can be interpreted as the price process of 
a domestically traded asset, and from Proposition 17.5 we see that its volatility 
is given by [laf + ax 1 1 .  Thus we may again use the Black-Scholes formula to 
obtain the pricing function F(t ,  I f )  as 

F(t ,  I f )  = SfN[dl] - e- 'd (T- t )~~[d2] ,  

where 

1 '. dl(t, I f )  = 
B 10, + 0x11- { l n ( $ ) + ( r d + Z l l u f + u x ~ ~  ( ~ - t ) ,  

8 
d2(t, Sf) = d ~ ( t ,  Bf) - llof + u x l l f i .  

2> 1 
See also Remark 17.2.4 for another formalism. 

Remark 17.2.4 In practical applications it may be more convenient to model 
the market, and easier to read the formulas above, if we model the market using 
correlated Wiener processes (see Section 4.8). We can formulate our basic model 
(under Q) as 

dX = X a x  dt + X6x dvx, 

dsd = S d a d  dt + Sd6d dVd, 

dSf = Sfaf dt +Sfdf dVf, 

dBd = rdBd dt, 

e dBf = rfBf dt, 

where the three processes Vx, Vd, Vf are one-dimensional correlated Wiener pro- 
cesses. We assume that bx, bd, 6 

f 
are positive. The instantaneous correlation 

between Vx and Vf is denoted by pxf and correspondingly for the other pairs. 
We then have the following set of translation rules between the two formalisms 
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17.3 Domestic and Foreign Market Prices of Risk 
This section constitutes a small digression in the sense that we will not derive 
any new pricing formulas. Instead we will take a closer look at the various mar- 
ket prices of risk. As will be shown below, we have to distinguish between the 
domestic and the foreign market price of risk, and we will clarify the connection 
between these two objects. As a by-product we will obtain a somewhat deeper 
understanding of the concept of risk neutrality. 

Let us therefore again consider the international model X, Sd, Sf, Bd, Bf ,  
with dynamics under the objective measure P given by (17.11)-(17.15). As 
before we transform the international model into the domestically traded assets 
Sd, Sf, Bd, B~ with P-dynamics given by (17.21)-(17.24). 

In the previous section we used the general results from Chapter 13 to infer 
the existence of a martingale measure Q, under which all domestically traded 
assets command the domestic short rate rd  as the local rate of return. Our 
first observation is that, from a logical point of view, we could just as well 
have chosen to transform (17.11)-(17.15) into equivalent assets traded on the 
foreign market. Thus we should really denote our "old" martingale measure Q 
by Qd in order to emphasize its dependence on the domestic point of view. If 
we instead take a foreign investor's point of view we will end up with a "foreign 
martingale measure," which we will denote by Qf,  and an obvious project is to 
investigate the relationship between these martingale measures. A natural guess 
is perhaps that Qd = Qf, but as we shall see this is generically not the case. Since 
there is a one-to-one correspondence between martingale measures and market 
prices of risk, we will carry out the project above in terms of market prices 
of risk. 

We start by taking the domestic point of view, and applying Result 15.6.1 
to the domestic price processes (17.21)-(17.24), we infer the existence of the 
domestic market price of risk process 

Ad1 (t) 
Ad(t) = [ *d1(t) ] 

Ad3(t) 

with the property that if II is the price process of any domestically traded asset 
in the model, with price dynamics under P of the form 

dII(t) = II(t)an(t) dt + lI(t)an (t) dW (t), 

then, for all t and P-a.s., we have 

~ ( t )  - rd  = uII(t)Ad(t)- 
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Applying this to (17.21)-(17.23) we get the following set of equations: 

In passing we note that, since the coefficient matrix 

is invertible by Assumption 17.2.1, Ad is uniquely determined (and in fact 
constant). This uniqueness is of course equivalent to the completeness of the 
model. 

We now go on to take the perspective of a foreign investor, and the first thing 
to notice is that the model (17.11)-(17.15) of the international market does not 
treat the foreign and the domestic points of view symmetrically. This is due to 
the fact that the exchange rate X by definition is quoted as 

units of the domestic currency 
unit of the foreign currency 

' 

From the foreign point of view the exchange rate X should thus be replaced by 
the exchange rate 

1 
Y (t) = - 

X(t> 

which is then quoted as 

unit of the foreign currency 
units of the domestic currency' 

and the dynamics for X, Sd, Sf, Bd, Bf should be replaced by the dynamics for 
Y, Sd, Sf, Bd, Bf. In order to do this we only have to compute the dynamics of 
Y, given those of X ,  and an easy application of It6's formula gives us 

dY = Yay dt + Yay d ~ ,  (17.35) 

where 
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Following the arguments from the domestic analysis, we now transform the pro- 
cesses Y, Sd, Sf, Bd, Bf into a set of asset prices on the foreign market, namely 
Sf, Sd, Bd, where 

If we want to obtain the P-dynamics of Sf, Sd, Bd we now only have to use 
(17.21)-(17.24), substituting Y for X and d for f .  Since we are not interested in 
these dynamics per se, we will, however, not carry out these computations. The 
object that we are primarily looking for is the foreign market price of risk X f ,  
and we can easily obtain that by writing down the foreign version of the system 
and substituting d for f and Y for X directly in (17.32)-(17.34). We get 

and, inserting (17.36)-(17.37), we finally obtain 

After some simple algebraic manipulations, the two systems (17.32)-(17.34) 
and (17.38)-(17.40) can be written as 

These equations can be written as 
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where 

so, since u is invertible, 

Thus we have 
Ad - X f  = ~ - ' ( 6  - v), 

and since 

we obtain 
Ad - X j  = 0-'(6 - cp) = o-'ou;i = o;. 

We have thus proved the following central result. 

Proposition 17.10 The foreign market price of risk is uniquely determined by  
the domestic market price of risk, and by the exchange rate volatility vector ox ,  
through the formula 

X j  = A d  -0;. (17.41) 

Remark 17.3.1 For the benefit of the probabilist we note that this res- 
ult implies that the transition from Qd to Q f  is effected via a Girsanov 
transformation, for which the likelihood process L has the dynamics 

dL = Lox dW, 

L(0) = 1. 

Proposition 17.10 has immediate consequences for the existence of risk neut- 
ral markets. If we focus on the domestic market we can say that the market is 
(on the aggregate) risk neutral if the following valuation formula holds, where 
IId is the price process for any domestically traded asset. 

J'Jd ( t )  = e-'d(T-t)~P P"MT)1 f i l e  (17.42) 

In other words, the domestic market is risk neutral if and only if P = Qd. In 
many scientific papers an assumption is made that the domestic market is in 
fact risk neutral, and this is of course a behavioral assumption, typically made 
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in order to facilitate computations. In an international setting it then seems nat- 
ural to assume that both the domestic market and the foreign market are risk 
neutral, i.e. that, in addition to (17.42), the following formula also holds, where 
I I f  is the foreign price of any asset traded on the foreign market 

This seems innocent enough, but taken together these assumptions imply that 

P = Q d = Q f .  

Proposition 17.10 now tells us that (17.44) can never hold, unless ax = 0, 
i.e. if and only if the exchange rate is deterministic. 

At first glance this seems highly counter-intuitive, since the assumption about 
risk neutrality often is interpreted as an assumption about the (aggregate) atti- 
tude towards risk as such. However, from (17.42), which is an equation for 
objects measured in the domestic currency, it should be clear that risk neutral- 
ity is a property which holds only relative to a specified numeraire. To put 
it as a slogan, you may very well be risk neutral w.r.t. pounds sterling, and still 
be risk averse w.r.t. US dollars. 

There is nothing very deep going on here: it is basically just the Jensen 
inequality. To see this more clearly let us consider the following simplified situ- 
ation. We assume that rd = r f  = 0, and we assume that the domestic market 
is risk neutral. This means in particular that the exchange rate itself has the 
following risk neutral valuation formula 

X (0) = E [X (T)] . 

Looking at  the exchange rate from the foreign perspective we see that if the 
foreign market also is risk neutral, then it must hold that 

Y(O) = EIY(T)I, 

with Y = 1/X. The Jensen inequality together with (17.45) gives us, however, 

Thus (17.45) and (17.46) can never hold simultaneously with a stochastic 
exchange rate. 

17.4 Exercises 

Exercise 17.1 Consider the European call on the exchange rate described at the 
end of Section 17.1. Denote the price of the call by c( t ,  x), and denote the price of 
the corresponding put option (with the same exercise price K and exercise date 
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T) by p(t, 2). Show that the put-call parity relation between p and c is given by 

p = c - xe-'f(T-t) + Ke-'d (T-t). 

Exercise 17.2 Compute the pricing function (in the domestic currency) for a 
binary option on the exchange rate. This option is a T-claim, 2, of the form 

2 = l[a,b](X(T)), 

i.e. if a I X(T) 5 b then you will obtain one unit of the domestic currency, 
otherwise you get nothing. 

Exercise 17.3 Derive the dynamics of the domestic stock price Sd under the 
foreign martingale measure Q f .  

Exercise 17.4 Compute a pricing formula for the exchange option in (17.19). 
Use the ideas from Section 13.4 in order to reduce the complexity of the formula. 
For simplicity you may assume that the processes Sd, Sf, and X are uncorrelated. 

Exercise 17.5 Consider a model with the domestic short rate r d  and two for- 
eign currencies, the exchange rates of which (from the domestic perspective) 
are denoted by XI, and X2, respectively. The foreign short rates are denoted by 
rl and r2, respectively. We assume that the exchange rates have P-dynamics 

dXi=X,aidt+X,a,dW,,  i = 1 , 2 ,  

where %, W 2  are P-Wiener processes with correlation p. 

(a) Derive the pricing PDE for contracts, quoted in the domestic currency, 
of the form 2 = @(XI (T) , Xz (T) ) . 

(b) Derive the corresponding risk neutral valuation formula, and the 
Qd-dynamics of XI and X2. 

(c) Compute the price, in domestic terms, of the "binary quanto con- 
tract" 2, which gives, at time T, K units of foreign currency No. 1, if 
a 5 X2(T) 5 b, (where a and b are given numbers), and zero otherwise. 
If you want to facilitate computations you may assume that p = 0. 

Exercise 17.6 Consider the model of the previous exercise. Compute the price, 
in domestic terms, of a quanto exchange option, which at time T gives you the 
option, but not the obligation, to exchange K units of currency No. 1 for 1 unit 
of currency No. 2. 

Hint: It is possible to reduce the state space as in Section 13.4. 

17.5 Notes 

The classic in this field is Garman and Kohlhagen (1983). See also Reiner (1992). 
A more technical treatment is given in Amin and Jarrow (1991). 
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BARRIER OPTIONS 

The purpose of this chapter is to give a reasonably systematic overview of the 
pricing theory for those financial derivatives which are, in some sense, connected 
to the extremal values of the underlying price process. We focus on barrier 
options, ladders and lookbacks, and we confine ourselves to the case of one 
underlying asset. 

18.1 Mathematical Background 
In this chapter, we will give some probability distributions connected with barrier 
problems. All the results are standard, see e.g. Borodin-Salminen (1997). 

To start with some notational conventions, let { X ( t ) ;  0 I t < oo) be any 
process with continuous trajectories taking values on the real line. 

Definition 18.1 For any y E R, the hitting time of y, r ( X ,  y) ,  sometimes 
denoted by ~ ( y )  or rY, is defined by 

~ ( y )  = inf { t  2 0 IX(t)  = y). 

The X-process absorbed at y is defined by 

X y ( t )  = X ( t  A T ) ,  

where we have used the notation a A p = min [a, PI. 
The running maximum and minimum processes, M x ( t )  and mx(t), are 

defined by 

M x ( t )  = sup X ( s ) ,  
o<s<t 

mx (t)  = inf X ( s ) ,  
ossst  

where we sometimes suppress the subscript X .  

We will be mainly concerned with barrier problems for Wiener processes, so 
naturally the normal distribution will play a prominent role. 

Definition 18.2 Let p(x;  p, a )  denote the density of a normal distribution with 
mean p and variance u2, i.e. 

1 
v ( x ;  P, a) = - 

a& 
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The standardized density cp(x;O, 1) is denoted by cp(x), and the cumulative 
distribution function of cp(x) is as usual denoted by N(x), i.e. 

Let us now consider a Wiener process with (constant) drift p and (constant) 
diffusion a, starting at a point a, i.e. I I ,  

dX(t) = pdt  + adWt, (18.1) 

X(0) = a. (18.2) 

We are primarily interested in the onedimensional marginal distribution for 
Xp(t), i.e. the distribution at time t of the X-process, absorbed at the point P. 
The distribution of Xp(t) is of course a mixed distribution in the sense that it 
has a point mass at x = ,8 (the probability that the process is absorbed prior 
to time t) and a density. This density has its support on the interval (P, oo) if 
a > p, whereas the support is the interval (-oo, P) if a < P. We now cite our 
main result concerning absorption densities. 

Proposition 18.3 The density fp(x; t,  a )  of the absorbed process Xp(t), where 
X is defined by (18.1)-(18.2), is given by 

fp(x; t,  a )  = cp(x; pt + a, a h )  - exp {- "(I; ')} ~ ( x ;  pt - n + 2 ~ ,  o ~ i ) .  

The support of this density is the interval (P, oo) if a > >, and the interval 
(-00, P) if ff < P. 

We end this section by giving the distribution for the running maximum 
(minimum) processes. 

Proposition 18.4 Consider the process X defined by (18.1)-(18.2), and let M 
(m) denote the running maximum (minimum) processes as in Definition 18.1. 
Then the distribution functions for M(t) (m(t)) are given by the following 
expressions, which hold for x 2 a and x < a respectively. 

x - a -  x - a + p t  
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18.2 Out Contracts 
In this section, we will undertake a systematic study of the relations between 
a "standard" contingent claim and its different "barrier" versions. This will 
provide us with some basic insights and will also give us a number of easy for- 
mulas to use when pricing various barrier contracts. As usual we consider the 
standard BlackScholes model 

dS  = aSd t  + a S d ~ ,  

dB  = r B  dt, 

with fixed parameters a, a, and r. 
We fix an exercise time T and we consider as usual a contingent claim 2 of 

the form 
2 = iP (S(T)). (18.3) 

We denote the pricing function of 2 by F(t, s; T, a), often suppressing the par* 
meter T. For mnem&echnical purposes we will also sometimes use the notation 
8( t ,  s), i.e. the pricing function (as opposed to the function defining the claim) 
is given in bold. 

18.2.1 Down-and-Out Contracts 

Fix a real number L < S(O), which will act as the barrier, and consider the 
following contract, which we denote by ZLO: 

If the stock price stays above the barrier L during the entire contract 
period, then the amount 2 is paid to the holder of the contract. 
If the stock price, at some time before the delivery time T, hits the barrier 
L, then the contract ceases to exist, and nothing is paid to the holder of 
the contract. 

The contract ZLO is called the "down-and-out" version of the contract 2 
above, and our main problem is to price ZLo. More formally we can describe 
ZLO as follows. 

Definition 18.5 Take as given a T-contract 2 = @(S(T)). Then the T-contract 
ZLO is defined by 

if ~ ( t )  > L for all t E [ O , T ] ,  
zf S(t) t) L for some t E [0, TI. (18.4) 

Concerning the notation, L as a subscript indicates a "down7'-type contract, 
whereas the letter 0 indicates that we are considering an "out" claim. You may 
also consider other types of barrier specifications and thus construct a "down- 
and-in" version of the basic contract 2. A "down-and-in" contract starts to 
exist the first time the stock price hits a lower barrier. Going on we may then 
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consider upand-out as well as upand-in contracts. All these types will be given 
precise definitions and studied in the following sections. 

In order to price ZLO we will have use for the function QL, which is the 
original contract function @ in (18.3) "chopped off" below L. 

Definition 18.6 For a &ed function @ the function @L is defined by 

@(x), for x > L, 
@ L ( ~ )  = { 0, for x 5 L. 

In other words, QL (x) = @(x). I {x > L), where I denotes the indicator function. 
For further use we note that the pricing functional F(t ,  S;  @) is linear in the 

@-argument, and that the "chopping" operation above is also linear. 

Lemma 18.7 For all reals a and P, and all functions @ and Q, we have 

F (t, s; a@ + PQ) = aF( t ,  s; @) + PF(t, s; Q), 

(a@ + P!qL = a * ~  + ~ Q L .  

Proof For F the linearity follows immediately from the risk neutral valuation 
formula together with the linearity of the expectation operator. The linearity of 
the chopping operation is obvious. 

Our main result is the following theorem, which tells us that the pricing 
problem for the down-and-out version of the contract @ is essentially reduced 
to that of pricing the nonbarrier claim aL. Thus, if we can price a standard 
(nonbarrier) claim with contract function cPL then we can also price the down- 
and-out version of the contract @. 

Theorem 18.8 (Pricing down-and-out contracts) Consider a &ed T-claim 
2 = @(S(T)) .  Then the pricing function, denoted by FLO, of the corresponding 
down-and-out contract ZLO is given, for s > L, by 

FLO(t, S; @) = F (t, S; @L) - ( ~ ) 2 i ' u '  F ( t,-;@L ) . (18.6) 

Here we have used the notation 

Proof Without loss of generality we may set t = 0 in (18.6). Assume then 
that S(0) = s > L, and recall that SL denotes the process S with (possible) 
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absorption at L. Using risk neutral valuation we have 

It remains to compute the last expectation, and we have 

where h is the density function for the stochastic variable SL(T). 
From standard theory we have 

S(T) = exp {Ins + r'T + aW(T)) = 

where the process X is defined by 

dX(t) = r'dt + udW(t), 

X(0) = Ins. 

Thus we have 

so we may write 

where f is the density of the stochastic variable XlnL(T). This 
however, given by Proposition 18.3 as 

f (x) = q (x; r'T + ln s, u&) 



Thus we have 
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=G O ~ ( e ~ ) v  (x; iT + ln s ,  o&) dx 

00 

= Lm mL(ex)q (x; i~ + ~n s ,  o f i )  dx 

2 00 

OL(ez), (,; iT + ln (c) , o f i )  dx. 

Inspecting the last two lines we see that the density in the first integral is the 
density of X ( T )  under the usual martingale measure Q, given the starting value 
S(0) = s. The density in the second integral is, in the same way, the density 
(under Q) of X ( T ) ,  given the starting point S(0) = L2/s. Thus we have 

which gives us the result. 

We again emphasize the point of this result. 

The problem of computing the price for a down-and-out claim reduces to 
the standard problem of computing the price of an ordinary (related) claim 
without a barrier. 

For future use we also note the fact that down-and-out pricing is a linear 
operation. 

Corollary 18.9 For any contract functions CP and Q,  and for any real numbers 
cr and p, the following relation holds. 

Proof The result follows immediately from Theorem 18.8 together with the 
linearity of the ordinary pricing functional F and the linearity of the chopping 
operation. 
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18.2.2 Up-and-Out Contracts 

We again consider a fixed T-contract of the form 2 = @ (S(T)), and we now 
describe the upand-out version of 2 .  This is the contract which at the time of 
delivery, T ,  will pay 2 if the underlying price process during the entire contract 
period has stayed below the barrier L. If, at some time during the contract 
period, the price process exceeds L, then the contract is worthless. In formal 
terms this reads as follows. 

Definition 18.10 Take as given the T-wntmct 2 = @ (S(T)). Then the 
T-contract ZLO zs defined b y  

2 L O  = { @  (Sj')), y s ( t )  < L for all t E [O,Tl, 
if S(t) 2 L for some t E [0, TI. 

The pricing functional for zLO is denoted by FLO(t, s; a), or according to our 
earlier notational convention, by (t, s) . 

L as a superscript indicates an "upv-type contract, whereas the superscript 0 
indicates that the contract is an "out" contract. As in the previous sections we 
will relate the upand-out contract to an associated standard contract. To this 
end we need to define, for a fixed contract function @, the function aL, which is 
the function "chopped off" above L. 

Definition 18.11 For a f ied function @ the function aL is defined by 

aL(x)  = { a t ) ,  for x < L 
forx  2 L. 

In other words, @=(x) = @(x) I {x < L). 

The main result of this section is the following theorem, which is parallel to 
Theorem 18.8. The proof is almost identical. 

Theorem 18.12 (Pricing upand-ou t  contracts) Consider a f i ed  T-claim 
2 = @(S(T)). Then the pricing function, FLO, of the wwesponding up-and-out 
contract zLO is given, for S < L, by 

F ~ O ( ~ ,  S,  a )  = F (t, S, aL) - (5)"'"' F ( t, -,aL y ) 
where we have wed the notation 

- 1 2  
r = r - - 2 0 .  
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18.2.3 Examples 

In this section we will use Theorems 18.8 and 18.12, together with the linearity 
lemma 18.7, to give a systematic account of the pricing of a fairly wide class 
of barrier derivatives, including barrier call and put options. Let us define the 
following standard contracts, which will be the basic building blocks in the sequel. 

Definition 18.13 Fix a delivery time T.  For jixed parameters K and L define 
the claims S T ,  BO,  H ,  and C by 

C ( x ;  K )  = max [x  - K, O] . (18.13) 

The contract S T  ( S T  for "stock") thus gives the owner (the price of) one unit of 
the underlying stock at delivery time T, whereas BO is an ordinary zero coupon 
bond paying one at maturity T. The H-contract ( H  stands for the Heaviside 
function) gives the owner one if the value of the underlying stock exceeds L at 
delivery time T, otherwise nothing is paid out. The C-claim is of course the 
ordinary European call with strike price K.  We note in passing that H ( x ;  L)  = 
HL (2). 

We now list the pricing functions for the standard contracts above. The value 
of ST at time t is of course equal to the value of the underlying stock at the 
same time, whereas the value of BO at t is e-T(T-t). The value of C is given by 
the Black-Scholes formula, and the value of H is easily calculated by using risk 
neutral valuation. Thus we have the following result. 

Lemma 18.14 The contracts (18.10)-(18.13) with delivery time T are priced 
at time t as follows (with the pricing function in bold). 

C ( t ,  s; K )  = c(t,  s; K),  

where c( t ,  s; K )  is the usual Black-Scholes formula. 

We may now put this machinery to some use and start with the simple case 
of valuing a down-and-out contract on a bond. This contract will thus pay out 
1 dollar at time T if the stock price is above the level L during the entire contract 
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period, and nothing if the stock price at some time during the period is below 
or equal to L. 

A direct application of Theorem 18.8 gives us the formula 

FLO (t, S; BO) = F (t, S; BOL) - 

Obviously we have BOL(x) = H(x; L) for all x so we have the following result. 

Lemma 18.15 The down-and-out bond with barrier L is priced, for s > L, by 
the formula 

where H(t, s; L)  is given by Lemma 18.14. 

We continue by pricing a down-and-out contract on the stock itself (no option 
is involved). Thus we want to compute FLO(t, S; ST) and Theorem 18.8 gives us 

, ., pr< I , '  . ( )  ( ) (18.15) 
FLO(t, S; ST) = F(t, S; STL) - F t,-;STL . 

A quick look at a figure gives us the relation 

STL(x) = L . H(x; L) + C(X; L). 

Substituting this into (18.15) and using linearity (Lemma 18.7) we get 

= F (t, s; LH(*, L) + C(+, L)) - - +C(*;L) 

+ 'F  (t, s; C(*; L)) - (:)"I2 F ( t,-;C(*;L) L' s ) . 
Summarizing we have the following. 
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Putting this relation into (18.16), and using the linear property of pricing, we 
get (18.18). 

As we have seen, almost all results are fairly easy consequences of the linearity 
of the pricing functional. In Section 9.1 we used this linearity to prove the stand- 
ard put-call parity relation for standard European options, and we can now 
derive the put-call parity result for down-and-out options. 

Drawing a figure we see that P(x; K )  = K - x + C(x; K ) ,  so, in terms of the 
standard contracts, we have 

P(x;  K )  = K BO(X) - ST(x)  + C(x; K ) .  

Using Corollary 18.9 we immediately have the following result. Note that when 
L = 0 we have the usual put-call parity. 

Proposition 18.18 (Put-call parity) The down-and-out put price PLO, and 
call price CLOY are related by the formula 

Here BLO and STLo are given by Lemmas 18.15 and 18.16, whereas CLO is 
given by Proposition 18.17. 

We end this section by computing the price of a European upand-out put 
option with barrier L and strike price K. 

Proposition 18.19 (Upand-out put) The price of an up-and-out European 
put option is given by the following formulas. 
If L > K ,  then for s < L: 

If L > K ,  then for s < L: 

pLO(t, S ;  K )  = P(t ,  S ;  L) - (K - L)H(t, s; L) 

Proof If L > K then pL(s; K )  = P(s; K ) ,  and then (18.20) follows 
immediately from Proposition 18.12. 

If L < K then it is easily seen that 

I 

Linearity and Proposition 18.12 give us (18.21). I7 
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18.3 I n  Contracts 

In this section we study contracts which will start to exist if and only if the price 
of the underlying stock hits a prespecified barrier level at some time during the 
contract period. We thus fix a standard T-claim of the form 2 = 9 (S(T)), and 
we also fix a barrier L. We start by studying the "down-and-in" version of 2 ,  
which is defined as follows: 

a If the stock price stays above the barrier L during the entire contract 
period, then nothing is paid to the holder of the contract. 
If the stock price, at some time before the delivery time T, hits the barrier 
L, then the amount 2 is paid to the holder of the contract. 

We will write the down-and-in version of 2 as ZLI, and the formal definition 

Definition 18.20 Take as given the T-contract 2 = 9 (S(T)). Then the 
T-contract ZLI is defined by 

if S(t) > L for all t E [0, TI, 
2Lz = {a ($T)), if ~ ( t )  < L for some t E [o, 4. (18.22) 

The pricing function for ZLI is denoted by FLI(t, s; a ) ,  or sometimes by 

Concerning the notation, L as a subscript indicates a "down" contract, 
whereas the subscript I denotes an "in" contract. Pricing a down-and-in con- 
tract turns out to be fairly easy, since we can in fact price it in terms of the 
corresponding down-and-out contract. 

Lemma 18.21 (In-out parity) 

FLI(t, S; 9 )  = F(t ,  S; a )  - F L ~ ( ~ ,  S; a ) ,  VS. 

Proof If, at time t,  you have a portfolio consisting of a down-and-out version of 
2 as well as a down-and-in version of 2 (with the same barrier L) then obviously 
you will receive exactly Z at time T. We thus have 

F(t ,  S; 9 )  = F ~ z ( t ,  S; 9 )  + F ~ o ( t ,  S; a ) .  

We can now formulate the basic result. 

Proposition 18.22 (Pricing down-and-in contracts) Consider a f i e d  
T-contract 2 = 9 (S(T)). Then the price of the corresponding down-and-in 
contract ZLI is given by 

(t)"'"' ( y ) 
FLl(t, S; 9 )  = ~ ( t ,  S; aL) + - F t, - ;aL . 
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Proof Fkom the equality QI = @L + aL we have 

Now use this formula, the lemma above, and Theorem 18.8. 17 

The treatment of "upand-in" contracts is of course parallel to down-and-in 
contracts, so we only give the basic definitions and results. We denote the 
upand-in version of 2 by ZL', and the definition of zL' is as follows: 

If the stock price stays below the barrier L during the entire contract 
period, then nothing is paid to the holder of the contract. 
If the stock price, at some time before the delivery time T,  hits the barrier 
L, then the amount 2 is paid to the holder of the contract. 

Corresponding to  Lemma 18.21, we have 

F='(~,s; a) = F(t, S; a) - F ~ O ( ~ ,  s; QI), Vs, (18.23) 

and from this relation, together with the pricing formula for upand-out 
contracts, we have an easy valuation formula. 

Proposition 18.23 (Pricing up-and-in contracts) Consider a @ed T-  
contract 2 = QI (S(T)) .  Then the price of the corresponding up-and-in contract 
zL' is given by 

We end this section by giving, as an example, the pricing formula for 
a down-and-in European call with strike price K. 

Proposition 18.24 (Down-and-in European call) For s > L the down- 
and-in European call option is priced as follows: 

For L < K :  
2i;/02 

CLI(t, S; K)  = (:) C (t, :; K) 

ForL > K: 

2i;/u2 

C ~ l ( t ,  S; K)  = (:) { C  (t, ?; K) + (L - K ) H  

- (L - K)H(t, S; L). 
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, 18.4 Ladders 

i Let us take as given 

A finite increasing sequence of real numbers 
I 

0 =ao < a1 < < a ~ .  

This sequence will be denoted by a .  
i Another finite increasing sequence of real numbers 

I This sequence will be denoted by a .  

I Note that the number N is the same in both sequences. The interval [a,, a,+l) 
1 will play an important role in the sequel, and we denote it by Dn, with DN 

defined as DN = [aN, m). For a fixed delivery time T we will now consider 
a new type of contract, called the "(a, P)-ladder", which is defined as follows. 

Definition 18.25 The (a,P)-ladder with delivery time T is  a T-claim 2 ,  
described by  

N I \ 

In other. words, if the realized maximum of the underlying stock during the 
contract period falls within the interval D,, then the payout at T is P,. A typical 
ladder used in practice is the forward ladder call with strike price K. For this 
contract a is exogenously specified, and P is then defined as 

The a-sequence in this case acts as a sequence of barriers, and the ladder call 
allows you to buy (at time T )  the underlying asset at the strike price K ,  while 
selling it (at T )  at the highest barrier achieved by the stock price during the con- 
tract period. The ladder call is intimately connected to the lookback forward call 
(see the next section), to which it will converge as the a-partition is made finer. 

The general (a,  P)-ladder is fairly easy to value analytically, although the 
actual expressions may look formidable. To see this let us define the following 
series of upand-in contracts. 

Definition 18.26 For a given pair (a, P ) ,  the series of contracts 20, . . . , ZN i s  
defined by 
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obvic 
The point of introducing the 2,-contracts is that we have the following 

,us relation 
N I 

Thus a ladder is simply a sum of a series of up-and-in contracts. We see that 
in fact 2, is an upand-in contract on /3, -/3n-l bonds, with barrier a,. Thus we 
may use the results of the preceding sections to value 2,. The result is as follows. 

Proposi t ion 18.27 (Ladder pricing formula) Consider an ( a ,  /3) -ladder 
with delivery time T .  Assume that S ( t )  = s and that Ms(t)  E Dm. Then the 
price, Il ( t ) ,  of the ladder is given by 1 

n ( t )  = /%TI + %Fan' ( t ,  s; BO) ,  
n=m+l 1 

where "I, = pn - /3n-1, and d 

Proof  Exercise for the reader. I 

18.5 Lookbacks 3 
Lookback options are contracts which at the delivery time T allow you to take 
advantage of the realized maximum or minimum of the underlying price process 
over the entire contract period. Typical examples are 

I 
I 

S ( T )  - min S( t )  lookback call, 
t<T 

% m  S ( t )  - S ( T )  lookback put, 

S ( t )  - K,  0 forward lookback I 
S ( t ) ,  0 forward lookback I 

call, 

put. 

We will confine ourselves to give a sketch of the pricing of a lookback put; 
for further results see the Notes below. 
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From general theory, the price of the lookback put at t  = 0 is given by 

= e-rT E~ max S ( t )  - e - 'T~Q [S (T ) ] .  
[ d T  1 

With S(0) = s ,  the last term is easily obtained as 

and it remains to compute the term EQ [maxtsT S( t ) ] .  To this end we recall that 
S( t )  is given by 

S ( t )  = exp {Ins + f t  + u W ( t ) )  = ex(t), 

where 

Thus we see that 
Ms(T)  = e M x  (TI, 

and the point is of course that the distribution for Mx(T) is known to us from 
Proposition 18.4. Using this proposition we obtain the distribution function, F, 
for Mx (T) as 

i F ( ~ )  = N (x - I n s  - - exp { 2 f ( x  - Ins) } N -  ( x -f;+fT) 

a 0  02 
9 

for all x 2 Ins. From this expression we may compute the density function 
f = F', and then the expected value is given by 

After a series of elementary, but extremely tedious, partial integrations we end 
up with the following result. 

Proposition 18.28 (Pricing formula for lookback put)  The price, at t  = 0, 
of the lookback put is given by 

where 
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18.6 Exercises 
In all exercises below we assume a standard Black-Scholes model. 

Exercise 18.1 An "all-or-nothing" contract, with delivery date T, and strike 
price K ,  will pay you the amount K ,  if the price of the underlying stock exceeds 
the level L at some time during the interval [0, t]. Otherwise it will pay nothing. 
Compute the price, at t < T, of the all-or-nothing contract. In order to avoid 
trivialities, we assume that S(s) < L for all s 5 t. 

Exercise 18.2 Consider a binary contract, i.e. a T-claim of the form 

x = I[a,b] (ST), 

where as usual I is the indicator function. Compute the price of the down-and-out 
version of the binary contract above, for all possible values of the barrier L. 

Exercise 18.3 Consider a general down-and-out contract, with contract func- 
tion a, as descibed in Section 18.2.1. We now modifiy the contract by adding a 
fixed "rebate" A, and the entire contract is specified as follows: 

If S(t) > L for all t 5 T then @(S(T)) is paid to the holder. 
If S(t) 5 L for some t 5 T then the holder receives the fixed amount A. 

Derive a pricing formula for this contract. 
Hint: Use Proposition 18.4. 

Exercise 18.4 Use the exercise above to price a down-and-out European call 
with rebate A. 

Exercise 18.5 Derive a pricing formula for a down-and-out version of the T 
contract X = iP(S(T)), when S has a continuous dividend yield 6. Specialize to 
the case of a European call. 

18.7 Notes 
Most of the concrete results above are standard. The general Theorem 18.8 and 
its extensions seem, however, to be new. For barrier options we refer to Rubin- 
stein and Reiner (1991), and the survey in Carr (1995). Two standard papers on 
lookbacks are Come and Viswanathan (1991), and Goldman et al. (1979). See 
also Musiela and Rutkowski (1997). 
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19.1 An Example 
1 Let us consider an economic agent over a fixed time interval [0, TI. At time 
I t = 0 the agent is endowed with initial wealth xo and his/her problem is how to 
1 allocate investments and consumption over the given time horizon. We assume 
' that the agent's investment opportunities are the following: 

The agent can invest money in the bank at the deterministic short rate of 
, interest r ,  i.e. he/she has access to the risk free asset B with 

d B  = r B  dt. (19.1) 

The agent can invest in a risky asset with price process St, where we assume 
that the S-dynamics are given by a standard Black-Scholes model 

d S  = o S d t  + aSdW. (19.2) 

We denote the agent's relative portfolio weights at time t by u,O (for the riskless 
asset), and u! (for the risky asset) respectively. His/her consumption rate at 
time t is denoted by q. 

We restrict the consumer's investment-consumption strategies to be self- 
financing, and as usual we assume that we live in a world where continuous 
trading and unlimited short selling is possible. If we denote the wealth of the 
consumer at time t by Xt, it now follows from Lemma 6.4 that (after a slight 
rearrangement of terms) the X-dynamics are given by 

1 
dXt = Xt [uir + uia] dt - q dt + uiaxt  dWt. (19.3) 

The object of the agent is to choose a portfolio-consumption strategy in such 
a way as to maximize &/her total utility over [0, T ] ,  and we assume that this 
utility is given by 

I3 [I' F(t ,G)dt+ @(xT)] , (19.4) 

where F is the instantaneous utility function for consumption, whereas @ is a 
4egacy" function which measures thp utility of having some money left at the 
end of the period. 

A natural constraint on consumption is the condition 

Q L O ,  V t 2 0 ,  (19.5) 
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and we also have of course the constraint 

Depending upon the actual situation we may be forced to impose other con- 
straints (it may, say, be natural to demand that the consumer's wealth never 
becomes negative), but we will not do this at the moment. 

We may now formally state the consumer's utility maximization problem as 
follows: 

A problem of this kind is known as a stochastic optimal control problem. 
In this context the process X is called the s ta te  process (or state variable), 
the processes uO, ul, c are called control processes, and we have a number of 
control constraints. In the next sections we will study a fairly general class 
of stochastic optimal control problems. The method used is that of dynamic 
programming, and at the end of the chapter we will solve a version of the 
problem above. 

19.2 T h e  Formal Problem 

We now go on to study a fairly general class of optimal control problems. To this 
end, let p(t, x, u) and u(t, x, u) be given functions of the form 

For a given point xo. E Rn we will consider the following controlled 
stochastic differential equation: 

dXt = C1 ( t ,  Xt , ut) dt + u (t, Xt , ut) dWt , (19.12) 

XO = 50. (19.13) 

We view the n-dimensional process X as a s t a te  process, which we are trying 
to "control" (or "steer"). We can (partly) control the state process X by choosing 
the k-dimensional control process u in a suitable way. W is a d-dimensional 
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Wiener process, and we must now try to give a precise mathematical meaning 
to the formal expressions (19.12)-(19.13). 

Remark 19.2.1 In this chapter, where we will work under a fixed measure, all 
Wiener processes are denoted by the letter W. 

Our first modeling problem concerns the class of admissible control processes. 
In most concrete cases it is natural to require that the control process u is adapted 
to the X process. In other words, at time t the value ut of the control process is 
only allowed to "depend" on past observed values of the state process X.  One 
natural way to obtain an adapted control process is by choosing a deterministic 

g : ~ + ~ ~ n + ~ k ,  

and then defining the control process u by 

ut = g (t, Xt). 

Such a function g is called a feedback control law, and in the sequel we will 
restrict ourselves to consider only feedback control laws. For mnemo-technical 
purposes we will often denote control laws by u(t, x), rather than g(t,x), and 
write ut = u(t, Xt). We use boldface in order to indicate that u is a function. In 
contrast to this we use the notation u (italics) to denote the value of a control 
at a certain time. Thus u denotes a mapping, whereas u denotes a point in R ~ .  

Suppose now that we have chosen a fixed control law u(t, x). Then we can 
insert u into (19.12) to obtain the standard SDE 

dXt = P (4 Xt, u(t, Xt)) dt + 0 (t, xt, ~ ( t ,  x t ) )  dwt. (19.14) 

In most concrete cases we also have to satisfy some control constraints, 
and we model this by taking as given a fixed subset U C Rk and requiring that 
ut E U for each t. We can now define the class of admissible control laws. 

Definition 19.1 A control law u is called admissible if 

u(t,x) E U for all t E R+ and all x E Rn. 
For any given initial point (t, x) the SDE 

dXs = P ( 8 ,  Xs, U(S, Xs)) + 0 (s, Xs, U(S, Xs)) dWs, 

xt = x 

has a unique solution. 

I ;The class of admissible control laws is denoted by U. 

For a given control law u,  the solution process X will of course depend on the 
initial value x, as well as on the chosen control law u. To be precise we should 
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therefore denote the process X by XZ*", but sometimes we will suppress x or u. 
We note that eqn (19.14) looks rather messy, and since we will also have to deal 
with the It8 formula in connection with (19.14) we need some more streamlined 
notation. 

i 
Definition 19.2 Consider eqn (19.14), and let ' denote matrix transpose. 

For any fied vector u E R k ,  the functions p", uu, and Cu  are defined by 

For any control law u, the functions pU, a U,  C U( t , x ) ,  and F U( t , x )  are 
defined by 

pU(t,  2 )  = At,  2,  u(t, x ) ) ,  

f fU(tl  5 )  = ~ ( t ,  2,  ~ ( t ,  XI), 
C U ( t ,  2)  = ~ ( t ,  2, ~ ( t ,  x ) )u ( t , x ,  u(t,x))', 
F U( t ,  x )  = F ( t ,  x ,  u(t, x ) ) .  

For any f ied vector u E R k ,  the partial diffeerenticll operator A" is 
defined by 

1 
For any control law u, the partial differential operator d" is defined by I 

Given a control law u we will sometimes write eqn (19.14) in a convenient 
shorthand notation as 

dXy = bU d t  + uU dWt. (19.15) 

For a given control law u with a corresponding controlled process X U  we 1 
will also often use the shorthand notation ut instead of the clumsier e: 

. - .  
The reader should be aware of the fact that the existence assumption in 

the definition above is not at all an innocent one. In many cases it is natural 
to consider control laws which are "rapidly varying", i.e. feedback laws u(t, x) 
which are very irregular as functions of the state variable x.  Inserting such an 
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irregular control law into the state dynamics will easily give us a very irregular 
drift function p (t, x, u(t, x)) (as a function of x), and we may find ourselves 
outside the nice Lipschitz situation in Proposition 5.1, thus leaving us with a 

I highly nontrivial existence problem. The reader is referred to the literature for 
details. 

We now go on to the objective function of the control problem, and therefore 
we consider as given a pair of functions 

b if? : Rn + R. 
b 

Now we define the value function of our problem as the function 

defined by 

I where Xu is the solution to (19.14) with the given initial condition Xo = xo. 
Our formal problem can thus be written as that of maximizing Jo(u) over 

all u E U, and we define the optimal value by 

30 = sup 31 (u). 
UEU 

If there exists an admissible control law u with the property that 

then we say that u is an optimal control law for the given problem. Note that, 
as for any optimization problem, the optimal law may not exist. For a given 
concrete control problem our main objective is of course to find the optimal 
control law (if it exists), or at least to learn something about the qualitative 
behavior of the optimal law. 

19.3 T h e  Hamilton-Jacobi-Bellman Equation 

Given an optimal control problem we have two natural questions to answer: 

(a) Does there exist an optimal control law? 
(b) Given that an optimal control exists, how do we find it? 

In this text we will mainly be concerned with problem (b) above, and the meth- 
odology used will be that of dynamic programming. The main idea is to 
embed our original problem into a much larger class of problems, and then to tie 
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all these problems together with a PDE known as the Hamilton-Jacobi-Bellman 
equation. The control problem is then shown to be equivalent to the problem of 
finding a solution to the HJB equation. 

We will now describe the embedding procedure, and for that purpose we 
choose a fixed point t in time, with 0 5 t 5 T. We also choose a fixed point x in 
the state space, i.e. x E Rn. For this fixed pair (t, x) we now define the following 
control problem. 

Definition 19.3 The control problem P( t ,x)  is defined as the problem to 
maximize 

E,,, [ jT  F(s,  x:, us) 

given the dynamics 

dX," = p (8, X,U, U(S, X,")) ds + u (8, X:, U(S, X:)) dWB, (19.17) 

xt = x, 

and the constmints 

4% 9) E U, V(s, Y) E [t, TI x R". 

Observe that we use the notation s and y above because the letters t and x 
are already used to denote the fixed chosen point (t, x). 

We note that in terms of the definition above, our original problem is the 
problem P(0, xo) . A somewhat drastic interpretation of the problem P(t ,  x) is 
that you have fallen asleep at time zero. Suddenly you wake up, noticing that 
the time now is t and that your state process while you were asleep has moved 
to the point x. You now try to do as well as possible under the circumstances, so 
you want to maximize your utility over the remaining time, given the fact that 
you start at time t in the state x. 

We now define the value function and the optimal value function. 

Definition 19.4 

The value function 
J : R +  x R n  x U + R  

is defined by 

T 

J(t,., u) = E [i F(s ,  

given the dynamzcs (19.17)-(19.18). 
The optimal value function 

V : R + x R n + R  
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is defined by 
V(t, x) = sup J(t, x, u). 

u€U 
to , 

Thus J(t, x, u) is the expected utility of using the control law u over the time 
interval [t, TI, given the fact that you start in state x at time t. The optimal value 
function gives you the optimal expected utility over [t, TI under the same initial 
conditions. 

The main object of interest for us is the optimal value function, and we 
now go on to derive a PDE for V. It should be noted that this derivation is 
largely heuristic. We make some rather strong regularity assumptions, and we 
disregard a number of technical problems. We will comment on these problems 
later, but to see exactly which problems we are ignoring we now make some basic 
assumptions. 

Assumption 19.3.1 We assume the following: 

1. There exists an optimal control law u. 
2. The optimal value function V is regular in the sense that V E C1t2. 
3. A number of limiting procedures in the following arguments can be justified. 

We now go on to derive the PDE, and to this end we fix (t, x) E (0, T) x Rn. 
Furthermore we choose a real number h (interpreted as a "small" time increment) 
such that t + h < T. We choose a fixed but arbitrary control law u,  and define 
the control law u* by 

u*(s,Y) = { 4 3 ,  Y), (s, 9) E It, t + hl x En, 
~ ( s ,  Y), (s, 9 )  E (t + h, TI x Rn. 

In other words, if we use u* then we use the arbitrary control u during the time 
interval [t, t + h], and then we switch to the optimal control law during the rest 
of the time period. 

The whole idea of dynamic programming actually boils down to the following 
procedure: 

First, given the point (t,x) as above, we consider the following two 
strategies over the time interval [t , TI: 
Strategy I. Use the optimal law Ez. 
Strategy 11. Use the control law u* defined above. 
We then compute the expected utilities obtained by the respective 
strategies. 
Finally, using the obvious fact that Strategy I by definition has to be at 
least as good as Strategy 11, and letting h tend to zero, we obtain our 
fundamental PDE. 

We now carry out this program. 
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Expected utility for strategy I: This is trivial, since by definition the utility 
is the optimal one given by J(t, x, u) = V(t, x). 

Expected utility for strategy 11: We divide the time interval [t,T] into two 
parts, the intervals [t, t + h] and (t + h, TI, respectively. 

The expected utility, using Strategy 11, for the interval [t, t + h) is given by 

E~ ,x  [ f h  F(s,X,U,u,) ds . I 
In the interval [t + h,T] we observe that at time t + h we will be in 
the (stochastic) state X,U+h.. Since, by definition, we will use the optimal 
strategy during the entire interval [t + h,T] we see that the remaining 
expected utility at time t + h is given by V(t + h, X,U+h). Thus the expected 
utility over the interval [t + h, TI, conditional on the fact that at time t we 
are in state x, is given by 

E t ,  [V(t + h, X,U,h)l. 

Thus the total expected utility for Strategy I1 is 

Et,- [rh F(s,X,U,u,) ds +V(t  + h,X,U,,) . I 
Comparing the strategies: We now go on to compare the two strategies, and 
since by definition Strategy I is the optimal one, we must have the inequality 

t+h 
V(t.1) L Et,, [i F(s,X,U,us) ds + V(t + h,X:+h) I 

We also note that the inequality sign is due to the fact that the arbitrarily chosen 
control law u which we use on the interval [t, t + h] need not be the optimal one. 
In particular we have the following obvious fact. 

Remark 19.3.1 We have equality in (19.20) if and only if the control law u is 
an optimal law u. (Note that the optimal law does not have to be unique.) 

Since, by assumption, V is smooth we now use the It6 formula to obtain (with 
obvious notation) 

t+h av 
V(t + h, Xr+h) = V(t, x) + 1 {%(s, x;) + duV(s,  X:) 

t+h + 1 V,V(S, X,U)gu dWs. 
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If we apply the expectation operator Et,, to this equation, and assume enough 
integrability, then the stochastic integral will vanish. We can then insert the res- 
ulting equation into the inequality (19.20). The term V(t, x) will cancel, leaving 
us with the inequality 

av 4,. [Iih [i x:, us) + =(a, C) + dUV(s,  X:) ds 5 0. (19.22) 1 I 
Going to t h e  limit: Now we divide by h, move h within the expectation and 
let h tend to zero. Assuming enough regularity to allow us to take the limit 
within the expectation, using the fundamental theorem of integral calculus, and 
recalling that Xt = x, we get 

av 
F(t ,x ,u)  + x(t,x) + dUV(t,x) < 0, (19.23) 

where u denotes the value of the law u evaluated at (t, x), i.e. u = u(t, x). Since 
the control law u was arbitrary, this inequality will hold for all choices of u E U, 
and we will have equality if and only if u = G(t, x). We thus have the following 

av 
-(t, x) + sup {F(t, x,u) + duV(t,x))  = 0. at uEU 

During the discussion the point (t, x) was fixed, but since it was chosen as an 
arbitrary point we see that the equation holds in fact for all (t, x) E (0, T) x Rn. 
Thus we have a (nonstandard type of) PDE, and we obviously need some 
boundary conditions. One such condition is easily obtained, since we obviously 
(why?) have V(T, x) = @(x) for all x E Rn. We have now arrived at our goal, 

amilton-Jacobi-Bellman equation, (often referred to as the HJB 

Theorem 19.5 (Hamilton-Jacobi-Bellman equation) Under Assumption 
19.3.1, the following hold: 

1. V satisfies the Hamilton-Jacobi-Bellman equation 

~(t,x)+sup{F(t,x,~)+d~V(t,x)}=O, V(t,x) E (0,T) x Rn 
UEU 

V(T,x) =@(x),  V X E  Rn. 

2. For each (t, x) E [0, TI x Rn the supremum in the HJB equation above is 
attained by u = G(t, x). 
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Remark 19.3.2 By going through the arguments above, it is easily seen that 
we may allow the constraint set U to be time- and state-dependent. If we thus 
have control constraints of the form 

u(t,x) E U(t,x), W,x 

then the HJB equation still holds with the obvious modification of the 
supremum part. 

It is important to note that this theorem has the form of a necessary con- 
dition. It says that if V is the optimal value function, and if ii is the optimal 
control, then V satisfies the HJB equation, and Q(t,x) realizes the supremum 
in the equation. We also note that Assumption 19.3.1 is an ad hoc assumption. 
One would prefer to have conditions in terms of the initial data p, a, F, and 
which would guarantee that Assumption 19.3.1 is satisfied. This can in fact be 
done, but at a fairly high price in terms of technical complexity. The reader is 
referred to the specialist literature. 

A gratifying, and perhaps surprising, fact is that the HJB equation also acts 
as a sufficient condition for the optimal control problem. This result is known 
as the verification theorem for dynamic programming, and we will use it 
repeatedly below. Note that, as opposed to  the necessary conditions above, the 
verification theorem is very easy to prove rigorously. 

Theorem 19.6 (Verification theorem) Suppose that we have two functions 
H ( t , i )  and g(t, x), such that 

a H is suficiently integrable (see Remark 19.3.4 below), and solves the HJB 
equation 

{ ~ ( t , x ) + ~ ~ ~ { F ( t , x , u ) + d u ~ ( t ~ x ) } = O ,  v ( t , x ) ~ ( O , T ) x R ~  

H(T,x)=@(x) ,  V X E  Rn. 

The function g is an admissible control law. 
a For each jixed (t, x), the supremum in the expression 

sup {F(t, x, u) + duH( t ,  2)) 
UEU 

is attained by the choice u = g(t, x). 

Then the following hold: 

1. The optimal value function V to the control problem is given by 

V(t, x) = H(t, x). 

2. There exists an optimal control law u,  and in fact u(t, x) = g(t, x). 
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Remark 19.3.3 Note that we have used the letter H (instead of V) in the HJB 
equation above. This is because the letter V by definition denotes the optimal 
value function. 

Proof Assume that H and g axe given as above. Now choose an arbitrary 
control law u E 24, and fix a point (t, x). We define the process X U  on the time 
interval [t, T]  as the solution to the equation 

dX,U = pu (s, X,U) ds + uU (s, X,U) dW,, 

xt = x. 

Inserting the process X U  into the function H and using the It6 formula we obtain 

1 Since H solves the HJB equation we see that 
! 

i for all u E U, and thus we have, for each s and P-a.s, the inequality 

g ( s ,  at x:) + (AUH) (a, x:) 5 -FU(s, X:). 

From the boundary condition for the HJB equation we also have H(T, X;) = 
@(X!j?), so we obtain the inequality 

Taking expectations, and assuming enough integrability, we make the stochastic 
integral vanish, leaving us with the inequality 

Since the control law u was arbitrarily chosen this gives us 

H(t, x) 1 sup J(t, x, u)  = V(t, x). 
UEU 
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To obtain the reverse inequality we choose the specific control law u(t, x) = 
g(t,x). Going through the same calculations as above, and using the fact that 
by assumption we have 

aH 
,(t,x) + Fg

(t,x) + dg
H( t ,  x) = 0, 

we obtain the equality 

On the other hand we have the trivial inequality 

V(t, x) 2 J ( t ,  2, g), 

so, using (19.24)-(19.26), we obtain 

H(t, x) 2 V(t, x) 2 a t ,  2, g )  = H(t, 2). 

This shows that in fact 

H(t,x) = V(t,x) = J ( t ,  2, g), 

which proves that H = V, and that gs is the optimal control law. 

Remark 19.3.4 The assumption that H is "sufficiently integrable" in the the- 
orem above is made in order for the stochastic integral in the proof to have 
expected value zero. This will be the case if, for example, H satisifes the condition 

V,H(s,X,U)aU(s, X4) E L2, 

for all admissible control laws. 

Remark 19.3.5 Sometimes, instead of a maximization problem, we consider a 
minimization problem. Of course we now make the obvious definitions for the 
value function and the optimal value function. It is then easily seen that all the 
results above still hold if the expression 

sup {F(t,x, u) + d UV(t ,  x)) 
uEU 

in the HJB equation is replaced by the expression 

i d  (F(t, x, u) + AUV(t, x)). 
uEU 

Remark 19.3.6 In the Verification Theorem we may allow the control con- 
straint set U to be state and time dependent, i.e. of the form U (t, x). 
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19.4 Handling the HJB Equation 
In this section we will describe the actual handling of the HJB equation, and in 
the next section we will study a classical example-the linear quadratic regulator. 
We thus consider our standard optimal control problem with the corresponding 

( t ,  x) + ::g {F(t,x,u) + duV(t,x)} = 0, 
(19.27) 

V(T, x) = @(x). 

Schematically, we now proceed as follows: 

1. Consider the HJB equation as a PDE for an unknown function V. 
/ 2. Fix an arbitrary point (t, x) E [0, TI x Rn and solve, for this fixed choice 

of (t, x) , the static optimization problem 

max [F(t, x, u) + AuV(t, x)] 
uEU 

Note that in this problem u is the only variable, whereas t and x are 
considered to be fixed parameters. The functions F, p, u, and V are 
considered as given. 

3. The optimal choice of u, denoted by G ,  will of course depend on our choice 
of t and x, but it will also depend on the function V and its various 
partial derivatives (which are hiding under the sign duV).  To highlight 

I' these dependencies we write ii as 
5 

Q = Q ( t , x ; V ) .  (19.28) 

4. The function 4 (t, x; V) is our candidate for the optimal control law, but 
since we do not know V this description is incomplete. Therefore we sub- 
stitute the expression for 4 in (19.28) into the PDE (19.27), giving us 
the PDE 

av 
-(t, x) + ~ ' ( t ,  x) + d ' ~ ( t ,  x) = 0, at (19.29) 

V(T,x) = @(x). (19.30) 
I , '  

5. Now we solve the PDE above! (See the remark below.) Then we put the 
solution V into expression (19.28). Using the verification theorem 19.6 we 
can now identify V as the optimal value function, and 4 as the optimal 
control law. 

Remark 19.4.1 The hard work of dynamic programming consists in solving the 
highly nonlinear PDE in step 5 above. There are of course no general analytic 



284 STOCHASTIC OPTIMAL CONTROL 

methods available for this, so the number of known optimal control problems 
with an analytic solution is very small indeed. In an actual case one usually tries 
to guess a solution, i.e. we typically make an ansatz for V, parameterized by a 
finite number of parameters, and then we use the PDE in order to identify the 
parameters. The making of an ansatz is often helped by the intuitive observation 
that if there is an analytical solution to the problem, then it seems likely that 
V inherits some structural properties from the boundary function as well as 
from the instantaneous utility function F. 

For a general problem there is thus very little hope of obtaining an analytic 
solution, and it is worth pointing out that many of the known solved control 
problems have, to some extent, been "rigged" in order to be analytically solvable. 

19.5 The Linear Regulator 
We now want to put the ideas from the previous section into action, and for this 
purpose we study the most well known of all control problems, namely the linear 
quadratic regulator problem. In this classical engineering example we wish to 
minimize 

E [iT { x : ~ X t  + u:Rut} dt + XhHXT , I 
(where I denotes transpose) given the dynamics 

One interpretation of this problem is that we want to control a vehicle in such 
a way that it stays close to the origin (the terms xtQx and xlHx) while at the 
same time keeping the "energy" utRu small. 

As usual Xt E Rn and ut E R ~ ,  and we impose no control constraints on u. 
The matrices Q, R, H ,  A, B, and C are assumed to be known. Without loss of 
generality we may assume that Q, R, and H are symmetric, and we assume that 
R is positive definite (and thus invertible). 

The HJB equation now becomes 

(g (t, x) + inf {xtQx + ulRu + [V.V] (t, $) [Ax + Bu]} 
u€Rk 

For each fixed choice of ( t ,  x) we now have to solve the static unconstrained 
optimization problem to minimize 

utRu + [V,V](t,x) [Az + Bu] . 
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Since, by assumption, R > 0 we get the solution by setting the gradient equal 
to zero, thus giving us the equation 

which gives us the optimal u as 

Here we see clearly (compare point 2 in the scheme above) that in order to 
use this formula we need to know V, and we thus try to make an educated 
guess about the structure of V. From the boundary value function xtHx and 
the quadratic term xtQx in the instantaneous cost function it seems reasonable 
to assume that V is a quadratic function. Consequently we make the following 
ansatz: 

V(t, 2) = xfP(t)x + q(t), 

where we assume that P(t)  is a deterministic symmetric matrix function of time, 
whereas q( t )  is a scalar deterministic function. It would of course also be natural 
to include a linear term of the form L(t)x, but it turns out that this is not 
necessary. 

With this trial solution we have, suppressing the t-variable and denoting time 
derivatives by a dot, 

Inserting these expressions into the HJB equation we get 

We note that the last term above equals tr[CtPC], where t r  denote the trace of 
a matrix, and furthermore we see that 2xfPAx = xtAtPx + xtPAx (this is just 
cosmetic). Collecting terms gives us 

If this equation is to hold for all x and all t then firstly the bracket must vanish, 
leaving us with the matrix ODE 

P = PBR-'B'P - A'P - PA - Q. 
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We are then left with the scalar equation 

We now need some boundary values for P and q, but these follow immediately 
from the boundary conditions of the HJB equation. We thus end up with the 
foll~wing pairs of equations: 

P = PBR-'B'P - A'P - PA - Q ,  

P ( T )  = H. 

The matrix equation (19.32) is known as a Riccati equation, and there are 
powerful algorithms available for solving it numerically. The equation for q can 
then be integrated directly. 

Summing up we see that the optimal value function and the optimal control 
law are given by the following formulas. Note that the optimal control is linear 
in the state variable. 

19.6 Optimal Consumption and Investment 

19.6.1 A Generalization 

In many concrete applications, in particular in economics, it is natural to consider 
an optimal control problem, where the state variable is constrained to stay within 
a prespecified domain. As an example it may be reasonable to demand that the 
wealth of an investor is never allowed to become negative. We will now generalize 
our class of optimal control problems to allow for such considerations. 

Let us therefore consider the following controlled SDE: 

where as before we impose the control constraint ut E U. We also consider as 
given a fixed time interval [0, TI, and a fixed domain D G [0, TI x Rn, and the 
basic idea is that when the state process hits the boundary d D  of D, then the 
activity is at an end. It is thus natural to define the stopping t ime T by 

7 = inf {t 2 01 (t, Xt ) E aD) A T, 
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i 
where x A y = min[x, y]. We consider as given an instantaneous utility function 
F(t ,  x ,  u )  and a "bequest function" @(t ,  x), i.e. a mapping @ : d D  -t R. The 
control problem to be considered is that of maximizing 

In order for this problem to be interesting we have to demand that Xo E D ,  and 
the interpretation is that when we hit the boundary aD, the game is over and 
we obtain the bequest @ (7, X T ) .  We see immediately that our earlier situation 
corresponds to the case when D = [O,T] x Rn and when @ is constant in the 

i t-variable. 
' In order to analyze our present problem we may proceed as in the previous 

sections, introducing the value function and the optimal value function exactly 
as before. The only new technical problem encountered is that of considering 
a stochastic integral with a stochastic limit of integration. Since this will take 
us outside the scope of the present text we will confine ourselves to giving the 
results. The proofs are (modulo the technicalities mentioned above) exactly as 
before. 

Theorem 19.7 (HJB equation) Assume that 

The optimal value function V is in 
An optimal law u exists. 

Then the following hold: 

1. V satisifies the HJB equation 

[ $(t,.) + sup { F ( t , x , u )  + AuV( t , x ) }  = 0, V ( t , x )  E D, 
UEU 

I V(t ,  X )  = @(t, x ) ,  V( t ,  X )  E dD. 

2. For each ( t , x )  E D the supremum in  the HJB equation above is attained 
by 21 = a(t, X I .  

Theorem 19.8 (Verification theorem) Suppose that we have two functions 
H ( t ,  x )  and g(t,  x ) ,  such that 

H is suficiently integrable, and solves the HJB equation 

{~(t,x)+~m;{F(t,x,u)+AuH(t,x)}=O, V ( t , x ) € D ,  

H( t ,  x )  = @(t, x ) ,  V( t ,  x )  E dD. 

The function g is an admissible control law. 
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For each jixed (t, x), the supremum in the expression 

sup {F(t,x, u) + duH(t,x)} 
uEU 

is attained by the choice u = g(t, 2). 

Then the following hold: 

1. The optimal value function V to the control problem is given by 

2. There exists an optimal control law ii, and in fact u(t, x) = g(t, x). 

19.6.2 Optimal Consumption 

In order to illustrate the technique we will now go back to the optimal consump 
tion problem at the beginning of the chapter. We thus consider the problem of 
maximizing 

given the wealth dynamics 

As usual we impose the control constraints 

In a control problem of this kind it is important to be aware of the fact 
that one may quite easily formulate a nonsensical problem. To take a simple 
example, suppose that we have @ = 0, and suppose that F is increasing and 
unbounded in the c-variable. Then the problem above degenerates completely. It 
does not possess an optimal solution at all, and the reason is of course that the 
consumer can increase his/her utility to any given level by simply consuming an 
arbitrarily large amount at every t. The consequence of this hedonistic behavior 
is of course the fact that the wealth process will, with very high probability, 
become negative, but this is neither prohibited by the control constraints, nor 
punished by any bequest function. 

An elegant way out of this dilemma is to choose the domain D of the preceding 
section as D = [0, TI x { X ~ X  > 0). With T defined as above this means, in concrete 
terms, that 

r = i n f { t > O ( X t = O } A T .  
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A natural objective function in this case is thus given by 

which automatically ensures that when the consumer has no wealth, then all 
activity is terminated. 

We will now analyze this problem in some detail. Firstly we notice that we 
can get rid of the constraint uf + u: = 1 by defining a new control variable w as 
w = ul, and then substituting 1 - w for uO. This gives us the state dynamics 

dXt = wt [or - r] Xt dt + (rXt - ct ) dt + wuxt dwt , (19.42) 

and the corresponding HJB equation is 

We now specialize our example to the case when F is of the form 

where 0 < 7 < 1. The economic reasoning behind this is that we now have 
an infinite marginal utility at c = 0. This will force the optimal consumption 
plan to be positive throughout the planning period, a fact which will facilitate 
the analytical treatment of the problem. In terms of Remark 19.4.1 we are thus 
"rigging" the problem. 

The static optimization problem to be solved w.r.t. c and w is thus that of 
maximizing 

av av I,, ,3 
e-6tc7 + wx(a - r)- + (rx - c)- + -x w u ax ax  2 ax2 ' 

and, assuming an interior solution, the first-order conditions are 

-Vx a - r  w=- .- 
2. vzx u2 ' 

where we have used subscripts to denote partial derivatives. 
We again see that in order to  implement the optimal consumption-investment 

plan (19.43)-(19.44) we need to know the optimal value function V. We therefore 
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suggest a trial solution (see Remark 19.4.1), and in view of the shape of the 
instantaneous utility function it is natural to try a V-function of the form 

where, because of the boundary conditions, we must demand that 

h(T) = 0. (19.46) 

Given a V of this form we have (using to denote the time derivative) 

Inserting these expressions into (19.43)-(19.44) we get 

a- r  
~ ( t ,  x) = 

a2(1 -y) '  

This looks very promising: we see that the candidate optimal portfolio is constant 
and that the candidate optimal consumption rule is linear in the wealth variable. 
In order to use the verification theorem we now want to show that a V-function 
of the form (19.45) actually solves the HJB equation. We therefore substitute the 
expressions (19.47)-(19.51) into the HJB equation. This gives us the equation 

where the constants A and B are given by 

If this equation is to hold for all x and all t, then we see that h must solve 
the ODE 
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j An equation of this kind is known as  a Bernoulli equation, and it can be 
solved explicitly (see the exercises). 

3 Summing up, we have shown that if we define V as in (19.45) with h defined as 
! the solution to (19.52)-(19.53), and if we define w and 2 by (19.50)-(19.51), then 
I V satisfies the HJB equation, and dt, i: attain the supremum in the equation. The 

I verification theorem then tells us that we have indeed found the optimal solution. 

j 19.7 The  Mutual  Fund Theorems 

In this section we will briefly go through the "Merton mutual fund theorems", 
originally presented in Merton (1971). 

1 19.7.1 The Case with No Risk h e  Asset 

We consider a financial market with n asset prices S1, . . . , S,. To start with we 
do not assume the existence of a risk free asset, and we assume that the price 
vector process S(t) has the following dynamics under the objective measure P. 

Here W is a k-dimensional standard Wiener process, a is an n-vector, a is an 
8 n x k matrix, and D(S) is the diagonal matrix 

D(S) = diag[S~, . . . , S,] . 

In more pedestrian terms this means that 

where oi is the ith row of the matrix a. 
We denote the investment strategy (relative portfolio) by w, and the con- 

sumption plan by c. If the pair (w, c) is self-financing, then it follows from the 
S-dynamics above, and from Lemma 6.4, that the dynamics of the wealth process 
X are given by 

d X  = Xw'a dt - cdt + Xw'a dW. (19.55) 

We also take as given an instantaneous utility function F(t ,  c), and we basically 
want to maximize 

E [iT F(t,G)dt] , 

where T is some given time horizon. In order not to formulate a degenerate 
problem we also impose the condition that wealth is not allowed to become 
negative, and as before this is dealt with by introducing the stopping time 
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Our formal problem is then that of maximizing 

given the dynamics (19.54)-(19.55), and subject to the control constraints 

Instead of (19.56) it is convenient to write 

where e is the vector in Rn which has the number 1 in all components, i.e. 
ef = (1,. .. , I ) .  

The HJB equation for this problem now becomes 

In the general case, when the parameters a and u are allowed to  be functions 
of the price vector process S, the term AC~"V(t,x, s) turns out to be rather 
forbidding (see Merton's original paper). It will in fact involve partial derivatives 
to the second order with respect to all the variables x, 81,. . . ,s,. 

If, however, we assume that a and u are deterministic and constant over 
time, then we see by inspection that the wealth process X is a Markov process, 
and since the price processes do not appear, neither in the objective function nor 
in the definition of the stopping time, we draw the conclusion that in this case 
X itself will act as the state process, and we may forget about the underlying 
S-process completely. 

Under these assumptions we may thus write the optimal value function as 
V(t, x), with no s-dependence, and after some easy calculations the term AclwV 
turns out to be 

, av av 1 2 , a2v 
dcyWV = xw a- - c- + -x w Cw- 

a x  ax  2 ax2 ' 
where the matrix C is given by 

We now summarize our assumptions. 
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Assumption 19.7.1 We assume that 

the vector o is constant and deterministic, 
the matrix a is constant and deterministic, 
the matrix u has rank n, and i n  particular the matrix C = out is positive 
definite and invertible. 

We note that, in terms of contingent claims analysis, the last assumption 
means that the market is complete. Denoting partial derivatives by subscripts 
we now have the following HJB equation 

sup { ~ ( t ,  c) + (xw'o - c)VX(t, x) + !~x~w'cwv,~(~, 5)) =0, 
w'e=l,c20 

If we relax the constraint w'e = 1, the Lagrange function for the static 
optimization problem is given by 

L = F(t,c) + (xw'a - c)Vx(t,x) + ~ x 2 w ' ~ w ~ , , ( t ,  x) + X (1 - w'e) 

Assuming the problem to be regular enough for an interior solution we see that 
the first order condition for c is 

The first order condition for w is 

xafVX + X ~ V ~ , W ' C  = Xe', 

so we can solve for w in order to obtain 

Using the relation e'w = 1 this gives X as 

and inserting this into (19.58) gives us, after some manipulation, 
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To see more clearly what is going on we can write this expression as 

w(t) = g,+ Y(t)h, (19.60) 

where the fixed vectors g and h are given by 

whereas Y is given by 

Y(t) = Vx(t, X(t)) 
X(t)Vxx(t, X(t)) ' 

Thus we see that the optimal portfolio is moving stochastically along the one  
dimensional "optimal portfolio line" 

9 + sh, 

in the (n  - 1)-dimensional "portfolio hyperplane" A, where 

We now make the obvious geometric observation that if we fix two points on 
the optimal portfolio line, say the points wa = g + ah and wb = g + bh, then any 
point w on the line can be written as an f i n e  combination of the basis points 
wa and wb. An easy calculation shows that if ws = g + sh then we can write 

where 
S - b  p = -  
a- b '  

The point of all this is that we now have an interesting economic interpretation of 
the optimality results above. Let us thus fix wa and wb as above on the optimal 
portfolio line. Since these points are in the portfolio plane A we can interpret 
them as the relative portfolios of two fixed mutual funds. We may then write 
(19.60) as 

w(t) = p(t)wa + (1 - p(t))wb, (19.64) 

with 
Y (t) - b 

d t )  = a - b * 

Thus we see that the optimal portfolio w can be obtained as aUsuper portfolio" 
where we allocate resources between two fixed mutual funds. 
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'heorem 19.9 (Mutual fund theorem) Assume that the problem is regular 
nough to allow for an interior solution. Then there exists a one-dimensional 
urameterized family of mutual funds, given by wS = g + sh,  where g and h are 
efined by (1 9.62)-(19.62), such that the following hold: 

1. For each f ied s the relative portfolio wS stays f ied over time. 
2. For any f ied choice of a # b the optimal portfolio w(t) is, for all values 

of t, obtained by allocating a11 resources between the f ied funds wa and 
wb, i.e. 

+(t) = pa(t)wa + p b ( t ) ~ b ,  

pa(t) + pb(t) = 1. 

3. The relative proportions (pa, pb) of the portfolio wealth allocated to wa and 
wb respectively are given by 

Y(t) - b 
pa(t) = -, 

a - b  
a - Y (t) 

P ~ ( ~ )  = a - b 3 

where Y is  given by (19.65'). 

19.7.2 The Case with a Risk flee Asset 

Again we consider the model 

dS  = D(S)a dt + D(S)a dW(t), 

with the same assumptions as in the preceding section. We now also take as 
given the standard risk free asset B with dynamics 

dB  = r B  dt. 

Formally we can denote this as a new asset by subscript zero, i.e. B = So, and 
then we can consider relative portfolios of the form w = (wO, w1,. . . , w,,)' where 
of course Ct w, = 1. Since B will play such a special role it will, however, be 
convenient to eliminate wo by the relation 

n 

W ~ = I - C W ~ ,  
1 

and then use the letter w to denote the portfolio weight vector for the risky 
assets only. Thus we use the notation 

w = (wI,. .. ,wn)', 
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and we note that this truncated portfolio vector is allowed to take any value 
in Rn . 

Given this notation it is easily seen that the dynamics of a self-financing port- 
folio are given by 

That is, 

where as before e E Rn denotes the vector (1,1, .  . . , I ) ' .  
The HJB equation now becomes 

K ( t , x )  + sup {F( t , c )  + d c 9 w V ( t , x ) )  =0,  
c>O, wERn 

V(T,  x )  = 0,  

V(t ,O) =0,  
* ' ,  t 

where 

dcV = xwl(a - re)Vx(t,  x )  + ( r x  - c)V,(t,x) + ~x2w1CwVx,(t, x) .  

The first order conditions for the static optimization problem are ' I  
8 F  
-(t, 8c c)  = Vx(t, x ) ,  

w=-- + Vx ~ - l ( n  - re) ,  
xv,, 

and again we have a geometrically obvious economic interpretation. 

Theorem 19.10 (Mutual fund theorem) Given assumptions as above, the 
following hold: 

1. The optimal portfolio consists of an allocation between two fied mutual 
funds w0 and w f .  

2. The fund w0 consists only of the risk free asset. 
3. The fund w f  consists only of the risky assets, and is given by 

wf = ~ - ' ( a  - re). 
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4. At each t the optimal relative allocation of wealth between the funds is 
given by 

Vz(t, X(t)) 
'f(t) = - ~ ( t ) ~ , ( t ,  ~ ( t ) )  ' 
/JO(t) = 1 - 'f (t). 

Note that this result is not a corollary of the corresponding result from the 
previous section. Firstly it was an essential ingredient in the previous results 
that the volatility matrix of the price vector was invertible. In the case with a 
riskless asset the volatility matrix for the entire price vector (B, S1, . . . , S,) is of 
course degenerate, since its first row (having subscript zero) is identically equal 
to zero. Secondly, even if one assumes the results from the previous section, i.e. 
that the optimal portfolio is built up from two fixed portfolios, it is not at all 
obvious that one of these basis portfolios can be chosen so as to consist of the 
risk free asset alone. 

19.8 Exercises 
Exercise 19.1 Solve the problem of maximizing logarithmic utility . [lT e-'. In,,) dt + K . ,,(,) , 

given the usual wealth dynamics 

I 
dXt = Xt [U:T + u: a] dt - ct dt + u1 U X ~  dWt , 

and the usual control constraints 

ct 2 0, vt 1 0 ,  

u;+u; =1,  Vt10 .  

Exercise 19.2 A Bernoulli equation is an ODE of the form 

xt + Atxt + Btx," = 0, 

where A and B are deterministic functions of time and a is a constant. 
If a = 1 this is a linear equation, and can thus easily be solved. Now consider 

the case a # 1 and introduce the new variable y by 

yt = X:-? 

Show that y satisfies the linear equation 

$t + (1 - a)Atyt + (1 - a)Bt = 0. 
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Exercise 19.3 Use the previous exercise in order to solve (19.52)-(19.53) 
explicitly. 

Exercise 19.4 The following example is taken from Bjork et al. (1987). We 
consider a consumption problem without risky investments, but with stochastic 
prices for various consumption goods. 

N = the number of consumption goods, 

pi(t) = price, at t, of good i (measured as dollars per unit per unit time), 

ci(t) = rate of consumption of good i, 

c(t) = [el (t), . - . cN(t)ll, 
1 * 

X(t) = wealth process, 
1 ' 

r = short rate of interest, 

T = time horizon. 
. 3 '  

We assume that the consumption price processes satisfy 

where Wl , . . . , W,, are independent. The X-dynamics become 

dX = rXd t  - c'pdt, 

and the objective is to maximize expected discounted utility, as measured by 

E [lT ~ ( t ,  Q) dt] , 

where T is the time of ruin, i.e. 

(a) Denote the optimal value function by V(t,x,p) and write down the 
relevant HJB equation (including boundary conditions for t = T and 
x = 0). 

(b) Assume that F is of the form 
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I where 6 > 0,O < ai < 1 and a = C? a+ < 1. Show that the optimal 
value function and the optimal control-have the structure 

V(t,x,p) = e-st x a a -aG ( t , ~ ) ,  
x ai 4, x, P) = - - -A(p)'G(t, P), 
Pi a 

I 

where G solves the nonlinear equation 

If you find this too hard, then study the simpler case when N = 1. 
(c) Now assume that the price dynamics are given by GBM, i.e. 

k 

Try to solve the G-equation above by making the ansatz 

Warning: This becomes somewhat messy. 

Exercise 19.5 Consider as before state process dynamics 

and the usual restrictions for u. Our entire derivation of the HJB equation has 
so far been based on the fact that the objective function is of the form 

Sometimes it is natural to consider other criteria, like the expected exponential 
utility criterion 

For this case we define the optimal value function as the supremum of 
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Follow the reasoning in Section 19.3 in order to show that the HJB equation f o ~  
the expected exponential utility criterion is given by 

{$(., + s, {V(t, x)F(t, x, u) + AUV(t,x)} = 0, 

V(T, x) = e @ ( ~ ) .  

Exercise 19.6 Solve the problem to minimize 

given the scalar dynamics 

where the control u is scalar and there are no control constraints. 
Hint: Make the ansatz 

Exercise 19.7 Study the general linear-exponential-qudratic control problem 
of minimizing 

given the dynamics 

dXt ={A&+ But) d t+CdWt.  

Exercise 19.8 The object of this exercise is to connect optimal control to 
martingale theory. Consider therefore a general control problem of minimizing 

given the dynamics 

dXt = P (t, Xt , ut) dt  + 0 (t, Xt , ~ t )  dWt , .i 

and the constraints 
u(t, x) E U. 



NOTES 

Now, for any control law u, define the total cost process C(t; u)  by 

i.e. 

C(t; U) = F(s ,  X,U, us) ds + J(t, X,U, u). 6' 
Use the HJB equation in order to prove the following claims: 

(a) If u is an arbitrary control law, then C is a submartingale. 
(b) If u is optimal, then C is a martingale. 

19.9 Notes 
Standard references on optimal control are Fleming and Rishel(1975) and Krylov 
(1980). A very clear exposition can be found in Bksendal(1995). For more recent 
work, using viscosity solutions, see Fleming and Soner (1993). The classical 
papers on optimal consumption are Merton (1969) and Merton (1971). See also 
Karatzas et al. (1987), and the survey paper DufEe (1994). For optimal trading 
under constraints, and its relation to derivative pricing see Cvitanib (1997) and 
references therein. See also the book by Korn (1997). There is also a "martingale 
approach" to optimal investment problems. See Cox and Huang (1989) for the 
complete market case. Basic papers on the incomplete market case are He and 
Pearson (1991), Karatzas et al. (1991), and Krarnkov and Schachermayer (1999). 
A very readable overview of the incomplete market case, containing an extensive 
bibliography, is given in Schachermayer (2002). 
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20.1 Zero Coupon Bonds 

In this chapter, we will begin to study the particular problems which appear 
when we try to apply arbitrage theory to the bond market. The primary objects 
of investigation are zero coupon bonds, also known as pure  discount bonds, 
of various maturities. All payments are assumed to be made in a fixed currency 
which, for convenience, we choose to be US dollars. 

Definition 20.1 A zero coupon bond with maturi ty da te  T, also called 
a T-bond, is a contract which guarantees the holder 1 dollar to be paid on the 
date T. The price at time t of a bond with maturity date T is denoted by p(t, T). 

The convention that the payment at the time of maturity, known as the 
principal value or face value, equals one is made for computational con- 
venience. Coupon bonds, which give the owner a payment stream during the 
interval [0, T] are treated below. These instruments have the common property, 
that they provide the owner with a deterministic cash flow, and for this reason 
they are also known as fixed income instruments. 

We now make an assumption to guarantee the existence of a sufficiently rich 
and regular bond market. 

Assumption 20.1.1 We assume the following: 
There exists a (frtctionless) market for T-bonds for every T > 0. 
The relation p(t, t) = 1 holds for all t. 
For each f i e d  t, the bond price p(t,T) is differentiable w.r.t. time of 
maturity T. 

Note that the relation p(t, t) = 1 above is necessary in order to avoid arbitrage. 
The bond price p(t, T)  is thus a stochastic object with two variables, t and T, 
and, for each outcome in the underlying sample space, the dependence upon 
these variables is very different. 

For a fked value of t,  p(t, T) is a function of T. This function provides the 
prices, at the fixed time t, for bonds of all possible maturities. The graph 
of this function is called "the bond price curve at t", or "the term structure 
at t". Typically it will be a very smooth graph, i.e. for each t,  p(t, T)  will 
be differentiable w.r.t. T. The smoothness property is in fact a part of our 
assumptions above, but this is mainly for convenience. All models to be 
considered below will automatically produce smooth bond price curves. 
For a fixed maturity T, p(t, T) (as a function oft) will be a scalar stochastic 
process. This process gives the prices, at different times, of the bond with 



INTEREST RATES 303 

fixed maturity T, and the trajectory will typically be very irregular (like a 
Wiener process). 

We thus see that (our picture of) the bond market is different from any other 
market that we have considered so far, in the sense that the bond market contains 
an infinite number of assets (one bond type for each time of maturity). The basic 
goal in interest rate theory is roughly that of investigating the relations between 
all these different bonds. Somewhat more precisely we may pose the following 
general problems, to be studied below: 

What is a reasonable model for the bond market above? 
a Which relations must hold between the price processes for bonds of different 

maturities, in order to guarantee an arbitrage free bond market? 
a Is it possible to derive arbitrage free bond prices from a specification of the 

dynamics of the short rate of interest? 
Given a model for the bond market, how do you compute prices of interest 
rate derivatives, such as a European call option on an underlying bond? 

20.2 Interest Rates  

20.2.1 Definitions 

Given the bond market above, we may now define a number of interest rates, 
and the basic construction is as follows. Suppose that we are standing at time t, 
and let us ~IX two other points in time, S and T, with t < S < T. The immediate 
project is to write a contract at time t which allows us to make an investment of 
one (dollar) at time S, and to have a deterministic rate of return, determined 
at the contract time t, over the interval [S, TI. This can easily be achieved as 
follows: 

1. At time t we sell one S-bond. This will give us p(t, S)  dollars. 
2. We use this income to buy exactly p(t, S)/p(t,T) T-bonds. Thus our net 

investment at time t equals zero. 
3. At time S the S-bond matures, so we are obliged to pay out one dollar. 
4. At time T the T-bonds mature at one dollar a piece, so we will receive the 

amount p(t, S)/p(t, T)  dollars. 
5. The net effect of all this is that, based on a contract at t,  an investment 

of one dollar at time S has yielded p(t, S)/p(t, T)  dollars at time T. 
6. Thus, at time t, we have made a contract guaranteeing a riskless rate of 

interest over the future interval [S, TI. Such an interest rate is called a 
forward rate. 

We now go on to compute the relevant interest rates implied by the con- 
struction above. We will use two (out of many possible) ways of quoting forward 
rates, namely as continuously compounded rates or as simple rates. 

The simple forward rate (or LIBOR rate) L, is the solution to the equation 
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whereas the continuously compounded forward rate R is the solution to the 
' 

eauation 

The simple rate notation is the one used in the market, whereas the continuously 
compounded notation is used in theoretical contexts. They are of course logically 
equivalent, and the formal definitions are as follows. 

Definition 20.2 

1. The simple forward rate for [S, TI contracted at t ,  henceforth referred 
to  as the LIBOR forward mte,  is defined as 

2. The simple spot rate for [S,T], henceforth referred to as the LIBOR 
spot rate, i s  defined as 

3. The continuously compounded forward rate for [S, TI contracted at t 
is defined as 

R(t; S, T )  = - 1% P(t, T) - 1% P(t, S) 
T - S  

4. The continuously compounded spot rate, R(S, T), for the period 
[S, TI is defined as 

R(S, T) = - 1% P(S, T )  
T - S  ' 

5. The instantaneous forward rate with maturity T, contracted at t, 
is defined by 

6.  The instantaneous short rate at time t is defined by. 

We note that spot rates are forward rates where the time of contracting 
coincides with the start of the interval over which the interest rate is effective, 
i.e. t = S. The instantaneous forward rate, which will be of great importance 
below, is the limit of the continuously compounded forward rate when S + T. 
rt can thus be interpreted as the riskless rate of interest, contracted at t ,  over 
the infinitesimal interval [T, T + dT] . 

We now go on to define the money account process B. 
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Definition 20.3 The money account process is defined by 

{ d ~ ( t )  =r(t)B(t) dt, 
B(0) = 1. 

The interpretation of the money account is the same as before, i.e. you may 
think of it as describing a bank with a stochastic short rate of interest. It can 
also be shown (see below) that investing in the money account is equivalent to 

I investing in a self-financing "rolling over" trading strategy, which at each time t 
5 consists entirely of "just maturing" bonds, i.e. bonds which will mature at t + dt. 
I As an immediate consequence of the definitions we have the following useful 

formulas. 

Lemma 20.4 For t 5 s 5 T we have 

If we wish to make a model for the bond market, it is obvious that this can 
be done in many different ways. 

a We may specify the dynamics of the short rate (and then perhaps try to 
derive bond prices using arbitrage arguments). 

a We may directly specify the dynamics of all possible bonds. 
a We may specify the dynamics of all possible forward rates, and then use 

Lemma 20.4 in order to obtain bond prices. 

i All these approaches are of course related to each other, and we now go on to 
present a small  toolbox^' of results to facilitate the analysis below. These results 

1 will not be used until Chapter 23, and the proofs are somewhat technical, so the 
next two subsections can be omitted at a first reading. 

1 20.2.2 Relations between d f (t, T), dp(t, T), and dr(t) 

We will consider dynamics of the following form: 

Short rate dynamics 
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Bond price dynamics 

Forward rate dynamics 

df (t, T)  = a(t ,  T) dt + a(t,  T) dW(t). (20.3) 

The Wiener process W is allowed to be vector valued, in which case the volat- 
ilities v(t, T) and a(t ,  T) are row vectors. The processes a(t) and b(t) are scalar 
adapted processes, whereas m(t, T) , v(t, T), a(t ,  T), and u(t, T) are adapted 
processes parameterized by time of maturity T. The interpretation of the bond 
price equation (20.2) and the forward rate equation(20.3) is that these are scalar 
stochastic differential equations (in the t-variable) for each fixed time of maturity 
T. Thus (20.2) and (20.3) are both infinite dimensional systems of SDEs. 

We will study the formal relations which must hold between bond prices and 
interest rates, and to this end we need a number of technical assumptions, which 
we collect below in an "operational" manner. 

Assumption 20.2.1 

1. For each fied w,  t all the objects m(t,T), v(t,T), a(t ,T) and u(t ,T) are 
assumed to be wntinuously di.@erentiable in the T-variable. This partial 
T-derivative is sometimes denoted by mT(t, T), etc. 

2. All processes are assumed to be regular enough to allow us to differentiate 
under the integral sign as well as to interchange the order of integration. 

The main result is as follows. Note that the results below hold, regardless 
of the measure under consideration, and in particular we do not assume that 
markets are free of arbitrage. 

Proposition 20.5 

1. If p(t, T) satisfies (20.2), then for the fonuard rate dynamics we have 

df (t, T) = a(t,  T) dt + a(t, T) dW(t), 

where a and a are given by 

a(t ,  T )  = UT(~ ,  T) . ~ ( t ,  T) - mT(t, T), 
u(t,T) = -vT(~,  T). 

2. I f f  (t, T) satisfies (20.3) then the short rate satisfies 

where 
a(t) = fT(t, t) + ~ ( t ,  t), 
b(t) = o(t, t). 
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3. If f (t, T)  satisfies (20.3) then p(t, T) satisfies 

dp(t, T) = p(t, T)  {r(t) + A(t, T) + 4 IIS(t, T)l12) dt + ~ ( t ,  T)S(t, T) dW(t), 

where 11 - 11 denotes the Euclidean norm, and 

{ 
T A(t, T)  = - a(t, s) ds, 

(20.6) 
S(t ,T) = - f u ( t ,  s)ds. 

Proof The first part of the proposition is left to the reader (see the exercises). 
For the second part we integrate the forward rate dynamics to get 

t 

r(t) = f (0, t) + t) + /d ~ ( 8 ,  t) dW(s)- (20.7) 

Now we can write 

a(s, t) = a(s ,  S) + ~ T ( s ,  u) du, 1" r ' I 

U(S, t) = U(S, S) + UT(S, u) du, l 
and, inserting this into (20.7), we have 

r(t) = f(0, t) + [ a(s, s) ds + [[ cxT(s, u) duds 

+&t u(s,s)dWs+ Jot l U ~ ( s , u ) d u d W s .  

Changing the order of integration and identifying terms we obtain the result. 
For the proof of the third part we give a slightly heuristic argument. The full 

formal proof, see Heath et al. (1987), is an integrated version of the proof given 
here, but the infinitesimal version below is (hopefully) easier to understand. 
Using the definition of the forward rates we may write 

p(t, T)  = eY(t9T;! , (20.8) 

where Y is given by 
T 

Y(t,T) = -1 f(t,s)ds. (20.9) 

From the It6 formula we then obtain the bond dynamics as 

dp(t, T) = ~ ( t ,  T) dY(t, T) + +p(t, T) ( d ~ ( t ,  T ) ) ~ ,  (20.10) 
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and it remains to compute dY (t, T). We have 
I 

and the problem is that in the integral the t-variable occurs in two places: as the 
lower limit of integration, and in the integrand f ( t ,  s). This is a situation that is 
not covered by the standard It6 formula, but it is easy to guess the answer. The 
t appearing as the lower limit of integration should give rise to the term 

a at (dT f(t,,)dS) dt. 

Furthermore, since the stochastic differential is a linear operation, we should be 
allowed to move it inside the integral, thus providing us with the term 

(lT d f  (4 8) ds) - 

We have therefore arrived at 1 

which, using the fundamental theorem of integral calculus, as well as the forward 
rate dynamics, gives us 

We now exchange dt and dWt with ds and recognize f (t, t) as the short rate r(t), 
thus obtaining 

dY(t,T) = r(t)dt  +A(t,T)dt + S(t,T)dWt, 

with A and S as above. We therefore have 

( d ~ ( t ,  = IIS(t, T)1I2 dt, 

and, substituting all this into (20.10), we obtain our desired result. 

20.2.3 An Alternative View of the Money Account 

The object of this subsection is to show (heuristically) that the risk free asset B 
can in fact be replicated by a self-financing strategy, defined by "rolling over" 
just-maturing bonds. This is a "folklore" result, which is very easy to prove in 
discrete time, but surprisingly tricky in a continuous time framework. 
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I;i 
k 
4 Let us consider a self-financing portfolio which at each time t consists entirely 

of bonds maturing x units of time later (where we think of x as a small number). 
At time t the portfolio thus consists only of bonds with maturity t + x, so the 
value dynamics for this portfolio is given by 

where the constant 1 indicates that the weight of the t + x-bond in the portfolio 
equals one. We now want to study the behavior of this equation as x tends to 

1 zero, and to this end we use Proposition 20.5 to obtain 

I 
j Letting x tend to zero, (20.6) gives us 

1 . 
lim A(t, t + x) = 0, 
x+o 

lim S(t, t + x) = 0. 
x-0 

Furthermore we have 
' C  limp(t,t +x) = 1, 

x-0 

and, substituting all this into eqn (20.11), we obtain the value dynamics 

dV(t) = r(t)V(t) dt, (20.12) 

which we recognize as the dynamics of the money account. 
The argument thus presented is of course only hewistical, and it requires 

some hard work to make it precise. Note, for example, that the rolling over port- 
folio above does not fall into the general framework of self-financing portfolios, 
developed earlier. The problem is that, although at each time t ,  the portfolio 
only consists of one particular bond (maturing at t + x), over an arbitrary short 

j time interval, the portfolio will use an infinite number of different bonds. In order 
to handle such a situation, we need to extend the portfolio concept to include 
measure valued portfolios. This is done in Bjork et al. (1997a), and in Bjork 
et al. (1997b) the argument above is made precise. 

20.3 Coupon Bonds, Swaps, and Yields 
In most bond markets, there are only a relative small number of zero coupon 
bonds traded actively. The maturities for these are generally short (typically 
between half a year and two years), whereas most bonds with a longer time to 
maturity are coupon bearing. Despite this empirical fact we will still assume the 
existence of a market for all possible pure discount bonds, and we now go on to 
introduce and price coupon bonds in terms of zero coupon bonds. 



310 BONDS AND INTEREST RATES 

20.3.1 Fixed Coupon Bonds 

The simplest coupon bond is the fixed coupon bond. This is a bond which, 
at some intermediary points in time, will provide predetermined payments 
(coupons) to the holder of the bond. The formal description is as follows: 

Fix a number of dates, i.e. points in time, To,,. . . , Tn. Here To is interpreted 
as the emission date of the bond, whereas TI, . . . , Tn are the coupon dates. 
At time Ti, i = 1,. . . , n, the owner of the bond receives the deterministic 
coupon 4. 
At time Tn the owner receives the face value K. 

We now go on to compute the price of this bond, and it is obvious that the 
coupon bond can be replicated by holding a portfolio of zero coupon bonds with 
maturities Ti, i = 1,. . . , n. More precisely we will hold 4 zero coupon bonds of 
maturity T,, i = 1, . . . , n - 1, and K + c, bonds with maturity T,, so the price, 

p(t), at  a time t < TI, of the coupon bond is given by 

Very often the coupons are determined in terms of return,  rather than in 
monetary (e.g. dollar) terms. The return for the ith coupon is typically quoted 
as a simple rate acting on the face value K ,  over the period [T,_l,Ti]. Thus, if, 
for example, the ith coupon has a return equal to ri, and the face value is K ,  
this means that 

ci = ri(T, - Ti-f)K. 

For a standardized coupon bond, the time intervals will be equally spaced, i.e. 

and the coupon rates rl, . . . , rn will be equal to a common coupon rate r. The 
price p(t) of such a bond will, for t 5 TI, be given by 

20.3.2 Floating Rate Bonds 

There are various coupon bonds for which the value of the coupon is not fixed 
at the time the bond is issued, but rather reset for every coupon period. Most 
often the resetting is determined by some financial benchmark, like a market 
interest rate, but there are also bonds for which the coupon is benchmarked 

I against a nonfinancial index. 
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As an example (to be used in the context of swaps below), we will confine 
ourselves to discussing one of the simplest floating rate bonds , where the coupon 
rate ri is set to the spot LIBOR rate L(Ti-1, Ti). Thus 

and we note that L(Ti-1, Ti) is determined already at time Ti-l, but that ci is 
not delivered until at time Ti. We now go on to compute the value of this bond 
at some time t < To, in the case when the coupon dates are equally spaced, 
with Ti - Ti-1 = 6, and to this end we study the individual coupon Q. Without 
loss of generality we may assume that K = 1, and inserting the definition of the 
LIBOR rate (Definition 20.2) we have 

The value at t, of the term -1 (paid out at T,), is of course equal to 

-P@, Ti), 

and it remains to compute the value of the term l l ~ ( T ~ _ ~ , T i ) ,  which is paid 
out at Ti. 

This is, however, easily done through the following argument: 

i a Buy, at time t, one T,-l-bond. This will cost p(t, Ti-1). 
a At time Ti-1 you will receive the amount 1. 

MJ 
! 

a Invest this unit amount in Ti-bonds. This will give you exactly l/p(T,-l, Ti) 
bonds. 

a At T, the bonds will mature, each at the face value 1. Thus, at time Ti, 
you will obtain the amount 

1 
p(Ti-1, Ti) ' 

This argument shows that it is possible to replicate the cash flow above, using 
a self-financing bond strategy, to the initial cost p(t, Ti-1). Thus the value at t, 
of obtaining l l ~ ( T i _ ~ , T ~ )  at Ti, is given by p(t, Ti-1), and the value at t of the 
coupon ci is 

~ ( t ,  Ti-1) - ~ ( t ,  Ti). 
Summing up all the terms we finally obtain the following valuation formula 

for the floating rate bond: 

In particular we see that if t = To, then p(To) = 1. The reason for this (perhaps 
surprisingly easy) formula is of course that the entire floating rate bond can be 
replicated through a self-financing portfolio (see the exercises). 
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20.3.3 Interest Rate Swaps 

In this section we will discuss the simplest of all interest rate derivatives, the 
interest rate swap. This is basically a scheme where you exchange a payment 
stream at a fixed rate of interest, known as the swap rate, for a payment 
stream at a floating rate (typically a LIBOR rate). 

There are many versions of interest rate swaps, and we will study the forward 
swap settled in arrears, which is defined as follows. We denote the principal 
by K ,  and the swap rate by R. By assumption we have a number of equally 
spaced dates To, . . . , Tn, and payment occurs at the dates TI,. . . , Tn (not at To). 
If you swap a fixed rate for a floating rate (in this case the LIBOR spot rate), 
then, at time Ti, you will receive the amount 

which is exactly Kci, where q is the ith coupon for the floating rate bond in the 
previous section. At Ti you will pay the amount 

KbR. 

The net cash flow at Ti is thus given by 

[L(Ti-1, Ti) - R], 

and using our results from the floating rate bond, we can compute the value at 
t < To of this cash flow as 

"k' i ' .,: 
~ p ( t ,  T,-I) - K(1+ 6 ~ ) p ( t ,  T,). 

The total value ll (t), at t, of the swap is thus given by 

and we can simplify this to obtain the following result. 

Proposition 20.6 The price, for t < To, of the swap above is given by 

where 

The remaining question is how the swap rate R is determined. By definition 
it is chosen such that the value of the swap equals zero at the time when the 
contract is made. We have the following easy result. 



COUPON BONDS, SWAPS, AND YIELDS 313 

Proposition 20.7 If, by convention, we assume that the contract is written at 
t = 0,  the swap rate is given by 

In the case that To = 0 this formula reduces to 

20.3.4 Yield and Duration 

Consider a zero coupon T-bond with market price p(t, T). We now look for the 
bond's "internal rate of interest", i.e. the constant short rate of interest which 
will give the same value to this bond as the value given by the market. Denoting 
this value of the short rate by y, we thus want to solve the equation 

where the factor 1 indicates the face value of the bond. We are thus led to the 
following definition. 

Definition 20.8 The continuously compounded zero coupon yield, y(t, T), is 
given by 

For a &ed t , the function T c--, y (t, T) is called the (zero coupon) yield curve. 

We note that the yield y(t, T)  is nothing more than the spot rate for the 
interval [t, TI. Now let us consider a fixed coupon bond of the form discussed in 
Section 20.3.1 where, for simplicity of notation, we include the face value in the 
coupon c,. We denote its market value at t by p(t). In the same spirit as above 
we now look for its internal rate of interest, i.e. the constant value of the short 
rate, which will give the market value of the coupon bond. 

Definition 20.9 The yield to maturity, y(t,T), of a &ed coupon bond at 
time t ,  with market price p, and payments Q at Ti for i = 1,. . . , n, is defined as 
the value of y which solves the equation 

An important concept in bond portfolio management is the "Macaulay 
duration7'. Without loss of generality we may assume that t = 0. 
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Definition 20.10 For the @ed coupon bond above, with price p at t = 0, and 
yield to maturity y, the duration, D, is defined as 

The duration is thus a weighted average of the coupon dates of the bond, 
where the discounted values of the coupon payments are used as weights, and it 
will in a sense provide you with the "mean time to coupon payment". As such it 
is an important concept, and it also acts a measure of the sensitivity of the bond 
price w.r.t. changes in the yield. This is shown by the following obvious result. 

Proposition 20.11 With notation as above we have 

Thus we see that duration is essentially for bonds (w.r.t. yield) what delta (see 
Section 9.2) is for derivatives (w.r.t. the underlying price). The bond equivalent 
of the gamma is convexity, which is defined as 

20.4 Exercises 

Exercise 20.1 A forward ra te  agreement (FRA) is a contract, by convention 
entered into at t = 0, where the parties (a lender and a borrower) agree to let 
a certain interest rate, R*, act on a prespecified principal, K ,  over some future 
period [S, TI. Assuming that the interest rate is continuously compounded, the 
cash flow to the lender is, by definition, given as follows: 

At time S: -K. 
At time T: ~ e ~ * ( ~ - ~ ) .  

The cash flow to the borrower is of course the negative of that to the lender. 

(a) Compute for any time t < S, the value, II (t), of the cash flow above in 
terms of zero coupon bond prices. 

(b) Show that in order for the value of the FRA to equal zero at t = 0, the 
rate R* has to equal the forward rate R(0; S, T) (compare this result to 
the discussion leading to the definition of forward rates). 

Exercise 20.2 Prove the first part of Proposition 20.5. 
Hint: Apply the It6 formula to the process log p(t, T), write this in integrated 

form and differentiate with respect to T. 

Exercise 20.3 Consider a coupon bond, starting at To, with face value K, 
coupon payments at TI, . . . , T, and a fixed coupon rate r. Determine the coupon 
rate r, such that the price of the bond, at To, equals its face value. 
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I Exercise 20.4 Derive the pricing formula (20.15) directly, by constructing a 
self-financing portfolio which replicates the cash flow of the floating rate bond. 

Exercise 20.5 Let {y(O, T); T 2 0) denote the zero coupon yield curve at 
t = 0. Assume that, apart from the zero coupon bonds, we also have exactly 
one fixed coupon bond for every maturity T. We make no particular assump 
tions about the coupon bonds, apart from the fact that all coupons are positive, 
and we denote the yield to maturity, again at time t = 0, for the coupon bond 
with maturity T, by yM (0, T). We now have three curves to consider: the for- 
ward rate curve f (0, T), the zero coupon yield curve y(0, T),  and the coupon 

T). The object of this exercise is to see how these curves are 

~ Y ( O ,  T) f (0, T) = ~ ( 0 ,  T) + T 7. 
(b) Assume that the zero coupon yield cuve is an increasing function of T 

Show that this implies the inequalities 

YM (0, T) 5 y(O, T)  5 f (0, T),  VT, 

I iU (with the opposite inequalities holding if the zero coupon yield curve i! 
decreasing). Give a verbal economic explanation of the inequalities. 

1 Exercise 20.6 Prove Proposition 20.11. 

Exercise 20.7 Consider a consol bond,  i.e. a bond which will forever pay on1 
unit of cash at t = 1,2, .  . . . Suppose that the market yield y is constant for al 

(a) Compute the price, at  t = 0, of the consol. 
(b) Derive a formula (in terms of an infinite series) for the duration of th  

' (c) Use (a) and Proposition 20.11 in order to compute an analytical formul 
for the duration. 

4 (d) Compute the convexity of the consol. 
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SHORT RATE MODELS 

21.1 Generalities 
In this chapter, we turn to the problem of how to model an arbitrage free family 
of zero coupon bond price processes {p(., T); T > 0). 

Since, at least intuitively, the price, p(t,T), should in some sense depend 
upon the behavior of the short rate of interest over the interval [t, TI, a natural 
starting point is to give an a priori specification of the dynamics of the short rate 
of interest. This has in fact been the "classical" approach to interest rate theory, 
so let us model the short rate, under the objective probability measure P, as the 
solution of an SDE of the form 

The short rate of interest is the only object given a priori, so the only exogenously 
given asset is the money account, with price process B defined by the dynamics 

dB(t) = r(t)B(t) dt. (21.2) 

As usual we interpret this as a model of a bank with the stochastic short rate 
of interest r .  The dynamics of B can then be interpreted as the dynamics of 
the value of a bank account. To be quite clear let us formulate the above as a 
formalized assumption. 

Assumption 21.1.1 We assume the existence of one exogenously given (locally 
risk free) asset. The price, B, of this asset has dynamics given by eqn (21.2), 
where the dynamics of r ,  under the objective probability measure P, are given by 
eqn (21.1). 

As in the previous chapter, we make an assumption to guarantee the existence 
of a sufficiently rich bond market. 

Assumption 21.1.2 We assume that there exists a market for zero coupon 
T-bonds for every value of T .  

We thus assume that our market contains all possible bonds (plus, of course, 
the risk free asset above). Consequently, it is a market containing an infinite 
number of assets, but we again stress the fact that only the risk free asset is 
exogenously given. In other words, in this model the risk free asset is considered 
as the underlying asset whereas all bonds are regarded as derivatives of the 
"underlying" short rate r .  Our main goal is broadly to investigate the relationship 
which must hold in an arbitrage free market between the price processes of bonds 
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with diierent maturities. As a second step we also want to obtain arbitrage free 
prices for other interest rate derivatives such as bond options and interest rate 
swaps. 

Since we view bonds as interest rate derivatives it is natural to ask whether 
the bond prices are uniquely determined by the given T dynamics in (21.1) and 
the condition that the bond market shall be free of arbitrage. This question, and 
its answer, are fundamental. 

r x  

d 
R 

L 

For the reader who has studied Chapter 15, this negative result should be 
fairly obvious. The arguments below are parallel to those of Section 15.2, and 
the results are in fact special cases of the general results in Section 15.4. If 
you have already studied these sections you can thus browse quickly through 
the text until the term structure equation (21.2). In order to keep this part of 
the book self-contained, and since the discussion is so important, we will (with 
some apologies) give the full argument. 

Let us start by viewing the bond market in the light of the meta- 
theorem 8.3.1. We see that in the present situation the number M of exogenously 
given traded assets excluding the risk free asset equals zero. The number R of 
random sources on the other hand equals one (we have one driving Wiener pro- 
cess). From the meta-theorem we may thus expect that the exogenously given 
market is arbitrage free but not complete. The lack of completeness is quite clear: 
since the only exogenously given asset is the risk free one we have no possibility 
of forming interesting portfolios. The only thing we can do on the a priori given 
market is simply to invest our initial capital in the bank and then sit down and 
wait while the portfolio value evolves according to the dynamics (21.2). It is 
thus impossible to replicate an interesting derivative, even such a simple one as 
a T-bond. 

Another way of seeing this problem appears if we try to price a certain T-bond 
using the technique used in Section 7.3. In order to imitate the old argument we 
would assume that the price of a certain bond is of the form F(t ,  r(t)). Then we 

Answer: Na!1 
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would like to form a risk free portfolio based on this bond and on the underlying 
asset. The rate of return of this risk free portfolio would then, by an arbitrage 
argument, have to equal the short rate of interest, thus giving us some kind 
of equation for the determination of the function F. Now, in the Black-Scholes 
model the underlying asset was the stock S, and at first glance this would corres- 
pond to r in the present situation. Here, however, we have the major difference 
between the Black-Scholes model and our present model. The short rate of 
interest r is not the price of a traded asset, i.e. there is no asset on the market 
whose price process is given by r. Thus it is meaningless to form a portfolio 
"based on r". Since there sometimes is a lot of confusion on this point let us 
elaborate somewhat. We observe then that the English word "price" can be used 
in two related but different ways. 

The first way occurs in everyday (informal) speech, and in this context it 
is not unusual (or unreasonable) to say that the short rate of interest reflects 
the price of borrowing money in the bank. In particular we often say that it is 
expensive to borrow money if the rate of interest is high, and cheap when the 
rate of interest is low. 

The second (formalized) use of the word "price" occurs when we are dealing 
with price systems in the context of, for example, general equilibrium theory. In 
this setting the word "price" has a much more precise and technical meaning than 
in everyday language. Firstly a price is now measured in a unit like, say, pounds 
sterling. The short rate of interest, on the contrary, is measured in the unit 
(time)-', though for numerical reasons it is sometimes given as a precentage. 
Secondly the price of an asset tells you how many pounds sterling you have to 
pay for one unit of the asset in question. If, say, the price of ACME INC. stock 
is 230 pounds this means that if you pay 230 pounds then you will obtain one 
share in ACME INC. If, on the other hand, the short rate of interest is 11%, 
this does not mean that you can pay 11 (units of what?) in order to obtain one 
unit of some asset (what would that be?). 

This does not at all imply that the everyday interpretation of the interest rate 
as "the price of borrowing money" is wrong. This aspect of the short rate already 
appears in fact in the equation, dB = r B  dt, for the money account, where it is 
obvious that if r is high, then our debt to the bank grows at a high rate. 

When we use the word "price" in this text it is exclusively as in the second 
formalized meaning above, and a sloppy usage will easily lead to nonsense and 
chaos. 

To sum up: 

The price of a particular bond will not be completely determined by the 
specification (21.1) of the r-dynamics and the requirement that the bond 
market is free of arbitrage. 
The reason for this fact is that arbitrage pricing is always a case of pricing 
a derivative in terms of the price of some underlying assets. In our market 
we do not have sufficiently many underlying assets. 
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We thus fail to determine a unique price of a particular bond. Fortunately this 
(perhaps disappointing) fact does not mean that bond prices can take any form 
whatsoever. On the contrary we have the following basic intuition. 

Idea 21.1.1 

Prices of bonds with different maturities will have to satisfy certain 
internal consistency relations in order to avoid arbitrage possibilities 
on the bond market. 
If we take the price of one particular "benchmark" bond as given then 
the prices of all other bonds (with maturity prior to the benchmark) will 

, . be uniquely determined in terms of the price of the benchmark bond (and 
the r-dynamics). 1 :: 

This fact is in complete agreement with the metetheorem, since in the a priori 
given market consisting of one benchmark bond plus the risk free asset we will 
have R = M = 1 thus guaranteeing completeness. 

21.2 T h e  Term Structure Equation 

To make the ideas presented in the previous section more concrete we now begin 
our formal treatment. 

Assumption 21.2.1 W e  assume that there is a market for T-bonds for every 
choice of Tand that the market is arbitrage free. W e  assume jbrthermore that, 
for every T ,  the price of a T-bond has the form 

where F is a smooth function of three real variables. 

Conceptually it is perhaps easiest to think of F as a function of only two 
variables, namely r and t ,  whereas T is regarded as a parameter. Sometimes we 
will therefore write F T ( t ,  r )  instead of F ( t ,  r ;  T ) .  The main problem now is to 
find out what FT may look like on an arbitrage free market. 

Just as in the case of stock derivatives we have a simple boundary condition. 
At the time of maturity a T-bond is of course worth exactly 1 pound, so we have 
the relation 

F ( T , r ; T ) =  1, forallr .  (21.4) 

Note that in the equation above the letter r denotes a real variable, while at 
the same time r is used as the name of the stochastic process for the short rate. 
To conform with our general notational principles we should really denote the 
stochastic process by a capital letter like R, and then denote an outcome of R 
by the letter r .  Unfortunately the use of r as the name of the stochastic process 
seems to be so fixed that it cannot be changed. We will thus continue to use r 
a s  a name both for the process and for a generic outcome of the process. This is 
somewhat sloppy, but we hope that the meaning will be clear from the context. 

In order to implement the ideas above we will now form a portfolio consisting 
of bonds having different times of maturity. We thus fix two times of maturity S 
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and T. From Assumption 21.2.1 and the It6 formula we get the following price 
dynamics for the T-bond, with corresponding equations for the S-bond. 

dFT = FTaT dt + FTnT dW, (21.5) 

where, with subindices r and t denoting partial derivatives, 

Denoting the relative portfolio by (us ,  uT) we have the following value dynamics 
for our portfolio. 

and inserting the differential from (21.5), as well as the corresponding equation 
for the S-bond, gives us, after some reshuffling of terms, 

Exactly as in Section 7.3 we now define our portfolio by the equations 

With this portfolio the dw-term in (21.9) will vanish, so the value dynamics 
reduce to 

dV = V { u T a ~  + u s a s )  dt. (21.12) 

The system (21.10)-(21.11) can easily be solved as 

and substituting this into (21.12) gives us 

Using Proposition 7.6, the assumption of no arbitrage now implies that this 
portfolio must have a rate of return equal to the short rate of interest. Thus we 
have the condition 

aSaT - aTaS 
= r ( t ) ,  for all t ,  with probability 1,  

UT - US 



or, written differently, 

The interesting fact about eqn (21.17) is that on the left-hand side we have a 
stochastic process which does not depend on the choice of T, whereas on the 
right-hand side we have a process which does not depend on the choice of S. 
The common quotient will thus not depend on the choice of either T or S, so we 
have thus proved the following fundamental result. 

Proposition 21.1 Assume that the bond market is free of arbitrage. Then there 
exzsts a process X such that the relation 

holds for all t and for every choice of maturity time T. 

Observe that the process X is universal in the sense that it is the same X 
which occurs on the right-hand side of (21.18) regardless of the choice of T. Let 
us now take a somewhat closer look at this process. 

In the numerator of (21.18) we have the term aT (t) - r(t). By eqn (21.5), 
aT(t) is the local rate of return on the T-bond, whereas r is the rate of return 
of the risk free asset. The difference crT(t) - r(t) is thus the risk premium of 
the T-bond. It measures the excess rate of return for the risky T-bond over the 
riskless rate of return which is required by the market in order to avoid arbitrage 
possibilities. In the denominator of (21.18) we have uT ( t ) ,  i.e. the local volatility 
of the T-bond. 

Thus we see that the process X has the dimension "risk premium per unit of 
volatility". The process X is known as the market price of risk, and we can 
paraphrase Proposition 21.1 by the following slogan: 

In a no arbitrage market all bonds will, regardless of maturity 
time, have the same market price of risk. 

Before we move on, a brief word of warning: the name "market price of risk" is 
in some sense rather appealing and reasonable, but it is important to realize that 
the market price of risk is not a price in the technical (general equilibrium) sense 
reserved for the word "price" in the rest of this text. We do not measure X in 
SEK, and X is not something which we pay in order to obtain some commodity. 
Thus the usage of the word "price" in this context is that of informal everyday 
language, and one should be careful not to overinterpret the words "market 
price of risk" by assuming that properties holding for price processes in general 
equilibrium theory also automatically hold for the process A. 

We may obtain even more information from eqn (21.18) by inserting our 
earlier formulas (21.6)-(21.7) for a~ and UT. After some manipulation we then 
obtain one of the most important equations in the theory of interest rates-the 
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so called "term structure equation". Since this equation is so fundamental we 
formulate it as a separate result. 

Proposition 21.2 (Term structure equation) In an arbitrage free bond 
market, FT will satisfy the term structure equation 

F: + { p -  Xu) F: + i u 2 F 2  -rFT = 0 ,  

F ~ ( T , ~ )  = 1. 

The term structure equation is obviously closely related to the Black-Scholes 

i equation, but it is a more complicated object due to the appearance of the 
market price of risk A. It follows from eqns (21.6), (21.7), and (21.18) that X is 

I of the form X = A(t, r )  so the term structure equation is a standard PDE, but 
the problem is that X is not determined within the model. In order to be able 
to solve the term structure equation we must specify X exogenously just as we 
have to specify p and a. 

Despite this problem it is not hard to obtain a Feynman-KaE representation 
of FT. This is done by fixing (t, r) and then using the process 

exp { - ls r(u)du) ~ ~ ( s ,  r(s)). 

If we apply the It6 formula to (21.20) and use the fact that F~ satisfies the term 
structure equation then, by using exactly the same technique as in Section 5.5, 
we obtain the following stochastic representation formula. 

Proposition 21.3 (Risk neutral  valuation) Bond prices are given by the 
formula p(t, T)  = F(t ,  r(t); T) where 

Here the martingale measure Q and the subscripts t,  r denote that the expectation 
shall be taken given the following dynamics for the short rate: 

I 

, The formula (21.21) has the usual natural economic interpretation, which is 
most easily seen if we write it as 

~ We see that the value of a T-bond at time t is given as the expected value of the 
I final payoff of one pound, discounted to present value. The deflator used is the 

T natural one, namely exp{- S, r(s) ds), but we observe that the expectation is 
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not to be taken using the underlying objective probability measure P. Instead we 
must, as usual, use the martingale measure Q and we see that we have different 
martingale measures for different choices of A. 

The main difference between the present situation and the Black-Scholes 
setting is that in the Black-Scholes model the martingale measure is uniquely 
determined. It can be shown (see Chapters 13 and 15) that the uniqueness of the 
martingale measure is due to the fact that the Black-Scholes model is complete. 
In the present case our exogenously given market is not complete, so bond prices 
will not be uniquely determined by the given (P-)dynamics of the short rate r .  
To express this fact more precisely, the various bond prices will be determined 
partly by the P-dynamics of the short rate of interest, and partly by market 
forces. The fact that there are different possible choices of X simply means that 
there are different conceivable bond markets all of which are consistent with the 
given r-dynamics. Precisely which set of bond price processes will be realized by 
an actual market will depend on the relations between supply and demand for 
bonds in this particular market, and these factors are in their turn determined by 
such things as the forms of risk aversion possessed by the various agents on the 
market. In particular this means that if we make an ad hoc choice of X (e.g. such 
as X = 0) then we have implicitly made an assumption concerning the aggregate 
risk aversion on the market. 

We can also turn the argument around and say that when the market has 
determined the dynamics of one bond price process, say with maturity T, then 
the market has indirectly specified X by eqn (21.18). When X is thus deter- 
mined, all other bond prices will be determined by the term structure equation. 
Expressed in another way: all bond prices will be determined in terms of the 
basic T-bond and the short rate of interest. Again we see that arbitrage pricing 
always is a case of determining prices of derivatives in terms of some a priori 
given price processes. 

There remains one important and natural question, namely how we ought 
to choose X in a concrete case. This question will be treated in some detail, in 
Section 22.2, and the moral is that we must go to the actual market and, by 
using market data, infer the market's choice of A. 

The bonds treated above are of course contingent claims of a particularly 
simple type; they are deterministic. Let us close this section by looking at a 
more general type of contingent T-claim of the form 

x = *(r(T)), (21.25) 

where cP is some real valued function. Using the same type of arguments as above 
it is easy to see that we have the following result. 

Proposition 21.4 (General term structure equation) Let X be a contin- 
gent T-claim of the form X = cP(r(T)). In an arbitrage free market the price 
II(t; cP) will be given as 

w ;  @I = F(t ,  r(t)), (21.26) 
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where F solves the boundary value problem 

Furthermore F has the stochastic representation 

where the martingale measure Q and the subscripts t, r denote that the expecta- 
tion shall be taken using the following dynamics: 

dr(s) = { p  - Xu)ds + crdW(s), (21.29) 

r(t) = r. (21.30) 

21.3 Exercises 

Exercise 21.1 We take as given an interest rate model with the following 
P-dynamics for the short rate. 

Now consider a T-claim of the form X = @(r(T)) with corresponding price 
process II (t). 

(a) Show that, under any martingale measure Q, the price process II (t) has 
a local rate of return equal to the short rate of interest. In other words, 
show that the stochastic differential of II (t) is of the form 

dII (t) = r (t)II (t) dt + anlI (t) dW(t). 

(b) Show that the normalized price process 

is a Q-martingale. 

Exercise 21.2 The object of this exercise is to connect the forward rates defined 
in Chapter 20 to the framework above. 

(a) Assuming that we are allowed to differentiate under the expectation sign, 
show that 

E:~,,, [.(TI exp {- JtT r(s) ds}] 
f (t, T )  = 

(b) Check that indeed r (t) = f (t , t) . 
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Exercise 21.3 (Swap a fixed rate vs. a short rate) Consider the following 
version of an interest rate swap. The contract is made between two parties, A 
and B, and the payments are made as follows: 

A (hypothetically) invests the principal amount K at time 0 and lets it 
grow at a fixed rate of interest R (to be determined below) over the time 
interval [0, TI. 
At time T the principal will have grown to KA SEK. A will then subtract 
the principal amount and pay the surplus K - KA to B (at time T). 
B (hypothetically) invests the principal at the stochastic short rate of 
interest over the interval [0, TI. 
At time T the principal will have grown to KB SEK. B will then subtract 
the principal amount and pay the surplus K - Kg to A (at time T). 

The swap rate for this contract is now defined as the value, R, of the fixed rate 
which gives this contract the value zero at t = 0. Your task is to compute the 
swap rate. 

Exercise 21.4 (Forward contract) Consider a model with a stochastic rate 
of interest. Fix a T-claim X of the form X = @(r(T)),  and fix a point in time t, 
where t < T. From Proposition 21.4 we can in principle compute the arbitrage 
free price for X if we pay at time t. We may also consider a forward contract 
(see Section 7.6.1) on X contracted at t. This contract works as follows, where 
we assume that you are the buyer of the contract. 

At time T you obtain the amount X SEK. 
At time T you pay the amount K SEK. 
The amount K is determined at t .  

The forward price for X contracted at t is defined as the value of K which 
gives the entire contract the value zero at time t. Give a formula for the forward 
price. 

21.4 Notes 
The exposition in this chapter is standard. For further information, see the notes 
at the end of the next chapter. 
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22.1 &dynamics 
Let us again study an interest rate model where the P-dynamics of the short 
rate of interest are given by 

As we saw in the previous chapter, the term structure (i.e. the family of bond 
price processes) will, together with all other derivatives, be completely determ- 
ined by the general term structure equation 

as soon as we have specified the following objects: 

a The drift term p. 
a The diffusion term a. 
a The market price of risk A. 

Consider for a moment a to be given a priori. Then it is clear from (22.2) that 
it is irrelevant exactly how we specify p and X per se. The object, apart from u, 
that really determines the term structure (and all other derivatives) is the term 
p - Xu in eqn (22.2). Now, from Proposition 21.4 we recall that the term p - Xu is 
precisely the drift term of the short rate of interest under the martingale measure 
Q. This fact is so important that we stress it again. 

Result 22.1.1 The term structure, as well as the prices of all other interest rate 
derivatives, are completely determined by specifying the r-dynamics under the 
martingale measure Q .  

Instead of specifying p and X under the objective probability measure P 
we will henceforth specify the dynamics of the short rate r directly under the 
martingale meaure Q. This procedure is known as martingale modeling, and 
the typical assumption will thus be that r under Q has dynamics given by 

where p and a are given functions. From now on the letter p will thus always 
denote the drift term of the short rate of interest under the martingale measure Q. 
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In the literature there are a large number of proposals on how to specify 
the Q-dynamics for r .  We present a (far from complete) list of the most popular 
models. If a parameter is time dependent this is written out explicitly. Otherwise 
all parameters are constant. 

1. VasiEek 
d r= (b -a r )d t+adW,  (a>O), (22.4) 

2. Cox-Ingersoll-Ross (CIR) 

3. Dothan 
dr  = ard t  +urdW, 

4. Black-Derman-Toy 

5. Ho-Lee 
dr  = B(t)dt + adW, (22.8) 

' 6. Hull-White (extended VasiEek) 
I 

dr  = (8(t)  - a(t)r) dt + u(t) dW, (a(t) > O), (22.9) 

7. Hull-White (extended CIR) 

22.2 Inversion of the Yield Curve 
Let us now address the question of how we will estimate the various model 
parameters in the martingale models above. To take a specific case, assume 
that we have decided to use the VasiEek model. Then we have to get values for 
a, b, and a in some way, and a natural procedure would be to look in some 
textbook dealing with parameter estimation for SDEs. This procedure, however, 
is unfortunately completely nonsensical and the reason is as follows. 

We have chosen to model our r-process by giving the Q-dynamics, which 
means that a,  b, and a are the parameters which hold under the martingale 
measure Q. When we make observations in the real world we are not observing r 
under the martingale measure Q, but under the objective measure P. This means 
that if we apply standard statistical procedures to our observed data we will not 
get our Q-parameters. What we get instead is pure nonsense. 

This looks extremely disturbing but the situation is not hopeless. It is in fact 
possible to show that the diffusion term is the same under P and under Q, so "in 
principle" it may be possible to estimate diffusion parameters using P-data. (The 
reader familiar with martingale theory will at this point recall that a Girsanov 
transformation will only affect the drift term of a diffusion but not the diffusion 
term.) 
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When it comes to the estimation of parameters affecting the drift term of r 
we have to use completely different methods. 

From Section 15.6 we recall the following moral: 

Who chooses the martingale measure? 

The market! 

Thus, in order to obtain information about the Q-drift parameters we have 
to  collect price information from the market, and the typical approach is that 
of inverting the yield curve which works as follows: (See the more detailed 
discussion in Section 15.6.) 

Choose a particular model involving one or several parameters. Let us 
denote the entire parameter vector by a. Thus we write the r-dynamics 
(under Q) as 

Solve, for every conceivable time of maturity T, the term structure equation 

In this way we have computed the theoretical term structure as 

p(t, T; a ) , =  FT(t, r; a) .  

Note that the form of the term structure will depend upon our choice of 
parameter vector. We have not made this choice yet. 
Collect price data from the bond market. In particular we may today (i.e. 
at t = 0) observe p(0, T) for all values of T. Denote this empirical term 
structure by {p*(O, T); T 2 0). 
Now choose the parameter vector a in such a way that the theoretical curve 
{p(O, T; a ) ;  T 2 0) fits the empirical curve {p*(O, T); T 2 0) as well as 
possible (according to some objective function). This gives us our estimated 
parameter vector a*. 
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Insert a* into p and a. Now we have pinned down exactly which martingale 
measure we are working with. Let us denote the result of inserting a* into 
p and a by p* and a* respectively. 
We have now pinned down our martingale measure Q, and we can go on 
to compute prices of interest rate derivatives, like, say, X = I'(r(T)). The 
price process is then given by Il(t; l?) = G(t, r(t)) where G solves the term 
structure equation 

If the above program is to be carried out within reasonable time limits it is 
of course of great importance that the PDEs involved are easy to solve. It turns 
out that some of the models above are much easier to deal with analytically than 
the others, and this leads us to  the subject of so called afFine term structures. 

22.3 Affine Term Structures 
22.3.1 Definition and Existence 

Definition 22.1 If the term structure {p(t,T); 0 5 t < T, T > 0) has the form 

where F has the form 

and where A and B are deterministic functions, then the model is said to possess 
an affine term structure (ATS). 

The functions A and B above are functions of the two real variables t and T,  

[ but conceptually it is easier to think of A and B as being functions oft ,  while T 
I serves as a parameter. It turns out that the existence of an d n e  term structure 

is extremely pleasing from an analytical and a computational point of view, so 
it is of considerable interest to understand when such a structure appears. In 
particular we would like to answer the following question: 

I For which choices of p and a in the Q-dynamics for r do we get an affine 
term structure? 

We will try to give at least a partial answer to this question, and we start by 
investigating some of the implications of an d n e  term structure. Assume then 
that we have the Q-dynamics 

and assume that this model actually possesses an ATS. In other words we assume 
that the bond prices have the form (22.15) above. Using (22.15) we may easily 
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compute the various partial derivatives of F, and since F must solve the term 
structure equation (21.19), we thus obtain 

At(t,T) - (1 + Bt(t,T))r - p(t,r)B(t,T) + ; a2 ( t , r )B2 ( t ,~ )  = 0. (22.17) ' 
I 

The boundary value F(T,  r;  T)  E 1 implies 'I, 

Equation (22.17) gives us the relations which must hold between A, B, p, and a 
in order for an ATS to exist, and for a certain choice of p and a there may or may 
not exist functions A and B such that (22.17) is satisfied. Our immediate task is 
thus to give conditions on p and a which guarantee the existence of functions A 
and B solving (22.17). Generally speaking this is a fairly complex question, but 
we may give a very nice partial answer. We observe that if p and a2 are both 
affine (i.e. linear plus a constant) functions of r, with possibly time dependent 
coefficients, then eqn (22.17) becomes a separable differential equation for the 
unknown functions A and B. 

Assume thus that p and a have the form 

~ Then, after collecting terms, (22.17) transforms into 

This equation holds for all t ,  T,  and r, so let us consider it for a fixed choice of 
T and t. Since the equation holds for all values of r the coefficient of r must be 

1 equal to zero. Thus we have the equation 

B ~ ( ~ , T )  + a ( t ) ~ ( t , ~ )  - ; . y ( t ) ~ 2 ( t , ~ )  = -1: (22.21) 

Since the r-term in (22.20) is zero we see that the other term must also vanish, 
giving us the equation 

A t ( t , ~ )  = p ( t ) ~ ( t , ~ )  - ; b ( t ) ~ ~ ( t , ~ ) .  (22.22) 

We may thus formulate our main result. 
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Proposition 22.2 (Affine t e r m  structure) Assume that p and a are of 

~ ( t ,  r )  = 4 t h  + P(t), 
(22.23) 

u(t ,r)  = J-. 
Then the model admits an ATS of the form (22.15), where A and B satisfy the 

B&T) + (Y(~)B(~,T) - ; $ t ) ~ ~ ( t , ~ )  = -1, 
(22.24) 

B(T, T) = 0. 

At@, T) = P(t)B(t, T) - ;6(t)B2(t, TI, 
(22.25) 

We note that eqn (22.24) is a Ricatti equation for the determination of B which 
does not involve A. Having solved eqn (22.24) we may then insert the solution 
B into eqn (22.25) and simply integrate in order to obtain A. 

An interesting question is if it is only for an affine choice of p and o2 that we 
get an ATS. This is not generally the case, but it can fairly easily be shown that 
if we demand that p and u2 are time independent, then a necessary condition 
for the existence of an ATS is that p and a2 are atline. Looking at the list of 
models in the previous section we see that all models except the Dothan and the 
Black-Derman-Toy models have an ATS. 

22.3.2 A Probabilistic Discussion 

There are good probabilistic reasons why some of the models in our list are 
easier to handle than others. We see that the models of VasiEek, Ho-Lee and 
Hull-White (extended VasiEek) all describe the short rate using a linear SDE. 
Such SDEs are easy to solve and the corresponding r-processes can be shown to 
be normally distributed. Now, bond prices are given by expressions like 

(22.26) 

and the normal property of r is inherited by the integral r(s) ds (an integral 
is just a sum). Thus we see that the computation of bond prices for a model with 
a normally distributed short rate boils down to the easy problem of computing 
the expected value of a log-normal stochastic variable. This purely probabilistic 
program can in fact be carried out for all the linear models above (the interested 
reader is invited to do this), but it turns out that from a computational point of 
view it is easier to solve the system of equations (22.24)-(22.25). 

In contrast with the linear models above, consider for a moment the Dothan 
model. This model for the short rate is the same as the Black-Scholes model for 
the underlying stock, so one is easily led to believe that computationally this 
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is the nicest model conceivable. This is, however, not the case. For the Dothan 
model the short rate will be log-normally distributed, which means that in order 
to compute band prices we are faced with determining the distribution of an 
integral fl r(s) ds of log-normal stochastic variables. It is, however, a sad fact 
that a sum (or an integral) of log-normally distributed variables is a particularly 

I nasty object, so this model leads to great computational problems. It also has 
the unreasonable property that the expected value of the money account equals 
plus infinity. 

I As for the Cox-Ingersoll-Ross model and the Hull-White extension, these 

i models for the short rate are roughly obtained by taking the square of the solution 
of a linear SDE, and can thus be handled analytically (see the exercises for a 
simplified example). They are, however, quite a bit messier to deal with than 
the normally distributed models. See the notes. 

From a computational point of view there is thus a lot to be said in favor of a 
linear SDE describing the short rate. The price we have to pay for these models 
is again the Gaussian property. Since the short rate will be normally distributed 
this means that for every t there is a positive probability that r(t) is negative, 
and this is unreasonable from an economic point of view. For the Dothan model 
on the other hand, the short rate is log-normal and thus positive with probabil- 
ity 1. It is also possible to show that the Cox-Ingersoll-Ross model will produce 

I 
l a strictly positive short rate process. See Rogers (1995) for a discussion on these 

problems. 
We end this section with a comment on the procedure of calibrating the model 

to data described in the previous section. If we want a complete fit between the 
theoretical and the observed bond prices this calibration procedure is formally 
that of solving the system of equations 

1 p(0, T; a)  = p*(O, T) for all T > 0. (22.27) 

I We observe that this is an infinite dimensional system of equations (one equation 
I for each T) with o as the unknown, so if we work with a model containing a 

R finite parameter vector a (like the VasiEek model) there is no hope of obtaining a 
perfect fit. Now, one of the main goals of interest rate theory is to compute prices 
of various derivatives, like, for example, bond options, and it is well known that 
the price of a derivative can be very sensitive with respect to the price of the 
underlying asset. For bond options the underlying asset is a bond, and it is thus 
disturbing if we have a model for derivative pricing which is not even able to 

~ correctly price the underlying asset. 
This leads to a natural demand for models which can be made to fit the 

observed bond data completely, and this is the reason why the Hull-White model 
has become so popular. In this model (and related ones), we introduce an infin- 

I ite dimensional parameter vector a by letting some or all parameters be time 
dependent. Whether it is possible to actually solve the system (22.27) for a con- 
crete model such as the Hull-White extension of the VasiEek model, and how 
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this is to be done in detail, is of course not clear a priori but has to be dealt 
with in a deeper study. We carry out this study for the Hull-White model in the 
next section. 

It should, however, be noted that the introduction of an infinite parameter, in 
order to fit the entire initial term structure, has its dangers in terms of numerical 
instability of the parameter estimates. 

There is also a completely different approach to the problem of obtaining a 
perfect fit between today's theoretical bond prices and today's observed bond 
prices. This is the Heath-Jarrow-Morton approach which roughly takes the 
observed term structure as an initial condition for the forward rate curve, thus 
automatically obtaining a perfect fit. This model will be studied in the next 
chapter. 

22.4 Some Standard Models 
In this section we will apply the ATS theory above, in order to study the most 
common afFine one factor models. 

22.4.1 The VasiEek Model 

To illustrate the technique we now compute the term structure for the VasiEek 
model 

dr = (b-ar)dt+adW. (22.28) 

Before starting the computations we note that this model has the property of 
being mean reverting (under Q) in the sense that it will tend to revert to the 
mean level bla. Equations (22.24)-(22.25) become 

Equation (22.29) is, for each fixed T, a simple linear ODE in the t-variable. It 
can easily be solved as 

Integrating eqn (22.30) we obtain 

and, substituting the expression for B above, we obtain the following result. 
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Propos i t ion  22.3 (The VasiEek t e r m  s t ruc tu re )  In  the VasiEek model, bond 
prices are given by 

p(t ,  T )  = eA(t,T)-B(t,T)'(t), 

where 

A(t, T )  = 
{ B ( t ,  T )  - 2' + t )  (ab - ia2)  - a2B2(t, T )  

a2 4a 

For the VasiEek model, there is also an explicit formula for European bond 
options. See Proposition 22.9. 

22.4.2 The Ho-Lee Model 

For the Ho-Lee model the ATS equations become 

At(t,T) = @ ( t ) B ( t , T )  - ; U ~ B ~ ( ~ , T ) ,  

A ( T ,  T )  = 0. 

These are easily solved as 

It now remains to choose 8 such that the theoretical bond prices, at t = 0 ,  fit 
the observed initial term structure {p*(O,T); T 2 0 ) .  We thus want to find 8 
such that p(0, T )  = p*(O, T )  for all T 2 0. This is left as an exercise, and the 
solution is given by 

@(t )  = af^ (0, t )  + 
aT 

where f*(O, t )  denotes the observed forward rates. Plugging this expression into 
the ATS gives us the following bond prices. 

Propos i t ion  22.4 ( T h e  Ho-Lee t e r m  s t ruc tu re )  For the Ho-Lee model, the 
bond prices are given by 

'i 

{ 
u2 

p(t, T )  = exp (T - t ) f * ( ~ ,  t )  - 5 t ( ~  - t12 - (T - t ) r ( t )  . 
P*(O, t )  ,., . t I 

For completeness we also give the pricing formula for a European call on an 
underlying bond. We will not derive this result by solving the pricing PDE (this 
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is in fact very hard), but instead we refer the reader to Chapter 24 where we will 
present a rather general option pricing formula (Proposition 24.11). It is then an 
easy exercise to obtain the result below as a special case. 

, Propos i t ion  22.5 ( B o n d  op t i ons )  For the Ho-Lee model, the price at t ,  of a 

i European call option with strike price K and exercise date T ,  on an underlying 
S-bond, we have the following p ~ c i n g  formula: 

1 c(t,  T,  K, S )  = p(t,  S ) N ( d )  - p(t,  T )  K . N ( d  - a,), (22.33) 
C 

where 

22.4.3 The CIR Model 

The CIR model is much more difficult to handle than the VasiEek model, since 
1 we have to solve a Riccati equation. We cite the following result. 

Proposi t ion 22.6 (The C I R  t e r m  s t ruc tu re )  The term structure for the 
CIR model is given by 

I where 

j and 
I 

It is possible to obtain closed form expressions for European call options on 
zero coupon bonds within the CIR framework. Since these formulas are rather 
complicated, we refer the reader to Cox-Ingersoll-Ross (19856). 

I 22.4.4 The Hull-White Model 

1 In this section we will make a fairly detailed study of a simplified version of the 
i Hull-White extension of the VasiEek model. The Q-dynamics of the short rate 

are given by 
dr  = {Q( t )  - a r )  d t  + u d W ( t ) ,  (22.36) 

where a and o are constants while 8 is a deterministic function of time. In this 
model we typically choose a and a in order to obtain a nice volatility structure 
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whereas 8 is chosen in order to fit the theoretical bond prices {p(O, T); T > 0) 
to the observed curve {p*(O, T); T > 0). 

We have an d n e  structure so by Proposition 22.2 bond prices are given by 

where A and B solve 

The solutions to these equations are given by 

Now we want to fit the theoretical prices above to the observed prices and it 
is convenient to do this using the forward rates. Since there is a one-to-one 
correspondence (see Lemma 20.4) between forward rates and bond prices, we 
may just as well fit the theoretical forward rate curve {f (0, T); T > 0) to the 
observed curve { f * (0, T) ; T > 0) , where of course f * is defined by f* (t, T)  = 
- (d logp*(t, T))/aT. In any affine model the forward rates are given by 

which, after inserting (22.40)-(22.41), becomes 

Given an observed forward rate structure f * our problem is to find a function 8 
which solves the equation 

u2 
f*(O,T) = e-aTr(~)  + e-a(T-s)8(s)ds - - (1 - e-aT)2, VT > 0. 

2a2 

(22.44) 
One way of solving (22.44) is to write it as 
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where x and g are defined by 

/ We now have 

i SO we have in fact proved the following result. 

Lemma 22.7 Fix an arbitrary bond curve W(O, T); T > 0), subject only to the 
condition that p*(O, T) is twice differentiable w.r.t. T. Choosing 8 according to 
(22.47) will then produce a term structure {p(O, T); T > 0) such that p(0, T)  = 
p*(O, T) for all T > 0. 

1 By choosing C3 according to (22.47) we have, for a fixed choice of a and u, 
1 determined our martingale measure. Now we would like to compute the theoret- 

ical bond prices under this martingale measure, and in order to do this we have 
I to substitute our choice of 8 into eqn (22.41). Then we perform the integration 
1 and substitute the result as well as eqn (22.40) into eqn (22.37). This leads to 
1 some exceedingly boring calculations which (of course) are left to the reader. ' 

The result is as follows. 

Proposition 22.8 (The Hull-White term structure) Consider the Hull- 
White model with a and a jixed. Having inverted the yield curve by choosing O 
according to (22.47) we obtain the bond prices as 

? where B is given by (22.40). 

We end this section by giving, for the Hull-White, as well as for the VasiEek 
model, the pricing formula for a European call option with time of maturity T 
and strike price K on an S-bond, where of course T < S. We denote this price 
by c(t, T, K, S). At the present stage the reader is not encouraged to derive the 
formula below. In Chapter 24 we will instead present a technique which will 
greatly simplify computations of this kind, and the formula will be derived with 
relative ease in Section 24.6 (see Proposition 24.13). Note that the bond prices 
p(t, T)  and p(t, S )  below do not have to be computed at time t,  since they can 
be observed directly on the market. 
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Proposition 22.9 (Bond options) Using notation as above we have, both for 
the Hull-White and the VasiEek models, the following bond option formula: 

where 

22.5 Exercises 
Exercise 22.1 Consider the VasiEek model, where we always assume that a > 0. 

(a) Solve the VasiEek SDE explicitly, and determine the distribution of r(t). 
Hint: The distribution is Gaussian (why?), so it is enough to compute 
the expected value and the variance. 

(b) As t -, oo, the distribution of r(t) tends to a limiting distribution. Show 
that this is the Gaussian distribution N[b/a, u/$%]. Thus we see that, 
in the limit, r will indeed oscillate around its mean reversion level bla. 

(c) Now assume that r(0) is a stochastic variable, independent of the Wiener 
process W, and by definition having the Gaussian distribution obtained 
in (b). Show that this implies that r(t) has the limit distribution in (b), 
for all values oft .  Thus we have found the stationary distribution for the 
VasiEek model. 

(d) Check that the density function of the limit distribution solves the time 
invariant Fokker-Planck equation, i.e. the Fokker-Planck equation with 
the (dl%)-term equal to zero. 

Exercise 22.2 Show directly that the VasiEek model has an &ne term struc- 
ture without using the methodology of Proposition 22.2. Instead use the 
characterization of p(t, T)  as an expected value, insert the solution of the SDE 
for r, and look at the structure obtained. 

Exercise 22.3 Try to carry out the program outlined above for the Dothan 
model and convince yourself that you will only get a mess. 

Exercise 22.4 Show that for the Dothan model you have EQ [B(t)] = oo. 

Exercise 22.5 Consider the Ho-Lee model 

Assume that the observed bond prices at t = 0 are given by {p*(O, T); t 2 0). 
Assume furthermore that the constant cr is given. Show that this model can be 
fitted exactly to today's observed bond prices with 8 as 
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where f* denotes the observed forward rates. (The observed bond price curve is 
assumed to be smooth.) 

Hint: Use the afFine term structure, and fit forward rates rather than bond 
prices (this is logically equivalent). 

Exercise 22.6 Use the result of the previous exercise in order to derive the 
bond price formula in Proposition 22.4. 

Exercise 22.7 It is often considered reasonable to demand that a forward rate 
curve always has an horizontal asymptote, i.e. that limT,, f (t, T) exists for all t. 
(The limit will obviously depend upon t and ~ ( t ) . )  The object of this exercise is 
to show that the Ho-Lee model is not consistent with such a demand. 

(a) Compute the explicit formula for the forward rate curve f (t, T) for the 
Ho-Lee model (fitted to the initial term structure). 

(b) Now assume that the initial term structure indeed has a horizontal asymp 
tote, i.e. that limT,, f*(O, T) exists. Show that this property is not 
respected by the Ho-Lee model, by fixing an arbitrary time t, and showing 
that f (t, T) will be asymptotically linear in T. 

Exercise 22.8 The object of this exercise is to indicate why the CIR model is 
connected to squares of linear diffusions. Let Y be given as the solution to the 
following SDE: 

Define the process Z by Z(t) = m. It turns out that Z satisfies a stochastic 
differential equation. Which? 

22.6 Notes 

Basic papers on short rate models are VasiEek (1977), Hull and White (1990), 
Ho and Lee (1986), Cox et al. (1985b), Dothan (1978), and Black et al. (1990). 
For extensions and notes on the afFine term structure theory, see Dufiie and Kan 
(1996). An extensive analysis of the linear quadratic structure of the CIR model 
can be found in Magshoodi (1996). The bond option formula for the VasiEek 
model was first derived by Jamshidian (1989). For examples of two-factor models 
see Brennan and Schwartz (1979, 1982), and Longstaff and Schwartz (1992). 
Rogers (1997) shows how it is possible to generate a wide class of short rate 
models by modeling the state price density directly under P and using resolvents. 
A completely different approach to interest rate theory is given in Platen (1996) 
where the short rate is derived as a consequence of an entropy related principle. 
See also Platen and Rebolledo (1995). For an overview of interest rate theory see 
Bjork (1997). 
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23.1 The Heath-Jarrow-Morton Framework 

Up to this point we have studied interest models where the short rate r is the only 
explanatory variable. The main advantages with such models are as follows: 

Specifying r as the solution of an SDE allows us to use Markov process 
theory, so we may work within a PDE framework. 
In particular it is often possible to obtain analytical formulas for bond 
prices and derivatives. 

The main drawbacks of short rate models are as follows: 

From an economic point of view it seems unreasonable to assume that the 
entire money market is governed by only one explanatory variable. 
It is hard to obtain a realistic volatility structure for the forward rates 
without introducing a very complicated short rate model. 
As the short rate model becomes more realistic, the inversion of the yield 
curve described above becomes increasingly more difficult. 

These, and other considerations, have led various authors to propose models 
which use more than one state variable. One obvious idea would, for example, 
be to present an a priori model for the short rate as well as for some long 
rate, and one could of course also model one or several intermediary interest 
rates. The method proposed by Heath-Jarrow-Morton (HJM) is at the far end 
of this spectrum-they choose the entire forward rate curve as their (infinite 
dimensional) state variable. 

We now turn to the specification of the HJM framework. We start by 
specifying everything under a given objective measure P. 

Assumption 23.1.1 We assume that, for every fied T > 0, the forward 
mte f(.,T) has a stochastic diflerential which under the objective measure P 
is given by 

where w is a (d-dimensional) P- Wiener process whereas a(., T)  and u(., T) are 
adapted processes. 

Note that conceptually eqn (23.1) is one stochastic differential in the t-variable 
for each fixed choice of T. The index T thus only serves as a "mark" or "par& 

C 
meter" in order to indicate which maturity we are looking at. Also note that we 
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use the observed forward rated curve {f*(O, T); T 2 0) as the initial condition. 
This will automatically give us a perfect fit between observed and theoretical 
bond prices at t = 0, thus relieving us of the task of inverting the yield curve. 

Remark 23.1.1 It is important to observe that the HJM approach to interest 
rates is not a proposal of a specific model, like, for example, the VasiEek model. 
It is instead a framework to be used for analyzing interest rate models. Every 
short rate model can be equivalently formulated in forward rate terms, and for 
every forward rate model, the arbitrage free price of a contingent T-claim X will 
still be given by the pricing formula 

n(0; ,) = EQ [exp {- 1' r(.) ds} x] , 

where the short rate as usual is given by r(s) = f (s, 3). 

Suppose now that we have specified a ,  u and { f * (0, T) ; T L 0). Then we have 
specified the entire forward rate structure and thus, by the relation 

TI = exP {- iT f (t, s) ds} 7 (23.3) 

we have in fact specified the entire term structure {p(t, T); T > 0, 0 5 t _< T). 
Since we have d sources of randomness (one for every Wiener process), and an 
infinite number of traded assets (one bond for each maturity T), we run a clear 
risk of having introduced arbitrage possibilities into the bond market. The first 
question we pose is thus very natural: How must the processes a and a be related 
in order that the induced system of bond prices admits no arbitrage possibilities? 
The answer is given by the HJM drift condition below. 

Theorem 23.1 (HJM drift condition) Assume that the family of forward 
rates is given by (23.1) and that the induced bond market is arbitrage free. Then 
there exists a d-dimensional column-vector process 

x(t) = [xl(t), . xd(t)]' 

with the property that for all T 2 0 and for all t 5 T, we have 

T 
a(t ,  T) = o(t, T) 1 u(t, s)' ds - o(t, T)A(~).  (23.4) 

In these fonulas  ' denotes transpose. 

Proof From Proposition 20.5 we have the bond dynamics 

dp(t, T) = PO, T)  {r(t) + A(t, T)  + $ IlS(t, T)II~) dt + ~ ( t ,  T)S(t, T) dW(t), 
(23.5) 
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where 
A(t, T) = - s , ~  a(t ,  S) ds, 

S(t ,T) = - ~ ~ a ( t , s ) d s .  

The risk premium for the T-bond is thus given by 

A(t,T) + ;lIS(t,~)11~, 

and, applying Result 15.6.1, we conclude the existence of a d-dimensional 
column-vector process X such that 

Taking the T-derivative of this equation gives us eqn (23.4). 

23.2 Martingale Modeling 
We now turn to the question of martingale modeling, and thus assume that the 
forward rates are specified directly under a martingale measure Q as 

df (t, T) = a(t, T)  dt + a(t, T)  dW(t), (23.7) 

f (0, T) = f*(O, T), (23.8) 

where W is a (d-dimensional) Q-Wiener process. Since a martingale measure 
automatically provides arbitrage free prices, we no longer have a problem of 
absence of arbitrage, but instead we have another problem. This is so because 
we now have the fillowing two different formulas for bond prices 

where the short rate r and the forward rates f are connected by r(t) = f (t, t). In 
order for these formulas to hold simultaneously, we have to impose some sort of 
consistency relation between a and a in the forward rate dynamics. The result 
is the famous HJM drift condition. 

Proposition 23.2 (HJM drift condition) Under the martingale measure Q, 
the processes a and u must satisfy the following relation, for every t and 
every T 3 t. 

rT 
a(t ,  T) = g(t, T) 1 a(t, s)' ds. 
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Proof A short and brave argument is to observe that if we start by modeling 
directly under the martingale measure, then we may apply Proposition 23.1 with 
X = 0. A more detailed argument is as follows. 

From Proposition 20.5 we again have the bond price dynamics 

We also know that, under a martingale measure, the local rate of return has to 
equal the short rate r .  Thus we have the equation 

which gives us the result. 

The moral of Proposition 23.2 is that when we specify the forward rate dynamics 
(under Q) we may freely specify the volatility structure. The drift parameters 
are then uniquely determined. An "algorithm" for the use of an HJM model can 
be written schematically as follows: 

1. Specify, by your own choice, the volatilities u(t, T). 
2. The drift parameters of the forward rates are now given by 

T 

a(t ,  T)  = ~ ( t ,  T) 1 u(t, s)' ds. (23.10) 

3. Go to the market and observe today's forward rate structure 

4. Integrate in order to get the forward rates as 

5. Compute bond prices using the formula 

6. Use the results above in order to compute prices for derivatives. 

To see at least how part of this machinery works we now study the simplest 
example conceivable, which occurs when the process u is a deterministic constant. 
With a slight abuse of notation let us thus write u(t, T) = u, where u > 0. 
Equation (23.9) gives us the drift process as 
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so eqn (23.11) becomes 

In particular we see that r is given as 

so the short rate dynamics are 

dr(t) = { f ~ ( ~ , . t )  + u2t) dt + u dW(t), (23.17) 

which is exactly the HeLee model, fitted to the initial term structure. Observe 
in particular the ease with which we obtained a perfect fit to the initial 
term structure. 

23.3 The Musiela Parameterization 
In many practical applications it is more natural to use time to maturity, rather 
than time of maturity, to parameterize bonds and forward rates. If we denote 
running time by t, time of maturity by T,  and time to maturity by x, then we 
have x = T - t, and in terms of x the forward rates are defined as follows. 

Definition 23.3 For all x 2 0 the forward rates r(t, x) are defined by 
the relation 

r(t,  x) = f (t, t + x). (23.18) 

Suppose now that we have the standard HJM-type model for the forward rates 
under a martingale measure Q 

The question is to find the Q-dynamics for r(t, x), and we have the following 
result, known as the Musiela equation. 

Proposition 23.4 (The Musiela equation) Assume that the forward rate 
dynamics under Q are given by (23.19). Then 

dr(t, x) = {Fr(t, x) + D(t, x)) dt + uo(t, X) dW(t), (23.20) 
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where 

uo(t, x) = u(t, t + x), 
rx 

D(t, x) = uo(t, x) uo(t, s)' ds, 1 0  

Proof Using a slight variation of the It6 formula we have 

where the differential in the term df (t, t + x) only operates on the first t. We 
thus obtain 

a 
dr(t, 2) = a(t ,  t + X) dt + u(t, t + x) dW(t) + -r(t, z) dt, a x  

and, using the HJM drift condition, we obtain our result. 

The point of the Musiela parameterization is that it highlights eqn (23.20) 
as  an infinite dimensional SDE. It has become an indispensible tool of modern 
interest rate theory. 

23.4 Exercises 

Exercise 23.1 Show that for the Hull-White model 

dr  = (8 ( t )  - ar)  dt + u dW, 

the corresponding HJM formulation is given by 

df (t, T).= a(t, T) dt  + ae-a(T-t) dW 

Exercise 23.2 (Gaussian interest rates) Take as given an HJM model (under 
the risk neutral measure Q) of the form 

d f (t, T)  = a( t ,  T) dt + o(t, T)  dW(t), 

where the volatility u(t, T) is a deterministic function of t and T. 

(a) Show that all forward rates, as well as the short rate, are normally 
distributed. 

(b) Show that bond prices are log-normally distributed. 
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Exercise 23.3 Consider the domestic and a foreign bond market, with bond 
prices being denoted by pd(t, T)  and pf (t, T)  respectively. Take as given a 
standard HJM model for the domestic forward rates fd(t, T), of the form 

where W is a multidimensional Wiener process under the domestic martingale 
measure Q. The foreign forward rates are denoted by ff(t ,T),  and their 
dynamics, still under the domestic martingale measure Q, are assumed to be 
given by 

dff(t,T) =af( t ,T)d t+af ( t ,T )dW(t ) .  

Note that the same vector Wiener process is driving both the domestic and 
the foreign bond market. The exchange rate X (denoted in units of domestic 
currency per unit of foreign currency) has the Q dynamics 

Under a foreign martingale measure, the coefficient processes for the foreign 
forward rates will of course satisfy a standard HJM drift condition, but here 
we have given the dynamics of ff under the domestic martingale measure Q. 
Show that under this measure the foreign forward rates satisfy the modified 
drift condition 

Exercise 23.4 With notation as in the exercise above, we define the yield 
spread g (t, T)  by 

~ ( t ,  T) = ff (t, T) - fd(t, 

Assume that you are given the dynamics for the exchange rate and the domestic 
forward rates as above. You are also given the spread dynamics (again under the 
domestic measure Q) as 

Derive the appropriate drift condition for the coefficient process a, in terms of 
u,, ud and ax (but not involving af ). 

Exercise 23.5 A consol bond is a bond which forever pays a constant con- 
tinuous coupon. We normalize the coupon to unity, so over every interval with 
length dt the consol pays l.dt. No face value is ever paid. The price C(t), at time 
t,  of the consol is the value of this infinite stream of income, and it is obviously 
(why?) given by 

C(t) = irn p(t, s) ds. 



I Now assume that bond price dynamics under a martingale measure Q are 
1 given by 

dP(t, T) = ~ ( t ,  T)r(t) dt  + ~ ( t ,  T)v(t, T) dW(t), 

where W is a vector valued Q-Wiener process. Use the heuristic arguments given 
in the derivation of the HJM drift condition (see Section 20.2.2) in order to show 
that the consol dynamics are of the form 

dC(t) = (C(t)r(t) - 1) d t  + uc (t) dW (t), 

where 

23.5 Notes 

The basic paper for this chapter is Heath et al. (1987). The Musiela paramet- 
erization was first systematically investigated in Musiela (1993), and developed 
further in Brace and Musiela (1994). Consistency problems for HJM models and 
families of forward rate curves were studied in Bjork and Christensen (1999), 
Filipovit: (1999), and FilipoviE (2001). The question of when the short rate in a 

I HJM model is in fact Markovian was first studied in Carverhill (1994) for the 
case of deterministic volatiliy, and for the case of a short rate depending volatility 
structure it was solved in Jeffrey (1995). The more general question when a given 

I HJM model admits a realization in terms of a finite dimensional Markovian diffu- 

1 sion was, for various special cases, studied in Ritchken and Ssnkarasubramanian 
(1995), Cheyette(l996), Bhar and Chiarella (1997), Inui and Kijima (1998), 
Bjork and Gombani (1999), and Chiarella and Kwon (2001). The necessary and 

I sufficient conditions for the existence of finite dimensional Markovian realisa- 
tions in the general case were first obtained, using methods from differential 
geometry, in Bjork and Svensson (2001). This theory has then been developed 
further in Bjork and Land& (2002), and Filipovid and Teichmann (2001). A 

I survey is given in Bjork (2001). In Shirakawa (1991), Bjork (1995), Bjork et al. 
(1997a,b), and Jarrow and Madan (1995) the HJM theory has been extended to 
more general driving noise processes. There is a growing literature on defaultable 
bonds. See Merton (1974), Duffie and Singleton (1994), Leland (1994), Jarrow 
et al. (1997) and Lando (1997). Concerning practical estimation of the yield 

/ curve see Anderson et d. (1996). 
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24.1 Introduction 
Consider a given financial market (not necessarily a bond market) with the 
usual locally risk free asset B, and a risk neutral martingale measure Q. As 
noted in Chapter 10 a measure is a martingale measure only relative to some 
chosen numeraire asset, and we recall that the risk neutral martingale measure, 
with the money account B as numeraire, has the property of martingalizing all 
processes of the form S(t)/B(t) where S is the arbitrage free price process of any 
(nondividend paying) traded asset. 

In many concrete situations the computational work needed for the determ- 
ination of arbitrage free prices can be drastically reduced by a clever change 
of numeraire, and the purpose of the present chapter, which to a large extent 
follows and is inspired by Geman et al. (1995), is to analyze such changes. See 
the Notes for the more bibliographic information. 

To get some feeling for where we are heading, let us consider the pricing 
problem for a contingent claim X, in a model with a stochastic short rate r. 
Using the standard risk neutral valuation formula we know that the price at 
t = 0 of X is given by 

The problem with this formula from a computational point of view is that in 
order to compute the expected value we have to get hold of the joint distribution 
(under Q) of the two stochastic variables J: r(s) ds and X, and finally we have 
to integrate with respect to that distribution. Thus we have to compute a double 
integral, and in most cases this turns out to be rather hard work. 

Let us now make the (extremely unrealistic) assumption that r and X are 
independent under Q. Then the expectation above splits, and we have the 
formula 

n(o; X) = EQ [,-.far r ( s ) d s ]  . EQ [XI, 

which we may write as 

We now note that (24.2) is a much nicer formula than (24.1), since 

We only have to compute the single integral EQ [XI instead of the double 

integral EQ [exp {- % r(s) ds} XI. 
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The bond price p(0,T) in formula (24.2) does not have to be com- 
puted theoretically at all. We can observe it (at t = 0) directly on the 

1 su bond market. 

The drawback with the argument above is that, in most concrete cases, r and 
X are not independent under Q, and if X is a contingent claim on an underlying 
bond, this is of course obvious. What may be less obvious is that even if X is 
a claim on an underlying stock which is P-independent of r ,  it will still be the 
case that X and r will be dependent (generically) under Q. The reason is that 
under Q the stock will have r as its local rate of return, thus introducing a 
Q-dependence. 

This is the bad news. The good news is that there exists a general pricing 
formula (see Proposition 24.8), a special case of which reads as 

' Here E~ denotes expectation w.r.t. the so-called forward neutral measure QT, 
which we will discuss below. We will also discuss more general changes 
of numeraire. 

24.2 Generalities 

We now proceed to the formal discussion of numeraire changes, and we start by 
I setting the scene. 

Assumption 24.2.1 W e  consider an arbitrage free market model with asset 
prices So,  S1 , .  . . , S ,  where So is assumed to be strictly positive. 

Sometimes, but not always, we will need to assume that all prices are 
Wiener driven. 

Condition 24.2.1 Under P ,  the S-dynamics are of the form 

where the coeficient processes are adapted and W is a multidimensional standard 
P- Wiener process. 

I Remark 24.2.1 We do not necessarily assume the existence of a short rate and 
I a money account. If the model admits a short rate and a money account they 

I will as usual be denoted by r and B, respectively. 

r From a mathematical point of view, most of the results concerning changes of 
numeraire are really special cases of the First Fundamental Theorem and the 
associated pricing formulas. Thus the difference between the present chapter 
and Chapter 10 is more one of perspective than one of essence. We now recall 

I some facts from Chapter 10 and start with the Invariance Lemma. 
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L e m m a  24.1 (Invariance l e m m a )  Let P be any strictly positive It6 process, 
and define the normalized process 2 with numeraire /3, by Z = SIP.  Then h 
is S-self-financing if and only if h is 2-self-financing, i.e. with notation as in  
Chapter 10 we have 

d v s ( t ;  h )  = h ( t )  d S ( t )  (24.4) 

i f  and only i f  
d v Z ( t ;  h )  = h ( t )  dZ ( t ) .  

P r o o f  Follows immediately from the It6 formula. 0 

We make two remarks on the Invariance Lemma. 

A process /3 satisfying the assumptions above is sometimes called a 
"deflator process". 
We have assumed that S and p are It6 processes. This is not important, and 
the Invariance Lemma does in fact hold also in a general semimartingale 
setting. 
Observe that at this point we do not assume that the deflator process /3 
is the price process for a traded asset. The Invariance Lemma will hold for 
any positive process p satisfying the assumptions above. 

From Chapter 10 (see summary in Section 10.7) we now recall the First 
Fundamental Theorem and the corresponding pricing formula. 

T h e o r e m  24.2 Under the assumptions above, the following hold: 

The market model is free of arbitrage i f  and only if there exists a 
mar t ingale  measure ,  Q0 N P such that the processes 

are (local) martingales under QO. 
I n  order to avoid arbitrage, a T-claim X must be priced according to the 
formula 

where E0 denotes expectation under QO. 

In most of our applications earlier in the book we have used the money 
account B as the numeraire, but in many applications the choice of another 
asset as the numeraire asset can greatly facilitate computations. A typical 
example when this situation occurs is when dealing with derivatives defined 
in terms of several underlying assets. Assume for example that we are given 
two asset prices S1 and S2,  and that the contract X to be priced is of the form 
X = @(S1 (T ) ,  S 2 ( T ) ) ,  where @ is a given l inearly homogenous  function. Using 
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the standard machinery, and denoting the risk neutral martingale measure by 
Q0 we would have to compute the price as 

which essentially amounts to the calculation of a triple integral. If we instead 
use S1 as numeraire, with martingale measure Q1, we have 

where cp(z) = @(l,  z) and Zz(t) = Sz(t)/Sl(t). In this formula we note that the 
i factor Sl(t) is the price of the traded asset Sl at time t, so this quantity does 

not have to be computed-it can be directly observed on the market. Thus the 
computational work is reduced to computing a single integral. We also note the 
important fact that in the Z economy we have zero short rate. 

Example 24.3 As an example of the reasoning above, assume that, we have two 
stocks, S1 and S2, with price processes of the following form under the objective 
probability measure P: 

dS1 (t) = a1 SI (t) dt + SI (t)ol dW(t), (24.8) 

dSz (t) = a z S 2  (t) dt + SZ (~)uz  dW(t). (24.9) 

1 Here al, a 2  E R and ul, 0 2  E R2 are assumed to be deterministic, and W is 
, assumed to be a two dimensional standard Wiener process under P. We assume 

absence of arbitrage. 
The T-claim to be priced is an exchange option, which gives the holder the 

I 
right, but not the obligation, to exchange one Sz share for one S1 share at time T. 
Formally this means that the claim is given by Y = max [S2(T) - S1(T), 01, and 
we note that we have a linearly homogeneous contract function. It is thus natural 
to use one of the assets as the numeraire, and we choose S1. From Theorem 24.2, 
and using homogeneity, the price is given by 

with Z2(t) = Sz(t)/Sl(t) and with El denoting expectation under Q1. We are 
thus in fact valuing a European call option on Zz(T), with strike price K = 1 in 
a world with zero short rate. 

We now have to compute the Q1 dynamics of 2 2 ,  but this turns out to be 
very easy. From It8, the P-dynamics of Zz are of the form 

dZ2 (t) = Zz (t) (. . .) dt + 2 2  (t) ( ~ 2  - ui ) dW(t) 



352 CHANGE OF NUMERAIRE 

where we do not care about the precise form of the dt-terms. Under Q1 we know 
that Z2 is a martingale, and since the volatility terms do not change under a 
Girsanov transformation we obtain directly the Q1 dynamics as 

dZ2 (t) = 2 2  (t) {a2 - 01 1 d w l  (t), (24.10) 

where W1 is Q1-Wiener. We can write this as 

where W is a scalar Q1-Wiener process and 

Using the BlackScholes formula with zero short rate, unit strike price and 
volatility a, the price of the exchange option is thus given by the formula 

II(t; X) = Si (t) {Zz(t)N[dil - N[d2l) (24.11) 

= Sz(t)N[dlI - Si(t)N[dzI, (24.12) 

If, instead of using a two &mensional standard Wiener process, we model the 
stock price dynamics as 

dSl (t) = Sl (t) dt + Si ( t ) ~ i  dwi (t) , 
dS2 (t) = a 2 5 2  (t) dt + S2 (t)a2 diiTz (t) , 

where w1 and w2 are scalar P-Wiener with local correlation p, and thus a1 and 
0 2  are scalar constants, then it is easy to see that the relevant volatility to use 
in the formula above is given by 

I Note that we made no assumption whatsoever about the dynamics of the short 
rate. The result above thus holds for every possible specification of the short 

f rate process. 1 
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We will give several other concrete examples below, but first we will investig- 
ate how we change from one choice of numeraire to another, i.e. how we determine 
the appropriate Girsanov transformation. This will be done in the next section. 

Remark 24.2.2 Since there sometimes seems to be confusion around what is a 
bona fide choice of numeraire, let us recall some points in the derivation of the 
First Fundamental Theorem: 

In the basic version of the theorem (Theorem 10.9) we assumed that So was 
a risk free traded asset with zero rate of return. It was a crucial ingredient 
in the proof that we were allowed to invest in this risk free asset. 
For the general case we used the traded asset So as the numeraire. In the 
normalized economy this provided us with a traded asset Zo which was 
risk free with zero rate of return. The Invariance Lemma then allowed us 
to use the basic version of Theorem 10.9 to complete the proof. 
The point of these comments is that the Invariance Lemma is true for any 
deflator process P, but when it comes to the existence of martingale meas- 
ures and pricing, we must use a numeraire which is the price process of a 
traded asset without dividends. 
In particular, if we want to use numeraires like 

a nonfinancial index, 
a forward or futures price process, 
the price process of a traded asset with dividends, 

then we must carry out a careful separate analysis, since in these cases 
we do not have access to a standard version of the First Fund* 
mental Theorem. 

24.3 Changing the Numeraire 
Suppose that for a specific numeraire So we have determined the corresponding 
(not necessarily unique) martingale measure QO, and the associated dynamics 
of the asset prices (and possibly also the dynamics of other factors within the 
model). Suppose furthermore that we want to change the numeraire from So to, 
say, Sl. An immediate problem is then to find the appropriate Girsanov trans- 
formation which will take us from Q0 to Q1, where Q1 is the martingale measure 
corresponding to the numeraire Sl. This problem will for example turn up in 
connection with the LIBOR market models treated later in the book. 

This problem is in fact quite easily solved, and to see this, let us use the 
pricing part of Theorem 24.2 for an arbitrary choice of T-claim X. We then have 

and also 

II(0;X) = S1(0)E1 (24.14) 
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Denoting by LA(T) the Radon-Nikodym derivative 

we can write (24.14) as 

and we thus have 

for all (sufficiently integrable) T-claims X. We thus deduce that 

I so we obtain 

which is our candidate as a Radon-Nikodym derivative. The obvious choice of 
the induced likelihood process is of course given by 

This looks promising, since the process Sl(t)/So(t) is a Qo-martingale (why?), 
and we know that any likelihood process for the transition from Q0 to Q1 has 
to be a Qo-martingale. In more formal terms we have the following proposition. 

Proposition 24.4 Assume that Q0 is a martingale measure for the mmeraire 
So (on FT) and assume that S1 is a positive asset price process such that 
Sl(t)/So(t) is a true Qo-martingale (and not just a local one). Define Q1 on 
FT by the likelihood process 

Then Q1 is a martingale measure for Sl. 

Proof We have to show that for every (sdciently integrable) arbitrage free 
price process 11, the normalized process TI (t) /Sl(t) is a Q1-martingale. Now, if 
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I ll is an arbitrage free price process then we know that II/So is a Qu-martingale 
and for s 5 t we have the following calculation, where we use the Abstract 
Bayes' Formula: 

Since we have determined the relevant likelihood process, we can identify the 
Girsanov kernel. 

Proposition 24.5 Assume absence of arbitrage and that Condition 24.2.1 
is in  force. Denote the corresponding Q"- Wiener process by W" .  1 'hen the 
Qo-dynamics of the likelihood process LA are given by 

L;( t )  = LA(t) {a1 (t)  - ao( t ) )  d w " ( t ) .  (24.19) 

Thus the Girsanov kernel cpA for the transition from Q0 to Q1 is given by the 
volatility difference 

cp;(t) = 0 1  ( t)  - ao(t).  (24.20) 

Proof The result follows immediately from applying the It6 formula to 
(24.18). 

I 

i 24.4 Forward Measures 
In this section we specialize the theory developed in the previous section to the 
case when the new numeraire chosen is a bond maturing at time T. As can be 
expected this choice of numeraire is particularly useful when dealing with interest 
rate derivatives. 

1 24.4.1 Using the T-bond as Numeraire 

/ Suppose that we are given a specified bond market model with a fixed (money 
account) martingale measure Q. For a fixed time ot maturity T we now choose 
the zero coupon bond maturing at T as our new numeraire. 

Definition 24.6 For a fixed T, the T-forward measure QT is defined as the 
martingale measure for the numeraire process p(t ,  T ) .  
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In interest rate theory we often have our models specified under the risk neutral 
martingale measure Q with the money account B as the numeraire. We then 
have the following explicit description QT.  

Proposition 24.7 If Q denotes the risk neutral martingale measure, then the 
likelihood process 

is given by 

In particular, i f  the Q-dynamics of the T-bond are Wiener driven, i.e. of the form 

where W is a (possibly multidimensional) Q Wiener process, then the LT 
dynamics are given by 

i.e. the Girsanov kernel for the transition from Q to QT is given by the T-bond 
volatility v ( t ,  T ) .  - 

Proof The result follows immediately from Proposition 24.4 with QT = Q1 
and Q0 = Q.  

Observing that P ( T ,  T )  = 1 we have the following useful pricing formula as an 
immediate corollary of Proposition 24.2. 

Proposition 24.8 For any T-claim X we have 

n(t; X )  = p(t, T ) E T  [XI  5 1  , (24.24) 

where E~ denotes integration w.r.t. QT.  

Note again that the price p ( t ,T )  does not have to be computed. It can be 
observed directly on the market at time t. 

A natural question to ask is when Q and QT coincide. 

Lemma 24.9 The relation Q = QT holds i f  and only i f  r is deterministic. 

Proof Exercise for the reader. 
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1 24.4.2 An Expectation Hypothesis 

We now make a small digression to discuss the forward rate process f (t, T). The 
economic interpretation of f (t, T) is that this is the risk free rate of return which 
we may have on an investment over the infinitesimal interval [T, T + dT] if the 
contract is made at t. On the other hand, the short rate r(T) is the risk free rate 
of return over the infinitesimal interval [T, T + dT], if the contract is made at 
T. Thus it is natural to view f (t, T) (which can be observed at t)  as an estim- 
ate of the future short rate r(T). More explicitly it is sometimes argued that if 
the market expects the short rate at T to be high, then it seems reasonable to 
assume that the forward rate f (t, T)  is also high, since otherwise there would be 

1 profits to be made on the bond market. 

i Our task now is to determine whether this reawning is correct in a more p r e  
1 cise sense, and to this end we study the most formalized version of the argument 
I above, known as the "unbiased expectation hypothesis" for forward rates. This 
I hypothesis then says that in an efficient market we must have 
\ 

i.e. the present forward rate is an unbiased estimator of the future spot rate. If 
we interpret the expression "an efficient market" as "an arbitrage free market" 
then we may use our general machinery to analyze the problem. 

First we notice that there is no probability measure indicated in (24.25), so 
we have to make a choice. 

Of course there is no reason at all to expect the hypothesis to be true under 
the objective measure P, but it is often claimed that it holds "in a risk neutral 
world". This more refined version of the hypothesis can then be formulated as 

where Q is the usual risk neutral martingale measure. In fact, also this ver- 
sion of the expectation hypothesis is in general incorrect, which is shown by the 
following result. 

Lemma 24.10 Assume that, for all T > 0 we have r(T)/B(T) E L1 (Q). Then, 
for every jixed T, the process f (t, T)  is a QT-martingale for 0 5 t 5 T, and in 
particular we have 

f ( t ,T)  = ET [r(T)IFt]. (24.27) 

Proof Using Proposition 24.24 with X = r(T) we have 

II(t; X)  = EQ [ r ( ~ ) e -  I: '('1 d'l F~] = p(t ,  T ) E ~ [ ~ ( T ) /  Ft] . 
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This gives us 

EQ [ r  ( T ) ~ -  1: r ( s )  ds  Ft ET [r(T) I Ft] = - 
~ ( t ,  T) I I 

1 a = -- -EQ [,- .I:r(s)ds 3t 
~ ( t ,  T )  I I 

= ----- = f(t,T). 
~ ( t ,  T) 

I3 

We thus see that the expectation hypothesis is false also under Q, but true 
under QT. Note, however, that we have different Q~ for different choices of the 
maturity date T. 

24.5 A General Option Pricing Formula 
The object of this section is to give a fairly general formula for the pricing of 
European call options, and for the rest of the section we basically follow Geman 
et al. (1995). Assume therefore that we are given a financial market with a 
(possibly stochastic) short rate r ,  and a strictly positive asset price process S(t). 

The option under consideration is a European call on S with date of 
maturity T and strike price K. We are thus considering the T-claim 

X = max [S(T) - K, 01, (24.28) 

and, for readability reasons, we confine ourselves to computing the option price 
n(t;  X) at time t = 0. 

The main reason for the existence of a large number of explicit option pricing 
formulas is that the contract function for an option is piecewise linear. We can 
capitalize on this fact by using a not so well-known trick with indicator functions. 
Write the option as 

where I is the indicator function, i.e. 

Denoting the risk neutral martingale measure by Q, we obtain 
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In the first term above, we use the measure Q~ having S as numeraire, and for 
the second term we use the T-forward measure. From Theorem 24.2 and Pro- 
position 24.8 we then obtain the following basic option pricing formula, which is 
a substantial extension of the standard Black-Scholes formula. 

Proposition 24.11 (General option pricing formula) Given the assump- 
tions above, the option price is given by 

Here QT denotes the T-forward measure, whereas QS denotes the martingale 
measure for the numemire process S(t). 

In order to use this formula in a real situation we have to be able to compute 
the probabilities above, and the standard condition which ensures computabil- 
ity turns out to be that volatilities should be deterministic. Hence we have the 
following &sumption. 

Assumption 24.5.1 Assume that the process Z S , ~  defined by 

has a stochastic differential of the form 

where the volatility process u S , ~ ( t )  is deterministic. 

The crucial point here is of course the assumption that the row-vector process 
o s , ~  is deterministic. Note that the volatility process as always is unaffected by 
a change of measure, so we do not have to specify under which measure we check 
the condition. It can be done under P as well as under Q. 

We start the computations by writing the probability in the second term of 
(24.29) as 

Since Z S , ~  is an asset price, normalized by the price of a T-bond, it is a Q~ 
martingale, so its QT-dynamics are given by 

~ Z S , T  (t) = ZS,T (~)Qs,T (t) d w T  (t). (24.33) 

This is basically GBM, driven by a multidimensional Wiener process, and it is 
easy to see that the solution is given by 
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In the exponent we have a stochastic integral and a deterministic time integral. 
r Since the integrand in the stochastic integral is deterministic, an easy extension 
D 

F of Lemma 4.15 shows that the stochastic integral has a Gaussian distribution 
i 
f with zero mean and variance 

I 

The entire exponent is thus normally distributed, and we can write the 
I 

I probability in the second term in (24.29) as 
1 

I 

where 

q L:,T t1 ) 

Since the first probability term in (24.29) is a Qs-probability, it is natural to write 
the event under consideration in terms of a quotient with S in the denominator. I 

I Thus we write 

s P(T TI 1 
QS(s(T) 2 K) = Q (' 5 +) = QS(YS,T(T) 5 F) , (24.37) 

where YS,T is defined by 

Under QS the process YS,T has zero drift, so its Qs-dynamics are of the form 

dYs,~(t)  = Ys,~( t )Ss ,~( t )  d w S  (t). 

Since YS,T = z&, an easy application of I~B 'S  formula gives us asYT(t) = 
-us,~(t). Thus we have 

and again we have a normally distributed exponent. Thus, after some 
simplification, 

Q S ( S ( ~ >  2 K )  = N[dll, 

where 1 

We have thus proved the following result. 1 



r 

THE HULL-WHITE MODEL 

Proposition 24.12 (Geman-El Karoui-Rochet) Under the conditions 
given in Assumption 24.5.1, the price of the call option defined in (24.28) is 
given by the formula 

Here dp and dl are given in (24.36) and (24.38), respectively, whereas C;,,(T) 
is defined by (24.35). 

24.6 T h e  Hull-White Model 
As a concrete application of the option pricing formula of the previous sec- i tion, we will now consider the case of interest rate options in the Hull-White 

I 
model (extended VasiEek). To this end recall that in the Hull-White model the 
Q-dynamics of r are given by 

dr = {%(t) - ar) dt + u dW. (24.40) 

From Section 22.3 we recall that we have an affine term structure 

where A and B are deterministic functions, and where B is given by 

The project is to price a European call option with exercise date TI and 
strike price K, on an underlying bond with date of maturity Tz, where TI < T p .  

In the notation of the general theory above this means that T = TI and that 
S(t) = p(t, T p ) .  We start by checking Assumption 24.5.1, i.e. if the volatility, (T,, 

I of the process 
~ ( t  T2) Z(t) = - (24.43) 
~ ( t ,  Tl) 

is deterministic. (In terms of the notation in Section 24.5 Z corresponds to ZS,T 
and u, corresponds to 

Inserting (24.41) into (24.43) gives 

Applying the It6 formula to this expression, and using (24.40), we get the 
Q-dynamics 

dZ(t) = Z(t) {- . ) dt + Z(t) . U, (t) dW, (24.44) 

where 
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Thus a, is in fact deterministic, so we may apply Proposition 24.12. We obtain 
the following result, which also holds (why?) for the VasiEek model. 

Proposition 24.13 (Hull-White bond option) I n  the Hull-White model 
(24.40) the price, at t = 0, of a European call with strike price K ,  and time 
of maturity TI, o n  a bond maturing at T2 i s  given by the formula 

where 

We end the discussion of the Hull-White model, by studying the pricing 
problem for a claim of the form 

Using the T-bond as numeraire Proposition 24.8 gives us 

so we must find the distribution of r(T) under QT, and to this end we will use 
Theorem 24.5 (with Q as Q0 and QT as Q1). We thus need the volatility of the 
T-bond, and from (24.41)-(24.42) we obtain bond prices (under Q) as 

where the volatility v(t , T) is given by 

v(t, T) = -aB(t, T). 

Thus, using Theorem 24.5 and the fact that the money account B has zero 
volatility, the Girsanov kernel for the transition from Q to QT is given by 

The QT-dynamics of the short rate are thus given by 

where wT is a QT-Wiener process. 
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We observe that, since v(t, T) and O(t) are deterministic, r is a Gaussian 
process, so the distribution of r(T) is completely determined by its mean and 
variance under QT. Solving the linear SDE (24.53) gives us 

, We can now compute the conditional QT-variance of r(T), a: (t, T), as 

Note that the QT-mean of r(T), m,(t,T) = E~ [r(T)(Ft] ,  does not have to be 
computed at all. We obtain it directly from Lemma 24.10 as 

which can be observed directly from market data. 
Under QT, the conditional distribution of r(T) is thus the normal distribu- 

tion N[f (t, T), ur(t, T)], and performing the integration in (24.50) we have the 
final result. 

Proposition 24.14 Given the assumptions above, the price of the claim X = 
@(r(T)) is given by 

where o$(t, T)is given by (24.55). 

24.7 The General Gaussian Model 

In this section we extend our earlier results, by computing prices of bond options 
in a general Gaussian forward rate model. We specify the model (under Q) as 

where W is a d-dimensional Q-Wiener process. 

Assumption 24.7.1 We assume that the volatility vector function 

4, T) = [m(t, T), . . , ~ d ( t ,  T)] 

is a deterministic function of the variables t and T. 
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Using Proposition 20.5 the bond price dynamics under Q are given by 

where the volatility is given by 

We consider a European call option, with expiration date To and exercise 
price K, on an underlying bond with maturity TI (where of course To < TI). In 
order to compute the price of the bond, we use Proposition 24.12, which means 
that we first have to find the volatility U T ~ , T ~  of the process 

~ ( t ,  Tl) Z(t) = --- 
P(t, To) ' 

An easy calculation shows that in fact 

This is clearly deterministic, so Assumption 24.5.1 is satisfied. We now have the 
following pricing formula. 

Proposition 24.15 (Option prices for Gaussian forward rates) The price, 
at t = 0, of the option 

X = max [p(To, TI) - K, 0] 

is given by 

n(o; x )  = p(0, T I ) N [ ~ ~ I  - K . P(O, T O > N [ ~ ~ I ,  (24.61) 

where 

dl = ,  1. (P(0, Tl)/KP(O, To)) + C$, ,To 

4%' 

and UT,,T, is given by (24.60). 

Proof Follows immediately from Proposition 24.12. 



CAPS AND FLOORS 

24.8 Caps and Floors 

The object of this section is to present one of the most traded of all interest rate 
derivatives-the c a p a n d  to show how it can be priced. 

An interest rate cap is a financial insurance contract which protects you from 
having to pay more than a prespecified rate, the cap rate, even though you have 
a loan at a floating rate of interest. There are also floor contracts which guar- 

I 

antee that the interest paid on a floating rate loan will never be below some 
predetermined floor rate. For simplicity we assume that we are standing at 
time t = 0, and that the cap is to be in force over the interval [0, TI. Technically 
speaking, a cap is the sum of a number of basic contracts, known as caplets, 
which are defined as follows: 

The interval [0, TI is subdivided by the equidistant points 

We use the notation 6 for the length of an elementary interval, i.e. 
6 = Ti - Ti-l. Typically, 6 is a quarter of a year, or half a year. 
The cap is working on some principal amount of money, denoted by K ,  
and the cap rate is denoted by R. 
The floating rate of interest underlying the cap is not the short rate r ,  
but rather some market rate, and we will assume that over the interval 
[Ti-l, Ti] it is the LIBOR spot rate L(T,-1, Ti) (see Section 20.2). 

* 

Caplet i is now defined as the following contingent claim, paid at Ti, 

We now turn to the problem of pricing the caplet, and without loss of gener- 
, ality we may assume that K = 1. We will also use the notation x+ = max[x, 01, 

so the caplet can be written as 

IL where L = L(Ti-l,Ti). Denoting p(Ti-~, Ti) by p, and recalling that 

we have . + .  XI 
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where R* = 1 + 6R. It is, however, easily seen (why?) that a payment of 
(R*/p) ((l/R*) - p)f at time Ti is equivalent to a payment of R* ((l/R*) - p)+ 
at time Ti-l. 

Consequently we see that a caplet is equivalent to R* put options on an 
underlying Ti-bond, where the exercise date of the option is at Ti-l and the 
exercise price is 1/R*. An entire cap contract can thus be viewed as a portfolio 
of put options, and we may use the earlier results of the chapter to compute the 
theoretical price. 

A different approach to the pricing of caplets (and hence of caps) is to view 
the caplet claim in (24.62) as a formal option directly on the LIBOR rate, and 
noting that the LIBOR forward rate L(t; Ti, Ti+l) is a martingale under QT'+l . 
This approach will be investigated in some detail in the chapter on LIBOR 
market models below. 

24.9 Exercises 

Exercise 24.1 Derive a pricing formula for European bond options in the 
HeLee model. 7 

Exercise 24.2 A Gaussian Interest Rate Model 
Take as given a HJM model (under the risk neutral measure Q) of the form 

d f (t, T) = a(t ,  T) dt + u1 (T - t)dWl (t) + 0 2  e-a(T-t) dW2(t), 

where a1 and 02 are constants. 

(a) Derive the bond price dynamics. 
(b) Compute the pricing formula for a European call option on an underlying 

bond. 

Exercise 24.3 Prove that a payment of (lip) (A - p)+ at time Ti is equival- 
ent to a payment of (A - p)+ at time Tiwl, where p = p(T,-1, Ti), and A is a 
deterministic constant. 

Exercise 24.4 Prove Lemma 24.9. 

Exercise 24.5 Use the technique above in order to prove the pricing formula 
of Proposition 22.5, for bond options in the HwLee model. 

24.10 Notes 
The first usage of a numeraire different from the risk free asset B was probably 
in Merton (1973), where however the technique is not explicitly discussed. The 
first to explicitly use a change of numeraire change was Margrabe (1978), who 
(referring to a discussion with S. Ross) used an underlying stock as numeraire 
in order to value an exchange option. The numeraire change is also used in 
Harrison and Kreps (1979), Harrison and Pliska (1981) and basically in all later 
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works on the existence of martingale measures in order to reduce (as we did 
in Chapter 10) the general case to the basic case of zero short rate. In these 
papers, the numeraire change as such is however not put to systematic use as 
an instrument for facilitating the computation of option prices in complicated 
models. In the context of interest rate theory, changes of numeraire were then 
used and discussed independently by Geman (1989) and (in a Gaussian frame- 
work) Jamshidian (1989), who both used a bond maturing at a fixed time T as 
numeraire. A systematic study of general changes of numeraire has been carried 
out by Geman, El Karoui and h c h e t  in a series of papers, and many of the 
results above can be found in Geman et al. (1995). For further examples of the 
change of numeraire technique, see Benninga et  al. (2002). 



In the previous chapters we have concentrated on studying interest rate models 
based on infinitesimal interest rates like the instantaneous short rate and the 
instantaneous forward rates. While these objects are nice to handle from a math- 
ematical point of view, they have two main disadvantages: 

The instantaneous short and forward rates can never be observed in 
real life. 
If you would like to calibrate your model to c a p  or swaption data, then 
this is typically very complicated from a numerical point of view if you use 
one of the "instantaneous" models. 

A further fact from real life, which has been somewhat disturbing from a 
theoretical point of view is the following: 

For a very long time, the market practice has been to value caps, floors, and 
swaptions by using a formal extension of the Black (1976) model. Such an 
extension is typically obtained by an approximation argument where the 
short rate at one point in the argument is assumed to be determinstic, while 
later on in the argument the LIBOR rate is assumed to be stochastic. This 
is of course logically inconsistent. 
Despite this, the market happily continues to use Black-76 for the pricing 
of caps, floors, and swaptions. 

In a situation like this, where market practice seems to be at odds with academic 
I work there are two possible attitudes for the theorist: you can join them (the 

market) or you can try to beat them, and since the fixed income market does 
I 

not seem to collapse because of the use of Black-76, the more realistic alternative 
I 

seems to be to join them. 
Thus there has appeared a natural demand for constructing logically consist- 

I ent (and arbitrage free!) models having the property that the theoretical prices 
I 
I 

for caps, floors and swaptions produced by the model are of the Black-76 form. 
I This project has in fact been carried out very successfully, starting with Miltersen 
I et al. (1997), Brace et al, (1997) and Jamshidian (1998). The basic structure of 

the models is as follows: 

In stead of modeling instantaneous interest rates, we model discrete mar- 
ket rates like LIBOR rates in the LIBOR market models, or forward swap 
rates in the swap market models. 
Under a suitable choice of numeraire(s), these market rates can in fact be 
modeled log normally. 
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The market models will thus produce pricing formulas for caps and fioors 
(the LIBOR models), and swaptions (the swap market models) which are 

y of the Black-76 type and thus conforming with market practice. 
F By construction the market models are thus very easy to calibrate to mar- 
: ket data for caps/floors and swaptions respectively. They are then used to 

price more exotic products. For this later pricing part, however, we will 
typically have to resort to some numerical method, like Monte Carlo. 

25.1 Caps: Definition and Market Practice 
In this section we discuss LIBOR caps and the market practice for pricing and 
quoting these intruments. To this end we consider a fixed set of increasing 
maturities To, TI,. . . , TN and we define ai, by 

The number cri is known as the tenor, and in a typical application we could for 
example have all ai equal to a quarter of a year. 

Definition 25.1 W e  let pi(t) denote the zero coupon bond price p(t, T,) and let 
Li(t) denote the LIBOR forward rate (see Section 20.2), contracted at t, for the 
period [Ti-1, Ti], 2.e. 

We recall that a cap with cap rate R and resettlement dates To,. . . , TN is 
a contract which at time Ti gives the holder of the cap the amount 

for each i = 1, . . . , N. The cap is thus a portfolio of the individual caplets 
XI,. . . , XN. We note that the forward rate Li(Ti-1) above is in fact the spot rate 
at time for the period [Ti-1, Ti], and determined already at time The 
amount Xi is thus determined at Ti-1 but not payed out until at time Ti. We 
also note that, formally speaking, the caplet Xi is a call option on the underlying 
spot rate. 

The market practice is to use the Black-76 formula for the pricing of caplets. 

Definition 25.2 (Black's Formula for Caplets) The Black-76 formula for 
the caplet 

Xi = ai - ma~[L(Ti -~ ,  T,) - R, 01, (25.3) 

is given by the expression 



where 

LIBOR AND SWAP MARKET MODELS 

The constant ui is known as the B lack  volat i l i ty  for caplet No. i. In order to 
make the dependence on  the Black volatility ai explicit we will sometimes write 
the caplet price as ~ a ~ l f i t ;  a,). 

It is implicit in the Black formula that the forward rates are lognormal (under 
some probability measure), but until recently there was no firm theoretical 
base for the use of the Black-76 formula for caplets. One of the main goals 
of this chapter is precisely that of investigating whether it is possible to build 
an arbitrage free model object which produces formulas of the Black type for 
caplet prices. 

In the market, cap prices are not quoted in monetary terms but instead in 
terms of impl ied  Black volatil i t ies,  and these volatilities can furthermore be 
quoted as flat volatil i t ies or as s p o t  volatil i t ies (also known as forward 
volat i l i t ies)  . They are defined as follows. 

Let us consider a fixed date t ,  the fixed set of dates To, TI,. . . , TN where 
t <_ To, and a fixed cap rate R. We assume that, for each i = 1,. . . , N, there 
is a traded cap with resettlement dates To, TI, . . . ,Ti, and we denote the corres- 
ponding observed market price by C a p y .  From this data we can easily compute 
the market prices for the corresponding caplets as 

with the convention C a p r ( t )  = 0. Alternatively, given market data for caplets 
we can easily compute the corresponding market data for caps. 

Def in i t ion  25.3 Given market price data as above, the implied Black volatilities 
are defined as follows. 

The implied flat  volatil i t ies a1,. . . , (TN are defined as the solutions of the 
equations 

i 

C a p y ( t )  = capl:(t;  i i ) ,  i = 1, . . . , N .  (25.8) 
k=l 

The implied forward or s p o t  volatilities al , . . . ,*N are defined as solu- 
tion.~ of the equations 

A sequence of implied volatilities el, . . . , i 7 ~  (Bat or spot) is called a volatility 
t e r m  s t ruc ture .  Note that we use the same notation a, for flat as well as for 
spot volatilities. In  applications this will be made clear by the context. 
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Summarizing the formal definition above, the flat volatility ai is volatility implied 
by the Black formula if you use the same volatility for each caplet in the cap 
with maturity Ti. The spot volatility oi is just the implied volatility from caplet 
No. i. The difference between flat and forward volatilities is thus similar to the 
difference between yields and forward rates. A typical shape of the volatility 
term structure (flat or spot) for caps with, say, a three months tenor is that it 
has an upward hump for maturities around two-three years, but that the long 
end of the curve is downward sloping. 

25.2 T h e  LIBOR Market Model 

We now turn from market practice to the construction of the so called LIBOR 
market models. To motivate these models let us consider the theoretical arbitrage 
free pricing of caps. The price q ( t )  of a caplet No. i is of course on the one hand 
given by the standard risk neutral valuation formula 

Capli(t) = aiEQ e- J? TT.'(.) d" . [ max[Li(Tj-1)-R,~]13t], i = l ,  ..., N, 

but it is much more natural to use the Ti forward measure to obtain 

Capli(t) = aipi(t)~Ti [max [Li(Ti-1) - R, 011 Ft] , i = 1 . . . , N ,  (25.10) 

where ~~i denotes expectation under the QT'. In order to have a more compact 
notation we will from now on denote Q T 9 y  Qi. 

The focal point of the LIBOR models is the following simple result. 

Lemma 25.4 For every i = 1,. . . , N, the LIBOR process L, is a martingale 
under the comsponding fornard measure QTj, on the internal [0, Ti-11. 

Proof We have 
pi-1 (t) ai. Li(t) = - - 1. 
pi (t) 

The process 1 is obviously a martingale under any measure. The process pi- 1 /pi 
is the price of the bond normalized by the numeraire pi. Since p, is the 
numeraire for the martingale measure QTi, the process piPl/pi is thus trivially 
a martingale on the interval [O, Ti-l]. Thus aiLi is a martingale and hence Li is 
also a martingale. 

The basic idea is now to define the LIBOR rates such that, for each i, Li(T) 
will be lognormal under "its own" measure Q2, since then d l  caplet prices in 
(25.10) will be given by a Black type formula. In order to do this we consider 
the following objects as given a priori 

A set of resettlement dates To, . . . , TN. 
An arbitrage free market bond with maturities To,. . . , TN. 
A k-dimensional ~ ~ - ~ i e n e r  process WN. 
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4 For each i = 1,. . . , N a deterministic function of time ui(t). 
An initial nonnegative forward rate term structure L1(0), . . . , LN(O). 
For each i = 1,. . . , N, we define Wi as the k-dimensional Qi-Wiener 
process generated by WN under the Girsanov transformation QN + Qi. 

Definition 25.5 If the LIBOR forward rates have the dynamics 
I 

dLi(t) = Li(t)oi(t) dwi  (t), i = 1, . . . , N ,  

where Wi is Qi- Wiener as described above, then we say that we have a discrete 
tenor LIBOR market model with volatilities 01, . . . , ON. 

From the definition above it is not obvious that, given a specification of 
01 , . . . , ON, there exists a corresponding LIBOR market model. In order to arrive 
at the basic pricing formulas a quickly as possible we will temporarily ignore the 
existence problem, but we will come back to it below and thus provide the 
missing link. 

25.3 Pricing Caps in the LIBOR Model 
Given a LIBOR market model, the pricing of a caplet, and hence also a cap, is 
trivial. Since Li in (25.11) is just a GBM we obtain 

Since ui is assumed to be deterministic this implies that, conditional on Ft, 
Li(T) is lognormal, i.e. we can write 

where Y,(t, T) is normally distributed with expected value 

and variance 

(25.13) 

Using these results and (25.10), a simple calculation gives us the pricing formula 
for caps. Alternatively we see that the expectation Ei for the cap price in (25.10) 
is just the call price, within the Black-Scholes framework, in a world with zero 
short rate on an underlying traded asset with lognormal distribution as above. 

Proposition 25.6 In  the LIBOR market model, the caplet prices are given by 
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where 

with C, defined by (25.13). 

We thus see that each caplet price is given by a Black type formula. 

Remark 25.3.1 Sometimes it is more convenient working with a LIBOR model 
of the form 

dLi(t) = Li( t )~i( t )  dwi(t), i = 1, . . . , N, (25.17) 

where ui(t) is a scalar deterministic function, Wi is a scalar @-wiener process. 
Then the formulas above still hold if we replace llu,112 by u:. We can also allow 
for correlation betweep the various Wiener processes, but this will not affect the 
pricing of caps and floors. Such a correlation will however affect the pricing of 
more complicated products. 

25.4 Terminal Measure Dynamics and Existence 

We now turn to the question whether there always exists a LIBOR market model 
for any given specification of the deterministic volatilities 01,. . . , UN. In order 
to even get started we first have to specify all LIBOR rates L1,. . . , LN under 
one common measure, and the canonical choice is the terminal measure QN. 

Our problem is then basically that of carrying out a two stage program: 

Specify all LIBOR rates under QN with dynamics of the form 

dLi(t)=L*(t)pi(t,L(t))dt+Li(t)ui(t)dwN(t), i = l , . . . , N ,  (25.18) 

where L(t) = [Ll (t), . . . , LN (t)]*, and p, is some deterministic function. 
Show that, for some suitable choice of p1, . . . , p ~ ,  the QN dynamics in 
(25.18) will imply QZ dynamics of the form (25.11). 

In order to carry out this program we need to see how wN is transformed into 
Wi as we change measure from QN to Qi. We do this inductively by studying 
the effect of the Girsanov transformation from Q' to QZ-l. 

Remark 25.4.1 We have a small but irritating notational problem. LIBOR 
rates are typically denoted by the letter "L" , but this is also a standard notation 
for a likelihood process. In order to avoid confusion we therefore introduce the 
notational convention that, in this chapter only, likelihood processes will be 
denoted by the letter q. In particular we introduce the notation 
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In order to get some idea of how we should choose the QN drifts of the LIBOR 
rates in (25.18) we will now perform some informal calculations. We thus (inform- 
ally) assume that the LIBOR dynamics are of the form (25.18) under QN and 
that they are also of the form (25.11) under their own martingale measure. From 
Proposition 24.4 we know that the Radon-Nikodym derivative 4 is given by 

~ i ( 0 )  . p j o  4 (t) = - 
~ j ( 0 )  ~ i ( t )  ' 

and in particular 

pi-l(t) qj-l ( t )  = a* . - = ai (1 + aiLi(t)) , 
pi 0 )  

where ai = pi(O)/pi-l(0). From this formula we can now easily compute the q;-l 
dynamics under Q" as 

dq;-' (t) = aiai dLi (t). (25.22) 

Assuming (still informally) that the Li-dynamics are as in (25.11), and using 
(25.1) we then obtain 

dq;-l (t) = aiai Li (t)ui (t) dwi(t) (25.23) 

i-1 = qi (t)aiair ("-I - (t) - 1 u (t) d w i t )  (25.25) 
qi (t) pi(t) 

Using (25.21) we finally obtain 

ui (t) d w i  (t). 
a 2 

Thus, the Girsanov kernel for qj-l is given by 

so from the Girsanov Theorem, we have the relation 

dwi(t)  = aiLi (t) ~ t ( t )  dt + dwi-'(t). 
1 + aiLi(t) 

(25.28) 

Applying this inductively we obtain 
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and plugging this into (25.11) we can finally obtain the QN dynamics of L, 

All this was done under the informal assumption that there actually existed 
a LIBOR model satisfying both (25.11) and (25.18). We can however easily turn 
the argument around and we have the following existence result. 

Proposition 25.7 Consider a given volatility structure 01, a ~ ,  where each a, 
is assumed to be bounded, a probability measure QN and a standard QN- Wiener 
process WN. Define the processes L1,. . . , LN by 

ak(t)at(t) d t + ~ . ( t ) a i ( t ) d ~ ~ ( t ) ,  
1 + akLk(t) ) 

(25.30) 
for i = 1,. . . , N where we use the convention c:(. . .) = 0. Then the Q"-dynamics 
of L, are given by (25.11). Thus there exists a LIBOR model with the given 
volatility structure. 

Proof Given that (25.30) has a solution for i = 1,. . . , N, and that the Girsanov 
kernel in (25.27) satisfies the Novikov condition, the proof consists of exactly the 
calculations above. As for the existence of a solution of (25.30), this is trivial for 
i = N since then the equation reads 

d L ~ ( t )  = L i ( t ) ~ ~ ( t )  dwN(t) ,  

which is just GBM and since UN is bounded a solution does exist. Assume now 
that (25.30) admits a solution for k = i + 1, . . . , N. We can then write the ith 
component of (25.30) as 

where the point is that pi does only depend on Lk for k = i + 1,. . . , N and 
not on Li. Denoting the vector (Li+l, . . . , LN) by L:~ we thus have the explicit 
solution 

t 1 
Li(t) = ~ i ( 0 )  exp{Jd (Pi L I N + ~ ( ~ ) ]  - ij I I ~ ~ I I ~ ( ~ ) )  dS} 

x exp{L /Ac [s, LG,(~)] ~wN(.)} 7 

1 thus proving existence by induction. It also follows by induction that, given an 
initial positive LIBOR term structure, all LIBOR rate processes will be positive. 
From this we see that the Girsanov kernel in (25.27) is also bounded and thus it 
satisifies the Novikov condition. 
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Remark 25.4.2 Sometimes it is more convenient working with a LIBOR model 
of the form 

dLi(t) = Li(t)ui(t) dWi (t), i = 1, . . . , N, (25.31) 

where ui(t) is a scalar deterministic function, Wi is a scalar Qz-Wiener process, 
and where we assume a given correlation structure dWi(t) dWj(t) = pij. This 
can easily be obtained by a small variation of the arguments above, and eqn 
(25.30) is then replaced by 

(25.32) 
where W? is the QN-wiener process generated by W, under the Girsanov 
transformation Q' + QN. 

25.5 Calibration and Simulation 
Suppose that we want to price some exotic (i.e. not a cap or a floor) interest 
rate derivative, like a Bermudan swaption, performing this with a LIBOR model 
means that we typically carry out the following two steps: 

Use implied Black volatilities in order to calibrate the model parameters 
to market data. 

a Use Monte Carlo (or some other numerical method) to price the exotic 
instrument. 

In this section we mainly discuss the calibration part, and only comment briefly 
on the numerical aspects. For numerics and simulation see the Notes. 

Let us thus assume that, for the resettlement dates To,. . .., TN, we are given 
an empirical term structure of implied forward volatilities, 81, . . . , 8~ i.e. the 
implied Black volatilities for all caplets. For simplicity we assume that we are 
standing at time t = 0. Comparing the Black formula (25.4) with (25.14) we see 
that in order to calibrate the model we have to choose the deterministic LIBOR 
volatilities ul (.), . . . , UN (.), such that 

Alternatively, if we use a scalar Wiener process for each LIBOR rate we must 
choose the scalar function ui(.) such that 



CALIBRATION AND SIMULATION 377 

This is obviously a highly underdetermined system, so in applications it is 
common to make some structural assumption about the shape of the volatility 
functions. Below is a short and incomplete list of popular specifications. We use 
the formalism with a scalar Wiener process for each forward rate, and we recall 
that Li lives on the time interval 0 5 t 5 We also introduce the temporary 
convention that T-1 = 0: 

1. For each i = 1, . . . , N, assume that the corresponding volatility is constant 
in time, i.e. that 

oj (t) = a, 

for 0 5 t 
2. For each i = 1, .  . . , N, assume that oi is piecewise constant, i.e. that 

o,(t)=oij ,  forTj-1 < t I T , ,  j = O  ,..., i - 1 .  

3. As in item 2, but with the requirement that the volatility only depends 
on the number of resettlement dates left to maturity, i.e. that 

~ i ~ = & ,  for?-1 < t L T j ,  j = O  ,..., i - I , ,  

where a, . . . , ON are fixed numbers. 
4. As in item 2, with the further specification that 

0 . .  23 = p. , Y ~ ,  . forTj-l<t<T', j = O  ,..., 2-1, 

where pi and y, are fked numbers. 
5. Assume some simple functional parameterized form of the volatilities such 

as for example 
oi(t) = qa(Ta-l - t)eP'(T*-'-t) 

where qa(.) is some polynomial and pi is a real number. 

Assuming that the model has been calibrated to market data, Monte Carlo 
simulation is the standard tool for computing prices of exotics. Since the SDEs 
(25.30) and (25.32) are too complicated to allow analytical solutions, we have to 
resort to simulation of discretized versions of the equations. 

The simplest way to discretize (25.30) is to introduce a grid of length h and 
i use the following recursive Euler scheme: 

L, ((n + 1)h) = L, (nh) - La (nh) ( I * ~ ~ ( ~ ~ )  o,(nh)o;(nh) h 
k=i+l ( "  1 -k akLk(nh) 

+ ~ , ( n h ) a ~ ( n h ) { ~ ~ ( ( n  + 1)h) - wN(nh))  . 
) 
(25.35) 
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However, from the point of view of numerical stability it is preferable to use 
a discretization of the SDE for ln(Li). Using It8 we easily obtain 

N C ukLk(t) dt + ui(t) dwN(t). d ln 4 ( t )  = - -u:(t) + ui(t)o;(t) 
+ akLk(t) k=i+l ) 

The point of this is that we now have a deterministic diffusion part, which leads 
to improved convergence of the corresponding discrete scheme 

N 

lnL,((n+ 1)h) = lnLi(nh) - h -ai (n ) ukLk(nh) u,(nh)u ( + k=i+l l+ukLk(nh)  

+ ui(nh) {wN((n + 1)h) - wN(nh)) . 

25.6 The Discrete Savings Account 
In the LIBOR models discussed above there exists a forward neutral martingale 
measure Q" = QT* for each i = 1, . . . , N, but so far we have not seen any risk 
neutral measure QB for the bank account B, (also known as the savings account) 
and in fact we have not even seen a bank account process in the model. A natural 
question is therefore to investigate whether the LIBOR model will automatically 
imply a money account process B, as well as a corresponding risk neutral measure 
QB. 

In this context it is, however, not quite clear what one would mean by a bank 
account. Since we are working in continuous time, one possibility is to look for 
a continuous bank account of the form we have seen earlier in the book, i.e. one 
with dynamics 

dB(t) = r(t)B(t) dt, 

where r is the continuously compounded short rate. However, since we have 
modeled discrete forward rates it would be unnatural to mix those with a con- 
tinuously compounded short rate, so the natural choice would be to look for a 
bank account which is resettled at the points To,. . . , TN. 

In order to construct the bank account we recall that the essential property 
is that it should be riskless on a local time scale, i.e. riskless between T, and 
TN for each n. The obvious way to achieve this is by forming the discretely 
rebalanced self financing portfolio specified by constantly rolling over the bond 
of the shortest remaining maturity. More formally, suppose that we are standing 
at To and consider the following portfolio strategy: 

1. At To invest one unit of money into the TI bond. 
2. At Tl sell the TI bond and invest everything in the T2 bond. 
3. Repeat this procedure recursively until TN. 
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Denoting the value of this self financing portfolio by B we immediately have 

, and using the relation p(Tn, TN) = [1+ alvL(Tn, TN)]-' we obtain the discrete 
B dynamics as 

or, more explicitly 
n-1 ' I1 

B(Tn) = rI ,Tk, Tk,,) k=O 

1 alternatively, 
I n-1 

B(Tn) = P + at+lL(Tk, Tk+l)]. (25.42) 
k=O 

We note that B is indeed locally risk free in the sense that B(TN) is known 
already at time Tn, i.e. as a discrete time process B is predictable in the sense of 
Appendix C. 

/ We can now easily determine the martingle measure corresponding to the 
1 discrete saving account. 
I 

Proposition 25.8 The Radon-Nikodym derivative for the change from QN to 
QB is given by 

Proof From Proposition 24.4 we have (on 3TN)  

and since P(TN,TN) = 1 and B(0) = 1 we have the result. 

25.7 Swaps 

i We now move from the LIBOR Market Models to the the Swap Market Models. 

I Consider a fixed set of resettlement dates To, TI,. . . , TN, with the usual notation 
a* = Ti - Ti-l. From Section 20.3.3 we recall that in an interest rate swap, a 

I set of floating rate payments (the jloaiing leg) are exchanged for a set of fixed 
payments (the fixed leg). The terminology for swaps always refers to the fixed 
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lli leg, so the holder of a reciever swap with tenor TN - Tn will, at the dates 
Tn+1,. . . , TN,  receive the fixed leg and pay the floating leg. For a payer swap 
the payments go in the other direction. For short we will refer to this swap as  a 
Tn x (TN - Tn) swap. We now make this precise. 

Definition 25.9 The payments i n  a Tn x (TN -Tn) payer swap are as follows: 

Payments will be made and received at Tn+1, Tn+2, . . . , TN . 
a For every elementary period [Ti, Ti+l],  i = n, . . . , N - 1, the LIBOR rate 

Li+l(Ti) is set at time Ti and the floating leg 

ai+l .  Li+l (Ti), (25.44) 

is received at Ti+l. 

111 a For the same period the jixed leg 

ai+l . K (25.45) 

is payed at Ti+l. 

It is easy to see (exercise for the reader) that the arbitrage free value, at 
t < Tn, of the floating payment made at Ti is given by 

so the total value of the floating side at time t for t 5 Tn equals 

The total value at time t of the fixed side equals 

N - 1  N 

C P(t, Ti+l)ai+tK = K C aiP,(t), 
i=n i=n+l 

so the net value PS:(t; K )  of the Tn x (TN - Tn) payer swap at time t < Tn is 
thus given by 

From Section 20.3.3 we recall the following definition. 

Definition 25.10 The par or forward swap rate ~ z ( t )  of the Tn x (TN-Tn) 
swap is the value of K for which PS;(t; K )  = 0, i.e. 
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The first crucial observation to make at this point is that in the formula for the 
N par swap rate we can interpret the denominator xi=,+, ajpi(t) as the value, at 

t of a traded asset, namely as a buy-and-hold portfolio consisting, for each i, of 
ai units of the zero coupon bond maturing at Ti. This object is so important 
that we give it a separate name. 

Definition 25.11 For each pair n, k with n < k, the process Sk(t) is defined by 

sk(t) = C nip@, Ti). (25.48) 
i=n+l 

S: is referred to as the accrual factor or as t h e  present value of a basis 
point. 

With this terminology we can express the par swap rate as 

In the market there are no quoted prices for different swaps. Instead there 
are market quotes for the par swap rates R z ,  and we see that from these we can 
easily compute the arbitrage free price for a payer swap with swap rate K by 
the formula 

PS: (t; K )  = (R;(t) - K) S: (t). (25.50) 

25.8 Swaptions: Definition and  Market Practice 

The definition of a swaption (short for "swap option") is as follows. 

Definition 25.12 A Tn x (TN - T,) payer swaption with swaption strike 
K is a contract which at the exercise date T, gives the holder the right but not 
the obligation to enter into a T, x (TN - T,) swap with the fied swap rate K.  

We thus see that the payer swaption is a contingent Tn-claim X: defined by 

X: = max [PS,N(T,; K); 01 , (25.51) 

which, using (25.49), we can write as 

N Xn = max [R: (T,) - K;  01 S: (T,). 

Expressed in the numeraire Sf, the swaption is thus formally a call option on 
R r  with strike price K .  The market practice is to compute swaption prices by 
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using a formal extension of the Black-76 formula and to quote prices in terms of 
the implied Black volatilities. 

Definition 25.13 (Black's Formula for Swaptions) The Black-76 formula 
for a T, x (TN - T,) payer swaption with strike K is defined as 

where 

The constant I J , , ~  is known as the Black volatility . Given a market price for 
the swaption, the Black volatility implied by the Black formula is referred to as 
the implied Black volatility. 

As was the case with the Black formula for caps, the Black swaption formula 
has been used by the market for a long time, without any explicit coherent 
underlying model. Our task is thus to build an arbitrage free model with the 
property that the theoretical prices derived within the model have the structure 
of the Black-76 formula above. 

25.9 The Swap Market Models 
From (25.52) it is clear that the natural choice of numeraire for swaptions is the 
accrual factor Sr, and since the accrual factor has an intepretation as the value 
of a traded asset it is a bona fide choice of numeraire from the point of view of 
martingale measures. We now have the following simple but important result. 

Lemma 25.14 Denote the martingale measure for the numeraire S: by Q:. 
Then the forward swap rate R: is a Q:-martingale. 

Proof This follows immediately from the fact that R: is the value of a self 
financing portfolio (a long T,, bond and a short Tk bond), divided by the value 
of the self-financing portfolio Sk. 

Thus the forward swap rate, like the LIBOR rates earlier, is a martingale under 
a suitable choice of numeraire, and the accrual factor plays the same role for 
swap market models as the bond prices did for the LIBOR models. The basic 
idea in the swaption market model which we will discuss below is then simply to 
model the forward swap rates Rr lognormally as GBM under the appropriate 
measures. 

Definition 25.15 Given the resettlement dates To, TI, TN,  consider a fixed sub- 
set N of all positive integer pairs (n, k )  such that 0 I n < k I N .  Consider 
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furthermore, for each (n, k) E N ,  a deterministic function of time un,k(-). A 
swap market model with the volatilities u,,k is then specified by assuming 
that the par swap rates have dynamics of the form 

where W: is (possibly multidimensional) Wiener under Qk . 
Remark 25.9.1 Because of the interrelations between different par swap rates, 
we cannot model all possible swap rates R: for 0 5 n < k 5 N simultaneously, 
so in a concrete model we have to restrict ourselves to modeling only a subset 
N of all par swap rates. In a model with N + 1 maturity dates we can only hope 
to model N independent swap rates, and typical choices of N are given by the 
following examples: 

A regular swap market model is specified by modeling, for a fixed N, 
the par swap rates hN, RY, .  . . , R: i.e. 

A reverse swap market model is specified by modeling, for a fixed N, 
the swap rates R;, Ri, . . . , hN i.e. 

25.10 Pricing Swaptions in  t h e  Swap Market Model 

Given a swap market model, the pricing of a Tn x (TN - T,) swaption is surpris- 
ingly trivial. Formula (24.6) immediately gives us the following pricing formula 
for the payer swaption (regardless of the specific form of the model): 

P S N ~ ( ~ )  = ~ f ( t )  E ~ ' ~  [max [R?(T,) - K; 01 I 3 t ]  , 0 < t 5 T,. (25.57) 

Since R:, defined in (25.56), is just GBM we obtain 

F'urthermore, since u, is assumed to be deterministic this implies that, condi- 
tional on Ft , R:(T,) is lognormal, i.e. we can write 

where Y f l ( t ,  T,) is normally distributed with expected value 



384 LIBOR AND SWAP MARKET MODELS 

and variance 
T, 

2 
En7, = 1 ~ ~ " n , ~ ( ~ ) ~ ~ 2  ds- (25.60) 

As for the LIBOR mode1;a simple calculation easily gives us the swaption pricing 
formula. 

Proposition 25.16 In the swap market model (25.56), the Tn x (TN -Tn) payer 
swaption price with strike K is given by 

where 

We thus see that each swaption price is given by a Black type formula. 

Remark 25.10.1 Sometimes it is more convenient working with a swap market 
model of the form 

d~:(t) = R;(~)U~,N (t) d~ ,? ( t ) ,  (25.64) 

where u n , ~ ( t )  is a scalardeterministic function, W: is a scalar @-Wiener pro- 
cess. Then the formulas above still hold if we replace ((un,~1I2 by u:,~. We can 
also allow for correlation between the various Wiener processes, but this will not 
affect the swaption prices. Such a correlation will however affect the pricing of 
more complicated products. 

In this section, we have modeled each par swap rate R: as GBM under it's 
own martingale measure Q:, and this led to the Black formula for swaptions. In 
order to price more exotic products we will typically have to resort to numerical 
methods like Monte Carlo, and then there is a need to specify the dynamics of 
the relevant par swap rates under a single martingale measure. This will be done 
in the next two sections. 

25.11 Drift Conditions for the Regular Swap Market Model 

In a regular swap market model, we model R: for a fixed N and 0 5 n 5 N - 1, 
so the obvious choice of a common measure for all swap rates is Qg-,, which 
is nothing else (why?) than the TN-forward measure QTN. Our problem is to 
determine the various drift terms, and since this is somewhat messy it turns out 
to be convenient to have TN+l as the last payment date rather than TN. We will 
thus model G~+',. . . , R:+' and our problem is to determine the drift terms of 
these par swap rates under the terminal measure Q:+'. 
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Since the diffusion term of Rf+l will be the same under Q:+' as under 
Q;+l, the Q:+' dynamics of RE+' are of the form 

where w{+' is a Q:+l Wiener process, and our problem is to determine the 
drift term 

The determination of the par swap drifts involves solving a backward linear 
difference equation, and for completeness' sake we now recall a general result for 
such equations. 

Proposition 25.17 The linear backward difference equation 

xn = An+lxn+l+ bn+l, n = 0,. . . , N - 1, (25.66) 

has the solution 

N with the convention nj=N+l a j  = 1. 

Proof Exercise for the reader. 

We may now state and prove the drift condition. 

Proposition 25.18 Under the terminal measure Q;+', the Rf+l dynamics 
are of the form 

where the drift term is given by 

where 

(1 + ~ J C R X )  aj+lRj+l~;+l, 1 (25.69) j=n 

and where Zn is defined by 
Sn Z n =  -. (25.70) 

PN+I 
Before going on with the proof we recall that we consider a regular swap 

market model for hN+l, R;+', . . . , R:+', and since the super index N + 1 will 
be the same throughout the argument we henceforth suppress the superindex. 
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Instead of R;+l, Q;+l, and &fl we will thus write h, Qn, and pn and 
similarly for all other terms. 

For easy reference we also recall the following relations: ~ 

where W, is Qn-Wiener. 

Proof We start by noticing that SN = p ~ + 1 ,  SO QN is in fact the TN+l forward 
measure with numeraire p ~ + 1 .  From Proposition 24.4 we know that, with 

we have 
Ln(t) = Tnzn (t), 

where 
Sn Zn = - 9 m=zil (o) .  

PN+l 
Since Ln is a QN martingale it must have QN dynamics of the form 

so from (25.73), (25.65), and Girsanov's Theorem it follows that 

It thus remains to determine the process pn and to do this we must determine 
the Zn dynamics from (25.74). From (25.72) we have 

SQ = sn+l+  Un+lPn+l, 

so from (25.74) we have 

From (25.71) we have 
Pn+l = Rn+lSn+l+ PN+I, 
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and plugging this into (25.77) gives us the recursion 

zn = zn+1(1+ %+I &+I) + (25.78) 

From this formula, (25.65), and (25.75) we obtain the QN dynamics 

dZn = Zn+1(1+ an+l&+l) &+I ~ W N  + Zn+lan+l~&+l~n+l ~ W N ,  (25.79) 

where we have used the fact that, under Q N ,  Zn has zero drift. We thus have 

zn+l 
dZn = Zn-{(l+ an+l&+l) (~:+1+ an+lRn+lCJn+l) ~ W N ,  (25.80) 

zn 

so from (25.75) we obtain the following recursion for 9,. 

/ From Proposition 25.17 we obtain the solution 
I 

where 

I A simple calculation gives us 

and we are done. 

25.12 Concluding Comment 

I It can be shown that, given a swap market model, the LIBOR rates will not be 
lognormal. Thus LIBOR market models and swap market models are in general 

I incompatible. 
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25.13 Exercises 
Exercise 25.1 Prove that the arbitrage free value at t 5 T,  of the Ti+l claim 

is given by 
~ ( t ,  Ti)  - ~ ( t ,  Ti+l) .  

Exercise 25.2 Convince yourself that the swap measure QE-,  equals the 
forward measure QTN . 
Exercise 25.3 Show that the arbitrage free price for a payer swap with swap 
rate K is given by the formula 

Exercise 25.4 Prove Proposition 25.17. 

25.14 Notes 
The basic papers on the LIBOR and swap market models are Miltersen et al. 
(1997), Brace et al. (1997), and Jamshidian (1997). Since these basic papers vere 
published there has appeared a huge literature on the subject. Very readable 
accounts can be found in Hunt and Kennedy (2000), Pelsser (2000) and the 
almost encyclopedic Brigo and Mercurio (2001). 
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FORWARDS AND FUTURES 

Consider a financial market of the type presented in the previous chapter, with 
an underlying factor process X ,  and with a (possibly stochastic) short rate r. (If 
r is stochastic we include it, for brevity of notation, as one component of X.) We 
assume that the market is arbitrage free, and that pricing is done under some 
fixed risk neutral martingale measure Q (with, as usual, B as numeraire). 

Let us now consider a fixed simple T-claim y, i.e. a claim of the form 
y = q(XT), and assume that we are standing at time t. If we buy Y and pay 
today, i.e. at time t, then we know that the arbitrage free price is given by 

n ( t ; y )  = G(t,Xt;T,y), (26.1) 

where the pricing function G is given by 

G(t, 2; T, Y )  = E$ [..eXP { - ~ ' r b ) d S ) ]  , (26.2) 

and the payment streams are as follows: 

1. At time t we pay n( t ;  y )  to the underwriter of the contract. 
1 2. At time T we receive y from the underwriter. 

There are two extremely common variations of this type of contract, namely 
forwards and futures. Both these contracts have the same claim y as their 
underlying object, but they differ from our standard contract above by the way 
in which payments are made. 

26.1 Forward Contracts 
We will start with the conceptually easiest contract, which is the forward con- 
tract. This is an agreement between two parties to buy or sell a certain underlying 
claim at a fixed time T in the future. The difference between a forward contract 
and our standard claims studied so far is that for a forward contract all payments 
are made at time T. To be more precise we give a definition. 

Definition 26.1 Let y be a contingent T-claim. A forward contract on y ,  
contracted at t, with time of delivery T, and with the forward price 
f (t; T, Y), is defined by the following payment scheme: 

1 . The holder of the forward contract receives, at time T, the stochastic 
amount Y from the underwriter. 



390 FORWARDS AND FUTURES 

The holder of the contract pays, at time T, the amount f (t; T, y )  to the 
underwriter. 
The forward price f (t; T ,  y )  is determined at time t .  
The forward price f (t; T, 7 )  is determined i n  such a way that the price of 
the forward contract equals zero, at the time t when the contract is made. 

Forward markets are typically not standardized, so forward contracts are 
usually traded as OTC ("over the counter") instruments. Note that even if the 
value of a specific forward contract equals zero at the time t of writing the 
contract, it will typically have a nonzero market value which varies stochastically 
in the time interval [t, TI. 

Our immediate project is to give a mathematical formalization of the defin- 
ition above, and to derive a theoretical expression for the forward price process 
f (t; T, 7 ) .  This turns out to be quite simple, since the forward contract itself is 
a contingent T-claim <, defined by 

We are thus led to the following mathematical definition of the forward price 
process. 

Definition 26.2 Let y be a contingent T-claim as above. By the forward price 
process we mean a process f (t; T, Y) of the form f (t; T ,  Y) = f ( t ,  Xt; T, y), 
where f is some determinstic function, with the property that 

Writing the forward price as f ( t ,  Xt ; T,  Y) formalizes the fact that the forward 
price is determined at t ,  given the information that is available at that time. 

We now have the following basic formula for the forward price process. 

Proposition 26.3 The forward price process is given by any of the following 
expressions: 

where 

2( 

A 
as 
t i  
tl: 
tl: 

D 
w 
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I Proof Using (26.3) and risk neutral valuation we immediately have the 
, following identities, where we write f (t, x) instead of f (t, x; T, Y) 

. ex] 

%" = n( t ;  Y) - f (t, Xt)p(t, T). 

This immediately gives us (26.4)-(26.6). The relation (26.7) then follows 
from (26.6). 

Note that when dealing with forward contracts there is some risk of conceptual 
time with t 5 

1. The forward price f (s; T, y )  which is paid to the underwriter at  time T 

i for a forward contract made at time s. 
2. The (spot) price, at  time s ,  of a fixed forward contract, entered at  time t, 

i and with time T of delivery. This spot price is easily seen to be equal to 

=(s; Y) - ~ ( 8 ,  T)f (t; T, Y). 

26.2 Futures Contracts 
A futures contract is very much like a forward contract in the sense that it is an 
agreement between two parties to buy or sell a certain claim at  a prespecified 

the 
:ive 

two 
a ver 

contracts 
,bal defini. 

lies in 
tion of 

the futures contract. 

Definition 26.4 Let y be a contingent T-claim. A futures contract on y, 
with time of delivery T, is a financial asset with the following properties: 

(i) At every point of time t with 0 <_ t <_ T ,  there k s t s  in the market a quoted 
object F(t ;  T, y ) ,  lcnown as the futures price for Y at  t, for delivery at T. 

(ii) At the time T of delivery, the holder of the contract pays F(T;  T, y )  and 
receives the claim y .  

(iiz) During an arbitrary time interval (s, t] the holder of the contract receives 
the amount F(t ;  T, Y) - F(s;  T, Y). 

(zv) The spot price, at  any time t prior to delivery, of obtaining the futures 
contract, is by definition equal to zero. 
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A rough way of thinking about a futures contract is to regard it as a forward con- 
tract where the payments are made continuously in time in the way described 
above, rather than all payments being made at time T. As the forward price 
increased, you would then get richer, and as the forward price decreased you 
would lose money. The reason that this way of looking at the futures contract is 
not entirely correct is the fact that if we start with a standard forward contract, 
with its associated forward price process f ,  and then introduce the above pay- 
ment scheme over time, this will (through supply and demand) affect the original 
forward price process, so generically we will expect the futures price process F 
to be different from the forward price process f .  The payment schedule above is 
known as "marking to market"; it is organized in such a way that the holder of 
a futures position, be it short or long, is required to keep a certain amount of 
money with the broker as a safety margin against default. 

Futures contracts, as opposed to forward contracts, are traded in a stand- 
ardized manner at an exchange. The volumes in which futures are traded over 
the world are astronomical, and one of the reasons for this is that on many 
markets it is difficult to trade (or hedge) directly in the underlying object. A 
typical example is the commodity market, where you actually have to deliver 
the traded object (tons of copper, timber, or ripening grapes), and thus are not 
allowed to go short. In these markets, the futures contract is a convenient fin- 
ancial instrument which does not force you to physically deliver the underlying 
object, while still making it possible for you to hedge (or speculate) against the 
underlying object. 

We now note some properties of the futures contract: 

a From (ii) and (iv) above it is clear that we must have 

Thus there is really no economic reason to actually deliver either the under- 
lying claim or the payment at time T. This is also an empirical fact; the 
vast majority of all futures contracts are closed before the time of delivery. 
If you enter a futures contract at time t with a corresponding futures price 
F(t; T, Y), this does not mean that you are obliged to deliver y at time 
T at the price F(t ;  T,y).  The only contractual obligation is the payment 
stream defined above. 

a The name futures price is therefore somewhat unfortunate from a linguistic 
point of view. If today's futures price is given by F(t; T, y) (with t < T) 
this does not mean that anyone will ever pay the amount F(t; T, Y) in order 
to obtain some asset. It would perhaps be more clear to refer to F(t ;  T, y )  
as the futures quotation. 
Since, by definition, the spot price of a futures contract equals zero, there 
is no cost or gain of entering or closing a futures contract. 
If the reader thinks that a futures contract conceptually is a somewhat 
complicated object, then the author is inclined to agree. 
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, 
We now turn to the mathematical formalization of the futures contract, and 

it should by now be clear that the natural model for a futures contract is an 
asset with dividends. 

Definition 26.5 The futures contract on an underlying T-claim y is a fin- 
ancial asset with a price process II ( t )  and a dividend process D ( t )  satisfying the 
following conditions: 

D( t )  = F ( t ;  T ,  y). (26.9) 

It now remains to investigate what the futures price process looks like. This turns 
out to be quite simple, and we can now prove the main result of the section. 

Proposition 26.6 Let y be a given contingent T-claim, and assume that market 
prices are obtained from the jixed risk neutral martingale measure Q. Then the 
following hold: 

a The futures price process is given by 

F ( t ;  T ,  y)  = E : ~ ~  [Y]. (26.12) 

a If the short rate is deterministic, then the forward and the futures price 
processes coincide, and we have 

f (t; T, Y )  = F ( t ;  T, y) = E : ~ ~  [y]. (26.13) 
L 

Proof From Proposition 16.14, it follows that the discounted gains process 

has the representation 
~ G , Z  = ht dWt 

for some adapted process h. In our case we furthermore have II (t)  = 0 for all t ,  
so we obtain the representation 

1 Multiplying by Bt on both sides we get 

d F ( t ;  T ,  y) = Btht dWt, 

1 which implies that F ( t ;  T ,  y) is a Q-martingale. Using the martingale property, 
the fact that we are in a Markovian framework (see Lemma 5.9), and (26.10), 

: we obtain 
F ( t ;  T, Y )  = q x t  [ F ( T ;  T ,  Y ) ]  = E:& [Yl, 
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which proves the first part of the assertion. The second part follows from the 
fact that QT = Q when the short rate is deterministic (see Lemma 24.9). 

26.3 Exercises 
Exercise 26.1 Suppose that S is the price process of a nondividend paying 
asset. Show that the forward price f (t, x; T, y) for the T-claim y = ST is given by 

Exercise 26.2 Suppose that S is the price process of a dividend paying asset 
with dividend process D . 

(a) Show that the forward price f (t, x; T, ST) is given by the cost of carry 
formula 

Hint: Use the cost of carry formula for dividend paying assets. 
(b) Now assume that the short rate r is deterministic but possibly time- 

varying. Show that in this case the formula above can be written as 

f (t, X; T, ST) = - - 

Exercise 26.3 Suppose that S is the price process of an asset in a standard 
Black-Scholes model, with as the constant rate of interest, and fix a contingent 
T-claim @(S(T)). We know that this claim can be replicated by a portfolio based 
on the money account B, and on the underlying asset S. Show that it is also 
possible to find a replicating portfolio, based on the money account and on 
futures contracts for S(T). 

26.4 Notes 
For a wealth of information on forwards and futures, see Hull (1997) and 
Duffie (1989). 



Appendix A 

MEASURE AND INTEGRATION* 

The purpose of this appendix is to give an introduction to measure theory and 
to the associated integration theory on general measure spaces. 

A. l  Sets and Mappings 
Let X be an arbitrary set. We then say that X is finite if it contains only 
finitely many elements. If X is not finite, we say that it is infinite. We will use 
the notation f : X + Y to denote a function (or "mapping") f which takes 
values in Y and which has domain X.  If we apply the f to an element x E X,  
we denote the function value by f (x). 

Definition A.l  Let X and Y be sets and let 

f : X + Y  

be a given mapping. 

1. The mapping f is injective i i  for all x and z i n  X it holds that 

x # z  * f (x)  # f (z ) .  

2. The mapping f is surjective i;f, for a l ly  E Y, there exists an x E X such 

Y = fb). 
upping f is bijective i f  it is both injective and surjective 

4. The image of X under f ,  is denoted by Im(f), and defined by 

Im(f 1 = {f ( 4 ;  E X I .  

5. For any set B E Y ,  the inverse image or pullback of B under f ,  is 
denoted by f-l(B), and defined by 

f-'(B)={x; f ( x ) E  B) .  

W e  also say that B is lifted to f (B) .  
6. In  particular, for every y E Y we write 

f -l(y) = (2; f (XI = Y) . 
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7. For any set A c X the direct image of B under f is denoted by f (A), 
and defined by 

f (A) = { f  (2); 2 E A) - 
Note that the inverse image of a set always exists (although it could be the 
empty set) even if the function f does not have an inverse. For our purposes 
the inverse image concept is much more important than the direct image. The 
following very useful result shows that the set algebraic operations are preserved 
under the inverse image. 

Proposition A.2 The following relations always hold: 

1. For any A, B c Y we have 

f-l ( A n  B) = f - l ( ~ ) n  f - ' ( ~ ) .  

2. For any A, B C_ Y we have 

3. For any B C_ Y we have 

f -' (BC) = [ f (B)] 

where denotes the complement. 
4. For any indexed collection {By),fr of sets i n  Y we have 

5. For any indexed collection {By),Er of sets i n  Y we have 

Proof We leave the proof to the reader. 

We define the set of natural numbers as the set N = {1,2,. . .), and the set of 
integers 2 as Z = (0, f 1, f 2 , .  . .). Using N we can give a name to the "smallest" 
type of infinite set. 

Definition A.3 A n  infinite set X is countable i f  there exists a bijection 

If X is infinite but not countable, it is said to be uncountable. 
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Note that in our definition a countable set is always infinite. The intuitive inter- 
pretation of this is that a countable set has "as many" elements as N,  whereas 
an uncountable set has "more" elements than N. If X is countable we may, for 
each n E N define x, E X by xn = f (n).  Since f is a bijection we can thus 
write X as 

x = { ~ 1 , ~ 2 , ~ 3 ,  . . a ) ,  

t 
so we see that in this sense we can really count off the elements in X ,  one-by-one. 

i A countable set is thus an infinite set, but in a sense it is "almost finite", and 
thus very easy and nice to handle. In mathematics in general and in particular 
in probability theory, the difference between countable and uncountable sets is 
crucial, and therefore it is important to be able to tell if a set is countable or 
not. The following result is a good start in that direction. 

Proposition A.4 The set Q of rational numbers is countable. 

Proof It is enough to show that the set Q+ of positive rational numbers is 
countable, and we do this by first representing each rational number plq by the 
integer lattice point (p, q) E R2. We now prove that this set of integer lattice 
points is countable by simply presenting a scheme for counting them. 

The scheme begins with (1, l) ,  (2, I), (1,2), (1,3), (2,2), (3, I) ,  (4, I), (3,2), 
and if the reader draws a two-dimensional graph of this scheme, she will easily 
see how to continue. 

This simple idea can be extended considerably. 

Proposition A.5 Assume that we give a countable family {xn)El of sets, 
where each set Xn is countable. Then the union UE1 Xn is countable. 

Proof Because of the countability assumption, the set Xi can be written as 
{xil, xi2, xis, . . .), SO the set Xi can be bijectively mapped into the integer lattice 
points of the form (i, I) ,  (i, 2), (i, 3), . . . . Thus the union UE1 Xn can be mapped 
bijectively onto the entire set of positive integer lattice points in R2 and we have 
already proved that this set is countable. 

The most important example of an uncountable set is the set of real numbers. 

Proposition A.6 The set R of real numbers is uncountable. 

Proof Omitted. 

A.2 Measures and Sigma Algebras 
Let X be a set and let us denote the class of all subsets of X by 2X. More 
formally we thus see that 2X , commonly known as the power set of X ,  is a 
set, the elements of which are subsets of X.  

We now want to formalize the idea of a mass distribution on X ,  and the 
reader may think of a large plate (the set X )  with mashed potatoes on it. For 
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every subset A X we would now like to define the nonnegative real number 
p( A) as "the amount of mashed potatoes which lies on the set A" or "the measure 
of A". However, when one tries to formalize this intuitively simple notion, one 
encounters technical problems, and the main problem is the fact that in the 
generic situation, there exist subsets A G X which axe so "nasty" that it is 
mathematically impossible to define p(A). Typically we are therefore forced to 
define the measure p(A) only for certain "nice" subsets A 2 X. These "nice7' 
sets are called "measurable sets", and the technical concept needed is that of a 
sigma-algebra (or o-algebra). In order to define this concept, let 3 be a family 
of subsets of X ,  i.e.3 G 2X. 
Definition A.7 A family 3 of subsets of X is a o-algebra i f  the follow- 
ing hold: 

1. 
0 E 3 .  

2. 
A E T  * A C € 3 .  

Thus a a-algebra contains the empty set, and is closed under complement, count- 
able unions, and countable intersections. In fact, it is only necessary to require 
that F is closed under complements and countable unions (see the exercises). 
Note that the conditions (3) and (4) only concern countable unions. 

Trivial examples of a-algebras are 

Definition A.8 A pair ( X , 3 )  where X is a set and F is a a-algebra on X 
is called a measurable space. The subsets of X which are in  3 are called 
3-measurable sets. 

We are now in a position to define the concept of a (nonnegative) measure. 

Definition A.9 A finite measure p on a measurable space (X, p) is a mapping 

such that 
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2. 
p(0) = 0. 

3. I f A A , € 3 V n = 1 , 2  ,... andAinAj=O f o r i # j ,  then 

I I The intuitive interpretation of (2) is obvious; there is no mass on the empty set. 
j If A and B are disjoint set, it is also obvious that the mass on A U B equals 
I the sums of the masses on A and B. The condition (3) above is an extension 

of this property to the case of an infinite collection of sets, and is known as the 
sigma-additivity of the measure. 

Generally speaking, it is a hard problem to construct nontrivial measures, 
and we will come back to this below. In our applications, we will typically be 
given a measure which is defined a priori. 

Definition A.10 A measure space is a triple (X, 3, p), where p is a measure 
on the measurable space (X, 3 )  . 

A.3 Integration 

1 Let (X, 3, p) be a measure space, and let f : X t R be a given function. 
I The object of the present section is to give a reasonable definition of the formal 

expression 

(A.1) 

and we do this in a couple of simple steps. 

Definition A . l l  For an arbitrary A X the indicator function IA is 

If f = c IA where c is a real number and A is measurable, then there is a very 
natural definition of (A.l), namely 

J x  f (x) dp(x) = J x  c IA(x) dp(x) = c .  d A ) ,  ( A 4  

the "area under the graph of f" = "the base" . "the height" = p(A) c. 

Observe that we must demand that A is F-measurable, since otherwise the right- 
hand side of (A.2) is not defined. This also gives us a natural definition of linear 
combinations of indicator functions. 
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Def in i t ion  A.12 A mapping f : X -+ R is s imple  i f  it can be written as I 

where Al, . . . , An are measurable and cl, . . . , c, are real numbers. I 
Def in i t ion  A.13 For a simple function, as i n  (A.31, the integral is defined by I 

We now want to extend this integral concept to functions which are not simple. 
Let us therefore consider an arbitrary nonnegative function. The intuitive idea 
is now to carry out the following program: 

Approximate f from below by simple functions, i.e. find simple f,, n = 
1,2,. . ., such that f n ( x )  r f ( x )  for all x. 
Define the integral of f as the limit of the integrals of the approximating 
simple functions, i.e. 

The problem with this natural idea is the fact that not all functions can be 
well approximated by simple functions, so we cannot define the integral for an 
arbitrary function. 

Instead we have to be contented with defining the integral concept (A.l) for 
those functions f which can be approximated by simple functions. This is the 
class of measurable  functions, and the formal definition is as follows. 

Def in i t ion  A.14 A function f : X -+ R is 3 - m e a s u r a b l e  if, for every interval 
1 

I g R it holds that f - l ( I )  E 3 ,  i.e. i f  it holds that 

{ x  E X ;  f ( x )  E I )  E 7, 

for all intervals I .  W e  will often write this as f E 3. 

When testing if a given function is measurable, the following result is often of 
great use. 

Propos i t ion  A.15 The following properties are equivalent: 1 
f is 3-measurable. 

{ x  E X ;  f ( x )  < a) E 3, Va E R. 
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{x E X; f (x) I a )  E 7, V a  E R. 

{ x  E X ;  f (x) > a )  E 3, V a  E R. 

{x E X; f (x) 2 a )  E 7, V a  E R. 

Proof Use Proposition A.2. 0 

The following important result shows that measurability is preserved under the 
most common operations. 

Proposition A.16 Assume that f and g are measurable on a measurable space 
( X ,  3). Then the following hold: 

1. For all real numbers a and p the functions 

a f + P g ,  f . 9  

are measurable. 
2. If g ( x )  # 0 for all x, then 

f - 
9 

is measurable. 
3. If { fn )r=,  is a (countable) sequence of measurable functions, then the 

functions 
sup fn, inf f,, lim sup fn, lim inf fn,  

n n n n 

are measurable. 

Proof The proof is omitted. 

We can now go on to define the integral of a nonnegative function on a measure 
space. 

Definition A.17 Let f : X + R be nonnegative and measurable on the measure 
space (X, 3, p). The integral o f f  w.r.t. p over X is then defined by 

where the supremum is over the class of simple functions cp such that 0 5 cp 5 f .  

We now want to extend this definition to functions which are not necessarily 
nonnegative. Let therefore f be an arbitrary measurable function. It then follows 
from Proposition A.16 that also If 1 is measurable, since we can write 



MEASURE AND INTEGRATION 

where 
f+=max[f ,O] ,  f - = m a [ - f , o ]  

Definition A.18 A measurable function f is integrable, 
as f E L1 (X, 3, PI, if 

For an integrable function f ,  the integral over X is defined by 

which we will write 

lx 
f (x) dp(x) = Jx f +(XI d ~ ( x )  - Ix f - dp(x). 

If A is any measurable set, the integral off over A is defined by 

W e  will often write Jx f (x) dp(x) as Jx f (x)p(dx) or as Jx f dp. When the 
underlying measure space is unambiguous, we will write L' as shorthand for 
L1 (X, 3, PI. 
Example A.19 We now give a simple but important example of a measure 
space. Let X be the set of natural numbers and let 3 be the power set. On this 
space we now define the counting measure v by 

v(A) = the number of points in A. (-4.5) 

In other words, the counting measure puts unit mass on every single natural 
number. We immediately see that on (N, 2 N ,  v), every real valued function will 
be measurable, and a function f is integrable if and only if 

2 vu l  < 0'3. 
n=l 

I The integral of any f E L1 is easily seen to be given by 
I 

Thus we see that our integration theory also allows us to treat ordinary sums 
as integrals. 

We now have some very natural properties of the integral. The proof is not 
trivial and is omitted. 
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Proposition A.20 The following relations hold: 

1. For any f ,  g E L1 ( X ,  T,  p) and any real numbers a and /3 it holds that 

2. If f ( x )  5 g(x)  for all x ,  then 

3. For any function i n  L1 it holds that 

One of the most striking properties of the integral concept defined above is 
the surprising ease with which it handles convergence problems. The three basic 
results are as follows. 

! 
i Theorem A.21 (The Fatou Lemma) Let {fn)r==l be a sequence of measur- 

able functions such that 
fn 2 0 ,  n= l , 2 ,  ... 

and 
lim f n ( x )  = f ( x ) ,  V X  E X ,  

n+w 

for some limit function f .  Then 

Theorem A.22 (Monotone Convergence) Let {fn)r=l be a sequence of 
measurable functions such that 

1. The sequence is nonnegative, i.e. 

fn>O, n = 1 , 2 ,  ... 

2. The sequence is increasing, i.e. for all x we have 

f i (z)  l f i ( x )  l . . . I f n ( x )  l f n + l ( x )  5 " ' .  

Then, defining the function f by 

f ( x )  = lim f n ( x ) ,  
n 
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it holds that Jx f ( x )  ~ P ( x )  = Jx f n ( x )  ~ P ( x ) .  

Theorem A.23 (The Lebesgue Dominated Convergence Theorem) Let 
00 { fn)n=l be a sequence of measurable functions such that 

for some limit function f . Suppose that there exists a nonnegative function g E L1 
such that, 

Ifn(~)l 5 g(x), Vn ,  VX E X. 

Then 

A.4 Sigma- Algebras and Partitions 
The purpose of this section is to give some more intuition for the measurability 
concept for functions. We will do this by considering the simplest case of a 
sigma-algebra, namely when it is generated by a partition. 

Definition A.24 A partition P of the space X is a finite collection of sets 
{Al, A2, .  . . , A,) such that 

1. The sets cover X ,  i. e. 

2. The sets are disjoint, i.e. 

I The sets Al, . . . , A, are called the components of P ,  and the sigma-algebm 
consisting of all possible unions (including the empty set) of the components in  P 
is denoted by o ( P ) .  This sigma-algebra is called the sigma-algebra generated 
by P .  

We now have a result which shows (in this restricted setting) what measurability 
for a function "really means". 

Proposition A.25 Let P be a given partition of X .  A function f : X + R is 
o (P)-measurable i f  and only i f f  is constant on each component of P .  

Proof First assume that f is measurable, and consider a fixed but arbitrarily 
chosen real number y. Since f is measurable we know that f - l ( y )  is in o ( P )  
so it is a union of some of the components of P .  If the union is nonempty this 
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means precisely that f = y on that union, so in particular it takes the constant 
value y on all components in the union. The converse is trivial. 

The sigma-algebras that we are going to consider later on in the text, are in 
general not generated by partitions. They are typically much more complic- 
ated, so the proposition above is of little "practical" interest. The point of the 
discussion concerning partitions is instead that when you informally think 
about sigma-algebras, it is very fruitful to have this simple case at the back of 
your head. 

As an example, we see directly from Proposition A.25 why we must restrict 
ourselves to integrating measurable functions only. The problem with a nonmeas- 
urable function is that the function is varying too wildly compared with the fine 
structure of the sigma-algebra. In particular this implies that a nonmeasurable 
function cannot be well approximated by simple functions. 

It is also very instructive to see exactly what goes wrong when we try to 
integrate nonmeasurable functions. Even for a nonmeasurable function f we can 
of course in principle define the integral by (A.4), but this integral will not have 
the nice properties in Proposition A.20. See the exercises for concrete examples. 

A.5 Sets of Measure Zero 
Consider again a measure space (X, 3, p). If N E 3 and p(N) = 0, we say that 
N is a null set. If a certain property holds for all x E X except for on a null 
set, then we say that the property holds almost everywhere (w.r.t. p), and in 
shorthand we write "ya.e.". For example, if we write 

this means that there exists a null set N such that f (x) 2 0 for all x E NC. It is 
easy to see that if f and g are integrable, and f = g, almost everywhere, then 
for every A E 3 we have 

In fact, there is an important converse of this statement, which shows that you 
can test whether two functions are equal almost everywhere or not, by testing 
their integrals. We omit the proof. 

Proposition A.26 

Assume that f and g are integrable and that 

for every A E 3, then f = g, p-a.e. 
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Assume that f and g are integrable and that 

h f dP 2 h 9 d l " .  

for every A E F, then f 2 g, p-a.e. 

A.6 The L P  Spaces 
Let p be a real number with 1  5 p < oo. We define the function class LP (X, F, p) 
as the class of measurable functions f such that 

I 

i and for f E LP we define the LP-norm 1 1  flip by 

I For p  = ca the norm is defined by 

11 f ]loo = ess sup I f  1 = inf {M E R; If 1 5 M, a.e.). 

The two main inequalities for LP spaces are the Minkowski and the Holder 
inequalities. 

i Proposition A.27 The following hold for 1  5 p  5 oo. 

1. The Minkowski inequality: 

2. The Holder inequality: 

I 
where p and q are conjugate, i. e. l / p  + l /q  = 1. 

From the Minkowski inequality it follows that if we identify functions which are 
equal almost everywhere, then LP is a normed vector space. If { fn) is a sequence 
of functions in LP and f is a function in LP such that 

f n f  asn-+oo, 
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then we say that fn converges to f in LP and we write 

Definition A.28 A sequence { fn ) ,  of functions i n  LP is a Cauchy sequence 
if, for all E < 0 there exists an integer N such that 

for all n, m 2 N .  

It is easy to see (prove this) that if fn converges to some f in LP then { fn), is 
Cauchy. The converse is not necessarily true for generally normed spaces, but it 
is in fact true for the LJ' spaces. 

Proposition A.29 Every LP space, for 1 5 p 5 oo, is complete i n  the sense 
that every Cauchy sequence converges to some limit point. In  other words, i f  
{f ,)  is a Cauchy sequence i n  LP, then there exists a (unique) element f E LP 
such that fn+ f in  LP. 

We will mainly be dealing with L1 and L2, and for L2 there is furthermore an 
inner product, which is the natural generalization of the scalar product on Rn. 

Definition A.30 For any two elements f and g i n  L2 we define the inner 
product ( f ,  g)  by 

It is easy to see the inner product is bilinear (i.e. linear in each variable) and 
that the inner product is related to the L2 norm by 

llf llo = m- 
The vector space structure, the inner product and the completeness of L2, 
ensures that L2 is a Hilbert space. 

A.7 Hilbert Spaces 
Hilbert spaces are infinite dimensional vector spaces which generalize the finite 
dimensional Euclidian spaces Rn. 

Definition A.31 Consider a real vector space H A mapping (,) : H x H + R, 
is  called an inner product on H if i t  has the following properties: 

It is bilinear, i. e. for any a, P E R and f ,  g ,  h E H 



408 MEASURE AND INTEGRATION 

and 
( h ,  af + Pg) = &(h, f )  + P(h, g). 

It is symmetric, i.e. 

It is positive definite, i. e. 

(f, f) 2 0, for all f E H with equality i f  and only iff = 0. 

The inner product generalizes the standard scalar product on Rn and in 
particular it induces a norm and the concept of orthogonality. 

Definition A.32 

For any f E H the norm o f f  is denoted by 11 f 11 and defined by 

llf ll = m. 
Two vectors f ,  g E H are said to be orthogonal if f ,  g = 0. W e  write this 
as f I g .  
For any linear subspace M E H we define its orthogonal complement 
MI as 

M ~ = { ~ E H ;  ~ I M ) .  

We interpret JJ  f 11 as "the length of f", and the following result shows that the 
norm concept really is a norm in the technical sense of satisfying the triangle 
inequality. 

Proposition A.33 

For all f,g E H the Cauchy-Schwartz inequality holds, i.e. 

Il(f,g)I 2 Ilf II 11911. 

The norm 11 . 11 satisfies the triangle inequality, i.e. for any f ,  g E H we 
have 

Ilf + 911 5 llf ll + 11g11. 
Proof To prove the Cauchy-Schwartz inequality we note that for all f ,  g E H 
and s E R we have (f - sg, f - sg) = 11 f - sg1I2 2 0. We thus have 11 f /I2 + 
((g(12 - 2 s ( f ,  g) > 0. Minimizing this over all real numbers s and plugging in the 
optimal s in the inequality gives us the Cauchy inequality. To prove the triangle 
inequality, write 11  f + g 1 1 2  as (f + g, f + g)  and expand using the bilinearity and 
Cauchy-Schwartz. 

set I ex, 
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A vector space with an inner product is called an inner product space, and on 
such a space we may use the induced norm to define the concept of a Cauchy 
sequence and of completeness (as for the LP spaces above). 

Definition A.34 A Hilbert space is an inner product space which is complete 
under the induced norm 1 1  . 11.  

We note that L2 (X, 3, p)  above is a Hilbert space and it is in fact the most 
important example of a Hilbert space. The single most important result for 
Hilbert spaces is probably the projection theorem. The proof is omitted. 

Theorem A.35 Assume that M  is a closed linear subspace of a Hilbert 
space H. 

Assume that f is a jked vector in  H. Consider the optimization problem 

min Ilf - 911. 
sEM 

Then there ezists a unique solution ij and it  is characterized by the condition 
that 

f - i j l M .  

W e  have the decomposition of H as 

The direct sum sign @ means that H = M + M' and that M n M' = (0). 

The optimal ij above is called the orthogonal projection of f onto M. We 
see that the optimal "error vector" f - ij is perpendicular to the subspace M, 
exactly like the situation in Rn. 

Definition A.36 A linear mapping F : H --+ R is called a linear functional. 
For any f E H we sometimes write F f rather than F( f )  . A linear functional is 
said to be bounded i f  there exists a constant K such that 

It is relatively easy to see that a linear functional is bounded if and only if it is 
continuous. It is also easy to see that if we choose a fixed f E H and define the 
mapping F : H + R by 

F g = ( f , g ) ,  V f  EH, (A.6) 

then F is a bounded linear functional. The next result, shows that all bounded 
linear functionals on a Hilbert space are of this form. 
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Theorem A.37 (Riesz Representation Theorem) 
Assume that 

F : H + R  

is a bounded linear functional. Then there exists a unique g E H such that 

Proof Define M by M = ker[F] = {f E H; F f  = 0). The M is a closed 
subspace and we can decompose H as H = M + M'. From the definition of M 
it is clear that F restricted to M' is linear with trivial kernel. It is thus a vector 
space isomorphism between M I  and R, so M' has to be one-dimensional and 
we can write M' = Rgo for some go E M'. Now define g by 

Then (go, g) = Fgo so by linearity we have F f = (f, g) for all f E M' and hence 
(exactly why?) also for all f E H. 

O l  
Note that we have to assume that the linear functional F is bounded, i.e. con- 
tinuous. On a finite dimensional Euclidian space Rn, all linear functionals are 
continuous, but on a Hilbert space there may exist linear functionals which 
are not continuous. It is only for the continuous ones that we have the Riesz 
representation above. 

A.8 Sigma-Algebras and Generators 

As usual we consider some basic space X. Let S be some a priori given class of 
subsets of X, i.e. S 5 2X, where S is not assumed to be a sigma-algebra. The 
question is whether there is some natural way of extending S to a sigma-algebra. 
We can of course always extend S to the power algebra 2X, but in most applica- 
tions this is going too far, and instead we would like to extend S in some minimal 
way to a sigma-algebra. This minimal extension can in fact always be achieved, 
and intuitively one is easily led to something like the following argument: 

Assume, e.g. that S is not closed under complement formation. Then 
we extend S to S1 by adjoining to S all sets which can be written as 
complements of sets in S. Thus S1 is closed under complements. 
If S is a sigma-algebra then we are finished. If it is not, then assume for 
example that it is not closed under countable unions. We then extend Sl to 
Sz by adjoining to Sl all countable unions of sets in S1. Thus S2 is closed 
under countable unions. 
It can now very well happen that S2 is not closed under complement form- 
ation (or under countable intersections). In that case we extend Sz to S3 
by adjoining to S2 all complements of sets in Sz. 
And thus we go on.... 
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In this way, it perhaps seems likely that "at last" we will obtain the (unique?) 
minimal extension of S to a sigma-algebra. Unfortunately the method is not 
constructive (unless of course X is finite) so we need a more indirect method. 

Proposition A.38 Let {Fa;  a E A} be an indexed family of sigma-algebras on 
some basic set X ,  where A is some index set, i.e. for each a E A Fa is a 
sigma-aZgebra. Define 3 by 

F =  n%. 
a€ A 

Then 3 is a sigma-algebra. 

Proof The proof is left to the reader as an exercise. 

We can now go back to our family S above. 

Proposition A.39 Let S be an arbitrary family of subsets of X. Then there 
exists a unique minimal extension of S to a sigma-algebra. More precisely, there 
exists a 9 C 2X such that 

9 extends S ,  2.e. S C 9. 
is a sigma-algebra on X .  

Q is minimal, i.e. if 7 is any sigma-algebra on X such that S C F,  then 
9 c 3. 

Proof Define 9 by 
Q = n ~ ,  

where the intersection is taken over all sigma-algebras 3 such that S C 3. It 
follows from Proposition A.38 that 9 is a sigma-algebra, it obviously extends S 
and from the construction we easily see (why?) that it is minimal. 

Definition A.40 

The sigma-algebra 9 in  the previous proposition is called the sigma- 
algebra generated by S, and we write 

The family S is called a generator system for 9. 
If (3,; y E I?} is an indexed family of sigma-algebras on X, we denote by 

the smallest sigma-algebra which contains each 3,. 
If {f,; y E I?) is an indexed family of real valued functions on X ,  we 
denote by 

G = f f { f , ;  y e q ,  
the smallest sigma-algebra 9 such that f ,  is measurable for each y E I'. 
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It is important to understand that even if the elements in a generator system 
S are "simple" (in some sense), the sigma-algebra generated by S can be very 
complicated. 

We first give some rather trivial examples: 
1 

1. If X is the interval [O,1] and S = {[O, 1/21} it is easy to see that a { S )  = ' 

{X, 0, [O, 1/21? (1/2,11). 
2. If X = N and S is the class of all singleton sets of N, i.e. 

S= { { n ) ;  n E N), then a { S )  = 2N. 

We now come to the single most important sigma-algebra. 

Definition A.41 If the set X is given by X = Rn then we define the Borel 
algebra B(Rn) as the sigma-algebra which is generated by the class of open sets 
on  Rn. The elements on the Borel algebra are called Borel sets. 

The Borel algebra is an extremely complicated object and the reader should be 
aware of the following facts. 

There is no "constructive" definition of the Borel algebra. In other words, 
it is not possible to give anything like a concrete description of what "the 
typical Borel set" looks like. 
The Borel algebra is strictly included in the power algebra. Thus there 
exist subsets of Rn which are not Borel sets. 
However, all subsets of Rn which ever turn up "in practice" are Borel sets. 
&formulating this, one can say that it is enormously hard to construct 
a set which is not a Borel set. The pedestrian can therefore, and without 
danger, informally regard a Borel set as "an arbitrary subset" of Rn. 

There are a large number of alternative ways of generating the Borel algebra. 
By recalling that a set is open if and only if its complement is closed it is easily 
seen that the Borel algebra is also generated by the class of all closed sets. Below 
is a list of some of the most common generator systems for the Borel algebra on 
R. The extensions to Rn are obvious. 

Proposition A.42 The Borel algebra B(R) can be defined i n  any of the 
following ways: 

B(R) = a {open sets) , 
B(R) = o {closed sets) , 
B(R) = a {intervals of the type (a ,  b] )  , 
B(R) = a {intervals of the type (a ,  b ) )  , 
B(R) = o {intervals of the type [a, b ] )  , 
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B(R) = u {intervals of the type [a, b ) )  , 
B(R) = u {intervals of the type (-m, b) )  , 
B(R) = u {intervals of the type (-00, b])  , 
B(R) = u {intervals of the type [a, m)) , 
B(R) = u {intervals of the type (a, 00)) , 
B(R) = u {all intervals) . 

At first glance it seems impossible to prove any results at all about the Borel 
algebra, since we do not have a constructive definition of it. The reason that we 
have any control over the class of Borel sets is the fact that it is the minimal 
extension of the class of all intervals, and this can be seen in the following useful 
alternative characterization of the class of measurable functions. 

Proposition A.43 Let (X ,3 )  be a measurable space and let f : X + R be a 
given function. Then f is 3-measurable i f  and only i f  f-'(B) E .F for every 
Borel set B G R. 

Proof If f -'(B) E 7 for every Borel set B C R, then f is measurable since in 
particular it lifts intervals back to measurable sets. Assume now that f is meas- 
urable. We then have to show that f lifts arbitrary Borel sets to 3-measurable 
sets. To do this, define the class G of subsets of R by 

The class Q is thus the class of "good" subsets of R which do lift back to meas- 
urable sets on X. We now want to prove that every Borel set is a good set, i.e. 
that B Q. Now, using Proposition A.2 it is not hard to prove (do this!) that 
CJ is a sigma-algebra. Since f was assumed to be measurable, it lifts intervals 
back to measurable sets, so Q does in fact contain all intervals. Thus Q is a 
sigma-algebra containing all intervals, but since the Borel algebra is the smallest 
sigma-algebra containing all intervals it must hold that B c Q which was what 
we wanted to prove. 

A particularly important example of a measurable space is (R, B(R)), and a real 
valued function f : R -, R which is measurable w.r.t. B(R) is called Borel 
measurable or a Borel function. The following result shows that there are 
plenty of Borel functions. 

Proposition A.44 Every continuous function f : Rn + R is Borel measurable. 

Proof This follows immediately from the fact that a function is continuous if 
and only if it lifts open sets to open sets. 

From Proposition A.16 it follows that every function that we can construct, 
by starting with continuous functions and then using the standard algebraic 
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operations and limiting procedures, will be a Borel function. It does in fact 
require a considerable amount of creativity to construct a function which is not 
a Borel function, so the reader can with very little danger interpret "a Borel 
function" as "an arbitrary function". 

As an important consequence of Proposition A.43 we see that measurability 
is preserved under composition with Borel functions. 

Proposition A.45 Assume that f : X 4 R is a 3-measurable mapping, and 
that g : R + R is a Borel function. Then the composite mapping h = g o f 
defined by h(x) = g ( f  (x)) is 9-measurable. 

Proof Easy exercise for the reader. 

A.9 Product measures 
Let (X, 3, p) and (Y, 8, v) be two measure spaces. We now want to construct a 
measure on the product space X x Y along the same lines as when we construct 

I the area measure on R2 from the length measure on R. 
I 
I Definition A.46 A measurable rectangle is a set Z E X x Y of the form 

where A E 3 and B E G. the product sigma-algebra 9 8 6 is defined by 

3 8 B = u {measurable rectangles) . 
There is now a natural definition of the measure of a measurable rectangle, 
namely X (A x B) = "the base times the heightn= p(A) - v(B). Thus we have 
defined a product measure on the class of measurable rectangles, and the follow- 
ing result shows that this measure can in fact be extended to the entire product 
sigma-algebra. 

Proposition A.47 There exists a unique measure X on { X  x Y , 3 8 B )  
such that 

X(A x B) = p(A) v(B), 
for every measurable rectangle A x B. This measure is called the product 
measure and denoted by X = p x v. 

We end this section by formulating a very useful result which shows 
that instead of integrating w.r.t. the product measure we can perform iter- 
ated integrals. 

Theorem A.48 (The Fubini Theorem) Consider the product measure space 
{ X  x Y, 3 18 8, p x V )  and let f : X x Y + R be a measurable mapping. Assume 
either that f is integrable over X x Y or that f is nonnegative. Then we have 
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I Note that included in the F'ubini Theorem is the statement that the function 

is F-measurable, and correspondingly for the other integral. 
The F'ubini Theorem may of course be extended to any finite product space. 

A.10 T h e  Lebesgue Integral 

On the class of intervals on R we have a natural length measure m defined by 

m ([a, b] )  = b - a. 

! The obvious question is whether this length measure can be extended to a proper 
measure on the Borel algebra. That this is indeed the case is shown by the 

I following highly nontrivial result. 

I Proposition A.49 On the measurable space (R, B) there exists a unique meas- 
ure m with the property that for any interval [a, b] 

I m ([a, b])  = b - a. 

This measure is called the (scalar) Lebesgue measure, and by taking products 
we can easily form the n-dimensional Lebesgue measure on Rn. 

Equipped with the Lebesgue measure we can now start integrating real valued 
functions defined on the real line. We know that all continuous functions are Borel 
measurable, and at this point we could encounter a problem, since for continuous 
functions we also have the Riemann integral. If a function f is continuous and 
if A is a finite interval we can form two integrals, namely 

and 

f (5) dz, (Riemmn), 

and if we are unlucky these integral concepts could differ. Happily enough, it 
can be proved that whenever the Riemann integral is well defined, it will coin- 
cide with the Lebesgue integral. The advantage of using the Lebesgue integral 
instead of the Riemann integral is that the Lebesgue theory allows us to integ- 
rate all Borel functions, whereas the Riemann integral only allows us to integrate 
Riemann integrable functions (which is a much smaller class). Furthermore, a 
pointwise convergent sequence of nonnegative Riemann integrable functions may 
converge to a limit function for which the Riemann integral is not even defined, 
whereas the class of Borel functions is closed under pointwise convergence. 
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A.ll T h e  Radon-Nikodym Theorem 

One of the big breakthroughs in arbitrage pricing came from the realization that 
absence of arbitrage is very closely connected to the existence of certain abso- 
lutely continuous measure transformations. The basic mathematical tool is the 
Radon-Nikodym Theorem which we will prove below, and although our prime 
application will be in the context of probability theory, we present the theory 
for arbitrary finite measures. 

Definition A.50 Consider a measurable space (X,F)  on which there are 
defined two separate measures p and v 

If, for all A E 3 ,  it holds that 

then v is said to be absolutely continuous with respect to p on 3 and 
we write this as v << p. 
If we have both p << v and v << p, then p and v are said to be equivalent 
and we write p N v. 
If there exists two events, A and B such that 
* A n B = Q )  
* p(B) = 0 and v(A) = 0. 
Then p and v are said to  be mutually singular, and we write p I v. 

We now give some simple examples of these concepts. 

Example A.51 

The simplest example of absolute continuity occurs when X is finite or at 
most countable, say X = N, and 3 = 2X = 2N. Every measure p on N 
is of course determined by its point masses p(n), n E N, and the relation 
v << p simply means that 

Let p be "Poisson(c)-measure", defined by its point masses on the natural 
numbers, as 

cn 
p(n) = e-'- 

n! ' n E N, 

and let v be Lebesgue measure on the positive real line. Then, viewed as 
measures on (R,B(R)), we have p I v since p puts all its mass on N 
whereas v puts all its mass on R n NC. 

Consider a fixed measure space (X, F, p), and let f : X --+ R be a nonneg- 
ative measurable mapping in L1 (X, 7, p). We can then define a new measure v 
on (X, F) ,  by setting 
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It now follows fairly easily that v is a measure on ( X ,  F ,  p)  and from the defin- 
ition it also follows directly that v << p on F .  Thus, (A.8) provides us with 
a way of constructing measures which are absolutely continuous w.r.t. the base 
measure p, and a natural question is whether all measures which are absolutely 
continuous w.r.t. p are obtained in this way. The affirmative answer to this 
question is given by the following central result. 

Theorem A.52 (The Radon-Nikodym Theorem) Consider the measure 
space ( X ,  F,  p ) ,  where we assume that p is finite, i.e. that p ( X )  < oo. Assume 
that there exists a measure v on  ( X ,  F )  such that v << p on 7. Then there 
exists a nonnegative function f : X + R such that 

v(A)= f ( x ) d p ( x ) ,  f o r a l l A ~ F .  J, ( A . l l )  

The function f is called the Radon-Nikodym derivative of v w.r.t. p. It is 
uniquely determined p-a.e. and we write 

or alternatively, 
d v ( x )  = f ( X I  d p ( x ) .  

Proof We sketch a proof which is due to von Neumann. Define a new measure 
X by setting X(A) = p ( A )  + v(A), for all A E 3. For any g E L2 (A)  we can define 
the linear mapping @ : X + R by 

and by the triangle and Cauchy-Schwartz inequalities we have 

Thus, from the Riesz Representation Theorem there exists an f E L2 (A)  such 
that @(g) = (g ,  f )  for all g E L 2 ( X ) ,  i.e. 
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By choosing g = IA for arbitrary A E 3 and using the fact that 0 5 v(A) 5 A(A) 
we see that 0 5 f 5 1. We now write (A.14) as 

Since this holds for all g E L2 (A) and in particular for all indicator functions, we 
can write this on "differential form" (see the exercises for a justification of this) as 

(1 - f ) d v  = f dp. 

It is now tempting to multiply through by (1 - f)-' to obtain 

and thus to define the Radon-Nikodym derivative by f /(1 - f ), but the prob- 
lem is of course what happens when f = 1. Define therefore A by A = 
{x E X; f (x) = I), and set g = IA.  From (A.15) we obtain 

and (since f 2 0) this implies that p(A) = 0. We now use the assumption that 
v << p to deduce that also v(A) = 0, so we can safely write 

and we see that the Radon-Nikodyrn derivative is in fact given by 

Example A.53 Going back to Example A.51 we consider the case when X = N, 
and 3 = 2 N ,  and we recall that the relation v << p means that 

Thus, given p and v with v << p, the problem of finding a Radon-Nikodym 
derivative f will in this case boil down to the problem of finding an f such that 
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We see that for those n where p(n) # 0 we can solve (A.16) by defining f (n) as 

so the only problem occurs when p(n) = 0. However, from the absolute continu- 
ity it follows that v(n) = 0 whenever p(n) = 0, so for those n equation (A.16) 
becomes 

O =  f(n).O 

and we see that for those n we can defhe f arbitrarily, say by putting f (n) = 17. 
Consequently f is not uniquely defined, but we see that the set where it is not 
uniquely defined (i.e. for those n where p(n) = 0) has p measure zero. 

It is important to realize that the concept of absolute continuity is defined 
relative to the given sigma-algebra. If, for example, 8 C 3 then it could well 
happen that p << v on G while it does not hold that p << v on 3. A trivial 
example is given by setting X = {1,2,3), and defining 

and 

I Here we obviously do not have v << p on 3, since p(2) = 0 while v(2) # 0. We 
do however, have v << p on G with () Radon-Nikodym derivative given by 

(Note in particular that f is 8-measurable.) 
We thus see that if we enlarge the sigma-algebra we may lose absolute con- 

tinuity, but if v << p on some measurable space (X, 7) and 8 & 7, then v << p 
also on 8. 

A.12 Exercises 
Exercise A. l  Prove Proposition A.2. 

Exercise A.2 Which of the properties stated in Proposition A.2 are still valid 
(and which are not necessarily valid) if we replace f -l with f in expressions like 
f -l (a  U B) etc.? 

Exercise A.3 Show that in the definition of a sigma-algebra, the closedness 
property under countable intersections in fact follows from the other defining 
properties. 



420 MEASURE AND INTEGRATION 

Exercise A.4 Let p be a measure. Show formally, using the axioms of a 
measure, that the following relations hold for all measurable sets A and B. 

Exercise A.5 Let X be a finite set X = {xl,. . . , xK) and define 3 as the 
power algebra 2X. Let furthermore p be a measure on (X, 3 )  and define p, by 
pn = p({x,)), i.e. pn denotes the mass on the point x,. Let f be any real valued 
nonnegative function, and show in detail, by using Definition A.17 that 

Exercise A.6 Define X by X = [O, 21 and define 3 by 3 = (0, Q, [0, I), [I, 21). 
Define a measure p by setting 

p (0 ,  1 )  = 1, p ([I, 21) = 1, p ([O, 21) = 2, 

and define the functions f , g  : X -+ R by f (x) = x and g(x) = 2 - X. I 
i 

(a) Show that f and g are not measurable. 
(b) Despite the fact that neither f nor g is measurable we now define 

where the supremum is taken over all nonnegative measurable simple 
functions cp such that cp 5 g. We make the corresponding definition 
for g. Now compute and compare Sx f dp, lX g dp and Sx (f + g) dp. 

Exercise A.7 The object of this exercise is to show that a measurable func- 
tion can be well approximated by simple functions. Let therefore f : X -+ R 
be a nonnegative measurable function on some measurable space (X, F ) ,  and 
also assume that there exists some constant M such that 0 5 f(x) < M for 
all x E X. Show that for every n there exists a simple function f, such that 
f (x) 5 fn(x) < f (x) + 1/n for all x E X. 

Hint: Consider sets of the form {x E X;  kln < f (x) 5 (k + 1) In). 

Exercise A.8 Continuing the exercise above, show that there exists an increas- 
ing sequence of simple functions fn such that f,(x) t f (x) for all x E X. 

Exercise A.9 Fill in the details in the proof of Proposition A.33. 

Exercise A.10 Prove proposition A.38. 

Exercise A . l l  Describe the sigma-algebra on R which is generated by the class 
of all singleton sets, i.e. of all sets of the form {x), where x E R. 
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Exercise A.12 Prove Proposition A.45 by using Proposition A.43. 

Exercise A.13 Let (3,; n = 1 ,2 , .  . .) be a sequence of sigma-algebras on some 
common space X. Does it always hold that 

w 

p e f  U3, 
2 = 1  

is a sigma-algebra? What if the sequence is increasing? 

Exercise A.14 Consider two measures p and v with v << p. For any functions 
g E L1 (v) and f E L1 (p) we define the "differential equality" 

gdv=  f dp, (A.17) 

as being shorthand for 

L f (x) dv(x) = g(x) dp(x), VA E 3 .  L 
dv 

f = -  d v =  f d p  
d~ 

(b) Show that for any h E L1(gdv) it holds that 

gdv=  f d p  =+ hgdv=hfdp  

(c) Assume that X << v << p and prove the "chain rule" 

dX dX dv -= - . -  
dp dv dp' 

(d) Assuming v N p, prove that 

d~ 
-1 

s=($) . 
A.13 Notes 
Royden (1988) gives a very clear and readable presentation of measure theory, 
and also treats point set topology and basic functional analysis. 



Appendix B 

PROBABILITY THEORY* 

A probability space is simply a measure space (R, 3, P) where the measure P 
has the property that it has total mass equal to unity, i.e. 

The underlying space R often is referred to as the sample space, and the 
elements of the sigma-algebra 3 are called events. 

B. l  Random Variables and Processes 
In this section we will discuss random variables and random processes. 

Definition B. l  A random variable X is a mapping 

such that X is 3-measurable. 

Remark B. l . l  As the reader probably has observed, the letter X,  which in 
the previous chapter was used to designate a measure space, is now used as the 
name of a random variable. This is an unfortunate clash of notation, but since 
each use of the letter X is standard within its respective area of application 
we will simply accept this. There is however no risk of confusion: from now on 
the measure space will always be a probability space, and thus denoted by R. 
The only use of X will be as a name for a random variable or a random process. 

The interpretation of a random variable is as follows: 

Somewhere, hidden from us, a point w E R in the sample space is 
"randomly" chosen by, say, the God of Chance. 
We are not allowed to observe w directly, but we are allowed to observe 
measurements on the sample space, i.e. we can observe the real number 
X(w), which gives us partial information about w. 

Definition B.2 The distribution measure p x  for a random variable X is a 
measure on (R, B) defined by 

The 

1 
is in 
and 

and 

~ x ( B ) = P ( { w E R ;  X(W)E B)) ,  B E B ,  
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T h e  (cumulative) distribution function of X i s  denoted by Fx and defined by 

I Fx (x) = P ({w E 0 ;  X(w) 1 2)) . 

Note that since X is assumed to be measurable, the event {w E R; X(w) E B) 
is in 3 so its P measure is well defined. We will often write this event as {X E B) 
and then the definition of the distribution measure becomes 

and the distribution function can be written as 

We now go on to introduce the measure theoretic definition of an expected 
value. 

Definition B.3 For any  X E L' (R,3,  P )  i t s  expected value, denoted by 1 E[X], i s  defined by 

t 
1 

For X E L2 the variance i s  defined by 

We note that the definition above gives the expected value and the variance as 
integrals over the (abstract) sample space R. The following result connects these 
formulas to the standard elementary formulas where expectations and variances 
are computed as integrals over the real line. 

Proposition B.4 Let  g : R -+ R be a Bore1 jiinction such that the composite 
random variable g(X) i s  integrable. Then  we have 

Proof We leave the proof as an exercise. See the exercises for hints. 

We note that the first equality above holds by definition. The point of the result 
is thus the second equality. The careful reader notes (with satisfaction) that, by 
Proposition A.45, the measurability of g(X) is guaranteed. 

In order to convince the reader that the framework above really is of some 
value, we will now prove a useful result which shows that in some cases an 
expected value can be computed in terms of an ordinary Lebesgue integral. 
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Proposition B.5 Let X be a nonnegative random variable. Then it holds that 

Proof By using the Fubini Theorem we have 

= J, [lW ~ { t  5 x(w)} - dt] dP(w) = lm [L ~ { t  5 X(w)} dP(w) dt I 

where the event At = {X 2 t}. We thus have 

4x1 = lo P(At) dt = lo P (X > t) dt. 

We now go on to the concept of a random process. 

Definition B.6 A random process on the probability space (R,3, P) is a 
mapping 

X : R + x R + R ,  

such that for each t E R+ the mapping 

We interpret X(t, w) as "the value at time t given the outcome w", and we will 
also use the alternative notation Xt (w). 

Note the following: 

For each fixed t the mapping 

which we also denote by Xt, is a random variable. 
For each w E R the mapping 
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is a deterministic function of time. This function, which we may draw 
as a graph, is called the realization or trajectory of X for the outcome 
w. When we observe a random process over time (like the evolution of a 
stock price) we thus see the trajectory of a single w. 

In the definition above we have defined processes only on the time interval 
0 5 t < oo, but we can of course consider processes defined on just a subinterval 
or on the integers (a "discrete time process"). 

B.2 Partitions and  Information 

Consider a sample space R and a given partition P = {Al,. . . , AK) of R. We 
can now give an intuitive interpretation of P in information terms along the 
following lines: 

Someone (the God of Chance?) chooses a point w in the sample space. We 
do not know exactly which point has been chosen. 
What we do get information about, is exactly which component of P that 
w belongs to. More formally one can think of this as an experiment where 
we are allowed to observe the random variable Y defined by 

Y(w) = n . I*,, (w) . 

If we observe Y(w)  = n then we know with certainty that w lies in A,. 

We thus see that having access to a certain partition can be interpreted 
as having access to a certain amount of information. We note that the trivial 
partition P = {R) corresponds to "no information at all". The other extreme 
case occurs when R is finite, say R = {wl, . . . , wN), and the partition is given 
by T = {{wl) , {w2) , . . . , { w ~ ) } .  This case corresponds to "full information". 

In some cases we may even compare the informational content in two separate 
partitions. Consider, as an example, the space R = [O, 11 with two partitions 

where 

A1 = [O, ;) , A2 = [f ,  2) , A3 = [;, a) , A4 = [;, 11 

and 
P 2  = {Bl, B2, B3), 

where 

[o,;), B2= [;,;), B 3 =  
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It is now natural to say that PI contains more information than P2 since the 
partition PI has been obtained by subdividing some of the components of P2 into 
smaller pieces. There is thus a natural partial order relation between different 
partitions of a given sample space, and in the example above we say that Pl is 
finer than P2. 

Definition B.7 For a given sample space 52, a partition S is said to be finer 
than a partition P if every component in P is a union of components in S .  

The interpretation of this is of course that "S contains more information than P" . 
Consider again the sample space R and some given but otherwise arbitrary 

mapping f : R + R. For simplicity we assume that f only takes finitely many 
values, and we denote these values by XI ,  22 ,  . . . , XK. The interpretation is that f 
is a measurement on R and that we gain knowledge about the (unknown) sample 
point w by observing the measurement f (w). We now note that f generates a 
natural partition P ( f )  defined by 

where 
A n = { w e R ;  f ( w ) = ~ n ) ,  n = 1 , 2  ,..., K. 

It is then natural to interpret the partition P ( f )  as "the information generated 
by f" , since by observing f we can exactly tell in which component of P ( f )  that 
w lies. 

We also see that given the information in P( f ) ,  i.e. given information about 
in which components w lies, we can exactly determine the value f (w). The reason 
for this is of course that f is constant on each component on P ( f )  and we can 
easily generalize this observation to the following definition and lemma. 

Definition B.8 A given mapping f : R --+ R is called measurable w.r.t a 
partition P if and only if it is constant on the components of P. 

Lemma B.9 Take as given a sample space R, a finite valued mapping f : R + R 
and a partition P. Iff  is P-measurable then the value off is completely determ- 
ined by the information in P in the sense that if we know in which component 
of P it is located, then we know the function value f (w). 

Consider again the sample space R and a finite valued mapping f : R + R. 
If we also are given another mapping g : R 4 R and define h : R + R by 
h(w) = g(f (w)), then it is obvious that h generates less information than f ,  i.e. 
that P ( f )  is finer than P(h), which also can be expressed by saying that h is 
constant on the components in P( f ) ,  i.e. h is P(f)-measurable. There is also 
a converse of this result which will have important generalizations later on in 
the text. 
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Proposition B.10 Consider a f ied R and two finite valued mappings f : R + 

R and h : R -t R. Assume that h is P(f)-measurable. Then there exists a 
function g : R -, R such that h = g o f .  

Proof Exercise for the reader. 

B.3 Sigma-algebras and Information 
Let us again consider the sample space 0 and a give partition P. We note the 
following facts: 

The partition P generates a natural sigma-algebra, namely u {P). 
F'rom a {P) we can easily reconstruct the original partition P ,  since the 
components of P are precisely the atoms in u {P), i.e. the sets in u {P) 
which have no proper subsets (apart from 0) in u {P). 
If 3 and S are two partitions, then 

S is finer than P .. j 

if and only if 

P c S .  

For any mapping f : R + R it holds that 

f is P-measurable 
if and only if 

f is 0 {PI-measurable. 

As long as we are working with finite partitions it is thus logically equivalent if 
we work with partitions or if we work with the corresponding sigma-algebras. 
F'rom a technical point of view, however, the sigma-algebra formalism is superior 
to the partition formalism, since a sigma-algebra is closed under the usual set 
theoretic operations. Furthermore; our development of measure theory demands 
that we have a sigma-algebra as the basic object. Thus, even if the intuitive 
information concept is perhaps most natural to formulate within the partition 
framework, it turns out that the sigma-algebra formalism is vastly superior in the 
long run. It should also be emphasized that the equivalence between partitions 
and sigma-algebras only holds when the partition is finite. In the general case, 
there is simply no alternative to the sigma-algebra formalism. 

We will therefore, henceforth, formalize the intuitive information concept in 
terms of sigma-algebras, and in particular we will interpret the relation 

between two sigma-algebras G and 3 as 

"G contains less information than 3." 
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3 
Let us again take a sample space R as given, and consider a mapping R : 

X -+ R. We recall an earlier definition: 

Definition B.ll The sigma-algebra a { X )  i s  defined as the smallest sigma- 
algebra 3 such that X is 3-measurable. 

We will refer to a { X )  as "the sigma-algebra generated by X". Technically speak- 
ing it is the intersection of all sigma-algebras 6 such that X is 8-measurable, 
but we can in fact give a more explicit representation. 

Proposition B.12 W e  have the representation 

u { x )  = {x-'(B); B E a(R))  . 
? : I 

Proof Exercise for the reader. 

Definition B.13 Let K be an  arbitrary family of mappings from R to  R. Then 
a { K )  i s  defined as the smallest sigma-algebra 6 such that X is  B-measurable for 
all X E K .  

We now have a general result for sigma-algebras, which is parallel to 
Proposition B.10 for partitions. The proof is not easy and therefore omitted. 

Proposition B.14 Let X I , .  . . , X N  be given mappings X ,  : R -+ R, and assume 
that a mapping Z : 52 -+ R i s  o { X I , .  . . , XN)-measurable. Then there exists a 
Borel function f : R~ --+ R such that for all w E R we have 

This proposition thus formalizes the idea that if a random variable X is measur- 
able w.r.t. a certain sigma-algebra then "the value of the variable is completely 
determined by the information contained in the sigm&algebra7'. 

We now pass on to random processes, and note that every random process 
generates an entire family of interesting sigma-algebras. 

Definition B.15 Let { X t ;  t 2 0) be a random process, defined on  the probabil- 
i ty  space (R, 3, P).  W e  then define the sigma-algebra generated by X over 
the interval [0, t] by 

3:=.{x,; s s t ) .  
1 

The intuitive interpretation is that "3: is the information generated by 
observing X over the time interval [0, t]". There is in general no very expli- 
cit description of 3?, but it is not hard to show that 3? is generated by all ' 
events of the form { X ,  E B} for all s 5 t and all Borel sets B. 
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I 
j If Z is a random variable then, based on the discussions above, we interpret 
1 the statement 

I "Z is a function of the entire X-trajectory over the interval [0, t]." 

From the definition it is immediately clear that 

9r t  * 333:, 

I 
so every random process X will in this way generate an increasing family of 
sigma-algebras. We now generalize this concept. 

Definition B.16 A filtration 3 = {3t)t20 on  the probability space (a, 3, P) 
is a n  indexed family of sigma-algebras o n  R such that 

Given a filtration L as above, the sigma-algebra Fm is defined as 

A filtration thus formalizes the idea of an nondecreasing information flow over 
time. We now introduce one of the most basic concepts for stochastic processes. 

Definition B.17 Consider a given filtration L = {3t)t20 o n  some probability 
space, and a random process X on  the same space. W e  say that the process X is  
adapted t o  the filtration if 

The interpretation of this definition is that "For every fixed t ,  the process value 
Xt is completely determined by the information 3t that we have access to at 
time t". Alternatively we can say that "an adapted process does not look into 
the future". We note in passing that the process X is always adapted to the 
internal filtration 32 generated by X. 
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Example B.18 Let Z be any random process with continuous trajectories, and 
define the filtration 3 as the internal filtration Ft = 3:. The following processes 
are adapted: 

I 

The processes 

are not adapted. 

In a typical financial application, the filtration is generated by the observed 
asset prices. A natural requirement for a portfolio strategy is that the port- 
folio decision, i.e. taken at time t ,  is only allowed to depend upon the public 
information that we have access to at time t (by observing asset prices). The 
formalization of this idea is to demand that the portfolio strategy should be 
adapted. 

B.4 Independence 
We consider again a given probability space (R,3, P) ,  and recall the standard 
definition of independent events. 

Definition B.19 Two events A, B E 3 are independent if 

We now generalize this definition to sigma-algebras, random variables and 
processes. 

Definition B.20 

Two sigma-algebras (2, 'H E 3 are independent if 

for all G E B and all H E 'H. 

for 
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T w o  random variables X and Y are independent if the sigma-algebras 
a {X)  and a {Y) are independent. 
T w o  stochastic processes X and Y are independent if the sigma-algebras 
a {Xt ; t 2 0) and a {K; t 2 0) are independent. 
An indexed family {G?; y E I?) of sigma-algebras, where G7 E 3 for each 
y E I? are mutually  independent if 

for every finite sub wllect ion GI, .  . . ,Gn where Gi E GTj and where 
^/i # yj for i # j .  T h e  extension t o  random variables and processes is 
the obvious one. 

We note that two random variables X and Y are independent if and only if 

for all Bore1 sets B1 and B2. 

We now formulate and sketch the proof of a very useful result. 

Proposition B.21 Suppose that  the random variables X and Y are independ- 
ent. As sume  furthermore that X ,  Y ,  and X Y  are in L1. T h e n  we have 

Proof We do the proof in several steps. 

1. Choose arbitrary A E a {X) and B E a {Y). Then we have 

Thus the proposition holds for indicator functions. 
2. From the previous item and from the linearity of the integral it follows 

that (B.l) holds for all simple functions (check this in detail). 
3. In the general case we can WLOG (without loss of generality) assume 

that X and Y are nonnegative. In that case there exist (see the exercises) 
sequences {Xn) and {Yn) of simple random variables such that 
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From item 2 above we have 

Now we let n -+ oo and use the Monotone Convergence Theorem. 

I We also have the following simple but useful corollary. 

Corollary B.22 If X and Y are independent random variables, and i f f  and 
g are Bore1 functions, t hen  f(X] and g(Y) are independent. I n  particular, if 
f (X), g(Y), and f (X)g(Y) are in L1, then  

Proof Exercise for the reader. 

B.5 Conditional Expectations 
Apart from the concept of independence, the most important concept in probab 
ility theory is that of conditional expectation. We will need to treat this concept 
in its most general (but also most useful) version, namely that of a conditional 
expectation given a sigma-algebra. We start, however with a more elementary 
discussion in order to motivate the more abstract arguments later on. 

Consider a fixed probability space (R, 3, P),  and suppose that A and B are 
events in 3 with P(B)  # 0. We recall the elementary definition of conditional 
probability. 

Definition B.23 T h e  probability of A, conditional o n  B is defined by 

The intuition behind this definition is as follows: 

The probability for any event A is the fraction of the total mass which is 
located on A, so 

When we condition on B, we know that B has happened. Thus the effect- 
ive sample space is now B rather than fl. This explains the normalizing 
factor in the nominator of (B.2). 
The only part of A that can occur if we know that B has occurred is 1 
precisely A n B. 

What we are looking for is now a sensible definition of the object 
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where X is a random variable and G is a sigma-algebra included in 3. The 
interpretation should be that E[X) GI is "the expectation of X given that we 
have access to the information in g". It is not trivial to formalize this rather 
vague notion, so we start with some heuristics. 

We therefore recall that the unconditional expected value is given by 

i.e. E[X] is a weighted average of the values of X, where we have used the 
"probabilities" P(&) as weights. 

Suppose now that we have obtained information about the outcome of the 
random experiment, in the sense that we know that sample point w is in the set B. 
The natural definition of the expected value of X given B is then obtained by 
taking the weighted average of X over the new effective sample space B. We 
must of course normalize the probability measure so that we have total mass 
equal to unity on the new space B. Thus we normalize the probabilities as 

and we may thus define the object E[XI B]. 

Definition B.24 Suppose B E 3 with P(B) > 0,  and that X E L1 (R,3 ,  P ) .  
Then "the conditional expectation of X given B" is defined by 

We now consider a slightly more general case, where we are given a finite par- 
tition P = {Al,. . . ,AK) with A, E 3 for n = 1,. . . , K. Having access to the 
information contained in P is, according to our earlier discussion, equivalent to 
knowing exactly in which of the components Al, . . . , AK that the outcome w lies. 
Now consider the following schedule: 

Someone (the God of Chance?) chooses "randomly" a point w in the sample 
space. We do not know exactly which point has been chosen. 
We are informed about in exactly which component of the partition that 
w lies. 
As soon as we know in which component w lies, say for example in A,, 
then we can compute the conditional expectation of X given A, according 
to the formula above. 

From this we see that exactly which conditional expectation that we will com- 
pute, will depend in which component that w lies. We may therefore define 
a mapping from R to the real line by 

This leads us to the following definition. 
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Definition B.25 With assumptions as above, and also assuming that P(A,) > 0 
for all n, we define E[X(P] , " t he  conditional expectation of X given the 
information in P" by 

i. e. 
1 

E [ X (  P] (w) = - X(w)DPP(w), when w E A,. (B.4) 

We note that the object E[XI  P] is not a real number but a mapping from 
R to R, i.e. it is a random variable. We also note that, by definition, E [ X J  PI 
is constant on each component of P ,  i.e. it is u {P)-measurable. 

We would now like to extend the definition above to the case when we con- 
dition on a general sigma-algebra, and not only on a finite partition. This is 
however not entirely straightforward, and a major problem with the definition 
above is that we had to assume that P(A,) > 0 for all n, since otherwise we 
divide by zero in (B.4). We therefore have to take a more indirect approach, and 
start by listing some important properties of the conditional expectation above. 

Proposition B.26 Assume that (R,3 ,  P) ,  x, and P are as above. Define the 
sigma-algebra Q C 3 by Q = a ( P ) .  Then the conditional expectation E[XI  PI 
is characterized as the unique random variable Z on ( 0 , 3 ,  P )  with the following 
properties: 

(i) Z is G measurable. 
I (ii) For every E Q it holds that 

I tl 
I Proof Exercise for the reader. 
I il 1 

The point of this result is that it characterizes the conditional expectation in 
a way which does not require the components of P to have strictly positive 
probabilities. In fact, the conditions (i)-(ii) above can be formulated for any 
sigrntlalgebra Q even if Q is not generated by a finite partition. This is the 
starting point for our final definition of conditional expectations. 

Definition B.27 Let (R, 3 ,  P )  be a probability space and X a random variable 
i n  L1 (R ,3 ,  P).  Let furthermom Q be a sigma-algebra such that G G 3. If Z is ] 
a mndom variable with the properties that 

(i) Z is Q-measurable. I 
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! (ii) For every G E Q it holds that 

Then we say that Z is the conditional expectation of X given t h e  sigma- 
algebra Q. In  that case we denote Z by the symbol 

The price that we have to pay for this very general definition of conditional 
expectation is that we have a nontrivial existence problem, since it is not imme- 
diately clear that in the general case there will always exist a random variable Z 

j as above. We note that X itself will obviously always satisfy (ii), but in the 
general case it will not satisfy (i). We do however have an existence result, and 
the proof is a nice application of the Radon-Nikodym Theorem. 

Theorem B.28 Let (R,T, P ) ,  X ,  and Q be as in  Definition B.27. Then the 
following hold: 

There will always exist a random variable Z satisfying conditions (2)-(ii) 
above. 
The variable Z is unique, i.e. i f  both Y and Z satisfy (2)-(ii) then Y = Z ,  
P-a.s. 

Proof Define the measure v on (R, 9) by 

Trivially we then have v << P and we see directly by inspection that if we define Z 
by 

then Z will be Q-measurable and it will have the property that 

i.e 

for all G E 8. 

In passing we note that if B is the trivial sigma-algebra Q = {R,0) then it follows 
directly from the definition above (prove this!) that 
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We now have some natural and simple rules for calculating conditional 
expectations. 

Proposition B.29 The following hold: 

E[aX + PYI S] = aE[XI S] + PE[Y( S] , V a ,  /3 E R. (B.7) I 
Proof The relation (B.6) follows more or less directly from Proposition A.26. 
In order to prove (B.7) we define Z by Z = aE[XI 81 + PE[YI GI. Then Z is 
obviously S-measurable and we only have to show that for every G E S we have I 

Using the definition of the conditional expectation and linearity, the right-hand 
side of the above becomes 

One of the 
expectation 

, most important and frequently 
is the rule of iterated expectations. 

JG 

used 

JG ' 

properties 

. , 

of conditioi 

SUP 
inte 
t aim 
can 
the 

Prc 

Pr< 
intc 

Ass 
defi 

De: 

: Sin, 
t ior 

Proposition B.30 Assume the setting above and also assume that the sigma- 
algebra % satisfies % C 8 G 3. Then the following hold: 

E[E[XI GI1 'FI] = E[XI XI, (B.8) 

E[X] = E[E[XI GI]. (B.9) inst 

Proof We start by noting that (B.9) is a special case of (B.8) since E[X] = 
E[X(  %] where 7-i is the trivial sigma-algebra. In order to prove (B.8) we define 
Z by Z = E[X(  %I. We now have to show that Z is %-measurable and that for 
all events H E % we have I 

whc 
(B.lO) 

The measurability is immediately clear (why?). As for (B.lO) we note that foll 

since % S we have H E % +  H E S so I Pr, 
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Suppose now that X is G-measurable. We have earlier said that the intuitive 
interpretation of this is that X is uniquely determined by the information con- 
tained in G. When we condition on G this should imply that we know X and thus 
can treat it as deterministic (conditionally on G). This intuition is formalized by 
the following result, where we leave the proof as an exercise. 

Proposition B.31 I X is G-measurable and if X, Y ,  and XY are i n  L1, then 

There is a Jensen inequality also for conditional expectations. 

Proposition B.32 Assume that f : R -r R is convex and that X and f (X) are 
integrable. Then 

f (E[XlG1)SE[f(X)IGl, P-a.s. 

Assume that X and Y are defined on the same space (R, T,  P). Then we can 
define the conditional expectation of Y, given X. 

Definition B.33 For any integrable Y and for any X ,  we define 

Since E[Y I X] by this definition automatically is a {XI-measurable, Proposi- 
tion B.14 guarantees that there exists a Bore1 function g such that 

using this g we may now define conditional expectations on the distribution side 
instead of on the R side. 

Definition B.34 W e  define the object ,E[YI X = x] by 

where g is given by (B.13). 

Fkom the law of iterated expectations and Proposition B.4 we obtain the 
following result, which should be well known from elementary probability theory. 

Proposition B.35 If px denotes the distribution measure for X then, for any 
random variable Y :  
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If X and 6 are independent, i.e. if u {X) and 6 are independent sigma-algebras, 
then it seems reasonable to expect that 9 does not contain any information about 
X. The technical formulation of this intuition is as follows. 

Proposition B.36 Assume that X is integrable, and that X and 6 are 
independent. Then 

E [ Y  I X ]  = E [ Y ] .  

Proof Left as an exercise. 

It is well known that E [ X ]  is the optimal mean square deterministic predictor 
of X. The corresponding result for conditional expectations is as follows. 

Proposition B.37 Let (R ,3 ,  P )  be a given probability space, let 6 be a sub- 
sigma-algebra o f 3  and let X be a square integrable random variable. 

Consider the problem of minimizing 

where Z is allowed to  vary over the class of all square integrable 6-measurable 
random variables. The optimal solution 2 i s  then given by 

Proof Left to the reader. See the exercises for a hint. . 

In geometrical terms this means that E[XI 61 is the orthogonal projection (in 
L2 (R, 3 ,  P ) )  of X onto the closed subspace L2 (R, G ,  P). For square integrable 
random variables one may in fact use this as the definition of the conditional 
expectation. This definition can then be extended from L2 to L1 by continuity, 
since L~ is dense in L1. 

B.6 Equivalent Probability Measures 
In this section we discuss absolute continuity and equivalence for the particular 
case of probability measures. The results in this section will be heavily used in 
Chapter 10. 

Let therefore P and Q be probability measures on (R,3).  We immediately 
have the following simple result. 

Lemma B.38 For two probability measures P and Q, the relation P Q on  3 
holds i f  and only i f  

P(A) = 1 + Q(A) = 1, for all A E 3. (B. 14) 

Proof Exercise for the reader. i 
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In the context of probability measures we thus notice that although two equival- 
I 

ent measures P and Q may assign completely different probabilities to a fixed 
event A, but all events which axe impossible under P (i.e. P(A) = 0) are also 
impossible under Q. Equivalently, all events which are certain under P (i.e. 
P(A = I)), are also certain under Q. It also follows directly (prove this!) from 
the definition that if an event A has strictly positive P-probability, then it also 
has strictly positive Q-probability (and vice versa). 

From the Radon-Nikodym Theorem we know that Q << P on the probability 
space ( Q 3 )  if and only if there exists 3-measurable mapping L : R -+ R+ 
such that L ~ Q ( W )  = J1 ~ ( w )  dp(w) (B.15) 

for all A E 3. Since Q is a probability measure L must also have the property that 

In other words, the Radon-Nikodym derivative L is a nonnegative random vari- 
able with EP[L] = 1, and it is often referred to as the likelihood ratio between 
Q and P. Written in terms of expected values, it follows from (B.15) that, for 
any random variable X E L1 (Q) we have 

EQ[x]  = E ~ [ L  - X ]  . (B. 16) 

Suppose now that Q << P on 3 and that we also have a smaller sigma- 
algebra G E 3 .  We then have two Radon-Nikodym derivatives; LF on 3 ,  and 
LB on 6, and these are typically not equal, since L7 will generically not be 
Q-measurable. The following result shows how they are related. 

Proposition B.39 Assume that Q << P o n  3 and that G C 3. T h e n  the 
Radon-Nzkodym derivatives LF and LB are related by 

Proof We have to show that EP[LF\ G] is G-measurable (which is obvious) 
and that, for any G E Q, 

This, however, follows immediately from the trivial calculation 

where we have used the fact that G E b F. 
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Example B.40 To see an example of the result above let = {1,2,3} and Intc 
define 

3 = 2 " ,  8 =  {fl,@,{1},{2,3}} 

and 
P ( l )  = 4, P(2) = g , P(3) = +, Thl 
Q ( l ) = i ,  Q(2)=3 ,  Q(3)=5 .  EP 

We see directly that 

and it is obvious that L7 is not 8-measurable. Since P({2,3}) = 314, and 
Q({2,3}) = 213, the local scale factor on {2,3} is 918, so LP is given by 

and we also have the simple calculation 

The formula (B.16) gives us expectations under Q in terms of expectations 
under P, and a natural question is how conditional expected values under Q are 
related to conditional expectations under P .  The following very useful result, 
known as the "Abstract Bayes' Formula" solves this problem. 

Proposition B.41 (Bayes' Theorem) Assume that X is a random variable 
on ( R , 3 ,  P) ,  and let Q be another probability measure on (R, 3) with Radon- 
Nikodvm derivative 

Assume that X E L1 (R, 3, Q) and that 6 is a sigma-algebra with 8 C 3. Then 

Proof We start by proving that 

We show this by proving that for an arbitrary G E G the P-integral of both sides 
coincide. The left-hand side becomes 
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EXERCISES 

Integrating the right-hand side we obtain 

1 Thus (B.19) holds P-as. and since Q << P also Q-a.s. It remains to show that 
E ~ [ L I  Q] # 0 Q-a.s. but this follows from the calculation 

Q ( E ~ I L I  GI = 0) = 1 
dQ = i E p [ L I P ] = O )  

L d P  
{EPILIP]=O} 

E ~ [ L I  Q] d~ = 0. 
= i E p [ L I P ] = O ]  

B.7 Exercises 
Exercise B.l  Prove Proposition B.4 by carrying out the following steps: 

Prove the proposition in the case when g = IA where A is an arbitrary 
Bore1 set. 
Prove that the proposition holds when g is a simple function. 
You can WLOG assume that g is nonnegative (why?), so now approximate 
g by simple functions. 

Exercise B.2 Prove Proposition B.lO. 

Exercise B.3 Prove Proposition B.12. 

Exercise B.4 Prove Corollary B.22. 

Exercise B.5 Prove Proposition B.26. 

Exercise B.6 Prove (B.6) by using Proposition A.26. 

Exercise B.7 Prove Proposition B.31 by first proving it when X is an indic- 
ator function, then extend by linearity to simple functions and at last by 
approximating X with a sequence of simple functions. 

Exercise B.8 Prove Proposition B.31 by the following steps: 

Choose a fixed X. 
Show that for any A E a {X) you have E[ IA 1 Q] = E[IA] .  
Extend by linearity to simple a {XI-measurable functions and at last by 
approximating X with a sequence of simple functions. 

Exercise B.9 Let h : R + R be a function such that h > 0, h' 2 0 and h(0) =O. 
Assume that X is a nonnegative random variable. Prove that 

~ [ h ( x ) ]  = JW h1(t)p(x t )  dt. 
0  
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Exercise B.10 Prove Proposition B.36 by starting with the case when X = IA 
and then do the usual steps. 

Exercise B. l l  Prove Proposition B.37 by going along the following lines: 

Prove that the "estimation error" X-  E[X(  Q] is orthogonal to L2 (0, Q, P) 
in the sense that for any Z E L2 (0,  Q, P) we have 

Now prove the proposition by writing 

and use the result just proved. 

B.8 Notes 
For the mathematician, Durrett (1996) is a very good standard reference on prob- 
ability theory. For the economist (and also for many mathematicians) the recent 
text by Jacod and Protter (2000) is the perfect, and amazingly far reaching, 
reference. 
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Appendix C 

MARTINGALES AND STOPPING TIMES* 

C.l  Martingales 

Let (R,  F, P, E) be a filtered probability space, and let X be a random process 
in continuous or discrete time. 

Definition C.l The process X is an 3-martingale if 

1. X is 3-adapted. 
2. X t  E L1 for each t .  
3. For every s and t with 0 5 s 5 t it holds that 

If the equality sign is replaced by 5 (2) then x is said to be a submartingale 
(supermartingale). 

Note that the martingale property is always with respect to some given filtration. 
In all honesty it should be mentioned that while martingale theory in discrete 
time is a fairly straightforward activity, martingale theory in continuous time is 
sometimes rather complicated and there are lots of highly nontrivial technical 
problems. In order for the theory to work well in continuous time we typically 
want our processes to have right continuous trajectories with left limits, and we 
also need to assume that the filtration E has some regularity properties. However, 
in almost all concrete situations these technical problems can be taken care of, 
so with almost no danger the reader can safely forget about the technicalities. 
For the rest of this book we simply ignore these problems. Below we only give 
proofs for the discrete time case. The proofs for the continuous time results are 
typically obtained by sampling the continuous time processes at discrete points 
in time and then performing a limiting argument. 

It follows immediately from the definition, that a martingale is characterized 
by the property that the conditional expectations of a forward increment equals 
zero, i.e. that 

E [ X t  - XsI Fs] = 0, for all s 5 t. 
For martingales in discrete time, it is in fact enough to demand that the 
martingale property holds for one single time step. 

Proposition C.2 A n  adapted integrable discrete time process {X,; n = 0,1, . . .) 
is a martingale w.r.t. the filtration {F,; n = 0,1,. . .) if and only if 
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Proof Easy exercise. 

Two of the most common types of martingales are the following. 

Example C.3 Let Y be any integrable random variable on the filtered space 
(Q, 3, P, Z), and define the process X by 

Then it is an easy exercise to see that X is an 3t-martingale. In particular, this 
implies that on a compact interval [0, TI any given martingale M is always 
generated by its final value MT by the formula 

Note that this only holds on a finite closed interval. The more complicated case 
of an infinite or open interval will be discussed below. 

Example C.4 If X is a process with independent increments on (Q, 3, P, 3), 
and if also E [Xt - X,] = 0, for all s ,  t ,  then X is a martingale. 

Example C.5 Let (2,; n = 1,2 , .  . .} be a family of independent integrable 
random variables, and define the discrete time process X by 

then X is a martingale w.r.t. the filtration FX. 
There is a close connection between martingale theory, the theory of con- 

vex functions, and the theory of harmonic functions. The correspondence is as 
follows: 

Martingale theory Convex theory Harmonic theory 
martingale linear function harmonic function 
submartingale convex function subharmonic function 
supermartingale concave function superharmonic function 

We will not go deeper into this, but from convexity theory we recognize 
directly the structure of the following result. 

Proposition C.6 Let X be a process on (Q,3,  P, E) 
a If X is a martingale and i f f  : R -, R is a convex (concave) function such 

that f (Xt) is integrable for all t ,  then the process Y defined by 

is a submartingale (supermartingale). 
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a If X is a submartingale and i f  f : R -t R is a convex nondecreasing 
function such that f (Xt) is integrable for all t ,  then the process Y defined by 

is a submartingale. 

Proof Jensen's inequality for conditional expectations. 

On every finite interval [0, TI, every martingale X is of the form 

and a natural question is if every martingale X also on the infinite interval 
[0, oo] has a representation of this form, i.e. if there always exists some random 
variable X, such that 

xt = E [ X w I 3 t l .  ((3.4) 

In general the answer is no, and a symmetric random walk on the integers is 
a typical counter example. In order to have a representation of the form (C.4) 
one needs some further integrability of X. We will not prove the most general 
(and hard) version of the results but for completeness, sake we will cite the most 
general convergence theorem without proof. 

Theorem C.7 Suppose that X is a submartingale satisfying the condition 

sup E [x:] < oo. 
t2o ' 

Then there exists a random variable Y such that Xt + Y ,  P-a.s. 

We now move to the more manageable quadratic case. 

Definition C.8 A martingale X is called square integrable i f  there exists a 
constant M such that 

1 We now have the following nice result. 

Proposition C.9 (Martingale Convergence) Assume that x is a square 
integrable martingale. Then there exists a random variable, which we denote 
by Xw, such that Xt -t X, i n  L2 and P -as .  as t -t oo. Furthermore we have 
the representation 

Xt=E[X,1,Ft], f o r a l l t L 0 .  (c.5) 

1 Proof Since x - x2 is convex, the process Xz is a submartingale, which 
1 implies that the mapping mt = E [x:] is nondecreasing. The assumption that 
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X is square integrable is thus equivalent to the existence of a real number c < oo 
such that mt t c. We will now prove L2-convergence by showing that Xt is 
Cauchy in L2. We have 

= E [E [x: - 2XaXt + x:] Fa]] 

= E [X:] - 2E [XaE [Xt 1 F a ] ]  + E [x:] 
= E [X:] - E [x:] = mt - m,. 

Since mt + c it follows that mt is Cauchy and thus that Xt is Cauchy in L2. 
Since L2 is complete this implies the existence of a random variable Y E L2 such 
that Xt + Y in L2. The almost sure convergence then follows from Theorem C.7 
In order to prove (C.5), it is enough (why?) to show that for every s and every 
A E 3. we have 

J,X.~P=I,Y~P, 
and this follows easily from the fact that for every t > s the martingale property 
implies that 

If now t + oo, it follows (how?) from the L2-convergence that, as t -+ oo, 
we have 

C.2 Discrete Stochastic Integrals 

In this section, we discuss briefly the simplest type of stochastic integration, 
namely integration of discrete time processes. This will thus serve as an intro- 
duction to the more complicated Wiener case later on, and it is also important 
in its own right. The central concept here is that of a predictable process. 

Definition C.10 Consider a filtered space (R,F,  P , z )  in  discrete time, i.e. 
n = 0 , 1 , 2  ,.... 

A random process X is 2-predictable zf ,  for each n, Xn is Fn-l 
measurable. Here we use the convention F-1 = FO. 

a For any random process X,  the increment process AX is defined by 

with the convention X-1 = 0. 
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For any two processes X and Y , the discrete stochastic integral process 
X * Y is defined by 

Instead of (X * Y), we will sometimes write X, dY,. 

Note that a predictable process is "known one step ahead in time". The reason 
why we define AX by "backward increments" is that in this way AX is adapted, 
whenever X is. 

The main result for stochastic integrals is that when you integrate a 
predictable process X w.r.t. a martingale M, the result is a new martingale. 

Proposition C . l l  Assume that the space ( f l ,3 ,  P, 3) carries the processes X 
and M where X is predictable, M is a martingale, and Xn(AM), is integrable 
for each n. Then the stochastic integral X * M is a martingale. 

Proof Left as an exercise to the reader. 

C.3 Likelihood Processes 
Martingale theory is closely connected with absolutely continuous measure trans- 
formations and arbitrage theory. This will be discussed in detail in Chapter 10 
and here we will only state some basic facts. 

We consider a filtered probability space (fl, 3, P, z) on a compact interval 
[0, TI. Suppose now that LT is some nonnegative integrable random variable 
in FT. We can then define a new measure Q on FT by setting 

and if 
E~ [LT] = 1, 

the new measure will also be a probability measure. 
From its definition, LT will be the Radon-Nikodym derivative of Q w.r.t. P 

on FT so Q << P on FT. Hence we will also have Q << P on Ft for all t 5 T 
and thus, by the Radon-Nikodym Theorem, there will exist a random process 
{Lt; 0 5 t 5 T) defined by 

The L process is known as the likelihood process for the measure transform- 
ation from P to Q and it has the following fundamental property, which will be 
used frequently. 
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Proposition C.12 With assumptions as above, the likelihood process L, defined 
by ((2.8) is a (P,.F)-martingale. 

Proof The statement follows directly from Proposition B.39. 

Using the likelihood process, we can also characterize a Q-martingale in terms 
of the P measure. 

Proposition C.13 A process M is a Q-martingale i f  and only i f  the process 
L - M is a P-martingale. 

Proof Exercise for the reader. 0 

C.4 Stopping Times 
Consider again a filtered space (a, F ,  P, .F) and a martingale X on the space. 
A natural question, which we will encounter in connection with American 
options, is whether the martingale property also holds when the deterministic 
times are replaced by stochastic times, i.e. whether we always have the equality 

where S and T are random times with S 5 T .  It is rather clear that we cannot 
expect a strong theory unless we restrict the study to those random times which 
in some sense are adapted to the information flow given by the filtration. These 
are the so called stopping times. 

Definition C.14 A stopping time w.r.t. the filtration .F 2:s a nonnegative 
random variable T such that 

A stopping time is thus characterized by the fact that at any time t we can, 
based upon the information available at t ,  decide whether T has occurred or 
not. This definition may seem a bit abstract, but in most concrete situations it 
is very easy to see whether a random time is a stopping time or not. A typical 
example of a stopping time is obtained if X is an adapted discrete time process 
and we define T as a hitting time i.e. we define T by 

where A C R is some Bore1 set. T is thus the first time when X enters into 
the set A, and intuitively it is obvious that we can decide whether the event 
{T 5 n) has occurred, based upon observations of X at the times O,1,2,. . . , n. 
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Thus T is a stopping time, and we obtain a formal proof by choosing a fixed n 
and noting that 

n 

{T(w)  < n) = {Xt(w) E A, for some t 5 n) = U {Xt E A). 
t=O 

Since X is adapted we have {Xt E A) E 3 t  Tt Fn, so {T I n) E 3n. 
A typical example of a random time which is not a stopping time is given by 

T(w) = sup{n 2 0; X, E A). 

In this definition, T is thus the last time that X visits A, and it is again intuitively 
obvious that in the generic case we cannot decide whether T has occurred or not 
based upon the basis of observations upon Xo, XI, . . . Xn since this would imply 
that at time n we already know if X will visit A or not at some time in the 
future. 

In order to be able to even formulate the equality (C.9) we must define what 
we mean by the expression FT for a stopping time T. Intuitively the interpreta- 
tion is of course that 3T = "the information generated by the flow 3 up to the 
random time T", but it is not obvious how to formalize this in mathematical 
terms. The generally accepted definition is the following. 

Definition C.15 Let T be an 3 stopping time. The sigma-algebra FT is defined 
as the class of events satisfying 

We now have some natural results. 

Proposition C.16 Let S and t be stopping times on the filtered space 
( R , 3 ,  P,.F), and let X be an adapted process, which i n  the continuous time 
case is assumed to have trajectories which are either left- or right-continuous. 
Define V and A by x V y = max [x, y] and x A y = min [x, y] for any real number, 
and define S V T by (S V T)(w) = S(w) V T(w). Then the following hold: 

If S 5 T ,  P-a.s. then FS C_ FT. 
S V T and X A T are stopping times. 
If T is  P - a s .  finite or i f  X, is well defined i n  Fm, then XT is 
FT-me~s~7mb1e. 

Proof The first two items are left as easy exercises, and we prove the third 
item only for the discrete time case. To show that XT is FT-measurable we have 
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to show that {XT E B )  E FT for every Bore1 set B ,  so we thus have to show 
that for every n we have {XT E B )  n { T  5 n )  E Fn. We obtain 

{ X T  E B ) ~ { T  < n )  = { X T  E ~ ) n  U { ~ = k )  = U ({x* E B ) ~ { T =  k ) ) .  
k=o k = ~  (C.13) 

Since X is adapted and T is a stopping time, {Xk E B )  and {T = k) are in 
Fk which is included in Fn. 

We now prove that the martingale property is stable under stopping. 

Proposition C.17 Let X be a martingale and let T be a stopping time. Then 
the stopped process xT, defined by 

is a martingale. 

Proof We only give the proof for the discrete time case. For this we define the 
process h by hn = I {n 5 T )  , n = 0,1,2. . ., where I denotes the indicator of 
the event within the bracket. Now, { n  5 T )  = { T  < n)' = { T  5 n - 1)'. Since 
T is a stopping time we thus see that h ,  E 3n-1 so h is predictable. Furthermore 
we have the obvious equality 

so from Proposition C.ll  we see that xT is a martingale. 

We finish by stating a fairly general version of the "optional sampling theorem" 
which shows that the martingale property is preserved under random sampling, 
but we only give the proof for a simple special case. 

Theorem C.18 (The Optional Sampling Theorem) Assume that X is a 
martingale satisfying 

sup E [x:] 1 00 
t2o 

Let S and T be stopping times such that S 5 T.  Then 

If X is a submartingale satisfying the same integrability condition then (C.15) 
holds with = replaced by 2.  
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Proof We will be content with proving the result in discrete time and for the 
case when X is a martingale, the submartingale case being a bit harder. From 
Proposition C.9 it follows that there exists an integrable random variable Y 
such that 

Xn=EIYIFn] ,  n=0 ,1 ,  .... (C.16) 

It is thus enough (why?) to show that for any stopping time T we have 

i.e. we have to show that for every A E FT we have 

By writing A as A = Un (A n {T = n)), noting that A n {T = n) E Fn, and 
using (C.16) we obtain 

C. 5 Exercises 
Exercise C.l Show that for any integrable random variable Y on a filtered 
space (a, 3, P, E),  the process X defined by 

is a martingale. 

Exercise C.2 Let (2,) be a sequence of i.i.d. (independent identically distrib- 
uted) random variables with finite exponential moments of all orders. D e h e  the 
function cp : R -t R by 

cp(X) = E [eXZn] , 
and define the process X by 

eASn n 
xn = - 

[cp(X)ln ' 
where Sn = Zk. 

k=l 

Prove that X is an Fn-martingale, where Fn = o {Zi; i = 1,. . . , n). 
Exercise C.3 Prove that, for any stopping time T, FT, defined by (C.lO) is 
indeed a sigm&algebra. 

Exercise C.4 Prove Proposition C. 11. 
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Exercise C.5 Prove Proposition C.6. 

Exercise C.6 Show that in discrete time, the defining property {T 5 t )  E 3 t  

for a stopping time, can be replaced by the weaker condition 

{T = n)  E Fn, for all n. 

Exercise C.7 Prove the first two items in Proposition C.16. 

Exercise C.8 A Wiener process W is a continuous time process with Wo = 0, 
continuous trajectories, and Gaussian increments such that for s < t the incre 
ment Wt - W, is normally distributed with mean zero and variance t - s. 
Furthermore the increment Wt - W, is independent of 3,, where the filtration 
is the internal one generated by W. 

(i) Show that W is a martingale. 
(ii) Show that W2 - t is a martingale. 
(iii) Show that for any real number X 

exp(XWt - At) 

is a martingale. 
(iv) For b < 0 < a we define the stopping time T as the first time that W 

hits one of the "barriers" a or b, i.e. 

Define pa and pb as 

pa = P (W hits the a barrier before hitting the b barrier,) 

pb = P (W hits the b barrier before hitting the a barrier,) 

SO pa = P(WT = a) and pa = P(WT = b). Use the fact that every 
stopped martingale is a martingale to infer that ,E[WT] = 0, and show 
that 

-b a 
p a = ~ ,  Pb = - a + b '  

You may, without proof, use the fact that P ( T  < oo) = 1. 
(v) Use the technique above to show that 

(vi) Let T be as above and let b = -a. Use the Optional Sampling Theorem, 
Proposition C.17 and item (iii) above to show that the Laplace transform 
cp(X) of the distribution of T is given by 

Exercise C.9 Prove Proposition C.13. 
Hint: Use the Bayes7 Formula (B.18). 
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forward rate of interest, see interest rates 
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multidimensional, 214-223 
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independence, 430 
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bond options, 364 
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forward rate dynamics, 340 
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VasiEek, 327, 338 

bond options, 338 
bond prices, 334 
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maximum option, see option 
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measure, 398 
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equation, 344 
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optimal control, 271-301 
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control process, 272 
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pricing formula, 101 
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general pricing formula, 359, 361 
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on futures, 103 
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Riccati equation, 286 
Riesz representation theorem, 410 
risk adjusted measure, 100, see 

martingale measure 
risk free asset, 88 

risk neutral 
measure, see martingale measure 
valuation, 8, 11, 148, 322 

running maximum, 254 
density of, 255 

running minimum, 254 
density of, 255 

SDE, see stochastic differential equation 
SDF, see stochastic discount factor 
Second Fundamental Theorem, 33, 146, 

151, 198 
SEK, 1 
several underlying, see multidimensional 

model 
short rate, 88 
sigma-algebra, 398 
simple function, 400 
singular measures, 416 
spot rate, see interest rates 
state process, see optimal control 
stochastic differential equation, 62 

GBM, 63 
linear, 66 

stochastic discount factor, 34, 149, 201 
stochastic integral, 4 M 2  

discrete, 447 
stopping times, 44-51 
straddle, 131 
submartingale, 43,443 

connection to optimal control, 300 
subharmonic characterization of, 60 

supermartingale, 43, 443 
surjective mapping, 395 
swaption 

Black's formula for, 382 
definition of, 381 

T-claim, 90 
term structure equation, 322, 323 
theta, 124 

for European call, 125 
8, see theta 
trace of a matrix, 61 
triangle inequality, 408 
two-factor models, see interest rate 

models 

uncountable set, 396 

value process, 7, 135, 143 
VasiEek, see interest rate models 
vega, 124 

for European call, 125 
V, see vega 



verification theorem, 
see optimal control 

volatility, 88, 104-105 
Black, 370, 382 
flat, 370 
forward, 370 
historic, 105 
implied, 106 
matrix, 176 

INDEX 

smile, 106 
spot, 370 

Wiener process, 36 
correlated, 55-59 
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yield, see bonds 




