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Preface

This book is appropriate for graduate and advanced undergraduate elective courses
in business and economics. It is also suitable for practitioners who want to acquire
a working knowledge of how derivative securities can be analyzed.

One of the key decisions that must be made by an author who is writing in
the area of derivative securities concerns the use of mathematics. If the level of
mathematical sophistication is too high, the material is likely to be inaccessible
to many students and practitioners. If it is too low, some important issues will
inevitably be treated in a rather superficial way. In this book, great care has been
taken in the use of mathematics. Nonessential mathematical material has been either
eliminated or included in end-of-chapter appendices. Concepts that are likely to be
new to many readers have been explained carefully and many numerical examples
have been included.

The feature of this book that distinguishes it from others in the same area is
that it provides a unifying approach to the valuation of all derivative securities—not
just futures and options. This book assumes that the reader has taken an introduc-
tory course in finance and an introductory course in probability and statistics. No
prior knowledge of options, futures contracts, swaps, and so on, is assumed. It is

xvii



xvill Preface

not therefore necessary for students to take an elective course in investments prior
to taking a course based on this book.

CHANGES IN THIS EDITION

This edition contains much more material than the previous edition. Also, the ma- -
terial in the previous edition has been updated and the organization of the material
has been improved in a number of places. The main changes are:

1. There is more material on futures markets and the way they are used for
hedging (chapters 2, 3, and 4). A discussion of duration and duration-based
hedging strategies has been included.

2. There is more material on the details of how markets work and the trading
strategies that can be used (chapters 2, 4, 6 and 8).

3. The material on interest rate derivatives (Chapter 15) has been completely
rewritten to reflect recent developments in this area. It now includes a fuller
discussion of no-arbitrage models that provide an exact fit to the current term
structure.

4. A new chapter on exotic options (Chapter 16) has been added.

5. A whole chapter has been devoted to the increasingly important area of credit
risk (Chapter 18).

6. The chapter concerned with the Cox, Ingersoll, and Ross general approach
to pricing derivative securities has been restructured (Chapter 12). Also, a
discussion of guaranteed exchange rate foreign index options is now included.

7. New questions and problems have been added at the ends of the chapters.
As in the previous edition, those which are more difficult than average have
been asterisked.

ACKNOWLEDGMENTS

Many people have played a part in the production of this book. Colleagues who
have made excellent and useful suggestions are: George Athanassakos, Giovanni
Barone-Adesi, George Blazenko, Laurence Booth, Phelim Boyle, Peter Carayan-
nopoulos, Peter Carr, Dieter Dorp, Jerome Duncan, Steinar Ekern, David Fowler,
Mark Garman, Kevin Hebner, Elizabeth Maynes, Paul Potvin, Gordon Roberts,
Chris Robinson, John Rumsey, Klaus Schurger, Piet Sercu, Stuart Turnbull, Yisong
Tian, P. V. Viswanath, Bob Whaley, and Alan White. T am particularly grateful to
Eduardo Schwartz, who read the original manuscript for the first edition and made
many comments which have led to significant improvements.
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can be improved. I would particularly like to thank Scott Drabin, Cheryl Rosen,
and Jason Wei. These three students read my original manuscript very carefully
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be improved.
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to thank Kannan Ayyar (Renaissance Software), Alex Bergier (Goldman Sachs),
Emanuel Derman (Goldman Sachs), Don Goldman (Bankers Trust), Ian Hawkins
(Deutschebank), Nico Meier (Citibank), Isaac Muskat (Royal Bank), Bruce Rogers
(Bank of Nova Scotia), Ayesha Shah (Nomura International), Armand Tatevossian
(Fuji Capital Markets), Edward Thorp (Edward O. Thorp and Associates), and
Cathy Willis (Renaissance Software)
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Introduction

A derivative secuxity is a security whose value depends on_the values of other
more basic underlying variables. In recent years, derivative securities have become
increasingly important in the field of finance. Futures and options are now actively
traded on many different exchanges. Forward contracts, swaps, and many different
types of options are regularly traded outside of exchanges by financial institutions
and their corporate clients in what are termed the over-the-counter markets. Other
more specialized derivative securities often form part of a bond or stock issue.

Derivative securities are also known as contingent claims, and these two
terms will be used interchangeably throughout this book. Very often the variables
underlying derivative securities are the prices of traded securities. A stock option,
for example, is a derivative security whose value is contingent oon the price of a
stock. However, as we shall see, derivative securities can be contingent on almost
any variable, from the price of hogs to the amount of snow falling at a certain ski
resort.

This book has two objectives. The first is to explore the properties of those
derivative securities that are commonly encountered in practice; the second is to
provide a theoretical framework within which all derivative securities can be valued

1



2 Introduction Chapter 1

and hedged. In this opening chapter, we take a first look at forward contracts,
futures contracts, and options. In later chapters, these securities and the way they
are traded will be discussed in more detail.

1.1 FORWARD CONTRACTS

A forward contract is a particularly simple derivative security. It is an agreement
to buy or sell an asset at a certain future time for a certain price. The contract

is usually between two financial institutions or between a financial institution and
one of its corporate clients. It is not normally traded on an exchange.

One of the parties to a forward contract assumes a long position and agrees
to buy the underlying asset on a certain specified future date for a certain specified
price. The other party assumes a short position and agrees to sell the asset on
the same date for the same price. The specified price in a forward contract will
be referred to as the delivery price. At the time the contract is entered into, the
delivery price is chosen so that the value of the forward contract to both parties is
zero}! This means that it costs nothing to take either a long or a short position,

' A forward contract is settled at maturity. The holder of the short position
delivers the asset to the holder of the long position in return for a cash amount
equal to the delivery price. A key variable determining the value of a forward
contract is the market price of the asset. As already mentioned, a forward contract
is worth zero when it is first entered into. Later it can have a positive or a negative
value depending on movements in the price of the asset. For example, if the price
of the asset rises sharply soon after the initiation of the contract, the value of a
long position in the forward contract becomes positive and the value of a short

position in the forward contract becomes negative.

THE ForwARD Price

The Jorward price for a certain contract is defined as the d(m_jce which
would make that contract have zero value. The forward price and the delivery price
are therefore equal at the time the contract is entered into. As time passes, the
forward price is liable to change while the delivery price, of course, remains the
same. XThe two are not therefore equal, except by chance, at any time after the
start of the contract. Generally, the forward price at any given time varies with
the maturity of the contract being considered. For example, the forward price for
a contract to buy or sell in 3 months is typically different from that for a contract
to buy or sell in 6 months.

In Chapter 3 we explain the way in which this delivery price can be calculated.
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Sec. 1.2 Futures Contracts 3

TABLE 1.1 Spot and
Forward Foreign Exchange
Quotes, September 11, 1991

Ssove 2V Spot 1.7280
30-day forward 1.7208
90-day forward 1.7090
180-day forward 1.6929

Corporations frequently enter into forward contracts on foreign exchange.
Consider the quotes shown in Table 1.1 for the pound sterling—U.S. dollar exchange
rate on September 11, 1991. The first quote indicates that, ignoring commissions
and other transactions costs, sterling can be bought or sold in the spot market (that
is, for virtually immediate delivery) at the rate of $1.7280 per pound; the second
quote indicates that the forward price (or forward exchange rate) for a contract to
buy or sell sterling in 30 days is $1.7208 per pound; the third quote indicates that
the forward price for a contract to buy or sell sterling in 90 days is $1.7090 per
pound; and so on.

Payorrs FRoM FORWARD CONTRACTS

The payoff from a long position in a forward contract on one unit of an
asset is ot .
1 Av
si—K 7
where K is the delivery price and Sr is the spot price of the asset at maturity of
the contract. This is because the holder of the contract is obligated to buy an asset

worth Sy for K. Similarly, the payoff from a short position in a forward contract
on one unit of an asset is

K—Sr

These payoffs can be positive or negative. They are illustrated in Figure 1.1. Since
it costs nothing to enter into a forward contract, the payoff from the contract is
also the investor’s total gain or loss from the contract.

1.2 FUTURES CONTRACTS

A futures contract, like a forward contract, is an agreement between two parties to
buy or sell an asset at a certain time in the future for a certain price. Unlike forward
contracts, futures contracts are normally traded on an exchange. To make trading
possible, the exchange specifies certain standardized features of the contract. As
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} Payoff Payoff

Long Position Short Position

K = delivery price
St = price of asset at maturity

Figure 1.1 Payoffs from Forward Contracts.

the two parties to the contract do not necessarily know each other, the exchange
also provides a mechanism which gives the two parties a guarantee that the contract
will be honored. L

The largest exchanges on which futures contracts are traded are the Chicago
Board of Trade (CBOT) and the Chicago Mercantile Exchange (CME). On these
and other exchanges, a very wide range of commodities and financial assets form the

V(underlying assets in the various contracts. The commodities include pork bellies,
li

ve cattle, sugar, wool, lumber, copper, aluminum, gold, and tin. The financial
assets include stock indices, currencies, Treasury bills, and bonds.
One way in which a futures contract is different from a forward contract is

_ that an exact delivery date is_not usually specified. The contract is referred to by

7

“its delivery month, and the exchange specifies the period during the month when
delivery must be made. For commodities, the delivery period is often the whole
month. The holder of the short position has the right to choose the time during the
delivery period when he or she will make delivery, Usually, contracts with several
different delivery months are traded at any one time. The exchange specifies the
amount of the asset to be delivered for one contract; how the futures price is to be
quoted; and, possibly, limits on the amount by which the futures price can move in
any one day. In the case of a commodity, the exchange also specifies the product
Quality and the delivery location. Consider, for example, the wheat futures contract
currently traded on the Chicago Board of Trade. The size of the contract is 5,000
bushels. Contracts for five delivery months (March, May, July, September, and
December) are available for up to one year into the future. The exchange specifies
the grades of wheat that can be delivered and the places where delivery can be made.
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Futures prices are regularly reported in the financial press. Suppose that, on
September 1, the December futures price of gold is quoted at $500. This is the
price, exclusive of commissions, at which investors can agree to buy or sell gold
for December delivery. It is determined on the floor of the exchange in the same
way as other prices (that is, by the laws of supply and demand). If more investors
want to go long than to go short, the price goes up; if the reverse is true, the price
goes down.?

Further details on issues such as margin requirements, daily settlement pro-
cedures, delivery procedures, bid-ask spreads, and the role of the exchange clear-
inghouse will be given in the next chapter.

1.3 OPTIONS

Options on stocks were first traded on an organized exchange in 19'13,' Since then,
there has been a dramatic growth in options markets. Options are now traded
on many different exchanges throughout the world. Huge volumes of options
are also traded over the counter by banks and other financial institutions. The
[underlying assets include stocks, stock indices, foreign currencies, debt instruments,
‘commodities, and futures contracts. (bavor)
There are two basic types of options. A call option gives the holder the right
to buy the underlying asset by a certain date for a certain price. A put option gives
the hoider the right to sell the underlying asset by a certain date for a certain price.
The price in the contract is known as the exercise price or strike price; the date in
the contract is known as the expiration date, exercise date, or maturity. American
options can be exercised at any time up to the expiration date. European options
can only be exercised on the expiration date itself.> Most of the options that
are traded on exchanges are American. However, European options are generally
casier to analyze than American options, and some of the properties of an American
option are frequently deduced from those of its European counterpart.
It should be emphasized that an option gives the ‘holder the right to do

something. The holder does not have to exercise ‘t’}llrisﬂgght'.ﬂThis fact distinguishes
options from forwards and futures where the holder is obligated to buy or sell the
underlying asset. Note that, whereas it costs nothing to enter into a forward or

futures contract, an investor fnust pay to purchase an"Option contract.

2As we will see in Chapter 3, a futures price can sometimes be related to the price of the
underlying asset (gold, in this case).

INote that the terms American and European do not refer to the location of the option or the
exchange. Some options trading on North American exchanges are European.
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ExampLES

Consider the situation of an investor who buys 100 European call options
on IBM stock with a strike price of $140, Suppose that the current stock price is
$138, the expiration date of the option is in 2 months, and the option price is_$5.\ﬂ
Since the options are European, the investor can exercise only on the expiration

the initial investment of $500. If the stock price is above $140 on the expiration
date, the options will be exercised. Suppose, for example, that the stock price is
$155. By exercising the options, the investor is able to buy 100 shares for $140
per share. If the shares are sold immediately, the investor makes a gain of $15 per
share or $1,500, ignoring transactions costs. When the initial cost of the options
is taken into account, the net profit to the investor is $10 per option, or $1,000.
(This calculation ignores the time value of money.) Figure 1.2 shows the way in
which the investor’s net profit or loss per option varies with the terminal stock
price. Note that in some cases the investor exercises the options but takes a loss

than the loss of $500 that would be incurred if the options were not exercised.
______ Whereas the purchaser of a call option is hoping that the stock price will
increase, the purchaser of a put option is hoping that it will decrease. Consider an
investor who buys 100 European put options on Exxon with a strike price of $90.
Suppose that the current stock price is $86, the expiration date of the option is in

Profit ($)
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Figure 1.2  Profit from Buying an IBM European Call Option. Option Price = $5;
Strike Price = $140,
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3 months, and the option price is $7. Since the options are European, they will
be exercised only if the stock price is below $90 at the expiration date. Suppose
that the stock price is $65 on this date. The investor can buy 100 shares for $65
per share and, under the terms of the put option, sell the same stock for $90 to
realize a gain of $25 per share, or $2,500. (Again, transactions costs are ignored.)
When the initial cost of the option is taken into account, the investor’s net profit

is $18 per option, or $1,800. Of course, if the final stock price is above $90, the

put option expires worthless and the investor loses $7 per option, or $700. Figure
1.3 shows the way in which the investor’s profit or loss per option varies with the
LerminaPstock price.

As already mentioned, stock options are generally American rather than Eu-
ropean. This means that the investors in the examples just given do.not have.
to wait until the expiration date before exercising the options. We will see later
that there are some circumstances under which it is optimal to exercise American
options prior to maturity.

OprioN POSITIONS

There are two sides to every option contract. On one side is the investor who
has taken the QOn§ positiori ‘(i.e., has bought the option). On the other side is the
investor who has taken a short position (i.e., has sold or written the option). The
writer of an option receives cash up front but has ppteqéigi_{igﬁilities later. His
or her profit or loss is the reverse of that for the purchaser of the option. Figures
1.4 and 1.5 show the variation of the profit and loss with the final stock price for
writers of the options considered in figures 1.2 and 1.3.

Profit ($)

Terminal stock
price ($)

90 100 110 120

Figure 1.3 Profit from Buying an Exxon European Put Option. Option Price = $7;
Strike Price = $90.
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4 Profit (8)
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Figure 1.4 Profit from Writing an IBM European Call Option, Option Price = $5;
Strike Price = $140.

Profit ($)

Terminal stock
price ($)

00 10120

Figure 1.5 Profit from Writing an Exxon European Put Option. Option Price = $7;
Strike Price = $90.

Four basic option positions are possible:

1. A long position in a call option ( b oo
2. A long position in a put option ‘
3. A short position in a call option -

- 4. A short position in a put option

Pavorrs

It is often useful to characterize European option positions in terms of the
payoff to the investor at maturity. The initial cost of the option is then not included
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in the calculation. If X is the strike price and S is the final price of the underlying
asset, the payoff from a long position in a European call option is
max (St - X, 0)

-
This reflects the fact that the option will be exercised if St > X and will not be
exercised if St éx . The payoff to the holder of a short position in the European
call option is a5
— max (Sy — X, 0)

or .

P
min (X — St, 0)
The payoff to the holder of a long position in a European put option is
max (X — S7, 0)
and the payoff from a short position in a European put option is
—max (X —- St, 0)
or
min (St — X, 0)
Figure 1.6 illustrates these payoffs graphically.

1.4 OTHER DERIVATIVE SECURITIES

In recent years, banks and other financial institutions have been very imaginative
in designing nonstandard derivative securities to meet the needs of clients. Some-
times these are sold by financial institutions directly to their corporate clients. On
other occasions, they are added to bond or stock issues to make these issues more
attractive to investors. Some of the securities are simply combinations of simpler
contracts, such as forwards and options. Others are far more complex. The pos-
sibilities for designing new interesting derivative securities seems to be virtually
limitless. In this section, we give a few examples.

INTEREST RATE CaAPS

An interest rate_cap is designed to provide corporate borrowers with protec-
tion against the rate of interest on a floating-rate loan going above some level. This
level is known as the (c;gﬁ}rate. If the rate of interest on the loan does go above
the cap rate, the seller of the cap provides the difference between the interest on
the loan and the interest that would be required if the cap rate applied. Suppose
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Payoff Payoff
ST § T
X X
Long Call Short Call
Payoff | Payoff
S T § T
X X
Long Put Short Put
X = Strike price

St = Price of asset at maturity

Figure 1.6 Payoffs from Positions in European Options

the loan is for $10 million, the cap rate is 12 percent per annum, and that for a
particular 3-month period during the life of the cap, the floating rate applicable to
the loan turns out to be 14 percent per annum. The purchaser of the cap would
receive $50,000 (= 1/4 of 2% of $10 million) from the seller of the cap at the end of
the 3-month period. Occasionally caps are structured to guarantee that the average
rate paid during the life of the loan (rather than the rate at any particular time)-will
not go above a certain level. Caps will be discussed further in Chapter 15.

STANDARD Om's Bonp Issue

An example of a derivative security added to a bond issue is provided by
Standard Oil’s issue of zero-coupon bonds in 1986. In addition to the bond’s
$1,000 maturity value, the company promised to pay an amount based on the price
of oil at maturity of the bond. This additional amouit was equal to the product
of 170 and the excess (if any) of the price of a barrel of oil at maturity over $25,

However, the maximum additional amount paid was restricted to $2,550 (which
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corresponds to a price of $40 per barrel). The bonds provided holders with a stake
in a commodity that was critically important to the fortunes of the company. If the
price of the commodity went up, the company was in a good position to provide
the bondholder with the additional payment.

ICONs

In 1985, Bankers Trust developed index currency option notes or ICONs.
These are bonds in which the amount received by the holder at maturity varies
with a foreign exchange rate. Two exchange rates, X; and, X», are specified with
Xy > X,. If the exchange rate at the bond’s maturity is above X, the bondholder
receives the full face value. If it is less than X, the bondholder receives nothing.
Between X, and X, a portion of the full face value is received. Bankers Trust’s
first issue of an ICON was for the Long Term Credit Bank of Japan. The ICON
specified that if the yen—U.S. dollar exchange rate, S, is greater than 169 yen per
dollar at maturity (in 1995), the holder of the bond receives $1,000. If it is less
than 169 yen per dollar, the amount received by holder of the bond is reduced by

)

When the exchange rate is below 84.5, nothing is received by the holder at maturity.
RANGE FORWARD CONTRACTS

A range forward contract (or flexible forward contract) is another interesting
example of a derivative security. Suppose that on September 11, 1991, a U.S.
company finds that it will require sterling in 90 days’ time and faces the exchange
rates shown in Table 1.1. It could enter into a 90-day forward contract to buy
at $1.7090 per pound. Alternatively, a range forward exchange band could be
set from, say, $1.6700 per pound to $1.7500 per pound. At maturity, if the spot
rate is less than $1.6700 per pound, the company pays $1.6700 per pound; if it
is between $1.6700 and $1.7500, the company pays the spot rate; if it is greater
than $1.7500, the company pays $1.7500. Like a regular forward contract, a range
forward contract is normally structured so that it is initially worth zero to both
parties.

OTHER EXAMPLES

As mentioned earlier, there is virtually no limit to the innovations that are
possible in the derivative securities area. Some of the options traded over the
counter have payoffs dependent on maximum value attained by a variable during
a period of time; some have exercise prices which are functions of time; some
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have features where exercising one option automatically gives the holder another
option; and so on. Up to now, the variables underlying options and other derivative
securities have usually been stock prices, stock indices, interest rates, exchange
rates, and commodity prices. However, other variables can be, and on occasion
have been, used. For example, ski slope operators have been known to issue bonds
where the payoff depends on the total snow falling at a certain resort, and banks
have been known to create deposit instruments where the interest paid depends o

the performance of the local football team. '

1.5 TYPES OF TRADERS

Traders of derivative securities can be categorized as hedgers, speculators, or arbi-
trageurs. We now take a first look at each each of these,

HEDGERS

Hedgers are interested in reducing a risk that they already face. Suppose
that a U.S. company knows that it is due to pay £1,000,000 to one of its British
suppliers in 90 days. It is faced with a significant foreign exchange risk. The
cost, in U.S. dollars, of making the payment depends on the sterling exchange
rate in 90 days. Using the rates quoted in Table 1.1, the company can choose to
hedge by entering into a long forward contract to buy £1,000,000 in 90 days for
$1,709,000. The effect is toT6/ k in E}l exchange rate that will apply to the sterling it
requires. r

This hedge using forward exchange rates requires no jnitial payment. In
some circumstances it saves the company a significant amount of money. For
example, if the exchange rate rises to 1.8000, the company ends up $91,000 better
off if it hedges. In other circumstances, the company may wish it had not hedged.
For example, if the exchange rate falls to 1.6000, hedging leads to an outcome
that is $109,000 worse than no hedging. This emphasizes that the purpose of
hedging is to make the outcome more certain. It does not necessarily improve the
outcome. o -

As an alternative to a forward contract, the company could buy a call option
to acquire £1,000,000 at a certain exchange rate, say 1.7000, in 90 days. If the
actual exchange rate in 90 days proves to be above 1.7000, the company exercises
the option and buys the sterling it requires for $1,700,000. If the actual exchange
rate proves to be below 1.7000, the company buys the sterling in the market in
the usual way. This option strategy enables the company to insure itself against
adverse exchange rate movements while still benefitting from favorable movements.
Of course this insurance is achieved at a cost. Whereas forward contracts require

Lol

no initial payment, option contracts can be quite expensive.
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SPECULATORS

Whereas hedgers want to eliminate an exposure to movements in the price of
an asset, speculators wish to take a position in the market. Either they are betting
that a price will go up or they are bemng that it will go down.

Forward contracts can be used for speculatlon An investor who thinks that
sterling will increase in value relative to the U.S. dollar can speculate by taking
a long position in a forward contract on sterling. Suppose that in the situation
depicted in Table 1.1, the actual spot sterling exchange rate in 90 days proves to be
1.7600. An investor who enters into a long position in a 90-day forward contract
will be able to purchase pounds for $1.7090 when they are worth $1.7600. He or
she will realize a gain of $0.0510 per pound.

There is an important difference between speculating using forward markets
and speculating by buying the underlying asset (in this case, a currency) in the
spot market. Buying a certain amount of the underlying asset in the spot market
requires an initial cash payment equal to the total value of what is bought. Entering
into a forward contract on the same amount of the asset requires no initial cash
payment.* Speculating using forward markets therefore provides an investor with
a much higher level of leverage than speculating using spot markets.

Options when used for speculation also give extra leverage. To illustrate this
point, suppose that a stock price is $32 and an investor who feels that it will rise
buys call options with a strike price of $35 for $0.50 per option. If the price does
not go above $35 during the life of the option, the investor will lose $0.50 per
option (or 100 percent of the investment). However, if the price rises to $40, the
investor will realize a profit of $4.50 per option (or 900 percent of the original

- investment).

ARBITRAGEURS

Arbitrageurs are a third important group of participants in derivative securities
markets. Arbitrage involves locking in a riskless profit by simultaneously entering
into transactions in two or more markets. In later chapters, we will show how
drbltrage is sometimes possible when the futures price of an asset gets out of line
with its cash price. We will also discuss how arbitrage arguments can be used in
option pricing. In this section, we illustrate the concept of arbitrage with a very
simple example.

“In practice, a financial institution when entering into a forward contract with a speculator may
require the speculator to deposit some funds up front. These funds, which usually eam interest, are
enerally a relatively small proportion of the value of the assets underlying the contract. They serve as
u guarantee that the contract will be honored by the speculator.
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Consider a stock that is traded in both New York and London. Suppose
that the stock price is $172 in New York and £100 in London at a time when the
exchange rate is $1.7500 per pound. An arbitrageur could simultaneously buy 100
shares of the stock in New York and sell them in London to obtain risk-free profit
of

100 x ($1.75 x 100 — $172)

or $300 in the absence of transactions costs. Transactions costs would probablil
eliminate the profit for a small investor. However, large investment houses face
very low transactions costs in both the stock market and the foreign exchange
market. They would find the arbitrage opportunity very attractive and would try
to take as much advantage of it as possible.

Arbitrage opportunities such as the one that has just been described cannot
last for long. As arbitrageurs buy the stock in New York, the forces of supply
and demand will cause the dollar price to rise. Similarly, as they sell the stock in
London, the sterling price will be driven down. Very quickly, the two prices will
become equivalent at the current exchange rate. Indeed, the existence of profit-
hungry arbitrageurs makes it unlikely that a major disparity between the sterling
price and the dollar price could ever exist in the first place.

Generalizing from this example, we can say that the very existence of ar-
bitrageurs means that, in practice, only very small arbitrage opportunities are ob-
served in the prices that are quoted in most financial markets. In this book, most
of our arguments concerning futures prices and the values of option contracts will
be based on the assumption that there are no arbitrage opportunities.

1.6 SUMMARY

One of the interesting developments in financial markets over the last 15 to 20
years has been the growing popularity of derivative securities or contingent claims.
In many situations, both hedgers and speculators find it more attractive to trade
<7a derivative security on an asset tEgn _ﬁ[(:)jt_(a_clg_‘thg > asset_itself. Some derivative
securities are traded on exchanges. Others are made available to corporate clients
by financial institutions or added to new issues of securities by underwriters. There
seems to be no shortage of new ideas in this area. Much of this book is concerned
with the valuation of derivative securities. The aim is to present a unifying frame-
work within which all derivative securities—not Jjust options or futures—can be
valued.

In this chapter, we have taken a first look at forward, futures, and options
contracts. A forward or futures contract involves an obligation to buy or sell an
asset at a certain time in the future for a certain price. There are two types of
options: calls and puts. A call option gives the holder the right to buy an asset by
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a certain date for a certain price. A put option gives the holder the right to sell an
asset by a certain date for a certain price. Forwards, futures, and options are now
traded on a wide range of different assets.

Derivative securities have been very successful innovations in capital mar-
kets. Three main types of traders can be identified: hedgers, speculators, and
arbltrageurs@g(_igers are in the position where they face risk associated with the
price_of f an asset. They use derivative securities to reduce or eliminate this risk.
Spggg gtox;s wish to bet on future movements in the price of an asset. They use
derivative securities to get extra leverage. Arbitrageurs are in business to take ad-
vantage of a discrepancy between prices in two different markets. If, for example,
they see the futures price ‘of an asset getting out of line with the cash price, they
will take offsetting positions in the two markets to lock in a profit.

QUESTIONS AND PROBLEMS

1.1. What is the difference between a long forward position and a short forward position?
1.2. Explain carefully the difference between (a) hedging; (b) speculation; and (c) arbitrage.
1.3. What is the difference between

(a) entering into a long forward contract when the forward price is $50 and

(b) taking a long position in a call option with a strike price of $50?

1.4. An investor enters into a short cotton futures contract when the futures price is 50
cents per pound. The contract is for the delivery of 50,000 pounds. How much does
the investor gain or lose if the cotton price at the end of the contract is (a) 48.20 cents
per pound; and (b) 51.30 cents per pound?

1.5. Suppose that you write a put option contract on 100 IBM shares with a strike price
of $120 and an expiration date in 3 months. The current price of IBM stock is $121.
What have you committed yourself to? How much could you gain or lose?

1.6. You would like to speculate on a rise in the price of a certain stock. The current stock
price is $29 and a 3-month call with a strike of $30 costs $2.90. You have $5,800 to
invest. Identify two alternative strategies, one involving an investment in the stock
and the other involving investment in the option. What are the potential gains and
losses from each?

1.7. Suppose you own 5,000 shares worth $25 each. How can put options be used to
provide you with insurance against a decline in the value of your holding over the
next 4 months?

1.8. A stock, when it is first issued, provides funds for a company. Is the same true of a
stock option? Discuss.

1.9. Explain why a forward contract can be used for either speculation or hedging.

1.10. Suppose that a European call option to buy a share for $50 costs $2.50 and is held
until maturity. Under what circumstances will the holder of the option make a profit?
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Under what circumstances will the option be exercised? Draw a diagram illustrating
how the profit from a long position in the option depends on the stock price at maturity
of the option.

Suppose that a European put option to sell a share for $60 costs $4.00 and is held
until maturity. Under what circumstances will the seller of the option (i.e., the party
with the short position) make a profit? Under what circumstances will the option be
exercised? Draw a diagram illustrating how the profit from a short position in the
option depends on the stock price at maturity of the option.

An investor writes a September call option with a strike price of $20. It is now May,
the stock price is $18, and the option price is $2. Describe the investor’s cash flows
if the option is held until September and the stock price is $25 at this time.

An investor writes a December European put option with a strike price of $30. The
price of the option is $4. Under what circumstances does the investor make a gain?

Interest rate caps are described in Section 1.4. Which of the following is more

valuable,

(a) a cap which guarantees that the rate of interest paid on a floating-rate loan never
goes above 10% or

(b) a cap which guarantees that the average rate of interest paid on a floating-rate
loan during its life is below 10%?

Explain your answer.

Show that the Standard Oil bond described in the Section 1.4 is a combination of a
regular bond, a long position in call options on oil with a strike price of $25, and a
short position in call options on oil with a strike price of $40.

A company knows it is due to receive a certain amount of a foreign currency in 4
months. What type of option contract is appropriate for hedging?

The price of gold is currently $500 per ounce. The futures price for delivery in one
year is $700. An arbitrageur can borrow money at 10% per annum. What should the
arbitrageur do? Assume that the cost of storing gold is zero.

The Chicago Board of Trade offers a futures contract on long-term Treasury bonds.
Characterize the investors likely to use this contract.

The current price of a stock is $94 and 3-month call options with a strike price of $95
currently sell for $4.70. An investor who feels that the price of the stock will increase
is trying to decide between buying 100 shares and buying 2,000 call options (= 20
contracts). Both strategies involve an investment of $9,400. What advice would you
give? How high does the stock price have to rise for the option strategy to be more
profitable?

“Options and futures are zero-sum games.” What do you think is meant by this
statement?

Describe the payoff from the following portfolio: a long forward contract on an asset
and a long European put option on the asset with the same maturity as the forward
contract and a strike price that is equal to the forward price of the asset at the time
the portfolio is set up.
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1.22.

1.23.

1.24.

1.25.

1.26.

Show that a range forward contract, such as the one described in Section 1.4, is a
combination of two options. How can a range forward contract be constructed so that
it has zero value?

Show that an ICON, such as the one described in Section 1.4, is a combination of a
regular bond and two options.

On July 1, 1992, a company enters into a forward contract to buy 10 million Japanese
yen on January 1, 1993. On September 1, 1992, it enters into a forward contract
to sell 10 million Japanese yen on January 1, 1993. Describe the payoff from this
strategy.

Suppose that sterling-U.S. dollar spot and forward exchange rates are as given in
Table 1.1. What opportunities are open to an investor in the following situations?
(a) A 180-day European call option to buy £1 for $1.6700 costs 2 cents.

(b) A 90-day European put option to sell £1 for $1.73 costs 2 cents.

“A long forward contract is equivalent to a long position in a European call option
and a short position in a European put option.” Explain this statement.



Futures Markets
and the Use

of Futures
Jor Hedging

Futures contracts were introduced in Chapter 1. They are agreements to buy or sell
an asset in the future for a certain price. Unlike forward contracts they are usually
traded on an exchange. In this chapter, we explain the way in which exchanges
organize the trading of futures contracts. We discuss issues such as the specification
of contracts, the operation of margin accounts, and the way in which quotes are
made. We also discuss how futures contracts are used for hedging purposes.

2.1 TRADING FUTURES CONTRACTS

Suppose it is March and you call your broker with instructions to buy, at the market
price, one July com futures contract (5,000 bushels) on the Chicago Board of Trade
(CBOT) at the current market price. What happens? As a first step in the process,
the broker passes your instructions on to a representative at the CBOT. From there,
the instructions are sent by messenger to a trader on the floor of the exchange. This
trader assesses the best price currently available and uses hand signals to indicate
to other traders that he or she is willing to buy one contract at that price. If another

18
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trader indicates a willingness to take the other side of the position (i.e., short one
July contract), the deal will be done. If not, the trader representing you will have
to signal a willingness to trade at a higher price. Eventually someone will be
found to take the other side of the transaction. Confirmation that your instructions
have been carried out and a notification of the price obtained are sent back to you
through your broker.

There are two types of traders in the trading pits on the floor of an exchange.
These are commission brokers, who execute trades for other people and earn com-
missions; and locals, who trade for their own account. There are many different
types of orders that can be passed on to a commission broker. In the example just
given, the instructions were to take a long position in one July corn contract at
the current market price. This is a market order. Another popular type of order
is a limit order. This specifies a certain price and requests that the transaction be
executed only if that price or a better one is obtained.

CrosING Our PosITIONS

Closing out a position involves entering into an opposite trade to the original
one. For example, if an investor goes long one July corn futures contract on March
6. he or she can close out the position on April 20 by shorting one July corn futures
contract. If an investor shorts one July contract on March 6, he or she can close
out the position on April 20 by going long one July contract. In each case, the
investor’s total gain or loss reflects the change in the futures price between March
6 and April 20.

The vast majority of the futures contracts that are initiated are closed out in
this way. The delivery of the underlying asset is relatively rare. In spite of this,
it is important to understand the delivery arrangements. This is because it is the
possibility of final delivery that ties the futures price to the cash price.

2.2 THE SPECIFICATION OF THE FUTURES
CONTRACT

When developing a new contract, an exchange must specify in some detail the
exact nature of the agreement between the two parties. In particular, it must
specify the asset, the contract size (i.e., exactly how much of the asset will be
delivered under one contract), how prices will be quoted, where delivery will be
made, when delivery will be made, and how the price paid will be determined.
Sometimes alternatives are specified for the asset that will be delivered and for the
delivery arrangements. It is the party with the short position (the party that has
agreed to sell) that chooses between these alternatives.
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THE AsSET

When the asset is a commodity there may be quite a variation in the quality
of what is available in the marketplace. When specifying the asset, it is therefore
important that the exchange stipulate the grade or grades of the commodity that are
acceptable. The New York Cotton Exchange has specified the asset in its orange
juice futures contract as

US Grade A, with Brix value of not less than 57 degrees, having a Brix value to acid
ratio of not less than 13 to 1 nor more than 19 to 1, with factors of color and flavor
each scoring 37 points or higher and 19 for defects, with a minimum score 94.

The Chicago Mercantile Exchange in its random-length lumber futures con-
tract has specified that

Each delivery unit shall consist of nominal 2x4s of random lengths from 8 feet to
20 feet, grade-stamped Construction and Standard, Standard and better, or #1 and #2;
however, in no case may the quantity of Standard grade or #2 exceed 50 percent. Each
delivery unit shall be manufactured in California, Idaho, Montana, Nevada, Oregon,
Washington, Wyoming, or Alberta or British Columbia, Canada, and contain lumber
produced from and grade-stamped Alpine fir, Englemann spruce, hem-fir, lodgepole
pine and/or spruce pine fir.

,;;;V'@ the case of some commodities, a range of grades can be delivered but
the price received is adjusted depending on the grade chosen, For example, in
the Chicago Board of Trade comn futures contract, the standard grade is “No. 2
Yellow,” but substitutions are allowed at differentials established by the exchange.
The financial assets in futures contracts are generally well defined and un-
ambiguous. For example, there is no need to specify the grade of a Japanese yen.
However, there are some interesting features of the Treasury bond and Treasury
note futures contracts traded on the Chicago Board of Trade. The underlying as-
set in the Treasury bond contract is any long-term U.S. Treasury bond which has
a maturity of greater than 15 years and is not callable within 15 years. In the
Treasury note futures contract, the underlying asset is any long-term Treasury note
with a maturity no less than 6.5 years and not greater than 10 years. In both of
these cases, the exchange has a formula for adjusting the price received according
to the coupon and maturity date of the bond delivered. This will be discussed in
Chapter 4.

THE CoONTRACT SIZE

The contract size specifies the amount of the asset that has to be delivered
under one contract. This is an important decision for the exchange. If the contract
size is too large, many investors who wish to hedge relatively small exposures or
who wish to take relatively small speculative positions will be unable to use the
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cxchange. On the other hand, if the contract size is too small, trading may be
expensive since there is a cost associated with each contract traded. -

The correct size for a contract clearly depends on the likely user. Whereas
the value of what is delivered under a futures contract on an agricultural product
might be $10,000 to $20,000, it is much higher for some financial futures. For
cxample, under the Treasury bond futures contract traded on the Chicago Board of
‘I'rade, instruments with face value of $100,000 are delivered.

DELIVERY ARRANGEMENTS

The place where delivery will be made must be specified by the exchange.
This is particularly important for commodities where there may be significant trans-
portation costs. In the case of the Chicago Mercantile Exchange random-length
lumber contract, the delivery location is specified as

On track and shall either be unitized in double-door boxcars or, at no additional cost
to the buyer, each unit shall be individually paper-wrapped and loaded on flatcars. Par
delivery of hem-fir in California, Idaho, Montana, Nevada, Oregon, and Washington,
and in the province of British Columbia.

When alternative delivery locations are specified, the price receivéd by the
party with the short position is sometimes adjusted according to the location chosen
by that pany.{ﬁn example, in the case of the com futures contract traded by the
(hicago Board of Trade, delivery can be made at Chicago, Burns Habor, Toledo,
or St. Louis. Deliveries at Toledo and St. Louis are made at a discount of 4 cents
per bushel from the Chicago contract price.

‘A futures contract is referred to by its delivery month. The exchange must
specify the precise period during the month when delivery can be made. For many
futures contracts, the delivery period is the whole month.

The delivery months vary from contract to contract and are chosen by the
exchange to meet the needs of market participants. For example, currency futures
on the International Monetary Exchange (IMM) have delivery months of March,
June, September, and December; comn futures traded on the Chicago Board of
Trade have delivery months of March, May, July, September, and December. At
any given time, contracts trade for the closest delivery month and a number of
subsequent delivery months. The exchange specifies when trading in a particular
month’s contract will begin. The exchange also specifies the last day on which
trading can take place for a glven contract, This is generally a few days before the
last day on which delivery can be made.

Price QUOTES

The futures price is quoted in a way that is convenient and easy to under-
stand. For example, crude oil futures prices on the New York Mercantile Exchange
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(NYMEX) are quoted in dollars per barrel to two decimal places (i.e., to the nearest
cent). Treasury bond and Treasury note futures prices on the Chicago Board of
Trade are quoted in dollars and 32nds of a dollar. The minimum price movement
that can occur in trading is consistent with the way in which the price is quoted.
Thus, it is $0.01 (or 1 cent per barrel) for the oil futures and one-32nd of a dollar
for the Treasury bond and Treasury note futures.

DaiLy Price MovEMENT LiMiTs

For most contracts, daily price movement limits are specified by the exchange.
For example, at the time of writing, the daily price movement limit for oil futures
is $1. If the price moves down by an amount equal to the daily price limit, the
contract is said to be limit down. If it moves up by the limit, it is said to be
limit up. A limit move is a move in either direction equal to the daily price limit.
Normally, trading on a contract ceases for the day once the contract is limit up or
limit down, but in some instances, the exchange has the authority to step in and
change the limits.

The purpose of daily price limits is to prevent large price movements oc-
curring because of speculative excesses. However, these limits can become an
artificial barrier to trading when the price of the underlying commodity is advanc-
ing or declining rapidly. Whether price limits are, on balance, good for futures
markets is controversial.

Posrrion Limits

Position limits are the maximum number of contracts that a speculator may
hold. In the Chicago Mercantile Exchange random-length lumber contract, for
example, the position limit (at the time of writing) is 1,000 contracts with no more
than 300 in any one delivery month. Bona fide hedgers are not affected by position
limits. The purpose of the limits is to prevent speculators from exercising undue
influence on the market.

2.3 THE OPERATION OF MARGINS

If two investors get in touch with each other directly and agree to trade an asset
in the future for a certain price, there are obvious risks. One of the investors may
regret the deal and try to back out. Alternatively, the investor simply may not
have the financial resources to honor the agreement. One of the key roles of the
exchange is to organize trading so that contract defaults are minimized. This is
where margins come in.
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MARKING TO MARKET

To illustrate how margins work consider an investor who contacts his or her
broker on Monday, June 1, 1992, to buy two December 1992 gold futures contracts
on the New York Commodity Exchange (COMEX). We suppose that the current
futures price is $400 per ounce. Since the contract size is 100 ounces, the investor
has contracted to buy a total of 200 ounces at this price. The broker will require
the investor to deposit funds in what is termed a margin account. The amount
that must be deposited at the time the contract is first entered into is known as the
initial margin. This is determined by the broker. We will suppose this is $2,000 per
contract, or $4,000 in total. At the end of each trading day, the margin account is
adjusted to reflect the investor’s gain or loss. This is known as marking to market
the account.

Suppose, for example, that by the end of the June 1, the futures price has
dropped from $400 to $397. The investor has a loss of 200 x $3 or $600. This is
because the 200 ounces of December gold, which he or she contracted to buy at
$400, can now be sold for only $397. The balance in the margin account would
therefore be reduced by $600 to $3,400. Similarly, if the price of December gold
rose to $403 by the end of the first day, the balance in the margin account would
be increased by $600 to $4,600. A trade is first marked to market at the close of
the day on which it takes place. It is then marked to market at the close of trading
on each subsequent day. It the delivery period is reached and delivery is made by
the party with the short position, the price received is generally the futures price
at the time the contract was last marked to market.

Note that marking to market is not merely an arrangement between broker
and client. When there is a $600 decrease in the futures price so that the margin
account of an investor with a long position is reduced by $600, the investor’s broker
has to pay the exchange $600 and the exchange passes the money on to the broker
of an investor with a short position. Similarly, when there is an increase in the
futures price, brokers for parties with short positions pay money to the exchange,
and brokers for parties with long positions receive money from the exchange. We
will give more details of the mechanism by which this happens later in this section.

MAINTENANCE MARGIN

The investor is entitled to withdraw any balance in the margin account in
excess of the initial margin. To ensure that the balance in the margin account never
becomes negative, a maintenance margin, which is somewhat lower than the initial
margin, is set. If the balance in the margin account falls below the maintenance
margin, the investor receives a margin call and is requested to top up the margin
account to the initial margin level within a very short period of time. The extra
funds deposited are known as a variation margin. If the investor does not provide
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the variation margin, the broker closes out the position by selling the contract. In
the case of the investor in the previous example, closing out the position would
involve neutralizing the existing contract by selling 200 ounces of gold for delivery
in December.

Table 2.1 illustrates the operation of the margin account for one possible
sequence of futures prices in the case of the investor considered here. The main-
tenance margin is assumed for the purpose of the illustration to be $1,500 per
contract or $3,000 in total. On June 9, the balance in the margin account falls
$340 below the maintenance margin level. This triggers a margin call from the
broker for additional margin of $1,340. The table assumes that the investor does in

TABLE 2.1 Operation of Margins for a Long
Position in Two Gold Futures Contracts

The initial margin is $2,000 per contract or $4,000 in total; the
maintenance margin is $1,500 per contract or $3,000 in total.
The contract is entered into on June 1 at $400 and closed out on
June 22 at $392.30. The numbers in the second column, except
for the first and last numbers, are the futures price at the close
of trading.

Margin
Futures Daily Gain Cumulative Account Margin
Price (Loss) Gain (Loss) Balance Call
Day (dollars) (dollars) (dollars) (dollars) (doliars)

400.00 4,000
June 1 397.00 (600) (600) 3,400
June 2 396.10 (180) (780) 3,220
June 3 398.20 420 (360) 3,640
June 4 397.10 (220) (580) 3,420
June 5 396.70 (80) (660) 3,340
June 8 395.40 (260) (920) 3,080
June 9 393.30 (420) (1,340) 2,660 1,340
June 10 393.60 60 (1,280) 4,060
June 11 391.80 (360) (1,640) 3,700
June 12 392.70 180 (1,460) 3,880
June 15 387.00 (1,140) (2,600) 2,740 1,260
June 16 387.00 0 (2,600) 4,000
June 17 388.10 220 (2,380) 4,220
June 18 388.70 120 (2,260) 4,340
June 19 391.00 460 (1,800) 4,800

June 22 392.30 260 (1,540) 5,060
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fact provide this margin by close of trading on June 10. On June 15, the balance in
the margin account again falls below the maintenance margin level and a margin
call for $1,260 is sent out. The investor provides this margin by close of trading on
June 16. On the June 22, the investor decides to close out the position by shorting
the two contracts. The futures price on that day is 392.30 and the investor has
made a cumulative loss of $1,540. Note that the investor has excess margin on
June 10, 17, 18, and 19. The table assumes that this is not withdrawn.

FURTHER DETAILS

Some brokers allow an investor to earn interest on the balance in his or her
margin account. The balance in the account does not therefore represent a true
cost, providing the interest rate is competitive with that which could be earned
elsewhere. To satisfy the initial margin requirements (but not subsequent margin
calls), an investor can sometimes deposit securities with the broker. Treasury bills
are usually accepted in lieu of cash, at about 90 percent of their face value. Shares
are also sometimes accepted in lieu of cash—but at about 50 percent of their face
value.

The effect of the marking to market is that a futures contract is settled daily
rather than all at the end of its life. At the end of each day, the investor’s gain
(loss) is added to (subtracted from) the margin account. This brings the value of
the contract back to zero. A futures contract is, in effect, closed out and rewritten
at a new price each day.

Minimum levels for initial and maintenance margins are set by the exchange.
Individual brokers may require greater margins from their clients than those spec-
ified by the exchange. However, brokers cannot require lower margins than those
specified by the exchange. Margin levels are determined by the variability of the
price of the underlying asset. The higher this variability, the higher the margin
levels. A maintenance margin is usually about 75 percent of the initial margin.

Margin requirements may depend on the objectives of the trader. A bona
fide hedger, such as a company that produces the commodity on which the futures
contract is written, is often subject to lower margin requirements than a speculator.
This is because there is deemed to be less risk of default. What are known as
day trades and spread transactions often give rise to lower margin requirements
than hedge transactions. A day trade is a trade where the trader announces to the
broker that he or she plans to close out the position in the same day. Thus, if
the trader has taken a long position, the plan is to take an offsetting short position
later in the day; if the trader has taken a short position, the plan is to take an
offsetting long position later in the day. A spread transaction is one where the
trader simultaneously takes a long position in the contract with one delivery month
and a short position in a contract with another delivery month.
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Note that margin requirements are the same on short futures positions as they
are on long futures positions. It is just as easy to take a short futures position as it
is to take a long futures position. The cash market does not have this symmetry.
Taking a long position in the cash market involves buying the asset and presents
no problems. Taking a short position involves selling an asset that you do not own.
This is a more complex transaction that may or may not be possible in a particular
market. It will be discussed further in the next chapter.

THE CLEARINGHOUSE AND CLEARING MARGINS

The exchange clearinghouse is an adjunct of the exchange and acts as an
intermediary or middleman in futures transactions. It guarantees the performance
of the parties to each transaction. The clearinghouse has a number of members all
of which have offices close to the clearinghouse. Brokers who are not clearinghouse
members themselves must channel their business through a member. The main task
of the clearinghouse is to keep track of all the transactions that take place during
a day so that it can calculate the net position of each of its members.

Just as an investor is required to maintain a margin account with his or her
broker, a clearinghouse member is required to maintain a margin account with
the clearinghouse. This is known as a clearing margin. The margin accounts for
clearinghouse members are adjusted for gains and losses at the end of each trad-
ing day in the same way as the margin accounts of investors. However, in the
case of the clearinghouse member, there is an original margin but no maintenance
margin. Every day, the account balance for each contract must be maintained at
an amount equal to the original margin times the number of contracts outstanding.
Thus, depending on transactions during the day and price movements, the clear-
inghouse member may have to add funds to its margin account at the end of the
day. Alternatively, it may find it can remove funds from the account at this time.
Brokers who are not clearinghouse members must maintain a margin account with
a clearinghouse member.

In the calculation of clearing margins, the exchange clearinghouse calculates
the number of contracts outstanding on either a gross or a net basis. The gross
basis adds the total of all long positions entered into by clients to the total of all
the short positions entered into by clients. The ner basis allows these to be offset
against each other. Suppose a clearinghouse member has two clients, one with a
long position in 20 contracts, the other with a short position in 15 contracts. Gross
margining would calculate the clearing margin on the basis of 35 contracts; net
margining would calculate the clearing margin on the basis of 5 contracts. Most
exchanges currently use net margining.

It should be stressed that the whole purpose of the margining system is to
reduce the possibility of market participants sustaining losses because of defauits.
Overall, the system has been very successful. Losses arising from defaults have
been almost nonexistent.
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2.4 NEWSPAPER QUOTES

Many newspapers carry futures quotations. In The Wall Street Journal, futures
quotations can currently be found under the headings “Commodities,” “Interest
Rate Instruments,” “Index Trading,” and “Foreign Exchange” in the Money and
Investing section. Table 2.2 shows the quotations for commodities as they appeared
in The Wall Street Journal on Friday, October 18, 1991. These refer to the trading
that took place on the previous day (Thursday, October 17, 1991). The quotations
for index futures and currency futures are given in Chapter 3. The quotations for
interest rate futures are given in Chapter 4.

The asset underlying the futures contract, the exchange it is traded on, the
contract size, and how the price is quoted are all shown at the top of each section.
The first asset in Table 2.2 is corn, traded on the Chicago Board of Trade. The
contract size is 5,000 bushels and the price is quoted in cents per bushel. The
months in which particular contracts are traded are shown in the first column.
Cormn contracts with maturities in December 1991, March 1992, May 1992, July
1992, September 1992, and December 1992 were traded on October 17, 1991,

PrICES

The first three numbers in each row show the opening price, the highest
price achieved in trading during the day, and the lowest price achieved in trading
during the day. The opening price is representative of the prices at which contracts
were trading immediately after the opening bell. For December corn on October
17, 1991, the opening price was 247% cents per bushel; during the day, the price
traded between 2463 cents and 2497 cents.

SETTLEMENT PRICE

The fourth number in the row is the settlement price. This is the average of
the prices at which the contract traded immediately before the bell signaling the
end of trading for the day. The fifth number is the change in the settlement price
from the previous day. In the case of the December 1991 com futures contract, the
settlement price was 248 cents on October 17, 1991, up 2 cents from October 16,
1991.

The settlement price is important because it is used for calculating daily gains|
and losses and margin requirements. | In the case of the December 1991 corn futures
contract, an investor with a long position in one contract would find that his or her
margin account balance increased by $100 (= 5,000 x 2 cents) between October 16
and October 17, 1991. Similarly, an investor with a short position in one contract
would find that the margin balance decreased by $100 between October 16, 1991
and October 17, 1991.
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Sec. 2.5 Convergence of Futures Price to Spot Price 31
LireriMe HIGHS AND Lows

The sixth and seventh numbers show the highest futures price and the lowest
futures price achieved in the trading of the particular contract. The highest and
lowest prices for the December 1991 corn futures contract were 275 cents and 220
cents. (The contract had traded for over a year on October 17, 1991.)

OrEN INTEREST AND VOLUME OF TRADING

The final column in Table 2.2 shows the open interest for each contract. This
is the total number of the contracts outstanding. It is the sum of all the long
positions or, equivalently, it is the sum of all the short positions. Because of the
problems in compiling the data, the i ion i i
older than the price information. Thus, in The Wall Street Journal of October 18,
1991, the open interest is for the close of trading on October 16, 1991. In the
case of the December 1991 com futures contract, the open interest was 121,226
contracts.

At the end of each commodity’s section, Table 2.2 shows the estimated
volume of trading in contracts of all maturities on October 17, 1991 and the actual
volume of trading in these contracts on October 16, 1991. It also shows the total
open interest for all contracts on October 16, 1991 and the change in this open
interest from October 15, 1991. For all corn futures contracts, the estimated trading
volume was 33,000 contracts on October 17, 1991 and the actual trading volume
was 34,250 contracts on October 16, 1991. The open interest for all contracts was
237,082 on October 16, 1991—up 1,880 from the previous day.

It sometimes happens that the volume of trading in a day is greater than the
open interest at the end of the day. This is indicative of a large number of day
trades.

PATTERNS OF FUTURES PRICES

A number of different patterns of futures prices can be picked out from Table
2.2. The futures price of platinum on the New York Mercantile Exchange increases
as the time to maturity increases. This is known as a normal market. By contrast,
the futures price of copper on the New York Commodity Exchange is a decreasing
function of the time to maturity. This is known as an inverted market. For cotton,
the pattern is mixed. The futures price first increases and then decreases as the
time to maturity increases. The factors determining the pattern observed for a
commodity will be discussed in Chapter 3.
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2.5 CONVERGENCE OF FUTURES PRICE TO
SPOT PRICE

As the delivery month of a futures contract is approached, the futures price con-
verges to the spot price of the underlying asset. When the delivery period is
reached, the futures price equals—or is very close to—the spot price.

To show why this is so, suppose first that the futures price is above the spot
price during the delivery period. This gives rise to a clear arbitrage opportunity
for traders:

1. Short a futures contract.
2. Buy the asset.
3. Make delivery.

This is certain to lead to a profit equal to the amount by which the futures price
exceeds the spot price. As traders exploit this arbitrage opportunity, the futures
price will fall. Suppose next that the futures price is below the spot price during the
delivery period. Companies interested in acquiring the asset will find it attractive
to enter into a long futures contract and then wait for delivery to be made. As they
do this, the futures price will tend to rise.

Figure 2.1 illustrates the convergence of the futures price to the spot price. In
Figure 2.1(a) the futures price is above the spot price prior to the delivery month.

r'y A

Spot

Futures price
price

Futures

price
Spot
price
Time Tim
Futures Price Above Spot Price Futures Price Below Spot Price

(a) (b)

Figure 2.1 Relationship Between Futures Price and Spot Price as the Delivery Month
is Approached )
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(This corresponds to platinum in Table 2.2.) In Figure 2.1(b) the futures price is
below the spot price prior to the delivery month. (This corresponds to copper in
Table 2.2.)

2.6 CASH SETTLEMENT

Some financial futures, such as those on stock indices, are settled in cash. This
is because it is inconvenient or impossible to deliver the underlying asset. In the
case of the futures contract on the S&P 500, for example, delivering the underlying
asset would involve delivering a portfolio of 500 stocks. When a contract is settled
in cash, it is marked to market at the end of the last trading day and all positions
are declared closed. The settlement price on the last trading day is the closing spot
price of the underlying asset. This ensures that the futures price converges to the
spot price.

One exception to the rule that the settlement price on the last trading day
equals the closing spot price is the S&P 500 futures contract. This bases the
final settlement price on the opening price of the index the morning after the last
trading day. This procedure is designed to avoid some of the problems connected
with the fact that stock index futures, stock index options, and options on stock
index futures all expire on the same day. Arbitrageurs often take large offsetting
positions in these three contracts and there may be chaotic trading and significant
price movements toward the end of an expiration day as they attempt to close out
their positions. The media has coined the term triple witching hour to describe
trading during the last hour of an expiration day.

2.7 HEDGING USING FUTURES

A company that knows it is due to sell an asset at a particular time in the future
can hedge by taking a short futures position. This is known as a short hedge. If
the price of the asset.goes down, the company does not fare well on the sale of
the asset, but makes a gain on the short futures position. If the price of the asset
goes up, the company gains from the sale of the asset, but makes a loss on the
futures position. Similarly, a company that knows it is due to buy an asset in the

N r

future can hedge by taking a long futures position. This is known as a long hedge.

It is important to recognize that futures hedging does not necessarily improve the
overall financial outcome. In fact, we can expect a futures hedge to make the
outcome worse roughly 50 percent of the time. What the futures hedge does do is
reduce risk by making the outcome more certain.

There are a number of reasons why hedging using futures contracts works
less than perfectly in practice.
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1. The asset whose price is to be hedged may not be exactly the same as the
asset underlying the futures contract.

2. The hedger may be uncertain as to the exact date when the asset will be
bought or sold.

3. The hedge may require the futures contract to be closed out well before its
expiration date.

These problems give rise to what is termed basis risk.
Basis Risk

The basis in a hedging situation is defined as follows:!
Basis = Spot price of asset to be hedged — Futures price of contract used

If the asset to be hedged and the asset underlying the futures contract are the same,
the basis should be zero at the expiration of the futures contract. Prior to expiration,
as shown in Table 2.2 and illustrated in Figure 2.1, the basis may be positive or
negative.

When the spot price increases by more than the futures price, the basis
increases. This is referred to as a strengthening of the basis. When the futures
price increases by more than the spot price, the basis declines. This is referred to
as a weakening of the basis.

To examine the nature of basis risk we will use the following notation:

S1: Spot price at time
S,: Spot price at time ¢,
Fi: Futures price at time #,
F,: Futures price at time f,
b
by: Basis at time ¢,

: Basis at time 1,

[~y

We will assume that a hedge is put in place at time #; and closed out at time ¢,.
As an example we will consider the case where the spot and futures price at the
time the hedge is initiated are $2.50 and $2.20, respectively, and that at the time
the hedge is closed out they are $2.00 and $1.90, respectively. This means that
§1=2.50, F;=2.20, §; =2.00, and F,=1.90.

IThis is the usual definition. However the alternative definition
Basis = Futures price — Spot price

is sometimes used, particularly when the futures contract is on a financial asset.



Sec. 2.7  Hedging Using Futures a5

From the definition of the basis:
b1 = Sl —- F1
bh=S—F

In our example, b;=0.30 and b,=0.10.

Consider first the situation of a hedger who knows that the asset will be sold
at time 1, and takes a short futures position at time 7. The price realized for the
asset is S, and the profit on the futures position is F; — F>. The effective price
that is obtained for the asset with hedging is therefore

S5+ F—-F=F+b

In our example, this is $2.30. The value of F, is known at time 1,. If b, were also
known at this time, a perfect hedge (that is, a hedge eliminating all uncertainty about
the price obtained) would result. The hedging risk is the uncertainty associated
with b,. This is known as basis risk. Consider next a situation where a company
knows it will buy the asset at time #, and initiates a long hedge at time #;. The
price paid for the asset is S, and the loss on the hedge is F; — F>. The effective
price that is paid with hedging is therefore

Si+F—-F=F+b

This is the same expression as before; it is $2.30 in the example. The value of Fy
is known at time 7, and the term b, represents basis risk.

For investment assets such as currencies, stock indices, gold, and silver, the
basis risk tends to be fairly small . This is because, as we will see in Chapter 3,
arbitrage arguments lead to a well-defined relationship between the futures price and
the spot price of an investment asset. The basis risk for an investment asset arises
mainly from uncertainty as to the level of the risk-free interest rate in the future. In
the case of a commodity such as oil, corn, or copper, imbalances between supply
and demand and the difficulties sometimes associated with storing the commodity
can lead to large variations in the basis and therefore a much higher basis risk.

The asset that gives rise to the hedger’s exposure is sometimes different from
the asset underlying the hedge.? The basis risk is then usually greater. Define SJ
as the price of the asset underlying the futures contract at time t;. As before, S;
is the price of the asset being hedged at time #;. By hedging, a company ensures
that the price that will be paid (or received) for the asset is

SS+F-F
This can be written )
2For example, airlines sometimes use the NYMEX heating oil futures contract to hedge their

exposure to the price of jet fuel. See the article by Nikkhah referenced at the end of this chapter for a
description of this.
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Fi+(85—F)+(5-53)

The terms S — F, and S, — S5 represent the two components of the basis. The
S; — F, term is the basis that would exist if the asset being hedged were the same
as the asset underlying the futures contract. The S, — S5 term is the basis arising
from the difference between the two assets.

Note that basis risk can lead to an improvement or a worsening of a hedger’s
position. Consider a short hedge. If the basis strengthens unexpectedly, the
hedger’s position improves, whereas if the basis weakens unexpectedly, the hedger’s
position worsens. For a long hedge, the reverse holds. If the basis strengthens unex-
pectedly, the hedger’s position worsens whereas if the basis weakens unexpectedly,
the hedger’s position improves.

CHOICE oF CONTRACT

One key factor affecting basis risk is the choice of the futures contract to be
used for hedging. This choice has two components:

1. The choice of the asset underlying the futures contract.
2. The choice of the delivery month.

If the asset being hedged exactly matches an asset underlying a futures contract,
the first choice is generally fairly easy. In other circumstances, it is necessary to
carry out a careful analysis to determine which of the available futures contracts
has futures prices that are most closely correlated with the price of the asset being
hedged.

The choice of the delivery month is likely to be influenced by several factors.
It might be assumed that, when the expiration of the hedge corresponds to a delivery
month, the contract with that delivery month is chosen. In fact, a contract with
a later delivery month is usually chosen in these circumstances. This is because
futures prices are in some instances quite erratic during the delivery month. Also,
a long hedger runs the risk of having to take delivery of the physical asset if he
or she holds the contract during the delivery month. This can be expensive and
inconvenient.

In general, basis risk increases as the time difference between the hedge ex-
piration and the delivery month increases. A good rule of thumb is therefore to
choose a delivery month that is as close as possible to, but later than, the expiration
of the hedge. Suppose delivery months are March, June, September, and December
for a particular contract. For hedge expirations in December, January, and Febru-
ary, the March contract will be chosen; for hedge expirations in March, April, and
May, the June contract will be chosen; and so on. This rule of thumb assumes that
there is sufficient liquidity in all contracts to meet the hedger’s requirements. In
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practice, liquidity tends to be greatest in short maturity futures contracts. There-
fore, in some situations the hedger may be inclined to use short maturity contracts
and roll them forward. This strategy is explained at the end of this chapter.

Example 2.1

It is March 1. A U.S. company expects to receive 50 million Japanese yen at the end
of July. Yen futures contracts on the International Monetary Exchange (IMM) have delivery
months of March, June, September, and December. One contract is for the delivery of
12.5 million yen. The company therefore shorts four September yen futures contracts on
March 1. When the yen are received at the end of July, the company closes out its position.
We suppose that the futures price on March 1 in cents per yen is 0.7800 and that the spot
and futures prices when the contract is closed out are 0.7200 and 0.7250, respectively. This
means that the basis is —0.0050 when the contract is closed out. The effective price obtained
in cents per yen is the final spot price plus the gain on the futures:

0.7200 + 0.0550 = 0.7750
This can also be written as the initial futures price plus the final basis:
0.7800 — 0.0050 = 0.7750

The company receives a total of 50 x 0.00775 million dollars or $387,500.

Example 2.2

It is June 8 and a company knows that it will need to purchase 20,000 barrels crude
oil at some time in October or November. Oil futures contracts are currently traded for
delivery every month on NYMEX and the contract size is 1,000 barrels. The company
therefore decides to use the December contract for hedging and takes a long position in
20 December contracts. The futures price on June 8 is $18.00 per barrel. The company
finds that it is ready to purchase the crude oil on November 10. It therefore closes out its
futures contract on that date. The spot price and futures price on November 10 are $20.00
per barrel and $19.10 per barrel, respectively, so that the basis is $0.90. The effective price
paid is $18.90 per barrel or $378,000 in total. This can be calculated as the final spot price
of $20.00 less the gain on the futures of $1.10; or as the initial futures price, $18.00, plus
the final basis, $0.90.

2.8 OPTIMAL HEDGE RATIO

The hedge ratio is the ratio of the size-of the position taken in futures contracts
to the size of the exposure. Up to now we have always assumed a hedge ratio of
1.0. We now show that, if the objective of the hedger is to minimize risk, a hedge
ratio of 1.0 is not necessarily optimal.
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Define:

AS: Change in spot price, S, during a period of time equal to the life of
the hedge
AF: Change in futures price, F, during a period of time equal to the life of
the hedge
os: Standard deviation of AS
or: Standard deviation of AF
p: Coefficient of correlation between AS and AF
h: Hedge ratio

When the hedger is long the asset and short futures, the change in the value
of the hedger’s position during the life of the hedge is

AS — hAF
For a long hedge it is
hAF — AS

In either case the variance, v, of the change in value of the hedged position is
given by

v =07 +h’c} — 2hposor

so that

a
ﬁ = 2h0§ — 2p0OsoF
Setting this equal to zero, and noting that 3%v/dh? is positive, we see that the value

of A that minimizes the variance is

h=p2 @2.1)

The optimal hedge ratio is therefore the product of the coefficient of correlation
between AS and AF and the ratio of the standard deviation of AS to the standard
deviation of AF. Figure 2.2 shows how the variance of the value of the hedger’s
position depends on the hedge ratio chosen.

If p =1 and of = o35, the optimal hedge ratio, 4, is 1.0. This is to be
expected since in this case the futures price mirrors the spot price perfectly. If
p = 1 and or = 20y, the optimal hedge ratio & is 0.5. This result is also as
expected since in this case the futures price always changes by twice as much as
the spot price.
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A Variance of
s

Hedge ratio, h

h.

Figure 2.2 Dependence of Variance of Hedger’s Position on Hedge Ratio

Example 2.3

A company knows that it will buy 1 million gallons of jet fuel in 3 months. The
standard deviation of the change in the price per gallon of jet fuel over a 3-month period is
calculated as 0.032. The company chooses to hedge by buying futures contracts on heating
oil. The standard deviation of the change in the futures price over a 3-month period is 0.040
and the coefficient of correlation between the 3-month change in the price of jet fuel and
the 3-month change in the futures price is 0.8. The optimal hedge ratio is therefore

o032
0.040
One heating oil futures contract is on 42,000 gallons. The company should therefore buy
1, 000, 000
42,000

contracts. Rounding to the nearest whole number 15 contracts are required.

0.8 x 0.64

0.64 x =152

2.9 ROLLING THE HEDGE FORWARD

Sometimes, the expiration date of the hedge is later than the delivery dates of all
the futures contracts that can be used. The hedger must then roll the hedge forward.
This involves closing out one futures contract and taking the same position in a
futures contract with a later delivery date. Hedges can be rolled forward many
times. Consider a company that wishes to use a short hedge to reduce the risk
associated with the price to be received for an asset at time T. If there are futures
contracts 1, 2, 3, ..., n (not all necessarily in existence at the present time) with
progressively later delivery dates, the company can use the following strategy:

" Time t;: Short futures contract 1
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Time ¢;: Close out futures contract 1
Short futures contract 2

Time t3: Close out futures contract 2
Short futures contract 3

Time ¢,,: Close out futures contract n — 1
Short futures contract n
Time T': Close out futures contract n

In this strategy there are n basis risks or sources of uncertainty. At time T,
there is uncertainty about the difference between the futures price for contract n and
the spot price of the asset being hedged. In addition, on each of the n — 1 occasions
when the hedge is rolled forward, there is uncertainty about the difference between
the futures price for the contract being closed out and the futures price for the new
contract being entered into.

Example 2.4

In April 1992, a company realizes that it will have 100,000 barrels of oil to sell in
June 1993 and decides to hedge its risk with a hedge ratio of 1.0. The current spot price is
$19. Although futures contracts are traded for every month of the year up to 1 year in the
future, we suppose that only the first 6 delivery months have sufficient liquidity to meet the
company’s needs. The company therefore shorts 100 October 1992 contracts. In September
1992, it rolls the hedge forward into the March 1993 contract. In February 1993, it rolls the
hedge forward again into the July 1993 contract.

One possible outcome, is that the price of oil drops from $19 to $16 per barrel between
April 1992 and June 1993. Suppose that the October 1992 futures contract is shorted at
$18.20 per barrel and closed out at $17.40 per barrel for a profit of $0.80 per barrel; the
March 1993 contract is shorted at $17.00 per barrel and closed out at $16.50 per barrel for
a profit of $0.50 per barrel; the July 1993 contract is shorted at $16.30 per barrel and closed
out at $15.90 per barrel for a profit of $0.40 per barrel. In this case, the futures contracts
provide a total of $1.70 per barrel compensation for the $3 per barrel oil price decline.

2.10 SUMMARY

In this chapter, we have looked at how futures markets operate. In futures mar-
kets, contracts are traded on an exchange, and it is necessary for the exchange to
define carefully the precise nature of what it is that is traded, the procedures that
will be followed, and the regulations that will govern the market. By contrast,
forward contracts are negotiated directly over the telephone by two relatively so-
phisticated individuals. As a result, there is no need to standardize the product,
and an extensive set of rules and procedures is not required.
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A very high proportion of futures contracts that are initiated do not lead to
the delivery of the underlying asset. They are closed out prior to the delivery
period being reached. But it is the possibility of final delivery that drives the
determination of the futures price. For each futures contract, there is a range of
days during which delivery can be made and a well-defined delivery procedure.
Some contracts, such as those on stock indices, are settled in cash rather than by
delivery of the underlying asset.

The specification of contracts is an important activity for a futures exchange.
The two sides to any contract must know what can be delivered, where delivery
can take place, and when delivery can take place. They also need to know such
details as the trading hours, how prices will be quoted, maximum price movements,
and so on.

Margins are an important aspect of futures markets. An investor keeps a
margin account with his or her broker. This is adjusted daily to reflect gains or
losses, and the broker may require the account to be topped up from time to time if
adverse price movements have taken place. The broker must either be a clearing-
house member or must maintain a margin account with a clearinghouse member.
Each clearinghouse member maintains a margin account with the exchange clear-
inghouse. The balance in the account is adjusted daily to reflect gains and losses
on the business for which the clearinghouse member is responsible.

The exchange ensures that information on prices is collected in a systematic
way and relayed within a matter of seconds to investors throughout the world.
Many newspapers, such as The Wall Street Journal, carry each day a summary of
the previous day’s trading.

Futures contracts can be used to hedge a company’s exposure to a price of a
commodity. A position in futures markets is taken to offset the effect of the price
of the commodity on the rest of the company’s business. An important concept in
futures hedging is basis. This is the difference between the spot price of an asset
and its futures price. The risk in a hedge is the uncertainty about the value of the
basis at the maturity of the hedge. This is known as basis risk.

The hedge ratio is the ratio of the size of the position taken in futures contracts
to the size of the exposure. It is not always optimal to use a hedge ratio of 1.0. If
the hedger wishes to minimize the variance of his or her total position, a hedge ratio
different from 1.0 may be appropriate. When there is no liquid futures contract
that matures later than the expiration of the hedge, a strategy known as rolling
the hedge forward is sometimes used. This involves entering into a sequence of
futures contracts. When the first futures contract is near expiration, it is closed out
and the hedger enters into a second contract with a later delivery month. When the
second contract is close to expiration, it is closed out and the hedger enters into a
third contract with a later delivery month; and so on. Rolling the hedge works well
if there is a close correlation between changes in the futures prices and changes in
the spot prices.
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2.10.

211

212,

2.13.

2.14.

2.15.

2.16.

217

.

2.18.

2.19.

2.20.

Suppose that you enter into a short futures contract to sell July silver for $5.20 per
ounce on the New York Commodity Exchange. The size of the contract is 5,000
ounces. The initial margin is $4,000 and the maintenance margin is $3,000. What
change in the futures price will lead to a margin call? What happens if you do not
meet the margin call?

The party with a short position in a futures contract sometimes has options as to the
precise asset that will be delivered, where delivery will take place, when delivery
will take place, and so on. Do these options increase or decrease the futures price?
Explain your reasoning.

A company enters into a short futures contract to sell 5,000 bushels of wheat for 250
cents per bushel. The initial margin is $3,000 and the maintenance margin is $2,000.
What price change would lead to a margin call? Under what circumstances could
$1,500 be withdrawn from the margin account?

An investor enters into two long futures contracts on frozen orange juice. Each
contract is for the delivery of 15,000 pounds. The current futures price is 160 cents
per pound; the initial margin is $6,000 per contract; and the maintenance margin is
$4,500 per contract. What price change would lead to a margin cali? Under what
circumstances could $2,000 be withdrawn from the margin account?

At the end of one day, a clearinghouse member is long 100 contracts and the settlement
price is $50,000 per contract. The original margin is $2,000 per contract. On the
following day, the member becomes responsible for clearing an additional 20 long
contracts. These were entered into at a price of $51,000 per contract. The settlement
price at the end of this day is $50,200. How much does the member have to add to
its margin account with the exchange clzaringhouse?

Suppose that the standard deviation of quarterly changes in the prices of a commodity
is $0.65; the standard deviation of quarterly changes in a futures price on the com-
modity is $0.81; and the coefficient of correlation between the two changes is 0.8.
What is the optimal hedge ratio for a 3-month contract? What does it mean?

“Speculation in futures markets is pure gambling. It is not in the public interest to
allow speculators to buy seats on a futures exchange.” Discuss this viewpoint.

Identify the most actively traded contracts in Table 2.2. Consider each of the following
sections separately: grains and oilseeds, livestock and meat, food & fiber, and metals
and petroleum.

What do you think would happen if an exchange started trading a contract where the
guality of the underlying asset was incompletely specified?

“When a futures contract is traded on the floor of the exchange, it may be the case
that the open interest increases by one, stays the same, or decreases by one.” Explain
this statement.

In the Chicago Board of Trade’s corn futures contract, the following delivery months
are available: March, May, July, September, and December. Which contract should
be used for hedging when the expiration of the hedge is in

(a) June?

(b) July?
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(c) January?

Does a perfect hedge always succeed in locking in the current spot price of an asset
for a future transaction? Explain your answer.

Explain why a short hedger’s position improves when the basis strengthens unexpect-
edly and worsens when the basis weakens unexpectedly.

Imagine you are the treasurer of a Japanese company exporting electronic equipment to
the United States. Discuss how you would design a foreign exchange hedging strategy
and the arguments you would use to sell the strategy to your fellow executives.

“If the minimum variance hedge ratio is calculated as 1.0, the hedge must be perfect.”
Is this statement true? Explain your answer.

“If there is no basis risk, the minimum variance hedge ratio is always 1.0.” Is this
statement true? Explain your answer.

The standard deviation of monthly changes in the spot price of live cattle is (in cents
per pound) 1.2. The standard deviation of monthly changes in the futures price of live
cattle for the closest contract is 1.4. The correlation between the futures price changes
and the spot price changes is 0.7. It is now October 15. A beef producer is committed
to purchasing 200,000 pounds of live cattle on November 15. The producer wants
to use the December live cattle futures contracts to hedge its risk. Each contract is
for the delivery of 40,000 pounds of cattle. What strategy should the beef producer
follow?

A pig farmer expects to have 90,000 pounds of live hogs to sell in 3 months. The
live hogs futures contract on the Chicago Mercantile Exchange is for the delivery of
30,000 pounds of hogs. How can the farmer use this for hedging? From the farmer’s
viewpoint, what are the pros and cons of hedging?

It is now July 1992. A mining company has just discovered a small deposit of gold.
It will take 6 months to construct the mine. The gold will then be extracted on a
more or less continuous basis for one year. Futures contracts on gold are available on
the New York Commodity Exchange. The delivery months range from August 1992
to April 1994 and are at 2-month intervals. Each contract is for the delivery of 100
ounces. Discuss how the mining company might use futures markets for hedging.

An airline executive has argued: “There is no point in our using oil futures. There
is just as much chance that the price of oil in the future will be less than the futures
price as there is that it will be greater than this price.” Discuss this viewpoint.

What is the effect of using a hedge ratio of 1.5 instead of 1.0 in Example 2.4 of
Section 2.97

“Shareholders can hedge the risks faced by a company. There is no need for the
company itself to hedge.” Discuss this viewpoint.

“A company that uses a certain commodity in its manufacturing operations should
pass price changes on to its customers. Hedging is then unnecessary.” Discuss this
viewpoint.

“Company treasurers should not hedge. They will be blamed when a loss is experi-
enced on the position taken in the hedging instrument.” Discuss this viewpoint.



Forward and
Futures Prices

In this chapter, we discuss how forward prices and futures prices are related to the
price of the underlying asset. Forward contracts are generally easier to analyze
than futures contracts because there is no daily settlement. Consequently, most of
the analysis in the first part of the chapter is directed toward determining forward
prices rather than futures prices. Luckily, it can be shown that the forward price and
futures price of an asset are generally very close to each other when the maturities
of the two contracts are the same. This means that results obtained for forward
prices can be assumed to be true for futures prices as well.

In the first part of the chapter, key results are provided for forward contracts
on

1. Securities providing no income
2. Securities providing a known cash income
3. Securities providing a known dividend yield

The second part of the chapter uses these results to calculate futures prices for
contracts on stock indices, foreign exchange, gold, and silver.
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This chapter draws an important distinction between assets “that are held
solely for investment by a significant number of investors and those which are
held almost exclusively for consumption. Futures and forward prices on the former
can be determined in a relatively straightforward way, whereas those on the latter
cannot. Later in this book we will find it necessary to make the same distinction
when valuing options and other more complicated derivative securities.

3.1 SOME PRELIMINARIES

Before we get into the calculation of forward prices, it is useful to present some
preliminary material.

Contvuous COMPOUNDING

In this book, the interest rates used will be continuously compounded except
where otherwise stated. Readers used to working with interest rates that are com-
pounded annually, semiannually, or in some other way may find this frustrating.
However, continuously compounded interest rates are used to such a great extent
when options and other complex derivative securities are being priced that it makes
sense to get used to working with them now.

Consider an amount A invested for  years at an interest rate of R per annum.
If the rate is compounded once per annum, the terminal value of the investment is

A(l1+R)"

If it is compounded m times per annum, the terminal value of the investment is
R mn
A (1 + —) 3.1
m

Suppose A = $100, R = 10% per annum, and 7 = 1 so that we are considering 1
year. When we compound once per annum (m = 1), this formula shows that the
$100 grows to

$100 x 1.1 = $110

When we compound twice a year (m = 2), the formula shows that the $100 grows
to

$100 x 1.05 x 1.05 = $110.25

When we compound four times a year (m = 4), the formula shows that the $100
grows to

$100 x 1.025* = $110.38
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Table 3.1 shows the effect of increasing the compounding frequency further (i.e., of
increasing m). The limit as m tends to infinity is known as continuous compound-
ing. With continuous compounding, it can be shown that an amount A invested
for n years at rate R grows to

Ae™" (3.2)

where e is the mathematical constant, 2.71828. In the example in Table 3.1,
A =100, n = 1, and R = 0.1 so that the value to which A grows with continuous
compounding is

100%! = 110.52

This is (to two decimal places) the same as the value using daily compounding.
- For most practical purposes, continuous compounding can be thought of as being
equivalent to daily compounding. Compounding a sum of money at a continuously
compounded rate R for n years involves multiplying it by e®". Discounting it at a
continuously compounded rate R for n years involves multiplying by e Fkn,
Suppose that R; is a rate of interest with continuous compounding and R
is the equivalent rate with compounding m times per annum. From the results in
(3.1) and (3.2), we must have

mn
Aefr = A1+ R
m

Ro\™
R . — — Y
e‘—(l'i m) .,7'{:)/‘,);

TABLE 3.1 Compounding Frequency

or

The effect of increasing the compounding frequency on the
value of $100 at the end of 1 year when the interest rate is 10%

per annum

Value of $100 at
Compounding End of 1 Year
Frequency (dollars)
Annually (m = 1) 110.00
Semiannually (m = 2) 110.25¢
Quarterly (m = 4) 110.38 - B
Monthly (m = 12) 110.47 >
Weekly (m = 52) 110.51 =~

Daily (m = 365) 110.52
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This means that
R
R =mln (1 + —2) (3.3)
m

and
Ry =m(ef/m — 1) 3.4

These equations can be used to convert a rate where the compounding frequency
is m times per annum to a continuously compounded rate and vice versa. The
function In is the natural logarithm function. It is defined so that if y = Inx, then
x=e

Example 3.1

Consider an interest rate that is quoted as 10% per annum with semiannual compounding.

From using Equation (3.3) with m = 2 and R, = 0.1, the equivalent rate with continuous
compounding is :

2In (14 0.05) = 0.09758
or 9.758% per annum.

Example 3.2

Suppose that a lender quotes the interest rate on loans as 8% per annum with continuous
compounding and that interest is actually paid quarterly. From using Equation (3.4) with
m =4 and Ry = 0.08, the equivalent rate with quarterly compounding is

4(e%%2 - 1) = 0.0808

or 8.08% per annum This means that on a $1,000 loan, interest payments of $20.20 would
be required each quarter.

SHORT SELLING

Some of the arbitrage strategies presented in this chapter involve short selling.
This is a trading strategy that yields a profit when the price of a security goes down
and a loss when it goes up. It involves selling securities that are not owned and
buying them back later.

To explain the mechanics of short selling, we suppose that an investor contacts
a broker to short 500 IBM shares. The broker immediately borrows 500 IBM shares
from another client and sells them in the open market in the usual way, depositing
the sale proceeds to the investor’s account. Providing there are shares that can be
borrowed, the investor can continue to maintain the short position for as long as
desired. At some stage, however, the investor will choose to instruct the broker
to close out the position. The broker then uses funds in the investor’s account
to purchase 500 IBM shares and replaces them in the account of the client from
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which the shares were borrowed. The investor makes a profit if the stock price
has declined and a loss if it has risen. If, at any time while the contract is open,
the broker runs out of shares to borrow, the investor is what is known as short-
squeezed and must close out the position immediately even though he or she may
not be ready to do so.

Regulators currently only allow shares to be sold short on an uptick, that is,
when the most recent movement in the price of the security was an increase. A
broker requires significant initial margins from clients with short positions, and, as
with futures contracts, if there are adverse movements (i.e., increases) in the price
of the security, additional margin may be required. The proceeds of the initial sales
of the security normally form part of the initial margin requirement. Some brokers
pay interest on margin accounts and marketable securities such as Treasury bills
can be deposited with a broker to meet initial margin requirements. As in the case
of futures contracts, the margin does not therefore represent a real cost.

An investor with a short position must pay to his or her broker any income,
such as dividends or interest, that would normally be received on the securities that
have been shorted. The broker will transfer this to the account of the client from
whom the securities have been borrowed. Consider the position of an investor
who shorts 500 IBM shares in April when the price per share is $120 and closes
out his or her position by buying them back in July when the price per share
is $100. Suppose that a dividend of $4 per share is paid in May. The investor
receives 500 x $120 = $60,000 in April when the short position is initiated. The
dividend leads to a payment of 500 x $4 = $2,000 in May. The investor also pays
500 x $100 = $50,000 when the position is closed out in July. The net gain is,
therefore,

$60,000 — $2,000 — $50,000 = $8,000
ASSUMPTIONS

In this chapter, we will assume that the following are all true for some market
participants:

1. There are no transactions COsts.

2. All trading profits (net of trading losses) are subject to the same tax rate.

3. The market participants can borrow money at the same risk-free rate of
interest as they can lend money.

4. The market participants take advantage of arbitrage opportunities as they
occur.

Note that we do not require these assumptions to be true for ai market participants.
All that we require is that they be true for a subset of all market participants, for
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example, large investment houses. This is not unreasonable. As discussed in
Chapter 1, the fact that these market participants are prepared to take advantage of
arbitrage opportunities as they occur means that in practice arbitrage opportunities
disappear almost as soon as they arise. It is reasonable therefore to assume for the
purposes of our analyses that there are no arbitrage opportunities.

THE REPO RATE

The relevant risk-free rate of interest for many arbitrageurs operating in the
futures market is what is known as the repo rate. A repo or repurchase agreement
is an agreement where the owner of securities agrees to sell them to a counterparty
and buy them back at a slightly higher price later. The counterparty is providing
a loan. The difference between the price at which the securities are sold and the
price at which they are repurchased is the interest earned by the counterparty. The
loan has virtually no risk since, if the borrowing company does not keep to its side
of the agreement, the lender simply keeps the securities.

The repo rate is only slightly higher than the Treasury bill rate. The most
common type of repo is an overnight repo where the agreement is renegotiated
each day. However, longer-term arrangements, known as term repos, of up to two
weeks are sometimes used.

Noramion
Some of the notation that will be used in this chapter is as follows:

T': Time when forward contract matures (years)
t: Current time (years)
§: Price of asset underlying forward contract at time ¢
Sr: Price of asset underlying forward contract at time T (unknown at the current
time, ¢)
K: Delivery price in forward contract
J: Value of a long forward contract at time ¢
F': Forward price at time ¢
T

: Risk-free rate of interest per annum at time ¢, with continuous compounding,
for an investment maturing at time T

The variables T and ¢ are measured in years from some date (it does not matter
when) prior to the start of the contract. The variable of interest for the purposes of
our current analysis is of course T — ¢, which is the time remaining, measured in
years, in the forward contract. There is a reason for defining two separate variables,
t and 7. This will become apparent in later chapters when we consider the effect
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on the price of a derivative security of time passing. At this stage, the reader can
conveniently think in terms of T — ¢ as a single variable.

It is important to realize that the forward price, F, is quite different from
the value of the forward contract, f. As explained in Chapter 1, the forward price
at any given time is the delivery price that would make the contract have a zero
value. When a contract is initiated, the delivery price is normally set equal to the
forward price so that F = K and f = 0. As time passes, both f and F change.
The analysis and the examples in the next few sections should make clear the
distinction between the two variables.

3.2 FORWARD CONTRACTS ON A SECURITY
THAT PROVIDES NO INCOME

The easiest forward contract to value is one written on a security that provides
the holder with no income. Non-dividend-paying stocks and discount bonds are
examples of such securities.!

For there to be no arbitrage opportunities, the relationship between the for-
ward price, F, and the spot price, S, for a no-income security must be

F=S8eT? (3.5)

To show this, suppose first that F > Se"™~". An investor can borrow S dollars
for a period of time 7 — ¢ at the risk-free interest rate, buy the asset, and take a
short position in the forward contract. At time T, the asset is sold under the terms
of the forward contract for F, and Se’7~" is used to repay the loan. A profit of
F — Se" T~ is therefore realized at time T.

Suppose next that F < Se’T~. An investor can short the asset, invest the
proceeds for a period of time T — at rate r, and take a long position in the forward
contract. At time T, the asset is purchased under the terms of the forward contract
for F, the short position is closed out, and a profit of Se"T- — F is realized.

Example 3.3

Consider a forward contract on a non-dividend-paying stock that matures in 3 months.
Suppose that the stock price is $40, and the 3-month risk-free rate of interest is 5% per
annum. In this case T — t = 0.25, r = 0.05, and § = 40 so that

F = 40"%5*0% = 40.50
This would be the delivery price in a contract negotiated today. If the actual forward price is

greater than $40.50, an arbitrageur can borrow money, buy the stock, and short the forward

1Some of the contracts that are used as examples in the first half of this chapter (e.g., forward
contracts on non-dividend-paying stocks) do not normally arise in practice. However, they form useful
examples for developing our ideas.
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contract for a net profit. If the forward price is less than $40.50, an arbitrageur can short
the stock, invest the proceeds, and take a long forward position. Again a net profit is
realized.

To express our arguments more formally, consider the following two
portfolios:

Portfolio A: one long forward contract on the security plus an amount of
cash equal to Ke~"(T—

Portfolio B: one unit of the security

In portfolio A, the cash, assuming that it is invested at the risk-free rate, will grow
to an amount K at time T. It can then be used to pay for the security at the
maturity of the forward contract. Both portfolios will therefore consist of one unit
of the security at time T. It follows that they must be equally valuable at the
earlier time, r. If this were not true, an investor could make a riskless profit by
buying the less expensive portfolio and shorting the more expensive one.

It follows that

f + Ke—r(T—t) — S
or
f=8S—Ke T (3.6)

When a forward contract is initiated, the forward price equals the delivery
price specified in the contract and is chosen so that the value of the contract is
zero. The forward price, F, is therefore that value of X which makes f=0in
Equation (3.6), that is,

F = 8§e"T-9
This is in agreement with Equation (3.5)

Example 3.4

Consider a long 6-month forward contract on a I-year discount bond when the delivery price
is $950. We assume that the 6-month risk-free rate of interest (continuously compounded) is
6% per annum and that the current bond price is $930. In this case T — ¢ = 0.50, r = 0.06,
K =950, § =930, and Equation (3.6) shows that the value, f, of the long forward contract
is given by

f =930 —950705x006 _ g g

Similarly, the value of a short forward is —8.08.
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3.3 FORWARD CONTRACTS ON A SECURITY
THAT PROVIDES A KNOWN CASH INCOME

In this section we consider a forward contract on a security that will provide
a perfectly predictable cash income to the holder. Examples are stocks paying
known dividends and coupon-bearing bonds. Define I as the present value, using
the risk-free discount rate, of income to be received during the life of the forward
contract.

For there to be no arbitrage, the relationship between F and S must be

F=(§— DT (3.7)

To show this, suppose first that F > (S — I)e"?=". An arbitrageur can borrow
money, buy the asset, and short a forward contract. The asset is sold for F at time
T under the terms of the forward contract. Assuming that the income received is
used to pay off part of the loan, an amount (S — /)¢ 7~ of the loan remains to
be repaid at time T. A profit of F — (S — I)e""™" is therefore realized at time T.

Suppose next that F < (S — I)e"T=". An arbitrageur can short the asset,
invest the proceeds, and take a long position in the forward contract. In this case,
a profit of (S — I)e"T=" — F is realized at time 7.

Example 3.5

Consider a 10-month forward contract on a stock with a price of $50. We assume that the
risk-free rate of interest (continuously compounded) for all maturities is 8% per annum and
the term structure is flat. We also assume that dividends of $0.75 per share are expected
after 3 months, 6 months, and 9 months. The present value of the dividends, /, is given by

1 =0.75¢7%92 1 0.75¢7 0% +0.75¢70% = 2.162
The variable T — ¢ is 0.8333 year so that the forward price, F, is given by
F = (50 — 2.162)e%08%08333 — 51 14

If the forward price were less than this, an arbitrageur would short the stock and buy forward
contracts. If the forward price were greater than this, an arbitrageur would short forward
contracts and buy the stock.

To express our arguments more formally, we change portfolio B in the pre-
ceding section to:

Portfolio B: one unit of the security plus borrowings of amount / at the
risk-free rate

The income from the security can be used to repay the borrowings so that this
portfolio has the same value as one unit of the security at time T Portfolio A also
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has this value at time T. The two portfolios must therefore have the same value
at time ¢, that is,

f+Ke™ I D=g_p
or
f=8—-1-Ke @D (3.8)

The forward price, F, is, as before, the value of K that makes f zero. Using
Equation (3.8) we obtain

F=(§—DeT"
which is in agreement with Equation (3.7).

Example 3.6

Consider a 5-year bond with a price of $900. Suppose that a forward contract on the bond
with a delivery price of $910 has a maturity of 1 year. Coupon payments of $60 are expected
after 6 months and after 12 months. The second coupon payment is immediately prior to
the delivery date in the forward contract. The continuously compounded risk-free rates of
interest for 6 months and 1 year are 9% per annum and 10% per annum. In this case
§$ =900, K =910,r =0.10, T — ¢ = 1, and

1 = 60e=009%05 4 60,~0.10 _ 111 65

and the value, f, of a long position in the forward contract, using Equation (3.8), is given
by
f=900—111.65~910¢%! = _3505

The value of a short position is +35.05. Note that there is no accrued interest at the
beginning and end of the contract in this example. Complications arising from accrued
interest are discussed in Chapter 4.

3.4 FORWARD CONTRACTS ON A SECURITY
THAT PROVIDES A KNOWN DIVIDEND YIELD

As will be explained in later sections, both currencies and stock indices can be
regarded as securities that provide known dividend yields. In this section, we
provide a general analysis of forward contracts on such securities.

A known dividend yield means that the income when expressed as a per-
centage of the security price is known. We will assume that the dividend yield is
paid continuously at an annual rate ¢. To illustrate what this means, suppose that
g = 0.05 so that the dividend yield is 5 percent per annum. When the security
price is $10, dividends in the next small interval of time are paid at the rate of
50 cents per annum; when the security price is $100, dividends in the next small
interval of time are paid at the rate of $5 per annum; and so on.
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To value the forward contract, portfolio B in Section 3.2 can be replaced by:

Portfolio B: ¢~7T~" of the security with all income being reinvested in the
security

The security holding in portfolio B grows as a result of the dividends which are
paid, so that at time T exactly one unit of the security is held. Portfolios A and B
are therefore worth the same at time T. From equating their values at time, f, we
obtain

f + Ke—r(T—t) = Se—q(T—I)

or
f=S8e 9T _ gerT (3.9)
and the forward price, F, is given by the value of K that makes f zero:
F = Ser~0T=0 (3.10)

Note that if the dividend yield rate varies during the life of the forward contract,
Equatiori (3.10) is still correct with g equal to the average dividend yield rate.
Example 3.7

Consider a 6-month forward contract on a security that is expected to provide a continuous
dividend yield of 4% per annum. The risk-free rate of interest (with continuous compound-
ing) is 10% per annum. The stock price is $25 and the delivery price is $27. In this case
§=125K=27,r=0.10,qg =0.04, and T —¢ = 0.5. From Equation (3.9) the value of a
long position, f, is given by

. f = 25e—0.04>(0.5 — 278—0.1X0.5 = _118
From Equation (3.10) the forward price, F, is given by
F = 25¢%%6%03 = 2576

3.5 A GENERAL RESULT

A result that is true for all assets (both those held for investment purposes and
those held for consumption purposes) is

f=(F—-K)e T (3.11)

This is because, if f > (F—K)e™" T~ or f < (F—K)e™"T™", there are arbitrage
opportunities.

Consider first the f > (F — K)e™"T = situation. We take a long position in
a forward contract with delivery price F maturing at time T and a short position
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in a forward contract with delivery price K maturing at time 7. Since the first
contract has a value of zero, this strategy generates an initial cash flow equal to f.
The final cash flow is

St —=F)+ (K - 81) = —(F - K)
The investment therefore locks in cash flows with a positive present value of
f—(F—K)erT=n

Similarly, if f < (F — K)e™T~"), we take a short position in a forward
contract with delivery price F maturing at time T and a long position in a forward
contract with delivery price K maturing at time T. This locks in cash flows with
a positive present value of

(F—K)e"T=0 _

It is easy to verify that the relationship in Equation (3.11) is consistent with
the formulas derived for F and f in each of Section 3.2, Section 3.3, and Sec-
tion 3.4.

3.6 FORWARD PRICES VERSUS FUTURES
PRICES

Appendix 3A provides an arbitrage argument to show that, when the risk-free
interest rate is constant and the same for all maturities, the forward price for a
contract with a certain delivery date is the same as the futures price for a contract
with the same delivery date. The argument in Appendix 3A can be extended to
cover situations where the interest rate is a known function of time.

When interest rates vary unpredictably (as they do in the real world), forward
and futures prices are in theory no longer the same. The proof of the relationship
between the two is beyond the scope of this book. However, we can get a sense
of the nature of the relationship by considering the situation where the price of the
underlying asset, S, is strongly positively correlated with interest rates. When S
increases, an investor who holds a long futures position makes an immediate gain
because of the daily settlement procedure. Since increases in S tend to occur at
the same time as increases in interest rates, this gain will tend to be invested at
a higher-than-average rate of interest. Similarly, when S decreases, the investor
will make an immediate loss. This loss will tend to be financed at a lower-than-
average rate of interest. An investor holding a forward contract rather than a futures
contract is not affected in this way by interest rate movements. It follows that,
ceteris paribus, a long futures contract will be more attractive than a long forward
contract. Hence, when § is strongly positively correlated with interest rates, futures
prices will tend to be higher than forward prices. When S is strongly negatively
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correlated with interest rates, a similar argument shows that forward prices will
tend to be higher than futures prices.

The theoretical differences between forward and futures prices for contracts
which last only a few months are in most circumstances sufficiently small to be
ignored. As the life of the contracts increase these differences become greater.
In practice, there are a number of factors, not reflected in theoretical models, that
may cause forward and futures prices to be different. These factors include taxes,
transaction costs, and the treatment of margins. Also, in some instances, futures
contracts are more liquid and easier to trade than are forward contracts. Despite
all these points, in most circumstances it is reasonable to assume that forward and
futures prices are the same. This is the assumption that will be made throughout
this book. The symbol F will be used to represent both the futures price and the
forward price of an asset.

EMPIRICAL RESEARCH

Some empirical research that has been carried out comparing forward and
futures contracts is listed at the end of this chapter. Comell and Reinganum
studied forward and futures prices on the British pound, Canadian dollar, Ger-
man mark, Japanese yen, and Swiss franc between 1974 and 1979. They found
very few statistically significant differences between the two prices. Their re-
sults were confirmed by Park and Chen who as part of their study looked at the
British pound, German mark, Japanese yen, and Swiss franc between 1977 and
1981.

French studied copper and silver during the period 1968 to 1980. The re-
sults for silver show that the futures price and the forward price are significantly
different (at the 5% confidence level) with the futures price generally above the
forward price. The results for copper are less clear cut. Park and Chen looked at
gold, silver, silver coin, platinum, copper, and plywood between 1977 and 1981.
Their results are similar to those of French for silver. The forward and futures
prices are significantly different with the futures price above the forward price.
Rendleman and Carabini studied the Treasury bill market between 1976 and 1978.
They also found statistically significant differences between futures and forward
prices.

3.7 STOCK INDEX FUTURES

A stock index tracks the changes in the value of a hypothetical portfolio of stocks.
The weight of a stock in the portfolio equals the proportion of the portfolio invested
in the stock. The stocks in the portfolio can have equal weights or weights that
change in some way over time. The percentage increase in the value of a stock
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index over a small interval of time is usually defined so that it is equal to the
percentage increase in the total value of the stocks comprising the portfolio at that
time. A stock index is not usually adjusted for cash dividends. In other words,
any cash dividends received on the portfolio are ignored when percentage changes
in most indices are being calculated.

It is worth noting that if the hypothetical portfolio of stocks remains fixed,
the weights assigned to individual stocks in the portfolio do not remain fixed. If
the price of one particular stock in the portfolio rises more sharply than others,
more weight is automatically given to that stock. A corollary to this is that, if
the weights of the stocks in the portfolio are specified as constant over time, the
hypothetical portfolio will change each day. If the price of one particular stock
in the portfolio rises more sharply than others, the holding of the stock must be
reduced to maintain the weightings.

Srock INDICES

Table 3.2 shows futures prices for contracts on four different stock indices
as they were reported in The Wall Street Journal of October 18, 1991. The prices
refer to the close of trading on October 17, 1991. The stock indices are as follows:

1. The Standard & Poor’s 500 (S&P 500) Index. This trades on the Chicago
Mercantile Exchange (CME) and is based on a portfolio of 500 different
stocks: 400 industrials, 40 utilities, 20 transportation companies, and 40
financial institutions. The weights of the stocks in the portfolio at any given
time reflect the stock’s total market capitalization (= stock price x number
of shares outstanding). The index accounts for 80 percent of the market
capitalization of all the stocks listed on the New York Stock Exchange. One
futures contract, traded on the Chicago Mercantile Exchange, is on 500 times
the index.

2. The Nikkei 225 Stock Average. This is based on a portfolio of 225 of the
largest stocks trading on the Tokyo Stock Exchange. Stocks are weighted
according to their prices. One futures contract, traded on the Chicago Mer-
cantile Exchange, is on 5 times the index.

3. The New York Stock Exchange (NYSE) Composite Index. This is based on a
portfolio of all the stocks listed on the New York Stock Exchange. As with
the S&P 500, weights reflect market capitalizations. One futures contract,
traded on the New York Futures Exchange, is on 500 times the index.

4. The Major Market Index (MMI ). This is based on a portfolio of 20 blue-chip
stocks listed on the New York Stock Exchange. The stocks are weighted
according to their prices with adjustments being made to reflect the effects
of stock splits and stock dividends. The MMI is very closely correlated to
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percentage increase in the total value of the stocks comprising the portfolio at that
time. A stock index is not usually adjusted for cash dividends. In other words,
any cash dividends received on the portfolio are ignored when percentage changes
in most indices are being calculated.

It is worth noting that if the hypothetical portfolio of stocks remains fixed,
the weights assigned to individual stocks in the portfolio do not remain fixed. If
the price of one particular stock in the portfolio rises more sharply than others,
more weight is automatically given to that stock. A corollary to this is that, if
the weights of the stocks in the portfolio are specified as constant over time, the
hypothetical portfolio will change each day. If the price of one particular stock
in the portfolio rises more sharply than others, the holding of the stock must be
reduced to maintain the weightings.

Srock INDICES

Table 3.2 shows futures prices for contracts on four different stock indices
as they were reported in The Wall Street Journal of October 18, 1991. The prices
refer to the close of trading on October 17, 1991. The stock indices are as follows:

1. The Standard & Poor’s 500 (S&P 500) Index. This trades on the Chicago
Mercantile Exchange (CME) and is based on a portfolio of 500 different
stocks: 400 industrials, 40 utilities, 20 transportation companies, and 40
financial institutions. The weights of the stocks in the portfolio at any given
time reflect the stock’s total market capitalization (= stock price x number
of shares outstanding). The index accounts for 80 percent of the market
capitalization of all the stocks listed on the New York Stock Exchange. One
futures contract, traded on the Chicago Mercantile Exchange, is on 500 times
the index.

2. The Nikkei 225 Stock Average. This is based on a portfolio of 225 of the
largest stocks trading on the Tokyo Stock Exchange. Stocks are weighted
according to their prices. One futures contract, traded on the Chicago Mer-
cantile Exchange, is on 5 times the index.

3. The New York Stock Exchange (NYSE) Composite Index. This is based on a
portfolio of all the stocks listed on the New York Stock Exchange. As with
the S&P 500, weights reflect market capitalizations. One futures contract,
traded on the New York Futures Exchange, is on 500 times the index.

4. The Major Market Index (MMI). This is based on a portfolio of 20 blue-chip
stocks listed on the New York Stock Exchange. The stocks are weighted
according to their prices with adjustments being made to reflect the effects
of stock splits and stock dividends. The MMI is very closely correlated to
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the widely quoted Dow Jones Industrial Average, which is also based on
relatively few stocks. One futures contract, traded on the Chicago Board of
Trade, is on 500 times the index.

As mentioned in Chapter 2, futures contracts on stock indices are settled in
cash, not by delivery of the underlying asset. All contracts are marked to market on
the last trading day and the positions are deemed to be closed. For most contracts,
the settlement price on the last trading day is set at the closing value of the index
on that day. But, as discussed in Chapter 2, for the S&P 500 it is set as the value
of the index based on opening prices the next day. For the futures on the NYSE
composite and MM], the last trading day is the third Friday of the delivery month.
For the S&P 500, it is the Thursday before the third Friday of the delivery month.

FUtures PRICES OF STOCK INDICES

Most indices can be thought of as securities that pay dividends. The security
is the portfolio of stocks underlying the index and the dividends paid by the security
are the dividends that would be received by the holder of this portfolio. To a

TABLE 3.2 Stock Index Futures
Quotes from The Wall Street
Journal, October 18, 1991

FUTURES

S&P 500 INDEX (CME) 500 times index

Open
Open High Low Settle Chg High Low Inferest
Dec  393.50 395.85 391.75 393.75 — .85 401.50 316.50 139,641
Mm 395.70 398.50 394.10 396.15 — 75 404,00 37470 3170
398.40 — .70 407.00 379.00 781
Esf vol 48,495; vol Wed 45,886; open Int 143,623, +662,
indx prelim High 393.81; Low 390.32; Close 391.92 - .88
NIKKE] 225 Stock Average (CME)-$S fimes NSA -
Dec 24900. 24950. 24870. 24930. +160.0 28900. mto nm
25440. +170.0 26725. 23000
Esf vol 380; vol Wed 362; open Int 11,564, +64.
The Index: High 24643.11; Low 24344.68; Close 24439.85

+105.18
NYSE COMPOSITE INDEX (NYFE) 500 times index
Dec  216.45 217.70 215.60 216.75 — .35 219.70 175.50 4,762
Mr92  218.40 217.95 217.40 217.85 — .35 220.35 207.60 685
Est vol 4,764; vol Wed 5,686; open Int 5,488, —150.
The index: High 216.54; Low 215 .07; Close 215.81 —.24
MAJOR MKT INDEX (CBT) $500 fimes index
Oct  323.70 325.70 322.20 324.05 — .90 325.70 314.90 4,00

. Est vol 3,500; vol Wed 2,018; open inf 6,104, +167.
The Index: High 325.88; Low 322.55; Close 323.79 —1.09

Reprinted by permission of The Wall Street
Journal, October 18, 1991. Copyright ©1991,
Dow Jones & Company, Inc. All rights re-
served.
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reasonable approximation, the dividends can be assumed to be paid continuously.
If g is the dividend yield rate, Equation (3.10) gives the futures price, F, as

F = Se~T=0 (3.12)

Example 3.8

Consider a 3-month futures contract on the S&P 500. Suppose that the stocks underlying
the index provide a dividend yield of 3% per annum, that the current value of the index is
400, and that the continuously compounded risk-free interest rate is 8% per annum. In this
case, r = 0.08, § =400, T — ¢ = 0.25, and ¢ = 0.03 and the futures price, F, is given by

F = 400¢%9%025 ~ 405 03

In practice, the dividend yield on the portfolio underlying an index varies
week by week throughout the year. For example, a large proportion of the divi-
dends on NYSE stocks are paid in the first week of February, May, August, and
November of each year. The value of ¢ that is used should represent the average
annualized dividend yield during the life of the contract. The dividends used for
estimating q should be those for which the ex-dividend date is during the life of the
futures contract. Looking at Table 3.2, we see that the futures prices for the S&P
500 appear to be increasing with maturity at about 2.4 percent per annum. This
corresponds to the situation where the risk-free interest rate exceeds the dividend
yield by about 2.4 percent per annum.

If an analyst is unhappy working in terms of dividend yields, he or she can
estimate the dollar amount of dividends that will be paid by the portfolio underlying
the index and the timing of those dividends. The index can then be considered
to be a security providing known income, and the result in Equation (3.7) can be
used to calculate the futures price. This approach is useful for indices in countries
such as Japan, France, and Germany where all stocks tend to pay dividends on the
same dates.

INDEX ARBITRAGE

If F > Se"=9T=1, profits can be made by buying the stocks underlying the
index and shorting futures contracts. If F < Ser—T-n, profits can be made by
doing the reverse, that is, shorting or selling the stocks underlying the index and
taking a long position in futures contracts. These strategies are known as index
arbitrage. When F < Se"~DT=9 index arbitrage is often done by a pension
fund that owns an indexed portfolio of stocks. When F > Se =T it is often
done by a corporation holding short-term money market investments. For indices
involving many stocks, index arbitrage is sometimes accomplished by trading a
relatively small representative sample of stocks whose movements closely mirror
those of the index. Often index arbitrage is implemented using program trading.
This means that a computer system is used to generate the trades.
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reasonable approximation, the dividends can be assumed to be paid continuously.
If g is the dividend yield rate, Equation (3.10) gives the futures price, F, as

F = Ser—0T-0 (3.12)
Example 3.8

Consider a 3-month futures contract on the S&P 500. Suppose that the stocks underlying
the index provide a dividend yield of 3% per annum, that the current value of the index is
400, and that the continuously compounded risk-free interest rate is 8% per annum. In this
case, r = 0.08, § =400, T — r = 0.25, and ¢ = 0.03 and the futures price, F, is given by

F = 400¢905%0.25 _ 405 03

In practice, the dividend yield on the portfolio underlying an index varies
week by week throughout the year. For example, a large proportion of the divi-
dends on NYSE stocks are paid in the first week of February, May, August, and
November of each year. The value of q that is used should represent the average
annualized dividend yield during the life of the contract. The dividends used for
estimating g should be those for which the ex-dividend date is during the life of the
futures contract. Looking at Table 3.2, we see that the futures prices for the S&P
500 appear to be increasing with maturity at about 2.4 percent per annum. This
corresponds to the situation where the risk-free interest rate exceeds the dividend
yield by about 2.4 percent per annum.

If an analyst is unhappy working in terms of dividend yields, he or she can
estimate the dollar amount of dividends that will be paid by the portfolio underlying
the index and the timing of those dividends. The index can then be considered
to be a security providing known income, and the result in Equation (3.7) can be
used to calculate the futures price. This approach is useful for indices in countries
such as Japan, France, and Germany where all stocks tend to pay dividends on the
same dates.

INDEX ARBITRAGE

If F > Se”=9T=0, profits can be made by buying the stocks underlying the
index and shorting futures contracts. If F < Se~9T~-0, profits can be made by
doing the reverse, that is, shorting or selling the stocks underlying the index and
taking a long position in futures contracts. These strategies are known as index
arbitrage. When F < Se"~9T=9_index arbitrage is often done by a pension
fund that owns an indexed portfolio of stocks. When F > Se~9T=9 it is often
done by a corporation holding short-term money market investments. For indices
involving many stocks, index arbitrage is sometimes accomplished by trading a
relatively small representative sample of stocks whose movements closely mirror
those of the index. Often index arbitrage is implemented using program trading.
This means that a computer system is used to generate the trades.
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reasonable approximation, the dividends can be assumed to be paid continuously.
If g is the dividend yield rate, Equation (3.10) gives the futures price, F, as

F = §et~T=0 (3.12)

Example 3.8

Consider a 3-month futures contract on the S&P 500. Suppose that the stocks underlying
the index provide a dividend yield of 3% per annum, that the current value of the index is
400, and that the continuously compounded risk-free interest rate is 8% per annum. In this
case, r = 0.08, S =400, T — 1 = 0.25, and g = 0.03 and the futures price, F, is given by

F = 4000-05%0.25 _ 405 03

In practice, the dividend yield on the portfolio underlying an index varies
week by week throughout the year. For example, a large proportion of the divi-
dends on NYSE stocks are paid in the first week of February, May, August, and
November of each year. The value of ¢ that is used should represent the average
annualized dividend yield during the life of the contract. The dividends used for
estimating g should be those for which the ex-dividend date is during the life of the
futures contract. Looking at Table 3.2, we see that the futures prices for the S&P
500 appear to be increasing with maturity at about 2.4 percent per annum. This
corresponds to the situation where the risk-free interest rate exceeds the dividend
yield by about 2.4 percent per annum.

If an analyst is unhappy working in terms of dividend yields, he or she can
estimate the dollar amount of dividends that will be paid by the portfolio underlying
the index and the timing of those dividends. The index can then be considered
to be a security providing known income, and the result in Equation (3.7) can be
used to calculate the futures price. This approach is useful for indices in countries
such as Japan, France, and Germany where all stocks tend to pay dividends on the
same dates.

INDEX ARBITRAGE

If F > Se"~9T=), profits can be made by buying the stocks underlying the
index and shorting futures contracts. If F < Se~9(T~0) profits can be made by
doing the reverse, that is, shorting or selling the stocks underlying the index and
taking a long position in futures contracts. These strategies are known as index
arbitrage. When F < §e"~9T-9_ index arbitrage is often done by a pension
fund that owns an indexed portfolio of stocks. When F > Se"=PT-0 it is often
done by a corporation holding short-term money market investments. For indices
involving many stocks, index arbitrage is sometimes accomplished by trading a
relatively small representative sample of stocks whose movements closely mirror
those of the index. Often index arbitrage is implemented using program trading.
This means that a computer system is used to generate the trades.
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OCTOBER 19, 1987

In normal market conditions, F is very close to Se"~9T~"_ However, it is
interesting to note what happened on October 19, 1987, when the market fell by
over 20 percent and the volume of shares traded on the New York Stock Exchange
(604 million) easily exceeded all previous records. For most of the day, futures
prices were at a significant discount to the underlying index. For example, at the
close of trading, the S&P 500 index was at 225.06 (down 57.88 on the day) while
the futures price for December delivery on the S&P 500 was 201.50 (down 80.75
on the day). This was largely because the delays in processing orders to sell equity
made index arbitrage too risky. On the next day, October 20, 1987, the New
York Stock Exchange placed temporary restrictions on the way in which program
trading could be done. The result was that the breakdown of the traditional linkage
between stock indices and stock index futures continued. At one point, the futures
price for the December contract was 18 percent less than the S&P 500 index!

THE NIKKEI INDEX

Equation (3.12) does not apply to the futures contract on the Nikkei 225.
The reason for this is quite subtle. Define S¢ as the value of the Nikkei 225 index.
This is the value of a portfolio measured in yen. The variable underlying the CME
futures contract on the Nikkei 225 is a variable with a dollar value of 5S¢. In
other words, the futures contract takes a variable which is measured in yen and
treats it as though it were dollars. We cannot invest in a portfolio whose value will
always be 55 dollars. The best we can do is to invest in one that is always worth
5SF yen or in one that is always worth SQSF dollars where Q is the dollar value
of 1 yen. The variable underlying the Nikkei 225 is therefore a dollar amount that
does not equal the price of a traded security. Consequently, we cannot derive a
theoretical futures price using arbitrage arguments. In Chapter 12 we will show
how other arguments can be used to produce a formula for the CME Nikkei 225
futures price.

HEbpaGINnGg UsINnG INDEX FUTURES

Stock index futures can be used to hedge the risk in a well-diversified port-
folio of stocks. Readers familiar with the capital asset pricing model will know
that the relationship between the return on a portfolio of stocks and the return on
the market is described by a parameter B8 (= beta). This is the slope of the best
fit line obtained when the excess return on the portfolio over the risk-free rate is
regressed against the excess return on the market over the risk-free rate. When
B = 1.0, the return on the portfolio tends to mirror the return on the market; when
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B = 2.0, the excess return on the portfolio tends to be twice as great as the excess
return on the market; when g = 0.5, it tends to be half as great; and so on.

Suppose we wish to hedge against changes in the value of a portfolio during
a period of time, T — ¢. Define

A;: Change in the value of $1 during time T — ¢ if it is invested in the portfolio
A;: Change in the value of $1 during time T — ¢ if it is invested in the market
index
S: Current value of the portfolio
F': Current value of one futures contract
N: Optimal number of contracts to short when hedging the portfolio

The value of one futures contract, F, is the futures price multiplied by the contract
size. In the case of the S&P 500, one contract is on 500 times the index. If
the futures price of the S&P 500 is 400, the value of one contract is therefore
400 x 500 = $200, 000.

From the definition of B, it is approximately true that

Ay =a+ A,
where o is a constant. The change in the value of the portfolio between times ¢
and T is SA; or
al + ﬂ S A2

The change in the value of one futures contract price during this time is approxi-
mately FA;. The uncertain component of the change in the value of the portfolio
is therefore approximately

S
’F
times the change in the value of one futures contract. It follows that
S
N=8—
h F

Example 3.9

A company wishes to hedge a portfolio worth $2,100,000 using an S&P 500 index futures
contract with 4 months to maturity. The current futures price is 300 and the B of the
portfolio is 1.5. The value of one futures contract is 300 x 500 = $150, 000. The correct
number of futures contracts to short, therefore, is

2,100,000

1. =21
5 X 150,600

A stock index hedge, if effective, should result in the hedger’s position grow-
ing at approximately the risk-free interest rate. It is natural to ask why the hedger
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should go to the trouble of using futures contracts. If the hedger’s objective is to
earn the risk-free interest rate, he or she can simply sell the portfolio and invest
the proceeds in Treasury bills.

One possibility is that the hedger feels that the stocks in the portfolio have
been chosen well. He or she might be very uncertain about the performance of the
market as a whole but confident that the stocks in the portfolio will outperform the
market (after appropriate adjustments have been made for the 8 of the portfolio).
A hedge using index futures removes the risk arising from market moves and
leaves the hedger exposed only to the performance of the portfolio relative to the
market. Another possibility is that the hedger is planning to hold a portfolio for
a long period of time and requires short-term protection in an uncertain market
situation. The alternative strategy of selling the portfolio and buying it back later
might involve unacceptably high transaction costs.

CHANGING BETA

Stock index futures can be used to change the beta of a portfolio. Consider
the situation in Example 3.9. To reduce the beta of the portfolio from 1.5 to 0,
21 contracts are required. To reduce the beta to 1.0, it is necessary to short only
one-third of 21 or 7 contracts; to increase the beta from 1.5 to 3.0 a long position in
21 contracts is required; and so on. In general, to change the beta of the portfolio
from 8 to B* where 8 > B*, a short position in

S
_ *
B-B%
contracts is required. When B8 < $*, a long position in
S
* — —
B =B

is required.

3.8 FORWARD AND FUTURES CONTRACTS ON
CURRENCIES

We now move on to consider forward and futures contracts on foreign currencies.
The variable, S, is the current price in dollars of one unit of the foreign currency;
K is the delivery price agreed to in the forward contract. A foreign currency
has the property that the holder of the currency can earn interest at the risk-free
interest rate prevailing in the foreign country. (For example, the holder can invest
the currency in a foreign denominated bond.) We define r; as the value of this
foreign risk-free interest rate with continuous compounding.
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The two portfolios that enable us to price a forward contract on a foreign
currency are

Portfolio A: One long forward contract plus an amount of cash equal to
K e—r(T—t)
Portfolio B: An amount e~"/‘T=" of the foreign currency

Both portfolios will become worth the same as one unit of the foreign currency at
time T. They must therefore be equally valuable at time 7. Hence,

f + Ke-—r(T—t) — Se—r/(T—t)

or
f =8I _ ge=r(T-0 (3.13)
The forward price (or forward exchange rate), F, is the value of K that makes
f = 0 in Equation (3.13). Hence,

F = SeU"—T-0 (3.14)

This is the well-known interest rate parity relationship from the field of interna-
tional finance. From the discussion earlier in this chapter, F is, to a reasonable
approximation, also the futures price.

Note that equations (3.13) and (3.14) are identical to equations (3.9) and
(3.10), respectively, with g replaced by ry. This is because a foreign currency is
analogous to a security paying a known dividend yield. The “dividend yield” is
the risk-free rate of interest in the foreign currency. To see why this is so, note that
interest earned on a foreign currency holding is denominated in the foreign cur-
rency. Its value when measured in the domestic currency is therefore proportional
to the value of the foreign currency.

Table 3.3 shows futures prices on October 17, 1991 for contracts trading on
the Japanese yen, Deutschemark, Canadian dollar, British pound, Swiss franc, and
Australian dollar in the International Monetary Market of the Chicago Mercantile
Exchange. The futures exchange rate is quoted as the value of the foreign currency
in U.S. dollars (or, in the case of the yen, the value of the foreign currency in U.S.
cents). This can be confusing because spot and forward rates on most currencies
are quoted the other way around, that is, as the number of units of the foreign
currency per U.S. dollar. A forward quote on the Canadian dollar of 1.2000 would
become a futures quote of 0.8333.

When the foreign interest rate is greater than the domestic interest rate (ry >
r), Equation (3.14) shows that F is always less than S and that F decreases as the
maturity of the contract, T, increases. Similarly, when the domestic interest rate
is greater than the foreign interest rate (- > rs), Equation (3.14) shows that F is
always greater than S and that F increases as T increases. On October 17, 1991,
interest rates in Japan, Germany, Canada, Britain, Switzerland, and Australia were
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TABLE 3.3 Foreign Exchange
Futures Quotes from The Wall
Street Journal, October 18, 1991

FUTURES

Lifetime Open

Open High Low Settle Change High Low Interest
JAPAN YEN (IMM)-12.5 mitlion yen; $ per yen (.00)
Dec 700 7720 7675 .7707 + .0043 .7770 .6997 75,304
Mm 7693 7700 7670 7698 + .0043 .7718 7000 1,446
7699+.W6 J05 015 I

. + .0050 .7710 .7265 658
... JJ718 + 0056 7700 .7512 1,47

Es? vol 20,149; ‘vol Wed l7,lm. open Int 78,933, —2,332.
DEUTSCHEMARK (IMM) 125,000 marks; $ per mark
Dec .5838 .5850 .5818 .5B40 + .0021 .6770 .5365 57,712
Mr92 5785 .5800 .5763 .5785 + .0021 5353 2,819
June 5733 4+ .0021 24

Est vol 40,793; vol Wed 33.233. open int 60,767, +518.
CANADIAN DOLLAR (IMM)— 100,000 dirs.; $ per Can $§
Dec 8797 .8818 .8791 .8817 + .0022 .8818 .8175 25,502
Mr92 8739 8768 .8739 .8766 + .0022 .8768 .8253 2449
June 8720 8725 8718 .8720 + .0022 8725 .8330 443

Bge

Est vol 5,140; vol Wed 3.371; Int 28,736, +282.
D:CRITlSH POUND (IMM 61,5“ pds.; $ per pound

1.6970 1.6990 1.6900 169“ 0068 1.7900 1.5670 20,112
Mr92 1.6770 1.6810 1.6730 1.6804 +.0072 1.7200
Est vol 12,808; vol Wed 10,072, open Int 21,498, —123.
SWISS FRANC (IMM)—125,000 francs; $ per franc
Dec 6692 6700 6655 .6696 + .0027 .8090 .6235 24,063
Mr92 6647 6649 6620 6450 + .0029 6995 .6725 570
Est vol 17,700; vol Wed 14,402, open int 24,681, —-22.
AUSTRALIAN DOLLAR (IMM)—100,000 dirs.; $ per AS

Reprinted by permission of The Wall Street Jour-
nal, October 18, 1991. Copyright ©1991, Dow
Jones & Company, Inc. All rights reserved.

all higher than in the United States. This corresponds to the ry > r situation and
explains why futures prices for these currencies decline with maturity.

Example 3.10

The futures price of the Canadian dollar in Table 3.3 appears to be decreasing at a rate of
about 2.2% per annum with the maturity. For example, the June 1992 settlement price is
about 1.1% lower than the December 1991 settlement price. This suggests that the short-
term risk-free interest rate was about 2.2% per annum lower in the United States than in
Canada.

3.9 FUTURES ON COMMODITIES

We now move on to consider commodity futures contracts. Here it will prove to be
important to distinguish between commodities that are held solely for investment
by a significant number of investors (e.g., gold and silver) and those that are held
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primarily for consumption. Arbitrage arguments can be used to obtain exact futures
prices in the case of investment commodities. However, it turns out that they can
only be used to give an upper bound to the futures price in the case of consumption
commodities.

GoLb AND SILVER

Gold and silver are held by a significant number of investors solely for
investment. If storage costs are zero, they can be considered as being analogous to
securities paying no income. Using the notation introduced earlier, S is the current
spot price of gold. As shown by Equation (3.5), the futures price, F, should be
given by

F =8’ 79 (3.15)

Storage costs can be regarded as negative income. If U is the present value
of all the storage costs that will be incurred during the life of a futures contract, it
follows from Equation (3.7) that

F=(S+U)eT™N (3.16)

If the storage costs incurred at any time are proportional to the price of the
commodity, they can be regarded as providing a negative dividend yield. In this
case, from Equation (3.10),

F = Ser+T=o (3.17)

where u is the storage costs per annum as a proportion of the spot price.

If we return to Table 2.2, we see that the futures price of gold increases at
about 4.5 percent per annum with the maturity of the contract. This is close to the
risk-free interest rate on October 17, 1991 and is consistent with the formulas just
given.

Example 3.11

Consider a 1-year futures contract on gold. Suppose that it costs $2 per ounce per year
to store gold, with the payment being made at the end of the year. Assume that the spot
price is $450 and the risk-free rate is 7% per annum for all maturities. This corresponds to
r=0.07,8§=450,T —t =1, and

U =2¢7%07 = 1,865
The futures price, F, is given by

F = (450 + 1.865)¢%%7 = 484.6
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Ot1HER COMMODITIES

For commodities that are not held primarily for investment purposes, the
arbitrage arguments leading to equations (3.15), (3.16), and (3.17) need to be
reviewed carefully.

Suppose that instead of Equation (3.16), we have

F>(S+U)eT? (3.18)

To take advantage of this, an arbitrageur should implement the following strategy:

1. Borrow an amount S + U at the risk-free rate and use it to purchase one unit
of the commodity and to pay storage costs.

2. Short a futures contract on one unit of the commodity.

If we regard the futures contract as a forward contract, this is certain to lead to a
profit of F — (S + U)e’ ™" at time T. There is no problem with implementing
the strategy for any commodity. However, as arbitrageurs do so, there will be a
tendency for S to increase and F to decrease until Equation (3.18) is no longer
true. We conclude that Equation (3.18) cannot hold for any significant length of
time.

Suppose next that

F<(S+U)eT" (3.19)

We might try to take advantage of this using a strategy analogous to that for a
forward contract on a non-dividend-paying stock when the forward price is too
low. However, this would involve shorting the commodity in such a way that the
storage costs are paid to the person with the short position. This is not usually
possible.

For gold and silver, we can argue that there are many investors who hold the
commodity solely for investment. When they observe the inequality in Equation
(3.19), they will find it profitable to

1. Sell the commodity, save the storage costs, and invest the proceeds at the
risk-free interest rate.

2. Buy the futures contract.

The result is a riskless profit at maturity of (S + U)e’7= — F relative to the
position the investors would have been in if they had held the gold or silver. It
follows that Equation (3.19) cannot hold for long. Since neither Equation (3.18)
nor Equation (3.19) can hold for long, we must have F = (S + U)e" 79,

For commodities that are not, to any significant extent, held for investment,
this argument cannot be used. Individuals and companies who keep the commodity
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in inventory do so because of its consumption value—not because of its value as
an investment. They are reluctant to sell the commodity and buy futures contracts
since futures contracts cannot be consumed. There is therefore nothing to stop
Equation (3.19) from holding. Since Equation (3.18) cannot hold, all we can assert
for a consumption commodity is

F<(S+U)eT™D (3.20)

If storage costs are expressed as a proportion, u, of the spot price, the equivalent
result is

F < Ser+a(T-n (3.21)

CONVENIENCE YIELDS

When F < Se“+9T-9 users of the commodity must feel that there are
benefits from ownership of the physical commodity that are not obtained by the
holder of a futures contract. These benefits may include the ability to profit from
temporary local shortages or the ability to keep a production process running.
The benefits are sometimes referred to as the convenience yield provided by the
product. If the dollar amount of storage costs is known and has a present value,
U, the convenience yield, y, is defined so that

FeyT-0 (S + U)er(T—t)

If the storage costs per unit are a constant proportion, u, of the spot price, y is
defined so that

FeXT=1) — golr+u)(T-1)

or
F = SeU*-nd-n (3.22)

The convenience yield simply measures the extent to which the left-hand
side is less than the right-hand side in Equation (3.20) or in Equation (3.21). For
investment assets, the convenience yield must be zero; otherwise, there are arbitrage
opportunities. Table 2.2 of Chapter 2 shows that the futures prices of copper and
crude oil decrease as the maturity of the contract increases. This indicates that the
convenience yield, y, is greater than r + u.

The convenience yield reflects the market’s expectations concerning the fu-
ture availability of the commodity. The greater the possibility that shortages will
occur during the life of the futures contract, the higher the convenience yield. If
users of the commodity have high inventories, there is very little chance of short-
ages in the near future and the convenience yield tends to be low. On the other
hand, low inventories tend to lead to high convenience yields.
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3.10 THE COST OF CARRY

The relationship between futures prices and spot prices can be summarized in
terms of what is known as the cost of carry. This measures the storage cost plus
the interest that is paid to finance the asset less the income earned on the asset.
For a non-dividend-paying stock, the cost of carry is » since there are no storage
costs and no income is earned; for a stock index, it is r — g since income is earned
at rate ¢ on the asset; for a currency, it is r — ry; for a commodity with storage
costs that are a proportion u of the price, it is r 4+ u; and so on.
Define the cost of carry as ¢. For an investment asset, the futures price is

F = ST (3.23)
For a consumption asset, it is
F = SelcnT=0 (3.24)

where y is the convenience yield.

3.11 DELIVERY OPTIONS

Whereas a forward contract normally specifies that delivery is to take place on a
particular day, a futures contract often allows the party with the short position to
choose to deliver at any time during a certain period. (Typically, the party has to

give a few days notice of its intention to deliver.) This introduces a complication

into the determination of futures prices. Should the maturity of the futures contract

be assumed to be the beginning, middle, .or end of the delivery period? Even

though most futures contracts are closed out prior to maturity, it is important to

know when delivery would have taken place, in order to calculate the theoretical
futures price. . -

. T If the futures price is an increasing function of the time to maturity, it can
be seen from Equation (3.24) that the benefits from holding the asset (including
convenience yield and net of storage costs) are less than the risk-free rate. It is then
usually optimal for the party with the short position to deliver as early as.possible.
This is because the interest earned on the cash received outweighs the benefits of
holding the asset. As a general rule, futures prices in these circumstances should
therefore be calculated on the basis that delivery will take place at the beginning
of the delivery period. If futures prices are decreasing as maturity increases, the
reverse is true: it is usually optimal for the party with the short position to deliver
as late as possible and futures prices should, as a general rule, be calculated on the
assumption that this will happen.
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3.12 FUTURES PRICES AND THE EXPECTED
FUTURE SPOT PRICE

One question that is often raised is whether the futures price of an asset is equal to
its expected future spot price. If you had to guess what the price of an asset will
be in 3 months, is the futures price an unbiased estimate? John Maynard Keynes
and John Hicks in the 1930s argued that, if hedgers tend to hold short positions
and speculators tend to hold long positions, the futures price will be below the
expected future spot price. This is because speculators require compensation for
the risks they are bearing. They will trade only if there is an expectation that the
futures price will rise over time. (Hedgers, on the other hand, because they are
reducing their risks, are prepared to enter into contracts where the expected payoff
is slightly negative.) If hedgers tend to hold long positions while speculators hold
short positions, Keynes and Hicks argue that the futures price must be above the
expected future spot price. The reason is similar. To compensate speculators for
the risks they are bearing, there must be an expectation that the futures prices will
decline over time.

The situation where the futures price is below the expected future spot price
is known as normal backwardation; the situation where the futures price is above
the expected future spot price is known as contango. We now consider the factors
determining normal backwardation and contango from the point of view of the
trade-offs that have to be made between risk and return in capital markets.

Risk AND RETURN

In general, the higher the risk of an investment, the higher the expected
return demanded by an investor. Readers familiar with the capital asset pricing
model will know that there are two types of risk in the economy: systematic and
nonsystematic. Nonsystematic risk should not be important to an investor. This
is because it can be almost completely eliminated by holding a well-diversified
portfolio. An investor should not therefore require a higher expected return for
bearing nonsystematic risk. Systematic risk, by contrast, cannot be diversified
away. It arises from a correlation between returns from the investment and returns
from the stock market as a whole. An investor in general requires a higher expected
return than the risk-free interest rate for bearing positive amounts of systematic risk.
Also, an investor is prepared to accept a lower expected return than the risk-free
interest rate when the systematic risk in an investment is negative.

THE Risk Iv A Futures PosITion

Consider a speculator who takes a long futures position in the hope that the
price of the asset will be above the futures price at maturity. We suppose that the
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speculator puts the present value of the futures price into a risk-free investment
while simultaneously taking a long futures position. We assume that the futures
contract can be treated as a forward contract. The proceeds of the risk-free invest-
ment are used to buy the asset on the delivery date. The asset is then immediately
sold for its market price. This means that the cash flows to the speculator are

Time ¢ : —Fe™"T—9
Time T : +Sr

where St is the price of the asset at time T.
The present value of this investment is

_Fe—r(T—t) + E(ST)e—k(T-t)

where k is the discount rate appropriate for the investment (that is, it is the expected
return required by investors on the investment) and E denotes expected value.
Assuming that all investment opportunities in securities markets have zero net
present value,

_Fe—r(T—t) + E(ST)e—k(T—t) =0
or
F = E(S7)e"PI-0 (3.25)

The value of k depends on the systematic risk of the investment. If St is
uncorrelated with the level of the stock market, the investment has zero systematic
risk. In this case, k = r and Equation (3.25) shows that F = E(S7). If Sy is
positively correlated with the stock market as a whole, the investment has positive
systematic risk. In this case, k > r and Equation (3.25) shows that F < E(S7).
Finally, if St is negatively correlated with the stock market, the investment has
negative systematic risk. This means that ¥ < r and Equation (3.25) shows that
F > E(St).

EwMmPIRICAL EVIDENCE

If F = E(S7), the futures price will drift up or down only if the market
changes its views about the expected future spot price. Over a long period of time,
we can reasonably assume that the market revises its expectations about future spot
prices upward as often as it does so downward. It follows that, when F = E(S7),
the average profit from holding futures contracts over a long period of time should
be zero. The F < E(Sr) situation corresponds to the positive systematic risk
situation. Since the futures price and the spot price must be equal at maturity of
the futures contract, it implies that a futures price should, on average, drift up and
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a trader should over a long period of time make positive profits from consistently
holding long futures positions. Similarly, the F > E(Sr) situation implies that a
trader should over a long period of time make positive profits from consistently
holding short futures positions.

How do futures prices behave in practice? Some of the empirical work that
has been carried out is listed at the end of this chapter. The results are mixed.
Houthakker’s study looke }\at futures prices for wheat, cotton, and corn during
the period 1937 to 1957. It showed that it was possible to earn significant profits
from taking long futures posmons This suggests that an investment in corn has
positive systematic risk and F < E(Sy). Telser’s study contradicted the findings
of Houthakker. His data covered the period 1926 to 1950 for cotton and 1927 to
1954 for wheat and gave rise to no significant profits for traders taking either long
or short positions. To quote from Telser, “The futures data offer no evidence to
contradict the simple .. . hypothesis that the futures price is an unbiased estimate of
the expected future spot price.” Gray’s study looked at corn futures prices during
the 1921 to 1959 period and resulted in similar findings to those of Telser. Dusak’s
study used data on corn, wheat, and soybeans during 1952 to 1967 and took a
different approach. It attempted to estimate the systematic risk of an investment in
these commodities by calculating the correlation of movements in the commodity
prices with movements in the S&P 500. The results suggest that there is no
systematic risk and lend support to the F = E(Sy) hypothesis. However, more
recent work by Chang using the same commodities and more advanced statistical
techniques supports the F < E(Sr) hypothesis.

3.13 SUMMARY

For most purposes, the futures price of a contract with a certain delivery date can
be considered to be the same as the forward price for a contract with the same
delivery date. It can be shown that, in theory, the two should be exactly the same
when interest rates are perfectly predictable, and should be close to each other
when interest rates vary unpredictably.,

For the purposes of understanding futures (or forward) prices, it is convenient
to divide futures contracts into two categories: those where the underlying asset
is held for investment by a significant number of investors and those where the
underlying investment is held primarily for consumption purposes.

In the case of investment assets, we have considered three different situ-
ations:

1. The asset provides no income.
2. The asset provides a known dollar income.
3. The asset provides a known dividend yield.
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TABLE 3.4 Forward/Futures Price on Investment Assets

Summary of results for a contract with maturity 7 on an asset with price S
when the risk-free interest rate for a T-year period is r:

Value of Long Forward Forward/Futures
Asset Contract with Delivery Price K Price
Provides no S~ Ker(T-0 Ser (71
income
Provides known
income with present §S—1—Ke7T-9 (S — De"T-»
value, /
Provides known dividend Se—dT-1) _ ge—r(T-0) Ser—a)(T—-0
yield, ¢

The results are summarized in Table 3.4. They enable futures prices to be obtained
for contracts on stock indices, currencies, gold, and silver.

In the case of consumption assets, it is not possible to obtain the futures
price as a function of the spot price and other observable variables. A parameter
known as the asset’s convenience yield becomes important. This measures the
extent to which users of the commodity feel that there are benefits from owner-
ship of the physical asset that are not obtained by the holders of the futures
contract. These benefits may include the ability to profit from temporary local
shortages or the ability to keep a production process running. It is possible to ob-
tain only an upper bound for the futures price of consumption assets using arbitrage
arguments.

The concept of a cost of carry is sometimes useful. The cost of carry is the
storage cost of the underlying asset plus the cost of financing it minus the income
received from it. In the case of investment assets, the futures price is greater than
the spot price by an amount reflecting the cost of carry. In the case of consumption
assets, the futures price is greater than the spot price by an amount reflecting the
cost of carry net of the convenience yield.

If we assume the capital asset pricing model is true, the relationship between
the futures price and the expected future spot price depends on whether the spot
price is positively or negatively correlated with the level of the stock market.
Positive correlation will tend to lead to a futures price lower than the expected
future spot price. Negative correlation will tend to lead to a futures price higher
than the expected future spot price. Only when the correlation is zero will the
theoretical futures price be equal to the expected future spot price.
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QUESTIONS AND PROBLEMS

3.1

3.2
33

h

34.

35,

3.6.

3.7

3.8.

3.9.

3.10.

3.11.

A bank quotes you a rate of interest of 14% per annum with quarterly compound-
ing. What is the equivalent rate with (a) continuous compounding and (b) annual
compounding?

Explain what happens when an investor shorts a certain share.

Suppose that you enter into a 6-month forward contract on a non-dividend-paying
stock when the stock price is $30 and the risk-free interest rate (with continuous
compounding) is 12% per annum. What is the forward price?

A stock index currently stands at 350. The risk-free interest rate is 8% per annum
(with continuous compounding) and the dividend yield on the index is 4% per annum.
What should the futures price for a 4-month contract be?

Explain carefully why the futures price of gold can be calculated from its spot price
and other observable variables, while the futures price of copper cannot.

Explain carefully the meaning of the terms “convenience yield” and “cost of carry”.
What is the relationship between the futures price, the spot price, the convenience
yield, and the cost of carry?

Is the futures price of a stock index greater than or less than the expected future value
of the index? Explain your answer.

An individual receives $1,100 in 1 year in return for an investment of $1,000 now.

What is the percentage return per annum with

(a) annual compounding?

(b) semiannual compounding?

(c¢) monthly compounding?

(d) continuous compounding?

What rate of interest with continuous compounding is equivalent to 15% per annum

with monthly compounding?

A deposit account pays 12% per annum with continuous compounding, but interest

is actually paid quarterly.. How much interest will be paid each quarter on a $10,000

deposit?

A 1-year-long forward contract on a non-dividend-paying stock is entered into when

the stock price is $40 and the risk-free rate of interest is 10% per annum with contin-

uous compounding.

(a) What are the forward price and the initial value of the forward contract?

(b) Six months later, the price of the stock is $45 and the risk-free interest rate is
still 10%. What are the forward price and the value of the forward contract?
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3.12,

3.13.

3.14,

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.
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A stock is expected to pay a dividend of $1 per share in 2 months and again in 5

months. The stock price is $50 and the risk-free rate of interest is 8% per annum

with continuous compounding for all maturities. An investor has just taken a short

position in a 6-month forward contract on the stock.

(a) What are the forward price and the initial value of the forward contract?

(b) Three months later, the price of the stock is $48 and the risk-free rate of interest
is still 8% per annum. What are the forward price and the value of the short
position in the forward contract?

The risk-free rate of interest is 7% per annum with continuous compounding and the
dividend yield on a stock index is 3.2% per annum. The current value of an index is
150. What is the 6-month futures price?

Assume that the risk-free interest rate is 9% per annum with continuous compounding
and that the dividend yield on a stock index varies throughout the year. In February,
May, August, and November, the dividend yield is 5% per annum. In other months,
it is 2% per annum. Suppose that the value of the index on July 31, 1992 is 300.
What is the futures price for a contract deliverable on December 31, 199272

Suppose that the risk-free interest rate is 10% per annum with continuous compounding
and the dividend yield on a stock index is 4% per annum. The index is standing at
400 and the futures price for a contract deliverable in 4 months is 405. What arbitrage
opportunities does this create?

Estimate the difference between risk-free rates of interest in Germany and the United
States from the information in Table 3.3.

The 2-month interest rates in Switzerland and the United States with continuous com-
pounding are 3% and 8% per annum, respectively. The spot price of the Swiss franc
is $0.6500. The futures price for a contract deliverable in 2 months is $0.6600. What
arbitrage opportunities does this create?

The current price of silver is $9 per ounce. The storage costs are $0.24 per ounce per
year payable quarterly in advance. Assuming a flat term structure with a continuously
compounded interest rate of 10%, calculate the futures price of silver for delivery in
9 months.

A bank offers a corporate client a choice between borrowing cash at 11% per annum
and borrowing gold at 2% per annum. (If gold is borrowed, interest and principal
must be repaid in gold. Thus 100 ounces borrowed today would require 102 ounces
to be repaid in 1 year.) The risk-free interest rate is 9.25% per annum and storage
costs are 0.5% per annum. Discuss whether the rate of interest on the gold loan is too
high or too low in relation to the rate of interest on the cash loan. The interest rates
on the two loans are expressed with annual compounding. The risk-free interest rate
and storage cost are expressed with continuous compounding.

Suppose that F; and F» are two futures contracts on the same commodity with maturity
dates of 7; and 1, and #, > ¢. Prove that

Fy < (F) 4+ U)e'ta—t)

where r is the risk-free interest rate (assumed to be constant) between #; and f and
U is the cost of storing the commodity between times #; and ty discounted to time ¢,
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3.21.

3.22,

3.23.

3.24.

3.25.

3.26.

3.27.

3.28.

3.29.

at the risk-free rate. For the purposes of this problem, assume that a futures contract
is the same as a forward contract.

When a known cash outflow in a foreign currency is hedged by a company using a
forward contract, there is no foreign exchange risk. When it is hedged using futures
contracts, the marking to market process does leave the company exposed to some
risk. Explain the nature of this risk. In particular, consider whether the company is
better off using a futures contract or a forward contract when

(a) the value of the foreign currency falls rapidly during the life of the contract

(b) the value of the foreign currency rises rapidly during the life of the contract

(c) the value of the foreign currency first rises and then falls back to its initial level
(d) the value of the foreign currency first falls and then rises back to its initial level
Assume that the forward price equals the futures price.

It is sometimes argued that a forward exchange rate is an unbiased predictor of future
exchange rates. Under what circumstances is this so?

A company that is uncertain about the exact date when it will pay a foreign currency
sometimes wishes to negotiate with its bank a forward contract where there is a period
during which delivery can be made. The company wants to reserve the right to choose
the exact delivery date to fit in with its own cash flows. Put yourself in the position
of the bank. How would you price the product that the client wants?

What is the difference between the way in which prices are quoted in the foreign
exchange futures market, the foreign exchange spot market, and the foreign exchange
forward market?

The forward price on the German mark for delivery in 45 days is quoted as 1.8204.
The futures price for a contract that will be delivered in 45 days is 0.5479. Explain
these two quotes. Which is more favorable for an investor wanting to sell marks?

The Value Line Index is designed to reflect changes in the value of a portfolio of
over 1,600 equally weighted stocks. Prior to March 9, 1988, the change in the index
from one day to the next was calculated as the geometric average of the changes in
the prices of the stocks underlying the index. In these circumstances, does Equation
(3.12) correctly relate the futures price of the index to its cash price? If not, does the
equation overstate or understate the futures price?

A company has a $10 million portfolio with a beta of 1.2. How can it use futures
contracts on the Major Market Index to hedge its risk?. The index is currently standing
at 270.

“When the convenience yield is high, long hedges are likely to be particularly attractive
to a company that knows it will require a certain quantity of a commodity on a certain
future date.” Discuss.

A U.S. company is interested in using the futures contracts traded on the IMM to
hedge its German mark exposure. Define r as the interest rate (all maturities) on the
U.S. doliar and ¢ as the interest rate (all maturities) on the mark. Assume that r and
ry are constant and suppose that the company uses a contract expiring at time T to
hedge an exposure at time ¢ (T > t). Show that the optimal hedge ratio is

e(rf —r)}(T—1)
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APPENDIX 3A: A PROOF THAT FORWARD
AND FUTURES PRICES ARE EQUAL WHEN
INTEREST RATES ARE CONSTANT

In this appendix, we show that forward and futures prices are equal when interest
rates are constant. Suppose that a futures contract lasts for #n days and that F; is
the futures price at the end of day i (0 < i < n). Define § as the risk-free rate per
day (assumed constant). Consider the following strategy.’

1. Take a long futures position of ° at the end of day O (i.e., at the beginning
of the contract).

2. Increase long position to €% at the end of day 1.
3. Increase long position to ¢* at the end of day 2.

And so on.

This strategy is summarized in Table 3.5. By the beginning of day i, the
investor has a long position of ¢%. The profit (possibly negative) from the position
on day i is

(F; — Fi_y)e”

Assume that this is compounded at the risk-free rate until the end of day n. Its
value at the end of day n is

(F; — Fi_y)ebi e = (F; — F;_p)e™

The value at the end of day n of the entire investment strategy is therefore

f}ﬂ—ﬂ4wﬁ
i=1
This is
[(Fn = Fac1) + (Fut = Fusz) + -+ - + (F1 — Fp)le™
= (F, — Fy)e"

Since F, is the same as the terminal asset price, Sy, the terminal value of the
investment strategy can be written

(Sr — Fo)e™
2This strategy was proposed by J. C. Cox, J. E. Ingersoll, and S. A. Ross, “The Relationship

between Forward Prices and Futures Prices,” Journal of Financial Economics, 9 (December 1981),
321-46.
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TABLE 3.5 The Investment Strategy to Show
that Futures and Forward Prices Are Equal

Day 0 1 2 .. =1 n
Futures price Fp Fi F . Fp F,
Futures

position é e e e 0
Gain/loss 0 (F—Foe® (Fa—Fpe® ... ... (Fy— Faop)e®
Gain/loss

compounded

to day n 0 (F\—Fpe™ (Fa—Fpe™ ... ... (Fy— Fpop)e®

An investment of Fy in a risk-free bond combined with the strategy just given
yields

Foe™ + (St — Fo)e™ = Spe™

at time T. No investment is required for all the long futures positions described.
It follows that an amount Fy can be invested to give an amount Sre™ at time T.

Suppose next that the forward price at the end of day 0 is Go. By investing
G in a riskless bond and taking a long forward position of e"® forward contracts,
an amount Ste"® is also guaranteed at time T. Thus, there are two investment
strategies, one requiring an initial outlay of Fg, the other requiring an initial outlay
of Gy, both of which yield Sre™ at time T. It follows that in the absence of
arbitrage opportunities '

Fo=Gy

In other words, the futures price and the forward price are identical. Note that in
this proof there is nothing special about the time period of one day. The futures
price based on a contract with weekly settlements is also the same as the forward
price when corresponding assumptions are made.



Interest Rate
Futures

An interest rate futures contract is a futures contract on an asset whose price is
dependent solely on the level of interest rates. In this chapter, we describe the
mechanics of how interest rate futures contracts work and how prices are quoted.
We also explain the way in which futures prices can be related to spot prices,
discuss the concept of duration, and consider hedging strategies involving interest
rate futures.

Hedging a company’s exposure to interest rates is more complicated than
hedging its exposure to, say, the price of copper. This is because a whole term
structure is necessary to provide a full description of the level of interest rates,
whereas the price of copper can be described by a single number. A company,
when wishing to hedge its interest rate exposure, must decide not only the maturity
of the hedge it requires but also the maturity of the interest rate to which it is
exposed. It must then find a way of using available interest rate futures contracts
so that an appropriate hedge is obtained.

80
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4.1 SOME PRELIMINARIES

Before we describe the nature of interest rate futures contracts, it is appropriate to
review a few topics concerned with the term structure of interest rates.

SpoT AND FORWARD INTEREST RATES

The n-year spot interest rate is the interest rate on an investment that is made
for a period of time starting today and lasting for n years. Thus, the 3-year spot
rate is the rate of interest on an investment lasting 3 years, the 5-year spot rate is
the rate of interest on an investment lasting 5 years, and so on. The investment
considered should be a “pure” n-year investment with no intermediate payments.
This means that all the interest and the principal is repaid to the investor at the end
of year n. The n-year spot rate is also referred to as the n-year zero-coupon yield.
This is because it is, by definition, the yield on a bond that pays no coupons.

Forward interest rates are the rates of interest implied by current spot rates
for periods of time in the future. To illustrate how they are calculated, we suppose
that the spot rates are as shown in the second column of Table 4.1. The rates
are assumed to be continuously compounded. Thus, the 10 percent per annum
rate for 1 year means that, in return for an investment of $100 today, the investor
receives 100¢%! = $110.52 in one year; the 10.5 percent per annum rate for 2
years means that, in return for an investment of $100 today, the investor receives
100%105%2 = $123.37 in two years; and so on.

The forward interest rate in Table 4.1 for year 2 is 11 percent per annum. This
is the rate of interest that is implied by the spot rates for the period of time between
the end of the first year and the end of the second year. It can be calculated from
the 1-year spot interest rate of 10 percent per annum and the 2-year spot interest
rate of 10.5 percent per annum. It is the rate of interest for year 2 that, when
combined with 10 percent per annum for year 1, gives 10.5 percent per annum
overall for the 2 years. To show that the correct answer is 11 percent per annum,

TABLE 4.1 Calculation of Forward Rates

Spot rate for Forward rate
Year (n) an n-year investment for nth year
(% per annum) (% per annum)
1 100
2 10.5 11.0
3 10.8 14
4 11.0 11.6
5 11.1 11.5
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suppose that $100 is invested. A rate of 10 percent for the first year and 11 percent
for the second year yields

100e%'e%!! = $123.37
at the end of the second year. A rate of 10.5 percent per annum for 2 years yields
100 eO.lOSXZ

which is also $123.37. This example illustrates the general result that when in-
terest rates are continuously compounded and rates in successive time periods are
combined, the overall equivalent rate is simply the arithmetic average of the rates
(10.5 percent is the average of 10 percent and 11 percent). The result is only
approximately true when the rates are not continuously compounded.
The forward rate for the third year is the rate of interest that is implied by

a 10.5 percent per annum 2-year spot rate and a 10.8 percent per annum 3-year
spot rate. It is 11.4 percent per annum. This is because an investment for 2 years
at 10.5 percent per annum averaged with an investment for 1 year at 11.4 percent
per annum gives an overall return for the 3 years of 10.8 percent per annum. The
other forward rates can be calculated similarly and are shown in the third column
of the table. In general, if r is the spot rate of interest applying for T years and r*
is the spot rate of interest applying to T* years where T* > T, the forward interest
rate for the period of time between T and T*, 7, is given by

. rT* —rT

e 4.1)
To illustrate the use of this formula consider the calculation of the year 4 forward
rate from the data in Table 4.1: T =3, T* = 4, r = 0.108, and r* = 0.11, and
the formula gives 7 = 0.116.

THeE ZEro-CoupoN YieLD CURVE

The zero-coupon yield curve is a curve showing the relationship between
spot rates (i.e., zero-coupon yields) and maturity. Figure 4.1 shows the zero-
coupon yield curve for the data in Table 4.1. It is important to distinguish between
the zero-coupon yield curve and a yield curve for coupon-bearing bonds. In a
situation such as that shown in Figure 4.1 where the yield curve is upward sloping,
the zero-coupon yield curve will always be above the yield curve for coupon-
bearing bonds. This is because the yield on a coupon-bearing bond is affected by
the fact that the investor gets some payments before the maturity of the bond and
the discount rates corresponding to these payment dates are lower than the discount
rate corresponding to the final payment date.

Analysts sometimes also look at the curve relating forward rates to the ma-
turity of the forward contract. The forward rates can be defined so that they corre-
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4 Interestrate
12} (% per annum)

10//__—

8
6l
4}
2=
Maturity (years)
1 1 1 1 i P
1 2 3 4 5

Figure 4.1 Zero-coupon Yield Curve for the Data in Table 4.1

spond to 3 months or 6 months or any other convenient time period. Equation (4.1)
can be rewritten

F=r* er)e——
r + (r )T* T
This shows that if the yield curve is upward sloping with r* > r, then 7 > r* > r
so that forward rates are higher than zero-coupon yields. Taking limits as T*
approaches T (so that r* approaches r) we see that the forward rate for a very
short period of time beginning at time T is

ar
oT

This is known as the instantaneous forward rate for a maturity T
Figure 4.2 shows the zero-coupon yield curve, coupon-bearing-bond yield
curve, and forward rate curve when the yield curve is upward sloping. For the

r+T

A Rate
Forward rate

'Zeno-coupon yield
Coupon-bearing bond yield

Maturity

Figure 4.2 Situation When Yield Curve Is Upward Sloping
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A Rate

Coupon-bearing bond yield

Zero-coupon yield
Forward rate

Maturity

Figure 4.3 Situation When Yield Curve Is Downward Sloping

reasons just given, the forward rate curve is above the zero-coupon yield curve,
which is in turn above the coupon-bearing bond yield curve. Figure 4.3 shows the
situation when the yield curve is downward sloping. Arguments similar to those
for the upward-sloping yield curve show that in this situation the coupon-bearing
bond yield curve is above the zero-coupon yield curve which is in turn above the
forward rate curve.

DETERMINATION OF ZERO-CouPoN YIELD CURVE

In practice, spot rates (or zero-coupon yields) cannot always be observed
directly. What can be observed are the prices of coupon-bearing bonds. An
important issue, therefore, is how the zero-coupon yield curve can be extracted
from the prices of coupon-bearing bonds.

One commonly used approach is known as the bootstrap method. To illustrate
it, consider the data in Table 4.2 on the prices of 6 bonds. Since the first 3 bonds
pay no coupons, the continuously compounded spot rates corresponding to the
maturities of these bonds can easily be calculated. The first bond provides a return
of 2.5 on an investment of 97.5 over 3 months. The 3-month rate with continuous
compounding is

2.5
aln (14 -22) =0.1012
"( +97.5)

or 10.12 percent per annum. Similarly, the 6-month rate is

5.1
2mn (14 2= ) = 0.104
“( +94.9) 7
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or 10.47 percent per annum. The 1-year rate is

10
n {1+ — ) =0.1054
"( +90.0)

or 10.54 percent per annum.
The fourth bond lasts 1.5 years. The payments are as follows:

6 months; $4
1 year: $4
1.5 years: $104

From our earlier calculations, we know that the discount rate for the payment at
the end of 6 months is 10.47 percent and the discount rate for the payment at the
end of 1 year is 10.54 percent. We also know that the bond’s price, $96, must
equal the present value of all the payments received by the bondholder. Suppose
the 1.5-year spot rate is denoted by R. It follows that

4e—0.1047)<0.5 +4e—0.1054 + 1046—1.5R =96
This reduces to
e 1R = 0.85196

“or
_ In (0.85196)
1.5
The 1.5-year spot rate is therefore 10.68 percent. This is the only spot rate that

is consistent with the 6-month and 1-year spot rate and consistent with the data in
Table 4.2.

= 0.1068

TABLE 4.2 Data for Bootstrap Method

Bond Time to Annual Bond
Principal ($) Maturity (yrs.) Coupon ($)* Price ($)
100 0.25 0 97.5
100 0.50 0 949
100 1.00 0 90.0
100 1.50 8 96.0
100 2.00 12 101.6
100 2.75 10 99.8

*Half of the stated coupon is assumed to be paid every 6 months.
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The 2-year spot rate can be calculated similarly from the 6-month, 1-year,
and 1.5-year spot rates and the information on the fifth bond in Table 4.2. If R is
the 2-year spot rate

6e—0.1047x0.5 + 6e—0.1054xl.0 +6e—0.1068xl.5 + 106e—2R =101.6

This gives R = 0.1081 or 10.81 percent.

So far we have points on the zero-coupon curve corresponding to 5 different
maturities. Points corresponding to other intermediate maturities are obtained by
linear interpolation. The sixth bond provides cash flows as follows:

3 months: $5
9 months: $5
1.25 years: $5
1.75 years: $5
2.25 years: $5

2.75 years: $105

The discount rate corresponding to the first cash flow has already been determined
as 10.12 percent. Using linear interpolation, the discount rates for the next three
cash flows are 10.505 percent, 10.61 percent, and 10.745 percent. The present
value of the first four cash flows is therefore:

5e—0.1012x0.25 + 5e-—0.10505x0.75 + 5e—0.1061x1.25 + 58—0.10745x1.75 = 18.018

The present value of the last two cash flows is therefore
99.8 — 18.018 = 81.782

Suppose that the 2.75-year spot rate is R. Using linear interpolation, the 2.25-year
spot rate is

2 R
0.1081 x = + =
313

or 0.0721 4+ R/3. An equation for R is, therefore,
56—2_25X(0.0721+R/3) + lose—2.75xR = 81.782

This can be solved by trial and error or by using a numerical procedure such
as Newton-Raphson to give R = 0.1087.! The 2.75-year interest rate is 10.87
percent.

Figure 4.4 plots the zero-coupon yield curve that is constructed from the
prices of the six bonds in Table 4.2. If other longer maturity bonds were available,
a complete term structure could be obtained.

IThe Newton-Raphson procedure is designed to solve an equation of the form f(x) = 0. It starts
with a guess of the solution: x = xo. It then produces successively better estimates of the solution:
X = X|, X = X2, X = X3, ... using the formula x;4; = x; — f(x,-)/f'(x;). Usually x; is extremely
close to the true solution.
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Figure 4.4 Zero-coupon Yield Curve for Data in Table 42

THEORIES OF THE TERM STRUCTURE

A number of different theories of the term structure have been proposed.
The simplest is the expectations theory. This conjectures that long-term interest
rates should reflect expected future short-term interest rates. More precisely, it
argues that a forward interest rate corresponding to a certain period is equal to the
expected future spot interest rate for that period. Another theory is known as the
market segmentation theory. This conjectures that there need be no relationship
between short-, medium-, and long-term interest rates. Under the theory, different
institutions invest in bonds of different maturity and do not switch maturities. The
short-term interest rate is determined by supply and demand in the short-term bond
market, the medium-term interest rate is determined by supply and demand in the
medium-term bond market, and so on.

The theory that is in some ways most appealing is known as liquidity prefer-
ence theory. This argues that forward rates should always be higher than expected
future spot interest rates. The basic assumption underlying the theory is that in-
vestors prefer to preserve their liquidity and invest funds for short periods of time.
Borrowers, on the other hand, usually prefer to borrow at fixed rates for long peri-
ods of time. If the interest rates offered by banks and other financial intermediaries
were such that the forward rate equaled the expected future spot rate, long-term
interest rates would equal the average of expected future short-term interest rates.
In the absence of any incentive to do otherwise, investors would tend to deposit
their funds for short time periods and borrowers would tend to choose to borrow for
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long time periods. Financial intermediaries would then find themselves financing
substantial amounts of long-term fixed rate loans with short-term deposits. This
would involve excessive interest rate risk. In practice, in order to match depositors
with borrowers and avoid interest rate risk, financial intermediaries raise long-term
interest rates relative to expected future short-term interest rates. This reduces the
demand for long-term fixed rate borrowing and encourages investors to deposit
their funds for long terms.

Liquidity preference theory leads to a situation in which long rates are greater
than the average of expected future short rates. It is also consistent with the
empirical result that yield curves tend to be upward sloping more often than they
are downward sloping.

4.2 TREASURY BOND AND TREASURY NOTE
FUTURES

Table 4.3 shows interest rate futures quotes as they appeared in The Wall Street
Journal on October 18, 1991. The most popular long-term interest rate futures
contracts is the Treasury bond futures contract traded on the Chicago Board of
Trade (CBOT). In this contract, any government bond with more than 15 years to
maturity on the first day of the delivery month and not callable within 15 years from
that day can be delivered. As will be explained later, the exchange has developed
a procedure for adjusting the price received by the party with the short position
according to the particular bond delivered.

The Treasury note and 5-year Treasury note futures contract are also actively
traded. In the Treasury note futures contract, any government bond (or note) with a
maturity between 6% and 10 years can be delivered. As in the case of the Treasury
bond futures contract, there is a way of adjusting the price received by the party
with the short position according to the particular note delivered. In the 5-year
Treasury note futures contract, any of the four most recently auctioned Treasury
notes can be delivered.

The rest of our discussion will focus on Treasury bond futures. However,
many of the points made are applicable to other contracts.

QUuoTES

Treasury bond prices are quoted in dollars and 32nds of a dollar. The quoted
price is for a bond with a face value of $100. Thus, a quote of 90-05 means that
the indicated price for a bond with a face value of $100,000 is $90,156.25.

The quoted price is not the same as the cash price that is paid by the purchaser.
The relationship between the cash price and the quoted price is

Cash price = Quoted price 4+ Accrued interest since last coupon date
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TABLE 4.3 Interest Rate Futures Quotes from
The Wall Street Journal, October 18, 1991

Yield Open
Open High Low Settle Chg Seftle Chg Interest
TREASURY BONDS (CIT) mo,m; pts. 32nds of 100%
Dec 9927 100-03 98-19 — 4] 0.140 + 131 276,49
M2 9900 9908 97-26 97-26- 4 8.225 + 33 17,2802
June  97-16 97-16 9631 9631 — 41 B33+ 1M 9,43
Sept 96-15 9617 96-06 96-06 — 4) 8.397 + .136 2439
Dec 95-24 95-24 95-15 95-\5- 4] 8.474 + 237 2981
Mm 94-26 — 41 8546 4+ 19
Est vol 400,000; voi Wed 190,068; op |m aoe,uo, -3n2.
TR!ASUIY BONDS (MCE)—$50,000; pis. 32nds of 100%
Dec  100-0) 10003 98-18 98-21 — 3! 8137 + 121 \6,62l
Est vol 7,500; vol Wed 4,513; open Int 16,673, — 106,
T-BONDS (LIFFE) U.S. $100,000; pis of 1
Dec  100-00 100-02 96-25 98-30 — 103 )
Est vol 1,246; vol Wed 999; open Int 4,401, +
GERMAN GOV'T, BOND (LIFFE)
250,000 marks; $ per mark (.01)

Dec 86.24 8635 84.2) 8432 + .07 8638 83.73 83,11
Mr92  86.55 um 86.50 84.57 + .06 8683 8539 1,50
Est vol 37,158; vol 33,460; open Int 84,643, +1.539.
TREASURY NOTES (cm—sm,m. Im nmh of 100%

Dec 10227 102-3) 102-04 102-04 — 7.692 + 103 91,005

Mre2  102-07 102-07 101-13 IOI 4 - 23 7.790 4+ .13 3,616
Est vol 30,000; vol Wed 13,950; open Int 94,721, +536.

§ YR TREAS NOTES (CBT)-$100,000; pfs. Finds of 100%
Dec  04-065 04-075 03-225 103-25 —12.5 7.089 + .092 91,699
Mr92  03-035 103-04 03-025 10303 —12.5 7.251 + 092 444
Est vol 14,124; vol Wed 11,249; open Int 92,093, —1,972.

2 YR TREAS NOTES (CBT)—$200,000, pis. 32nds of 100%
Dec  103-11 m-n 103-05 03-062 — 4% 6.275 + 070 14,760

Est vol 800; vol Wed 562; open Int 14,764, —121.
3-DAY INTEREST RATE (CIT)-lS million; pts. of 100%
Oct 94.82 94.82 94.77 947 - M 52+ A3 )
Nov 94.90 9490 94.82 94.83 — 06 517+ .06 1245
Dec 94.75 94.76 94.75 94.75 — 05 525+ .05 1103
Ja%2 9478 9478 94.78 9478 — 05 522+ 05 6N
Feb 94.85 94.86 94.85 9485 — 06 515+ .06 757
Mar  94.82 94.82 94.81 94.8Y - 06 519+ .06 304
June cees 94.61 — 05 539+ 05 M
Est vol 281; Wed 408; open Int 5,557, +105.
TREASURY DILLS (IMM) —-$) mil.; pfs. of 100%
Discount  Open
Open High Low Settle Chﬂ Sem Chg Inferest

Dec 95.08 95.08 94.98 9502 - .05 498 + .05 27,859
Mr92  95.17 95.17 95.06 95.08 — .08 4.92 + .08 20,046
June 9498 9498 94.88 94.89 — .10 5.ll+ 20 2,107
Sept  94.60 94.62 94.60 94.63 — 12 5374 02 25
Est vol 7,844; vol Wed 3,781; open int 50,359, —4é1.
LIBOR-1 MO, (IMM)-$3,000,000; points of 100%
Nov 9478 94.78 94.69 94.69 — 09 531+ 09 9535
Dec 9422 94.22 94.16 94.16 — .06 584 + .06 5614
Jagz 04.74 94.74 94.66 94.68 — 06 532+ .06 6,062
Feb 94.65 94.65 94.64 94.65 — .06 535+ .06 1,069
Mar 04.61 94.69 94.59 94.61 — 07 539+ 07 674
Est vol 2,347; vol Wed 1,922; open Int 22,955, +124.

FUTURES

Open
Open High Low Settle Chg High Low inferest

MUNI BOND INDEX (CBT)-$1,000; times Bond Buyer MBI
Dec 9430 9430 9405 9410 — 18 9509 88-16 10,469
Mr92  93-26 93-26 93-16 93-20 — 19 9418 8800 r <}

Est vol 2,500; vol Wed 1,313; open Int 10,592, +175.

The index: Close 95-01; Yield 6.87.

EURODOLLAR (IMM)-$1 milllon; pts of 100%

Yield Open
Open High Low Settle Chg Settle Chc lmereﬁ

Dec 94.56 94.56 94.46 94.47 — .07 553 07 2642
Mr92  94.64 94.45 94.52 94.55 — .08 5.45+ .08 216,583
June 444 9446 9431 9432 — .11 5.68 + .11 124,299
Sept  94.15 94.17 94.00 94.01 - .13 599+ .13 7,
Dec 93.60 93.61 93.45 93.45 - M4 655+ .4 592N
Mr93 9344 944 930 9330 - .12 670+ .12 51,833
June 9312 93.)2 93.00 93.00 — .10 7.00 + .10 36,057
Sept 9283 92.83 92.72 92.73 - .08 7.27 + .08 23,889
Dec 92.47 N.47 92.36 9238 - .06 762+ .06 20,078
Mr94 9244 9246 9236 92.37 - 06 1.8+ .06 16,782
June 9228 9228 92.18 92.19 - .06 7.81 + .06 14,520
Sept  92.10 92.10 92.00 92.01 — .06 7.9 + .06 10,224
Dec AW N NN NTI- 06 827+ .06 9,544
Mr9S 9178 9178 91.69 91.72— .06 B.284+ .06 6,308
June 9170 91.70 91,60 91.63 — 06 837+ .06 5619
Sept 9161 91.42 91.52 91 — 06 84S+ 06 4,149
Est vol 206,438; vol Wed 63,709; open Int 942,822, —1,721.
EURODOLLAR (LIFFE)—Sl mllllon. pis of 100%
Litetime Open
Open High Low Seftle Change Hloh Low Interest
Dec 94.55 94.56 94.47 9448 — .07 90.58 18,008
Mr92  94.65 94.65 94.54 94.56 - .08 9465 90.60 7,734
June 9445 94.45 94.33 94.35 -~ .09 9445 9097 373
Sept  94.15 94.17 94.04 94.06 — .11 94.17 90.97 1,423
Dec 93.60 93.60 93.60 93.50 — .11 93.60 91.54 467
Mre3 e e, 9333- 1) 9335 9155 405
June 93.03 - .08 92.80 92.60 30
Est vol 2,973; vol Wed 1,510; open Int 32,242, +314
STERLING (LIFFE)—£500,000; pts of 100%
§9.95 89.97 89.92 89.96 + .02 90.35 86.52 53,340
Mm 90.34 90.37 90.32 90.35 + .02 9049 84.68 35,435
June 9038 90.40 90.36 90.9 + .02 90.46 87.45 29,14
Sept 9034 90.37 90.34 90.36 + .02 90.40 87.46 10,238
Dec 90.26 90.27 90.24 90.27 + .02 90.32 87.55 6,654
M3 9011 9012 90.10 9012+ .02 90.16 87.50 381
June 8998 90.00 £9.98 89.99 + .01 90.09 87.58 1,622
Sept  £9.93 89.97 89.93 89.9 ... 90.08 88.20 1595
89.86 90.02 88.95 1,708

vol 33,485; vol | Wed 30,309; open Int 143,745, —594.
LONG GILT (LIFFE)—£50,000; 32nds of 100%
Dec 0425 9425 94-10 9417 — 0-06 97-17 8910 52,997
M2 972 94272 9422 9420 — 006 9606 9600 228
Est vol 35445; vol Wed 26,424; open Int 53,225, +29.

Reprinted by permission of The Wall Street Journal, October 18, 1991. Copyright ©1991,
Dow Jones & Company, Inc. All rights reserved.

To illustrate this formula, suppose that it is March 5, 1990 and the bond under con-
sideration is an 11 percent coupon bond maturing on July 10, 2010 with a quoted
price of 95-16 (or $95.50). Since coupons are paid semiannually on government
bonds, the most recent coupon date is January 10, 1990 and the next coupon date
is July 10, 1990. The number of days between January 10, 1990 and March 5,
1990 is 54 while the number of days between January 10, 1990 and July 10, 1990




90 Interest Rate Futures Chapter 4

is 181. On $100 face value of bonds, the coupon payment is $5.50 on January 10
and July 10. The accrued interest on March 5, 1990 is the share of the July 10
coupon accruing to the bondholder and is calculated as

54

The cash price per $100 face value for the July 10, 2010 bond is therefore
$95.5 + $1.64 = $97.14

The cash price of a $100,000 bond is $97,140.

Treasury bond futures prices are quoted in the same way as the Treasury
bond prices themselves. Table 4.3 shows that the settiement price for the December
contract on October 17, 1991 was 98-20 or 98%. One contract involves the delivery
of $100,000 of face value of bond. Thus a $1 change in the quoted futures price
would lead to a $1,000 change in the value of the futures contract. Delivery can
take place at any time during the delivery month.

ConvERsION FacTors

As mentioned, there is a provision in the Treasury bond futures contract for
the party with the short position to choose to deliver any bond with a maturity over
15 years and not callable within 15 years. When a particular bond is delivered, a
parameter known as its conversion factor defines the price received by the party
with the short position. The quoted price applicable to the delivery is the product
of the conversion factor and the quoted futures price. Taking accrued interest into
account, we have the following relationship for each $100 face value of the bond
delivered:

Cash received by party Quoted futures Conversion factor
with short position - price for bond delivered
4 Accrued interest

on bond delivered

Each contract is for the delivery of $100,000 face value of bonds. Suppose the
quoted futures price is 90-00, the conversion factor for the bond delivered is 1.3800,
and the accrued interest on this bond at the time of delivery is $3.00 per $100 face
value. The cash received by the party with the short position when it delivers the
bond (and is paid by the party with the long position when it takes delivery) is

(1.38 x 90.00) 4 3.00 = $127.20

per $100 face value. A party with the short position in one contract would therefore
deliver bonds with face value of $100,000 and receive $127,200.

The conversion factor for a bond is equal to the value of the bond on the first
day of the delivery month on the assumption that the interest rate for all maturities
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equals 8 percent per annum (with semiannual compounding). The bond matu-
rity and the times to the coupon payment dates are rounded down to the nearest
3 months for the purposes of the calculation. This enables the CBOT to produce
comprehensive tables. If, after the rounding, the bond lasts for an exact number of
half years, the first coupon is assumed to be paid in 6 months. If after rounding
the bond does not last for an exact number of 6 months (i.e., there is an extra 3
months), the first coupon is assumed to be paid after 3 months and accrued interest
is subtracted.

Example 4.1

Consider a 14% coupon bond with 20 years and 2 months to maturity. For the purposes of
calculating the conversion factor, the bond is assumed to have exactly 20 years to maturity.
The first coupon payment is assumed to be made after 6 months. Coupon payments are then
assumed to be made at 6-month intervals until the end of the 20 years when the principal
payment is made. We will work in terms of a $100 face value bond. On the assumption that
the discount rate is 8% per annum with semiannual compounding (or 4% per 6 months), the
value of the bond is

40
7 100
— + ——— =159.38
; 1.04 + 1.04%0
Dividing by the face value, the credit conversion factor is 1.5938.

Example 4.2

Consider a 14% coupon bond with 18 years and 4 months to maturity. For the purposes
of calculating the conversion factor, the bond is assumed to have exactly 18 years and 3
months to maturity. Discounting all the payments back to a point in time 3 months from
today gives a value of

36

7 100
—— 4+ —— =163.73
Z 1.04 + 1.0436

i=0
The interest rate for a 3-month period is +/1.04 — 1 or 1.9804%. Hence discounting back
to the present gives the bond’s value as 163.73/1.019804 = 160.55. Subtracting the accrued

interest of 3.5, this becomes 157.05. The conversion factor is therefore 1.5705.
CHEAPEST-TO-DELIVER BOND

At any given time, there are about 30 bonds that can be delivered in the
CBOT Treasury bond futures contract. These vary widely as far as coupon and
maturity is concerned. The party with the short position can choose which of the
available bonds is “cheapest” to deliver. Since the party with the short position
receives

(Quoted futures price x Conversion factor) + Accrued interest
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and the cost of purchasing a bond is
Quoted price + Accrued interest

the cheapest-to-deliver bond is the one for which

Quoted Quoted futures Conversion
bt x
price price factor

is least. This can be found by examining each of the bonds in turn.

Example 4.3
The party with the short position has decided to deliver and is trying to choose between the

three bonds in Table 4.4. Assume the current quoted futures price is 93-08 or 93.25. The
cost of delivering each of the bonds is as follows:

Bond 1: 99.50 — (93.25 x 1.0382) = 2.69
Bond 2: 143.50 — (93.25 x 1.5188) = 1.87
Bond 3: 119.75 — (93.25 x 1.2615) = 2.12

The cheapest-to-deliver bond is bond 2.

A number of factors determine the cheapest-to-deliver bond. When yields
are in excess of 8 percent, there is a tendency for the conversion factor system
to favor the delivery of low-coupon long-maturity bonds. When yields are less
than 8 percent, there is a tendency for it to favor the delivery of high-coupon,
short-maturity bonds. Also, when the yield curve is upward sloping, there is a
tendency for bonds with a long time to maturity to be favored; whereas when it is
downward sloping, there is a tendency for bonds with a short time to maturity to
be delivered. Finally, some bonds tend to sell for more than their theoretical value.
Examples are low-coupon bonds and bonds where the coupons can be stripped
from the interest. These bonds are unlikely to prove to be cheapest to deliver in
any circumstances.

TABLE 4.4 Deliverable
Bonds in Example 4.3

Bond Quoted Price Conversion Factor

1 99.50 1.0382
2 143.50 1.5188
3 119.75 1.2615
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Trading in the CBOT Treasury bond futures contracts ceases at 2 pm.
(Chicago time). However, Treasury bonds themselves continue trading until 4
p.m. Furthermore, the party with the short position has until 8 p.m. to issue to the
clearinghouse a notice of intention to deliver. If the notice is issued, the invoice
price is calculated on the basis of the settlement price that day. This is the price
at which trading was being done just before the bell at 2 p.m.

This gives the party with the short position an option known as the wild card
play. If bond prices decline after 2 p.m., he or she can issue a notice of intention to
deliver and proceed to buy cheapest-to-deliver bonds in preparation for delivery. If
the bond price does not decline, the party with the short position keeps the position
open and waits until the next day when the same strategy can be used.

Like the other options open to the party with the short position, the wild card
option is not free. Its value is reflected in the futures price, which is lower than it
would be without the option.

DETERMINING THE FUTURES PRICE

An exact theoretical futures price for the Treasury bond contract is difficult to
determine because the short party’s options concerned with the timing of delivery
and choice of the bond that is delivered cannot easily be valued. However, if we
assume that both the cheapest-to-deliver bond and the delivery date are known,
the Treasury bond futures contract is a futures contract on a security providing the
holder with known income. Equation (3.7) from Chapter 3 then shows that futures
price, F, is related to the spot price, S, by

F=(S—1NeT™ 4.2)

where I is the present value of the coupons during the life of the futures contract,
T is the time when the futures contract matures, ¢ is the current time, and r is the
risk-free interest rate applicable to the period between times ¢ and T.

In Equation (4.2), F is the cash futures price and S is the cash bond price.
The correct procedure is therefore as follows:

Calculate cash price of the cheapest-to-deliver bond from quoted price.

. Calculate cash futures price from cash bond price using Equation (4.2).

. Calculate the quoted futures price from the cash futures price.

Divide the quoted futures price by the conversion factor to allow for dif-

ference between the cheapest-to-deliver bond and the standard 15-year 8%
bond.

BN

The procedure is best illustrated with an example.
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Maturity
: of
Coupon Current Coupon futures Coupon
payment time payment contract payment
= = J. —
60 122 148 35
days days days days

Figure 4.5 Time Chart for Example 4.4

Example 4.4

Suppose that in a T-bond futures contract, it is known that the cheapest-to-deliver bond
will be a 12% coupon bond with a conversion factor of 1.4000. Suppose also that it is
known that delivery will take place in 270 days’ time. Coupons are payable semiannually
on the bond. As illustrated in Figure 4.5, the last coupon date was 60 days ago, the next
coupon date is in 122 days’ time, and the next-but-one coupon date is in 305 days’ time.
The term structure is flat and the rate of interest (with continuous compounding) is 10% per
annum. We assume that the current quoted bond price is $120. The cash price of the bond
is obtained by adding to this quoted price the proportion of the next coupon payment that
accrues to the holder. The cash price is therefore

60
— = 121.97
120 + % x 6 =121.978

A coupon payment of $6 will be received after 122 days (= 0.3342 year). The present value
of this is
6e—0.3342)<0.1 — 5803

The futures contract lasts for 270 days (= 0.7397 year). The cash futures price if the contract
were written on the 12% bond would therefore be

(121.978 — 5.803)e07397x0-1 _ 125 094

At delivery, there are 148 days of accrued interest. The quoted futures price if the contract
were written on the 12% bond would therefore be

148
125.094 — 6 x —— = 120.242
5.09 X T 0

The contract is in fact written on a standard 8% bond, and 1.4000 standard bonds are
considered equivalent to each 12% bond. The quoted futures price should therefore be
120.242
1.4000

= 85.887

4.3 TREASURY BILL FUTURES

We now move on to consider futures contracts dependent on the short rate. In the
Treasury bill futures contract, the underlying asset is a 90-day Treasury bill. Under
the terms of the contract, the party with the short position must deliver $1 million
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of Treasury bills on one of 3 successive business days. The first delivery day is
the first day of the delivery month on which a 13-week Treasury bill is issued
and a 1-year Treasury bill has 13 weeks remaining to maturity. In practice this
means that the Treasury bill may have 89 or 90 or 91 days to expiration when it
is delivered.

A Treasury bill is what is known as a discount instrument. It pays no coupons,
and the investor receives the face value at maturity. Prior to maturity of the futures
contract, the underlying asset is a Treasury bill with a maturity longer than 90 days.
For example, if the futures contract matures in 160 days, the underlying asset is a
250-day Treasury bill.

To present a general analysis, we suppose that we are at time 0, the futures
contract matures in T years and the Treasury bill underlying the futures contract
matures in T* years. (The difference between T* and T is 90 days.) We suppose
further that r and r* are the continuously compounded interest rates for risk-free
investments maturing at times 7 and T*, respectively. Assuming the Treasury bill
underlying the futures contract has a face value of $100, its current value, V* is
given by ‘

V* =100 T

Since no income is paid on the instrument, we know from Equation (3.5) that the
futures price, F, is ¢’T times this; that is,

F =100 T T = 100’771 4.3)
From Equation (4.1), this reduces to
F = 100eT"-D

where 7 is the forward rate for the time period between T and T*. This expression
shows that the futures price of a Treasury bill is the price it will have if the 90-day
interest rate on the delivery date proves to be equal to the current forward rate.

ARBITRAGE OPPORTUNITIES

If the forward interest rate implied by the Treasury bill futures price is differ-
ent from that implied by the rates on Treasury bills themselves, there is a potential
arbitrage opportunity. Suppose that the 45-day Treasury bill rate is 10 percent,
the 135-day Treasury bill rate is 10.5 percent, and the rate corresponding to the
Treasury bill futures prices for a contract maturing in 45 days is 10.6 percent with
all rates being continuously compounded. The forward rate for the period between
45 days and 135 days implied by the Treasury bill rates is from Equation (4.1)

135 x 10.5 - 45 x 10
90

= 10.75%
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This is greater than the 10.6 percent forward rate implied by the futures price.
An arbitrageur should attempt to borrow for the period of time between 45 days
and 135 days at 10.6 percent and invest at 10.75 percent. This is achieved by the
following strategy

1. Short the futures contract.
2. Borrow 45-day money at 10 percent per annum.
3. Invest the borrowed money for 135 days at 10.5 percent per annum.

We will refer to this as a Type I arbitrage. The first trade ensures that a Treasury
bill yielding 10.6 percent can be sold after 45 days have elapsed. It in effect locks
in a rate of interest of 10.6 percent on borrowed funds for this time period. The
second and third trades ensure that a rate of interest of 10.75 percent is earned
during the time period.

If instead, the rate of interest corresponding to the Treasury bill futures were
greater than 10.75 percent, the opposite strategy would be appropriate:

1. Take a long position in the futures contract.
2. Borrow 135-day money at 10.5 percent per annum.
3. Invest the borrowed money for 45 days at 10.5 percent per annum.

We will refer to this as a Type 2 arbitrage.

Both of these arbitrage possibilities involve borrowing at, or close to, the
Treasury bill rate. As discussed in Chapter 3, repos provide a way in which
companies that own portfolios of marketable securities can do this for short periods
of time. In testing for arbitrage opportunities in the Treasury bill market, traders
frequently calculate what is known as the implied repo rate. This is the rate of
interest on a short-term Treasury bill implied by the futures price for a contract
maturing at the same time as the short-term Treasury bill and the price of a Treasury
bill maturing 90 days later than the short-term Treasury bill. If the implied repo
rate is greater than the actual short-term Treasury bill rate, a Type 1 arbitrage is in
principle possible. If the implied repo rate is less than the short-term Treasury bill
rate, a Type 2 arbitrage is in principle possible.

Example 4.5

The cash price (per $100 face value) of a Treasury bill maturing in 146 days is $95.21
and the cash futures price for a 90-day Treasury bill futures contract maturing in 56 days
is $96.95. Since 90 days is 0.2466 year and 146 days is 0.4000 year, the continuously
compounded 146-day rate, r*, is

In0.9521 = 0.1227

7 0.4000
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~ 04000 In0.9521 = 0.1227
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or 12.27% and the continuously compounded forward rate, 7, implied by the futures price, is

In0.9695 = 0.1256

©0.2466
or 12.56%. Rearranging Equation (4.1), ‘we see that the continuously compounded 56-day
rate, r, implied by r* and 7 is
_rrT*=HT*-T)
T
This is the implied repo rate. In this case it is

12.27 x 146 — 12.56 x 90
56

If the 56-day rate is less than 11.80% per annum, a Type 1 arbitrage is indicated. If it is
greater than 11.80%, a Type 2 arbitrage is indicated.

= 11.80%

QUOTES

Treasury bill price quotes are for a Treasury bill with a face value of $100.
Suppose that Y is the cash price of a Treasury bill that has a face value of $100
and n days to maturity. The price is quoted as

360
— (100 -7)
n

This is referred to as the discount rate. It is the annualized dollar return provided
by the Treasury bill expressed as a percentage of the face value. If, for a 90-day
Treasury bill, the cash price, ¥, were 98, the quoted price would be 8.00.

The discount rate is not the same as the rate of return earned on the Treasury
bill. The latter is calculated as the dollar return divided by the cost. In the previous
example, where the quoted price is 8.00, the rate of return would be 2/98 or 2.04
percent per 90 days. This amounts to

2 365

98 X %0 = 0.0828
or 8.28 percent per annum with compounding every 90 days.? This rate of return
is sometimes referred to as the bond equivalent yield.

A 90-day Treasury bill futures contract is for delivery of $1 million of Trea-
sury bills. Treasury bill futures prices are not quoted in the same way as the prices

It is interesting to note that the compounding frequency used when a yield on a money market
instrument such as a Treasury bill is quoted is generally equal to the life of the instrument. This means
that the yields on money market instruments of different maturities are not directly comparable.
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of Treasury bills themselves. The following relationship is used:3
Tfeasuf'y bill futures - 100 — Corresponding Treasury bill
price quote price quote
If Z is the quoted futures price and Y is the cash futures price, this means that
Z =100 —4(100—Y)
or, equivalently,
Y =100 —-0.25(100 - Z)

Thus the closing quote of 95.02 for December 1991 Treasury bills in Table 4.3
corresponds to a price of 100 — 0.25(100 — 95.02) = $98.755 per $100 of 90-day
Treasury bills or a contract price of $987,550.

If the Treasury bills that are delivered have 89 days to maturity, the price
received is calculated by replacing the 0.25 in the preceding formula by 89/360 or
0.2472. If they have 91 days to maturity, the 0.25 in the formula becomes 91/360
or 0.2528.

Example 4.6

Suppose that the 140-day interest rate is 8% per annum and the 230-day rate is 8.25% per
annum with continuous compounding being used for both rates. The forward rate for the
time period between day 140 and day 230 is
0.0825 x 230 — 0.08 x 140
90

or 8.64%. Since 90 days = 0.2466 year, the futures price for $100 of 90-day Treasury bills
deliverable in 140 days is

= 0.0864

1008—0.0864X0.2466 — 9789

This would be quoted as 100 — 4(100 — 97.89) = 91.56

4.4 EURODOLLAR FUTURES

The Eurodollar futures contract is a very popular contract. It is traded on the Inter-
national Monetary Market (IMM) and the London International Financial Futures
Exchange (LIFFE). A Eurodollar is a dollar deposited in a U.S. or foreign bank
outside the United States. The Eurodollar interest rate is the rate of interest earned
on Eurodollars deposited by one bank with another bank and is also known as
the 3-month London Interbank Offer Rate (LIBOR). Eurodollar interest rates are
generally higher than the corresponding Treasury bill interest rates. This is because

3The reason for quoting Treasury bill futures prices in this way is to ensure that the bid quote is
below the ask quote.
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the Eurodollar interest rate is a commercial lending rate whereas the Treasury bill
rate is the rate at which governments borrow.

On the surface, a Eurodollar futures contract appears to be structurally the
same as the Treasury bill futures contract. The formula for calculating the value
of one contract from the quoted futures price is the same as the formula used for
Treasury bill futures. The quote of 94.47 for the December contract in Table 4.3
corresponds to a Eurodollar interest rate quote of 5.53 and a contract price of

10, 000[100 — 0.25(100 — 94.47)] = $986, 175

However, there are some important differences between the Treasury bill
and Eurodollar futures contracts. For a Treasury bill, the contract price converges
at maturity to the price of a 90-day $1 million face value Treasury bill and, if
a contract is held until maturity, this is the instrument delivered. A Eurodollar
futures contract is settled in cash on the second London business day before the
third Wednesday of the month. The final marking to market sets the contract price
equal to

10, 000(100 — 0.25R)

where R is the quoted Eurodollar rate at that time. This quoted Eurodollar rate
is the actual 90-day rate on Eurodollar deposits with quarterly compounding. It is
not a discount rate. The Eurodollar futures contract is therefore a futures contract
on an interest rate, whereas the Treasury bill futures contract is a futures contract
on the price of a Treasury bill.

4.5 DURATION

Duration is an important concept in the use of interest rate futures for hedging. The
duration of a bond is a measure of how long, on average, the holder of the bond
has to wait before receiving cash payments. A zero-coupon bond that matures in
n years has a duration of n years. However, a coupon-bearing bond maturing in
n years has a duration of less than n years. This is because some of the cash
payments are received by the holder prior to year n.

Suppose that the current time is 0 and a bond provides the holder with
payments ¢; at time t; (1 < i < n). The price, B, and yield, y, (continuously
compounded) are related by

B=) cie™" (4.4)
i=1

The duration, D, of the bond is defined as

_ ticie™
p = Zizifice™ BC ° 4.5)
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This can be written

n eV
D= [C'eB ]
i=1

The term in square brackets is the ratio of the present value of the payment at time
t; to the bond price. The bond price is the present value of all payments. The
duration is therefore a weighted average of the times when payments are made
with the weight applied to time ¢ being equal to the proportion of the bond’s total
present value provided by the payment at time #;. The sum of the weights is 1.0.
We now show why duration is an important concept in hedging.

From Equation (4.4)

aB 1
— == citie™" (4.6)
ay i=1
and from Equation (4.5) this can be written
B
{;—- =—BD 4.7
y

If we make a small parallel shift to the yield curve increasing all interest rates by
a small amount Ay, the yields on all bonds also increase by Ay. Equation (4.7)
shows that the bond’s price increases by AB where

AB _ —BD (4.8)
Ay
or
AB DA
B -

This shows that the percentage change in a bond price is equal to its duration
multiplied by the size of the parallel shift in the yield curve.

Example 4.7

Consider a 3-year 10% coupon bond with a face value of $100. Suppose that the yield on the
bond is 12% per annum with continuous compounding. This means that y = 0.12. Coupon
payments of $5 are made every 6 months. Table 4.5 shows the calculations necessary to
determine the bond’s duration. The present values of the payments using the yield as the
discount rate are shown in column 3. (For example, the present value of the first payment
is 5¢0:12x0.5 — 4709.) The sum of the numbers in column 3 give the bond’s price as
$94.213. The weights are calculated by dividing the numbers in column 3 by 94.213. The
sum of the numbers in column 5 gives the duration as 2.654 years. From Equation (4.8)

AB = —94.213 x 2.654Ay
that is
AB = —250.04Ay
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TABLE 4.5 Calculation of Duration

Time Payment Present Value Weight Time x Weight

0.5 5 4.709 0.050 0.025
1.0 5 4.435 0.047 0.047
1.5 5 4.176 0.044 0.066
2.0 5 3.933 0.042 0.084
2.5 5 3.704 0.039 0.098
30 105 73.256 0.778 2334
Total 130 94.213 1.000 2.654

If Ay = 40.001 so that y increases to 0.121, this formula indicates that we expect AB to be
—0.25. In other words, we expect the bond price to go down to 94.213 — 0.250 = 93.963.
By recomputing the bond price for a yield of 12.1%, the reader can verify that this is indeed
what happens.

The duration of a bond portfolio can be defined as a weighted average of the
durations of the individual bonds in the portfolio with the weights being propor-
tional to the bond prices. Equation (4.8) then shows that the proportional effect of
a parallel shift of Ay in the yield curve is the duration of the portfolio multiplied
by the Ay.

This analysis is based on the assumption that y is expressed with continuous
compounding. If y is expressed with annual compounding, it can be shown that
Equation (4.8) becomes

BDAYy

AB =
1+y

4.6 DURATION-BASED HEDGING STRATEGIES

Consider the situation where a position in an interest rate dependent asset such as
a bond portfolio or a money market security is being hedged using an interest rate
futures contract. Define

F: Contract price for the interest rate futures contract
Dpg: Duration of asset underlying futures contract

S': Value of asset being hedged
Dg: Duration of asset being hedged
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We assume that the change in the yield, Ay, is the same for all maturities—
which means that only parallel shifts in the yield curve can occur. From Equa-
tion (4.8) it is approximately true that

AS = —~SDsAy 4.9)
To a reasonable approximation, it is also true that

AF =—-FDpAy (4.10)
The number of contracts required to hedge against an uncertain Ay is therefore

_ SD;

N* =
FDpg

4.11)

This is the duration-based hedge ratio* 1t is sometimes also called the price
sensitivity hedge ratio. Using it has the effect of making the duration of the whole
position zero.

Example 4.8

On May 20, a corporate treasurer learns that $3.3 million will be received on August 5.
The funds will be needed for a major capital investment the following February. The
treasurer therefore plans to invest the funds in 6-month Treasury bills as soon as they
are received. The current yield on 6-month Treasury bills, expressed with semiannual
compounding, is 11.20%. The treasurer is concerned that this may decline between May
20 and August 5 and decides to hedge using Treasury bill futures. The quoted price for
the September T-bill futures contract is 89.44. In this case, the company will lose money
if interest rates go down. The hedge must therefore provide a positive profit when rates go
down or, equivalently, when Treasury bill prices go up. This means that a long hedge is
required.

To calculate the number T-bill futures contracts that should be purchased, we note
that the asset underlying the futures contract lasts for 3 months. Since it is a discount
instrument, its duration is also 3 months or 0.25 years. Similarly, the 6-month Treasury bill
investment planned by the treasurer has a duration of 6 months or 0.50 years. Each T-bill
futures contract is for the delivery of $1 million of T-bills. The contract price is

10,000[100 — 0.25(100 — 89.44)] = $973,600

*If y is defined with annual compounding, Equation (4.11) becomes
N* = [SDs(1 4 yr))/[FDr(1 + ys)]

where ys and yr are the yields on S and F. This is not the same as Equation (4.11) except when
¥s = yr. The reason for the difference is that the assumption that Ays = Ayr when yields are
continuously compounded is not quite the same assumption as A ys = Ayr when yields are compounded
once a year.
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The number of contracts that should be purchased is, using Equation (4.11),
3,300,000 0.5

973,600  0.25

Rounding to the nearest whole number, the treasurer should purchase 7 contracts.

=6.78

Example 4.9

It is August 2 and a fund manager with $10 million invested in government bonds is
concerned that interest rates are expected to be highly volatile over the next 3 months. The
fund manager decides to use the December T-bond futures contract to hedge the value of
the portfolio. The current futures price is 93-02 or 93.0625. Since each contract is for the
delivery of $100,000 face value of bonds, the futures contract price is $93,062.50.

The average duration of the bond portfolio over the next 3 months will be 6.80 years.
The cheapest-to-deliver bond in the T-bond contract is expected to be a 20-year 12% per
annum coupon bond. The yield on this bond is currently 8.80% per annum, and the duration
will be 9.20 years at maturity of the futures contract.

The fund manager requires a short position in T-bond futures to hedge the bond
portfolio. If interest rates go up, a gain will be made on the short futures position and a loss
will be made on the bond portfolio. If interest rates decrease, a loss will be made on the
short position, but there will be a gain on the bond portfolio. The number of bond futures
contracts that should be shorted can be calculated from Equation (4.11) as

10,000,000  6.80
10,000,000 0% — 794
53.062.50 <920~ %

Rounding to the nearest whole number, the portfolio manager should short 79 contracts.

4.7 LIMITATIONS OF DURATION

The duration concept provides a simple approach to interest rate risk management.
However, the hedge to which it gives rise is far from perfect. There are two main
reasons for this. The first concerns a concept known as convexity. The second
concerns the underlying assumption of parallel shifts in the yield curve.

CONVEXITY

For very small parallel shifts in the yield curve, the change in value of a port-
folio depends solely on its duration. When moderate or large changes in interest
rates are considered, a factor known as convexity is sometimes important. Fig-
ure 4.6 shows the relationship between the percentage change in value and change
in yield for two portfolios having the same duration. The gradients of the two
curves are the same for the current yield. This means that both portfolios change
in value by the same percentage for small yield changes and is consistent with
Equation (4.8). For large interest rate changes, the portfolios behave differently.
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Portfolio A has more convexity or curvature than portfolio B. Its value increases
by a greater percentage amount than that of portfolio B when yields decline, and
its value decreases by less than that of portfolio B when yields increase.

The convexity of a bond portfolio tends to be greatest when the portfolio
provides payments evenly over a long period of time. It is least when the payments
are concentrated around one particular point in time. For long positions in bond
portfolios, it is clear from Figure 4.6 that a high-convexity portfolio with a certain
duration is always more attractive than a low-convexity bond portfolio with the
same duration. Not surprisingly, it is generally also more expensive.

A measure of convexity is

2B & o
ay? =Zc,»t,.2e Y

i=1

This is a measure of the curvature of the relationship between AB and Ay in
Figure 4.6. Some financial institutions when managing portfolios of assets and
liabilities try to match both duration and this convexity measure.

NONPARALLEL SHIFTS

One serious problem with the duration concept is that it assumes all interest
rate change by the same amount. In practice, short-term rates are usually more

4B
B

Ay

Figure 4.6 Bond Portfolios with Different Convexities
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volatile than, and are not closely correlated with, long-term rates. Sometimes it
even happens that short- and long-term rates move in opposite directions to each
other. For this reason, financial institutions often hedge their interest rate exposure
by dividing the zero-coupon yield curve up into segments and ensuring that they
are hedged against a movement in each segment. Suppose that the ith segment
is the part of the zero-coupon yield curve between time #; and 4. A financial
institution would examine the effect of a small increase Ay in all the zero-coupon
yields for maturities between #; and while keeping the rest of the zero-coupon
yield curve unchanged. If the exposure were unacceptable, further trades would be
undertaken in carefully selected instruments to reduce it. In the context of a bank
managing a portfolio of assets and liabilities, this approach is sometimes referred
to as GAP management.

4.8 SUMMARY

In this chapter, we have discussed three of the most popular interest rate futures
contracts; the Treasury bond, Treasury bill, and Eurodollar contracts. We have also
considered different ways in which these contracts can be used for hedging. Since
bond prices are inversely related to interest rates, a short hedge provides protection
against a increase in interest rates; a long hedge provides protection against an
decrease in interest rates.

In the Treasury bond futures contract, the party with the short position has a
number of interesting delivery options:

1. Delivery can be made on any day during the delivery month.
2. There are a number of alternative bonds that can be delivered.

3. On any day during the delivery month, the notice of intention to deliver at
the 2 p.m. settlement price can be made any time up to 8 p.m.

These options all tend to reduce the futures price.

The concept of duration is important in hedging interest rate risk. Duration
measures how long, on average, an investor has to wait before receiving pay-
ments. It is a weighted average of the times until payments are received, with the
weight for a particular payment time being proportional to the present value of the
payment.

A key result underlying the duration-based hedging scheme described in this
chapter is

AB = —BDAy
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where B is a bond price, D is its duration, Ay is a small change in its yield
(continuously compounded), and AB is the resultant small change in B. The
equation enables a hedger to assess the sensitivity of a bond to small changes in
its yield. It also enables the hedger to assess the sensitivity of an interest rate
futures price to small changes in the yield of the underlying bond. If the hedger is
prepared to assume that Ay is the same for all bonds, the result enables the hedger
to calculate the number of futures contracts necessary to protect a bond or bond
portfolio against small changes in interest rates.

The key assumption underlying the duration-based hedging scheme is that all
interest rates change by the same amount. This means that only parallel shifts in the
term structure are allowed for. In practice, short-term interest rates are generally
more volatile than long-term interest rates, and hedge performance is liable to be
poor if the duration of the bond underlying the futures contract and the duration of
the asset being hedged are markedly different.
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QUESTIONS AND PROBLEMS

4.1. Suppose that spot interest rates with continuous compounding are as follows:
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4.2,

43.

4.4.

4.5.

4.6.

4.7.

4.8.

Maturity (years) Rate (% per annum)

1 8.0
2 1.5
3 72
4 7.0
5 6.9

Calculate forward interest rates for the second, third, fourth, and fifth years.

The term structure is upward sloping. Put the following in order of magnitude:

(a) The 5-year spot rate

(b) The yield on a 5-year coupon-bearing bond

(c) The forward rate corresponding to the period between 5 and 5% years in the future
What is the answer to this question when the term structure is downward sloping?

The 6-month and the 1-year spot rates are both 10% per annum. For a bond that lasts
18 months and pays a coupon of 8% per annum (with a coupon payment having just
been made), the yield is 10.4% per annum. What is the bond’s price? What is the
18-month spot rate? All rates are quoted with semiannual compounding.

It is January 9, 1990. The price of a Treasury bond with a 12% coupon that matures
on October 12, 1999 is quoted as 102-07. What is the cash price?

The price of a 90-day Treasury bill is quoted as 10.00. What continuously compounded
return does an investor earn on the Treasury bill for the 90-day period?

What assumptions does a duration-based hedging scheme make about the way in
which the term structure moves?

It is January 30. You are managing a bond portfolio worth $6 million. The average
duration of the portfolio is 8.2 years. The September Treasury bond futures price is
currently 108-15 and the cheapest-to-deliver bond has a duration of 7.6 years. How
should you hedge against changes in interest rates over the next 7 months?

Suppose that spot interest rates with continuous compounding are as follows:

Maturity (years) Rate (% per annum)

1 12.0
2 13.0
3 137
4 14.2
5 14.5

Calculate forward interest rates for the second, third, fourth, and fifth years.
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4.9. Suppose that spot interest rates with continuous compounding are as follows:

Maturity (months) Rate (% per annum)

3 8.0
6 8.2
9 84
12 85
15 8.6
18 8.7

Calculate forward interest rates for the second, third, fourth, fifth, and sixth guarters.

4.10. The cash prices of 6-month and 1-year Treasury bills are 94.0 and 89.0. A lé-year,
bond that will pay coupons of $4 every 6 months currently sells for $94.84. A 2-year
bond that will pay coupons of $5 every 6 months currently selis for $97.12. Calculate
the 6-month, 1-year, 1%-year, and 2-year spot rates.

4.11. A 10-year 8% coupon bond currently sells for $90. A 10-year 4% coupon bond
currently sells for $80. What is the 10-year spot rate? (Hint: Consider taking a long
position in two of the 4% coupon bonds and a short position in one of the 8% coupon
bonds.)

4.12. Explain carefully why liquidity preference theory is consistent with the observation
that the term structure tends to be upward sloping more often than it is downward
sloping.

4.13. It is May 5, 1990. The quoted price of a government bond with a 12% coupon that
matures on July 27, 2001 is 110-17. What is the cash price?

4.14. Suppose that the T-bond futures price is 101-12. Which of the following four bonds
is cheapest to deliver?

Bond Price Conversion Factor
1 125-05 1.2131
2 142-15 1.3792
3 115-31 1.1149
4 144-02 1.4026

4.15. Tt is July 30, 1992. The cheapest-to-deliver bond in a September 1992 Treasury bond
futures contract is a 13 percent coupon bond, and delivery is expected to be made
on September 30, 1992. Coupon payments on the bond are made on February 4 and
August 4 each year. The term structure is flat and the rate of interest with semiannual
compounding is 12% per annum The conversion factor for the bond is 1.5. The current
quoted bond price is $110. Calculate the quoted futures price for the contract.
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4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

4.24,

An investor is looking for arbitrage opportunities in the Treasury bond futures market.
What complications are created by the fact that the party with a short position can
choose to deliver any bond with a maturity of over 15 years?

Suppose that the Treasury bill futures price for a contract maturing in 33 days is
quoted as 90.04 and the discount rate for a 123-day Treasury bill is 10.03. What is
the implied repo rate? How can it be used?

Suppose that the 9-month interest rate is 8% per annum and the 6-month interest rate
is 7.5% per annum (both with continuous compounding). Estimate the futures price
of 90-day Treasury bills with a face value of $1 million for delivery in 6 months.
How would the price be quoted?

Assume that a bank can borrow or lend money at the same interest rate in Euromarkets.
The 90-day rate is 10% per annum and the 180-day rate is 10.2% per annum both
expressed with continuous compounding. The Eurodollar futures price for a contract
maturing in 90 days is quoted as 89.5. What arbitrage opportunities are open to the
bank?

A Canadian company wishes to create a Canadian T-bill futures contract from a U.S.
Treasury bill futures contract and forward contracts on foreign exchange. Using an
example, explain how this can be done. For the purposes of this problem, assume
that a futures contract is the same as a forward contract.

A 5-year bond with a yield of 11% (continuously compounded) pays an 8% coupon

at the end of each year.

(a) What is the bond’s price?

(b) What is the bond’s duration?

(¢) Use the duration to calculate the effect on the bond’s price of a 0.2% decrease in
its yield.

(d) Recalculate the bond’s price on the basis of a 10.8% per annum yield and verify
that the result is in agreement with your answer to (c).

Portfolio A consists of a 1-year discount bond with a face value of $2,000 and a

10-year discount bond with a face value of $6,000. Portfolio B consists of a 5.95 year

discount bond with a face value of $5,000. The current yield on all bonds is 10% per

annum

(a) Show that both portfolios have the same duration.

(b) Show that the percentage changes in the values of the two portfolios for a 10-
basis-point increase in yields is the same.

(¢) What are the percentage changes in the values of the two portfolios for a 5% per
annum increase in yields?

(d) Which portfolio has the higher convexity?

Suppose that a bond portfolio with a duration of 12 years is hedged using a futures
contract where the underlying asset has a duration of 4 years. What is likely to be the
impact on the hedge of the fact that the 12-year rate is less volatile than the 4-year
rate?

Suppose that it is February 20 and a treasurer realizes that on July 17, the company
will have to issue $5 million of commercial paper with a maturity of 180 days. If the
paper were issued today, it would realize $4,520,000. (In other words, the company
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4.25.

4.26.
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would receive $4,520,000 for its paper and have to redeem it at $5,000,000 in 180
days time.) The September Eurodollar futures price is quoted as 92.00. How should
the treasurer hedge the company’s exposure?

On August 1, a portfolio manager has a bond portfolio worth $10 million. The duration
of the portfolio is 7.1 years. The December Treasury bond futures price is currently
91-12 and the cheapest-to-deliver bond has a duration of 8.8 years. How should the
portfolio manager immunize the portfolio against changes in interest rates over the
next 2 months?

How can the portfolio manager change the duration of the portfolio to 3.0 years in
Problem 4.25?



Swaps

Swaps are private agreements between two companies to exchange cash flows in
the future according to a prearranged formula. They can be regarded as portfolios
of forward contracts. The study of swaps is therefore a natural extension of the
study of forward and futures contracts.

The first swap contracts were negotiated in 1981. Since then, the market
has grown very rapidly. Hundreds of billions of dollars of contracts are currently
negotiated each year. In this chapter, we discuss how swaps are designed, how
they are used, and how they can be valued. We also briefly consider the nature of
the credit risk facing financial institutions when they trade swaps and other similar
financial contracts.

5.1 MECHANICS OF INTEREST RATE SWAPS

The most common type of swap is a “plain vanilla” interest rate swap. In this,
one party, B, agrees to pay to the other party, A, cash flows equal to interest at
a predetermined fixed rate on a notional principal for a number of years. At the

111
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same time, party A agrees to pay party B cash flows equal to interest at a floating
rate on the same notional principal for the same period of time. The currencies of
the two sets of interest cash flows are the same. The life of the swap can range
from 2 years to over 15 years.

Why should A and B enter into such an agreement? The reason most com-
monly put forward concerns comparative advantages. Some companies appear to
have a comparative advantage in fixed rate markets, while other companies have
a comparative advantage in floating rate markets. When obtaining a new loan,
it makes sense for a company to go to the market where it has a comparative
advantage. However, this may lead to a company borrowing fixed when it wants
floating, or borrowing floating when it wants fixed. This is where a swap comes
in. A swap has the effect of transforming a fixed rate loan into a fioating rate loan
Or vice versa.

Lonpon INTERBANK OFFER RATE

The floating rate in many interest rate swap agreements is the London Inter-
bank Offer Rate (LIBOR). We have already mentioned this in Chapter 4. LIBOR is
the rate of interest offered by banks on deposits from other banks in eurocurrency
markets. One-month LIBOR is the rate offered on 1-month deposits, 3-month
LIBOR is the rate offered on 3-month deposits, and so on. LIBOR rates are deter-
mined by trading between banks and change continuously as economic conditions
change. Just as prime is often the reference rate of interest for floating rate loans
in the domestic financial market, LIBOR is frequently a reference rate of interest
for loans in international financial markets. To understand how it is used, consider
a loan where the rate of interest is specified as 6-month LIBOR plus 0.5 percent
per annum. The life of the loan is divided into 6-month time periods. For each
period, the rate of interest is set 0.5 percent per annum above the 6-month LIBOR
rate at the beginning of the period. Interest is paid at the end of the period.

AN ExampPLE OF AN INTEREST RATE SwaAP

We now give an example of how comparative advantages can lead to an
interest rate swap.! We suppose that two companies, A and B, both wish to borrow
$10 million for 5 years and have been offered the rates shown in Table 5.1. We
assume that company B wants to borrow at a fixed rate of interest, while company
A wants to borrow floating funds at a rate linked to 6-month LIBOR. Company
B clearly has a lower credit rating than company A since it pays a higher rate of
interest than company A in both fixed and floating markets.

'The comparative advantage argument is a useful way of introducing swaps but, as we will
discuss later in this chapter, perceived comparative advantages may be largely illusory.
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TABLE 5.1 Borrowing Rates
Motivating Interest Rate Swap

Fixed Floating

Company A 10.00% 6-month LIBOR + 0.30%
Company B 11.20% 6-month LIBOR + 1.00%

A key feature of the rates offered to companies A and B is that the difference
between the two fixed rates is greater than the difference between the two floating
rates. Company B pays 1.20 percent more than company A in fixed rate markets,
and only 0.70 percent more than company A in floating rate markets.

Company B appears to have a comparative advantage in floating rate markets,
while company A appears to have a comparative advantage in fixed rate markets.
It is this apparent anomaly that allows a profitable swap to be negotiated. Company
A borrows fixed rate funds at 10 percent per annum. Company B borrows floating
rate funds at LIBOR plus 1.00 percent per annum. They then enter into a swap
agreement to ensure that A ends up with floating rate funds and B ends up with
fixed rate funds.

As a first step in understanding how the swap might work, we assume that A
and B get in touch with each other directly. The sort of swap they might negotiate
is shown in Figure 5.1. Company A agrees to pay company B interest at 6-month
LIBOR on $10 million. In return, company B agrees to pay company A interest
at a fixed rate of 9.95 percent per annum on $10 million.

When the external borrowings of A and B are taken into account, we obtain
Figure 5.2. Company A has three sets of interest rate cash flows:

1. It pays 10.00% per annum to outside lenders.
2. It receives 9.95% per annum from B.
3. It pays LIBOR to B.

The first two cash flows taken together cost A 0.05 percent per annum. It follows
that the net effect of the three cash flows is that A pays LIBOR plus 0.05 percent

9.95%
Com) < Com|
Apany - Bpa i Figure 5.1 A Direct Swap Agreement

Libor Between A and B

2Note that B’s comparative advantage in floating rate markets does not imply that B pays less
than A in this market. It means that the extra amount that B pays over the amount paid by A is less in
this market. One of my students summarized the situation as follows: “A pays more less in fixed rate
markets; B pays less more in floating rate markets.”
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9.95%
~<——{ Company < Company |
10% Libor Libor + 1%

Figure 5.2 Direct Swap Agreement with Outside Borrowing

per annum. This is 0.25 percent per annum less than it would pay if it went directly
to floating rate markets. Company B also has three sets of interest rate cash flows:

1. It pays LIBOR + 1.00% per annum to outside lenders.
2. It receives LIBOR from A.
3. It pays 9.95% per annum to A.

The first two cash flows taken together cost B 1.00 percent per annum. It follows
that the net effect of the three cash flows is that B pays 10.95 percent per annum.
This is 0.25 percent per annum less than it would pay if it went directly to fixed
rate markets.

The swap arrangement improves the position of both A and B by 0.25 percent
per annum. The total gain is therefore 0.50 percent per annum. This could have
been calculated in advance. The total potential gain from an interest rate swap
agreement is always a — b where a is the difference between the interest rates
facing the two companies in fixed rate markets, and b is the difference between
the interest rates facing the two companies in floating rate markets. In this case,
a =120% and b = 0.70%.

RoLE oF FINANCIAL INTERMEDIARY

Usually, two companies do not get in touch with each other directly to arrange
a swap. They each deal with a financial intermediary such as a bank. This means
that the total potential gain (0.5 percent per annum in our example) has to be split
three ways between A, B, and the financial intermediary. One possible arrangement
is shown in Figure 5.3.

When the external borrowings of A and B are taken into account, we obtain
Figure 5.4. Company A has three sets of interest rate cash flows

1. It pays 10.00% per annum to outside lenders.

9.9% 10.0%
Company Financial |« Company
A - institution B

Libor Libor

Figure 5.3 Interest Rate Swap Using Financial Intermediary
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2. It receives 9.9% per annum from the financial institution.
3. It pays LIBOR to the financial institution.

The net effect of these three cash flows is that company A pays LIBOR plus 0.10
percent, which is a 0.20 percent per annum improvement over the rate it could
get by going directly to floating rate markets. Company B also has three sets of
interest rate cash flows:

1. It pays LIBOR + 1.00% per annum to outside lenders.
2. It receives LIBOR from the financial institution.
3. It pays 10.0% per annum to the financial institution.

The net effect of these three cash flows is that company B pays 11.0 percent per
annum, which is a 0.20 percent per annum improvement over the rate it could get
by going directly to fixed rate markets. The financial institution’s net gain is 0.10
percent per annum. (The floating rate it receives is the same as the floating rate
it pays, but the fixed rate it receives is 0.10 percent higher than the fixed rate it
pays.) The total gain to all parties is as before 0.50 percent per annum.

Note that the financial institution has two separate contracts, one with com-
pany A and the other with company B. If one of the companies defaults, the
financial institution still has to honor its agreement with the other company. In
most instances, company A will not even know that the financial institution has
entered into an offsetting swap with company B and vice versa.

THE EXCHANGE OF PAYMENTS

In the swap that has been described, interest payment dates would occur every
6 months, and all interest rates would be quoted with semiannual compounding.
(This is because the swap is based on 6-month LIBOR.) The terms of the swap
agreement would specify that one party should send a check for the difference
between the fixed and floating interest payments to the other party every 6 months.
Suppose that in Figure 5.3, the 6-month LIBOR rate applicable to a particular
payment date is 12.0 percent. Company A pays the financial institution

0.5 x (12.0 — 9.9Y% of $10 million

9.9% — 10.0% :

«——| Company Financial Company )
A »=| institution - B j

10% Libor Libor Libor + 1%

Figure 5.4 Interest Rate Swap Using Financial Intermediary and Including Outside
Borrowings
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or $105,000. The financial institution pays company B
0.5 x (12.0 — 10.0)% of $10 million

or $100,000.

Principal payments are not exchanged in an interest rate swap. This is because
the dollar value of the principal remains the same throughout the contract for both
the floating rate loan and the fixed rate loan. The 6-month LIBOR rate applicable
to a payment date is the rate prevailing 6 months earlier. This reflects the way in
which interest is paid on LIBOR-based loans. The first payment date is 6 months
after the start of the swap contract. The exchange of cash flows that will take
place on that date is based on the 6-month LIBOR rate at the start of the swap.
The second payment date is 12 months after the start of the swap. The exchange
of payments that will take place on that date is based on the 6-month LIBOR rate
prevailing six months after the swap begins.

VALIDITY OF THE COMPARATIVE ADVANTAGE ARGUMENT

The comparative advantage argument, although a good way of introducing
swaps, is open to question. Why in Table 5.1 should the spreads between the rates
offered to A and B be different in fixed and floating markets? Now that the swap
market has been in existence for some time we might reasonably expect these types
of differences to have been arbitraged away.

The reason why spread differentials appear to continue to exist may in part
be due to the nature of the contracts available to companies in fixed and floating
markets. The 10.0 percent and 11.2 percent rates available to A and B in fixed rate
markets are likely to be the rates at which the companies can issue 5-year fixed-
rate bonds. The LIBOR + 0.3 percent and LIBOR + 1.0 percent rates available
to A and B in floating rate markets are 6-month rates. The lender usually has the
opportunity to review the rates every six months. If the creditworthiness of A or
B has declined, the lender has the option of increasing the spread over LIBOR that
is charged. In extreme circumstances the lender can refuse to roll over the loan at
all. The providers of fixed rate finance do not have the option to change the terms
on the loan in this way.

The spreads between the rates offered to A and B are a reflection of the
extent to which B is more likely to default than A. During the next 6 months there
is very little chance that either A or B will default. As we look further ahead the
probability of a default by B increases faster than the probability of a default by A.
This is why the spread between the 5-year rates is greater than the spread between
the 6-month rates.

After negotiating a floating rate loan at LIBOR + 1.0 percent and entering
into the swap shown in Figure 5.3 we argued that B obtained a fixed rate loan at
11.0 percent. The arguments we are now presenting show that this is not really the
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case. In practice, the rate paid is 11.0 percent only if B can continue to borrow
floating rate funds at a spread of 1.0 percent over LIBOR. For example, if the
credit rating of B declines so that the floating rate loan is rolled over at LIBOR +
2.0 percent, the rate paid by B increases to 12.0 percent. The relatively high 5-year
borrowing rate offered to B in Table 5.1 suggests that the market considers that
B’s spread over 6-month LIBOR for borrowed funds is expected to rise. Assuming
this is so, B’s expected total borrowing rate if it enters into the swap is greater
than 11.0 percent and possibly greater than the 11.2 percent B could get by going
to fixed rate markets directly.

Assuming that there is no chance of default by the financial institution, the
swap in Figure 5.1 locks in LIBOR + 0.1 percent for company A for the whole of
the next 5 years, not just for the next 6 months. Unless there is a strong reason
for supposing that A’s credit rating will improve, this must be a good deal for A.
Later in this chapter and in chapter 18 we w@ook at the swap from the point of
view of the financial institution.

PRICING SCHEDULES

The most common interest rate swap is similar to the one described above
in that it involves an exchange of 6-month LIBOR for a fixed rate of interest. The
fixed rate of interest is usually expressed as a certain number of basis points above
the Treasury note yield. (A basis point is 0.01 percent.) Table 5.2 shows what is
termed an indication pricing schedule. This would be used for reference purposes
by a swap trader working for a bank. For example, it indicates that when the bank
is negotiating a 5-year swap where it will pay fixed and receive 6-month LIBOR,
the fixed rate should be set 44 basis points above the current 5-year Treasury note
rate of 7.90 percent. In other words, the bank should set the fixed rate at 8.34
percent. When the bank is negotiating a 5-year swap where it will receive fixed

TABLE 5.2 Indication Pricing for Interest Rate Swaps

Bank Pays Bank Receives Current
Maturity Fixed Rate Fixed Rate TN Rate (%)
2 years 2-yr. TN + 30 bps 2-yr. TN + 38 bps 7.52
3 years 3-yr. TN + 35 bps 3-yr. TN + 44 bps 7.71
4 years 4-yr. TN + 38 bps 4-yr. TN + 48 bps 7.83
5 years 5-yr. TN + 44 bps 5-yr. TN + 54 bps 7.90
6 years 6-yr. TN + 48 bps 6-yr. TN + 60 bps 7.94
7 years 7-yr. TN + 50 bps 7-yr. TN + 63 bps 7.97

10 years 10-yr. TN + 60 bps 10-yr. TN + 75 bps 7.99
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and pay 6-month LIBOR for 5 years, the schedule indicates that it should set the
fixed rate at 54 basis points above the current 5-year Treasury note rate, or at 8.44
percent. The bank’s profit or its bid-asked spread from negotiating two offsetting
5-year swaps would be 10 basis points (= 0.1%) per annum.?

Table 5.2 would be updated regularly as market conditions changed. One
point to note is that 6-month LIBOR is quoted with semiannual compounding
on the basis of a 360-day year, whereas the Treasury note rate is quoted with
semiannual compounding on the basis of a 365-day year. This can be confusing.
To make a 6-month LIBOR rate comparable with a Treasury note rate, either the
6-month LIBOR rate must be multiplied by 365/360 or the Treasury note rate must
be multiplied by 360/365.*

The CBOT trades futures contracts on the 3- and 5-year swap rates. The
contracts are cash settled to a swap rate which is the median of the average of the
bid and offer quotes of seven dealers randomly selected from an approved list. The
CBOT also trades options on swap futures.

WAREHOUSING

In practice, it is unlikely that two companies will contact a financial institution
at exactly the same time and want to take opposite positions in exactly the same
swap. For this reason, most large financial institutions are prepared to warehouse
interest rate swaps. This involves entering into a swap with one counterparty and
then hedging the interest rate risk until a counterparty wanting to take an opposite
position is found. The interest rate futures contracts discussed in Chapter 4 are one
way of carrying out the hedging.

5.2 VALUATION OF INTEREST RATE SWAPS

If we assume no possibility of default, an interest rate swap can be valued either
as a long position in one bond combined with a short position in another bond, or
as a portfolio of forward contracts.

3In the early days of swaps, bid-asked spreads as high as 100 basis points were common. By the
late 1980s, bid-asked spreads on interest rate swaps had narrowed to less than 10 basis points.

“Some of the numbers calculated earlier in this chapter are not perfectly accurate because they
do not take into account these differences between the ways of quoting fixed and floating rates. For
example, in the swap in Figure 5.4, we stated that company A ends up borrowing at LIBOR + 0.1% per
annum. The 0.1% spread over LIBOR is the difference between two fixed interest rates and is likely
to be expressed on the basis of a 365-day year with semiannual compounding. To be compatible with
LIBOR we should convert it to a 360-day year. The rate paid by company A then becomes

360
LIBOR + 0.1 x 365 = LIBOR + 0.0986% per annum



Sec. 5.2 Valuation of Interest Rate Swaps 119
REeLATIONSHIP TO BOND PRICES

Consider the swap between company B and the financial institution in Figure
5.3. Although the principal is not exchanged, we can assume without changing the
value of the swap that, at the end of its life, A pays B the notional principal of
$10 million and B pays A the same notional principal. The swap is then the same
as an arrangement in which

1. Company B has lent the financial institution $10 million at the 6-month
LIBOR rate.

2. The financial institution has lent company B $10 million at a fixed rate of
10% per annum.

To put this another way, the financial institution has sold a $10 million floating rate
(LIBOR) bond to company B and has purchased a $10 million fixed rate (10% per
annum) bond from company B. The value of the swap is therefore the difference
between the values of two bonds.

In general, suppose that it is now time zero and that under the terms of a swap,
a financial institution receives fixed payments of k dollars at times f; (1 </ < n)
and makes floating payments at the same times. Define

V': Value of swap

By: Value of fixed rate bond underlying the swap
B,: Value of floating rate bond underlying the swap
Q): Notional principal in swap agreement

It follows that
V=B -8 5.1

The discount rates used in valuing the bonds should reflect the riskiness of
the cash flows. We suppose that it is appropriate to use a discount rate with a risk
level corresponding to the floating rate underlying the swap. In our example, the
floating rate underlying the swap is LIBOR, and so our assumption means that the
appropriate risk level is the risk associated with loans in the interbank market. The
assumption that the floating basis rate underlying the swap is the appropriate rate to
use for discounting is a very common one and considerably simplifies the valuation
procedure. In some cases, however, it is clearly inappropriate. For example, the
cash flows in a LIBOR-based swap with the Federal government have no risk; the
cash flows in a T-bill based swap with a BBB-rated counterparty are subject to
some risk. :

It is reasonable to assume that a swap, if entered into at the average of the
bid and offer quotes in Table 5.2, has a value of zero. Given our assumption
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about discount rates, B = Q. It follows from Equation (5.1) that B, = Q.
An indication pricing schedule such as the one in Table 5.2, therefore, defines a
number of bonds that are worth their par value. (These are known as par yield
bonds.) The bootstrap procedure described in Section 4.1 can be used to determine
a zero-coupon yield curve from these par yield bonds. This zero-coupon yield
curve defines the appropriate discount rates for swap cash flows and can be used
in conjunction with Equation (5.1) to determine the values of swaps that were
negotiated some time ago.

Define r; as the discount rate corresponding to a maturity #;. Since B; is the
present value of the fixed rate bond’s future cash flows,

B = Zke"""’ + Qe
i=1

Consider next the floating rate bond, B,. Immediately after a payment date,
B, is always equal to notional principal, Q. Between payment dates, we can use
the fact that B, will equal Q immediately after the next payment date. In our
notation, the time until the next payment date is #; so that

B2 — Qe—rltl + k*e—rm

where &* is the floating rate payment (already known) that will be made at time ¢,.
In the situation where the financial institution is paying fixed and receiving
floating, B, and B, are calculated in the same way and

V =B, — B

It is interesting to note that the value of the swap is zero when it is first
negotiated and zero at the end of its life. During its life it may have a positive or
negative value.

Example 5.1

Suppose that under the terms of a swap, a financial institution has agreed to pay 6-month
LIBOR and receive 8% per annum (with semiannual compounding) on a notional principal
of $100 million. The swap has a remaining life of 1.25 years. The relevant discount rates
with continuous compounding for 3-month, 9-month, and 15-month maturities are 10.0%,
10.5%, and 11.0%, respectively. The 6-month LIBOR rate at the last payment date was
10.2% (with semiannual compounding). In this case, k = $4 million and k* = $5.1 million
so that

— 4,~025%0.1 —0.75%0.105 —1.25x0.11
B) =4e + 4e + 104e

= $98.24 million
By = 5.1¢—-25%0.1 + 100 —0-25%0.1

= $102.51 million
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Hence, the value of the swap is
98.24 — 102.51 = —$4.27 million

If the bank has been in the opposite position of paying fixed and receiving floating the value
of the swap would be +$4.27 million.

RELATIONSHIP TO FORWARD CONTRACTS

In the absence of default risk, an interest rate swap can be decomposed into
a series of forward contracts. This is best illustrated by returning to the example
in Figure 5.3. Consider the swap agreement between the financial institution and
company A. Since the principal amount is $10 million and payments are exchanged
every 6 months, the cash flow to the financial institution on a payment date is
(in millions of dollars)

10 x (0.5 x LIBOR — 0.5 x 0.099)
or
5 x (LIBOR — 0.099)

This is the payoff from a forward contract on LIBOR with a “delivery price” of
9.9 percent and a principal of $5 million. The only difference between this and
a regular forward contract is that it is the value of LIBOR 6 months prior to the
maturity date that determines the payoff.

Suppose that R; is the forward interest rate (expressed with semiannual com-
pounding) for the 6-month period prior to a payment date i (i > 2). Section 3.5 in
Chapter 3 shows that the value of a long forward contract is the present value of
the amount by which the current forward price exceeds the delivery price. Using
the notation introduced earlier, the value of the forward contract corresponding
the payment number i (i > 2) for the party receiving fixed and paying floating is
therefore

(k —0.5R; Q)e """

The exchange that will take place on the first payment date (at time ¢,) involves a
payment k* and receipt k. The value of this is

(k — k*)e~"t
The total value of the swap is therefore

n
(k —k*)e™"" + ) (k —0.5R; Q)e ™"
=2
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For the party receiving floating and paying fixed the value is
(" = k)" + 3 "(0.5R; Q — k)e™""
i=2

Example 5.2

Consider again the situation in the previous example. In millions of dollars, k = 4.0, k* =
5.1 and Q = 100. Also, r; = 0.10, r, = 0.105, r3 =011 1 =025 1 =075, and
13 = 1.25. Equation (4.1) gives the values of R, and R3 with continuous compounding as

A nt—ritp 075 x0.105 - 0.25 x 0.10

By = - =0.1075

S — 05

. n—raty  1.25%0.11 —0.75 x 0.105

Ry=D1087nh X 0.75 x =0.1175
-1 0.5

These can be converted to semiannual compounding using Equation (3.4): R, = 0.1104,
R3 = 0.1210. The value of the swap is therefore

(4.0 = 5.1)e701>0-25 4 (4.0 - 0.5 x 0.1104 x 100)e=0105%0.75

+ (4.0-0.5 x 0.1210 x 100)e O11x1:25 _ _4 27

or ~$4.27 million. This is in agreement with the calculation based on bond prices in the
previous example.

At the time the swap is entered into, it is worth zero. This means that the
sum of the value of the forward contracts underlying the swap is zero at this time.
However, it does not mean that the value of each individual forward contract is
zero. In general, some will have positive values while others have negative values.

For the forward contracts underlying the swap between the financial institu-
tion and company A in Figure 5.3

Value of forward contract > O when forward interest rate > 9.9%
Value of forward contract = (0 when forward interest rate — 9.9%
Value of forward contract < O when forward interest rate < 9.9%

Suppose the term structure is upward sloping at the time the swap is nego-
tiated. This means that the forward interest rates increase as the maturity of the
forward contract increases. Since the sum of the values of the forward contracts is
zero, this must mean that the forward interest rate is less than 9.9 percent for the
early payment dates and greater than 9.9 percent for the later payment dates. The
value to the financial institution of the forward contracts corresponding to early
payment dates are therefore negative, while those corresponding to later payment
dates are positive. If the term structure is downward sloping at the time the swap
is negotiated, the reverse is true. This argument is illustrated in Figure 5.5.
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Figure 5.5 Value of Forward Contracts Underlying Financial Institution’s Swap with
Company A in Figure 5.3 When Term Structure Is Upward Sloping and Downward

Sloping

5.3 CURRENCY SWAPS

Another popular type of swap is known as a currency swap. In its simplest form,
this involves exchanging principal and fixed rate interest payments on a loan in
one currency for principal and fixed rate interest payments on an approximately
equivalent loan in another currency.

AN EXAMPLE

Like interest rate swaps, currency swaps can be motivated by comparative
advantage. Suppose that company A and company B are offered the fixed rates
of interest in U.S. dollars and sterling, shown in Table 5.3. This table shows that
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TABLE 5.3 Borrowing Rates
Motivating Currency Swap

Dollars Sterling

Company A 8.0% 11.6%
Company B 10.0% 12.0%

sterling interest rates are generally higher than U.S. interest rates. Company A is
clearly more creditworthy than company B since it is offered a more favorable rate
of interest in both currencies. However, the differences between the rates offered
to A and B in the two markets are not the same. Company B pays 2.0 percent
more than company A in the U.S. dollar market and only 0.4 percent more than
company A in the sterling markets.

Company A has a comparative advantage in the U.S. dollar market while
company B has a comparative advantage in the sterling market. This might be
because A is an American company that is better known to U.S. investors, while
B is a UK. company that is better known to British investors. Tax considerations
may also play an important role in determining the rates. We suppose that A wants
to borrow sterling while B wants to borrow dollars. This creates a perfect situation
for a currency swap. Company A and company B each borrow in the market
where they have a comparative advantage; that is, company A borrows dollars
while company B borrows sterling. They then use a currency swap to transform
A’s loan into a sterling loan and B’s loan into a dollar loan.

As already mentioned, the difference between the dollar interest rates is 2.0
percent while the difference between the sterling interest rates is 0.4 percent. By
analogy with the interest rate swap case, we expect the total gain to all parties to
be 2.0% ~ 0.4% = 1.6% per annum. :

There are many ways in which the swap can be organized. Figure 5.6 shows
one possible arrangement. Company A borrows dollars while company B borrows
sterling. The effect of the swap is to transform the U.S. dollar interest rate of 8.0
percent per annum to a sterling interest rate of 11.0 percent per annum for company
A. This makes company A 0.6 percent per annum better off than it would be if it
went directly to dollar markets. The financial intermediary gains 1.4 percent per
annum on its dollar cash flows and loses 1.0 percent per annum on its sterling cash

Dollars 8% Dollars 9.4%

Company te¢ Financial ‘1 Company
A institution » B >

11% Sterling 12% Sterling Sterling 12%

D
Dollars 8%

4

Figure 5.6 A Currency Swap
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flows. Ignoring the difference between the two currencies, it makes a net gain of
0.4 percent per annum. As predicted, the total gain to all parties is 1.6 percent per
annum.

A currency swap agreement requires the principal to be specified in each of
the two currencies. The principal amounts are exchanged at the beginning and at
the end of the life of the swap. They are chosen so that they are approximately
equal at the exchange rate at the beginning of the swap’s life. In the example in
Figure 5.6, the principal amounts might be $15 million and £10 million. Initially,
the principal amounts flow in the opposite direction to the arrows in Figure 5.6.
The interest payments during the life of the swap and the final principal payment
flow in the same direction as the arrows. Thus, at the outset of the swap, company
A pays $15 million and receives £10 million. Each year during the life of the
swap contract, company A receives $1.20 million (= 8% of $15 million) and pays
£1.10 million (= 11% of £10 million). At the end of the life of the swap, it pays
a principal of £10 million and receives a principal of $15 million.

The reader may feel that the swap in Figure 5.6 is unsatisfactory because
the financial institution is exposed to foreign exchange risk. Each year, it makes
a gain of $210,000 (= 1.4% of $15 million) and a loss of £100,000 (= 1% of £10
million). However, the financial institution can avoid this risk by buying £100,000
per annum in the forward market for each year of the life of the swap. This will
lock in a net gain in U.S. dollars. If we tried to redesign the swap so that the
financial institution makes 0.4 percent spread in dollars and zero spread in sterling,
we might come up with the arrangement in Figure 5.7 or Figure 5.8. In Figure
5.7, company B bears some foreign exchange risk because it pays 1.0 percent per
annum in sterling and 8.4 percent in dollars. In Figure 5.8, company A bears some
foreign exchange risk because it receives 1.0 percent per annum in dollars and pays
12.0 percent in sterling. In general, it makes sense for the financial institution to
bear the foreign exchange risk because it is in the best position to hedge it.

Dollars 8% - : Dollars 8.4%
Company e Financial (¢ Company
- A | institution > B >

Doliars 8% 11% Sterfing 11% Sterling Sterling 12%

Figure 5.7 Alternative Arrangement for Currency Swap; Company B Bears Some For-
eign Exchange Risk

Compeny | Dollars 9.0% Financial Dollars 8.4% Compary
A

»| institution > B
12% Sterling 12% Sterling

|-——————
Sterling 12%

—————
Dollars 8%

Figure 5.8 Alternative Arrangement for Currency Swap; Company A Bears Some For-
eign Exchange Risk
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Like interest rate swaps, currency swaps are frequently warehoused by finan-
cial institutions. The financial institution then carefully monitors its exposures to
different currencies so that it can hedge its risk.

5.4 VALUATION OF CURRENCY SWAPS

In the absence of default risk, a currency swap can be decomposed into a position
in two bonds in a similar way to an interest rate swap. Consider the position of
company B in Figure 5.6. It is long a sterling bond that pays interest at 12.0
percent per annum and short a dollar bond that pays interest at 9.4 percent per
annum. In general, if V is the value of a swap such as the one in Figure 5.6 to
the party paying U.S. dollar interest rates,

V=S8Br—-Bp

where Bp is the value, measured in the foreign currency, of the foreign denominated
bond underlying the swap, Bp is the value of the U.S. dollar bond underlying the
swap, and § is the spot exchange rate (expressed as number of units of domestic
currency per unit of foreign currency). The value of a swap can therefore be
determined from the term structure of interest rates in the domestic currency, the
term structure of interest rates in the foreign currency, and the spot exchange
rate.

Example 5.3

Suppose that the term structure of interest rates is flat in both Japan and the United States.
The Japanese rate is 4% per annum and the U.S. rate is 9% per annum (both with continuous
compounding). A financial institution has entered into a currency swap where it receives
5% per annum in yen and pays 8% per annum in dollars once a year. The principals in
the two currencies are $10 million and 1,200 million yen. The swap will last for another 3
years and the current exchange rate is 110 yen = $1. In this case

Bp = 0.8¢—0% 4 0.8¢7009x2 4 10 go—0.09x3
= $9.64 million

Br = 60e ™% + 60e™0%2 12600043
=1, 230.55 million yen

The value of the swap is
1230.55
110
If the financial institution had been paying yen and receiving dollars, the value of the swap
would have been ~$1.55 million.

—9.64 = $1.55 million
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DecomposrrioNn INTO FORWARD CONTRACTS

An alternative decomposition of the currency swap is into a series of forward
contracts. Suppose that in Figure 5.6 there is one payment date per year. On each
payment date company B has agreed to exchange an inflow of £1.2 million (=
12% of £10 million) for an outflow of $1.41 million (= 9.4% of $15 million). In
addition, at the final payment date, it has agreed to exchange a £10 million inflow
for a $15 million outflow. Each of these exchanges represents a forward contract.
Suppose t; (1 < i < n) is the time of the ith settlement date, r; (1 <i < n) is
the continuously compounded U.S. dollar interest rate applicable to a time period
of length ¢, and F; (1 < i < n) is the forward exchange rate applicable to time
t;. In Chapter 3, we showed that the value of a long forward contract is in all
circumstances the present value of the amount by which the forward price exceeds
the delivery price. The value to company B of the forward contract corresponding
to the exchange of interest payments at time ¢; is, therefore,

(1.2F; — 1.41)e™"

for 1 < i < n. The value to company B of the forward contract corresponding to
the exchange of principal payments at time ¢, is

(10F, — 15)e™""

This shows that the value of a currency swap can always be calculated from the
term structure of forward rates and the term structure of domestic interest rates.

Example 5.4

Consider again the situation in the previous example. The current spot rate is 110 yen per
dollar or 0.009091 dollar per yen. Since the difference between the dollar and yen interest
rates is 5% per annum, Equation (3.14) can be used to give the 1-year, 2-year, and 3-year
forward exchange rates as

0.009091e%95%1 = 0.0096
0.009091¢%95*2 = 0.0100

0.009091¢%95%3 = 0.0106

respectively. The exchange of interest involves receiving 60 million yen and paying $0.8
million. The risk-free interest rate in dollars is 9% per annum The value of the forward
contracts corresponding to the exchange of interest are therefore (in millions of dollars)

(60 x 0.0096 — 0.8)e"00*1 = _0.21
(60 x 0.0101 — 0.8)e~*%*2 = _0.16

(60 x 0.0106 — 0.8)e~%99x3 = _0.13
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The final exchange of principal involves receiving 1,200 million yen and paying $10 million.
The value of the forward contract corresponding to this is (in millions of dollars)

(1,200 x 0.0106 — 10)e~0-09%3 — 2 04

The total value of the swap is 2.04—0.13 —0.16 —0.21 = $1.54 million which (allowing for
rounding errors) is in agreement with the result of the calculations in the previous example.

Assume that the principal amounts in the two currencies are exactly equiv-
alent at the start of a currency swap. At this time, the total value of the swap is
zero. However, as in the case of interest rate swaps, this does not mean that each
of the individual forward contracts underlying the swap has zero value. It can be
shown that, when interest rates in two currencies are significantly different, the
payer of the low-interest-rate currency is in the position where the forward con-
tracts corresponding to the early exchanges of cash flows have positive values and
the forward contract corresponding to final exchange of principals has a negative
expected value. The payer of the high-interest-rate currency is likely to be in the
opposite position; that is, the early exchanges of cash flows have negative values
and the final exchange has a positive expected value.

For the payer of the low-interest-rate currency, there will be a tendency for
the swap to have a negative value during most of its life. This is because the
forward contracts corresponding to the early exchanges of payments have positive
values, and, once these exchanges have taken place, there is a tendency for the
remaining forward contracts to have, in total, a negative value. For the payer of the
high-interest-rate currency, the reverse is true. There is a tendency for the value of
the swap to be positive during most of its life. These results are important when
the credit risk in the swap is being evaluated.

5.5 OTHER SWAPS

A swap in its most general form is a security that involves the exchange of cash
flows according to a formula that depends on the value of one or more underlying
variables. There is therefore no limit to the number of different types of swaps
that can be invented. In this section, we discuss a few of the variants on the plain
vanilla interest rate swap and currency swap that have been described so far.

In an interest rate swap, a number of different floating reference rates can
be used. Six-month LIBOR is the most common. Among the others used are:
the 3-month LIBOR, the 1-month commercial paper rate, the T-bill rate, and the
tax-exempt rate. The particular reference rate chosen by a company will depend on
the nature of its exposure. Swaps can be constructed to swap one floating rate (say,
LIBOR) for another floating rate (say, prime). This allows a financial institution
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to hedge an exposure arising from assets and liabilities that are subject to different
floating rates.

The principal in a swap agreement can be varied throughout the term of the
swap to meet the needs of a counterparty. In an amortizing swap, the principal
reduces in a way that corresponds to the amortization schedule on a loan. In a
step-up swap, the principal increases in a way that corrésponds to the drawdowns
on a loan agreement. Deferred swaps or forward swaps in which parties do not
begin to exchange interest payments until some future date can also be arranged.

One popular swap is an agreement to exchange a fixed interest rate in one
currency for a floating interest rate in another currency. As such, it is a combination
of a plain vanilla interest rate swap and a plain deal currency swap.

Swaps can be extendable or puttable. In an extendable swap, one party
has the option to extend the life of the swap beyond the specified period. In a
puttable swap, one party has the option to terminate the swap early. Options on
swaps or swaptions are also available. An option on an interest rate swap is, in
essence, an option to exchange a fixed rate bond for a floating rate bond. Since
the floating rate bond is worth close to its face value, swaptions can be considered
as options on the value of the fixed rate bond. Swaptions will be discussed further
in Chapter 15.

Swaps are now becoming increasingly available on commodities. A company
that consumes 100,000 barrels of oil per year could agree to pay $2 million each
year for the next 10 years and to receive in return 100,000S, where § is the current
market price of oil per barrel. This would in effect lock in its oil cost at $20
per barrel. Similarly, an oil producer might agree to the opposite exchange. This
would have the effect of locking in the price it realized for its oil at $20 per
barrel.

5.6 CREDIT RISK

Contracts such as swaps that are private arrangements between two companies
entail credit risks. Consider a financial institution that has entered into offsetting
contracts with two companies, A and B. (See Figure 5.3 or Figure 5.6.) If neither
party defaults, the financial institution remains fully hedged. A decline in the
value of one contract will always be offset by an increase in the value of the
other contract. However, there is a chance that one party will get into financial
difficulties and default. The financial institution would then still have to honor the
contract it has with the other party.

Suppose that some time after the initiation of the contracts in Figure 5.3, the
contract with company B has a positive value to the financial institution while the
contract with company A has a negative value. If company B defaults, the financial
institution would lose the positive value it has in this contract. To maintain a hedged
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position, it would have to find a third party willing to take company B’s position.
To induce the third party to take the position, it would have to pay the third party
an amount roughly equal to the value of the financial institution’s contract with B
prior to the default.

A financial institution only has credit risk exposure from a swap when the
value of the swap to the financial institution is positive. What happens when this
value is negative and the counterparty gets into financial difficulties? In theory,
the financial institution could realize a windfall gain since a default would lead
to it getting rid of a liability. In practice, it is likely that the counterparty would
choose to sell the contract to a third party or rearrange its affairs in some way so
that its positive value in the contract is not lost. The most realistic assumption for
the financial institution is therefore as follows. If the counterparty goes bankrupt,
there will be a loss if the value of the swap to the financial institution is positive
and there will be no effect on the financial institution’s position if the value of
the swap to the financial institution is negative. This situation is summarized in
Figure 5.9.

Sometimes a financial institution can predict in advance which of two off-
setting contracts is likely to have a positive value. Consider the currency swap in
Figure 5.6. Sterling interest rates are higher than U.S. interest rates. As mentioned
earlier, this means that as time passes the financial institution is likely to find that
its swap with A has a negative value while its swap with B has a positive value.
The creditworthiness of B is therefore far more important than the creditworthiness
of A. In general, the expected loss from a default on a currency swap is greater than
the expected loss from a default on an interest rate swap. This is because, in the
case of a currency swap, principal amounts in different currencies are exchanged.
In the case of both types of swaps, the expected loss from a default is much less

A Exposure

Swap value

Figure 5.9 The Credit Exposure in a
Swap
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than the expected loss from a default on a regular loan with approximately the
same principal as the swap.

It is important to distinguish between the credit risk and market risk to a
financial institution in any contract. As discussed earlier, the credit risk arises from
the possibility of a default by the counterparty when the value of the contract to
the financial institution is positive. The market risk arises from the possibility that
market variables such as interest rates and exchange rates will move in such a way
that the value of a contract to the financial institution becomes negative. Market
risks can be hedged by entering into offsetting contracts; credit risks cannot be
hedged. Credit risk issues will be discussed further in Chapter 18.

5.7 SUMMARY

The two most common types of swaps are interest rate swaps and currency swaps.
In an interest rate swap, one party agrees to pay the other party interest at a fixed
rate on a notional principal for a number of years. In return, it receives interest
at a floating rate on the same notional principal for the same period of time. In
a currency swap, one party agrees to pay interest on a principal amount in one
currency. In return, it receives interest on a principal amount in another currency.

Principal amounts are not exchanged in an interest rate swap. In a currency
swap, principal amounts are exchanged at both the beginning and the end of the
life of the swap. For a party paying interest in the foreign currency, the foreign
principal is received and the domestic principal is paid at the beginning of the life
of the swap. At the end of the life of the swap, the foreign principal is paid and
the domestic principal is received.

An interest rate swap can be used to transform a floating rate loan into a
fixed rate loan or vice versa. A currency swap can be used to transform a loan in
one currency into a loan in another currency. In essence, a swap is a long position
in one bond combined with a short position in another bond. Alternatively, it can
be considered as a portfolio of forward contracts.

Swaps are usually arranged by financial institutions. Ideally, in order to
eliminate interest rate or exchange rate risk, a financial institution would like to
enter into offsetting swap agreements with two parties at the same time. In practice,
financial institutions frequently warehouse swaps. This means that they enter into
a swap agreement with one party and then hedge their risk on a day-to-day basis
while they attempt to find a party wanting to take the opposite position.

When a financial institution enters into a pair of offsetting swaps with differ-
ent counterparties, it is exposed to credit risk. If one of the counterparties defaults
when the financial institution has positive value in its swap with that counterparty,
the financial institution loses money since it still has to honor its swap agreement
with the other counterparty.
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QUESTIONS AND PROBLEMS

5.1. Companies A and B have been offered the following rates per annum on a $20 million
S-year loan:

Fixed Rate Floating Rate

Company A 12.0% LIBOR + 0.1%
Company B 13.4% LIBOR + 0.6%

Company A requires a floating rate loan; company B requires a fixed rate loan. Design
a swap that will net a bank, acting as intermediary, 0.1% per annum and appear equally
attractive to both companies.

5.2. Company X wishes to borrow U.S. dollars at a fixed rate of interest. Company Y
wishes to borrow Japanese yen at a fixed rate of interest. The amounts required by
the two companies are roughly the same at the current exchange rate. The companies
have been quoted the following interest rates:

Yen Dollars

Company X 5.0% 9.6%
Company Y 6.5% 10.0%
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5.3.

54.
5.5.

5.6.

5.7.

5.8.

5.9.

Design a swap that will net a bank, acting as intermediary, 50 basis points per annum.
Make the swap appear equally attractive to the two companies and ensure that all
foreign exchange risk is assumed by the bank.

A $100 million interest rate swap has a remaining life of 10 months. Under the terms
of the swap, 6-month LIBOR is exchanged for 12% per annum (compounded semi-
annually). The average of the bid and ask rate being exchanged for 6-month LIBOR
in swaps of all maturities is currently 10% per annum with continuous compounding.
The 6-month LIBOR rate was 9.6% per annum 2 months ago. What is the current
value of the swap to the party paying floating? What is its value to the party paying
fixed?

What is meant by warehousing swaps?

A currency swap has a remaining life of 15 months. It involves exchanging interest at
14% on £20 million for interest at 10% on $30 million once a year. The term structure
of interest rates in both the United Kingdom and the United States is currently flat
and if the swap were negotiated today, the interest rates exchanged would be 8% in
dollars and 11% in sterling. All interest rates are quoted with annual compounding.
The current exchange rate is 1.6500. What is the value of the swap to the party paying
sterling? What is the value of the swap to the party paying dollars?

Explain the difference between the credit risk and the market risk in a financial con-
tract. Which of the risks can be hedged?

Explain why a bank is subject to credit risk when it enters into two offsetting swap
contracts.

Companies X and Y have been offered the following rates per annum on a $5 million
10-year loan:

Fixed Rate Floating Rate

Company X 7.0% LIBOR + 0.5%
Company Y 8.8% LIBOR + 1.5%

Company X requires a floating rate loan; company Y requires a fixed rate loan. Design
a swap that will net a bank, acting as intermediary, 0.2% per annum and which will
appear equally attractive to X and Y.

Company A, a British manufacturer, wishes to borrow U.S. dollars at a fixed rate of
interest. Company B, a U.S. multinational, wishes to borrow sterling at a fixed rate
of interest. They have been quoted the following rates per annum:

Sterling U.S. Dollars

Company A 11.0% 7.0%
Company B 10.6% 6.2%
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5.10.

5.11.

5.12.

5.13.

5.14.

Swaps Chapter 5

Design a swap that will net a bank, acting as intermediary, 10 basis points per annum
and which will produce an apparent gain of 15 basis points per annum for each of the
two companies.

Under the terms of an interest rate swap, a financial institution has agreed to pay 10%
per annum and to receive 3-month LIBOR in return on a notional principal of $100
million with payments being exchanged every 3 months. The swap has a remaining
life of 14 months. The average of the bid and ask fixed rate currently being swapped
for 3-month LIBOR is 12% per annum for all maturities. The 3-month LIBOR rate
one month ago was 11.8% per annum. All rates are compounded quarterly. What is
the value of the swap?

Suppose that the term structure of interest rates is flat in the United States and Ger-
many. The dollar interest rate is 11% per annum while the mark interest rate is 8%
per annum The current exchange rate is 2.1 marks = $1. Under the terms of a swap
agreement, a financial institution pays 5% per annum in marks and receives 10% per
annum in dollars. The principals in the two currencies are $10 million and 20 mil-
lion marks. Payments are exchanged every year with one exchange having just taken
place. The swap will last 2 more years. What is the value of the swap to the financial
institution? Assume all interest rates are continuously compounded.

A financial institution has entered into an interest rate swap with company X. Under
the terms of the swap, it receives 10% per annum and pays 6-month LIBOR on a
principal of $10 million for 5 years. Payments are made every 6 months. Suppose
that company X defaults on the sixth payment date (end of year 3) when the interest
rate (with semiannual compounding) is 8% per annum for all maturities. What is the
loss to the financial institution? Assume that 6-month LIBOR was 9% per annum half
way through year 3.

A financial institution has entered into a 10-year currency swap with company Y.
Under the terms of the swap, it receives interest at 3% per annum in Swiss francs and
pays interest at 8% per annum in U.S. dollars. Interest payments are exchanged once
a year. The principal amounts are $7 million and 10 million francs. Suppose that
company Y defaults at the end of year 6 when the exchange rate is $0.80 per franc.
What is the cost to the financial institution? Assume that at the end of year 6, the
interest rate is 3% per annum in Swiss francs and 8% per annum in U.S. dollars for
all maturities. All interest rates are quoted with annual compounding.

Companies A and B face the following interest rates:

A B

U.S. dollars (floating rate) LIBOR + 0.5% LIBOR + 1.0%
German marks (fixed rate) 5.0% 6.5%

Assume that A wants to borrow dollars at a floating rate of interest and B wants to
borrow marks at a fixed rate of interest. A financial institution is planning to arrange

- a swap and requires a 50 basis point spread. If the swap is to appear equally attractive

to A and B, what rates of interest will A and B end up paying?
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5.15.

5.16.

5.17.
5.18.

5.19.

5.20.

5.21.

Company X is based in the United Kingdom and would like to borrow U.S. $50
million at a fixed rate of interest for 5 years in U.S. funds. As the company is
not well known in the United States, this has proved to be impossible. However,
the company has been quoted 12% per annum on fixed rate 5-year sterling funds.
Company Y is based in the United States and would like to borrow the equivalent
of $U.S. 50 million in sterling funds for 5 years at a fixed rate of interest. It has
been unable to get a quote, but has been offered U.S.$ funds at 10.5% per annum.
Five-year government bonds currently yield 9.5% per annum in the United States and
10.5% in the United Kingdom. Suggest an appropriate currency swap which will net
the financial intermediary 0.5% per annum.

After it hedges its foreign exchange risk using forward contracts, is the financial
institution’s average spread in Figure 5.6 likely to be greater than or less than 40
basis points. Explain your answer.

How can a deferred swap be created from two other swaps?

“Companies with high credit risks are the ones that cannot access fixed rate markets
directly. They are the companies that are most likely to be paying fixed and receiving
floating in an interest rate swap.” Assume that this is true. Do you think it increases or
decreases the risk of a financial institution’s swap portfolio? Assume that companies
are most likely to default when interest rates are high.

How can 2 financial institution that warehouses interest rate swaps monitor its exposure
to interest rate changes?

Why is the expected loss from a default on a swap less than the expected loss from
the default on a loan with the same principal?

A bank finds that its assets are not matched with its liabilities. It is taking floating
rate deposits and making fixed rate loans. How can swaps be used to offset the risk?



Options Markets

/Optlons were introduced in Chapter 1. It will be recalled that a call option is the
'nght Yo buy an asset for a certain price; a but option is the right to sell an asset for
a certain price. A European option can be exercised only at the| eﬁa,‘of its life; an
American option can be exercised at any time during its life. In this chapter, we
explain the way in which options markets are organized, the terminology used, how
the contracts are traded, how margin requirements are set, and so on. Options are
fundamentally different from the forward, futures, and swap contracts discussed
in the last few chapters. An option gives the holder of the option the right to
do something. The holder does not have to exercise this right. By contrast, in
a forward, futures, or swap contract, the two parties have entered into af bmdmg,
commitment.

6.1 EXCHANGE-TRADED OPTIONS

Options trade on many different exchanges throughout the world. The underlying

contracts.

136



Sec. 6.1 Exchange-Traded Options 137
Srock OpTIONS

The exchanges trading stock options in the United States are the Chicago
Board Options Exchange (CBOE), the Philadelphia Exchange (PHLX), the Amer-
ican Stock Exchange (AMEX), the Pacific Stock Exchange (PSE), and the New
York Stock Exchange (NYSE). Options trade on over 500 different stocks. Among
the most actively traded options contracts are those on IBM, Kodak, and General
Motors. One contract gives the holder the right to buy or sell 100 shares at the

specified strike price. This is convenient since the shares themselves are normally
traded in lots of 100.

ForeigN CURRENCY OPTIONS

The major exchange for trading foreign currency options is the Philadelphia
Exchange. It offers both European and American contracts on the Australian dollar,
British pound, Canadian dollar, German mark, French franc, Japanese yen, and
Swiss franc. The size of one contract depends on the currency. For example, in
the case of the British pound, one contract gives the holder the right to buy or sell
£31,250; in the case of the Japanese yen, one contract gives the holder the right to
buy or sell 6.25 million yen.

INDEX OPTIONS

Many different index options trade in the United States. The two most
popular are those on the S&P 100 and S&P 500 traded on the CBOE. The S&P
500 option is European whereas the S&P 100 option is American. One contract
is to buy or sell 100 times the index at the specified strike price. Settlement is
in cash rather than by dehvenng the portfoho underlying the index. Consider, for
example, one call contract on the S&P 100 with a strike price of 280. If it is
exercised when the value of the index is 292, the writer of the contract pays the
holder (292 —280) x 100 = $1, 200. This cash payment is based on the index value
at the end of the day on which exercise instructions are issued. Not surprisingly,
investors usually wait until the end of a day before issuing these instructions.

Furures OPTIONS

In a futures option (or options on futures), the underlying asset is a futures
contract. The futures contract normally matures shortly after the expiration of the
option. Futures options are now available for most of the assets on which futures
contracts are traded. When the holder of a call option exercises, he or she acquires
from the writer a long position in the underlying futures contract plus a cash amount
equal to the excess of the futures price over the strike price. When the holder of a
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put option exercises, he or she acquires a short position in the underlying futures
contract plus a cash amount equal to the excess of the strike price over the futures
price. In both cases, the futures contracts have zero value and can be closed out
immediately. The payoff from a futures option is therefore the same as the payoff
from a stock option with the stock price reglaced by the futures price. The most
actively traded futures option is the Treasury bond futures option traded on the
Chicago Board of Trade. The contracts on corn, s‘oybeansv,‘ crude oil, live cattle,

gglq,ﬂEgrodg}}ggs, and some currencies are also popular.

6.2 OVER-THE-COUNTER OPTIONS

Not all options are traded on exchanges. Over-the-counter options markets, where
financial institutions and corporations trade directly with each other, are becoming
increasingly popular. Trading is particularly active in over-the-counter options on
foreign exchange and interest rates.

The main advantage of an over-the-counter option is that it can be tailored
by a financial institution to meet the needs of a corporate client. The strike price
and maturity do not have to correspond to those of exchange-traded options. Also,
nonstandard features can be incorporated into the design of the option. Two exam-
ples of options involving nonstandard features are Bermudan and Asian options.
A Bermudan option is exercisable on certain specified days of its life. In an Asian
option, the payoff is defined in terms of the average value of the underlying asset
during a certain time period rather than in terms of its final value. Both types of
options are sometimes traded over the counter.

6.3 SPECIFICATION OF STOCK OPTIONS

In the rest of this chapter, we will focus on exchange-traded stock options. The
contract specifications and trading of index options, currency options, and futures
options are discussed further in Chapter 11.

As already mentioned, a stock option contract is an American-style option
contract to buy or sell 100 shares ‘of the stock. Details of the contract, such as the
expiration date, the strike price, what happens when dividends are declared, how

large a position investors can hold, and so on, are specified by the exchange.

ExpIrRATION DATES

One of the items used to describe a stock option is the month in which the
expiration date occurs. Thus, a January call on IBM is a call option on IBM with an
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expiration date in January. The precise expiration date is 10:59 p.m. Central Time
on the, Saturday immediately following the third Friday of the expiration month.
The last day on which options trade is the third Friday of the expiration month.
An investor with a long position in an option normally has until 4:30 p.m. Central
Time on that Friday to instruct his or her broker to exercise the option. The broker
then has until 10:59 p.m. the next day to complete the paperwork notifying the
exchange that exercise is to take place.

Stock options are on a January, February, or March cycle. The January cycle
consists of the months of January, April, July, and October. The February cycle
consists of the months of February, May, August, and November. The March
cycle consists of the months of March, June, September, and December. If the
expiration date for the current month has not yet been reached, options trade with
expiration dates in the current month, the following month, and the next two months
in its cycle. If the expiration date of the current month has passed, options trade
with expiration dates in the next month, the next-but-one month, and the next
two months of the expiration cycle. For example, IBM is on a January cycle.
At the beginning of January, options are traded with expiration dates in January,
February, April, and July; at the end of January, they are traded with expiration
dates in February, March, April, and July; at the beginning of May, they are traded
with expiration dates in May, June, July, and October; and so on. When one
option reaches expiration, trading in another is started. Longer dated stock options
known as LEAPS also trade on exchanges. They will be discussed in more detail
in Chapter 11.

STRIKE PRICES

The exchange chooses the strike prices at which options can be written.
For stock options, strike prices are normally spaced $2%, $5, or $10 apart. (An
exception occurs when there has been a stock split or a stock dividend, as will
be described shortly.) The usual rule followed by exchanges is to use a $2%
spacing for strike prices when the stock price is less than $25, a $5 spacing when
it is between $25 and $200, and a $10 spacing when it is greater than $200.
For example, at the time of writing, Citicorp has a stock price of 12 and the
options traded have strike prices of 10, 121, 15, 17%, and 20. IBM has a stock
price of 99% and the options traded have strike prices of 90, 95, 100, 105, 110,
and 115.

When a new expiration date is introduced, the two strike prices closest to the
current stock price are usually selected by the exchange. If one of these is very
close to the existing stock price, the third strike price closest to the current stock
price may also be selected. If the stock price moves outside the range defined by
the highest and lowest strike price, trading is usually introduced in an option with a
new strike price. To illustrate these rules, suppose that the stock price is $53 when
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trading in the October options start. Call and put options would first be offered
with strike prices of 50 and 55. If the stock price rose above $55, a strike price
of 60 would be offered; if it fell below $50, a strike price of 45 would be offered;
and so on.

TERMINOLOGY

For any given asset at any given time, there may be many different option
contracts trading. Consider a stock where there are four expiration dates and five
strike prices. If call and put options trade with every expiration date and every
strike price, there are a total of 40 different contracts. All options of the same type
(calls or puts) are referred to as an option class. For example, IBM calls are one
class while IBM puts are another class. An bption series consists of all the options
of a given class with the same expiration date and strike price. In other words, an
option series refers to a particular contract that is traded. The IBM 110 January
calls are an option series.

Options are referred to as in the money, at the money, or out of the money.
An in-the-money option is one that would lead to a positive cash flow to the holder
if it were exercised immediately. Similarly, an at-the-money option would lead to
zero cash flow if it were exercised immediately, and an out-of-the-money option
would lead to a negative cash flow if it were exercised immediately. If S is the
stock price and X is the strike price, a call option is in the money when § > X,
at the money when S = X, and out of the money when § < X. A put option is in
the money when § < X, at the money when § = X, and out of the money when
§ > X. Clearly, an option will only be exercised if it is in the money. In the
absence of transaction costs, an in-the-money option will always be exercised on
the expiration date if it has not been exercised previously.

The intrinsic value of an option is defined as the maximum of zero and the
value it would have if it were exercised immediately. For a call option, the intrinsic
value is therefore max(S — X, 0). For a put option, it is max(X — S, 0). An in-
the-money American option must be worth at least as much as its intrinsic value
since the holder can realize the intrinsic value by exercising immediately. Often
it is optimal for the holder of an in-the-money American option to wait rather
than exercise immediately. The option is then said to have time value. The total
value of an option can be thought of as the sum of its intrinsic value and its time
value.

DIVIDENDS AND STOCK SPLITS

The early over-the-counter options were dividend protected. If a company
declared a cash dividend, the strike price for options on the company’s stock was
reduced on the ex-dividend day by the amount of the dividend. Exchange-traded
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options are not generally adjusted for cash dividends. As we will see in Chapter 10,
this has significant implications for the way in which options are valued.
Exchange-traded options are adjusted for stock splits. A stock split occurs
when the existing shares are “split” into more shares. For example, in a 3-for-1
stock split, 3 new shares are issued to replace each existing share. Since a stock
split does not change the assets or the earning ability of a company, we should not
expect it to have any effect on the wealth of the company’s shareholders. All else
being equal, the 3-for-1 stock split just referred to should cause the stock price to
go down to one-third of its previous value. In general, an n-for-m stock split should
cause the stock price to go down to m/n of its previous value. The terms of option
contracts are adjusted to reflect expected changes in a stock price arising from a
stock split. After an n-for-m stock split, the exercise price is reduced to m/n of
its previous value and the number of shares covered by one contract is increased
to n/m of its previous value. If the stock price reduces in the way expected, the
positions of both the writer and the purchaser of a contract remain unchanged.

Example 6.1
Consider a call option to buy 100 shares of a company for $30 per share. Suppose that the

company makes a 2-for-1 stock split. The terms of the option contract are then changed so
that it gives the holder the right to purchase 200 shares for $15 per share.

Stock options are adjusted for stock dividends. A stock dividend involves
a company issuing more shares to its existing shareholders. For example, a 20
percent stock dividend means that investors receive 1 new share for each 5 already
owned. A stock dividend, like a stock split, has no effect on either the assets or
the earning power of a company. The stock price can be expected to go down as a
result of a stock dividend. The 20 percent stock dividend referred to is essentially
the same as a 6-for-5 stock split. All else being equal, it should cause the stock
price to decline to 5/6 of its previous value. The terms of an option are adjusted
to reflect the expected price decline arising from a stock dividend in the same way
as they are for that arising from a stock split.

Example 6.2

Consider a put option to sell 100 shares of a company for $15 per share. Suppose that the
company declares a 25% stock dividend. This is equivalent to a 5-for-4 stock split. The
terms of the option contract are changed so that it gives the holder the right to sell 125
shares for $12.

Posrrion Limits AND EXERCISE Limits
The exchange specifies a position limit for each stock upon which options

are traded. This defines the maximum number of option contracts that an investor
can hold on one side of the market. For this purpose, long calls and short puts are
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considered to be on the same side of the market. Also, short calls and long puts
are considered to be on the same side of the market. The exercise limit equals the
position limit. It defines the maximum number of contracts that can be exercised
by any individual (or group of individuals acting together) in any period of 5
consecutive business days. For Digital Equipment, the position limit/exercise limit
is at the time of writing 8,000 contracts.

Position limits and exercise limits are designed to prevent the market from
being unduly influenced by the activities of an individual investor or group of
investors. However, whether they are really necessary is a controversial issue.

6.4 NEWSPAPER QUOTES

Many newspapers carry option quotations. In The Wall Street Journal, stock option
quotations can currently be found under the heading “Listed Options” in the Money
and Investing section. Table 6.1 shows the quotations as they appeared in The Wall
Street Journal of Friday October 18, 1991. These refer to trading that took place
on the previous day (i.e., Thursday, October 17, 1991).

The company on whose stock the option is written together with the closing
stock price is listed in the first column. The strike price appears in the second
column. The next three columns show the prices of the call options with the
closest three expiration months. The last three columns show the prices of the
put options with the closest three expiration months. Since at least four expiration
months are active at any given time, The Wall Street Journal does not provide
quotes on all available options at any given strike price. The letter r indicates
that the option was not traded on October 17, 1991. The letter s indicates that the
option is not offered by the exchange.

The quoted price is the price of an option to buy or sell 1 share. As mentioned
earlier, one contract is for the purchase or sale of 100 shares. A contract therefore
costs 100 times the price shown. Since most options are priced at less than $10 and
some are priced at less than $1, individuals do not have to be extremely wealthy
to trade options.

From Table 6.1, it appears that there were arbitrage opportunities on October
17, 1991. For example, an October call on Dow Chemical with a strike price of
50 could be bought for 2. Since the stock price is 52%, it appears that this call
could be purchased and then exercised immediately for a profit of % In fact, these
arbitrage opportunities almost certainly did not exist. For both options and stocks,
Table 6.1 gives the prices at which the last trade took place on October 17, 1991.
The last trade for the October Dow Chemical call with a strike price of 50 almost
certainly occurred much earlier in the day than the last trade on the stock. If an

. /option trade had been attempted at the time of the last trade on the stock, the call
~ ‘price would have been higher than 2.



Sec. 6.5 Newspaper Quotes 143
TABLE 6.1 Stock Option Quotations from The
Wall Street Journal, October 18, 1991
Thursday, October 17,1991
Options closing prices. Sales unit usuaily is 100 shares.
Stock close is New York or American exchange final price.
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Reprinted by permission of The Wall Street Journal, October 18, 1991. Copyright ©1991,
Dow Jones & Company, Inc. All rights reserved.
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6.5 TRADING

Options trading is in many respects similar to futures trading (see Chapter 2). An
exchange has a number of members (individuals and firms) who are referred to as
having seats on the exchange. Membership of an exchange entitles one to go on
the floor of the exchange and trade with other members.

MARKET MAKERS

Most options exchanges (including the CBOE) use a market maker system
to facilitate trading. A market maker for a certain option is an individual who will
quote both a bid and an ask price on the option whenever he or she is asked to
do so. The bid is the price at which the market maker is prepared to buy and the
and the ask are quoted, the market maker does not know whether the trader who
asked for the quotes wants to buy or sell the option. The ask is of course higher
than the bid and the amount by which the ask exceeds the bid is referred to as the
bid-ask spread. The exchange sets upper limits for the bid-ask spread. It must be
no more than $0.25 for options priced at less than $0.50; $0.50 for options priced
between $0.50 and $10, $0.75 for options priced between $10 and $20, and $1 for
options priced over $20.

The existence of the market maker ensures that buy and sell orders can
always be executed at some price without any delays. Market makers therefore
add liquidity to the market. The market makers themselves make their profits from
the bid-ask spread. They use some of the schemes that will be discussed later in
this book to hedge their risks.

THE FLOOR BROKER

Floor brokers execute trades for the general public. When an investor con-
tacts his or her broker to buy or sell an option, the broker relays the order to the
firm’s fioor broker in the exchange on which the option trades. If the brokerage
house does not have its own floor broker, it generally has an arrangement whereby
it uses either an independent floor broker or the floor broker of another firm.

The floor broker trades either with another floor broker or with the market
maker. A floor broker may be on commission or may be paid a salary by the
brokerage house for which he or she executes trades.

THE ORDER Book OFFICIAL

Many orders that are relayed to floor brokers are limit orders. This means that
they can only be executed at the specified price or a more favorable price. Often
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when a limit order reaches a floor broker, it cannot be executed immediately. (For
example, a limit order to buy a call at $5 cannot be executed immediately when
the market maker is quoting a bid of $44§ and an ask of $51.) In most exchanges,
the floor broker will then pass the order to an individual known as the order book
official (or board broker). This person enters the order into a computer along with
other public limit orders. This ensures that as soon as the limit price is reached,
the order is executed. The information on all outstanding limit orders is available
to all traders.

The market marker/order book official system can be contrasted with the
specialist system which is used in a few options exchanges (e.g., AMEX and
PHLX) and is the most common system for trading stocks. Under the specialist
system, an individual known as the specialist is responsible for being a market
maker and keeping a record of limit orders. Unlike the order book official, the
specialist does not make information on limit orders available to other traders.

OFFSETTING ORDERS

An investor who has purchased an option can close out his or her position by
issuing an offsetting order to sell the same option. Similarly, an investor who has
written an option can close out his or her position by issuing an offsetting order to
buy the same option. ‘

If, when an options contract is traded, neither investor is offsetting an existing
position, the open interest increases by one contract. If one investor is offsetting
an existing position and the other is not, the open interest stays the same. If
both investors are offsetting existing positions, the open interest goes down by one
contract.

6.6 MARGINS

When shares are purchased, an investor can either pay cash or use a margin ac-
count. The initial margin is usually 50 percent of the value of the shares and the
maintenance margin is usually 25 percent of the value of the shares. The margin
account operates in the same way as it does for an investor entering into a futures
contract (see Chapter 2). When call and put options are purchased, the option price
must be paid in full. Investors are not allowed to buy options on margin. This
is because options already contain substantial leverage. Buying on margin would
raise this leverage to an unacceptable level.

When an investor writes options, he or she is required to maintain funds in
a margin account. This is because the investor’s broker and the exchange want to
be satisfied that the investor will not default if the option is exercised. The size of
the margin required depends on the circumstances.
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WRImING NAKED OPTIONS

Consider first the situation where the option is naked. This means that the
option position is not combined with an offsetting position in the underlying stock.
If the option is in the money, the initial margin is 30 percent of the value of the
stocks underlying the option plus the amount by which the option is in the money.
If the option is out of the money, the initial margin is 30 percent of the value of
the stocks underlying the option minus the amount by which the option is out of
the money. The option price received by the writer can be used to partially fulfil
this margin requirement.

Example 6.3

An investor writes four naked call option contracts. The option price is $5, the strike price
is $40, and the stock price is $42. The first part of the margin requirement is 30% of $42 x
400 or $5,040. The option is $2 in the money. The second part of the margin requirement
is therefore $2 x 400 or $800. The price received for the option contracts is $5 x 400 or
$2,000. The additional margin required is therefore

$5, 040 + $800 — $2, 000 = $3, 840

Note that if the option had been a put, it would be $2 out of the money and the additional
margin requirement would be

$5,040 — $800 — $2, 000 = $2, 240

A calculation similar to the initial margin calculation is repeated every day.
Funds can be withdrawn from the margin account when the calculation indicates
that the margin required is less than the current balance in the margin account.
When the calculation indicates that a significantly greater margin is required, a
margin call will be made.

Wriming CovERED CALLS

Writing covered calls involves writing call options when the shares that might
have to be delivered are already owned. Covered calls are far less risky than naked
calls since the worst that can happen is that the investor is required to sell shares
already owned at below their market value. If covered call options are out of
the money, no margin is required. The shares owned can be purchased using a
margin account as just described, and the price received for the option can be used
to partially fulfil this margin requirement. If the options are in the money, no
margin is required for the options. However, the extent to which the shares can be
margined is reduced by the extent to which the option is in the money.
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Example 6.4

An investor decides to buy 200 shares of a certain stock on margin and to write 2 call option
contracts on the stock. The stock price is $63, the strike price is $60 and the price of the
option is $7. The margin account allows the investor to borrow 50% of the price of the
stock less the amount by which the option is in the money. In this case, the option is $3 in
the money so that the investor is able to borrow

0.5 x $63 x 200 — $3 x 200 = $5, 700

The investor is also able to use the price received for the option, $7 x 200 or $1,400, to
finance the purchase of the shares. The shares cost $63 x 200 = $12,600. The minimum
cash initially required from the investor for his or her trades is therefore

$12, 600 — $5, 700 — $1, 400 = $5, 500

In Chapter 8 we will discuss more complicated option trading strategies such
as spreads, combinations, straddles, strangles, and so on. There are special rules
for determining the margin requirements when these trading strategies are used.

6.7 THE OPTIONS CLEARING CORPORATION

The Options Clearing Corporation (OCC) performs much the same sort of function
for options markets as the clearinghouse does for futures markets (see Chapter 2).
It guarantees that the option writer will fulfil his or her obligations under the terms
of the option contract and keeps a record of all long and short positions. The
OCC has a number of members, and all option trades must be cleared through a
member. If a brokerage house is not itself a member of an exchange’s OCC, it
must arrange to clear its trades with a member. Members are required to have a
certain minimum amount of capital and to contribute to a special fund that can be
used if any member defaults on an option obligation.

When purchasing an option, the buyer must pay for it in full by the morning
of the next business day. These funds are deposited with the OCC. The writer of
the option maintains a margin account with his or her broker, as described earlier.
The broker maintains a margin account with the OCC member that clears its trades.
The OCC member, in turn, maintains a margin account with the OCC. The margin
requirements described in the previous section are the margin requirements imposed
by the OCC on its members. A brokerage house may require higher margins from
its clients. However, it cannot require lower margins.

ExErcISING AN OPTION

When an investor wishes to exercise an option, the investor notifies his or
her broker. The broker in turn notifies the OCC member that clears its trades. This
member then places an exercise order with the OCC. The OCC randomly selects a
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member with an outstanding short position in the same option. The member, using
a procedure established in advance, selects a particular investor who has written
the option. If the option is a call, this investor is required to sell stock at the strike
price. If it is a put, the investor is required to buy stock at the strike price. The
investor is said to be assigned. When an option is exercised, the open interest goes
down by one.

At the expiration of the option, all in-the-money options should be exercised
unless the transactions costs are so high as to wipe out the payoff from the option.
Some brokerage firms will automatically exercise options for their clients at expira-
tion when it is in their clients’ interest to do so. The OCC automatically exercises
stock options owned by individuals that are in the money by more than $0.75 and
stock options owned by institutions that are in the money by more than $0.25.

6.8 WARRANTS AND CONVERTIBLES

For the exchange-traded options that have been described so far, the writers and
purchasers meet on the floor of the exchange and, as trading takes place, the
number of contracts outstanding fluctuates. A warrant is an option that arises
in a quite different way. Warrants are issued (i.e., written) by a company or a
financial institution. In some cases they are subsequently traded on an exchange.
The number of contracts outstanding is determined by the size of the original issue
and changes only when options are exercised or expire. Warrants are bought and
sold in much the same way as stocks and there is no need for an Options Clearing
Corporation to become involved. When a warrant is exercised, the original issuer
settles up with the current holder of the warrant.

Call warrants are frequently issued by companies on their own stock. For
example, in a debt issue a company might offer investors a package consisting of
bonds plus call warrants on its stock. If the warrants are exercised, the company
issues new treasury stock to the warrant holders in return for the strike price
specified in the contract. The strike price and exercise date of the warrants do not
have to correspond to those of the regular exchange-traded call options. Typically,
warrants have longer maturities than regular exchange-traded call options.

Put and call warrants are also sometirhes issued by financial institutions to
satisfy a demand in the market. The underlying asset is typically an index, a
currency, or a commodity. For example, at the end of the 1980s there was a great
deal of interest in put warrants on the Japanese Nikkei 225 index. Once a warrant
like this has been issued, it is often traded on an exchange. The financial institution
typically settles in cash when the warrant is exercised. The financial institution is
paid for the warrant up front, but must hedge its risk. The techniques for doing
this will be described in Chapter 13.

Convertible bonds are debt instruments with embedded options issued by
corporations. The holder has the right to exchange a convertible bond for equity in
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the issuing company at certain times in the future according to a certain exchange
ratio. Very often, the convertible is callable. This means that it can be repurchased
by the issuer at a certain price at certain times in the future. Once the bonds have
been called, the holder can always choose to convert prior to repurchase. Thus the
effect of a call provision is often to give the issuer the right to force conversion of
the bonds into equity at an earlier time than the holders would otherwise choose.
The company provides the holder with new treasury stock in exchange for the
bonds when the convertible is converted. If, as a rough approximation, interest
rates are assumed constant and call provisions are ignored, a convertible can be
regarded as a regular debt instrument plus call warrants.

6.9 SUMMARY

Options trade on a wide range of different assets on exchanges and in the over-
the-counter market. An exchange must specify the terms of the option contracts it
trades. In particular, it must specify the size of the contract, the precise expiration
time, and the strike price. Over-the-counter options can be tailored to the particular
needs of corporations and do not have to correspond to those traded on exchanges.

The terms of a stock option are not adjusted for cash dividends. However,
they are adjusted for stock dividends and stock splits. The aim of the adjustment
is to keep the positions of both the writer and the buyer of a contract unchanged.

Most options exchanges use a market maker system. A market maker is
an individual who is prepared to quote both a bid (price at which he or she is
prepared to buy) and an ask (price at which he or she is prepared to sell). Market
makers improve the liquidity of the market and ensure that there is never any delay
in executing market orders. They themselves make a profit from the difference
between their bid and ask prices (known as their bid-ask spread). The exchange
has rules specifying upper limits for the bid-ask spread.

Writers of options have potential liabilities and are required to maintain mar-
gins with their brokers. The broker, if not a member of the Options Clearing
Corporation, will maintain a margin account with a firm that is a member. This
firm will in turn maintain a margin account with the Options Clearing Corpora-
tion. The Options Clearing Corporation is responsible for keeping a record of all
outstanding contracts, handling exercise orders, and so on.
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QUESTIONS AND PROBLEMS

6.1. Explain why brokers require margins from clients when they write options, but not
when they buy options.

6.2. A stock option is on a February, May, August, November cycle. What options trade
on (a) April 1 and (b) May 30?7

6.3. A company declares a 3-for-1 stock split. Explain how the terms of a call option with
a strike price of $60 change.

6.4. Explain the difference between the specialist system and the market maker/order book
official system for the organization of trading at an exchange.

6.5. Explain carefully the difference between writing a call option and buying a put option.

6.6. The treasurer of a corporation is trying to choose between the use of options and
forward contracts to hedge the corporation’s foreign exchange risk. Discuss the ad-
vantages and disadvantages of each.

6.7. Consider an exchange-traded call option contract to buy 500 shares with exercise price
$40 and maturity in 4 months. Explain how the terms of the option contract change
when there is
(a) A 10% stock dividend.

(b) A 10% cash dividend.
(¢) A 4-for-1 stock split.

6.8. “If most of the call options on a stock are in the money, it is likely that the stock
price has risen rapidly in the last few months.” Discuss this statement.

6.9. What is the effect of an unexpected cash dividend on (a) a call option price and (b)
a put option price?

6.10. Options on General Motors’ stock are on a March, June, September, and December
cycle. What options trade on (a) March 1; (b) June 30; and (c) August 5?

6.11. Explain why the market maker’s bid-ask spread represents a real cost to options’
investors.

6.12. An investor writes 5 naked call option contracts. The option price is $3.50, the strike
price is $60.00, and the stock price is $57.00. What is the initial margin requirement?

6.13. An investor buys 500 shares of a stock and sells 5 call option contracts on the stock.
The strike price is $30. The price of the option is $3. What is the investor’s minimum
cash investment (a) if the stock price is $28 and (b) if the stock price is $32?



Properties of Stock
Option Prices

In this chapter, we discuss the factors affecting stock option prices. We use a num-
ber of different arbitrage arguments to explore the relationships between European
option prices, American option prices, and the underlying asset price. We show that
it is never optimal to exercise an American call option on a non-dividend-paying
stock prior to expiration, but that there are some circumstances under which the
early exercise of an American put option on such a stock is optimal.

7.1 FACTORS AFFECTING OPTION PRICES

There are six factors affecting the price of a stock option:

e

1. The current stock price -
2. The strike price 7/

3. The time to expiration
4. The volatility of the stoch price #

5. The risk-free interest rate 7 .

6. The dividends e)fpected during E_lﬁlife__o_f,ﬂm-option

/
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In this section, we consider what happens to option prices when one of these
factors changes with all the others remaining fixed. The results are summarized in
Table 7.1.

ST10oCK PRICE AND STRIKE PRICE

If it is exercised at some time in the future, the payoff from a call option
will be the amount by which the stock price exceeds the strike price. Call options
therefore become more valuable as the stock price increases and less valuable as
the strike price increases. For a put option, the payoff on exercise is the amount
by which the strike price exceeds the stock price. Put options therefore behave
in the opposite way to call options. They become less valuable as the stock price
increases and more valuable as the strike price increases.

TiME TO EXPIRATION

Consider next the effect of the expiration date. Both put and call American
options become more valuable as the time to expiration increases. To see this,
consider two options that differ only as far as the expiration date is concerned.
The owner of the long-life option has all the exercise opportunities open to the
owner of the short-life option—and more. The long-life option must therefore
always be worth at least as much as the short-life option.

European put and call options do not necessarily become more valuable as
the time to expiration increases. This is because it is not true that the owner of
a long-life European option has all the exercise opportunities open to the owner
of a short-life European option. The owner of the long-life European option can
only exercise at the maturity of that option. Consider two European call options
on a stock, one with an expiration date in 1 month, the other with an expiration
date in 2 months. Suppose that a very large dividend is expected in 6 weeks. The

TABLE 7.1 Summary of the Effect on the Price of a Stock Option
of Increasing One Variable While Keeping All Others Fixed

European European American American

Variable Call Put Call Put
Stock Price + - + -
Strike Price - + - +
Time to Expiration ? ? + +
Volatility + + + +
Risk-free Rate + -~ + -
Dividends - + - +
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dividend will cause the stock price to decline. It is possible that this will lead to
the short-life option being worth more than the long-life option.

VOLATILITY

The precise way in which the volatility is defined will be discussed in Chapter
10. Roughly speaking, the volatility of a stock price is a measure of how uncertain
we are about future stock price movements. As volatility increases, the chance that
the stock will do very well or very poorly increases. For the owner of a stock,
these two outcomes tend to offset each other. However, this is not so for the owner
of a call or put. The owner of a call benefits from price increases but has limited
downside risk in the event of price decreases since the most that he or she can
lose is the price of the option. Similarly, the owner of a put benefits from price
decreases but has limited downside risk in the event of price increases. The values
of both calls and puts therefore increase as volatility increases.

Risk-FREE INTEREST RATE

The risk-free interest rate affects the price of an option in a less clear-cut
way. As interest rates in the economy increase, the expected growth rate of the
stock price tends to increase. However, the present value of any future cash flows
received by the holder of the option decreases. These two effects both tend to
decrease the value of a put option. Hence, put option prices decline as the risk-free
interest rate increases. In the case of calls, the first effect tends to increase the price
while the second effect tends to decrease it. It can be shown that the first effect
always dominates the second effect; that is, the prices of calls always increase as
the risk-free interest rate increases.

It should be emphasized that these results assume all other variables remain
fixed. In practice when interest rates rise (fall), stock prices tend to fall (rise). The
net effect of an interest rate change and the accompanying stock price change may
therefore be the opposite of that just given.

DIVIDENDS

Dividends have the effect of reducing the stock price on the ex-dividend date.
This is bad news for the value of call options and good news for the value of put
options. The values of call options are therefore negatively related to the sizes of
any anticipated dividends and the values of put options are positively related to the
sizes of any anticipated dividends.

7.2 ASSUMPTIONS AND NOTATION

We now move on to derive some relationships between option prices that do not
require any assumptions about volatility and the probabilistic behavior of stock
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prices. The assumptions we do make are similar to those we made when deriving
forward and futures prices in Chapter 3. We assume that there are some market
participants, such as large investment banks, for which

1. There are no transaction costs.
2. All trading profits (net of trading losses) are subject to the same tax rate.
3. Borrowing and lending at the risk-free interest rate is possible.

We assume that these market participants are prepared to take advantage of arbitrage
opportunities as they arise. As discussed in chapters 1 and 3, this means that
any available arbitrage opportunities disappear very quickly. For the purposes
of our analyses, it is therefore reasonable to assume that there are no arbitrage
opportunities.

We will use the following notation:

Current stock price

S:
X Strike price of option
T: Time of expiration of option
t: Current time
St: Stock price at time T
r: Risk-free rate of interest for an investment maturing at time T
C: Value of American call option to buy one share
P: Value of American put option to sell one share
c: Value of European call option to buy one share
p: Value of European put option to sell one share

o: Volatility of stock price

It should be noted that 7 is the nominal rate of interest, not the real rate of interest.
We can assume that » > 0. Otherwise, a risk-free investment would provide no
advantages over cash. (Indeed, if » < 0, cash would be preferable to a risk-free
investment.)

7.3 UPPER AND LOWER BOUNDS FOR OPTION
PRICES

In this section, we derive upper and lower bounds for option prices. These do not
depend on any particular assumptions about the factors mentioned in the previous
section (except r > 0). If the option price is above the upper bound or below the
lower bound, there are profitable opportunities for arbitrageurs.
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UrpeEr Bounps

An American or European call option gives the holder the right to buy one
share of a stock for a certain price. No matter what happens, the option can never
be worth more than the stock. Hence, the stock price is an upper bound to the
option price:

c<Sand C <SS

If these relationships are not true, an arbitrageur can easily make a riskless profit
by buying the stock and selling the call option.

An American or European put option gives the holder the right to sell one
share of a stock for X. No matter how low the stock price becomes, the option
can never be worth more than X. Hence,

p<Xand P <X

For European options, we know that at time T, the option will not be worth more
than X. It follows that it must now not be worth more than the present value of X:

p < Xe—r(T—r)

If this were not true, an arbitrageur could make a riskless profit by writing the
option and investing the proceeds of the sale at the risk-free interest rate.

Lowger Bounp For CaLLs oN NoN-DiVIDEND-PAYING STOCKS

A lower bound for the price of a European call option on a non-dividend-
paying stock is

S —XeTTD

We first illustrate this with a numerical example and then present a more formal
argument.

Suppose that § = $20, X = $18, r = 10% per annum, and T — ¢ = 1 year.
In this case,

§—Xe T = 20— 18¢7%! =3.71

or $3.71. Consider the situation where the European call price is $3.00, which
is less than the theoretical minimum of $3.71. An arbitrageur can buy the call
and short the stock. This provides a cash inflow of $20.00 — $3.00 = $17.00. If
invested for 1 year at 10 percent per annum, the $17.00 grows to 17¢%! = $18.79.
At the end of the year, the option expires. If the stock price is greater than $18, the
arbitrageur exercises the option for $18, closes out the short position and makes a
profit of

$18.79 — $18.00 = $0.79
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If the stock price is less than $18, the stock is bought in the market and the short
position is closed out. The arbitrageur then makes an even greater profit. For
example, if the stock price is $17, the arbitrageur’s profit is

$18.79 — $17.00 = $1.79

For a more formal argument, we consider the following two portfolios:

Portfolio A: One European call option plus an amount of cash equal to
X e—r(T-l)

Portfolio B: One share

In portfolio A, the cash, if it is invested at the risk-free interest rate, will grow to
X at time T. If S; > X, the call option is exercised at time T and portfolio A is
worth Sr. If S < X, the call option expires worthless and the portfolio is worth
X. Hence, at time T, portfolio A is worth

max (S7, X)

Portfolio B is worth St at time T. Hence, portfolio A is always worth as much
as, and is sometimes worth more than, portfolio B at time T. It follows that, in
the absence of arbitrage opportunities this must also be true today. Hence,

c+Xe TN 5 §
or
c>S—Xe T

Since the worst than can happen to a call option is that it expires worthless,
its value must be positive. This means that ¢ > 0 and therefore

c>max(S—Xe 79, 0) (7.1
Example 7.1

Consider an American call option on a non-dividend-paying stock when the stock price is
$51, the exercise price is $50, the time to maturity is 6 months, and the risk-free rate of
interest is 12% per annum. In this case, § =51, X =50, T —¢t =05, and r = 0.12. From
Equation (7.1), a lower bound for the option price is S — Xe™"7" or

51 — 50e0-12x05 — $3.91

Lower Bounp ForR EUROPEAN Purs oN NON-DIVIDEND-PAYING
STOCKS

For a European put option on a non-dividend paying stock, a lower bound
for the price is

Xe 7T _ g
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Again, we first illustrate this with a numerical example and then present a more
formal argument.

Suppose that § = $37, X = $40, r = 5% per annum, and T —t = 0.5 years.
In this case,

Xe_,(T_t) -8 = 40e—0,05x0.5 —37 =201

or $2.01. Consider the situation where the European put price is $1.00, which is
less than the theoretical minimum of $2.01. An arbitrageur can borrow $38.00
for 6 months to buy both the put and the stock. At the end of the 6 months,
the arbitrageur will be required to repay 38¢%%5*03 = $38.96. If the stock price
is below $40.00, the arbitrageur exercises the option to sell the stock for $40.00,
repays the loan, and makes a profit of

$40.00 — $38.96 = $1.04

If the stock price is greater than $40.00, the arbitrageur discards the option, sells
the stock, and repays the loan for an even greater profit. For example, if the stock
price is $42.00, the arbitrageur’s profit is

$42.00 — $38.96 = $3.04

For a more formal argument, we consider the following two portfolios:

Portfolio C: One European put option plus one share
Portfolio D: An amount of cash equal to Xe™" ="

If S; < X, the option in portfolio C is exercised at time T and the portfolio
becomes worth X. If S > X, the put option expires worthless and the portfolio
is worth St at time T. Hence, portfolio C is worth

max (St, X)

at time T. Assuming the cash is invested at the risk-free interest rate, portfolio
D is worth X at time T. Hence, portfolio C is always worth as much as, and is
sometimes worth more than, portfolio D at time T. It follows that, in the absence
of arbitrage opportunities, portfolio C must be worth more than portfolio D today.
Hence,

p+S>XerT
or
p>Xe T _g

Since the worst that can happen to a put option is that it expires worthless,
its value must be positive. This means that

p >max (Xe 7D —§,0) (1.2)
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Example 7.2

Consider a European put option on a non-dividend-paying stock when the stock price is
$38, the exercise price is $40, the time to maturity is 3 months, and the risk-free rate of
interest is 10% per annum. In this case, § = 38, X = 40, T —t = 0.25, and r = 0.10. From
Equation (7.2), a lower bound for the option price is Xe="T— — S or

40e~01%025 _ 38 = $1.01

7.4 EARLY EXERCISE: CALLS ON A
NON-DIVIDEND-PAYING STOCK

In this section, we show that it is never optimal to exercise an American call option
on a non-dividend-paying stock early.

To illustrate the general nature of the argument, consider an American call
option on a non-dividend-paying stock with one month to expiration when the stock
price is $50 and the strike price is $40. The option is deep in the money and the
investor who owns the option might well be tempted to exercise it immediately.
However, if the investor plans to hold the stock for more than one month, this is
not the best strategy. A better course of action is to keep the option and exercise it
at the end of the month. The $40 strike price is then paid out one month later than
it would be if the option were exercised immediately. This means that interest is
earned on the $40 for one month. Since the stock pays no dividend, no income
from the stock is sacrificed. A further advantage of waiting rather than exercising
immediately is that there is some chance (however remote) that the stock price will
be below $40 in one month. In this case, the investor will not exercise and will
be glad that the decision to exercise early was not taken!

This argument shows that there are no advantages to exercising early if the
investor plans to keep the stock for the rest of the life of the option (one month,
in this case). What if the investor thinks the stock is currently overpriced and
is wondering whether to exercise the option and sell the stock? In this case, the
investor is better off selling the option than exercising it.! The option will be
bought by another investor who does want to hold the stock. Such investors must
exist. Otherwise the current stock price would not be $50. The price obtained
for the option will be greater than its intrinsic value of $10 for the reasons just
mentioned. In fact, Equation (7.1) shows that the market price of the option must
always be greater than

50 — 406—0.1><0.08333 — $1033

Otherwise there are arbitrage opportunities.

1As an alternative strategy, the investor can keep the option and short the stock. This locks in a
better profit than $10.
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To present a more formal argument, consider again the following two port-
folios:

Portfolio E: One American call option plus an amount of cash equal to
X~ (T-1)

Portfolio F: One share

The value of the cash in portfolio E at expiration of the option is X. At some
earlier time 7, it is Xe "T~=™). If the call option is exercised at time 7, the value
of portfolio E is

S—X+Xe TP

This is always less than S when T < T since r > 0. Portfolio E is therefore always
worth less than portfolio F if the call option is exercised prior to maturity. If the
call option is held to expiration, the value of portfolio E at time T is

max (St, X)

The value of portfolio F is Sr. There is always some chance that St < X. This
means that portfolio E is always worth as much as, and is sometimes worth more
than, portfolio F. :

We have shown that portfolio E is worth less than portfolio F if the option
is exercised immediately, but is worth at least as much as portfolio F if the holder
of the option delays exercise until the expiration date. It follows that a call option
on a non-dividend-paying stock should never be exercised prior to the expiration
date. An American call option on a non-dividend-paying stock is therefore worth
the same as the corresponding European option on the same stock:

C=c
For a quicker proof, we can use Equation (7.1):
c>8—Xe"TD

Since the owner of an American call has all the exercise opportunities open to the
owner of the corresponding European call, we must have

C>c
Hence,
C>8—Xe T

Since r > 0, it follows from this that C > § — X. If it were optimal to exercise
early, C would equal § — X. We deduce that it can never be optimal to exercise
early.
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Call option
price

z -
X Stock price, S

Figure 7.1 Variation of Price of an American or European Call Option on a Non-
Dividend-Paying Stock with the Price, §

Figure 7.1 shows the general way in which the call price varies with S and X.
It indicates that the call price is always above its intrinsic value of max (S — X, 0).
As r, o, or T —t increase, the call price moves in the direction indicated by the
arrows (i.e., farther away from the intrinsic value).

To summarize, one reason why a call option should not be exercised early
can be considered as being due to the insurance that it provides. A call option,
when held instead of the stock itself, in effect insures the holder against the stock
price falling below the exercise price. Once the option has been exercised and
the exercise price has been exchanged for the stock price, this insurance vanishes.
Another reason is concerned with the time value of money. The later the strike
price is paid out the better.

7.5 EARLY EXERCISE: PUTS ON A
NON-DIVIDEND-PAYING STOCK

It can be optimal to exercise an American put option on a non-dividend-paying
stock early. Indeed, at any given time during its life, a put option should always
be exercised early if it is sufficiently deeply in the money.

To illustrate this, consider an extreme situation. Suppose that the strike price
is $10 and the stock price is virtually zero. By exercising immediately, an investor
makes an immediate gain of $10. If the investor waits, the gain from exercise
might be less than $10 but it cannot be more than $10 since negative stock prices
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are impossible. Furthermore, receiving $10 now is preferable to receiving $10 in
the future. It follows that the option should be exercised immediately.
It is instructive to consider the following two portfolios:

Portfolio G: One American put option plus one share
Portfolio H: An amount of cash equal to Xe™"{7="

If the option is exercised at time < T, portfolio G becomes worth X while
portfolio H is worth Xe™"@ ™). Portfolio G is therefore worth more than portfolio
H. If the option is held to expiration, portfolio G becomes worth

max (X, S7)

while portfolio H is worth X. Portfolio G is therefore worth at least as much as,
and possibly more than, portfolio H. Note the difference between this situation
and the one in the previous section. Here, we cannot argue that early exercise is
undesirable since portfolio G looks more attractive than portfolio H regardless of
the decision on early exercise.

Like a call option, a put option can be viewed as providing insurance. A
put option, when held in conjunction with the stock, insures the holder against the
stock price falling below a certain level. However, a put option is different from
a call option in that it may be optimal for an investor to forgo this insurance and
exercise early in order to realize the strike price immediately. In general, the early
exercise of a put option becomes more attractive as S decreases, as r increases,
and as o decreases.

It will be recalled from Equation (7.2) that

p>Xe T _g

For an American put with price P, the stronger condition
P>X-S§

must always hold since immediate exercise is always possible.

Figure 7.2 shows the general way in which the price of an American put
varies with S. Provided that r > 0, it is always optimal to exercise an American
put immediately when the stock price is sufficiently low. When early exercise is
optimal, the value of the option is X — S. The curve representing the value of
the put therefore merges into the put’s intrinsic value, X — S, for a sufficiently
small value of S. In Figure 7.2, this value of S is shown as point A. The value of
the put moves in the direction indicated by the arrows when r decreases, when o
increases, and when T increases.

Since there are some circumstances when it is desirable to exercise an Amer-
ican put option early, it follows that an American put option is always worth more
than the corresponding European put option. Since an American put is sometimes
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Figure 7.2 Variation of Price of an American Put Option with the Stock Price, §

worth its intrinsic value (see Figure 7.2), it follows that a European put option must
sometimes be worth less than its intrinsic value. Figure 7.3 shows the variation of
the European put price with the stock price. Note that point B in Figure 7.3, at
which the price of the option is equal to its intrinsic value, must represent a higher
value of the stock price than point A in Figure 7.2. Point E in Figure 7.3 is where
S = 0 and the European put price is Xe™"T—9,

} European
put price

X Stock price, S

Figure 7.3 Variation of Price of a European Put Option with the Stock Price, §
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7.6 PUT-CALL PARITY

It will be recalled that P and C are the prices of American put and call options,
while p and ¢ are the prices of European put and call options. The variables, P,
p. C, and c are all functions of S, X, r, T —1¢, and o. We have shown that for a
non-dividend-paying stock,

C=c

P> pwhenr >0

We now derive an important relationship between p and c. Consider the following
two portfolios:

Portfolio A: One European call option plus an amount of cash equal to
X e—r(T—t)
Portfolio C: One European put option plus one share

Both are worth
max (S7, X)

at expiration of the options. Since the options are European, they cannot be ex-
ercised prior to the expiration date. The portfolios must therefore have identical
values today. This means that

c+Xe ™ T N=p+S§ (7.3)

This relationship is known as put-call parity. It shows that the value of a European
call with a certain exercise price and exercise date can be deduced from the value
of a European put with the same exercise price and date, and vice versa.

If Equation (7.3) does not hold, there are arbitrage opportunities. Suppose
that the stock price is $31, the exercise price is $30, the risk-free interest rate is
10 percent per annum, the price of a 3-month European call option is $3, and the
price of a 3-month European put option is $2.25. In this case,

¢+ Xe 7T = 34 30e701%05 = 3226

p+S=225+4+31=3325

Portfolio C is overpriced relative to portfolio A. The correct arbitrage strategy is
to buy the securities in portfolio A and short the securities in portfolio C. This
involves buying the call and shorting both the put and the stock. The strategy
generates a positive cash flow of

—3+2.25+31=2$30.25
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upfront. When invested at the risk-free interest rate, this grows to 30.25¢%1*0% =

31.02 in 3 months. If the stock price at expiration of the option is greater than
$30, the call will be exercised. If it is less than $30, the put will be exercised. In
either case the investor ends up buying one share for $30. This share can be used
to close out the short position. The net profit is therefore

$31.02 — $30.00 = $1.02

For an alternative situation, suppose that the call price is $3 and the put price
is $1. In this case

¢+ Xe7 T =3 +30e %10 =32.25

p+S8=1+31=3200.

Portfolioc A is overpriced relative to portfolio C. An arbitrageur can short the
securities in portfolio A and buy the securities in portfolio C to lock in a profit.
This involves shorting the call and buying both the put and the stock. The strategy
involves an initial investment of

$31 + $1 —$3 =529

at time zero. When financed at the risk-free interest rate, a repayment of
29¢01x025 — $29.73 is required at the.end of the 3 months. As in the previ-
ous case, either the call or the put will be exercised. The short call and long put
option position therefore leads to the stock being sold for $30.00. The net profit
is therefore

$30.00 — $29.73 = $0.27.

ReLATIONSHIP BETWEEN AMERICAN CALL AND PUT PRICES

Put-call parity holds only for European options. However, it is possible
to derive some relationships between American option prices for a non-dividend-
paying stock.

Since P > p, it follows from Equation (7.3) that

P>c+Xe T g
and since ¢ = C,

P>C+Xe’TD—g
or

C—P<S—Xe T (7.4)
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For a further relationship between C and P consider

Portfolio I: European call option plus an amount of cash equal to X
Portfolio J: American put option plus one share

Both options have the same exercise price and expiration date. Assume that
the cash in portfolio I is invested at the risk-free interest rate. If the put option is
not exercised early portfolio J is worth

max (S, X)
at time T. Portfolio I is worth
max (S, X) + Xe'T™ — X

at this time. Portfolio I is therefore worth more than portfolio J. Suppose next that
the put option in portfolio J is exercised early, say, at time t. This means that
portfolio J is worth X at time t. However, even if the call option were worthless,
portfolio I would be worth Xe ™~ at time 7. It follows that portfolio I is worth
more than portfolio J in all circumstances. Hence,

c+X>P+S
Since ¢ = C,

C+X>P+S
or

C—-P>S5~-X

Combining this with Equation (7.4), we obtain
S—X<C—-P<S§—Xe T (7.5)
Example 7.3

Consider the situation where an American call option on a non-dividend-paying stock with
exercise price $20.00 and maturity in 5 months is worth $1.50. This must also be the value
of a European call option on the same stock with the same exercise price and maturity.
Suppose that the current stock price is $19.00 and the risk-free interest rate is 10% per
annum. From a rearrangement of Equation (7.3), the price of a European put with exercise
price $20 and maturity in 5 months is

1.50 4+ 20e~01x04167 _ 19 — $1 68
From Equation (7.5)
19-20<C—-P < 19— 90e—0-1%0:4167
or

1>P—-C>0.18
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showing that P — C lies between $1.00 and $0.18. Since C is $1.50, P must lic between
$1.68 and $2.50. In other words, upper and lower bounds for the price of an American put
with the same strike price and expiration date as the American call are $2.50 and $1.68.

7.7 EFFECT OF DIVIDENDS

The results produced in sections 7.3 to 7.6 have assumed that we are dealing with
options on a non-dividend-paying stock. In this section, we discuss the impact of
dividends. In the United States, exchange-traded stock options generally have less
than 8 months to maturity. The dividends payable during the life of the option
can usually be predicted with reasonable accuracy. We will use D to denote the
present value of the dividends during the life of the option. For this purpose a
dividend is assumed to occur at the time of its ex-dividend date.

Lower Bounp FoOR CALLS AND Puts

We can redefine portfolios A and B as follows:

Portfolio A: One European call option plus an amount of cash equal to D -+
X e—r(T—t)
Portfolio B: One share

A similar argument to the one used to derive Equation (7.1) shows that
c>8—D—Xe T (7.6)

We can also redefine portfolios C and D as follows:

Portfolio C: One European put option plus one share
Portfolio D: An amount of cash equal to D + Xe™ T~

A similar argument to the one used to derive Equation (7.2) shows that

p>D+Xe 7T § (7.7

EARLY EXERCISE

When dividends are expected, we can no longer assert that an American call
option will not be exercised early. Sometimes it is optimal to exercise an American
call immediately prior to an ex-dividend date. This is because the dividend will
cause the stock price to jump down, making the option less attractive. It is never
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optimal to exercise a call at other times. This point will be discussed further in
Chapter 10.

Pur-CaLL PARITY
Comparing the value at time T of the redefined portfolios A and C shows
that when there are dividends, put-call parity becomes
c+D+Xe" T D =p+S§ (7.8)
Dividends cause Equétion (7.5) to be modified to
S—D—-X<C—-P<S—Xe'T™" (7.9)

To prove this inequality, consider

Portfolio I: European call option plus an amount of cash equal to D + X
Portfolio J: American put option plus a share

Regardless of what happens, it can be shown that portfolio I is worth more than
portfolio J. Hence,

P+S<c+D+X

Since a European call is never worth more than its American counterpart, or ¢ < C,
it follows that

P+S<C+D+X
or
S-D-X<C-P

This proves the first half of the inequality in Equation (7.9). For a non-dividend-
paying stock, we showed in Equation (7.5) that

C—P<S—Xe TD

Since dividends decrease the value of a call and increase the value of a put, this
inequality must also be true for options on a dividend-paying stock. This proves
the second half of the inequality in Equation (7.9).

7.8 EMPIRICAL RESEARCH

Empirical research to test the results in this chapter might seem to be relatively
simple to carry out once the appropriate data has been assembled. In fact, there
are a number of complications:
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1. It is important to be sure that option prices and stock prices are being observed
at exactly the same time. For example, testing for arbitrage opportunities by
looking at the price at which the last trade is done each day is inappropriate.
This point has already been made in connection with the numbers in Table 6.1.

2. It is important to consider carefully whether a trader could have taken ad-
vantage of any observed arbitrage opportunity. If the opportunity exists only
momentarily, there might, in practice, be no way of exploiting it.

3. Transactions costs must be taken into account when determining whethef]
arbitrage opportunities were possible.

4. Put-call parity only holds for European options. Exchange-traded stock op-
tions are American.

5. Dividends to be paid during the life of the option must be estimated.

Some of the empirical research that has been carried out is described in the
papers by Bhattacharya, Galai, Gould and Galai, Klemkosky and Resnick, and Stoll
that are referenced at the end of this chapter. Galai and Bhattacharya test whether
option prices are ever less than their lower bounds; Stoll, Gould and Galai, and
the two papers by Klemkosky and Resnick test whether put-call parity holds. We
will consider the results of Bhattacharya and of Klemkosky and Resnick.

Bhattacharya’s study examined whether the theoretical lower bounds for call
options applied in practice. He used data consisting of the transaction prices for
options on 58 stocks over a 196-day period between August 1976 and June 1977.
The first test examined whether the options satisfied the condition that price be
greater than intrinsic value, that is, whether C > max (S — X, 0). Over 86,000
option prices were examined and about 1.3 percent were found to violate this
condition. In 29 percent of the cases, the violation disappeared by the next trade,
indicating that in practice traders would not have been able to take advantage of it.
When transaction costs were taken into account, the profitable opportunities created
by the violation disappeared. Bhattacharya’s second test examined whether options
sold for less than the lower bound S — D — Xe "7~ [See Equation (7.6).] He
found that 7.6 percent of his observations did in fact sell for less than this lower
bound. However, when transaction costs were taken into account, these did not
give rise to profitable opportunities.

Klemkosky and Resnick’s tests of put-call parity used data on option prices
taken from trades between July 1977 and June 1978. They subjected their data
to several tests to determine the likelihood of options being exercised early and
discarded data where early exercise was considered probable. By doing this they
felt they were justified in treating Amerian options as European. They identified
540 situations where the call price was too low relative to the put and 540 situations
where the call price was too high relative to the put. After allowing for transaction
costs, 38 of the first set of situations gave rise to profitable arbitrage opportunities
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and 147 of the second set of situations did so. The opportunities persisted when
either a 5- or a 15-minute delay between the opportunity being noted and trades
being executed was assumed. Klemkosky and Resnick’s conclusion is that arbitrage
opportunities were available to some traders, particularly market makers, during
the period they studied.

7.9 SUMMARY

There are six factors affecting the value of a stock option: the current stock price,
the strike price, the expiration date, the stock price volatility, the risk-free interest
rate, and the dividends expected during the life of the option. The value of a call
generally increases as the current stock price, the time to expiration, the volatility,
and the risk-free interest rate increase. The value of a call decreases as the strike
price and expected dividends increase. The value of a put generally increases as
the strike price, the time to expiration, the volatility and the expected dividends
increase. The value of a put decreases as the current stock price and the risk-free
interest rate increase.

It is possible to reach some conclusions about the values of stock options
without making any assumptions about the probabilistic behavior of stock prices.
For example, the price of a call option on a stock must always be worth less than
the price of the stock itself. Similarly, the price of a put option on a stock must
always be worth less than the option’s strike price.

A call option on a non-dividend-paying stock must be worth more than

max (S — Xe "7, 0)

where S is the stock price, X is the exercise price, r is the risk-free interest rate,
and T is the time to expiration. A put option on a non-dividend-paying stock must
be worth more than

max (Xe "7 -8, 0)

When dividends with present value D will be paid, the lower bound for a call
option becomes

max (S — D — Xe"77", 0)
and the lower bound for a put option becomes
max (Xe T 4+ D-8,0)

Put-call parity is a relationship between the price, ¢, of a European call
option on a stock and the price, p, of a European put option on a stock. For a
non-dividend-paying stock, it is

c+Xe " D=p4+S§
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For a dividend-paying stock, the put-call parity relationship is
c+D+Xe T =pytg

Put-call parity does not hold for American options. However, it is possible to use
arbitrage arguments to obtain upper and lower bounds for the difference between
the price of an American call and the price of an American put.

In future chapters, we will carry the analyses in this chapter further by making
some specific assumptions about the probabilistic behavior of stock prices. This
will enable us to derive exact pricing formulas for European stock options. It will
also enable us to derive numerical procedures for pricing American options.
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QUESTIONS AND PROBLEMS

7.1. An investor buys a call with strike price X and writes a put with the same strike price.
Describe the investor’s position.

7.2. Explain why an American option is always worth at least as much as a European
option on the same asset with the same strike price and exercise date.

7.3. Explain why an American option is always worth at least as much as its intrinsic
value.

7.4. List the six factors affecting stock option prices.



Chap. 7 Questions and Problems 171

7.5.

7.6.

7.17.

7.8.

7.9.

17.10.

7.11.

7.12.

7.13.

7.14.

7.15.

7.16.

7.17.

7.18.

What is a lower bound for the price of a 4-month call option on a non-dividend-paying
stock when the stock price is $28, the strike price is $25, and the risk-free interest
rate is 8% per annum?

What is a lower bound for the price of a 1-month European put option on a non-
dividend-paying stock when the stock price is $12, the strike price is $15, and the
risk-free interest rate is 6% per annum?

Give two reasons why the early exercise of an American call option on a non-dividend-
paying stock is not optimal. The first reason should involve the time value of money.
The second reason should apply even if interest rates are zero.

“The early exercise of an American put is a trade-off between the time value of money
and the insurance value of a put.” Explain this statement.

A European call and put option on a stock both have a strike price of $20 and an
expiration date in 3 months. Both sell for $3. The risk-free interest rate is 10% per
annum, the current stock price is $19, and a $1 dividend is expected in 1 month.
Identify the arbitrage opportunity open to a trader.
Explain why the arguments leading to put-call parity for European options cannot be
used to give a similar result for American options.

What is a lower bound for the price of a 6-month call option on a non-dividend-paying
stock when the stock price is $80, the strike price is $75, and the risk-free interest
rate is 10% per annum?

What is a lower bound for the price of a 2-month European put option on a non-
dividend-paying stock when the stock price is $58, the strike price is $65, and the
risk-free interest rate is 5% per annum?

A 4-month European call option on a dividend-paying stock is currently selling for
$5. The stock price is $64, the strike price is $60, and a dividend of $0.80 is expected
in 1 month. The risk-free interest rate is 12% per annum for all maturities. What
opportunities are there for an arbitrageur?

A 1-month European put option on a non-dividend-paying stock is currently selling
for $2%. The stock price is $47, the strike price is $50, and the risk-free interest rate
is 6% per annum. What opportunities are there for an arbitrageur?

Give an intuitive explanation of why the early exercise of an American put becomes
more attractive as the risk-free rate increases and volatility decreases.

The price of a European call which expires in 6 months and has a strike price of $30
is $2. The underlying stock price is $29, and a dividend of $0.50 is expected in 2
months and in 5 months. The term structure is flat with all risk-free interest rates
being 10%. What is the price of a European put option that expires in 6 months and
has a strike price of $30.

Explain carefully the arbitrage opportunities in Problem 7.16 if the European put price
is $3.

The price of an American call on a non-dividend-paying stock is $4. The stock price
is $31, the strike price is $30, and the expiration date is in 3 months. The risk-free
interest rate is 8%. Derive upper and lower bounds for the price of an American put
on the same stock with the same strike price and expiration date.
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7.19.

7.20.

7.21.
7.22.
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Explain carefully the arbitrage opportunities in Problem 7.18 if the American put price
is greater than the calculated upper bound.

Suppose that cj, 2, and ¢3 are the prices of European call options with strike prices
X1, X3, and X3, respectively, where X3 > X7 > Xj and X3 — X7 = X, — X;. All
options have the same maturity. Show that

¢ <0.5(c; +¢3)

(Hint: Consider a portfolio that is long one option with strike price X, long one
option with strike price X3, and short two options with strike price X».)
What is the result corresponding to that in Problem 7.20 for American put options?

Suppose that you are the manager and sole owner of a highly leveraged company. All

the debt will mature in one year. If at that time the value of the company is greater

than the face value of the debt, you will pay off the debt. If the value of the company

is less than the face value of the debt, you will declare bankruptcy and the debtholders

will own the company.

(a) Express your position as an option on the value of the company.

(b) Express the position of the debtholders in terms of options on the value of the
company.

(c) What can you do to increase the value of your position?



Trading Strategies
Involving Options

The profit pattern from an investment in a single stock option was discussed in
Chapter 1. In this chapter we cover more fully the range of profit patterns obtainable
using options. In the first section we consider what happens when a position in a
stock option is combined with a position in the stock itself. We then move on to
discuss the profit patterns obtained when an investment is made in two or more
different options on the same stock. One of the attractions of options is that they
can be used to create a wide range of different payoff functions. Unless otherwise
stated the options we consider are all European. Toward the end of this chapter,
we will argue that if European options were available with every single possible
strike price, any payoff function could in theory be created.

8.1 STRATEGIES INVOLVING A SINGLE OPTION
AND A STOCK

There are a number of different trading strategies involving a single option on a
stock and the stock itself. The profits from these are illustrated in Figure 8.1. In
this figure, and in other figures throughout this chapter, the dashed line shows the

173



174 Trading Strategies Involving Options Chapter 8
4 Profit 4 Profit
/7
/
7/
//
/7 //
z /
/
ol /
—————— ~
Z N < S:r y 7 s;
X \\ ______ N\ \*_X/
\\ >
N\ \\
N\ N
\
N,
N\
\

(a)
Long Position in a Stock
Combined with Short Position in a Call

4 Profit

{c)

Long Position in a Stock
Combined with Long Position in a Put

(b)
Short Position in a Stock
Combined with Long Position in a Call

§ Profit
N
N
N
N
AN
\ ST T T T T
I\
7 ONX
/7
/
s
/
/
7

d
Short Position in a Stock
Combined with Short Position in a Put

Figure 8.1 Profit from Various Trading Strategies Involving a Single Option and a

Stock

relationship between profit and stock price for the individual securities constituting
the portfolio, while the solid line shows the relationship between profit and stock

price for the whole portfolio.
In Figure 8.1(a), the portfolio consists of a long position in-a stock plus a

short position in a call option. The investment strategy represented by this portfolio
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is known as writing a covered call. This is because the long stock position “covers”
or protects the investor from the possibility of a sharp rise in the stock price. In
Figure 8.1(b), a short position in a stock is combined with a long position in a
call option. This is the reverse of writing a covered call. In Figure 8.1(c), the
investment strategy involves buying a put option on a stock and the stock itself.
This is sometimes referred to as a protective put strategy. In Figure 8.1(d), a short
position in a put option is combined with a short position in the stock. This is the
reverse of a protective put.

The profit patterns in Figure 8.1(a), (b), (c), and (d) have the same general
shape as the profit patterns discussed in Chapter 1 for short put, long put, long call,
and short call, respectively. Put-call parity provides a way of understanding why
this is so. It will be recalled from Chapter 7 that the put-call parity relationship is

p+S=c+XeT9 4D 8.1

where p is the price of a European put, S is the stock price, ¢ is the price of a
European call, X is the strike price of both call and put, r is the risk-free interest
rate, T is the maturity date of both call and put, and D is the present value of the
dividends anticipated during the life of the option.

Equation 8.1 shows that a long position in a put combined with a long position
in the stock is equivalent to a long call position plus an amount Xe "9 4+ D of
cash. This explains why the profit pattern in Figure 8.1(c) is similar to the profit
pattern from a long call position. The position in Figure 8.1(d) is the reverse of
that in Figure 8.1(c) and therefore leads to a profit pattern similar to that from a
short call position.

Equation 8.1 can be rearranged to become

rS—c=Xe"T D4 D—p

This shows that a long position in a stock combined with a short position in a
call is equivalent to a short put position plus an amount = Xe™" 79 4+ D of cash.
This explains why the profit pattern in Figure 8.1(a) is similar to the profit pattern
from a short put position. The position in Figure 8.1(b) is the reverse of that in
Figure 8.1(a) and therefore leads to a profit pattern similar to that from a long put
position.

8.2 SPREADS

A spread trading strategy involves taking a position in two or more options of the
same type (that is, two or more calls or two or more puts).

BuLr SPREADS

One of the most popular types of spreads is a bull spread. This can be
created by buying a call option on a stock with a certain strike price and selling
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Figure 8.2 Bull Spread Created Using Call Options

a call option on the same stock with a higher strike price. Both options have the
same expiration date. The strategy is illustrated in Figure 8.2. The profits from the
two option positions taken separately are shown by the dashed lines. The profit
from the whole strategy is the sum of the profits given by the dashed lines and
is indicated by the solid line. Since a call price always decreases as the strike
price increases, the value of the option sold is always less than the value of the
option bought. A bull spread, when created from calls, therefore requires an initial
investment.

Suppose that X, is the strike price of the call option bought, X is the strike
price of the call option sold, and St is the stock price on the expiration date of the
options. Table 8.1 shows the total payoff that will be realized from a bull spread in
different circumstances. If the stock price does well and is greater than the higher
strike price, the payoff is the difference between the two strike prices, X, — X;. If
the stock price on the expiration date lies between the two strike prices, the payoff
is St — X;. If the stock price on the expiration date is below the lower strike price,
the payoff is zero. The profit in Figure 8.2 is calculated by subtracting the initial
investment from the payoff.

A bull spread strategy limits both the investor’s upside potential and his or
her downside risk. We can describe the strategy by saying that the investor has a
call option with a strike price equal to X, and has chosen to give up some upside
potential by selling a call option with strike price X (X2 > X;). In return for
giving up the upside potential the investor gets the price of the option with strike

TABLE 8.1 Payoff from a Bull Spread

Stock Price Payoff from Payoff from Total
Range Long Call Option Short Call Option Payoff
St = X St — X, X2 — St X2 - Xy
X1 <S8t <Xy St — X1 0 St — X4

ST < X1 0 0 0
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price X. Three types of bull spreads can be distinguished:

1. Both calls initially out of the money
2. One call initially in the money, the other call initially out of the money
3. Both calls initially in the money

The most aggressive bull spreads are those of type 1. They cost very little to set
up and have a small probability of giving a relatively high payoff (= X; — X).
As we move from type 1 to type 2 and from type 2 to type 3, the spreads become
more conservative.

Example 8.1

An investor buys for $3 a call with a strike price of $30 and sells for 81 a call with a strike
price of $35. The payoff from this bull spread strategy is $5 if the stock price is above $35
and zero when it is below $30. If the stock price is between $30 and $35 the payoff is the
amount by which the stock price exceeds $30. The cost of the strategy is $3 — $1 = $2.
The profit is therefore as follows:

Stock Price Profit
Range
St <30 -2
30 < St <35 St —32
St >35 3

Bull spreads can also be created by buying a put with a low strike price and
selling a put with a high strike price. This is illustrated in Figure 8.3. Unlike the
bull spread created using calls, bull spreads created from puts involve a positive

4 Profit

Figure 8.3 Bull Spread Created Using Put Options
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cash flow to the investor up front. (This ignores margin requirements.) Needless
to say, the final payoffs from bull spreads created using puts are lower than from
those created using calls.

BEAR SPREADS

An investor entering into a bull spread is hoping that the stock price will
increase. By contrast an investor who enters into a bear spread is hoping that the
stock price will decline. Like a bull spread, a bear spread can be created by buying
a call with one strike price and selling a call with another strike price. However,
in the case of a bear spread, the strike price of the option purchased is greater
than the strike price of the option sold. This is illustrated in Figure 8.4 where the
profit from the spread is shown by the solid line. A bear spread created from calls
involves an initial cash inflow (when margin requirements are ignored) since the
price of the call sold is greater than the price of the call purchased.

Figure 8.4 Bear Spread Created Using Call Options

Assuming that the strike prices are X; and X> with X; < X5, Table 8.2 shows
the payoff that will be realized from a bear spread in different circumstances. If
the stock price is greater than X, the payoff is negative at —(X; — X;). If the

TABLE 8.2 Payoff from a Bear Spread

Stock Price Payoff from Payoff from Total
Range Long Call Option Short Call Option Payoff
St = X2 St — X2 Xy — St —(X2—X1)
X <St <Xs 0 X1—S7 —(St — X1)

St < Xi 0 0 0
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stock price is less than X, the payoff is zero. If the stock price is between X 1 and
X2, the payoff is —(S7 — X;). The profit is calculated by adding the initial cash
inflow to the payoff.

Example 8.2

An investor buys for $1 a call with a strike price of $35 and sells for $3 a call with a strike
price of $30. The payoff from this bear spread strategy is ~$5 if the stock price is above
$35 and zero if it is below $30. If the stock price is between $30 and $35 the payoff is
—(St — 30). The investment generates $3 — $1 = $2 up front. The profit is therefore as
follows: :

Stock Price Profit
Range
St <30 +2
30< St <35 32-8r
St =35 -3

Like bull spreads, bear spreads limit both the upside profit potential and
the downside risk. Bear spreads can be created using puts instead of calls. The
investor buys a put with a high strike price and sells a put with a low strike price.
This is illustrated in Figure 8.5. Bear spreads created with puts require an initial
investment. In essence, the investor has bought a put with a certain strike price
and chosen to give up some of the profit potential by selling a put with a lower
strike price. In return for the profit given up, the investor gets the price of the
option sold.

BUTTERFLY SPREADS

A butterfly spread involves positions in options with three different strike
prices. It can be created by buying a call option with a relatively low strike price,

A Profit

Figure 8.5 Bear Spread Created Using Put Options
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Figure 8.6 Butterfly Spread Using Call Options

X,; buying a call option with a relatively high strike price, X3; and selling two
call options with a strike price, X3, halfway between X; and X3. Generally, X, is
close to the current stock price. The pattern of profits from the strategy is shown
in Figure 8.6. A butterfly spread leads to a profit if the stock price stays close to
X, but gives rise to a small loss if there is a significant stock price move in either
direction. It is therefore an appropriate strategy for an investor who feels that large
stock price moves are unlikely. The strategy requires a small investment initially.
The payoff from a butterfly spread is shown in Table 8.3.

TABLE 8.3 Payoff from a Butterfly Spread

Stock Price Payoff from Payoff from Payoff from Total
Range First Long Call  Second Long Call Short Calls Payoff*
St < X1 0 0 0 0
X <S8t <Xy St — X3 0 0 St - X
Xy < ST < X3 St — X1 0 —2(St —X2) X3-S5t
St > X3 St — X4 St — X3 -2(8t — X3) 0

*These payoffs are calculated using the relationship X2 = 0.5(X; + X3).

Suppose that a certain stock is currently worth $61. Consider an investor
who feels that it is unlikely that there will be a significant price move in the next
6 months. Suppose that the market prices of 6-month calls are as follows:

Strike Price ($) Call Price (8)

55 10
60 7
65 5
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The investor could create a butterfly spread by buying one call with a $55
strike price, buying one call with a $65 strike price, and selling two calls with a
$60 strike price. It costs $10+$5 — (2 x $7) = $1 to create the spread. If the stock
price in 6 months is greater than $65 or less than $55, there is no payoff and the
investor makes a net loss of $1. If the stock price is between $56 and $64, a profit
is made. The maximum profit, $5, occurs when the stock price in 6 months is $60.
Butterfly spreads can be created using put options. The investor buys a put with
a low strike price, buys a put with a high strike price and sells two puts with an
intermediate strike price. This is illustrated in Figure 8.7. The butterfly spread in
the example just considered would be created by buying a put with a strike price
of $55, buying a put with a strike price of $65, and selling two puts with a strike
price of $60. If all options are European, the use of put options results in exactly
the same spread as the use of call options. Put-call parity can be used to show that
the initial investment is the same in both cases.

A butterfly spread can be sold or shorted by following the reverse strategy
to that described earlier. Options are sold with strike prices of X; and X3, and
two options with the middle strike price X, are purchased. This strategy produces
a modest profit if there is a significant movement in the stock price.

CALENDAR SPREADS

Up to now we have assumed that the options used to create a spread all
expire at the same time. We now move on to discuss calendar spreads where the
options used have the same strike price and different expiration dates.

A calendar spread can be created by selling a call option with a certain strike
price and buying a longer-maturity call option with the same strike price. The
longer the maturity of an option, the more expensive it is. A calendar spread
therefore requires an initial investment. Assuming that the long-maturity option is
sold when the short-maturity option expires, the profit pattern given by a calendar
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Figure 8.7 Butterfly Spread Using Put Options
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Figure 8.8 Calendar Spread Created Using Two Calls

spread is as shown in Figure 8.8. This is similar to the profit pattern from the
butterfly spread in Figure 8.6. The investor makes a profit if the stock price at
the expiration of the short-maturity option is close to the strike price of the short-
maturity option. However, a loss is incurred when the stock price is significantly
above or significantly below this strike price.

To understand the profit pattern from a calendar spread, first consider what
happens if the stock price is very low when the short-maturity options expires. The
short-maturity option is worthless and the value of the long-maturity option is close
to zero. The investor therefore incurs a loss that is only a little less than the cost
of setting up the spread initially. Consider next what happens if the stock price,
Sr, is very high when the short-maturity option expires. The short-maturity option
costs the investor S — X and the long-maturity option (assuming early exercise is
not optimal) is worth a little more than St — X, where X is the strike price of the
options. Again the investor makes a net loss that is a little less than the cost of
setting up the spread initially. If Sy is close to X, the short-maturity option costs
the investor either a small amount or nothing at all. However, the long-maturity
option is still quite valuable. In this case, a significant net profit is made.

In a neutral calendar spread, a strike price close to the current stock price
is chosen. A bullish calendar spread would involve a higher strike price while a
bearish calendar spread would involve a lower strike price.

Calendar spreads can be created with put options as well as call options. The
investor buys a long-maturity put option and sells a short-maturity put option. As
shown in Figure 8.9, the profit pattern is similar to that, obtained from using calls.

A reverse calendar spread is the opposite to that in Figure 8.8 or Figure 8.9.
The investor buys a short-maturity option and sells a long-maturity option. This
creates a small profit if the stock price at the expiration of the short-maturity option
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Figure 8.9 Calendar Spread Created Using Two Puts

is well above or well below the strike price of the short-maturity option. However,
it leads to a significant loss if it is close to the strike price.

DIAGONAL SPREADS

Bull, bear, and calendar spreads can all be created from a long position in
one call and a short position in another call. In the case of bull and bear spreads,
the calls have different strike prices and the same expiration date. In the case of
calendar spreads, the calls have the same strike price and different expiration dates.
A diagonal spread is a spread which is such that both the expiration date and the
strike price of the calls are different. There are several different types of diagonal
spreads. Their profit patterns are generally variations on the profit patterns from
the corresponding bull or bear spreads.

8.3 COMBINATIONS

A combination is an option trading strategy that involves taking a position in both
calls and puts on the same stock. We will consider what are known as straddles,
strips, straps, and strangles.

STRADDLE

One popular combination is a straddle. This involves buying a call and put
with the same strike price and expiration date. The profit pattern is shown in
Figure 8.10. The strike price is denoted by X. If the stock price is close to this
strike price at expiration of the options, the straddle leads to a loss. However, if
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Figure 8.10 A Straddle

there is a sufficiently large move in either direction, a significant profit will result.
The payoff from a straddle is calculated in Table 8.4.

A straddle is appropriate when an investor is expecting a large move in a
stock price but does not know in which direction the move will be. Consider an
investor who feels that the price of a certain stock, currently valued at $69 by the
market, will move significantly in the next 3 months. The investor could create a
straddle by buying both a put and a call with a strike price of $70 and an expiration
date in 3 months. Suppose that the call costs $4 and the put costs $3. If the stock
price stays at $69 it is easy to see that the strategy costs the investor $6. (An up-
front investment of $7 is required, the call expires worthless, and the put expires
worth $1.) If the stock price moves to $70, a loss of $7 is experienced. (This is
the worst that can happen.) However, if the stock price jumps up to $90, a profit
of $13 is made; if the stock moves down to $55, a profit of $8 is made; and so on.

A straddle would seem to be a natural strategy for the stock of a company that
is subject to a takeover bid. If the bid is successful, the stock price can be expected
to move up sharply. If it is unsuccessful, the stock price can be expected to move
down sharply. In practice it is not quite that easy to make money! Option prices
for a stock whose price is expected to exhibit a large jump tend to be significantly
higher than for a similar stock where no jump is expected.

The straddle in Figure 8.10 is sometimes referred to as a bottom straddle or
straddle purchase. A top straddle or straddle write is the reverse position. It is

TABLE 8.4 Payoff from a Straddle

Range of Payoff from Payoff from Total
Stock Price Call Put Payoff

St <X 0 X-Sr X-8r
St>X St —X 0 Sr—-X
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created by selling a call and a put with the same exercise price and expiration date.
It is a highly risky strategy. If the stock price on the expiration date is close to the
strike price, it leads to a significant profit. However, the loss arising from a large
move in either direction is unlimited.

STRIPS AND STRAPS

A strip consists of a long position in one call and two puts with the same
strike price and expiration date. A strap consists of a long position in two calls and
one put with the same strike price and expiration date. The profit patterns from
strips and straps are shown in Figure 8.11. In a strip, the investor is betting that
there will be a big stock price move and considers a decrease in the stock price to
be more likely than an increase. In a strap, the investor is also betting that there
will be a big stock price move. However, in this case, an increase in the stock
price is considered to be more likely than a decrease.

STRANGLES

In a strangle, sometimes called a bottom vertical combination, an investor
buys a put and a call with the same expiration date and different strike prices. The
profit pattern that is obtained is shown in Figure 8.12. The call strike price, X», is
higher than the put strike price, X;. The payoff function for a strangle is calculated
in Table 8.5.

A Profit A Profit

Strip Strap

Figure 8.11 Profit Patterns from Strips and Straps
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Figure 8.12 A Strangle

TABLE 8.6 Payoff from a Strangle

Range of Payoff from Payoff from Total
Stock Price Call Put Payoff
Sr<X 0 X -8t X; -8t
X, <8t <Xy 0 0 0
St = X» St — Xa 0 St —X»

A strangle is a similar strategy to a straddle. The investor is betting that
there will be a large price move but is uncertain whether it will be an increase
or a decrease. Comparing figures 8.12 and 8.10 we see that the stock price has
to move farther in a strangle than in a straddle for the investor to make a profit.
However, the downside risk if the stock price ends up at a central value is less
with a strangle.

The profit pattern obtained with a strangle depends on how close the strike
prices are together. The farther they are apart, the less the downside risk and the
farther the stock price has to move for a profit to be realized.

The sale of a strangle is sometimes referred to as a top vertical combination.
It can be appropriate for an investor who feels that large stock price moves are
unlikely. However, like the sale of a straddle, it is a risky strategy since the
investor’s potential loss is unlimited.

8.4 OTHER PAYOFFS

This chapter has demonstrated just a few of the ways in which options can be used
to produce an interesting relationship between profit and stock price. If European
options expiring at time T were available with every single possible strike price,
any payoff function at time T could in theory be obtained. The easiest way to see
this is in terms of butterfly spreads. It will be recalled that a butterfly spread is
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created by buying options with strike prices X; and X3 and selling two options
with strike price X, where X; < X, < X3 and X; — X, = X, — X;. Figure 8.13
shows the payoff from a butterfly spread. This could be described as a “spike.”
As X, and X3 become closer together, the spike becomes smaller. By judiciously
combining together a large number of very small spikes, any payoff function can
be approximated.

Payoff

S
/l\ Al Figure 8.13 Payoff from a Butterfly

X1 X2 Xa Spread

8.5 SUMMARY

A number of common trading strategies involve a single option and the underlying
stock. For example, writing a covered call involves buying the stock and selling a
call option on the stock; a protective put involves buying a put option and buying
the stock. The former is similar to selling a put option; the latter is similar to
buying a call option.

Spreads involve either taking a position in two or more calls or taking a
position in two or more puts. A bull spread can be created by buying a call (put)
with a low strike price and selling a call (put) with a high strike price. A bear
spread can be created by buying a call (put) with a high strike price and selling a
call (put) with a low strike price. A butterfly spread involves buying calls (puts)
with a low and high strike price and selling two calls (puts) with some intermediate
strike price. A calendar spread involves selling a call (put) with a short time to
expiration and buying a call (put) with a longer time to expiration. A diagonal
spread involves a long position in one option and a short position in another option
where both the strike price and expiration date are different.

Combinations involve taking a position in both calls and puts on the same
stock. A straddle combination involves taking a long position in a call and a long
position in a put with the same strike price and expiration date. A strip consists of
a long position in one call and two puts with the same strike price and expiration
date. A strap consists of a long position in two calls and one put with the same
strike price and expiration date. A strangle consists of a long position in a call and
a put with different strike prices and the same expiration date. There are many
other ways in which options can be used to produce interesting payoffs. It is not
surprising that option trading has steadily increased in popularity and continues to
fascinate investors.



188 Trading Strategies Involving Options Chapter 8

SUGGESTIONS FOR FURTHER READING

BooksTaBER, R. M., Option Pricing and Strategies in Investing. Reading, Mass.: Addison-
Wesley, 1981.

CHancg, D. M., An Introduction to Options and Futures. Orlando, Fla.: Dryden Press, 1989.

DecLer, W. H., and H. P. Becker, “19 Option Strategies and When to Use Them,” Futures,
June 1984.

GastiNeay, G., The Stock Options Manual (2nd ed.). New York: McGraw-Hill, 1979.

McMuian, L. G., Options as a Strategic Investment (2nd ed.). New York: New York Institute
of Finance, 1986.

Suivka, R., “Call option spreading,” Journal of Portfolio Management, 7 (Spring 1981),
71-76.

WeLcH, W. W, Strategies for Put and Call Option Trading. Cambridge, Mass.: Winthrop,
1982.

Yares, J. W., and R. W. Kopprasch, “Writing Covered Call Options: Profits and Risks,”
Journal of Portfolio Management, 6 (Fall 1980), 74—80.

QUESTIONS AND PROBLEMS

8.1. What is meant by a protective put? What position in call options is equivalent to a
protective put?

8.2. Explain two ways in which a bear spread can be created.

8.3. When is it appropriate for an investor to purchase a butterfly spread?

8.4. Call options on a stock are available with strike prices of $15, $17%, and $20 and
expiration dates in 3 months. Their prices are $4, $2, and $%, respectively. Explain
how the options can be used to create a butterfly spread. Construct a table showing
how profit varies with stock price for the butterfly spread.

8.5. What trading strategy creates a reverse calendar spread?

8.6. What is the difference between a strangle and a straddle?

8.7. A call option with a strike price of $50 costs $2. A put option with a strike price of
$45 costs $3. Explain how a strangle can be created from these two options. What is
the pattern of profits from the strangle?

8.8. Analyze carefully the difference between a bull spread created from puts and a bull
spread created from calls.

8.9. Explain how an aggressive bear spread can be created using put options.

8.10. Suppose that put options on a stock with strike price $30 and $35 cost $4 and $7,
respectively. How can the options be used to create (a) a bull spread and (b) a bear
spread? Construct a table that shows the profit and payoff for both spreads.

8.11. Three put options on a stock have the same expiration date, and strike prices of $55,
$60, and $65. The market prices are $3, $5, and $8, respectively. Explain how a
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8.12.

8.13.

8.14.

8.15.

8.16.

8.17.

8.18.

8.19.

8.20.

butterfly spread can be created. Construct a table showing the profit from the strategy.
For what range of stock prices would the butterfly spread lead to a loss?

Use put-call parity to show that the cost of a butterfly spread created from European
puts is identical to the cost of a butterfly spread created from European calls.

A diagonal spread is created by buying a call with strike price X, and exercise date
T3, and selling a call with strike price X; and exercise date T; (T > T1). Draw a
diagram showing the profit when (a) X2 > X; and (b) X3 < X 1-

A call with a strike price of $50 costs $6. A put with the same strike price and
expiration date costs $4. Construct a table that shows the profits from a straddle. For
what range of stock prices would the straddle lead to a loss?

Construct a table showing the payoff from a bull spread when puts with strike prices
X and X, are used (X3 > X)).

An investor believes that there will be a big jump in a stock price but is uncertain as
to the direction. Identify six different strategies the investor can follow and explain
the differences between them.

How can a forward contract on a stock with a certain delivery price and delivery date
be created from options?

A box spread is a combination of a bull call spread with strike prices X; and X, and
a bear put spread with the same strike prices. The expiration dates of all options are
the same. What are the characteristics of a box spread?

What is the result if the strike price of the put is higher than the strike price of the
call in a strangle?

Draw a diagram showing the variation of an investor’s profit and loss with the terminal
stock price for a portfolio consisting of

(a) One share and a short position in one call option

(b) Two shares and a short position in one call option

(c) One share and a short position in two call options

(d) One share and a short position in four call options

In each case, assume that the call option has an exercise price equal to the current
stock price.



A Model of the
Behavior of
Stock Prices

Any variable whose value changes over time in an uncertain way is said to follow
a stochastic process. Stochastic processes can be classified as “discrete time” or
“continuous time.” A discrete-time stochastic process is one where the value of the
variable can only change at certain fixed points in time, whereas a continuous-time
stochastic process is one where changes can take place at any time. Stochastic
processes can also be classified as “continuous variable” or “discrete variable.” In
a continuous-variable process, the underlying variable can take any value within a
certain range, whereas in a discrete-variable process, only certain discrete values
are possible. :

In this chapter we derive a continuous-variable, continuous-time stochastic
process for stock prices. An understanding of this process is the first step to under-
standing the pricing of options and other more complicated derivative securities.
It should be pointed out that in practice we do not observe stock prices following
continuous-variable, continuous-time processes. Stock prices are restricted to dis-
crete values (usually multiples of $%) and changes can be observed only when the
exchange is open. Nevertheless, the continuous-variable, continuous-time process
proves to be a useful model for most purposes.

190
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In this chapter and the next we introduce the reader to what is known
as stochastic calculus. This is an extension of regular calculus that deals with
continuous-time stochastic processes. Many people feel that continuous-time sto-
chastic processes are so complicated that they must be left entirely to “rocket
scientists.” This is not so. The biggest hurdle to understanding these processes is
the notation. In this chapter we present a step-by-step approach aimed at getting
the reader over this hurdle.

9.1 THE MARKOV PROPERTY

A Markov process is a particular type of stochastic process where only the pres-
ent value of a variable is relevant for predicting the future. The past history of
the variable and the way in which the present has emerged from the past are
irrelevant.

Stock prices are usually assumed to follow a Markov process. Suppose that
the price of IBM stock is $100 now. If the stock price follows a Markov process,
our predictions for the future should be unaffected by the price 1 week ago, 1
month ago, or 1 year ago. The only relevant piece of information is the fact
that the price is now $100.! Predictions for the future are uncertain and must be
expressed in terms of probability distributions. The Markov property implies that
the probability distribution of the price at any particular future time depends only
on the current stock price of $100.

The Markov property of stock prices is consistent with the weak form of
market efficiency. This states that the present price. of a stock impounds all the
information contained in a record of past prices¢f the weak form of market
efficiency were not true, technical analysts could make above-average returns by
interpreting charts of the past history of stock prices. There is very little evidence
that they are in fact able to do this.

It is competition in the marketplace which tends to ensure that weak-form
market efficiency holds. The very fact that there are many, many investors watching
the stock market closely and trying to make a profit from it leads to a situation
where a stock price at any given time impounds the information in past prices.
Suppose that it is discovered that a particular pattern in past stock prices always
gives a 65 percent chance of price rises in the near future. Investors would attempt
to buy a stock as soon as the pattern was observed, and demand for the stock would
immediately rise. This would lead to an immediate rise in its price and the observed
effect would be eliminated—as would any profitable trading opportunities.

! Statistical properties of the stock price history of IBM may be useful in determining the char-
acteristics of the stochastic process followed by the stock price (e.g., its volatility). The point which is
being made here is that the particular path followed by the stock in the past is irrelevant.
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9.2 WIENER PROCESSES

Models of stock price behavior are usually expressed in terms of what are known
as Wiener processes. A Wiener process is a particular type of Markov stochastic
process. It has been used in physics to describe the motion of a particle that is
subject to a large number of small molecular shocks and is sometimes referred to
as Brownian motion.

The behavior of a variable, z, which follows a Wiener process, can be under-
stood by considering the changes in its value in small intervals of time. Consider
a small interval of time of length At and define Az as the change in z during
At. There are two basic properties Az must have for z to be following a Wiener
process:

PROPERTY 1

Az is related to At by the equation
Az = e /At 9.1)

where ¢ is a random drawing from a standardized normal distribution (i.e., a
normal distribution with a mean of zero and a standard deviation of 1.0).

PROPERTY 2

The values of Az for any two different short intervals of time At are inde-
pendent.

It follows from the property 1 that Az itself has a normal distribution with

mean of Az =0

standard deviation of Az = v/ At
variance of Az = At

Property 2 implies that z follows a Markov process.

Consider next the increase in the value of z during a relatively long period
of time, T. We will denote this by z(T) — z(0). It can be regarded as the sum of
the increases in z in N small time intervals of length At, where

_ T
T At
Thus

N

2(T) — z(0) = Z NI 9.2)

i=1
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where the ¢; (i = 1,2, ..., N) are random drawings from a standardized normal
distribution. From property 2 the ¢;’s are independent of each other. It follows
from Equation (9.2) that z(T) — z(0) is normally distributed with?

mean of [z(T) — z(0)] = 0
variance of [z(T) —z(0)] = NAt =T
standard deviation of [z(T) — z(0)] = VT

Thus in any time interval of length T, the increase in the value of a variable
that follows a Wiener process is normally distributed with a mean of zero and a
standard deviation of +/T. It should now be clear why Az is defined as the product
of € and +/At rather than as the product of € and At. Variances.are additive for
independent normal distributions; standard deviations are not. It makes sense to
define the stochastic process so that the variance rather than the standard deviation
of changes is proportional to the length of the time interval considered.

Example 9.1

Suppose that the value, z, of a variable which follows a Wiener process is initially 25 and
that time is measured in years. At the end of 1 year the value of the variable is normally
distributed with a mean of 25 and a standard deviation of 1.0, At the end of 2 years it is
normally distributed with a mean of 25 and a standard deviation of /2, or 1.414. Note that
our uncertainty about the value of the variable at a certain time in the future, as measured
by its standard deviation, increases as the square root of how far we are looking ahead.

In ordinary calculus, it is usual to proceed from small changes to the limit
as the small changes become closer to zero. Thus Ay/Ax becomes dy/dx in the
limit, and so on. We can proceed similarly when dealing with continuous-time
stochastic processes. A Wiener process is the limit as Az —» 0 of the process
described above for z. Figure 9.1 illustrates what happens to the path followed by
z as the limit Az —> 0 is taken. Analogously to ordinary calculus, we write the
limiting case of Equation (9.1) as

dz = e /dt

GENERALIZED WIENER PROCESS

The basic Wiener process that has been developed so far has a drift rate of
zero and a variance rate of 1.0. The drift rate of zero means that the expected

2This result is based on the following well-known property of normal distributions. If a variable
Y is equal to the sum of N independent normally distributed variables X; (1 <i < N), Y is itself
normally distributed. The mean of Y is equal to the sum of the means of the X;’s. The variance of ¥
is equal to the sum of the variances of the X;’s.
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Relatively Large Value of At

-

Smaller Value of At

N

Y~

The True Process Obtained as At — 0

Figure 9.1 Tllustration of How a Wiener Process is Obtained when At — 0 in Equa-
tion (9.1)

J
/V/value of z at any future time is equal to its current value. The variance rate of

1.0 means that the variance of the change in z in a time interval of length T is
1.0 x T. A generalized Wiener process for a variable x can be defined in terms of

dz as follows:
dx =adt+bdz (9.3)

where a and b are constants.
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To understand Equation (9.3) it is useful to consider the two components on
the right-hand side separately. The a dt term implies that x has an expected drift
rate of g per unit time. Without the b dz term, the equation is

dx =adt
which implies that
dx
= —a
dt
or
X =xp+at

where xp is the value of x at time zero. In a time interval of length T, x increases
by an amount aT. The bdz term on the right-hand side of Equation (9.3) can be
regarded as adding noise or variability to the path followed by x. The amount of
this noise or variability is b times a Wiener process. In a small time interval At,
the change in the value of x, Ax, is from equations (9.1) and (9.3) given by:

Ax = a At + be vV At

where, as before, € is a random drawing from a standardized normal distribution.
Thus Ax has a normal distribution with

mean of Ax = a At
standard deviation of Ax = b/ At

variance of Ax = b* At

Similar arguments to those just given show that the change in the value of x in
any time interval T is normally distributed with

mean of change in x = aT
standard deviation of change in x = b vT

variance of change in x = b°T

Thus the generalized Wiener process given in Equation (9.3) has an expected drift
rate (i.e., average drift per unit time) of a and a variance rtate (i.e., variance per
unit of time) of b2. It is illustrated in Figure 9.2.

Example 9.2

Consider the situation where the cash position of a company, measured in thousands of
dollars, follows a generalized Wiener process with a drift of 20 per year and a variance rate
of 900 per year. Initially, the cash position is 50. At the end of 1 year the cash position
will have a normal distribution with a mean of 70 and a standard deviation of +/900 or 30.
At the end of 6 months it will have a normal distribution with a mean of 60 and a standard
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Value of
variable, x Generalized
Wiener process
dx=a dt+b dz

dx=a dt

Wiener process, dz

/

W

Figure 9.2 Generalized Wiener Process; a=0.3, b=1.5

deviation of 30+/0.5 = 21.21. Note that our uncertainty about the cash position at some
time in the future, as measured by its standard deviation, increases as the square root of how
far ahead we are looking. Also, note that the cash position can become negative (which we
can interpret as a situation where the company is borrowing funds).

ITo PROCESS

A further type of stochastic process can be defined. This is known as an
Ito process. It is a generalized Wiener process where the parameters a and b are
functions of the value of the underlying variable, x, and time, ¢. Algebraically, an
Ito process can be written

dx = a(x, t)dt + b(x, t)d:z 9.4)

Both the expected drift rate and variance rate of an Ito process are liable to change
over time.

9.3 THE PROCESS FOR STOCK PRICES

In this section we discuss the stochastic process followed by the price of a non-
dividend-paying stock. The effects of dividends on the process will be discussed
in Chapter 10.
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It is tempting to suggest that a stock price follows a generalized Wiener
process; that is, that it has a constant expected drift rate and a constant variance
rate. However, this model fails to capture a key aspect of stock prices. This is that
the expected percentage return required by investors from a stock is independent of
the stock’s price. If investors require a 14 percent per annum expected return when
the stock price is $10, then, ceteris paribus, they will also require a 14 percent per
annum expected return, when it is $50.

Clearly, the constant expected drift-rate assumption is inappropriate and needs
to be replaced by the assumption that the expected drift, expressed as a proportion
of the stock price, is constant. The latter implies that if S is the stock price, the
expected drift rate in S is uS for some constant parameter, u. Thus, in a short
interval of time, At, the expected increase in § is @S At. The parameter, u, is the
expected rate of return on the stock, expressed in decimal form.

If the variance rate of the stock price is always zero, this model implies that

dS =uSdt
or
ds
— = udt
S u
so that
S = Spe™ 9.5)

where Sp is the stock price at time zero. Equation (9.5) shows that, when the
variance rate is zero, the stock price grows at a continuously compounded rate of
4 per unit time.

In practice, of course, a stock price does exhibit volatility. A reasonable as-
sumption is that the variance of the percentage return in a short period of time, At,
is the same regardless of the stock price. In other words, an investor is just as uncer-
tain as to his or her percentage return when the stock price is $50 as when it is $10.
Define ¢? as the variance rate of the proportional change in the stock price.
This means that 02 At is the variance of the proportional change in the stock
price in time At and that 0252 At is the variance of the actual change in the
stock price, S, during At. The instantaneous variance rate of S is therefore o2S2.

These arguments suggest that S can be represented by an Ito process which
has instantaneous expected drift rate 1S and instantaneous variance rate o252. This
can be written as

dS=uSdt+oS5d:z

or:

ds /
= \ S
S pdt+odz (9.6)\/
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Equation (9.6) is the most widely used model of stock price behavior. The variable
o is usually referred to as the stock price volatility. The variable u is its expected
rate of return.

Example 9.3

Consider a stock that pays no dividends, has a volatility of 30% per annum, and provides
an expected return of 15% per annum with continuous compounding. In this case p = 0.15
and o = 0.30. The process for the stock price is

% = 0.15dt +0.30dz

If S is the stock price at a particular time and AS is the increase in the stock price in the
next small interval of time,

-A?S- = 0.15 At + 0.30e v At

where € is a random drawing from a standardized normal distribution. Consider a time
interval of 1 week or 0.0192 year and suppose that the initial stock price is $100. Then
Ar = 0.0192, S = 100, and

AS = 100(0.00288 + 0.0416¢)

showing that the price increase is a random drawing from a normal distribution with mean
$0.288 and standard deviation $4.16.

9.4 A REVIEW OF THE MODEL

The model of stock price behavior that has been developed in this chapter [see
Equation (9.6)] is sometimes known as geometric Brownian motion. The discrete-
time version of the model is

—AS—S=;/,At+ae~/E 9.7
The variable AS is the change in the stock price, S, in a small interval of time, At;
and ¢ is a random drawing from a standardized normal distribution (i.e., a normal
distribution with a mean of zero and standard deviation of 1.0). The parameter u
is the expected rate of return per unit time from the stock and the parameter o is
the volatility of the stock price. Both of these parameters are assumed constant.
The left-hand side of Equation (9.7) is the proportional return provided by
the stock in a short period of time At. The term p At is the expected value of
this return, while the term o€ /At is the stochastic component of the return. The
variance of the stochastic component (and therefore of the whole return) is o2 At.
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Equation (9.7) shows that AS/S is normally distributed with mean u At and
standard deviation o +/Az. In other words,

AS

K3

where ¢ (m, s) denotes a normal distribution with mean m and standard deviation s.

~ ¢(u At, o /A1) 9.8)

Monte CARLO SIMULATION

Suppose that the expected return from the stock is 14 percent per annum
and that the standard deviation of the return (i.e., the volatility) is 20 percent per
annum. If time is measured in years, it follows that

uw=20.14
o =020

Suppose that Ar = 0.01 so that we are considering changes in the stock price in
time intervals of length 0.01 year (or 3.65 days). It follows that AS/S is normal
with mean 0.0014 (= 0.14 x 0.01) and standard deviation 0.02 (= 0.2 x +/0.01),
that is,

ATS ~ ¢(0.0014, 0.02) 9.9)

S~A path for the stock price can be simulated by sampling repeatedly from
¢(O.O(ﬁ78 0.02). One procedure for doing this is to sample values, v;, from a
standardized normal distribution fi.e., ¢(0, 1)] and then convert these to samples,
vy, from ¢(0.0014, 0.02) using

V\/ v, = 0.0014 + 0.02v, (9.10)

Table 9.1 shows one particular simulation of stock price movements. The initial
stock price is assumed to be $20. For the first period the random number, v;,
sampled from ¢(0, 1) is 0.52. Using Equation (9.10) this gives a random sample
of 0.0118 from ¢(0.0014, 0.02)»‘{]sing Equation (9.9), AS = 20 x 0.0118, or
0.236. At the beginning of the next period the stock price is therefore $20.236, and
s0 on. Note that the samples, v,, must be independent of each other. Otherwise,
the Markov property, discussed in Section 9.1, does not hold.

Table 9.1 assumes that stock prices are measured to the nearest 0.001, which
of course is not the case. To get the stock price that would be quoted, the figures
in the first column of the table should be rounded to the nearest $§. It is important
to realize that the table shows only one possible pattern of stock price movements.
Different random samples would lead to different price movements. Any small time
interval Ar can be used in the simulation. However, only in the limit as A — 0
W;Wf@mmmgpmmmi The final stock price
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TABLE 9.1 Simulation of Stock Price when p = 0.14
and o = 0.20 During Periods of Length 0.01 Year

Corresponding Random Change in

Stock Price Random Sample, vy, Sample, vz, from Stock Price
at Start of Period from ¢(0, 1) ¢(Q.0014, 0.02) During Period
20.000 0.52 0.0118 0.236
20.236 1.44 0.0302 0.611
20.847 -0.86 —0.0158 —0.329
20.518 1.46 0.0306 0.628
21.146 —-0.69 —-0.0124 -0.262
20.883 —-0.74 —0.0134 —0.280
20.603 0.21 0.0056 0.115
20.719 -1.10 —0.0206 -0.427
20.292 0.73 0.0160 0.325
20.617 1.16 0.0246 0.507
21.124 2.56 0.0526 1.111

of 21.124 in Table 9.1 can be regarded as a random sample from the distribution
of stock prices at the end of 10 time intervals or one-tenth of a year. By repeatedly
simulating movements in the stock price, as in Table 9.1, a complete probability
distribution of the stock price at the end of one-tenth of a year is obtained.

9.5 THE PARAMETERS

The process for stock prices that has been developed in this chapter involves two
parameters, 1 and o. The values of those parameters depend on the units in
which time is measured. Here and elsewhere in this book, we assume that time is
measured in years.

The parameter 1 is the expected proportional return earned by an investor
in a short period of time. It is annualized and expressed as a proportion. Most
investors require higher expected returns to induce them to take higher risks. It
follows that the value of  should depend on the risk of the return from the stock.?
It should also depend on the level of interest rates in the economy. The higher the
level of interest rates, the higher the expected return required on any given stock.
On average, 1 is about 8 percent greater than the return on a risk-free investment
such as a Treasury bill.* Thus when the return on Treasury bills is 8 percent per

3More precisely, u depends on that part of the risk which cannot be diversified away by the
investor.

4See R. G. Ibbotson and R. A. Sinquefield, Stocks, Bonds, Bills and Inflation: The Past and the
Future (Charlotteville, Va.: Financial Analyst Research Foundation, 1982), Exhibit 29, p. 71.
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annum, or 0.08, a typical value of u is 0.16; that is, a typical expected return on
a stock is 16 percent per annum.

Fortunately, we do not have to concern ourselves with the determinants of
i in any detail because the value of a derivative security dependent on a stock is
in general independent of p. The parameter o, the stock price volatility, is, by
contrast, critically important to the determination of the value of most contingent
claims. Procedures for estimating o empirically are discussed in Chapter 10. Typ-
ical values of o for a stock are in the range 0.20 to 0.40 (i.e., 20 percent to 40
percent).

The standard deviation of the proportional change in the stock price in a small
interval of time At is o v/Af. As a rough approximation, the standard deviation
of the proportional change in the stock price in a relatively long period of time,
T, is o +/T. This means that, as an approximation, volatility can be interpreted as
the standard deviation of the change in the stock price in one year.

Note that the standard deviation of the proportional change in the stock
price in a relatively long time interval, T, is not exactly o +/T. This is because
proportional changes are not additive. (For example, a 10 percent increase in a
stock price followed by a 20 percent increase leads to a total increase of 32 percent,
not 30 percent.) In Chapter 10, the probability distribution of the change in the
stock price in a relatively long time period T will be shown to be lognormal. Also,
the volatility of a stock price will be shown to be exactly equal to the standard
deviation of the continuously compounded return provided by the stock in one
year.

9.6 A BINOMIAL MODEL

At various points in this book we will use a binomial model as a discrete-time
representation of the continuous-time model for stock prices which has been de-
scribed in this chapter. Suppose that the stock price starts at S. Under the binomial
model, the stock price follows the process illustrated in Figure 9.3 in the next small
time interval of length Az. It moves up to Su with probability p and down to Sd
with probability 1 — p. Figure 9.4 illustrates how the binomial model leads to

Su

Sd  Figure 9.3 Binomial Model
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Sut

Su?
Sud

S Su?d?
Sud®

Sa*

Figure 9.4 Stock Price Movements over Four Time Periods Using Binomial Model {

three alternative stock prices at the end of two time intervals, four alternative stock
prices at the end of three time intervals, and so on.

The variables u, d, and p must be chosen so that, for a small Az, the expected
return from the stock price in time At is yu At _and the variance of the return in
time At is o At. One way of doing this is by setting?

=—', p=

J u=e’Vht d I —e“A’—d
u u—d

5To demonstrate that these values of u, d, and p have the right properties, note that the expected
stock price at time At is

pSu + (1 — p)Sd = Se*™!
The variance of the stock price at time Ar is
pS*u? + (1 — p)§2d® — (Set2)?
This equals
§? l:e“A’(e”‘/E + e""m) —-1- ez‘mt]

Expanding e* in series form e* = 1+ x+x2/2+x3/6+.. ., the variance of the stock price is $2a2 At
when terms of order Ar? and higher are ignored.
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It can be shown that in the limit as Az — O, this binomial model of stock
price movements becomes the geometric Brownian motion model which has been
developed in this chapter.

Example 9.4

Consider a stock price that provides an expected return of 12% per annum and has a volatility
of 30% per annum. Suppose that the binomial model is used to represent movements in
time periods of 0.04 year (approximately 2 weeks). In this case u = 0.12, ¢ = 0.30, and
At = 0.04 and, from the previous equations:

— eO.30va.04 — 10618

u
1
d=—-=0.9418
u
0.12x0.04 _ () 941
p=t 08 _ s

1.0618 — 0.9418

If the stock price starts at $100, possible movements over four time intervals of length At
are as illustrated in Figure 9.5. The probability of an up movement is always 0.525 and
the probability of a down movement is always 0.475. For the stock price of $112.7 to
occur at the end of the four time intervals there must be three up movements and one down
movement. There are four ways that this can happen. These are DUUU, UDUU, UUDU,
and UUUD, where U denotes an up movement and D denotes a down movement. Hence

24

$127.1

122

$100

$78.7

Figure 9.5 Stock Price Movements in Example 9.4
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the probability of the stock price be1%$1 12 Dat the end of four time intervals is
4 x 0.525 x 0.475 = 0.275

The probabilities of stock prices of $127.1, $100.0, $88.7, and $78.7 can similarly be shown
to be 0.076, 0.373, 0.225, and 0.051, respectively.

9.7 SUMMARY

Stochastic processes describe the probabilistic evolution of the value of a variable
through time. A Markov process is one where only the present value of the variable
is relevant for predicting the future. The past history of the variable and the way
in- which the present has emerged from the past is irrelevant.

A Wiener process, dz, is a process describing the evolution of a normally
distributed variable. The drift of the process is zero and the variance rate is 1 per
unit time. This means that, if the value of the variable is x at time zero, at time T
it is normally distributed with mean x and standard deviation +/T.

A generalized Wiener process describes the evolution of a normally dis-
tributed variable with a drift of a per unit time and a variance rate of b2 per-unit..
time where a and b are constants. This means that if the value of the variable is
X at time zero, at time 7T it is normally distributed with a mean of x + aT and a
standard deviation of b+/7.

An Ito process is a process where the.dggt:and variance rate of x can be a
function of both x itself and time. The change in x in a very short period of time
. is normally distributed but its change over longer periods of time is liable to be
\ non-normal.

In this chapter we have developed a plausible Markov stochastic process for
the behavior of a stock price over time. The process is widely used in the valuation
of derivative securities.’ It is known as geometric Brownian motion. Under this
process, the proportional rate of return to the holder of the stock in any small
interval of time is normally distributed and the returns in any two different small
intervals of time are independent.

One way of gaining an intuitive understandin\g{(l).lf a stochastic process for a
variable is to simulate the behavior of the variable._This involves dividing a time
interval into many small time steps and randomly sampling possible paths for the
variable. The future probability distribution for the variable can then be calculated.
Monte Carlo simulation will be discussed further in Chapter 14.
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QUESTIONS AND PROBLEMS

9.1. What would it mean to assert that the temperature at a certain place follows a Markov
process? Do you think that temperatures do, in fact, follow a Markov process?

9.2, Can a trading rule based on the past history of a stock’s price ever produce returns
which are consistently above average? Discuss.

*9.3, A company’s cash position, measured in millions of dollars, follows a generalized
Wiener process with a drift rate of 0.1 per month and a variance rate of 0.16 per
month. The initial cash position is 2.0.

(a) What are the probability distributions of the cash position after 1 month, 6 months,
and 1 year?

(b) What are the probabilities of a negative cash position at the end of 6 months and
1 year?

(c) At what time in the future is the probability of a negative cash position greatest?

*9.4. A company’s cash position, measured in millions of dollars, follows a generalized
Wiener process with a drift rate of 1.5 per quarter and a variance rate of 4.0 per
quarter. How high does the company’s initial cash position have to be for the company
tb have a less than 5% chance of a negative cash position by the end of 1 year?

*9 5. Variables X; and X, follow generalized Wiener processes with drift rates ) and u;
and variapces 0'12 and 022. What process does X + X follow if:
(a) The changes in X; and X7 in any short interval of time are uncorrelated?
(b) There is a correlation p between the changes in X; and X in any short interval
of time?

9.6. Consider a variable, S, which follows the process
dS=pudt+odz

For the first 3 years, u = 2 and o = 3; for the next 3 years, u =3 and 0 = 4. If
the initial value of the variable is 5, what is the probability distribution of the value
of the variable at the end of year 67

9.7. Suppose that a stock price has an expected return of 16% per annum and a volatility
of 30% per annum. When the stock price at the end of a certain day is $50, calculate
the following:
(a) The expected stock price at the end of the next day.
(b) The standard deviation of the stock price at the end of the next day.
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9.8.

9.9.

9.10.

9.11.
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(c) The 95% confidence limits for the stock price at the end of the next day.

Stock A and stock B both follow geometric Brownian motion. Changes in any short
interval of time are uncorrelated with each other. Does the value of a portfolio
consisting of one of stock A and one of stock B follow geometric Brownian motion?
Explain your answer.

Equation (9.7) can be written as
AS =uS At +oSe /At

where u and o are constant. Explain carefully the difference between this model and
each of the following:

AS = p At + e VAT
AS =uS At +oevAt

AS =u At +oSev At

Why is the model in Equation (9.7) a more appropriate model of stock price behavior
than any of these three alternatives?

It has been suggested that the short-term interest rate, r, follows the stochastic process:
dr =(a—r)bdt +rcdz

where a, b, and ¢ are positive constants and dz is a Wiener process. Describe the
nature of this process.

Consider a stock price that provides an expected return of 15% per annum and has a
volatility of 40% per annum. Suppose that a time interval of 0.01 year is used for the
binomial model. Calculate u, d, and p. Show that they give correct values for the
expected return and variance of the return during the time interval. Suppose that the
stock price starts at $50. What are the possible stock prices at the end of 0.03 year?
What is the probability of each one occurring?



The Black—Scholes
Analysis

In the early 1970s, Black and Scholes made a major breakthrough by deriving a
differential equation that must be satisfied by the price of any derivative security
dependent on a non-dividend-paying stock.! They used the equation to obtain
values for European call and put options on the stock. In this chapter we explain
the Black—Scholes analysis. We also discuss the properties of the stochastic process
for stock prices developed in Chapter 9 and explain a powerful tool known as risk-
neutral valuation.

Before we start, it is appropriate to mention one point concerning the notation
that will be used. When valuing forward contracts in Chapter 3, no assumptions
were made about interest rates and the variable, r, was used to denote the risk-free
rate of interest for an investment maturing at time 7. In this chapter and the next
few chapters, we continue to denote the risk-free interest rate by r. However,
except where otherwise stated, we assume that interest rates are constant and the
same for all maturities. In Chapter 17 we will discuss how this constant interest
rate assumption can be relaxed.

1See F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,” Journal of
Political Economy, 81 (May—June 1973), 637-54.

207
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10.1 ITO’S LEMMA

The price of a stock option is a function of the underlying stock’s price and time.

More generally, we can say that the price of any derivative security is a function

of the stochastic variables underlying the derivative security and time. A serious

student of derivative securities must therefore acquire some understanding of the

behavior of functions of stochastic variables. An important result in this area was

discovered by a mathematician, Ito, in 1951.2 It is known as Ito’s lemma.
Suppose that the value of a variable x follows an Ito process:

dx = a(x, t)dt + b(x, t)dz (10.1)

where dz is a Wiener process and a and b are functions of x and ¢. The variable x
has a drift rate of a and a variance rate of b%. Ito’s lemma shows that a function,
G, of x and ¢ follows the process

(3G 3G  19°G 3G
dG = —a+—+ -—5b*|dt + —bd 10.2

(3xa+3t+28x2 ) a0 (10.2
where the dz is the same Wiener process as in Equation (10.1). Thus G also
follows an Ito process. It has a drift rate of

3G 3G 132Gb2

T ar T

6 2b2
dx

A completely rigorous proof of Ito’s lemma is beyond the scope of this book. In
Appendix 10A we show that the lemma can be viewed as an extension of well-
known results in differential calculus.

In Chapter 9 we argued that

dS =pSdt +oS8Sdz (10.3)

and a variance rate of

with 14 and o constant is a reasonable model of stock price movements. From Ito’s
lemma, it follows that the process followed by a function, G, of S and ¢ is
aG 3G 13°G 3G
dG = —<uS+—+ -—=028)dt + —0oSd 10.4
(as“+at+2as2" ) T (104
Note that both § and G are affected by the same underlying source of uncertainty,
dz. This proves to be very important in the derivation of the Black-Scholes resuls.

25ee K. Ito, “On Stochastic Differential Equations,” Memoirs, American Mathematical Society,
no. 4 (1951), 1-51.
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APPLICATION TO FORWARD CONTRACTS
To illustrate Ito’s lemma consider a forward contract on a non-dividend-

paying stock. Assume that the risk-free rate of interest is constant and equal to r
for all maturities. Define F as the forward price. From Equation (3.5):

F =8eT"
so that
F .y 3*F oF _
—_— = s — = U, —_— = - S r(T—t)
as ¢ 352 ar V¢

Assume that S follows geometric Brownian motion with expected return u and
volatility . [This is the process in Equation (10.3).] The process for F is, from
Equation (10.4), given by

dF = [T Pus —rSe " Pdt + T VoS dz
Substituting F = Se”T~", this becomes
dF =(u—r)Fdt+oFd:z (10.5)
Like S, F follows geometric Brownian motion. It has an expected growth rate of

@ — r rather than p.

APPLICATION TO THE LOGARITHM OF THE STOGK PRICE

V\;'e now -use Ito’s lemma to derive the process followed by In S. Define:
G=IS
Since
G _1 26 _ 1 G _,
as S’ Y §2° at

it follows from Equation (10.4) that the process followed by G is

o2
dG = (u—7>dt+adz

Since 4 and o are constant, this equation indicates that G follows a gener-
alized Wiener process. It has constant drift rate u — 02/2 and constant variance
rate o2. From the results in Chapter 9, this means that the change in G between
the current time, ¢, and some future time, T, is normally distributed with mean

2
(u—%-)(T—t)
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and variance
o(T —1t)
The value of G at time ¢ is In S. Its value at time T is In Sy, where St is
the stock price at time T. Its change during the time interval T — ¢ is therefore
InSt —InS§

Hence

2
InSy —InS ~ ¢[(u - 5’2—)(7“ —1), oNT — t]

10.2 THE LOGNORMAL PROPERTY OF STOCK
PRICES

A variable has a lognormal distribution if the natural logarithm of the variable is
normally distributed. It has just been shown that the model of stock price behavior
developed in Chapter 9 implies that

2
InSr —1nS ~ ¢l(u — %)(T — 1), o/T =1 (10.6)

where St is the stock price at a future time T'; § is the stock price at the current time,
t; and ¢(m, s) denotes a normal distribution with mean m and standard deviation
s. From the properties of the normal distribution, it follows from Equation (10.6)
that

2
InS7 ~¢[InS + (1 — gz—)(T —t), oT —1t] (10.7)

This shows that S7 has a lognormal distribution. The standard deviation of In S
is proportional to /7 — ¢. This means that our uncertainty about the logarithm of
the stock price, as measured by its standard deviation, is proportional to the square
" root of how far ahead we are looking.

Example 10.1
Consider a stock with an initial price of $40, an expected return of 16% per annum, and a
volatility of 20% per annum. From Equation (10.7), the probability distribution of the stock
price, St, in 6 months’ time is given by
0.04
InSt ~ ¢[In40 + (0.16 — 7)0.5, 0.2v/0.5]

InSt ~ ¢(3.759, 0.141)
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and variance
o*(T - 1)

The value of G at time ¢ is InS. Its value at time T is In Sy, where Sy is
the stock price at time T'. Its change during the time interval T — ¢ is therefore

InStr —InS

Hence

2
NSy —InS ~ ¢>[(u - %)(T — 1), T = z]

10.2 THE LOGNORMAL PROPERTY OF STOCK
PRICES

A variable has a lognormal distribution if the natural logarithm of the variable is
normally distributed. It has just been shown that the model of stock price behavior
developed in Chapter 9 implies that

2
InSy —InS ~ (- %)(T — 1), o/T — 1} (10.6)

where St is the stock price at a future time T'; S is the stock price at the current time,
t; and ¢(m, s) denotes a normal distribution with mean m and standard deviation
s. From the properties of the normal distribution, it follows from Equation (10.6)
that

2
In Sy ~ ¢[In S + (u — %)(T — 1), oT 1] (10.7)

This shows that St has a lognormal distribution. The standard deviation of In Sy
is proportional to +/T — r. This means that our uncertainty about the logarithm of
the stock price, as measured by its standard deviation, is proportional to the square
root of how far ahead we are looking.

Example 10.1

Consider a stock with an initial price of $40, an expected return of 16% per annum, and a
volatility of 20% per annum. From Equation (10.7), the probability distribution of the stock
price, S7, in 6 months’ time is given by

In S ~ ¢[In40 + (0.16 — %)0‘5, 0.2v/0.5]

In ST ~ ¢(3.759, 0.141)
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and variance
o¥(T -1)

The value of G at time ¢ is InS. Its value at time T is In St, where St is
the stock price at time 7. Its change during the time interval T — ¢ is therefore

InSt —InS

Hence

2
ISy —In§ ~ ¢[(u - %)(T — 1), 0T = t]

10.2 THE LOGNORMAL PROPERTY OF STOCK
PRICES

A variable has a lognormal distribution if the natural logarithm of the variable is
normally distributed. It has just been shown that the model of stock price behavior
developed in Chapter 9 implies that

2
nSr —InS ~ ¢l(u — -"2—)(1" — 1), oT =1 (10.6)

where S is the stock price at a future time 7'; S is the stock price at the current time,
t; and ¢(m, s) denotes a normal distribution with mean m and standard deviation
s. From the properties of the normal distribution, it follows from Equation (10.6)
that

2
ISy ~ ${InS + (u — %)(T —0), oT =1) (10.7)

This shows that Sy has a lognormal distribution. The standard deviation of In St
is proportional to 4/T — ¢t. This means that our uncertainty about the logarithm of
the stock price, as measured by its standard deviation, is proportional to the square
root of how far ahead we are looking.

Example 10.1

Consider a stock with an initial price of $40, an expected return of 16% per annum, and a
volatility of 20% per annum. From Equation (10.7), the probability distribution of the stock
price, S7, in 6 months’ time is given by

0.04
InS7 ~ ¢(In40 + (0.16 — ——2—-)0.5, 0.24/0.5]

InS7 ~ ¢(3.759, 0.141)
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There is a 95% probability that a normally distributed variable has a value within two
standard deviations of its mean. Hence, with 95% confidence,

3.477 < InSt < 4.041

This can be written

63'477 4.041

<Sr<e
or
32.36 < St < 56.88

Thus there is a 95% probability that the stock price in 6 months will lie between 32.36 and
56.88.

A variable that has a lognormal distribution can take any value between zero
and infinity. Figure 10.1 illustrates the shape of a lognormal distribution. Unlike
the normal distribution, it is skewed so that the mean, median, and mode are all
different. From Equation (10.7) and the properties of the lognormal distribution, it
can be shown that the expected value of St, E(St), is given by3

E(S7) = Se*T—9 (10.8)

This fits in with the definition of u as the expected rate of return. The variance of
St, var (S7), can be shown to be given by

var (S7) = Szez"(T_')(e"z(T") - 1) (10.9)

AY

A

Figure 10.1 The Lognormal Distribution

3For a discussion of the properties of the lognormal distribution, see J. Aitchison and J. A. C.
Brown, The Lognormal Distribution (Cambridge: Cambridge University Press, 1966).
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Example 10.2

Consider a stock where the current price is $20, the expected return is 20% per annum,
and the volatility is 40% per annum. The expected stock price in 1 year, E(ST), and the
variance of the stock price in 1 year, var (St), are given by

E(St) = 20¢%2 = 24.43

var (S7) = 400e%4(e%16 — 1) = 103.54
The standard deviation of the stock price in 1 year is +/103.54 or 10.18.

10.3 THE DISTRIBUTION OF THE RATE
OF RETURN

The lognormal property of stock prices can be used to provide information on the
probability distribution of the continuously compounded rate of return earned on
a stock between times ¢ and 7. Define the annualized continuously compounded
rate of return between ¢ and T as 5.* It follows that

Sp = Se"T=0

and

n>T (10.10)
Since
S
InSy —In$ =ln?T

Equation (10.6) implies that
ST 02
ln?~¢ (u——z—)(T—t), ovT —1t (10.11)

From the properties of normal distributions, it follows from Equation (10.10) that
2

~¢< -z —U—) (10.12)
" =2 '

»

*It is important to distinguish between the continuously compounded rate of return, n, and the
annualized return with no compounding (see Section 3.1). The latter is

1 (ST—S)
T—1t S

and is always greater than 7.
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Thus the continuously compounded rate of return is normally distributed with mean
i — 02/2 and standard deviation o//T —¢.

Example 10.3
Consider a stock with an expected return of 17% per annum and a volatility of 20% per

annum. The probability distribution for the actual rate of return (continuously compounded)
realized over 3 years is normal with mean

.04
0.17 - 0—3—— =0.15

or 15% per annum and standard deviation

0.2
— =0.115

3

or 11.5% per annum. Since there is a 95% chance that a normally distributed variable will
lie within two standard deviations of its mean, we can be 95% confident that the actual
return realized over 3 years will be between —~8% and +38% per annum.

WHAT Is THE EXPECTED RATE OF RETURN?

The result in Equation (10.12) shows that the expected continuously com-
pounded rate of return in time T — ¢ is 4 — 02/2. This may seem strange since
in Chapter 3, u was defined as the expected value of the rate of return in any
short interval. How can this be different from the expected value of the contin-
uously compounded rate of return in a longer time interval? To understand the
difference between the two, we consider a numerical example. Suppose that the
following is a sequence of returns per annum on a stock, measured using annual
compounding:

15%, 20%, 30%, —20%, 25%

<
The arithmetic mean of the returns Is calculated by taking the sum of the re-
turns and dividing by 5. It is 14 percent. However, an investor would actu-
ally earn less than 14 percent per annum if he or she left money invested in the
stock for 5 years. The dollar value of $100 at the end of the 5 years would
be

100 x 1.15 x 1.20 x 1.30 x 0.80 x 1.25 = 179.40
By contrast a 14 percent return with annual compounding would give
100 x 1.14° = 192.54

This example illustrates the general result that the mean of the returns earned
in different years is not necessarily the same as the mean return per annum over



214 The Black-Scholes Analysis Chapter 10

several years with annual compounding. It can be shown that unless the returns
happen to be the same in each year, the former is always greater than the latter.’
The actual average return earned by the investor, with annual compounding, is

(1.7940)'° — 1 =0.124

or 12.4 percent per annum.

There is, of course, nothing magical about the time period of 1 year in this
example. Suppose that the time period over which returns are measured is made
progressively shorter and the number of observations is increased. We can calculate
the following two estimates:

1. The expected rate of return in a very short period of time. (This is obtained
by calculating the arithmetic average of the returns realized in many very
short periods of time.)

2. The expected continuously compounded rate of return over a longer period of
time (This is obtained by calculating the return with continuous compounding
realized over the whole period covered by the data.)

Analogously to the example just given, we would expect estimate 1 to be greater
than estimate 2. Our earlier results show that this is in fact the case. The ex-
pected rate of return in an infinitesimally short period of time is . The expected
continuously compounded rate of return is u — 02/2.

These arguments show that the term “expected return” is ambiguous. It can
refer to either u or to u — a2/2. Unless otherwise stated, we will use it to refer to
u throughout this book.

10.4 ESTIMATING VOLATILITY FROM
HISTORICAL DATA

To estimate the volatility of a stock price empirically, the stock price is usually
observed at fixed intervals of time (e.g., every day, every week, or every month).
Define:

n+1: Number of observations
S;: Stock price at end of ith interval i=0,1,...,n)
7: Length of time interval in years

5Some readers may recognize this as equivalent to the statement that the arithmetic mean of a set
of numbers is always greater than the geometric mean if the numbers are not all equal to each other.
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S;
u; =In{ —
(Si-1>
fori=1,2,...n.

Since S; = S;_ie*, u; is the continuously compounded return (not annual-
ized) in the ith interval. The usual estimate, s, of the standard deviation of the
u;’s is given by

and let

1 n
s = E (u; e -12)2
i=1

n—1

or

1 " 1 “ ’
- 2 _ 0 ,
STt ;"" n(n— 1) (;")
where u is the mean of the u;’s.

From Equation (10.11), the standard deviation of the u;’s is o./T. The
variable, s, is therefore an estimate of o /. It follows that o itself can be estimated
as s*, where

.« _ S
C TR
The standard error of this estimate can be shown to be approximately s*/ V2n.

Choosing an appropriate value for n is not easy. Ceteris paribus, more data
generally lead to more accuracy. However, o does change over time and data that
are too ad may not be relevant for predicting the future. A compromise which
seems to work reasonably well is to ube closing prices from daily data over the most
recent 90 to 180 days. There is an important issue concerned with whether time
should be measured in ‘calendar days or trading days when volatility parameters
are being estimated and used. Later in this chapter we will show that the empirical
research carried out to date indicates that trading days should be used. In other
words, days when the exchange is closed should be ignored for the purposes of the
volatility calculation.

Example 10.4

Table 10.1 shows a possible sequence of stock prices over a 20-day period. Since
> ui=009531 and ) u} =0.00333

an estimate of the standard deviation of the daily return is

= 0.0123

\/ 0.00333  0.095312
19 380
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TABLE 10.1 Computation of Volatility

Closing Stock Price Relative, Daily Return,
Day Price (dollars) Si/Si—1 ui =In(S;/S;_1)
0 20
1 204 1.00625 0.00623
2 19% 0.98758 —0.01250
3 20 1.00629 0.00627
4 203 1.02500 0.02469
5 205 0.98781 -0.01227
6 20} 1.03086 0.03040
7 20% 1.00000 0.00000
8 203 1.00000 0.00000
9 203 0.99401 —0.00601
10 203 1.00000 0.00000
11 21 1.01205 0.01198
12 214 1.00595 0.00593
13 20% 0.98817 ~0.01190
14 20% 1.00000 0.00000
15 21} 1.01796 0.01780
16 213 1.00588 0.00587
17 213 1.00000 0.00000
18 215 0.99415 —0.00587
19 213 1.02353 0.02326
20 22 1.01149 0.01143

Assuming that time is measured in trading days, and that there are 250 trading days per year,
T = 1/250 and the data give an estimate for the volatility per annum of 0.0123 /250 =
0.194. The estimated volatility is 19.4% per annum. The standard error of this estimate is
.1
0.194 = 0.031

V2 x20 .

or 3.1 percent per annum.

This analysis assumes that the stock pays no dividends, but it can be adapted
to accommodate dividend-paying stocks. The return, u;, during a time interval that
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includes an ex-dividend day is given by

In Si+ D
U; =
' Si-1
where D is the amount of the dividend. The return in other time intervals is still
Si
U =In—
' Si-1

However, as tax factors play a part in determining returns around an ex-dividend
date, it is probably best to discard altogether data for intervals that include an
ex-dividend date.

10.5 OPTION VALUATION USING A SIMPLE
BINOMIAL MODEL

In this section we provide an example showing how a European call option can be
valued in a particularly simple situation. The example gives some insights into the
arguments underlying the Black-Scholes differential equation.

Suppose that a stock price is currently $20 and that it is known that at the
end of one month the price will be either $22 or $18. Consider a European call
option to buy the stock for $21 in 1 month. If the stock price turns out to be $22,
the value of the option is $1; if the stock price turns out to be $18, the value of
the option is zero. This situation is illustrated in Figure 10.2.

Consider a portfolio consisting of a long position in « shares of the stock
and a short position in one call option. The value of this portfolio is 22c — 1 if
the stock price moves up and 18« if it moves down. When « is chosen equal to
0.25, these two values are the same:

18a¢ =220 — 1 =4.5

Stock price =$22
Option price=$1

Stock price =$20

Stock price =$18
Option price=$0

Figure 10.2 Stock Price Movements
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For this value of o the portfolio is therefore riskless. Regardless of what happens
it is worth $4.5 in 1 month. The current value of the portfolio when o = 0.25 is

20x025— f=5—f

where f is the current value of the call option. Riskless portfolios must, in the
absence of arbitrage opportunities, earn the risk-free rate of interest. Suppose that
risk-free rate is 1 percent per month (with monthly compounding). It follows that

1.01(5~ f) = 4.5
or
45
=5— — —0.5445
/ 1.01

that is, the current value of the option is $0.5445.

The reader may be surprised that the probabilities of the stock moving up to
$22 and down to $18 were not used in arriving at this answer. This point will be
returned to in Section 10.8.

10.6 CONCEPTS UNDERLYING THE
BLACK-SCHOLES DIFFERENTIAL
EQUATION

The Black—Scholes differential equation is an equation that must be satisfied by
the price, f, of any derivative security dependent on a non-dividend-paying stock.
The equation is derived in the next section. Here we consider the nature of the
arguments used.

In essence, the argument is very similar to the argument used to value the
option in the simple situation in the previous section. A riskless portfolio consisting
of a position in the derivative security and a position in the stock is set up, and
the return on the portfolio is then set equal to the risk-free rate of interest. In the
Black—Scholes analysis, the portfolio that is set up remains riskless for only a very
short period of time. Nevertheless, it can be argued that the return during this short
period of time must be the risk-free rate of interest if arbitrage opportunities are to
be avoided.

The reason why a riskless portfolio can be set up is because the stock price
and the derivative security price are both affected by a single underlying sofirce
of uncertainty. This means that in any short period of time, the two are perfectly
correlated. When an appropriate portfolio of the stock and the derivative security
is set up, the gain (loss) from the stock position always offsets the loss (gain) from
the derivative security position so that the overall value of the portfolio at the end
of the short period of time is known with certainty.
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ASSUMPTIONS

The assumptions we will use to derive the Black—Scholes differential equation
are as follows:

1. The stock price follows the process developed in Chapter 9 with and o
constant.

. The short selling of securities with full use of proceeds is permitted.

There are no transactions costs or taxes. All securities are perfectly divisible.

There are no dividends during the life of the derivative security.

There are no riskless arbitrage opportunities.

Security trading is continuous.

. The risk-free rate of interest, , is constant and the same for all maturities.

Ne s

As will be discussed in Chapter 17, some of these assumptions can be relaxed. For
example, u, r, and o can be known functions of ¢.

10.7 DERIVATION OF THE BLACK-SCHOLES
DIFFERENTIAL EQUATION

We now derive the Black—Scholes differential equation. We assume that the stock
price S follows the process discussed in Chapter 9:
dS =uSdt+oSd:z (10.13)

Suppose that f is the price of a derivative security contingent on S. The variable
f must be some function of S and ¢. Hence from Equation (10.4),

f af  18*f o252 af
d dt + —o08d 10.14
f= ( R P Y- Al R T (10.14)
The discrete versions of equations (10.13) and (10.14) are
AS=uSAt+o0S Az (10.15)

and

af af 13°f 252 af
A S°) At SA 10.
f= (as S+ +5503° +55084z  (10.16)
where AS and Af are the changes in f and § in a small time interval Az. It
will be recalled from the discussion of Ito’s lemma in Section 10.1 that the Wiener
processes underlying f and S are the same. In other words, the Az (=€ At) in
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equations (10.15) and (10.16) are the same. It follows that by choosing a portfolio
of the stock and the derivative security, the Wiener process can be eliminated.
The appropriate portfolio is

-1: derivative security
d
+£ shares

The holder of this portfolio is short one derivative security and long an amount
9f/8S of shares. Define IT as the value of the portfolio. By definition

af
=— —=S 10.17
f+ 2S ( )
The change ATl in the value of the portfolio in time At is given by
d
ATl = -Af + %AS (10.18)
Substituting equations (10.15) and (10.16) into Equation (10.18) yields
8f 192 f o252
ATl = S 10.19
( B 29827 ( )

Since this equation does not involve Az, the portfolio IT must be riskless during
time Az. The assumptions listed in the preceding section imply that the portfolio
must instantaneously earn the same rate of return as other short-term risk-free
securities. If it earned more than this return, arbitrageurs could make a riskless
profit by shorting the risk-free securities and using the proceeds to buy the portfolio;
if it earned less, they could make a riskless profit by shorting the portfolio and
buying risk-free securities. It follows that

ATl = rIl At

where r is the risk-free interest rate. Substituting from equations (10.17) and
(10.19) this becomes

af 13f22 af

af f o2 29°f

ar +rS3s 8S S 38?2

Equation (10.20) is the Black—Scholes differential equation. It has many
solutions, corresponding to all the different derivative securities that can be defined
with S as the underlying variable. The particular derivative security that is obtained
when the equation is solved depends on the boundary conditions that are used.
These specify the values of the derivative security at the boundaries of possible

so that

=rf (10.20)
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values of S and . In the case of a European call option, the key boundary
condition is

, f=max(§ - X, 0) whent =T
In the case of a European put option, it is
f=max(X -5, 0) whent =T

One point that should be emphasized about the portfolio I1 in the derivation
of Equation (10.20) is that it is not permanently riskless. It is riskless only for
an infinitesimally short period of time. As S and ¢ change, 3 f/9S also changes.
To keep the portfolio riskless, it is therefore necessary to change continuously the
relative proportions of the derivative security and the stock in the portfolio.

Example 10.5
A forward contract on a non-dividend-paying stock is a derivative security dependent on the

stock. As such, it should satisfy Equation (10.20). From Equation (3.6), the value of the
forward contract, f, is given by

f=8—KeT™0
where K is the delivery price. This means that

af T af 92 f
9 _ ke T, o, 27 o
ar T h€ 3s 352

When these are substituted into the left-hand side of Equation (10.20), we obtain
—rKe"T=0 4 r§

This equals rf, showing that Equation (10.20) is indeed satisfied.

10.8 RISK-NEUTRAL VALUATION

Risk-neutral valuation is without doubt the single most important tool for the anal-
ysis of derivative securities. It arises from one key property of the Black—Scholes
differential equation (10.20). This property is that the equation does not involve
any variables that are affected by the risk preferences of investors. The variables
that do appear in the equation are the current stock price, time, stock price volatility,
and the risk-free rate of interest. All are independent of risk preferences.

The Black—Scholes differential equation would not be independent of risk
preferences if it involved the expected return on the stock, u. This is because the
value of u does depend on risk preferences. The higher the level of risk aversion
by investors, the higher u will be for any given stock. It is fortunate that x4 happens
to drop out in the derivation of the equation.

The fact that the Black—Scholes differential equation is independent of risk
preferences enables an ingenious argument to be used. If risk preferences do not
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enter into the equation, they cannot affect its solution. Any set of risk preferences
can therefore be used when evaluating f. In particular, the very simple assumption
that all investors are risk neutral can be made.

In a world where investors are risk neutral, the expected return on all securi-
ties is the risk-free rate of interest, r. This is because risk-neutral investors do not
require a premium to induce them to take risks. It is also true that the present value
of any cash flow in a risk-neutral world can be obtained by discounting its expected
value at the risk-free rate. The assumption that the world is risk neutral does there-
fore considerably simplify the analysis of derivative securities. Consider a deriva-
tive security such as a European option that pays off some function of the stock
price at time T'. First, the expected value of the derivative security at time T is cal-
culated on the assumption that the expected return from the stock is 7 rather than .
This expected value is then discounted to the present time using a discount rate of r.

It is important to realize that the risk-neutrality assumption is merely an ar-
tificial device for obtaining solutions to the Black—Scholes differential equation.
The solutions that are obtained are valid in all worlds—not just those where in-
vestors are risk neutral. When we move from a risk-neutral world to a risk-averse
world, two things happen. The expected growth rate in the stock price changes
and the discount rate that must be used for any payoffs from the derivative security
changes. It happens that these two effects always offset each other exactly.

THE BivomiAL MoDEL REVISITED

In this section we return to the example considered in Section 10.5. It will
be recalled that this concerns a stock price which is currently $20 and which will
either move up to $22 or down to $18 at the end of 1 month. The derivative
security in the example is a call option with an exercise price of $21.

It is instructive that the probabilities of the stock price moving up to $22 and
down to $18 were never used in deriving the option price of $0.5445 in Section
10.5. This can be interpreted as meaning that the option price is independent of
the expected return on the stock. It is consistent with the observation, made in
the Section 10.9, that the Black—Scholes differential equation is independent of the
expected return on the stock.

We now show that the call option price can be derived using risk-neutral
valuation. In a risk-neutral world, the expected return on the stock must be the
risk-free rate of interest of 1 percent per month. The probability, p, of an upward
movement must therefore satisfy

22p + 18(1 — p) = 20 x 1.01

that is, p must be 0.55. The expected value of the call option in 1 month using

this value of p is
0.55 x 1+ 0.45 x 0 = $0.55
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This is the expected terminal value of the call option in a risk-neutral world.
The present value of this expected value when discounted at the risk-free rate of
interest is

035 _ 05445
1.01

or $0.5445. This is the same as the value obtained in Section 10.5. Thus riskless
arbitrage arguments and risk-neutral valuation give the same answer. It can be
shown that this is always the case for a binomial model. As discussed in Section
9.6, geometric Brownian motion can be regarded as a limiting case of the binomial
model. Showing that risk-neutral valuation always holds for the binomial model
is therefore one way of showing that it holds when stock prices follow geometric
Brownian motion.

ApPLICATION TO FORWARD CONTRACTS ON A STOCK

Forward contracts on a non-dividend-paying stock have already been valued
in Section 3.2. They will be valued again in this section to provide a simple
illustration of risk-neutral valuation. We make the assumption that interest rates are
constant and equal to r. This is somewhat more restrictive than the assumption in
Section 3.2. Consider a long forward contract that matures at time T’ with delivery
price, K. As described in Chapter 1, the value of the contract at maturity is

Sr—K
where Sy is the stock price at time T. From the risk-neutral valuation argument,
the value of the forward contract at time ¢ (< T) is its expected value at time T in

a risk-neutral world, discounted to time ¢ at the risk-free rate of interest. Denoting
the value of the forward contract at time ¢ by f, this means that

f=e"TDEST — K) (10.21)

where E denotes expected value in a risk-neutral world. Since K is a constant,
Equation (10.21) becomes

f=e"TDESH) — KeT T (10.22)

The growth rate of the stock price, p, becomes r in a risk-neutral world.
Hence from Equation (10.8),

E(Sr) = Se’T9 (10.23)
Substituting Equation (10.23) into Equation (10.22) gives
f=85—Ke'T™0 (10.24)

This is in agreement with Equation (3.6). Example 10.5 shows that this expression
for f satisfies the Black—Scholes differential equation.
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10.9 THE BLACK-SCHOLES PRICING
FORMULAS

In their pathbreaking paper, Black and Scholes succeeded in solving their differ-
ential equation to obtain exact formulas for the prices of European call and put
options. These formulas are presented in equations (10.27) and (10.28). In this
section we indicate how a similar analysis to that just used for forward contracts
can be used to derive the formulas.

The expected value of a European call option at maturity in a risk-neutral
world is

E[max (S; — X, 0)]

where as before £ denotes expected value in a risk-neutral world. From the risk-
neutral valuation argument the European call option price, ¢, is the value of this
discounted at the risk-free rate of interest, that is,

¢ =T~ E[max (S; — X, 0)] (10.25)
In a risk-neutral world, In S7 has the probability distribution in Equation (10.7)
with u replaced by r; that is,
2
InSr ~ ¢lln S + (r — %)(T —0), oT —1] (10.26)

Evaluating the right-hand side of Equation (10.25) is an application of integral
calculus.® The result is

c=8N(d) — Xe " T IN(dp) (10.27)
where
g = In(S/X)+ (r +02/2)(T — 1)
' oT —t
_@S/X)+ e -0¥T-1) —
d = G\/T_——t =di—o~T —t

and N(x) is the cumulative probability distribution function for a standardized
normal variable (i.e., it is the probability that such a variable will be less than Xx).

SIf g is the probability density function of Sy in a risk-neutral world given by (10.26), Equation
(10.25) becomes

o0
c=eTN / St — X)g(S1)dSt
X

Substituting S7 = e converts this to an integral involving the normal rather than the lognormal
distribution. The rest is tedious algebra!
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Since ¢ = C, Equation (10.27) also gives the value of an American call option
on a non-dividend-paying stock. The value of a European put can be calculated in
a similar way to a European call. Alternatively, put-call parity (see Chapter 7) can
be used. The result is

p=Xe " T"IN(~dy) — SN(~d,) (10.28)

Unfortunately, no exact analytic formula for the value of an American put option on
a non-dividend-paying stock has been produced. Numerical procedures and analytic
approximations for calculating American put values are discussed in Chapter 14.

Note that to derive equations (10.27) and (10.28), it has been assumed that r
is constant. In practice when the equations are used, r is set equal to the risk-free
rate of interest on an investment lasting for 7 — ¢, the life of the option.

PROPERTIES OF THE BLACK—SCHOLES FORMULAS

We now show that the Black—Scholes formulas have the right general prop-
erties by considering what happens when some of the parameters take extreme
values.

When the stock price, S, becomes very large, a call option is almost certain
to be exercised. It then becomes very similar to a forward contract with delivery
price X. From Equation (3.6) we therefore expect the call price to be

S —Xe'T

This is in fact the call price given by Equation (10.27) since, when S becomes
very large, both d; and d; become very large and N(d;) and N (d;) are both close
to 1.0.

When the stock price becomes very large, the price of a European put option,
p, approaches zero. This is consistent with Equation (10.28) since N(~d;) and
N(—d») are both close to zero.

Consider next what happens when the volatility o approaches zero. Since
the stock is virtually riskless, its price will grow at rate r to Se’” at time T and
the payoff from a call option is

max (Se’” — X, 0)
Discounting at rate r, the value of the call today is

e T max (Se'T — X, 0)

=max (S — Xe™'T, 0)

To show that this is consistent with Equation (10.27), consider first the case where
S > Xe'T. This implies In(S/X) —rT > 0. As o tends to zero, d; and d, tend
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to 400 so that N(d;) and N(d,) tend to 1.0 and Equation (10.27) becomes
c=8—Xe'T

When S < Xe'7, it follows that In(S/X) — rT < 0. As o tends to zero, dy and
d, tend to —oo so that N(d;) and N (d,) tend to zero and Equation (10.27) gives a
call price of zero. The call price is therefore always max (S —Xe~"7, 0) as o tends
to zero. Similarly, it can be shown that the put price is always max (Xe~"7 — S, 0)
as o tends to zero.

10.10 THE CUMULATIVE NORMAL
DISTRIBUTION FUNCTION

The only problem in applying equations (10.27) and (10.28) is in calculating the
cumulative normal distribution function, N. Tables for N(x) are provided at the
end of this book. The function can also be evaluated directly using numerical
procedures. Alternatively, a polynomial approximation can be used.” One such
approximation that can easily be obtained using a hand calculator is

1 — N'(x)(a1k + a2k? + ask®) when x > 0
Nx) =

1—-N(-x) when x < 0
where
1
k =
1+yx
y = 0.33267
a; = 0.4361836
a, = —0.1201676 P
as = 0.9372980
and ]
N () = e *1?
x) T

This provides values for N (x) that are usually accurate to four decimal places and
are always accurate to 0.0002. For six decimal place accuracy the following can
be used

1 — N'(x)(aik + axk? + ask® + ask* + ask®)  whenx > 0

Nx) =
1= N(—x) when x < 0

7S¢e M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions (New York: Dover
Publications, 1972.)
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where
k= 1
14 yx
y = 0.2316419

a; = 0.319381530

a; = —0.356563782

a; = 1.781477937

as = —1.821255978

as = 1.330274429
and N’(x) is defined as above.

Example 10.6

227

Consider the situation where the stock price 6 months from the expiration of an option is
$42, the exercise price of the option is $40, the risk-free interest rate is 10% per annum,
and the volatility is 20% per annum. This means that $ = 42, X =40, r = 0.1, 0 = 0.2,

T-1t=0.5,
g = B105+0.12%05

- =0.7693
! 0205

_ In1.05+0.08 x 0.5

= = 0.6278
2 0.24/0.5

and
Xe T = 40e709% = 38.049
Hence if the option is a European call, its value, c, is given by
¢ =42N(0.7693) — 38.049N(0.6278)
If the option is a European put, its value, p, is given by
p = 38.049N(—0.6278) — 42N (—0.7693)
Using one of the polynomial approximations,

N(0.7693) = 0.7791, N(—0.7693) = 0.2209

N(0.6278) = 0.7349, N(—0.6278) = 0.2651
so that

c=476, p=081



228 The Black-Scholes Analysis Chapter 10

The stock price has to rise by $2.76 for the purchaser of the call to break even. Similarly,
the stock price has to fall by $2.81 for the purchaser of the put to break even.

10.11 WARRANTS ISSUED BY A COMPANY ON
ITS OWN STOCK

The Black—Scholes formula, with some adjustments for the impact of dilution,
can be used to value European warrants issued by a company on its own stock.?
Consider a company with N outstanding shares and M outstanding European war-
rants. Suppose that each warrant entitles the holder to purchase y shares from the
company at time T at a price of X per share.

If Vr is the value of the company’s equity at time T and the warrant holders
exercise, the company receives a cash inflow from the payment of the exercise
price of My X and the value of the company’s equity increases to V;r + My X.
This value is distributed among N + My shares so that the share price immediately

after exercise becomes
Vr+MyX

N+ My
The payoff to the warrant holder is therefore

VT+M)/X
N+ My

Ny VT X
N+My | N

The warrants should be exercised only if this payoff is positive. The payoff to the

warrant holder is therefore
N V4 VT
_— —=-X,0
o max [ L ]
This shows that the value of the warrant is the value of »
Ny
N+ My

regular call options on V /N where V is the value of the company’s equity.

or

8See F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,” Journal of
Political Economy, 81 (May—June 1973), 637-59; D. Galai and M. Schneller, “Pricing Warrants and the
Value of the Firm,” Journal of Finance, 33 (1978), 1339-42; B. Lauterbach and P. Schultz, “Pricing
Warrants: An Empirical Study of the Black-Scholes Model and its Alternatives,” Journal of Finance,
45 (1990), 1181-1209.
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The value of V is given by

V=NS+MW
where S is the stock price and W is the warrant price so that
1% M
—=5S+=W
N + N

The Black—Scholes formula in Equation (10.27) therefore gives the warrant price
W if
1. The stock price S is replaced by S + (M/N)W
2. The volatility o is the volatility of the equity of the company (i.e., it is the
volatility of the value of the stocks plus warrants, not just the stocks).
3. The formula is multiplied by (Ny)/(N + My).

When these adjustments are made we end up with a formula for W in terms of W.
This can be solved numerically.

10.12 IMPLIED VOLATILITIES

The one parameter in the Black—Scholes pricing formulas that cannot be observed
directly is the volatility of the stock price. In Section 10.4 we discussed how this
can be estimated from a history of the stock price. At this stage it is appropriate
to mention an alternative approach that uses what is termed an implied volatility.
This is the volatility implied by an option price observed in the market.

To illustrate the basic idea, suppose that the value of a call on a non-dividend-
paying stock is 1.875 when § = 21, X = 20, r = 0.1, and T — ¢ = 0.25. The
implied volatility is the value of o, which when substituted into Equation (10.27)
gives ¢ = 1.875. Unfortunately, it is not possible to invert Equation (10.27) so that
o is expressed as a function of S, X, r, T —t,and c. However, an iterative search
procedure can be used to find the implied o. We could start by trying o = 0.20.
This gives a value of ¢ equal to 1.76, which is too low. Since ¢ is an increasing
function of o, a higher value of o is required. We could next try a value of 0.30
for o. This gives a value of ¢ equal to 2.10, which is too high and means that o
must lie between 0.20 and 0.30. Next, a value of 0.25 can be tried for o. This also
proves to be too high, showing that o lies between 0.20 and 0.25. Proceeding in
this way the range for o can be halved at each iteration and the correct value of o
can be calculated to any required accuracy.” In this example, the implied volatility
is 0.235 or 23.5 percent per annum.

9This method is presented for illustration. Other more powerful methods, such as the Newton—
Raphson method, are often used in practice. (See footnote 1 in Chapter 4 for further information on
the Newton-Raphson method.)
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Implied volatilities can be used to monitor the market’s opinion about the
volatility of a particular stock. This does change over time. They can also be used
to estimate the price of one option from the price of another option. Very often,
several implied volatilities are obtained simultaneously from different options on
the same stock and a composite implied volatility for the stock is then calculated
by taking a suitable weighted average of the individual implied volatilities. The
amount of weight given to each implied volatility in this calculation should reflect
the sensitivity of the option price to the volatility. To illustrate this point, suppose
that two implied volatility estimates are available. The first is 21 percent per annum
and is based on an at-the-money option; the second is 26 percent per annum and
is based on a deep-out-of-the-money option with the same maturity. The price
of the at-the-money option is far more sensitive to volatility than the price of the
deep-out-of-the-money option. It is therefore providing more information about
the “true” implied volatility. We might therefore choose a weight of 0.9 for the
at-the-money implied volatility and a weight of 0.1 for the deep-out-of-the-money
option. The weighted-average implied volatility would then be

0.9 x0.21 +0.1 x 0.26 = 0.215

or 21.5 percent per annum. Different weighting schemes are discussed by Latane
and Rendleman, by Chiras and Manaster, and by Whaley.10 Beckers, after exam-
ining various weighting schemes, concluded that best results are obtained by using
only the option whose price is most sensitive to o.!! Thus the Beckers approach
would estimate 21 percent for the volatility in the example just mentioned.

10.13 THE CAUSES OF VOLATILITY

Proponents of the efficient markets hypothesis have traditionally claimed that the
volatility of a stock price is caused solely by the random arrival of new information
about the future returns from the stock. Others have claimed that volatility is caused
largely by trading. An interesting question, therefore, is whether volatility is the
same when the exchange is open as when it is closed.

-

10See H. Latane and R. J. Rendleman, “Standard Deviation of Stock Price Ratios Implied by Option
Premia,” Journal of Finance, 31 (May 1976), 369-82; D. P. Chiras and S. Manaster, “The Information
Content of Option Prices and a Test of Market Efficiency,” Journal of Financial Economics, 6 (1978),
213-34; R. E. Whaley, “Valuation of American Call Options on Dividend-Paying Stocks: Empirical
Tests,” Journal of Financial Economics, 10 (March 1982), 29-58.

See S. Beckers, “Standard Deviations in Option Prices as Predictors of Future Stock Price
Variability,” Journal of Banking and Finance, 5 (September 1981), 363-82. The sensitivity of an
option with respect to o is measured by the partial derivative of its price with respect to o. See Chapter
13 for how this can be calculated.
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Implied volatilities can be used to monitor the market’s opinion about the
volatility of a particular stock. This does change over time. They can also be used
to estimate the price of one option from the price of another option. Very often,
several implied volatilities are obtained simultaneously from different options on
the same stock and a composite implied volatility for the stock is then calculated
by taking a suitable weighted average of the individual implied volatilities. The
amount of weight given to each implied volatility in this calculation should reflect
the sensitivity of the option price to the volatility. To illustrate this point, suppose
that two implied volatility estimates are available. The first is 21 percent per annum
and is based on an at-the-money option; the second is 26 percent per annum and
is based on a deep-out-of-the-money option with the same maturity. The price
of the at-the-money option is far more sensitive to volatility than the price of the
deep-out-of-the-money option. It is therefore providing more information about
the “true” implied volatility. We might therefore choose a weight of 0.9 for the
at-the-money implied volatility and a weight of 0.1 for the deep-out-of-the-money
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and Rendleman, by Chiras and Manaster, and by Whaley.!® Beckers, after exam-
ining various weighting schemes, concluded that best results are obtained by using
only the option whose price is most sensitive to o.!! Thus the Beckers approach
would estimate 21 percent for the volatility in the example just mentioned.
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volatility of a stock price is caused solely by the random arrival of new information
about the future returns from the stock. Others have claimed that volatility is caused
largely by trading. An interesting question, therefore, is whether volatility is the
same when the exchange is open as when it is closed.

10See H. Latane and R. J. Rendleman, **Standard Deviation of Stock Price Ratios Implied by Option
Premia,” Journal of Finance, 31 (May 1976), 369-82; D. P. Chiras and S. Manaster, “The Information
Content of Option Prices and a Test of Market Efficiency,” Journal of Financial Economics, 6 (1978),
213-34; R. E. Whaley, “Valuation of American Call Options on Dividend-Paying Stocks: Empirical
Tests,” Journal of Financial Economics, 10 (March 1982), 29-58.

'See S. Beckers, “Standard Deviations in Option Prices as Predictors of Future Stock Price
Variability,” Journal of Banking and Finance, 5 (September 1981), 363-82. The sensitivity of an
option with respect to o is measured by the partial derivative of its price with respect to 0. See Chapter
13 for how this can be calculated.
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1See H. Latane and R. J. Rendleman, “Standard Deviation of Stock Price Ratios Implied by Option
Premia,” Journal of Finance, 31 (May 1976), 369-82; D. P. Chiras and S. Manaster, “The Information
Content of Option Prices and a Test of Market Efficiency,” Journal of Financial Economics, 6 (1978),
213-34; R. E. Whaley, “Valuation of American Call Options on Dividend-Paying Stocks: Empirical
Tests,” Journal of Financial Economics, 10 (March 1982), 29-58.

''See S. Beckers, “Standard Deviations in Option Prices as Predictors of Future Stock Price
Variability,” Journal of Banking and Finance, 5 (September 1981), 363-82. The sensitivity of an
option with respect to ¢ is measured by the partial derivative of its price with respect to o. See Chapter
13 for how this can be calculated.
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10See H. Latane and R. J. Rendleman, “Standard Deviation of Stock Price Ratios Implied by Option
Premia,” Journal of Finance, 31 (May 1976), 369-82; D. P. Chiras and S. Manaster, “The Information
Content of Option Prices and a Test of Market Efficiency,” Journal of Financial Economics, 6 (1978),
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of the at-the-money option is far more sensitive to volatility than the price of the
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at-the-money implied volatility and a weight of 0.1 for the deep-out-of-the-money
option. The weighted-average implied volatility would then be
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or 21.5 percent per annum. Different weighting schemes are discussed by Latane
and Rendleman, by Chiras and Manaster, and by Whaley.!® Beckers, after exam-
ining various weighting schemes, concluded that best results are obtained by using
only the option whose price is most sensitive to 0.!! Thus the Beckers approach
would estimate 21 percent for the volatility in the example just mentioned.

10.13 THE CAUSES OF VOLATILITY

Proponents of the efficient markets hypothesis have traditionally claimed that the
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about the future returns from the stock. Others have claimed that volatility is caused
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Fama and K. French have tested this question empirically.!? They collected
data on the stock price at the close of each trading day over a long period of time,
and then calculated:

1. The variance of stock price returns between the close of trading on one day
and the close of trading on the next trading day when there are no intervening
nontrading days

2. The variance of the stock price returns between the close of trading on Fridays
and the close of trading on Mondays

If trading and nontrading days are equivalent, the variance in situation 2 should
be three times as great as the variance in situation 1. Fama found that it was only
22 percent higher. French’s results were similar. He found that is was 19 percent
higher.

These results suggest that volatility is far larger when the exchange is open
than when it is closed. Proponents of the traditional view that volatility is caused
only by new information might be tempted to argue that most new information
on stocks arrives during trading hours.!*> However, studies of futures prices on
agricultural commodities, which depend largely on the weather, have shown that
they exhibit much the same behavior as stock prices; that is, they are much more
volatile during trading hours. Presumably, news about the weather is equally likely
to arise on any day. The only reasonable conclusion seems to be that volatility is
to some extent caused by trading itself.!*

What are the implications of all of this for the measurement of volatility and
the Black—Scholes model? If daily data are used to measure volatility, the results
suggest that days when the exchange is closed can be ignored. The volatility per
annum is calculated from the volatility per trading day using the formula

latilit mber of tradin
volatility per annum = volatility per \/ number o ing

trading day days per annum

This is the approach that was used in Section 10.4.

12Gee E. E. Fama, “The Behavior of Stock Market Prices,” Journal of Business, 38 (January 1965),
34-105; K. R. French, “Stock Returns and the Weekend Effect,”Journal of Financial Economics, 8
(March 1980), 55-69.

1311 fact, this is questionable. Often important announcements (e.g., those concerned with sales
and earnings) are made when exchanges are closed.

14For a discussion of this, see K. French and R. Roll, “Stock Return Variances: The Arrival of
Information and the Reaction of Traders,” Journal of Financial Economics, 17 (September 1986), 5-26.
We will consider one way in which trading can generate volatility when we discuss portfolio insurance
schemes in Chapter 13.
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Although volatility appears to be a phenomenon that is related largely to trad-
ing days, interest is paid by the calendar day. This has led D. French!S to suggest
that, when options are being valued, two time measures should be calculated:

_ trading days until maturity
E trading days per year

_ calendar days until maturity
£ calendar days per year

and that the Black-Scholes formulas should be adjusted to
¢ =S8N(d) — Xe "™ N(dy)

and
P =Xe ?N(—-dy) - SN(—d))

where

4 = InGS/X) +r5; + (02/D)ry
1 =

ot
(2
4 = nG/X) + f/z—l AL

In practice, this adjustment makes little difference except for very short life options.

10.14 DIVIDENDS

Up to now we have assumed that the stock upon which the option is written pays
no dividends. In practice, this is not usually true. In this section we assume that
the dividends that will be paid during the life of an option can be predicted with
certainty. As traded options typically last for less than 9 months, this is not an
unreasonable assumption.

A dividend-paying stock can reasonably be expected to follow the stochastic
process developed in Chapter 9 except when the stock goes ex-dividend. At this
point the stock’s price goes down by an amount reflecting the dividend paid per
share. For tax reasons, the stock price may go down by somewhat less than the
cash amount of the dividend. To take account of this, the word “dividend” in. this
section should be interpreted as the reduction in the stock price on the ex-dividend
date caused by the dividend. Thus, if a dividend of $1 per share is anticipated

13See D. W. French, “The Weekend Effect on the Distribution of Stock Prices: Implications for
Option Pricing,”Journal of Financial Economics, 13 (September 1984), 547-59.
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and the share price normally goes down by 80 percent of the dividend on the ex-
dividend date, the dividend should be assumed to be $0.80 for the purposes of the
analysis.

EuroreaN OPTIONS

European options can be analyzed by assuming that the stock price is the
sum of two components: a riskless component that will be used to pay the known
dividends during the life of the option and a risky component. The riskless com-
ponent at any given time is the present value of all the dividends during the life
of the option discounted from the ex-dividend dates to the present at the risk-free
rate. The dividends will cause the riskless component to disappear by the time the
option matures. The Black—Scholes formula is therefore correct if S is put equal
to the risky component of the stock price and o is the volatility of the process fol-
lowed by the risky component.'® Operationally, this means that the Black-Scholes
formula can be used provided that the stock price is reduced by the present value
of all the dividends during the life of the option, the discounting being done from
the ex-dividend dates at the risk-free rate. A dividend is included in calculations
only if its ex-dividend date occurs during the life of the option.

Example 10.7

Consider a European call option on a stock when there are ex-dividend dates in 2 months
and 5 months. The dividend on each ex-dividend date is expected to be $0.50. The current
share price is $40, the exercise price is $40, the stock price volatility is 30% per annum,
the risk-free rate of interest is 9% per annum, and the time to maturity is 6 months. The
present value of the dividends is

0.58—0.1667)(0.09 + 0.58_0'4167)(0'09 — 09741

The option price can therefore be calculated from the Black-Scholes formula with § =
39.0259, X =40,r =0.09,0 =0.3,and T —t = 0.5.

_ In0.9756 +0.135 x 0.5

d) = =0.2017
! 0.34/0.5
InO. . .
) = n 9756+0045x05=_0.0104
0.340.5

Using the polynomial approximation in Section 10.10 gives us

N(d;) = 0.5800, N(dz) = 0.4959

1610 theory this is not quite the same as the volatility of the stochastic process followed by the
whole stock price. The volatility of the risky component is approximately equal to the volatility of the
whole stock price multiplied by S/(S — V), where V is the present value of the dividends. In practice,
the two are often assumed to be the same.
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and from Equation (10.27), the call price is
39.0259 x 0.5800 — 40e~009%05 . 4959 — 3.67
or $3.67.

AMERICAN OPTIONS

Consider next American call options. Earlier in this chapter we presented
an argument to show that these should never be exercised early in the absence
of dividends. An extension to the argument shows that when there are dividends,
it can only be optimal to exercise at a time immediately before the stock goes
ex-dividend. We assume that n ex-dividend dates are anticipated and that t, b,
- In are moments in time immediately prior to the stock going ex-dividend with
L <5 <13 <...<t, The dividends at these times will be denoted by D,
Dy, ..., D,, respectively.

We start by considering the possibility of early exercise just prior to the final
ex-dividend date (i.e., at time 1,). If the option is exercised at time t,, the investor
receives

St) - X

If the option is not exercised, the stock price drops to S(t,) — D,. As shown by
Equation (7.6), the value of the option is then greater than

S(t,) — Dy — Xe™ 7T
It follows that if
§t) = Dy — Xe™ T > §(z,) — X
that is,
D, < X(1— Ty (10.29)
it cannot be optimal to exercise at time t,. On the other hand, if
Dy > X(1 — Ty (10.30)

it can be shown that it is always optimal to exercise at time ¢, for a sufficiently
high value of S(z,). The inequality in (10.30) will tend to be satisfied when the
final ex-dividend date is fairly close to the maturity of the option (i.e., T — 1, is
small) and the dividend is large.

Consider next, time #,_;, the penultimate ex-dividend date. If the option is
exercised at time #,_,, the investor receives ot

S(tn-1) = X
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If the option is not exercised at time ¢,_1, the stock price drops to S(t,—1) — Dn-1
and the earliest subsequent time at which exercise could take place is f,. Hence
from Equation (7.6) a lower bound to the option price if it is not exercised at time
th_1 is

S(tg—1) — Dpy — Xe™"tn7hn)
It follows that if
S(ty—1) = Dyt — Xe 77700 > S(1,_1) — X
or ‘
Dot < X(1— 77
it is not optimal to exercise at time #,_;. Similarly, for any i < n, if
D; < X(1 — e tinmt) (10.31)

it is not optimal to exercise at time ;.
The inequality in (10.31) is approximately equivalent to

D; < Xr(tiz1 — 4)

Assuming that X is fairly close to the current stock price, the dividend yield on
the stock would have to be either close to or above the risk-free rate of interest for
this inequality not to be satisfied. This is not usually the case.

We can conclude from this analysis that, in most circumstances, the only time
that needs to be considered for the early exercise of an American call is the final
ex-dividend date, t,. Furthermore, if inequality (10.31) holds fori =1,2,...,n-1
and inequality (10.29) holds, we can be certain that early exercise is never optimal.

BrLAcKk’S APPROXIMATION

Black suggests an approximate procedure for taking account of early exer-
cise.!” This involves calculating, as described earlier in this section, the prices of
European options that mature at times 7 and #,, and then setting the American
price equal to the greater of the two. This approximation seems to work well in
most cases. A more exact procedure suggested by Roll, Geske, and Whaley is
given in Appendix 10B.'8

17See F. Black, “Fact and Fantasy in the Use of Options,” Financial Analysts Journal, 31 (July—
August 1975), 3641, 61-72.

18gee R. Roll, “An Analytic Formula for Unprotected American Call Options on Stocks with
Known Dividends,” Journal of Financial Economics, 5 (1977), 251-58; R. Geske, “A Note on an
Analytic Valuation Formula for Unprotected American Call Options on Stocks with Known Dividends,”
Journal of Financial Economics, 7 (1979), 375-80; R. Whaley, “On the Valuation of American Call
Options on Stocks with Known Dividends,” Journal of Financial Economics, 9 (June 1981), 207-11;
R. Geske, “Comments on Whaley’s Note,” Journal of Financial Economics, 9 (June 1981), 213-15.
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Example 10.8

Consider the situation in Example 10.7, but suppose that the option is American rather than
European. In this case D; = Dy = 0.5, § = 40, X =40, r = 0.09, 1| occurs after 2 months
and ¢, occurs after 5 months.

X1 — e—"(tz—fl)) =40(1 — e—0.09x0.25) =0.89

Since this is greater than 0.5, it follows [see inequality (10.31)] that the option should never
be exercised on the first ex-dividend date.

X(l _ e—-r(T—tz)) = 40(1 _ e—0.09)(0.0833) =0.30

Since this is less than 0.5, it follows [see inequality (10.29)] that when it is sufficiently
deeply in-the-money, the option should be exercised on its second ex-dividend date.

We now use Black’s approximation to value the option. The present value of the first
dividend is

0.5¢0-1667x0.09 __ ¢ 4996

so that the value of the option on the assumption that it expires just before the final ex-

. dividend date can be calculated using the Black-Scholes formula with § = 39.5074, X = 40,
r=0.09,0 =0.30,and T —¢ = 0.4167. It is $3.52. Black’s approximation involves taking
the greater of this and the value of the option when it can only be exercised at the end of
6 months. From Example 10.7 we know that the latter is $3.67. Black’s approximation
therefore gives the value of the American call as $3.67.

Whaley'® has tested empirically three models for the pricing of American
calls on dividend-paying stocks: (1) the formula in Appendix 10B; (2) Black’s
model; and (3) the European option pricing model described at the beginning of
this section. He used 15,582 Chicago Board options. The models produced pricing
errors with means of 1.08 percent, 1.48 percent, and 2.15 percent, respectively.
The typical bid-ask spread on a call option is greater than 2.15 percent of the
price. On average, therefore, all three models work well and within the tolerance
imposed on the options market by trading imperfections.

Up to now, our discussion has centered around American call options. The
results for American put options are less clear cut. Dividends make it less likely
that an American put option will be exercised early. It can be shown that it is never
worth exercising an American put for a period immediately prior to an ex-dividend
date.? Indeed, if

D;>X(1-— e—r(lf+|—tf))

19See R. E. Whaley, “Valuation of American Call Options on Dividend Paying Stocks: Empirical
Tests,” Journal of Financial Economics, 10 (March 1982), 29-58.

2See H. E. Johnson, “Three Topics in Option Pricing,” Ph.D. thesis, University of California, Los
Angeles, 1981, p. 42,
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Example 10.8
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6 months. From Example 10.7 we know that the latter is $3.67. Black’s approximation
therefore gives the value of the American call as $3.67.

Whaley'® has tested empirically three models for the pricing of American
calls on dividend-paying stocks: (1) the formula in Appendix 10B; (2) Black’s
model; and (3) the European option pricing model described at the beginning of
this section. He used 15,582 Chicago Board options. The models produced pricing
errors with means of 1.08 percent, 1.48 percent, and 2.15 percent, respectively.
The typical bid-ask spread on a call option is greater than 2.15 percent of the
price. On average, therefore, all three models work well and within the tolerance
imposed on the options market by trading imperfections.

Up to now, our discussion has centered around American call options. The
results for American put options are less clear cut. Dividends make it less likely
that an American put option will be exercised early. It can be shown that it is never
worth exercising an American put for a period immediately prior to an ex-dividend
date.? Indeed, if

D; > Xa- e—r(tm—f.'))

'%See R. E. Whaley, “Valuation of American Call Options or Dividend Paying Stocks: Empirical
Tests,” Journal of Financial Economics, 10 (March 1982), 29-58.

2See H. E. Johnson, “Three Topics in Option Pricing,” Ph.D. thesis, University of California, Los
Angeles, 1981, p. 42.
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Example 10.8
Consider the situation in Example 10.7, but suppose that the option is American rather than

European. In this case D; = D, = 0.5, § =40, X = 40, r = 0.09, t1 occurs after 2 months
and ; occurs after 5 months.
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We now use Black’s approximation to value the option. The present value of the first
dividend is

0.5¢~01667x0.09 _ ( 4996

so that the value of the option on the assumption that it expires just before the final ex-
dividend date can be calculated using the Black—Scholes formula with § = 39,5074, X = 40,
r=0.09,0 =0.30,and T —¢ = 0.4167. It is $3.52. Black’s approximation involves taking
the greater of this and the value of the option when it can only be exercised at the end of
6 months. From Example 10.7 we know that the latter is $3.67. Black’s approximation
therefore gives the value of the American call as $3.67.

Whaley'® has tested empirically three models for the pricing of American
calls on dividend-paying stocks: (1) the formula in Appendix 10B; (2) Black’s
model; and (3) the European option pricing model described at the beginning of
this section. He used 15,582 Chicago Board options. The models produced pricing
errors with means of 1.08 percent, 1.48 percent, and 2.15 percent, respectively.
The typical bid-ask spread on a call option is greater than 2.15 percent of the
price. On average, therefore, all three models work well and within the tolerance
imposed on the options market by trading imperfections.

Up to now, our discussion has centered around American call options. The
results for American put options are less clear cut. Dividends make it less likely
that an American put option will be exercised early. It can be shown that it is never
worth exercising an American put for a period immediately prior to an ex-dividend
date.?® Indeed, if

D;>X(1- e—’(1i+1—t:))

19See R. E. Whaley, “Valuation of American Call Options on Dividend Paying Stocks: Empirical
Tests,” Journal of Financial Economics, 10 (March 1982), 29-58.

0See H. E. Johnson, “Three Topics in Option Pricing,” Ph.D. thesis, University of California, Los
Angeles, 1981, p. 42.
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forall i <n and
D, > X(1—eT™)

an argument analogous to that just given shows that the put option should never
be exercised early. In other cases, numerical procedures must be used to value a
put.

10.15 SUMMARY

In this chapter we started by examining the properties of the process for stock
prices introduced in Chapter 9. The process implies that the price of a stock at
some future time, given its price today, is lognormal. It also implies that the
continuously compounded return from the stock in a period of time is normally
distributed. Our uncertainty about future stock prices increases as we look further
ahead. The standard deviation of the logarithm of the stock price is proportional
to the square root of how far ahead we are looking.

To estimate the volatility, o, of a stock price empirically, the stock price is
observed at fixed intervals of time (for example, every day, every week, or every
month). For each time period, the natural logarithm of the ratio of the stock price
at the end of the time period to the stock price at the beginning of the time period
is calculated. The volatility is estimated as the standard deviation of these numbers
divided by the square root of the length of the time period in years. Usually, days
when the exchanges are closed are ignored in measuring time for the purposes of
volatility calculations.

The differential equation for the price of any derivative security dependent
on a stock can be obtained by setting up a position in the option and the stock that
is riskless. Since the derivative security and the option price both depend on the
same underlying source of uncertainty this can always be done. The position that
is set up remains riskless for only a very short period of time. However, the return
on a riskless position must always be the risk-free interest rate if there are to be
no arbitrage opportunities.

The expected return on the stock does not enter into the Black-Scholes differ-
ential equation. This leads to a useful result known as risk-neutral valuation. This
result states that, when valuing a derivative security dependent on a stock price,
we can assume that the world is risk neutral. This means that we can assume that
the expected return from the stock is the risk-free interest rate and then discount
expected payoffs at the risk-free interest rate. The Black--Scholes equations for
European call and put options can be derived by either solving their differential
equation or by using risk-neutral valuation.

An implied volatility is the volatility which, when used in conjunction with
the Black-Scholes option pricing formula, gives the market price of the option.
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Traders monitor implied volatilities and sometimes use the implied volatility from
one stock option price to calculate the price of another option on the same stock.
Empirical results show that the volatility of a stock is much higher when the
exchange is open than when it is closed. This suggests that to some extent trading
itself causes stock price volatility.

The Black-Scholes results can easily be extended to cover European call
and put options on dividend-paying stocks. The procedure is to use the Black—
Scholes formula with the stock price reduced by the present value of the dividends
anticipated during the life of the option, and the volatility equal to the volatility of
the stock price net of the present value of these dividends.

In theory, American call options are liable to be exercised early immediately
before any ex-dividend date. In practice, only the final ex-dividend date usually
needs to be considered. Fischer Black has suggested an approximation. This
involves setting the American call option price equal to the greater of two European
call option prices. The first European call option expires at the same time as the
American call option; the second expires immediately prior to the final ex-dividend
date. A more exact approach involving bivariate normal distributions is explained
in Appendix 10B.
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QUESTIONS AND PROBLEMS

10.1. What does the Black—Scholes stock option pricing model assume about the proba-
bility distribution of the stock price in 1 year?

10.2. The volatility of a stock price is 30% per annum. What is the standard deviation of
the proportional price change in one trading day?

10.3. A stock price is currently $40. It is known that at the end of 1 month it will be
either $42 or $38. The risk-free rate of interest is 8% per annum. What is the value
of a European call option with a strike price of $397

10.4. Explain what is meant by risk-neutral valuation.

10.5. Calculate the price of a 3-month European put option on a non-dividend-paying stock
with a strike price of $50 when the current stock price is $50, the risk-free interest
rate is 10% per annum, and the volatility is 30% per annum.

10.6. What difference does it make to your calculations in the previous question if a
dividend of $1.50 is expected in 2 months?

10.7. What is meant by implied volatility? How can it be calculated?

10.8. A stock price is currently $50. Assume that the expected return from the stock is
18% and its volatility is 30%. What is the probability distribution for the stock price
in 2 years? Calculate the mean and standard deviation of the distribution. Determine
95% confidence intervals.
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A stock price is currently $40. Assume that the expected return from the stock is
15% and that its volatility is 25%. What is the probability distribution for the rate
of return (with continuous compounding) earned over a 2-year period?

A stock price follows geometric Brownian motion with an expected return of 16%

and a volatility of 35%. The current price is $38.

(a) What is the probability that a European call option on the stock with an exercise
price of $40 and a maturity date in 6 months will be exercised?

(b) What is the probability that a European put option on the stock with the same
exercise price and maturity will be exercised?

Suppose that x is the yield to maturity with continuous compounding on a discount

bond that pays off $1 at time 7. Assume that © follows the process:

dx =a(xg — x)dt + sx dz

where a, xg, and s are positive constants and dz is a Wiener process. What is the
process followed by the bond price?

Suppose that x is the yield on a perpeiual government bond which pays interest at
the rate of $1 per annum. Assume that x is expressed with continuous compounding,
that interest is paid continuously on the bond, and that x follows the process

dx =a(xg — x)dt + sxdz

where a, xg, and s are positive constants and dz is a Wiener process. What is
the process followed by the bond price? What is the expected instantaneous return
(including interest and capital gains) to the holder of the bond?

Prove that with the notation in the chapter, a 95% confidence interval for St is
between

Se(u.—az/Z)(T—t)—Za\/T—t and Se(u—az/Z)(T—t)-i-Za\/T—t

A portfolio manager announces that the average of the returns realized in each year
of the last 10 years is 20% per annum. In what respect is this statement misieading?

Suppose that observations on a stock price (in dollars) at the end of each of 15
consecutive weeks are as follows: 30;,,1-, 32, 31%, 30%, 3041, 30%, 30%, 33, 32%, 33,
333,333, 333, 331, 331. Estimate the stock price volatility. What is the standard
error of your estimate?

A stock price is currently $50. It is known that at the end of 6 months it will be
either $60 or $42. The risk-free rate of interest with continuous compounding is
12% per annum. Calculate the value of a 6-month European call option on the stock
with exercise price $48.

A stock price is currently $40. It is known that at the end of 3 months it will be
either $45 or $35. The risk-free rate of interest with quarterly compounding is 8%
per annum. Calculate the value of a 3-month European put option on the stock
with an exercise price of $40. Show that this value is consistent with risk-neutral
valuation.
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Assume that a non-dividend-paying stock has an expected return of u and a volatility

of ¢. Aninnovative financial institution has just announced that it will trade a security

which pays off a dollar amount equal to In St at time T where St denotes the value

of the stock price at time T.

(a) Use risk-neutral valuation to calculate the price of the security at time ¢ in terms
of the stock price, S, at time 7.

(b) Confirm that your price satisfies the differential equation (10.20).

If the security in Problem 10.18 is a success, the financial institution plans to offer

another security which pays off a dollar amount equal to S% at time T.

(a) Use risk-neutral valuation to calculate the price of the security at time ¢ in
terms of the stock price, S, at time ¢. (Hint: The expected value of S% can be
calculated from the mean and variance of St given in Section 10.2.)

(b) Confirm that your price satisfies the differential equation (10.20).

Suppose that § and f are the current values of a stock price and a derivative security
dependent on the stock price. Assume that in the next small interval of time, At,
the stock price will either move up to Su or down to Sd. If the stock price moves
up to Su, the value of the derivative security will be f,. If it moves down to Sd, its
value will be f;. The risk-free rate of interest with continuous compounding is r.
(a) Using an argument similar to that in Section 10.5, show that

 ear| Gu = €A + fau— fud
f=e [ u—d ]

(b) Show that in a risk-neutral world the probability of an upward stock price move-
ment is

erAt_d
u—d

(c) Derive the result in part (a) using risk-neutral valuation.

What is the price of a European call option on a non-dividend-paying stock when
the stock price is $52, the strike price is $50, the risk-free interest rate is 12% per
annum, the volatility is 30% per annum, and the time to maturity is 3 months?

What is the price of a European put option on a non-dividend-paying stock when
the stock price is $69, the strike price is $70, the risk-free interest rate is 5% per
annum, the volatility is 35% per annum, and the time to maturity is 6 months?

Consider an option on a non-dividend-paying stock when the stock price is $30,
the exercise price is $29, the risk-free interest rate is 5%, the volatility is 25% per
annum, and the time to maturity is 4 months.

(a) What is the price of the option if it is a European call?

(b) What is the price of the option if it is an American call?

(c) What is the price of the option if it is a European put?

(d) Verify that put-call parity holds.
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Assume that the stock in Problem 10.23 is due to go ex-dividend in 1% months. The

expected dividend is 50 cents.

(a) What is the price of the option if it is a European call?

(b) What is the price of the option if it is a European put?

(c) If the option is an American call, are there any circumstances under which it
will be exercised early?

A call option on a non-dividend-paying stock has a market price of $2%. The stock
price is $15, the exercise price is $13, the time to maturity is 3 months, and the
risk-free interest rate is 5% per annum. What is the implied volatility?

With the notation used in this chapter

(a) What is N'(x)?

(b) Show that SN'(d;) = Xe " T-IN'(4,).
(¢) Calculate 3d,/3S and ady /88,

(d) Show that

8¢ _ o rT-p) Nty T
i rXe N(d) — SN (d1)2\/T——t

where c is the price of a call option on a non-dividend-paying stock.
(e) Show that 9¢/3S = N (d)).

() Show that the Black-Scholes formula for the price of a call option on a non-
dividend-paying stock does satisfy the Black—Scholes differential equation.
Show that the Black-Scholes formula for the price of a call option gives a price

which tends to max [S — X, 0] as t —» T.

Consider an American call option when the stock price is $18, the exercise price
is $20, the time to maturity is 6 months, the volatility is 30% per annum, and the
risk-free interest rate is 10% per annum. Two equal dividends are expected during
the life of the option with ex-dividend dates at the end of 2 months and S months.
How high can the dividends be without the American option being worth more than
the corresponding European option?

Suppose that in Problem 10.28 each dividend is 40 cents per share. Use Black’s
approximation to value the option.

Explain carefully why Black’s approach to evaluating an American call option on a
dividend-paying stock may give an approximate answer even when only one dividend
is anticipated. Does the answer given by Black’s approach understate or overstate
the true option value? Explain your answer.

Consider an American call option on a stock. The stock price is $70, the time to
maturity is 8 months, the risk-free rate of interest is 10% per annum, the exercise
price is $65, and the volatility is 32%. Dividends of $1 are expected after 3 months
and 6 months. Show that it can never be optimal to exercise the option on either of
the two dividend dates. Calculate the price of the option.

Show that the probability that a European call option will be exercised in a risk-
neutral world is, with the notation introduced in this chapter, N(dy). Derive an
expression for the value of a derivative security which pays off $100 if the price of
a stock at time T is greater than X.
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APPENDIX 10A: DERIVATION OF ITO’S LEMMA

In this appendix we show how Ito’s lemma can be regarded as a natural extension
of other, simpler results. Consider a continuous and differentiable function G of a
variable x. If Ax is a small change in x and AG is the resulting small change in
G, it is well known that

dG
AG~ —Ax (10A.1)
dx

In other words, AG is approximately equal to the rate of change of G with respect ‘
to x multiplied by Ax. The error involves terms of order Ax?. If more precision
is required, a Taylor series expansion of AG can be used:

dG 1d%G 1d4°G
AG = “ZAx 4+ ——TAXP+ 2= A +...
At A T eas A T

For a continuous and differentiable function G of two variables, x and y, the
result analogous to Equation (10A.1) is

aG aG

AG ~ —Ax + —Ay (10A.2)
ax ay
and the Taylor series expansion of AG is
G G 13%G 3°G 19%G
AG = — Ax+—Ay+ = — Ax? Ax Ay+—-—=Ay*+... (10A3
o T oy AT g A gy A A g g A (10A.3)

In the limit as Ax and Ay tend to zero, Equation 10A.3 gives
G G
dG = —dx + —dy (10A.4)
ax dy

A derivative security is a function of a variable that follows a stochastic
process. We now extend Equation (10A.4) to cover such functions. Suppose that
a variable x follows the general Ito process in Equation (9.4)

dx =a(x, t)dt + b(x, t)dz (10A.5)

and that G is some function of x and of time, ¢. By analogy with EQuation (10A.3),

we can write
3G G 19%°G %G 192G

AG = “ZAx+ — At + ~——=Ax2+ ——Ax At + ——At> +... (10A.6
ar AX T oAt oG AT o Ax At S S AP (10A.6)

Using the notation in Chapter 9, Equation (10A.5) can be discretized to

Ax = a(x, t) At + b(x, t)e vV At
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or if arguments are dropped
Ax =a At +be /At (10A.7)

This equation reveals an important difference between the situation in Equation
(10A.6) and the situation in Equation (10A.3). When limiting arguments were
used to move from Equation (10A.3) to Equation (10A.4), terms in Ax? were
ignored because they were second-order terms. From Equation (10A.7),

Ax® = b%¢* At + terms of higher order in Af (10A.8)

which shows that the term involving Ax? in Equation (10A.6) has a component
that is of order At and cannot be ignored.
The variance of a standardized normal distribution is 1.0. This means that

E(€®) — [E(e)P =1

where E denotes expected value. Since E (€) =0, it follows that E(e?) = 1. The
expected value of €2 At is therefore Ar. It can be shown that the variance of €2 At
is of order Ar? and that, as a result of this, €2 At becomes nonstochastic and equal
to its expected value of Az as At tends to zero. It follows that the first term on
the right-hand side of Equation (10A.8) becomes nonstochastic and equal to b2 dr
as At tends to zero. Taking limits as Ax and At tend to zero in Equation (10A.6)
and using this last result, we therefore obtain

G aG 19%G

dG = —dx + —dt + = —— b2 ds 10A.9
ax + at + 2 9x? ( )
This is Ito’s lemma. Substituting for dx from Equat_ion (10A.5), Equation (10A.9)
becomes
G 3G  19%G G
dG = ——a+—+-—b*dt + —bd
(8xa+3t+2 xzb) TRl

APPENDIX 10B: AN EXACT PROCEDURE FOR
CALCULATING THE VALUES OF AMERICAN
CALLS ON DIVIDEND-PAYING STOCKS

The Roll, Geske, and Whaley formula for the value of an American call option on
a stock paying a single dividend D, at time 1 is

C=(S=Die™ IN(br) + (S ~ Die™ )M (ay, —by; .| %)

—XeTM(ar, ~by; - [2) - (X~ DDe NGB (10B.1)
T
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where
In[(S — Die”™)/X]1+ (r + 0%/2)t
0T

a) =

a=a—0o «/‘E
In[(S — D1e™"™)/S1+ (r +0%/2)1

by =

o
=b -oJu

n=n-—t

t=T-—1t

The function, M (a, b; p), is the cumulative probability in a standardized bivariate
normal distribution that the first variable is less than ¢ and the second variable is
less than b, when the coefficient of correlation between the variables is p. The
variable S is the solution to

C(;—S: tl):§+D1—-X

where ¢(S, 1) denotes the Black-Scholes option price given by Equation (10.27)
when § = S and ¢ = ;. When early exercise is never optimal, S = oc. In this
case b = b, = —o0 and Equation (10B.1) reduces to the Black~Scholes equation
with S replaced by S — Dje™"™. In other situations S < oo and the option should
be exercised at time #; when S(t;) > S + Di.

When several dividends are anticipated, early exercise is normally only ever
optimal on the final ex-dividend date (see Section 10.14). It follows that the Roll,
Geske, and Whaley formula can be used with S reduced by the present value of all
dividends except the final one. The variable, D, should be set equal to the final
dividend and #; should be set equal to the final ex-dividend date.

Drezner provides a fairly easy way to program a computer to calculate
M(a, b; p) to four-decimal-place accuracy.”! If a <0, b <0, and p <0,

J1=p2 &
M(a, b; p) = — Z AiA; f(B;, B))
ij=1

where
f(x, y) =explad'2x —a) + b2y — b') + 2p(x — a')(y — b)]
a b b

T Ld-p) ~ 20—

217, Drezner, “Computation of the Bivariate Normal Integral,” Mathematics of Computation, 32
(January 1978), 277-79. Note that the presentation here corrects a typo in Drezner’s paper.
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Ay = 03253030, A, =04211071, A;= 0.1334425, A, = 0.006374323
B, =0.1337764, B, =0.6243247, B; = 1.3425378, B4 = 2.2626645

In other circumstances where the product of a, b, and p is negative or zero, one
of the following identities can be used:

M(a, b; p) = N(a) — M(a, —b; —p)
M(a, b; p) = N(b) — M(—a, b, —p)
M(a, b; p) = N(@a)+ N(b) — 1+ M(—a, —b; p)

In circumstances where the product of q, b, and p is positive, the identity

M(a, b; p) =M(a, 0; p1) + M(b, 0; py) — &
can be used in conjunction with the previous results, where
_ (pa —b)sgn(a) _ (pb—a)sgn(b)

pr = . ;=
T @ —2pab 1 b Ja% — 2pab + b2

5= 1 —sgn (@) sgn (b) +1 when x > 0

4

-1 when x < 0

, sgn (x) = [
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A; =0.3253030, .A; =0.4211071, As; = 0.1334425, A4 = 0.006374323
B, =0.1337764, B, = 0.6243247, B; = 1.3425378, By = 2.2626645

In other circumstances where the product of a, b, and p is negative or zero, one
of the following identities can be used:

M(a, b; p) = N(a) — M(a, —b; —p)
M(a, b; p) = N(b) — M(—a, b; —p)
M(a, b; p) = N(@) + N(b) — 1 + M(—a, —b; p)

In circumstances where the product of a, b, and p is positive, the identity

M(a, b; p) = M(a, 0; p1) + M(b, 0; p;) — &
can be used in conjunction with the previous results, where

_ (pa —b)sgn(a) _ (pb—a)sgn(b)

pr = . m=
: va% —2pab + b2 Va? —2pab + b?

_ 1 —sgn(a)sgn(b)
B 4

s +1 when x > 0

, sgn(x) = [

-1 when x < 0
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A} =0.3253030, A, =0.4211071, A;= 0.1334425, A4 = 0.006374323
B; =0.1337764, B, =0.6243247, B; = 1.3425378, B4 = 2.2626645

In other circumstances where the product of a, b, and p is negative or zero, one
of the following identities can be used:

M(a, b; p) = N(a) - M(a, —b; —p)
M(a, b; p) = N(b) — M(—a, b; —p)
M(a, b; p) = N(a) + N(®) — 1 + M(—a, —b; p)

In circumstances where the product of a, b, and o is positive, the identity

M(a, b; p) =M(a, 0; p1) + M(b, 0; py) — &
can be used in conjunction with the previous results, where
= (pa — b) sgn (a) _ (pb—a)sgn(b)

, 02
va? —2pab + b2 Vaz —2pab + b2

_ 1 —sgn(a)sgn(b)
- 4

+1 when x > 0
8

, sgn (x) = [

-1 when x < 0



Options on

Stock Indices,
Currencies, and
Futures Contracts

In this chapter we tackle the problem of valuing options on stock indices, currencies,
and futures contracts. As a first step, the analysis in Chapter 10 is extended to
cover European options on a stock paying a continuous dividend yield. It is then
argued that stock indices, currencies, and many futures prices are analogous to
stocks paying continuous dividend yields. The basic results for options on a stock
paying a continuous dividend yield can therefore be extended to value options on
these other assets.

11.1 OPTIONS ON STOCKS PAYING KNOWN
DIVIDEND YIELDS

Consider a stock that pays a continuous dividend yield at a constant annualized rate
of g. To understand how an option on the stock is valued, we compare the stock to
a similar stock that pays no dividends. As explained in Section 10.14, the payment
of a dividend causes a stock price to drop by an amount equal to the dividend. It
follows that the payment of a continuous dividend yield at rate g causes the growth
rate in the stock price to be less than it would otherwise be by an amount g. If, with

247
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a continuous dividend yield of g, the stock price grows from § at time ¢ to Sy at
time 7', it follows that with no dividends it would grow from § at time ¢ to SredT-1)
at time T'. Alternatively it would grow from Se~47~" at time ¢ to Sy at time T.

From this we can argue that a European option on a stock with price §
paying a continuous dividend yield of ¢ has the same value as the corresponding
European option on a stock with price Se=#T~" that pays no dividend. This is
because the terminal value of the stock price is the same in both cases. To value a
European option on a stock paying a known dividend yield, we can therefore reduce
the current stock price from S to Se=77~") and use the Black—Scholes formulas.
Replacing S by Se=?T~" in equations (10.27) and (10.28) we obtain

c=S8e"TINWE) — Xe "T-IN(dy) (11.1)
p=Xe"TIN(=dy) — Se™ 1 T-IN(—d)) (11.2)

—-q(T-1)
1n(Se——) =ln§ —q(T = 1)

Since

X
di and d; are given by
_In(S/X)+ (r —q+0?/2)(T —1)

d
! oT —t

and

In(S/X)+ (r —q —0?/2)(T - 1)
dy = VT =d —o/(T -1

These results were first derived by Merton.! As discussed in Section 10.14, the
word “dividend” should, for the purposes of option valuation, be defined as the
reduction in the stock price on the ex-dividend date arising from the dividend.
If the dividend yield rate is not constant during the life of the option, equations
(11.1) and (11.2) are still true, with q equal to the average annualized dividend
yield during the life of the option.

Appendix 11A derives, in a similar way in Section 10.7, the differential
equation that must be satisfied by any derivative security whose price, f, depends
on a stock paying a continuous dividend yield. Like the basic differential equation,
it does not involve any variable affected by risk preferences. The risk-neutral
valuation procedure, described in Section 10.8, can therefore be used. In a risk-
neutral world, the total return from the stock must be . The dividends provide a
return of g. The expected proportional growth rate in the stock price must therefore
be r —g. To value a derivative security dependent on a stock paying a continuous

ISee R. Merton, “Theory of Rational Option Pricing,” Bell Journal of Economics and Management
Science, 4 (Spring 1973), 141-83.
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dividend we therefore set the expected growth rate of the stock equal to r — ¢
and discount the expected payoff at rate ». This approach can be used to derive
equations (11.1) and (11.2).

11.2 OPTIONS ON STOCK INDICES

Several exchanges trade options on stock indices. Some of the indices used track the
movement of the U.S. stock market as a whole. Some are based on the performance
of a particular sector (e.g., mining, computer technology, and utilities). Some are
designed to track the performance of a foreign stock market.

Table 11.1 shows the closing prices of options on February 3, 1992, as they
appeared in The Wall Street Journal the following day. The S&P 500, NYSE
Composite, and Major Market Index were discussed in Section 3.7. The S&P 100
is similar to the S&P 500 but based on only 100 stocks: 92 industrials, 1 utility, 2
transportation companies, and 5 financial institutions.

The acronym LEAPS in Table 11.1 stands for Long-term Equity AnticiPation
Securities and was originated by the CBOE. LEAPS are long-term exchange-traded
options. They last up to 3 years. Table 11.1 shows quotes for LEAPS on the S&P
500, the S&P 100, and the Major Market Index. The index is divided by 10 for
the purposes of quoting the strike price and the option price. One contract is an
option on 100 times one-tenth of the index (or 10 times the index). LEAPS on
indices have expiration dates in December. LEAPS on the S&P 100 and Major
Market Index are American while those on the S&P 500 are European. The CBOE
and several other exchanges also trade LEAPS on many individual stocks. These
have expirations in January.

Another innovation of the CBOE is CAPS. These trade on the S&P 100 and
-S&P 500. These are options where the payout is capped so that it cannot exceed
$30. The options are European except for the following: a call cap is automatically
exercised on a day when the index closes more than $30 above the strike price; a
put cap is automatically exercised on a day when the index closes more than $30
below the cap level.

The indices underlying other options in Table 11.1 are as follows:

Institutional Index: 75 stocks most widely held by institutions, weighted by
market value

Japan Index: 210 stocks traded on the Tokyo Stock Exchange, weighted by
price

Gold/Silver Index: 7 mining stocks, weighted by market value

Value Line Index: Approximately 1,700 U.S. stocks, equally weighted
Utilities Index: 20 electric utility stocks, weighted by market value
Financial News Composite Index: 30 blue-chip stocks, weighted by price
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TABLE 11.1 Closing Prices of Stock Index Options, February 3, 1992

Monday, February 3, 1992

S&P 100 INDEX-$100 times index
Strike Calls—Last Puts—Last
Price Mar Apr Feb Mar
30 v 316 % .
35 %% 16 Y
340 5/16 W 2116
%g 16 " %
: 2 ™ Ya 2 M
355 Wh ... % 2%
360 M u 1 % 5
345 7 18% 12 % %
370 3 15% W% 5% Vic)
375 L] 2 % &% 834
3% T 92 N % 8% 10%
385 k) 6% 8 %N 13
m A M & N 16%
5 % 3 M 15V 7% 18%
400 i) ) WM % % 2%
«5 ®» e ... ¥ ...
40 % % W W%

) 0%
Total call volume 64,120 Total call open Int. 337,404
Total put volume 75,560 Tofal put open Int. 444,854
The Index: High 381.95; Low 379.08; Close 381.7), +1.70
S&P 500 INDEX-$100 times Index

Strike Calls—Last Puts—Last

Price  Feb Mar Apr Feb Mar

30 7

325 e 84% cees Ya

360 e %

365 ... 1516

370 7% e

375 . N

| 380 2%

385 ceen [ %

N 2V 12 %

5 18% 2% A

ﬁ Wa 144 e . 6% 8%

& Ve 4% n 9%

jlo 5 8% ceee &% 1% 122

415 k1 6% 9 A 12 14%2

& 1% % e )] 152 17
% k0 17% 18%

0 ] 2 ceee 2% B 3%

1Qas Ya 13116 26 22

w0 116 % 3 N%

450 . e ceen " 0%

[460 . 51%

116
Total call volume 3,368 Total call open Int. 352,711
Total put volume 14,070 Total put open Int. 477,482
The Index: High 409.95; Low 407.45; Close 409.53, +0.74
LEAPS-S&P 100 INDEX

INDEX TRADING

Strike Calls—Last Puts—Last Total call volume 127 Total cail open int. 1,298
Price Dec 2 Dec 93 Dec 92 Total put volume 25 Total put open int. 905
30 11/16 The Index: High 84.24; Low 82.62; Close 83.72, +0.1%
322 % 19/16 VALUE LINE INDEX OPTIONS
4% e 15/16 oo | Strike Calls—Last Puts—Last
72 . 9??: Ve ;& % 3Pzr5loe F;b Agr Apr Feb Mar Apr
Total call volume 4 Total call open Int. 31,454 335 e 1516
Total put volume 188 Total put open int. 121,169 k7] 9% ..
The index: High 38.20; Low 37.91; Close 38.19, +0.17 355 k: 7 8% 17
360 % 4 & 10 13

Strike Calls-Last Puts—Last
Price Dec 92 Dec 93 Dec 94 Dec 92 Dec 93 Dec %4

3 21/ % M
k2 3%
Total call volume 0 Total call open int. 78,037
Total put volume 2,202 Tofal put open Int. 157,907

The Index: High 34.82; Low 34.56; Close 34.72, +0.06
INSTITUTIONAL INDEX

Strike Calis—Last Puts - Last

Price Feb Mar Apr Feb Mar Api

30 316
716

375 Ve

0 Wa

385 9/16

40 2 LY

415 M &

20 % L1

425 6 2

40 8% Ny 4%

435 6

450 Va 1%

455 w15/ Y% 30

L, 116 Ya

Totai call volume 1,887 Total call open int. 63,959

Total put volume 4,759 Total put open Int. 76,402

The index: High 426.39; Low 423.48; Close 425.69, +0.86
JAPAN [INDEX

Strike Calis—Last Puts - Last

Price Feb Mar Apr Feb Mar Apr|
190 Va %
200 ] 2%

205 1716 %
200 2% 5 &
215 3% 6%
20 [ )] 10 5% L
25 4% A 8 10%
230 % % % nu

45 .. i ] 2%

e ... W
Total cail volume 264  Total call open int. 11,205
Total put volume 563  Total put open int. 20,934
The Iindex: Close 222.42, +1.19

PHILADELPHIA

GOLD/SILVER INDEX

Strike Calls—Last Puts—Last
;’srlce Feb Mar Apr Feb Mlar Apr
z PR

s 1776 M
8 2506 3% .0 . T
) % 11516 4

Reprinted by permission of The Wall Street Journal, February 4, 1992. Copyright ©1992,
Dow Jones & Company, Inc. All rights reserved.
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TABLE 11.1 (cont.) Closing Prices of Stock Index Options, February 3, 1992

LEAPS-S&P 500 INDEX Total call voiume 79 Total call open int. 10,514
Strike Calis—Last Pufs—Last Total put volume 29 Total put open int. 5,647
Price Dec 92 Dec 93 Dec 92 Dec 93 The Index: High 352.43; Low 351.14; Close 352.43, +1.02
30 12 UTILITIES INDEX
40 . cies ceee 3 Strike Calis—Last Puts— Last
Total call volume 1° Total cail open int. 30,740 Price Fed Mar Apr Feb Mar Apr
Total put volume 10 Total put open Int.. 94,919 255 % 2% 6‘/:
The Index: High 41.00; Low 40.75; Close 40.95, +0.07 %0 @ ... "
CAPS-S&P 180 INDEX 265 Ya R L) .
Strike Calls Last Puts - Last Total call volume 305  Total cail ‘open Tt 1,704

Price Feb 92 Apr 92 Feb 92 Apr 92 Total put volume 30 Total put open Int. 8,297
% e ;v s The Index: High 253.69; Low 251.80; Close 252.28, —1.48
e 4 aee
@rm I call volume 55 %Z'f | call Int. 956 PACIFIC
al call volume al cal open
Totsl put volume 682  Total put open Int. 5,629 FINANCIAL NEWS COMPOSITE INDEX

Strike Calls—Last Puts—Last
The Index: High 381.95; Low 379.08; Close 381.91, +1.70 Price  Feb ar Apr Fe?/, ar Apr

AMERICAN 2
» n/?;
270
MAJOR MARKET INDEX
Strike Calis—Last Puts—Last % 237“, 2‘:/,: s
Price  Feb Mar Apr Feb  Mer  Apr | g0p %
3% N £ i) .| %s L m .
o ﬁ% ‘mg g Total call volume 9 Total call open int. 2,07
ol i ,54 Total put volume 145  Total put open int. 1,415
Y isd m 3,/: The Index: High 281.56; Low 279.42; Close 281.16, +1.40
Total call volume 2,517 Tota! cell open int. 32,478 RK
Total put volume 2,918 Total put open int. 45,459 NEw Yo
T e EAPSMAIOR MARKET INBEX " T8 N N el oo
Total call volume 20  Total call open int. 854
Strike Calls—Last Puts—Last Total put volume 126  Total put open int. 1,783

Fhice Dec 2 Dec 93 Dec 94 Dec 92 Dec 95 Dec M | The index: High 226.79; Low 225.59; Close 22661, +0.41
2% el e

The options on the Institutional Index, the Japan Index, and the Financial News
Composite Index are European. The rest are American.

Index options are settled in cash rather than by delivering the securities
underlying the index. This means that upon exercise of the option, the holder of a
call option receives S — X in cash and the writer of the option pays this amount
in cash, where S is the value of the index and X is the strike price. Similarly, the
holder of a put option receives X — S in cash and the writer of the option pays
this amount in cash. Each contract is for $100 times the value of the index. Thus,
from Table 11.1, one April call option contract on the S&P 100 with strike price
370 cost $1,775 on Februry 3, 1992. The value of the index was 381.71, so that
the option was in the money. If the option contract was exercised on February 3,
the holder would receive (381.71 — 370) x 100 = $1,171 in cash.

The precise maturity date of stock index options is generally calculated in
the same way as for stock options; that is, it is the Saturday following the third
Friday in the expiration month.

PortroLIO INSURANCE

Index options can be used by portfolio managers to limit their downside risk.
Suppose that the value of an index is S. Consider a manager in charge of a well-
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diversified portfolio which has a 8 of 1.0 so that its value mirrors the value of the
index. (See Section 3.7 for a discussion of B.) If for each 100S dollars in the
portfolio, the manager buys one put option contract with exercise price X, the value
of the portfolio is protected against the possibility of the index falling below X.
For instance, suppose that the manager’s portfolio is worth $500,000 and the value
of the index is 250. The portfolio is worth 2,000 times the index. The manager
can obtain insurance against the value of the portfolio dropping below $480,000
in the next 3 months by buying 20 put option contracts with a strike price of 240,
To illustrate how this would work, consider the situation where the index drops
to 225 in 3 months. The portfolio will be worth about $450,000. However, the
payoff from the options will be 20 x ($240 — $225) x 100 = $30, 000, bringing
the total value of the portfolio up to the insured value of $480,000.

WHEN tHE PorTroLio’s Bera Is Nor 1.0

Consider next a portfolio that has a 8 of 2.0 and is not therefore expected
to mirror the index. Suppose that it currently has a value of $1 million. Suppose
also that the current risk-free interest rate is 12 percent per annum, the dividend
yield on both the portfolio and the index is expected to be 4 percent per annum,
and the current value of the index is 250.

Table 11.2 shows the expected relationship between the level of the index and
the value of the portfolio in 3 months. To illustrate the sequence of calculations
necessary to derive the table, consider what happens when the value of the index
in 3 months proves to be 260:

Value of index in 3 months
Return from change in index
Dividends from index
Total return from index
Risk-free interest rate
Excess return from index
over risk-free interest rate
Excess return from portfolio
over risk-free interest rate
Return from portfolio
Dividends from portfolio
Increase in value of portfolio
Value of portfolio

260

10/250 or 4% per 3 months
0.25 x 4 = 1% per 3 months
4+ 1 = 5% per 3 months
0.25 x 12 = 3% per 3 months

5 — 3 = 2% per 3 months

2 x 2 = 4% per 3 months
34+ 4 = 7% per 3 months
0.25 x 4 = 1% per 3 months
7 — 1 = 6% per 3 months
1 x 1.06 = $1.06 million

If § is the value of the index, 8 put contracts should be purchased for each
100S dollars in the portfolio. The strike price should be the value the index is
expected to have when the value of the portfolio reaches the insured value. Suppose
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TABLE 11.2 Relation
between Value of Index and
Value of Portfolio for a
Situation where 8 = 2

Value of Value of Portfolio

Index in in 3 Months
3 Months ($ millions)
270 1.14
260 1.06
250 0.98
240 0.90
230 0.82

that the insured vatue is $0.90 million in our example. Table 11.2 shows that the
appropriate strike price for the put options purchased is 240. In this case 100§ =
$25, 000 and the value of the portfolio is $1 million. Since 1, 000, 000/25, 000 =
40 and B = 2, the correct strategy is to buy 80 put contracts with a strike price of
240.

To illustrate that this gives the required result, consider what happens if the
value of the index falls to 230. As shown in Table 11.2, the value of the portfolio
is $0.82 million. The put options pay off (240 — 230) x 80 x 100 = $80, 000 and
this is exactly what is necessary to move the total value of the portfolio manager’s
position up from $0.82 million to the required level of $0.90 million,

VALUATION

When options on stock indices are valued, it is usual to assume that the stock
index follows geometric Brownian motion.? This means that equations (11.1) and
(11.2) can be used to value European call and put option on an index with S equal
to the value of the index, o equal to the volatility of the index, and g equal to the
dividend yield on the index.

Equations (11.1) and (11.2) were presented on the assumption that dividends
are paid continuously and that the rate at which they are paid is constant. In fact,
both of these assumptions can be relaxed. All that is required is that we be able to
estimate the dividend yield in advance. The variable ¢ should be set equal to the
average annualized dividend yield during the life of the option. For the purposes

2This presents a theoretical problem since it is inconsistent to assume that both stock prices and a
weighted average of stock prices follow geometric Brownian motion. For practical purposes, however,
this inconsistency is not really important. Neither individual stocks nor stock indices follow geometric
Brownian motion exactly, but for both it is a convenient approximation.
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of calculating this average dividend yield, a dividend is considered as occurring
during the life of the option if the ex-dividend date is during its life.

In the United States there is a tendency for dividends to be paid during the
first week of February, May, August, and November. At any given time the correct
value of g is therefore likely to depend on the life of the option. This is even more
true for some foreign indices. For example, in Japan all companies tend to have
the same dividend payment dates.

Example 11.1

Consider a European call option on the S&P 500 which is 2 months from maturity. The
current value of the index is 310, the exercise price is 300, the risk-free interest rate is 8%
per annum, and the volatility of the index is 20% per annum. Dividend yields of 0.2%
and 0.3% are expected in the first month and the second month, respectively. In this case,
§ =310, X =300, r =0.08,0 =0.2, and T — ¢t = 0.1667. The average dividend yield is
0.5% per 2 months or 3% per annum. Hence ¢ = 0.03 and Equation (11.1) gives

_ In1.03333 4 0.07 x 0.1667

dy = — 0.5444
! 0.2/0.1667
In1.03333 4 0.03 x 0.1
&= nl.03 +003x0 667:0.4628

0.2+4/0.1667

N(d) =0.7069, N(dy) = 0.6782
so that the call price, ¢, is given by
¢ =310 x 0.7069¢~0-03x0-1667 _ 300 » 0 6782, 0-08x0.1667 . 17 78

One contract would cost $1,728.

As an alternative to estimating future dividend yields, we can attempt to
predict the absolute amounts of the dividend that will be paid. The basic Black—
Scholes formula can be used with the initial stock price being reduced by the present
value of the dividends. This is the approach recommended in Section 10.14 for
a stock paying known dividends. It is difficult to implement for a broadly based
stock index since it requires a prediction of the dividends expected on every stock
underlying the index.

In some circumstances it is optimal to exercise American put options on an
index prior to the exercise date. To a lesser extent this is also true of American
call options on an index. American stock index option prices are therefore always
worth slightly more than the corresponding European stock index option prices.
Numerical procedures and analytic approximations for valuing American index
options are discussed in Chapter 14.
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11.3 CURRENCY OPTIONS

The Philadelphia Exchange commenced trading in currency options in 1982. Since
then the size of the market has grown very rapidly. By 1992 the currencies traded
included the Australian dollar, British pound, Canadian dollar, German mark,
Japanese yen, French franc, Swiss franc, and European currency unit. For most of
these currencies, the Philadelphia Exchange trades both European and American
options. It also trades an option German mark—Japanese yen exchange rate.

A significant amount of trading in foreign currency options is also done
outside the organized exchanges. Many banks and other financial institutions are
prepared to sell or buy foreign currency options that have exercise prices and
exercise dates tailored to meet the needs of their corporate clients. For a corporate
client wishing to hedge a foreign exchange exposure, foreign currency options are
an interesting alternative to forward contracts. A company due to receive sterling
at a known time in the future can hedge its risk by buying put options on sterling
which mature at that time. This guarantees that the value of the sterling will not
be less than the exercise price, while allowing the company to benefit from any
favorable exchange-rate movements. Similarly, a company due to pay sterling at
a known time in the future can hedge by buying calls on sterling which mature at
that time. This guarantees that the cost of the sterling will not be greater than a
certain amount while allowing the company to benefit from favorable exchange-rate
movements. Whereas a forward contract locks in the exchange rate for a future
transaction, an option provides a type of insurance. Of course, insurance is not
free. It costs nothing to enter into a forward transaction, while options require a
premium to be paid up front.

QUOTES

Table 11.3 shows the closing prices of some of the currency options traded on
the Philadelphia Exchange on February 3, 1992. Options are traded with maturity
dates in March, June, September, and December for up to 9 months into the
future. They are also traded with maturity dates in each of the next 2 months. The
precise expiration date is the Saturday preceding the third Wednesday of the month.
Table 11.3 shows only the three contracts with the shortest time to maturity.

The sizes of contracts are indicated at the beginning of each section in Ta-
ble 11.3. The option prices are for the purchase or sale of one unit of a foreign
currency with U.S. dollars. For the Japanese yen, the prices are in hundredths of a
cent. For the other currencies they are in cents. Thus one call option contract on
the British pound with exercise price 185 cents and exercise month March would
give the holder the right to purchase £31,250 for U.S. $57,812.50. The indicated
price of the contract is 31,250 x 0.0103 or $321.875. The spot exchange rate on
sterling is shown as 178.73 cents per pound.
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TABLE 11.3 Currency Option
Prices on the Philadelphia
Exchange, February 3, 1992

Opflon &  Strike
Underlying Price  Calls~Last Puts—Last

Feb Mar Jun Feb Mar Jum
50,000 Austrafian Dollars-Europesn stvle
ADolir 7 0.42 r

..... r r

50,000 Australian Dollars-cents per unlt.

Ir..... Mo r r 015 r

.18 75 050 0086 r 047 0 r

31,250 British Pounds-cents per unit

nd .. 170 r r r 012 06 r
1.7 172% r r r r 1.2 r
178.73 175 r r r 055 200 r
178.73 177% r 388 ro1.08 r r
178.73 180 0 r r o272 400 r
178.73 182% 0.81 r r r r r
7.1 185 0 1.8 r r 810 r
178.73 187% r r r 8.85 r r
178.13 1% 0.06 r r r

50,000 Canadian Doilcrs-Europem stvle

CDollar 8% r 0.80

50,000 Camdlnn Dollcrs-cems per unlf

CDollr..... 834 r r 0.80
8536 ... %4 r T r 0. ls 0. a r
85.16 85%% r 04 r

62,500 European Currencv Unlts-oems per unlt

ECU...... 126 ro4%
,ooo,ooo GermanMark-JaoaneseYen cross

GMk-Jyn . 78 0.® 058 1.02 r

62,500 German Murks-Eurooean vale

DMark 58 8 401 r r r
6208 ] r 050 r

62,500 Germcn erks-oents per unlf

DMark 57 r r r r r 055
62.08 58 r r r r r on
2.08 5 r r r 004 r .09
62.08 &0 245 r r 0.10 047 1.40)
62.08 602 r r s 015 055 ]
62.08 61 1.4 r r 02 080 r
62.08 81 r 160 s 04 1.02 S
62.08 62 088 1M r o055 1.2% 249
62,08 6% 053 0.9 s 072 r H
62.08 63 046 ro13 .77 r r
62,08 Q% 0.0 r S r r H
62.08 6 021 050 098 r r r
62.(! 62 015 0.32 ] r r [

62.08 3 r r 0ss r r r

6,750,000 Japanese Yen-100ths of a cent per unit.

...... 76 r r r r 015 r
79.99 B w0 r r 013 r r
N5 n% r r s 02 r ]
n.5 ” r 100 r r 0w r
n.59 "% r r s 059 r s
n.59 80 040 r r r r r
n.59 812 0.04 r s r r s
.5 82 007 r r r r r
.59 8 0.03 r r r r r

62,500 Swiss Francs-cenfs per unit,

SFranc.. r r 018 r r
69.82 r r 04 r r
69.82 1.16 r r r r
69.92 r s r r H
w8 ... 0.48 r r r r
N8z ... 1 r 09 r r

Totl: Cali vol Calt ODen Int 353,827

Reprinted by permission of The Wall Street

Journal, February 4, 1992. Copyright ©1992,

Dow Jones & Company, Inc. All rights re-
served worldwide.

Chapter 11
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VALUATION

To value currency options, we define S as the spot exchange rate, that is, the
value of 1 unit of the foreign currency in U.S. dollars. We assume that exchange
rates follow the same type of stochastic process as a stock: geometric Brownian
motion. We define o as the volatility of the exchange rate and ry as the risk-free
rate of interest in the foreign country.

As noted in Section 3.8, a foreign currency is analogous to a stock paying
a known dividend yield. The owner of foreign currency receives a “dividend
yield” equal to the risk-free interest rate, ry, in the foreign currency. Since we
are assuming the same stochastic process for stocks and foreign currencies, the
formulas derived in Section 11.1 are correct with ¢ replaced by . The European
call price, c, and put price, p, are therefore given by

c=S8SeTTINW) — Xe " TN (dyp) (11.3)
p=Xe T DIN(—dy) — Se " TIN(—d)) (11.4)
where
g In(S/X) + (r —rp +0%/2)(T — 1)
b= oAT —t
and
gy, — g2 _
d = In(S/X) + (r =1y —=0%/20(T —1) _ di— o JT—T

oT —t

Both the domestic interest rate, r, and the foreign interest rate, ry, are assumed to
be constant and the same for all maturities. Put and call options on a currency are
symmetrical in that a put option to sell X units of currency A for Xgp units of
currency B is the same as a call option to buy Xp units of currency B for X o units
of currency A.

From Equation (3.14) the forward rate, F, for a maturity T is given by

F= Se(r—r/)(T—t)
This enables equations (11.3) and (11.4) to be simplified to

c=e"TI[FN(,) — XN ()] (11.5)
p=e"TD[XN(~dy) — FN(=dy)] (11.6)
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where

_ In(F/X) + (62/2)(T — 1)

- oT —1t
_I(F/X)—@*)T-0) ,  —

d2 _ ~ T = = dl o T t

Note that the maturities of the forward contract and the option must be the same
for equations (11.5) and (11.6) to apply.

d

Example 11.2

Consider a 4-month European call option on the British pound. Suppose that the current
exchange rate is 1.6000, the exercise price is 1.6000, the risk-free interest rate in the United
States is 8% per annum, the risk-free interest rate in Britain is 11% per annum, and the option
price is 4.3 cents. In this case S = 1.6, X = 1.6, r = 0.08, rg =011, T —¢ =0.3333, and
¢ =0.043. The implied volatility can be calculated by trial and error. A volatility of 20%
gives an option price of 0.0639; a volatility of 10% gives an option price of 0.0285; and so
on. The implied volatility is 14.1%.

In some circumstances, it is optimal to exercise American currency options
prior to maturity. Thus American currency options are worth more than their
European counterparts. In general, call options on high-interest currencies and
put options on low-interest currencies are the most likely to be exercised prior to
maturity. This is because a high-interest currency is expected to depreciate relative
to the U.S. dollar and a low-interest currency is expected to appreciate relative to
the U.S. dollar. Unfortunately, analytic formulas do not exist for the evaluation
of American currency options. Numerical procedures and analytic approximations
are discussed in Chapter 14.

11.4 FUTURES OPTIONS

Options on futures contracts or futures options are now traded on many different
exchanges. They require the delivery of an underlying futures contract when exer-
cised. If a call futures option is exercised, the holder acquires a long position in the
underlying futures contract plus a cash amount equal to the current futures price
minus the exercise price. If a put futures option is exercised, the holder acquires
a short position in the underlying futures contract plus a cash amount equal to the
exercise price minus the current futures price.

Example 11.3

Consider an investor who has a September futures call option on 25,000 pounds of copper
with an exercise price of 70 cents per pound. Suppose that the current futures price of copper
for delivery in September is 80 cents. If the option is exercised, the investor receives $2,500



Sec. 11.4 Futures Options 259

(= 25,000 x 10 cents) plus a long position in a futures contract to buy 25,000 pounds of
copper in September. If desired, the position in the futures contract can be immediately
closed out at no cost. This would leave the investor with the $2,500 cash payoff.

Example 11.4

Consider an investor who has a December futures put option on 5,000 bushels of corn with
an exercise price of 200 cents per bushel. Suppose that the current futures price of corn for
delivery in December is 180 cents. If the option is exercised, the investor receives $1,000
(= 5,000 x 20 cents) plus a short position in a futures contract to sell 5,000 bushels of corn
in December. If desired, the position in the futures contract can be closed out immediately
at no cost. This would leave the investor with the $1,000 cash payoff.

Futures options are written on both financial futures and commodity futures.
Table 11.4 shows the closing prices of a variety of futures options on February 3,
1992. The month shown is the expiration month of the underlying futures contract.
The maturity date of the options contract is generally on, or a few days before, the
earliest delivery date of the underlying futures contract. For example, the NYSE
index futures option and the S&P index futures options both expire on the same
day as the underlying futures contract; the IMM currency futures options expire
2 business days prior to the expiration of the futures contract; the CBT T-bond
futures option expires on the first Friday preceding by at least 5 business days the
end of the month just prior to the futures contract expiration month.

It can be seen from Table 11.4 that the most popular futures options contracts
are the T-bond futures option traded on CBOT and the Eurodollar futures options
contract traded on the IMM. The open interest on calls and puts totaled over 700,000
contracts. Other futures contracts with open interest greater than 100,000 contracts
are on corn (CBOT), sugar (CSCE), crude oil (NYM), gold (CMX), Japanese yen
(IMM), Deutschemark (IMM), and Eurodollar (IMM). Futures options are more
attractive to investors than options on the underlying asset when it is cheaper or
more convenient to deliver futures contracts on the asset rather than the asset itself.
In the case of T-bonds, for example, trading options on futures contracts rather than
options on the asset ensures that a highly liquid asset will be delivered and that
problems associated with accrued interest and the determination of the cheapest-
to-deliver bond are avoided. Another advantage is that price information about
bond futures is much more readily available than price information about bonds
themselves, since the latter can be obtained only by canvassing bond dealers.

Brack's MopeEL

The analysis in Chapter 3 shows that the futures price, F, of an asset can be
related to its spot price by an expression of the form

F = Se2T) 11.7)
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TABLE 11.4 Closing Prices of Futures Options, February 3, 1992

FUTURES OPTIONS PRICES

Monday, Fsbruary 3, 1992.

AGRICULTURAL

COIN caT)

5,000 bu.; cenls per bu.
Strike  Calls—Settie Pufs—Seftie
Price Mar May Jly Mer May Jly
25 1% 25 AN W 3%

260 8% 18 WA 1 M A
270 2’/0 W'h 9s % 7 W4
20 ¥ 13 13 16
‘/o 4 11 22V 20 n
b 2 A4 6% 2

Est. vol. 12,000;
Frl vol. 6,061 calls; 2,39 puts
‘0p. int. Fri 91,349 calls; 54,433 puts
SOYBEANS (CBT)

-5,000 bu.; cenis per bu.
Sirike cms-smle Puts - Settle

Price Mar May Jly Mar May Jly .

5% 58% 8% Vu V2 4%
550 B 34U VN 5% M
575 10 2 MU 7% 134 18
600 e 1% B U2 N
625 1] 7 17 4884 %
650 Vo 3% 2% % ... ....

Est. vol. 5,800;

Frl vol. 3,528 calls; 945 puts
Op. Int. Frl 56,846 calls; 26,266 puts
SOYBEAN MEAL (CBT)

100 fons; $ per fon
Calls—Settie Puts - Settie
Price Mar May Jly Mar May Jly

w1220 1375 83 a5 85 1465
AL 7.50 9.75 1280 .40 165 3.00
175 3.75 6.60 9.95 1.50 3.35 5.00
190 160 450 7.70 425 6.5 7.65
185 60 290 595 8.0 9.60 10.75
190 25 2,00 4.6513.00 13.55 ....
Est. vol. 250;
Fri vol, 66 calls; 92 puts
Op. int, Fri 6,200 calls; 5,659 puts
SOY!EAN OIL (CBT)
6, ; confs per b,
Strike Cllls Settle Puts—Settie

Price Mar May Jly Mar May Jly
.030 270

W0 ... 150
180 ... ... 250 .
1900 450 .980 . 20 420 .600
1950 200 650 ... ... ... ....

2000 lw 600 950 .870 1.000 1.130

2050 0 ..
Est. 200;

Fri vol. 109 calls; 2 puts
Op. int. Fri 5,502 calls; 2,751 puts
W?EAT CBAT)

000 bu.; cenis per bu.
Strike  Calls-—-Settle Puts—Settle
Price Mar May Jly Mar May Jly
0 2% ¥ U Iw v &
40 3% 1% M 5% 4% ....
450 8% 2% .... 0% 3R
460 M o 8 ... ...
470 WM s G
480 1 47/- ............
Est. vol. 7,500;

Frl vol. 3,441 calls; 2,168 puts
Op. Int. Fri 50,367 calis; 42,429 puts

Sirike  Calis—Settle Puts—Settie
Price Mar Apr Mav Mar Apr May

76 300 222 1.77 0.70 1.85 2.40

7 175 110 no 145 2712 3.72

] 075 0.50 0.45 245 4.2 5.07

82 025 020 020 395 582 6.8

84 0.07 0.0 0.10 5.77 6.77 8.67
Est. vol. 231;

Frl vol. 277 calls; 263.puts
Op. Int. Fri 3,302 cails; 6,485 puts
CATTLE-LIVE (CME)

40,000 Ihs.; cenis per
Strike Cl||s Seme

Puts—Settie
Price Feb Apr Jun Feb Apr Jun
n 485 545 220 0.00 0.40 2.07
il 292 3180 117 007 072 3.00
7% 112 225 062 027 1.0 ....
78 032 1.17 025 1.27 2.0
80 o.oo 042 010 335 .... ....
” i 035 ... ... . ...

Est. 1,931;
Fri vol. 2.513 calls; 4,053 puts
Op. Int. Fri 26,414 calls; 36,345 puts
HOGS—LIVE (CME)

cents
Strike _Calls— Settie Puts - Settie
Price Feb Apr Jun Feb Apr Jun
k] 15 255 .... 0.05 040 0.5
] 1.22 1.25 445 0.0 1.25 0.2
L3 0.15 045 290 1.02 225 0.0
4 0.00 0.12 165 287 390 1.4
44 0.00 0.02 0.85 487 580 245
8 002 032 .... .... ....

0.00
Est. vol. 202;
Fri vol, 201 calls; 81 puts
Op. int. Fri 7,009 calls; 3,249 puts

METALS
copPER (CMX)

000 1bs.; cents per Ib.
Sirike CaIIs Seme Puts—Settle
Price Mar May ‘5"35 Asa]; May

94 375 4.
420 0.45
IN

8
oOo oM
23838

QP.-'.-'.N!-'
L
-a:-l!o(-)
BIRZ
9&”
BB

Est. vol.
Fri vol. 414 culls, 284 puts
Op. int. Fri 8,825 calis; 8,256 puts
GOLD (CMX)

100 froy ounces; $ per
Strike  Calls—Settle
Price Mar Apr
0 nso ¥

froy ounce

Fri vol. 9.153 calls; 1,140
Op. Int. Fri 81423 calls; 20,271 puts

Strike  Calis—Settie
Price Feb Mar. Apr
6300
6350

Puts— Settle
Feb Mar Apr
0.36 0.68 0.74 1.14 165 ....
0.09 052 0.6 157 1% ....

Est. vol. 14,442;

Fri vol. 11,513 calls; 6,613 puts
Op. Int. Frl 117,660 calls; 110,267 puts
CANADIAN DOLLAR (IMM)

100,000 Can.g, conts per Can$
Sirike _Calis—Settle Puts— Seftle
Price Feb Mar Apr Feb Mar Apr
8400 ... LM ... 003 0.7
8450 o.Aa ow .. 002 0.44 087
8500 . 032 067 117
8550 ... 0.68 0.9 150
8600 0.20 1.3 1. 1.88
8650 .0000 003 183 1. 2.2

Est. vol.

1,499;
Fri vol. 938 cails; 194 puts
Op. int. Fri 11,841 calls, 14,630 puts
BRITISH POUND (IMM)
500 peunds; cents per pound
strlkc Calis—Settie Puts-Seﬁle
OG Mar Apr

ooo

e
poL008
8582

it

1750
'I775

1825
1850

46
62
.58
16

S=pEas

FBEILB/BS
o—ppa:
25828

Feb
3.
X
0

0.
0.

Est. vol. 1,605;

Fri vol. 915 calls; 1.

Op. int. Fri 15,380 cal

SWISS FRANC (

125,000 francs,
Strike Calls—
Price Feb

8:

;14

-u

6850

6900

6950

7000

7050

7100 0.13
vol. 2,

2
Frl vol 1,416 calls, 1,390 puts
Op. Int. Fri 20,564 calls; 20,354 puts
U.S. DOLLAR INDEX (FINEX)
500 times Index
Strike _Calls—Settie
arloe Feb hgar Apr

F
1.37
0.9
0.65
0.40
0.2

A5 0.06 0.57 0.58
87 1]3 1.80 . 022 091 ....
88 051 126 240 0.60 136 .
8 0.19 0.84 123 1.9 .
% 0.07 0.54 2.4 262 ..

.33 ... L 340 ..

N 0.02 0.
Est. vol. 1,950;

Fri vol, 879 calls; 1,452 puts

Op. int. Fri 25,195 calls; - 22,605 puts

INTEREST RATE

T-BONDS (CBT)
$100,000; peints and é4ths of 100%
Strike  Calls—Settié Puts - Seftie
Price Mar Jun sep Mar Jun Sep
9% 435 410

003 0-52 1-5%
9 245 2-83 2-63 013 131 22

Reprinted by permission of The Wall Street Journal, February 4, 1992. Copyright ©1992,
Dow Jones & Company, Inc. All rights reserved worldwide.
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TABLE 11.4 (cont.) Closing Prices of Futures Options, February 3, 1992

WHEAT (KC)

5,000 bu.; cenis per bu.
Strike  Calis—Settie Puts—Settle
mu Mar May Jly Mng May Jlv

19 W% 4 3 ... ...

440 12 ... 1% s%B ... ...

B0 T L o e e e

%0 % cve e e e

2 N

M0 . e e e e e
Est. vol. 631;
Fri vol. 97 calls;

78 puts
Op. int, Fri 3.:!0 calls; 4,301 puts
COTTON (CTN)

50,000 Ibs.; cents per .
strike  Calis—Settle Puts—Settle
Price Mar May Jly Mar May le

@83
asssss

1
1.
8] 1 1.60 2.00
M 230 L. 188 200 240
.05 145 325 282 255 285

1,400;
Fri vol H% calls; 567 puts
Op. int. Frl 35,190 calls; 15,428 puts
ORANGE JUICE (CTN)
15,000 ibs.; cents per Ib.
trike  Calls— Seﬂle Puts—Settle
rice Mar May Jly Mar May Jly

{35 855 ... ... 5 3.60 6.70

40 420 850 .. .80 5.00 B.50

145 155 575 .... 245 7.40 12.00

150 50 4.00 .... 6.7510.90 13.85

155 35 2.60 4.75 11.50 13.65 18.95

160 25 2,05 3.65 16.50 18.00 20.05
st. vol. 105;

Frl vol 49 callis; 155 puts
Op. int. Fri 3,840 calls; 4,329 puts
COFFEE ( SCE)

37,500 Ibs.
Strike Calls seﬂle Puts-Seme
Prjce Mar May Jly Mar May Jly
5.56 0.85 11.80 0.06 0.35 0.70

. vol. 3,927;
S;l vol. 1,355 calls; 1,3
. Int. Fri 27,830 calls; 14,419 puts
SUGAR- WOILD (CSCE)
n per b
Seft!

2,000 lbs
Sttike Calls-Seﬂle

Puts—Seftie
Price Mar Apr May Mar Apr May
7.00 1.01 116 119 0.04 0.3 0.6
7.50 058 0.81 0.82 0.1 028 0.29
8. 025 0.42 053 0.26 039 049
8.5 0.09 023 033 057 0.68 0.7
900 003 032 020 1.03 1.09 1.18
950 0.0 0.07 0.4 1.51 1.54 141

Est. vol. 6,570;

Fri vol. 3,693 calls; 5047 puls

Op. Int. Fri 80,288 calls; 46,137 puts

SILVER {CMX)

5000 troy eunces; cis per troy
ounce

Sirike  Calis—Settle Puts—Settie

Prlce Mar Aor May Mar Aor May
0 02 0

42.2 Ll 3.

m 8.5 .l 20 15 52 8.0

425 45 115 150 125 164 200

450 1.3 55 88 M43 355 387

475 03 28 53 583 575 605

500 02 17 38 8.0 8.0 &5
Est. vol.

2,300;
Fri vol. 2,027 calls; 1,236 puts
Op. Int. Fri 66,540 calis; 19,675 puts

OTHER OPTIONS

Final or seftlement prices of Se-
lected confracts. Volume and open in-
terest are fotals In all contract
months.

AUSTRALIAN DOLLAR (IMM)

$ i $ por
Strike  Calls—Seftle Puts—Seftie
Price Feb Mar Apr Feb Mar Anr
750 028 0.72 048 092 ....
Est. vol. 10; Fri 0 calls, 0 puls
Op. Int. Fri 1,326 calls, 1,486 puts
LUMBER (CME)
160,000 bd .1, $ per 1,000 bd.ft.
Sirike Calls—Seme Puts—Settie
;rloe Mar May Jly Mar May Jly
Est. vol. &4; Frl 2 calis, 74 puts
Op. Int. Frl 83 calls, 451 puts
MAJOR MKT INDEX (CBT)
$500 times premium
Strike  Calis—Settie Puts—Settle
;r;ce Fe% Mear Apr Feb Mar Apr
Est. vol. 25; Fri écalls, lpufs
Op. Int. Frl 24 calis, 45 puts
MORTGAGE-BACKED (C8T) Cpn 8.0
$100,000; pis. and é4ths of 100%
Strike  Calls—Settie Puts—Settle
Price Feb Mar Apr Feb Mar Apr
0-36 044 02 .... ....
Est. vol. 0; Frl |0 calls, 0 puts
Op. Int. Frl 45 calls, 35 puts
NYSE COMPOSITE INDEX (NYFE)
$500 times premium
Strike  Calis—Settie Puts—Settle
Price Feb Mar Apr Feb Mar Apr
26 3.35 5.15 6.60 3.00 4.95 6.05
Est. vol. 46; Fri 4§ca|ls, 4) puts
Op. int. Frl 795 calis, 711 puts
NIKKE! 225 STOCK AVG. (CME)
$5 fimes NSA
Strike  Calis—Settle Puts—Seftie
Price Feb Mar Jun Feb Mer Jun
2000 550 .... ... ... 800 ....
Est. vol. 8; Fri 44 calls, 10 puts
Op. Int. Frl 204 calls, 290 puts
PLATINUM (NYM)
50 froy o1.; § per -oL.

Strike  Calis—Settle Puts--Seftie
Price Mar 16”&) May Mar A:i“ MlV
Est. vol. 101; Fri 109 calis, 3290'5

Op. Int. Frl n.a. calls, n.a. puts

100 15 150 207 047 225 346
102 026 104 128 1-58 343 500
104 007 038 042 3 5N

106 0-020-200425-346-5'!-“

Est. vol. 90,000;
Fri vol. 50,198 calls; 42,863 pufs
Op. int. Fri 408,241 calis; 305,571 puts
T-NOTES (CBY)

$100,000; points and é4ths of 1W0%
Strike Cnlls Settle Puts—Settle
Price Mar Jun Sep Mar Jun Sep
101 2 ... ... 010 109 ....
102 3 10 020 135 ..
103 054 313 .... 03 207 ..
104 027 054 .... V15 24 ..
105 012 037 . 200 32
losE " o-os 0-25 256 44

Fri vol. 1.53‘2 cnlls, 6,875 puts
OD Int, Frl 41,882 calis; 46,379 puts
MUNICIPAL BOND INDEX (CBT)
L] & 64ihs of 100%

$100,000; pis.
Strike  Calls—Settie Puts—Seftie
Price Mar Jun Sep Aa_llr Jun Sep

R % T I

N s on 19

% 0% ... ... 1 .

9% 031 01 061 154 ..

% 013 0 1 2% .

97 007 ... ..o 236 ... ...
Est. vol. 500;

Fri vol. 50 calls; 0 puts

Op. Int. Frl 6.961 calls; 6,625 puts

§ YR TREAS NOTES (CBT)
$100,000; points and é4ths of

Strike ‘Calis—Seftle Puts—Settie

Price Mar Jun Sep Mar Jun Sep
0350 135 ... ... 005 ... ...
10400 107 .... .... 010 102
10450 048 .... .... 7 ... ...
10500 029 039 . 0N 137
10550 016 028 . o4 ... ...
10600 008 0-21 0 ... .
Est. vol.

n7;
Frl vol. 257 calls; 342 puts
Op. Int. Fri 9,562 calls; 10,7\ puts
EURODOLLAR (IMM)

$ million; pis. of
Strike  Calis— Seme Puts—Settie
Price Mar Jun Sep Mar Jun Sep
058 048 034 0.02 0.13
9550 034 030 0.23 0.3 0.2 0.49
9575 0.14 038 0.14 0.08 033 044
900 0.05 0.09 008 0.24 049 083
925 0.01 0.05 0.05 045 0.69 ....
9650 .0004 003 0.03 089 .... ....
Est. vol. 19,591
Fri vol. 15,313 cails; 8,703 puts

Op, Int. Frl 370,147 calls; 484,953 puts
. (IMM)

. of W%

Strike Calls—sﬁﬂe Puts - Settie

Price Feb Mar Apr Feb Mar Apr
0004 .0004 .

§¥

9575 013 0.13 0.8 0.02 0.06 0.09
9600 001 0.02 0.07 015 020 0.23
9625 0004 001 0.02 .... 0.44 042
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TABLE 11.4 (cont.) Closing Prices of Futures Options, February 3, 1992

CO::OA (CSC!)

metric
gfrrlke Cllls-Seme Pu's-Sﬁﬂe

Ilce Mar May Jly Mar May Jly
1050 95 M2 ... 2 10 ...
1100 47 W0 8 4 20 D
1150 BW ... 20 238...
1200 4 48 86 6 & &
1250 2 30 .. 109 98
1300 1 51 158 W 113

Est. vol. 2,260.

Fri vol. 1,407 calls; 260 puts

Op. Int. Frl 14,657 calls; 14,670 puts
OlL

CRUDE OIL (NYM)

1,000 bbis.; $ per bbl,
strike  Calis—~ Settle Puts - Settle

Price f?ar Apr May Maor Anr May

7 w7, L. 3
)i ] 100 146 165 .04 .32 42
19 21 80102 4 65 .1

2 .04 37 55 1.08 121 1.30

il O 5 27 . 19 203

2 O 06 M. 29 28
Est. vol. 20,783;

Frl vol. 7,517 calls; 7,279 puts
Op; Int. Fri 122,927 calls; m,mputs
MEATING OIL No.2 (NYM)

42,000 gal.; $ per
Strike Calls Seﬂle

50 .0372 .0384 .0366 .0020 .0077 .0105

2 .02 06 .0243 .0100 .0135 0180

S .0093 .0140 .0155 .0060 .0232 .0291

56 .0030 .0075 .0095 .0270 .0386 .

58 .0010 .0035 .0050 .0456 .0525 .

60 0004 0033 .0650 .0709 .
Est. vol. 1,524;

0224 0542 .063 0055 .
0110 0388 .0482 .0131 0100 0|25
0045 0259 .0360 .0266 0 70 .0200
. 0165 0255 .0438 .0276 .0295
Olw 10180 0627 0410 ...
vol. 3,244;
vol 2,240 calls; 2,491 puts

nt. Fri 25,997 calis; 22,791 puts

LIVESTOCK

CATTLE-FEEDER (CME)
44,000 bs.; cents per ib.
strike  Calls— Seme Puts - Settie

| 7900

PORK BELLIES (CME)

40,000 1bs.; cents per b,
sirike  Calls— smﬂe Puts—Settie
Price Mar May Jly Mar May Jly
M 125 332 447 1.20 190 2.10
Est. vol.- 160; Fri & calls, 39 puts
Op. Int. Fri 5,501 calls, 388 puts -
SILVER (CH )
cents per froy o1,

1,000 froy e
strike Cllls—Seme Puts - Settie
Price Apr Jun Aug Apr Jun Aug
425 1.0 2.0 250 130 .... ....

Est. vol. 0; Frl 28 calls, 0 puts

Op, Int. Fri 823 calls, 8 puts
SOYlEANS (MCE)

1,000 bu.; cents per by,
Strike CAIIs~SeﬁIe Puts—Settle
Price Mar May Jly Mar May Jly
575 0 2 U 7% 132 18
Est. vol. 110; Fri 7 calls, 8 puts
Op. Int. Fri 4,003 calls, 178 puts
‘W;IEAT {MPLS)

bu.; cents per bu.
Strike Calls-—Seme Puts—Settle
‘Par)loe Mor9 May Jiy Mar may Jly
Est. vol. 6; Frl 24 calls, 0 puts
Op. Int, Fri 528 calls, 878 puts
WHITE WHEAT (MPLS)
5,000 per

bu.; cenfs per by,

strike  Calis—Settie  Puts—Seftie

z')loe Mar May Jly Mar May ly
Est. vol. 5; Fri 7calls, Oputs
Op. Int. Fri 106 cails, 144 puts

CURRENCY

JAPANESE YEN (IMM)

12,500,000 yen; cenfs per 100 ven
Strike CaHs-Seme Puts—Settle
7l'l$e eh Mar Apr Feb Mar Apr

7850

n
—
=

7950
8000
8050
Est. vol. 6.723
Fri vol. 5,329 calls; 6,852

puts
Op. Int, Frl 74.4" Cllls, 65,603 puts
DEUTSCHEMARK (IMM)

oPpooo—~
oy
OO0 w—
__ss:asz

125,000 marks; cenfs per mark
Sfrlke Calls—Settie Puts—Settle

Price Feb Mar Apr Feb Mar Apr
6100 117 1.68 152 0.15 0.6 1.31
6150 079 135 1.28 027 0.83 1.5
6200 050 1.09 1.07 048 1.07 1.84
6250 029 0.86 0.89 0.7 133 2.16

Price. Mar Apr May Mar Apr May
“ 470 347 297 040 110 16O

TREASURY llLLs (IMM)

$1 milllon; pts. of
Strike  Calis—Settie Puts Seftie
Price Mar Jun Sep A&:‘r‘ .suva Sep

9575 043 0.9
9600
9625
9650
9675
9700
Est. vol. 30;
Frl vol. 25 calls; 5 puts
Op. Int. Fri 2,406 calls; 1,430 puts
EURODOLLAR (LIFFE)
$1 million; pts. of 100%
Strike  Calls—Seftie Puts—Settle
Price Mar Jun Sep Mar Jun Sep
9525 060 0.49 036 0.02 0.2 0.36
9550 036 0.32 024 0.03 0.20 0.49
9575 016 0.19 0.14 0.03 032 0.64
9600  0.06 0.10 0.08 0.23 0.48 0.83
9625 002 0.05 0.04 044 0.68 1.04
9650 0.0 0.02 0.02 0.8 090 1.47
Est. vol. Mon, 0calls; 0 puts
Op. Int. Fri , 5,180 calls; 5,806 puts
LONG GILT (LIFFE)
£50,000; é4ths of 108%
Strike  Calls—Settie Puyts—Seftle
Price Mar Jun .... Mar Jun ...,
95 235 3% . 003 048 ..
9% 141 249 ... 009 103 ..
9 057 210 .... 025 1-28
% 024 141 0-56 1-59
» 009 14 ... 141 232 ...
100 o-u 0-57 23% In ...
Est. vol. Mon, 2,070 calls; 755 puts

Op. Im Frl, 41,175 calls; 28,077 puts

INDEX

S&P 508 STOCK INDEX (CME)

$500 times
Strike Puts — Settte
Price Feb Mar Jun Fedb Mar Jjun
g mo 153522.60 20 5001175

410
415
420
425

Est. vol. 3,777;

Frl vol. 1,888 calls;
Op. int. Frl 27,912 calls; 62,

3
g

In the case of a financial asset, « is the risk-free rate of interest less the yield
on the asset; in the case of commodities, & is the risk-free rate of interest plus
the storage costs per dollar per unit time less the convenience yield. It is shown
in Appendix 11B that if « is a function of time (but not a function of S or any
other stochastic variables) and the volatility of S is constant, the volatility of F is
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constant and equal to the volatility of S. In these circumstances, Appendix 11B
shows that a futures price can be treated in the same way as a security paying a
continuous dividend yield at rate r.> The European call price, c, and European put
price, p, for a futures option are therefore given by equations (11.1) and (11.2)
with § replaced by F and g =r:

c=e T I[FN(d) — XN(d)] (11.8)
p=e"TV[XN(—dy) — FN(—d))] (11.9)
where
5= In(F/X) + (@%/2)(T — t)
= oT —t
_In(F/X)=@*/T -1 _ , —
d; = o \/T——_t =d —o~T —t

These results were derived by Black. We have shown that they hold when:

1. The variable, «, in Equation (11.7) is only a function of time.
2. The volatility of the asset underlying the futures contract is constant.

These assumptions are a reasonable approximation for futures contracts on
stocks, stock indices, and currencies. They are also reasonable for most commodity
futures. However, they are questionable when the asset underlying the futures
contract is an interest-rate-dependent security such as a Treasury bond or Treasury
bill. Interest-rate derivatives will be discussed in Chapter 15.

Example 11.5

Consider a European put futures option on crude oil. Suppose that the time to maturity is 4
months, the current futures price is $20, the exercise price is $20, the risk-free interest rate
is 9% per annum, and the volatility of the futures price is 25% per annum. In this case,
F=720,X=20r=009, T —t=0.3333, and o = 0.25. Since In(F/X) =0,

T —
a=2_"! ”2' = 0.07216
T—1
dy =¥~ - = 007216

3In Section 11.1 it was argued that the expected growth rate in the price of a stock, which pays
continuous dividends at rate ¢, is r — g in a risk-neutral world. It follows that the expected growth rate
in a futures price in a risk-neutral world should be zero. This is as might be expected. It costs nothing
to enter into a futures contract. The expected gain to the holder of a futures contract in a risk-neutral
world must therefore be zero.

4See F. Black, “The Pricing of Commodity Contracts,” Journal of Financial Economics, 3 (March
1976), 167-79.
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N(=d)) =04712,  N(~dy) = 0.5288
and the put price, p, is given by
p = e 00x0333350 » 05288 — 20 x 0.4712) = 1.12
or $1.12.

Pur-CALL ParTy

A put-call parity relationship for European futures options can be derived in
a similar way as for ordinary options (see Section 7.6). If Fy is the futures price
at maturity, a European call plus an amount of cash equal to Xe"T~" has the
terminal value

max (Fr — X, 0) + X = max (Fr, X)

An amount of cash equal to Fe™" 7T~ plus a futures contract plus a European put
option has terminal value’

F+ (Fr — F) + max (X — Fr, 0) = max (Fr, X)

Since the two portfolios are equivalent at maturity, it follows that they are worth
the same today. The futures contract is worth zero today. Hence

ct+Xe T =py Fer@D (11.10)

Example 11.6

Suppose that the price of a European call option on silver futures for delivery in 6 months
is 56 cents per ounce when the exercise price is $8.50. Assume that the silver futures price
for delivery in 6 months is currently $8.00 and the risk-free interest rate for an investment
which matures in 6 months is 10% per annum. From a rearrangement of equation (11.10),
the price of a European put option on silver futures with the same maturity and exercise
date as the call option is

0.56 + 8.50e~0-3%0-1 _ g 00e=0-5x0.1 — 1 4

EuroreaN Futures OpTions VERSUS EUROPEAN Spor OPTIONS
The futures price of any asset equals its spot price at maturity of the futures
contract. It follows that a European futures option is worth the same as the cor-

responding European option on the underlying asset if the futures contract has the
same maturity as the option. This explains why the formulas in equations (11.5)

3This assumes no difference between forward and futures contracts.
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and (11.6) for a European call option on spot foreign exchange in terms of the
forward rate are identical to equations (11.8) and (11.9).

AMERICAN Futures OPTIONS VERSUS AMERICAN SpoT OPTIONS

Traded futures options are in practice usually American. Assuming that the
risk-free rate of interest, r, is positive, there is always some chance that it will be
optimal to exercise an American futures option early. American futures options are
therefore worth more than their European counterparts. Unfortunately, no analytic
formulas are available for valuing American futures options. Numerical procedures
and analytic approximations are discussed in Chapter 14.

It is not generally true that an American futures option is worth the same
as the corresponding American option on the underlying asset when the futures
and options contract have the same maturity. Suppose, for example, that there is
a normal market with futures prices consistently higher than spot prices prior to
maturity. This is the case with most indices, gold, silver, low-interest currencies,
and some commodities. An American call futures option must be worth more than
the corresponding American call option on the underlying asset. This is because
there are some situations when it will be exercised early, and in these situations, it
will provide a greater profit to the holder. Similarly, an American put futures option
must be worth less than the corresponding American put option on the underlying
asset. If there is an inverted market with futures prices consistently lower than
spot prices, as is the case with high-interest currencies and some commodities,
the reverse must be true. American call futures options are worth less than the
corresponding American call option on the underlying asset, while American put
futures options are worth more than the corresponding American put option on the
underlying asset.

The differences between American futures options and American asset op-
tions that have just been outlined are true when the futures contract expires later
than the options contract as well as when the two expire at the same time. In fact,
the differences tend to be greater, the later the futures contract expires. They are
also true regardless of the assumptions that are made about the processes followed
by the spot price and the futures price.

11.5 SUMMARY

The Black—Scholes formula for valuing European options on a non-dividend-paying
stock can be extended to cover European options on a stock paying a continuous
known dividend yield. In practice stocks do not pay continuous dividend yields.
However, a number of other assets upon which options are written can be consid-
ered to be analogous to a stock paying a continous dividend yield. In particular,
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1. An index is analogous to a stock paying a continuous dividend yield. The
dividend yield is the average dividend yield on the stocks comprising the
index.

2. A foreign currency is analogous to a stock paying a continuous dividend
yield where the dividend yield is the foreign risk-free interest rate.

3. A futures price is analogous to a stock paying a continuous dividend yield
where the dividend is equal to the domestic risk-free interest rate.

The extension to Black-Scholes can therefore be used to value European options
on indices, foreign currencies, and futures contracts. As we will see in Chapter 14,
these analogies are also useful in valuing numerically American options on indices,
currencies, and futures contracts.

Index options are settled in cash. Upon exercise of an index call option, the
holder receives the amount by which the index exceeds the strike price at close
of trading. Similarly, upon exercise of an index put option, the holder receives
the amount by which the strike price exceeds the index at close of trading. Index
options can be used for portfolio insurance. If the portfolio has a g of 1.0, it is
appropriate to buy one put option for each 100S dollars in the portfolio where § is
the value of the index; otherwise B put options should be purchased for each 100§
dollars in the portfolio where B is the beta of the portfolio calculated using the
capital asset pricing model. The strike price of the put options purchased should
reflect the level of insurance required.

Currency options are traded both on organized exchanges and over the counter.
They can be used by corporate treasurers to hedge foreign exchange exposure. For
example, a U.S. corporate treasurer who knows sterling will be received by his or
her company at a certain time in the future can hedge by buying put options that
mature at that time. Similarly a U.S. corporate treasurer who knows sterling will
be paid at a certain time in the future can hedge by buying call options that mature
at that time.

Futures options require the delivery of the underlying futures contract upon
exercise. When a call is exercised, the holder acquires a long futures position plus a
cash amount equal to the excess of the futures price over the strike price. Similarly
when a put is exercised the holder acquires a short position plus a cash amount
equal to the excess of the strike price over the futures price. The futures contract
that is delivered typically expires slightly later than the option. If we assume that
the two expiration dates are the same, a European futures options is worth exactly
the same as the corresponding European option on the underlying asset. However,
this is not true of American options. If the futures market is normal, an American
call futures is worth more than the American call on the underlying asset, while an
American put futures is worth less than the American put on the underlying asset.
If the futures market is inverted, the reverse is true.
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QUESTIONS AND PROBLEMS

11.1. A portfolio is currently worth $10 million and has a beta of 1.0. The S&P 100 is
currently standing at 250. Explain how a put option on the S&P 100 with a strike
of 240 can be used to provide portfolio insurance.
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11.2

11.3.
11.4.
11.5.

11.6.

11.7.

11.8.

11.9.

11.10.

11.11.

11.12,

11.13.
11.14.

Options on Stock Indices, Currencies, and Futures Contracts Chapter 11

“Once we know how to value options on a stock paying a continuous dividend yield,
we know how to value options on stock indices, currencies, and futures.” Explain
this statement.

Explain the difference between a call option on yen and a call option on yen futures.
Explain how currency options can be used for hedging.

Calculate the value of a 3-month at-the-money European call option on a stock index
when the index is at 250, the risk-free interest rate is 10% per annum, the volatility
of the index is 18% per annum, and the dividend yield on the index is 3% per annum.

Consider an American futures call option where the futures contract and the option
contract expire at the same time. Under what circumstances is the futures option
worth more than the corresponding American option on the underlying asset?

Calculate the value of a 5-month European put futures option when the futures price
is $19, the strike price is $20, the risk-free interest rate is 12% per annum, and the
volatility of the futures price is 20% per annum.

Suppose that an exchange constructs a stock index which tracks the return, including
dividends, on a certain portfolio. Explain how you would value (a) futures contracts;
and (b) European options on the index.

The S&P index currently stands at 348 and has a volatility of 30% per annum. The
risk-free rate of interest is 7% per annum and the index provides a dividend yield of
4% per annum. Calculate the value of a 3-month European put with exercise price
350.

Suppose that the spot price of the Canadian dollar is U.S. $0.75 and that the Canadian
dollar-U.S. dollar exchange rate has a volatility of 4% per annum. The risk-free rates
of interest in Canada and the United States are 9% and 7% per annum, respectively.
Calculate the value of a European call option with exercise price 0.75 and exercise
date in 9 months.

Calculate the implied volatility of soybean futures prices from the following infor-
mation concerning a European put on soybean futures:

Current futures price 525

Exercise price 525

Risk-free rate 6% per annum
Time to maturity 5 months

Put price 20

Show that the put-call parity relationship for European index options is
c+ Xe "I = p 4 §e~9T~)

where ¢ is the dividend yield on the index, ¢ is the price of a European call option,
p is the price of a European put option, and both options have exercise price X and
maturity T,

What is the put-call parity relationship for European currency options?

Show that if C is the price of an American call with exercise price X and maturity
T on a stock paying a dividend yield of g, and P is the price of an American put
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11.2.

11.3.
11.4.
11.5.

11.6.

11.7.

11.8.

11.9.

11.10.

11.11.

11.12.

11.13.
11.14.

Options on Stock Indices, Currencies, and Futures Contracts Chapter 11

“Once we know how to value options on a stock paying a continuous dividend yield,
we know how to value options on stock indices, currencies, and futures.” Explain
this statement.

Explain the difference between a call option on yen and a call option on yen futures.
Explain how currency options can be used for hedging.

Calculate the value of a 3-month at-the-money European call option on a stock index
when the index is at 250, the risk-free interest rate is 10% per annum, the volatility
of the index is 18% per annum, and the dividend yield on the index is 3% per annum.

Consider an American futures call option where the futures contract and the option
contract expire at the same time. Under what circumstances is the futures option
worth more than the corresponding American option on the underlying asset?

Calculate the value of a 5-month European put futures option when the futures price
is $19, the strike price is $20, the risk-free interest rate is 12% per annum, and the
volatility of the futures price is 20% per annum.

Suppose that an exchange constructs a stock index which tracks the return, including
dividends, on a certain portfolio. Explain how you would value (a) futures contracts;
and (b) European options on the index.

The S&P index currently stands at 348 and has a volatility of 30% per annum. The
risk-free rate of interest is 7% per annum and the index provides a dividend yield of
4% per annum. Calculate the value of a 3-month European put with exercise price
350.

Suppose that the spot price of the Canadian dollar is U.S. $0.75 and that the Canadian
dollar-U.S. doliar exchange rate has a volatility of 4% per annum. The risk-free rates
of interest in Canada and the United States are 9% and 7% per annum, respectively.
Calculate the value of a European call option with exercise price 0.75 and exercise
date in 9 months.

Calculate the implied volatility of soybean futures prices from the following infor-
mation concerning a European put on soybean futures:
Current futures price 525

Exercise price 525

Risk-free rate 6% per annum
Time to maturity 5 months

Put price 20

Show that the put-call parity relationship for European index options is
c+ Xe "I = py §e=9T-1)

where ¢ is the dividend yield on the index, ¢ is the price of a European call option,
p is the price of a European put option, and both options have exercise price X and
maturity T.

What is the put-call parity relationship for European currency options?

Show that if C is the price of an American call with exercise price X and maturity
T on a stock paying a dividend yield of g, and P is the price of an American put
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Options on Stock Indices, Currencies, and Futures Contracts Chapter 11

“Once we know how to value options on a stock paying a continuous dividend yield,
we know how to value options on stock indices, currencies, and futures.” Explain
this statement.

Explain the difference between a cail option on yen and a call option on yen futures.
Explain how currency options can be used for hedging.

Calculate the value of a 3-month at-the-money European call option on a stock index
when the index is at 250, the risk-free interest rate is 10% per annum, the volatility
of the index is 18% per annum, and the dividend yield on the index is 3% per annum.

Consider an American futures call option where the futures contract and the option
contract expire at the same time. Under what circumstances is the futures option
worth more than the corresponding American option on the underlying asset?

Calculate the value of a 5-month European put futures option when the futures price
is $19, the strike price is $20, the risk-free interest rate is 12% per annum, and the
volatility of the futures price is 20% per annum.

Suppose that an exchange constructs a stock index which tracks the return, including
dividends, on a certain portfolio. Explain how you would value (a) futures contracts;
and (b) European options on the index.

The S&P index currently stands at 348 and has a volatility of 30% per annum. The
risk-free rate of interest is 7% per annum and the index provides a dividend yield of
4% per annum. Calculate the value of a 3-month European put with exercise price
350.

Suppose that the spot price of the Canadian dollar is U.S. $0.75 and that the Canadian
doliar-U.S. doliar exchange rate has a volatility of 4% per annum. The risk-free rates
of interest in Canada and the United States are 9% and 7% per annum, respectively.
Calculate the value of a European call option with exercise price 0.75 and exercise
date in 9 months.

Calculate the implied volatility of soybean futures prices from the following infor-
mation concerning a European put on soybean futures:

Current futures price 525

Exercise price 525

Risk-free rate 6% per annum
Time to maturity 5 months

Put price 20

Show that the put-call parity relationship for European index options is
c+Xe 7T = py gemaT-0)

where ¢ is the dividend yield on the index, c is the price of a European call option,
p is the price of a European put option, and both options have exercise price X and
maturity 7.

What is the put-call parity relationship for European currency options?

Show that if C is the price of an American call with exercise price X and maturity
T on a stock paying a dividend yield of ¢, and P is the price of an American put
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11.15.

*11.16.

11.17.

11.18.

11.19.

11.20.

11.21.

on the same stock with the same strike price and exercise date:
SedTD _X <C—P<S—Xe T

where S is the stock price, r is the risk-free interest rate, and r > 0. (Hint: To
obtain the first half of the inequality, consider possible values of:

Portfolio A: A European call option plus an amount X invested at the risk-free rate

Portfolio B: An American put option plus e~9T - of stock with dividends being
reinvested in the stock

To obtain the second half of the inequality consider possible values of:

Portfolio C: An American call option plus an amount Xe™" (T-1) jnvested at the
risk-free rate

Portfolio D: A European put option plus one stock with dividends being reinvested
in the stock)

Show that if C is the price of an American call option on a futures contract when
the exercise price is X and the maturity is T, and P is the price of an American put
on the same futures contract with the same exercise price and exercise date,

Fe'T-) _X «C—P<F-— Xe "T-D

where F is the futures price and r is the risk-free rate. Assume that r > 0 and
that there is no difference between forward and futures contracts. (Hint: Use an
analogous approach to that indicated for Problem 11.14.)

If the price of currency A expressed in terms of the price of currency B follows
the process assumed in Section 11.3, what is the process followed by the price of
currency B expressed in terms of currency A?

Would you expect the volatility of a stock index to be greater or less than the volatility
of a typical stock? Explain your answer.

A mutual fund announces that the salaries of its fund managers will depend on the
performance of the fund. If the fund loses money, the salaries will be zero. If the
fund makes a profit, the salaries will be proportional to the profit. Describe the salary
of a fund manager as a derivative security. How is a fund manager motivated to
behave with this type of remuneration package?

Does the cost of portfolio insurance increase or decrease as the beta of the portfolio
increases? Explain your answer.

Suppose that a portfolio is worth $60 million and the S&P 500 is at 300. If the value
of the portfolio mirrors the value of the index, what options should be purchased to
provide protection against the value of the portfolio falling below $54 million in one
year’s time?

Consider again the situation in Problem 11.20. Suppose that the portfolio has a beta
of 2.0, that the risk-free interest rate is 5% per annum, and that the dividend yield on
both the portfolio and the index is 3% per annum. What options should be purchased
to provide protection against the value of the portfolio falling below $54 million?
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11.22. Consider
(a) A call CAP on the S&P 500 (traded on the CBOT) with a strike price of 300;
and
(b) A bull spread created from European calls on the S&P 500 with strike prices of
300 and 330 and the same maturity as the CAP.
What is the difference between the two? Which is worth more?

*11.23. In Section 11.4 it is noted that a futures price is analogous to a security paying a
continuous dividend yield at rate r. By considering a forward contract on the futures
price and using results from Chapter 3, show that the forward price equals the futures
price when interest rates are constant.

11.24. Can an option on the deutschemark-yen exchange rate be created from two options,
one on the dollar-deutschemark exchange rate the other on the dollar-yen exchange
rate? Explain your answer.

APPENDIX 11A: DERIVATION OF DIFFERENTIAL
EQUATION SATISFIED BY A DERIVATIVE
SECURITY DEPENDENT ON A STOCK PAYING
A CONTINUOUS DIVIDEND YIELD

Define f as the price of a derivative security dependent on a stock paying a
continuous dividend yield at rate g. We suppose that the stock price, S, follows
the process

dS =uSdt+oSd:

where dz is a Wiener process. The variables u and o are the the expected propor-
tional growth rate in the stock price and the volatility of the stock price. Since the
stock price provides a continuous dividend yield, u is not equal to the expected
return on the stock.
Since f is a function of S and t, it follows from Ito’s lemma that
2
df = ( af s of 18*f af

2¢2
SR dt+ Losa
as” +3t+28820S) tasoo 9

Similarly to Section 10.7, we can set up a portfolio consisting of

—1: derivative securities
)
% : stock
If I1 is the value of the portfolio,
a
H=—f+—fS (11A.1)

as
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and the change, ATl, in the value of the portfolio in time At is as given by

Equation (10.19):
af 13%f 202
N=|—--— At
A ( ar 2952 0

In time At the holder of the portfolio earns capital gains equal to AIT and dividends
equal to

af
S— At
%s
Define AW as the change in the wealth of the portfolio holder in time Ar. It

follows that

af 13*f , ., af
=L -2 52 L) ar 11A.
AW ( ar ~2952° 5 T95%; (11A2)

Since this expression is independent of the Wiener process, the portfolio is instan-
taneously riskless. Hence

AW =rIl At (11A.3)
Substituting from Equation (11A.1) and Equation (11A.2) into Equation (11A.3)
gives
3f 13 ;0 af af
- —=—=0"S S—}At=r|- —S8) At
( ar 23527 ° T9°%s AT
so that
af af 1 ,.,0°f
- —q)S—=+ -0 S —= = 11A4
o TU DSt S m =T (HA-4)

This is the differential equation that must be satisfied by f.

APPENDIX 11B: DERIVATION OF DIFFERENTIAL
EQUATION SATISFIED BY A DERIVATIVE
SECURITY DEPENDENT ON A FUTURES PRICE
Suppose the relationship between the futures price, F, and the spot price, S, is
F = §e*T79
where « is a function only of time. Suppose further that S follows the process

dS=uSdt+oSd:
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where o is a constant. It follows from Ito’s lemma that the volatility of F is given
by or, where

oF
orF = O'SE =08e*T ) = gF
Hence
O =0

that is, the volatility of F is therefore the same as the volatility of S. This is the
first result referred to in Section 11.4.
Suppose that F does in fact follow the process

dF = upFdt+oFd:z (11B.1)

where dz is a Wiener process and o is constant.
Since f is a function of F and ¢, it follows from Ito’s lemma that

af af [ 19°f , , af
df =\ =urF+ — + -——0%F?)dt + o Fd 11B.2
f (aF“‘” o T2 M Tadks (118.2)
Consider a portfolio consisting of
—1: derivative securities
a3
+—f futures contracts

oF
Define IT as the value of the portfolio and let ATI, A f, and AF be the change in
I1, f, and F in time At, respectively. Since it costs nothing to enter into a futures
contract,

M=—f (11B.3)

In time At¢, the holder of the portfolio earns capital gains equal to —Af from the
derivative security and income of

af
— AF
aF
from the futures contract. Define AW as the total change in wealth of the portfolio

holder in time A:. It follows that
af
AW = ——AF—A
oF 4
The discrete versions of equations (1 1B.1) and (11B.2) are
AF=urFAt+0oF Az
and

: Of  1f , o\ . af
A =(Lprr+ L 1 28T 22 aAr 1 O oA
f (aF“F 5 T 25r2° R T A
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where Az = € /At and € is a random sample from a standardized normal distri-
bution. It follows that

af 1 82f 22
AW = — — ——=—0“F° | At 11B.4
( o 20F2° (11B.4)
This is riskless. Hence it must also be true that
AW = rIl At (11B.5)

Substituting for I1 from Equation (11B.3), equations (11B.4) and (11B.5) give

af 18°f ,.,
U 28T e At = —rf A
[ ar  20F2° rf

Hence

af 18°f , .,
LD S22
ar T2am° rf

This has the same form as Equation (11A.4) with ¢ set equal to r. We deduce that
a futures price can be treated in the same way as a stock paying a dividend yield
at rate r for the purpose of valuing derivative securities.



A General
Approach to
Pricing Derivative
Securities

In this chapter we extend the ideas in chapters 10 and 11 to present a general
approach to pricing derivative securities. It can be used when there are several
underlying variables following continuous-time stochastic processes and does not
require these variables to be the prices of traded securities.

The term “traded security” is here used to describe a traded asset that is
held solely for investment by a significant number of individuals. Stocks, bonds,
gold, and silver are all traded securities. However, interest rates, inflation rates,
and most commodities are not. The distinction between underlying variables that
are the prices of traded securities and those that are not is an important one in
the valuation of derivative securities. We have already seen this in the context
of forward and futures contracts in Chapter 3. In general, when an underlying
variable is the price of a traded security, the risk-neutral valuation result shows
that investor attitudes to risk are irrelevant to the relationship between the price of
the derivative security and value of the underlying variable. When the underlying
variable is not the price of a traded security, these risk attitudes become important.

274
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12.1 A SINGLE UNDERLYING VARIABLE

In this section we consider the properties of derivative securities dependent on the
value of a variable 6 that follows a stochastic process

dé
-5—=mdt+sdz (12.1)

where dz is a Wiener process. The parameters m and s are the expected growth
rate in 6 and the volatility of 8, respectively. We assume that they depend only
on # and ¢. We do not assume that 6 is the price of a trade security. It could be
something as far removed from financial markets as the temperature in the center
of New Orleans.

Suppose that f and f, are the prices of two derivative securities dependent
only on 6 and time. These could be options or other securities that are defined so
that they provide a payoff equal to some function of € at some future time. The
processes followed by f1 and f, can be determined from Ito’s lemma. We suppose
they are

d—fl =u dt +o,dz
h

and
d
ﬁ = pydt +07dz
f

where w1, sz, 01, and o, are functions of 8 and ¢, and dz is the same Wiener
process as in Equation (12.1). The discrete versions of these processes are

Afi = uifiAt+o1f1 Az (12.2)

Afa= mafh At + oy, Az (12.3)

We can eliminate the Az by forming an instantaneously riskless portfolio consisting
of o, f, of the first derivative security and —o; f; of the second derivative security.
If IT is the value of the portfolio,

M= (02 fi — (o1 f)f2 (12.4)
and
All =0,/ Afi —o1f1 Af2
Substituting from equations (12.2) and (12.3), ‘this becomes
Al = (u102f1 f2 — n201 f1 f2) At (12.5)
Since IT is instantaneously riskless, it must earn the risk-free rate. Hence

AIl =rIT At
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Substituting into this equation from equations (12.4) and (12.5) gives
K102 — U201 =103 — 10
or
Hi~7  up—r

=2 (12.6)
(4] (2]

THE MARKET PRICE oF Risk

Define A as the value of each side in Equation (12.6) so that

-r —r
M_l_zliz -
o1 o2

Dropping subscripts we have shown that if f is the price of a security dependent
only on @ and ¢ with

df = ufdt +ofdz (12.7)

then
w—r
g
The parameter 1 is, in general, dependent on both 6 and ¢ but it is not dependent
on the nature of the derivative security f. It is known as the market price of risk
of 6.

The variable u is the expected return from f. Either o or —o may be the
volatility of f. If f is positively related to 8 (so that 8 £/38 is positive), o is
positive and equals the volatility of f. But, if f is negatively related to 6, then o
is negative and the volatility of f equals —o.!

The market price of risk of # measures the trade-offs between risk and return
that are made for securities dependent on . Equation (12.8) can be written

u—r=>x (12.9)

=X (12.8)

For an intuitive understanding of this equation we note that the variable o can be
loosely interpreted as the quantity of #-risk present in f. On the right-hand side
of the equation we are therefore multiplying the amount of #-risk by the price of
6-risk. The left-hand side is the expected return in excess of the risk-free interest
rate that is required to compensate for this risk. Many readers will notice an
analogy between Equation (12.9) and the capital asset pricing model which relates
the expected excess return on a stock to its risk.

"When o is negative we can change the underlying Wiener process from dz to dz’ = —dz. The
process for f is then

df = pfdt + (—o) fdz'
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Example 12.1

Consider a security whose price is positively related to the price of oil, but depends on no
other stochastic variables. Suppose it provides an expected return of 12% per annum and
has a volatility of 20% per annum. Assume that the risk-free interest rate is 8% per annum.
It follows that the market price of risk of oil is

0.12-0.08
0.2 -

Note that oil is not a traded security. Therefore, its market price of risk cannot be calculated
from Equation (12.8) by setting x4 equal to the expected return from an investment in oil
and o equal to the volatility of oil prices.

0.2

THE DIFFERENTIAL EQUATION

Using Ito’s lemma, the parameters p and o in Equation (12.7) are given by

d a 1 82
f f S292—-]:

wf = +migg+ 550 50
and
af
= 56—
of =s )

Substituting these into Equation (12.9) we obtain the following differential
equation that must be satisfied by f

of | ,3f 1 2500°f

Y +939 (m — As) + 2s 6 97

Equation (12.10) is structurally very similar to the Black-Scholes differential
equation (10.20). With S replaced by 6 and ¢ = r —m + As it is the same as
the differential equation (11A.4) for valuing a derivative security dependent on an
asset providing a known dividend yield, g. This observation leads to a way of
extending the risk-neutral valuation result in Section 10.8 so that it applies when
the variables underlying a derivative security are not the prices of traded securities.

=rf (12.10)

Risk-NEUTRAL VALUATION
Any solution to Equation (11A.4) for S is a solution to (12.10) for 6 and
vice versa when the substitution
g=r—m-+As

is made. We know how to solve (11A.4) using risk-neutral valuation. This involves
setting the drift of S equal to r —q and discounting expected payoffs at the risk-free
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interest rate. It follows that we can solve Equation (12.10) by setting the drift of
6 equal to

r—(r—-m+is)=m-—Ais

and discounting expected payoffs at the risk-free interest rate,

The approach to valuing a derivative security is therefore to reduce the drift
of 6 by As, from m to m — As, and then behave as though the world is risk neutral.
Suppose 6 is the price of a non-dividend-paying stock. From Equation (12.9),

m-—r = As
or
m-—As=r

which shows that changing the expected growth rate of @ to m — As is the same
as setting the return from the security equal to the risk-free rate of interest. This
shows that the risk-neutral-valuation result in Chapter 10 is a particular case of the
more general result presented here.

Example 12.2

The current price of copper is 80 cents per pound and the risk-free interest rate is 5% per
annum. The expected growth rate in the price of copper is 2% per annum and its volatility
is 20% per annum. The market price of the risk associated with copper is 0.5. Assume that
a contract is traded which allows the holder to receive 1,000 pounds of copper at no cost in
6 months’ time. In this case m = 0.02, A = 0.5, and s = 0.2. The expected growth rate of
the price of copper in a risk-neutral world is

m—2Ais =0.02-05x0.2=-0.08

or —8% per annum. The expected payoff from the contract in a risk-neutral world is
therefore

800e—098%0.5 _ 768 63

Discounting for 6 months at 5% per annum, we estimate the current value of the contract
to be 749.65.

12.2 INTEREST RATE RISK

In this section we outline an argument that indicates that the market price of interest
rate risk is negative.

The returns on the stocks and bonds in a typical portfolio are negatively
related to changes in interest rates. As interest rates decrease, bond and stock prices
tend to increase; as interest rates increase, bond and stock prices tend to decrease.
Consider adding to the portfolio a security whose price is positively related to
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one particular interest rate, say, the 1-year interest rate. This security will tend to
have the effect of reducing rather than increasing the risk in the portfolio. This is
because, as interest rates rise, the fall in the value of the stocks and bonds in the
portfolio is offset by an increase in the value of the security; as interest rates fall,
the rise in the value of the stocks and bonds in the portfolio is offset by a decrease
in the value of the security. This means that the holder of the portfolio will be
happy with an expected return from the security which is less than the risk-free
interest rate.

Suppose that the interest rate is denoted by 6 and follows the process in
Equation (12.1), while the security under consideration has a price f and follows
the process in Equation (12.7). Since 6 and f are positively related, o is positive.
From the argument just given, 1 < r. It follows from Equation (12.8) that the
market price of risk of the interest rate is negative.

Example 12.3

Consider two securities, both of which are positively dependent on the 90-day interest rate.
Suppose that the first one has an expected return of 3% per annum and a volatility of
20% per annum, and the second one has a volatility of 30% per annum. Assume that the
instantaneous risk-free rate of interest is 6% per annum. The market price of interest rate
risk is, using the return and volatility for the first security,

0.03 —0.06
0.2

From a rearrangement of Equation (12.9), the expected return from the second security is
therefore

= —0.15

0.06 — 0.15 x 0.3 = 0.015

or 1.5% per annum.

12.3 SECURITIES DEPENDENT ON SEVERAL
STATE VARIABLES

Appendices 12A and 12B extend the resuits in Section 12.1 to securities whose
prices depend on several underlying variables. Appendix 12A provides a version
of Ito’s lemma that covers functions of several variables. Appendix 12B derives
a differential equation that must be satisfied by all derivative securities dependent
on a set of state variables that follow Ito processes.

Suppose that n variables, 61, 6,, ..., 6,, follow stochastic processes of the
form

do; .
o =m;dt + s;dz; (12.11)

i
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fori =1,2, ..., n where the dz; are Wiener processes. The parameters m; and
s; are expected growth rates and volatilities and may be functions of the 6; and
time. Appendix 12A shows that the process for the price, f, of a security that is
dependent on the 6; has the form

df =
— =udt+) ody (12.12)
f i=]
In this equation, u is the expected return from the security and o; dz; is the com-
ponent of the risk of this return attributable to 6.
Appendix 12B shows that

n
p—r=>y Xo (12.13)
i=l1

where A; is the ‘market price of risk for 6;. This equation relates the expected
excess return that investors require on the security to the A; and o;. The term
Aio; measures the extent to which the return required by investors on a security is
affected by the dependence of the security on 6;. If A;0; = 0, there is no effect; if
Aio; > 0, investors require a higher return to compensate them for the risk arising
from 6;; if Ajo; < 0, the dependence of the security on 6; causes investors to
require a lower return than would otherwise be the case. The A;o; < 0 situation
occurs when the variable has the effect of reducing rather than increasing the risks
in the portfolio of a typical investor.

Example 12.4

A stock price depends on three underlying variables: the price of oil, the price of gold, and
the performance of the stock market as a whole. Suppose that the market prices of risk
for these variables are 0.2, —0.1, and 0.4, respectively. Suppose also that the o; factors in
Equation (12.12) corresponding to the three variables have been estimated as 0.05, 0.1, and
0.15, respectively. The excess return on the stock over the risk-free rate is

0.2x0.05-0.1x0.1+0.4 x0.15 = 0.06

or 6.0% per annum. If variables other than those considered affect [, this result is still true
provided that the market price of risk for each of these other variables is zero.

Equation (12.13) is closely related to arbitrage pricing theory, which was
developed by Ross in 19762 The continuous-time version of the capital asset
pricing model (CAPM) can be regarded as a particular case of the equation. CAPM
argues that an investor requires excess returns to compensate for any risk that is
correlated to the risk in the return from the stock market as a whole, but requires no
excess return for other risks. Risks that are correlated with the return from the stock

2See S. A. Ross, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Economic Theory,
13 (December 1976), 343-62.
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market are referred to as systematic; other risks are referred to as nonsystematic. If
CAPM is true, A; is proportional to the instantaneous correlation between changes
in 6; and the return from the market. When 6; is instantaneously uncorrelated with
the return from the market, A; is zero.

Risk—NEUTRAL VALUATION

Our risk-neutral-valuation arguments in Section 12.1 concerning differential
equation (12.10) can be extended to cover the more general differential equation
(12B.11) in Appendix 12B. A derivative security can always be valued as if the
world were risk neutral, provided that the expected growth rate of each underlying
variable is assumed to be m; — A;s; rather than m;. The volatility of the variables
and the coefficient of correlation between variables are not changed. This result was
first developed by Cox, Ingersoll, and Ross and represents an important extension
to the basic risk-neutral valuation argument.’

It is worth noting that our extension of the risk-neutral valuation argument
is more subtle than it first appears. When 6; is not a price of a traded security
we cannot assert that its expected growth rate in a risk-neutral world would be
m; — A;s;. We also cannot assert that a derivative security that is dependent on
§; would have the same value in a risk-neutral world as it has in a risk-averse
world. What we can assert is that changing the expected growth rate of 6; from
m; to m; — A;s; and then behaving as though the world is risk neutral gives the
correct values for derivative securities. For convenience, however, we will refer
to a world where expected growth rates are changed from m; to m; — A;s; as a
risk-neutral world.

Suppose that a derivative security which is dependent on 6; (1 < i < n)
provides a payoff at time T. To value the derivative security, it is necessary to set
the expected growth rate of each 6; equal to m; — A;0; while keeping the volatility
of each 6; equal to o; and the instantaneous correlation between 6; and 6, equal to
pix for all i and k. The value of the derivative security is then the expected payoff
discounted to the present at the risk-free rate of interest. Thus the value f of a
security that pays off fr at time T is given by

f=e"TE(fr) (12.14)

where E denotes expected value in a risk-neutral world (i.e., a world where the
growth rate in 6; is m; — Aisi).

3Gee lemma 4 in J. C. Cox, J. E. Ingersoll, and S. A. Ross, “An Intertemporal General Equilibrium
Model of Asset Prices,” Econometrica, 53 (1985), 363-84.

4Top illustrate this point, suppose that §; is in fact the temperature in the center of New Orleans.
The process followed by 6; clearly does not depend on the risk preferences of human beings!
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If r is a stochastic variable, it is treated in the same way as the other §;’s. The
growth rate (or proportional drift rate) in r is, for the purposes of all calculations,
reduced by A,s,, where A, is the market price of the risk associated with r and s,
is the volatility of r.> To value a derivative security, it is necessary to calculate the
expected payoff in a risk-neutral world conditional on the particular path followed
by r. This expected payoff is then discounted at the average value of 7 on the path
and the expected value is taken over all possible paths. Thus the value, f,ofa
derivative security that pays off fr at time T is given by

f=Ele™T 9 (12.15)

where 7 is the average risk-free interest rate between ¢ and T.

Equations (12.14) and (12.15) are true when the payoff, fr, is some function
of the paths followed by the underlying variables as well as when the payoff
depends only on the final values of the variables. In the former situation, fis
termed a history-dependent derivative security. A number of types of history-
dependent securities will be discussed in Chapter 16.

Example 12.5

Consider a security that pays off $100 at time T if the price of stock A is above X and
the price of stock B is above Xg. We assume that prices of the two stocks are uncorrelated
and that no dividends are paid. Using risk-neutral valuation, the value of the security is
10004 Ope™ T~ where Q4 is the probability of stock A’s price being above X4 at time
T in a risk-neutral world and Qg is the probability of stock B’s price being above Xg at
time 7 in a risk-neutral world. It can be shown that

In(Sa/XA) + (r — 02 /2)(T - t)]

oaT —1t

In(Sg/Xp) + (r — o3 /2)(T ~ 1)
o VT —1

where S, and Sp are the current prices of stock A and stock B, and o5 and og are the
volatilities of stock A and stock B.

QA=N[

QB'—'N[

12.4 DERIVATIVE SECURITIES DEPENDENT ON
COMMODITY PRICES

Most commodities are held primarily for consumption and cannot be considered
as traded securities. Their market prices of risk are therefore liable to enter into
the pricing of derivative securities. Luckily it turns out that we can finesse the

3 As discussed in Section 12.2, A, can be expected to be negative, so that the growth rate is higher
in a risk-neutral world.
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problem of estimating the market price of risk by using futures prices. Consider
first the valuation of a European option on a commodity.
Define:

S: Commodity price
F: Futures price for a contract on the commodity that matures at the same time
as the option

At the maturity of the option S = F. Instead of assuming that the variable
underlying the option is the commodity price, we can assume that it is the futures
price and use the results in Chapter 11. The same approach can be used when
valuing any security dependent on the commodity price that provides a payoff at
only one time.

More generally, we can argue that the futures price of a commodity provides
information about the process the commodity price would follow in a risk-neutral
world. To show this, consider a forward contract with delivery price K. Assuming
interest rates are constant, the value of the forward contract, f, is from Equation
(12.14) given by

f=e"TVESr — K)
or
f=e"TIESr) - K]

where £ denotes expected value in a risk-neutral world. The forward or futures
price, F, is the value of K that makes f equal to zero in this equation. Hence

F = E(St) (12.16)

This shows that the futures price is the expected future spot price in a risk-neutral
world at time T. Assume that the expected growth rate of the commodity price
is a function only of time, and does not depend on the commodity price itself or
any other variables. The expected growth rates of the commodity price at different
times in a risk-neutral world can then be estimated from successive futures prices.
These expected growth rates together with an estimate of the volatility of the
commodity price define the stochastic process followed by the commodity price in
a risk-neutral world. In principle, this is all that is necessary to value any derivative
security dependent on the commodity price.

Example 12.6
Suppose that the futures prices of live cattle at the end of July 1992 are as follows:
August 1992 62.20

October 1992 60.60
December 1992 62.70
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February 1993 63.37
April 1993 64.42
June 1993 64.40

These can be used to estimate the expected growth rate in live cattle prices in a risk-neutral
world. For example, the expected growth rate in live cattle prices between October and
December 1992 in a risk-neutral world is

62.70
n—

60.60
or 3.4% with continuous compounding. On an annualized basis this is 20.4% per annum.

As a simple illustration of the valuation of a derivative security, consider one that

will pay off at the end of July 1993 an amount equal to the average price of live cattle
during the preceding year. As an approximation, the average price of live cattle during the
previous year in a risk-neutral world is the average of the six futures prices just given (i.e.,
it is 62.95 cents). Assuming that the risk-free rate of interest is 10% per annum, this means
that the value of the derivative security is

62.95¢7 9! = 56.96 cents

1 =0.034

CoNVENIENCE YIELDS

The convenience yield for a commodity was introduced in Chapter 3. It is a
measure of the benefits realized from ownership of the physical commodity that are
not realized by the holders of a futures contract. If y is the convenience yield and
u is the storage cost, the commodity behaves like a traded security that provides a
return equal to y — u. In a risk-neutral world its growth is therefore

r—(—w=r—y+u

The convenience yield of a commodity can be related to its market price of
risk. From the analysis in the first part of this chapter, the expected growth of the
commodity price in a risk-neutral world is m — As where m is its expected growth
in the real world, s its volatility, and A is its market price of risk. It follows that

m—As=r—y+u

or
y=r4+u—m+As

12.5 CROSS-CURRENCY FUTURES AND
OPTIONS

An interesting application of the concepts in this chapter is to cross-currency deriva-
tive securities. Consider a forward contract maturing at time T on the Nikkei 225
stock average.
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Define:

S(t): Nikkei index measured in yen at time ¢
Q(t): Value of U.S. $1 in yen at time ¢
K: Delivery price measured in yen
g: Dividend yield on the Nikkei index
r: Domestic (U.S. dollar) risk-free rate
r¢: Risk-free rate in Japan
F: Forward price for the contract

If the payoff from the forward contract is
S(T)— K yen

the forward price is S()e"r~DT =" yen, as explained in Section 3.7. This is
because S(¢) is the yen price of a traded security and, in a risk-neutral world, it
grows at an expected rate of rf —g.

A situation which is more difficult to analyze is one where the payoff is
defined as

S(T) — K dollars

This corresponds to the CME futures contract on the Nikkei Stock Average that
was discussed in Section 3.7. It is tempting to argue that the futures price is
S(t)e"=DT-1 dollars. This is not correct. The Nikkei index, when regarded as
a dollar number, is not the price of a traded security. To make this point clear,
suppose the Nikkei index is 23,000; 23,050; and 23,025 on three successive days.
We can trade a portfolio which is worth 23,000 yen; 23,050 yen; and 23,025 yen on
the three days. But we cannot trade a portfolio which is worth $23,000; $23,050;
and $23,025 on the three days.

The problem in valuing a security that pays off S(T) — K dollars is that
we do not know the process followed in a risk-neutral world by the variable S(z)
dollars. To determine this, we first note that to a Japanese investor the payoff from
the security is

[S(T) — K1O(T) yen
The value of the security is
e " TVE[S(T)Q(T) — KQ(T)] yen
or

e T-VE[S(T)Q(T)] — KE[Q(T)]} yen
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The forward price is the value of K that makes this zero. Hence

- ESMOM)]
Eron)

We know that, from the point of view of a Japanese investor, Q(¢) grows in
a risk-neutral world at an expected rate of 7y — r so that

E[Q(T)] = Q(1)etr—nT-D (12.18)
To evaluate £[S(t)Q(r)] we note that
dS(t) = (rf — q)S(t) dt 4 o5S(t) dzs

(12.17)

dQ() = (rf =N dt + 5o Q1) dzg (12.19)

where og and og are the volatilities of § and Q, and dzs and dzp are Wiener
processes. From Ito’s lemma in Appendix 12A, the process followed by S(¢)Q(t) is

dIS)QW] = rf —q+rs — 1+ posoglS()Q(1)dt + S() Q(1)[os dzs + 09 dzg]

where p is the instantaneous correlation between § and Q. This shows that the
variable S(¢)Q(t) follows geometric Brownian motion with an expected drift in a
risk-neutral world of 2ry — g — r + posop. Hence

E[S() Q)] = S(1)Q(1)e@r—a-r+rosea)T=1 (12.20)
From equations (12.17), (12.18), and (12.20)°
F = S(t)elr=atposoa)T=0 (12.21)

Using the result in Equation (12.16), the process followed by S(¢) dollars in
a risk-neutral world has drift r — g 4+ posog. From the point of view of a U.S.
investor it behaves like a dollar-denominated stock that pays a continuous dividend
yield of ¢* where
r—gq* =rf—q+ posog
or
q*=r—rs+q— posog

This observation enables us to value other derivative securities dependent on the
Nikkei index that pay off in dollars. For example, equations (11.1) and (11.2) show

5Note that if the exchange rate, Q(t), had been defined as the number of dollars per yen then the
sign of p would be reversed and Equation (12.21) would be

F = S(t)elr—9-posog)T-0
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that the prices of a European call paying off S(T) — X dollars at time T is
S@e " TIN@) — Xe " TIN(dy)
and the price of a European put paying off X — S(T) dollars at time T is
Xe T IN(=dp) = S(t)e ™ TN (~dy)

where
g = SO+ g+ a*/2(T — 1)
o T =t
and

In(S/X) + (r —q* = /(T — 1)
dy = . =d —o/(T -t
) Y. per 1 V( )
These options correspond to several foreign index options and warrants that are
traded over the counter and on exchanges.

12.6 SUMMARY

In Chapter 3 we showed that there is an important difference between valuing
forward or futures contracts on an asset that is held primarily for investment by a
significant number of investors, and valuing forward and futures contracts on an
asset that is held primarily for consumption. In this chapter we have shown that
the same distinction is important for other derivative securities. The value of a
derivative security is independent of an underlying variable’s growth rate and its
market price of risk when the variable is a traded security. However, it is liable to
depend on both of these parameters for other variables.

The key result in this chapter is the extension of risk-neutral valuation. We
have shown that when valuing derivative securities, we can always behave as
though the world is risk neutral providing we also reduce the expected growth rate
of each underlying variable by the product of its volatility and its market price of
risk. This adjusted growth rate can be loosely referred to as the risk-neutral growth
rate.

Luckily, the risk-neutral growth rate can be estimated in many situations
without first estimating the actual growth rate and the market price of risk. When
a variable is the price of a traded security, its risk-neutral growth rate is the risk-
free interest rate less the dividend yield on the security. When a variable is the
price of a commodity, estimates of its risk-neutral growth rate can be calculated
from futures prices. When a variable is a function of one or more underlying
variables that are the prices of traded securities and commodities, Ito’s lemma can
be used to calculate the risk-neutral growth rate from the risk-neutral growth rates
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of these underlying variables. We have shown how this last idea can be used to
price futures and options contracts on foreign indices.
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QUESTIONS AND PROBLEMS

12.1. How is the market price of risk defined for a variable that is not the price of a traded
security?

12.2. Suppose that the market price of risk for gold is zero. If the storage costs are 1%
per annum and the risk-free rate of interest is 6% per annum, what is the expected
growth rate in the price of gold?

12.3. A security’s price is positively dependent on two variables: the price of copper and
the yen-dollar exchange rate. Suppose that the market price of risk for these variables
is 0.5 and 0.1, respectively. If the price of copper were held fixed, the volatility of
the security would be 8% per annum; if the yen-dollar exchange rate were held fixed,
the volatility of the security would be 12% per annum. The risk-free interest rate is
7% per annum. What is the expected rate of return from the security? If the two
variables are uncorrelated with each other, what is the volatility of the security?

12.4. An oil company is set up solely for the purpose of exploring for oil in a certain small
area of Texas. Its value depends primarily on two stochastic variables: the price of
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oil and the quantity of proven oil reserves. Discuss whether the market price of risk
for the second of these two variables is likely to be positive, negative, or zero.
Deduce the differential equation for a derivative security dependent on the prices of
two non-dividend-paying traded securities by forming a riskless portfolio consisting
of the derivative security and the two traded securities. Verify that the differential
equation is the same as the one given in Equation (12B.11).

A forward contract provides a payoff of (S — K) yen where St is the dollar price of
gold at time T. Assuming storage costs for gold are zero and defining other variables
as necessary, calculate the forward price.

The convenience yield for soybean oil is 5% per annum, the storage costs are 1% per
annum, the risk-free interest rate is 6% per annum, and the expected growth in the
price of soybean oil is zero. What is the relationship between the 6-month futures
price and the expected price in 6 months?

The market price of risk for copper is 0.5, the volatility of copper prices is 20%
per annum, the spot price is 80 cents per pound, and the 6-month futures price is
75 cents per pound. What is the expected proportional growth rate in copper prices
over the next 6 months?

Suppose that an interest rate, x, follows the process

dx =a(x0—x)dt+cﬁdz

where a, xp, and ¢ are positive constants. Suppose further that the market price of
risk for x is A. How should the drift rate in x be adjusted when the extension of the
risk-neutral valuation argument is used to value a derivative security?

A security pays off S1S; at time T, where S} is the level of the S&P 500 index
and S, is the price of oil. Assume that both S} and S, follow geometric Brownian
motion and are uncorrelated. Defining other variables as necessary, calculate the
value of the security at time ?.

Using risk-neutral valuation arguments, show that an option to exchange one IBM
share for two Kodak shares in 6 months has a value that is independent of the level
of interest rates.

Show that a call option on gold should never be exercised early. Should an option
which pays of max (S — X, 0) ever be exercised early, where S is the average of the
prices of gold at close of trading on each of the preceding 5 days?

Consider a commodity with constant volatility, o. Assuming that the risk-free interest
rate is constant, show that in a risk-neutral world:

2
InSg ~ ¢[ln F — %—(T —1), o/T —1]

where St is the value of the commodity at time T and F is the futures price for a
contract maturing at time T.

What is the formula for the price of a European call option on a foreign index when
the strike price is in dollars and the index is translated into dollars at a predetermined
exchange rate. What difference does it make if the index is translated into dollars at
the exchange rate prevailing at the time of exercise?
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APPENDIX 12A: A GENERALIZATION OF ITO’S
LEMMA

Ito’s lemma as presented in Appendix 10A provides the process followed by a
function of a single stochastic variable. Here we present a generalized version of
Ito’s lemma for the process followed by a function of several stochastic variables.

Suppose that a function, f, depends on the n variables xy, x, ..., x, and
time, ¢. Suppose further that x; follows an Ito process with instantaneous drift a;
and instantaneous variance b,.2 (1 <i <n), that is,

dx; = a;dt + b; dz; (12A.1)

where dz; is a Wiener process (1 < i < n). Each a; and b; may be any function
of all the x;’s and ¢. A Taylor series expansion of f gives

3
Af = Z—A L fAt+ ZZ ax,ax —Ax Axj+= Zax, Ax;At+--
(12A.2)

Equation (12A.1) can be discretized as
Ax; = a; At + bie; v/ At

where ¢; is a random sample from a standardized normal distribution. The corre-
lation, p;;, between dz; and dz; is defined as the correlation between ¢; and ¢;. In
Appendix 10A, it was argued that

lim Ax? = b?dt

Ar—0
Similarly
lim Ax; Ax; = b;b;p;; dt

At—0

As At — 0, the first three terms in the expansion of Af in Equation (12A.2) are
of order At. All other terms are of higher order. Hence

df = Zafd +ﬂdt+ ZZ bb,p,jdt

This is the generalized version of Ito’s lemma. Substituting for dx; from Equation
(12A.1) gives

o= (Sike 5+ T qrggoom) s X o

(12A.3)
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APPENDIX 12B: DERIVATION OF THE GENERAL
DIFFERENTIAL EQUATION SATISFIED

Consider a certain derivative security that depends on # state variables and time,
t. We make the assumption that there are a total of at least n + 1 traded securities
(including the one under consideration) whose prices depend on some or all of the
n state variables. In practice this is not unduly restrictive. The traded securities
may be options with different strike prices and exercise dates, forward contracts,
futures contracts, bonds, stocks, and so on. We assume that no dividends or other
income is paid by the n + 1 traded securities.” Other assumptions are similar to
those made in Chapter 10:

1. The short selling of securities with full use of proceeds is permitted.
2. There are no transactions costs and taxes.

3. All securities are perfectly divisible.

4. There are no riskless arbitrage opportunities.

5. Security trading is continuous.

The n state variables are assumed to follow continuous-time lto diffusion
processes. We denote the ith state variable by 8; (1 <i < n) and suppose that

do; = m;6; dt + s;6; dz;. (12B.1)

where dz; is a Wiener process and the parameters, m; and s;, are the expected
growth rate in 6; and the volatility of 6;. The m; and s; can be functions of any of
the n state variables and time. Other notation used is as follows:

pir: Correlation between dz; and dzz (1 <i, k<n)
f;¢ Price of the jth traded security (1 < j <n+1)
r: Instantaneous (i.e., very short term) risk-free rate

One of the f; is the price of the security under consideration. The short-term
risk-free rate, r, may be one of the n state variables.

Since the n + 1 traded securities are all dependent on the 6;, it follows from
Ito’s lemma in Appendix 12A that the f; follow diffusion processes:

dfy = w;fidt + ) _ oy fjdz (12B.2)

7This is not restrictive. A non-dividend-paying security can always be obtained from a dividend-
paying security by reinvesting the dividends in the security.
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where

3f; af 1 9 f;
=LY g+ 23 pusisndio 12B.
il = +Xi: a6, T 2 iZ,{”"”" “o6 00, (20

af;
Uijfi = a—ﬁsie,- (12B.4)
i

In these equations, u; is the instantaneous mean rate of return provided by f; and
o;j is the component of the instantaneous standard deviation of the rate of return
provided by f;, which may be attributed to the 6;.

Since there are n + 1 traded securities and n Wiener processes in Equation
(12B.2), it is possible to form an instantaneously riskless portfolio, IT, using the
securities. Define k; as the amount of the jth security in the portfolio, so that

M=) kf (12B.5)
J

The k; must be chosen so that the stochastic components of the returns from the
securities are eliminated. From Equation (12B.2) this means that

> kioiif; =0 (12B.6)
J

for 1 <i < n. The return from the portfolio is then given by

Al =Y ki, f; dt
J

The cost of setting up the portfolio is ) _ k; f;. If there are no arbitrage opportunities,
i
the portfolio must earn the risk-free interest rate, so that
S kuifi=rY kf (12B.7)
i i
or

> kifiw-r=0 (12B.8)
j

Equations (12B.6) and (12B.8) can be regarded as n + 1 linear equations in the
n k;’s. The k;’s are not all zero. From a well-known theorem in linear algebra,
equations (12B.6) and (12B.8) can be consistent only if

filw—r) = Z rioii f; (12B.9)
or

wj—r= Z Aioyj (12B.10)
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for some A; (1 <i < n), which are dependent only on the state variables and time.
This proves the result in Equation (12.13).

Substituting from equations (12B.3) and (12B.4) into Equation (12B.9), we
obtain

3f; 3f; 1 82, af;
- = mibi + 3 uSisi 00— —rfj = ) hi77-sibi
bt +2,~: 26 +2;p"”" “56,00, Z 36,

which reduces to

af; af; 1 32 f;
—_— 6;——(m; — Aisi) + = kSiSk0iOy—— =rf;
o +Xi: 5, (M~ M)t 5 ; piksisi0ibk 50 =11

Dropping the subscripts to f, we deduce that any security whose price, f,
is contingent on the state variables 6;(1 <i < n) and time, ¢, satisfies the second-
order differential equation

af af 1 32 f
—_ 6;—(m; — A;s; = ik SiSk0iOk——— = 12B.11
o + Ei aBi(m As)+2 Ei'k PikSiSk0 k30, 30, rf ( )

The particular derivative security that is obtained is determined by the boundary
conditions which are imposed on Equation (12B.11).



Hedging Positions
in Options and
Other Derivative
Securities

A financial institution that sells an option or other derivative security over the
counter to a client is faced with the problem of hedging its risk. If the option
happens be the same as one that is traded on an exchange, the financial institution
can neutralize its exposure by buying on the exchange the same option as it has
sold. But, when the option has been tailored to the needs of clients and does not
correspond to the standardized products traded by exchanges, hedging the exposure
is far more difficult. In this chapter we discuss some of the alternative approaches
to this problem. The analysis presented is applicable to market makers in options
on an exchange as well as to financial institutions.

One reason why an option is difficult to hedge is that the sensitivity of an
option’s price to the underlying asset’s price changes as time passes and as market
conditions change. This means that the appropriate position for a hedger to take in
the underlying asset also changes. Another reason is that the value of the option
is also sensitive to volatility changes. This second dimension of the option’s risk
cannot be hedged using the underlying asset.

A problem closely related to hedging option positions is that of creating
options synthetically. Portfolio managers are sometimes interested in creating a
put option on a portfolio synthetically in order to ensure that the value of the

294
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portfolio does not fall below a certain level. The last part of this chapter discusses
how this can be done—and the reasons why it does not always work well!

13.1 AN EXAMPLE

In this section and the next two sections, we use as an example the position of a
financial institation that has sold for $300,000 a European call option on 100,000
shares of a non-dividend-paying stock. We assume that the stock price is $49, the
exercise price is $50, the risk-free interest rate is 5 percent per annum, the stock
price volatility is 20 percent per annum, the time to maturity is 20 weeks, and the
expected return from the stock is 13 percent per annum.! With our usual notation
this means that
S =49, X =50, r = 0.05,

o = 0.20, T -t = 0.3846, u=0.13

Financial institutions do not normally write call options on individual stocks. How-
ever, a call option on a stock is a convenient example with which to develop our
ideas. The points that will be made apply to other types of options and to other
derivative securities.

The Black-Scholes price of the option is about $240,000. The financial
institution has therefore sold the option for $60,000 more than its theoretical value
and is faced with the problem of hedging its exposure.

13.2 NAKED AND COVERED POSITIONS

One strategy open to the financial institution is to do nothing. This involves what
is known as a naked position. If the call is exercised, the financial institution will
have to buy 100,000 shares at the current market price to cover the call. The cost to
the financial institution will then be 100,000 times the amount by which the stock
price exceeds the exercise price. For example, if after 20 weeks the stock price
is $60, the option costs the financial institution $1,000,000. This is considerably
greater than the $300,000 premium received. A naked position works well if the
stock price is below $50 at the end of the 20 weeks. The option then costs the
financial institution nothing and it makes a profit of $300,000 on the whole deal.
As an alternative to a naked position, the financial institution can adopt
a covered position. This involves buying 100,000 shares as soon as the option
has been sold. If the option is exercised, this strategy works well, but in other

13t was shown in Chapter 10 that the expected return is irrelevant to the pricing of the option.
However, it can have some bearing on the effectiveness of a particular hedging scheme.
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circumstances it could prove to be expensive. For example, if the stock price
drops to $40, the financial institution loses $900,000 on its stock position. Again,
this is considerably greater than the $300,000 charged for the option. Put-call parity
shows that the exposure from writing a covered call is the same as the exposure
from writing a naked put.

Neither a naked position nor a covered position provides a satisfactory hedge.
If the assumptions underlying the Black-Scholes formula hold, the cost to the
financial institution should always be $240,000 on average for both approaches.?
But, on any one occasion the cost is liable to range from zero to over $1,000,000.
A perfect hedge would ensure that the cost is always $240,000, that is, that the
standard deviation of the cost of writing the option and hedging it is zero.

13.3 A STOP-LOSS STRATEGY

One hedging idea that is sometimes proposed involves what is known as a stop-
loss strategy.3 To illustrate the basic idea, consider an institution that has written a
European call option with strike price X to buy one unit of a security. The hedging
scheme involves buying the security as soon as its price rises above X, and selling
as soon as it falls below X. The objective is to hold a naked position whenever
the stock price is less than X and a covered position whenever the stock price is
greater than X. The scheme is designed to ensure that the institution owns the
security at time T if the option closes in the money, and does not own it if the
option closes out of the money. It appears to produce payoffs that are the same as
the payoffs on the option. In the situation illustrated in Figure 13.1, the stop-loss
strategy involves buying the security at time ¢, selling it at time f,, buying it at
time t3, selling it at time #4, buying it at time ¢5, and delivering it at time T.

As usual, we denote the initial stock price by S. The cost of setting up the
hedge initially is § if S > X and zero otherwise. At first blush, the total cost, Q,
of writing and hedging the option would appear to be given by

O=max(S - X, 0) (13.1)

since all purchases and sales subsequent to time zero are made at price X. If this
were in fact correct, the hedging scheme would work perfectly in the absence of
transactions costs. Furthermore, the cost of hedging the option would always be
less than its Black-Scholes price. Thus, one could earn riskless profits by writing
options and hedging them.

ZMore precisely, the present value of the expected cost is $240,000 for both approaches assuming
that appropriate risk-adjusted discount rates are used.

3For a fuller analysis of the scheme, see J. Hull and A. White, “Hedging through the Cap:
Implications for Market Efficiency, Hedging, and Option Pricing,” International Options Journal, 4
(1987), 17-22.
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Figure 13.1 A Stop-Loss Strategy

There are two basic reasons why Equation (13.1) is incorrect. The first is that
the cash flows to the hedger occur at different times and must be discounted. The
second is that purchases and sales cannot be made at exactly the same price X. This
second point is critical. If we assume a risk-neutral world with zero interest rates,
we can justify ignoring the time value of money. However, we cannot legitimately
assume that both purchases and sales are made at the same price. If markets are
efficient, the hedger cannot know whether, when the stock price equals X, it will
continue above or below X.

As a practical matter, purchases will be made at X + & and sales will be made
at X — &, for some positive 8. Thus every purchase and subsequent sale includes
a cost (apart from transactions costs) of 2. A natural response to this on the part
of the hedger is to monitor price movements more closely so that 8 is reduced.
Assuming that stock prices change continuously, & can be made arbitrarily small
by monitoring security prices closely. However, as & is made smaller, trades tend
to occur more frequently. The cost per trade is reduced, but this is offset by the
increasing frequency of trading. As § — 0, the expected number of trades tends
to infinity.

The stop-loss strategy, although superficially attractive, does not work partic-
ularly well as a hedging scheme. If the stock price never crosses the line S =X,
the hedging scheme costs nothing for an out-of-the-money option. But, if the path
of the stock price crosses the line S(t) = X many times, the scheme is liable
to be quite expensive. Monte Carlo simulation can be used to assess the overall
performance of the scheme. Table 13.1 shows the results for the option consid-
ered in Section 13.2. It assumes that the stock price is observed at the end of
time intervals of length Ar and calculates hedge performance as the ratio of the
standard deviation of the cost of hedging the option to the Black-Scholes price of
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TABLE 13.1 Performance of Stop-Loss Strategy

At (weeks) 5 4 2 1 05 0.25

Hedge Performance 1.02 0.93 0.82 0.77 0.76 0.76

the option.* Each result is based on 1,000 sample paths for the stock price and

has a standard error of about 2 percent. It appears to be impossible to produce a
performance measure for the scheme which is below 0.70 regardless of how small
At is made.

13.4 MORE SOPHISTICATED HEDGING
SCHEMES

Most option traders use more sophisticated hedging schemes that those that have
been described so far. As a first step, they attempt to make their portfolio immune
to small changes in the price of the underlying asset in the next small interval
of time. This is known as delta hedging. They then look at what are known
as gamma and vega. Gamma is the rate of change of the value of the portfolio
with respect to delta; vega is the rate of change of the portfolio with respect to
the asset’s volatility. By keeping gamma close to zero, a portfolio can be made
relatively insensitive to fairly large changes in the price of the asset; by keeping
vega close to zero, it can be made insensitive to changes in its volatility. Option
traders may also look at theta and rho. Theta is the rate of change of the option
portfolio with the passage of time and rho is its rate of change with respect to the
risk-free interest rate.

In the next few sections we will discuss these hedge parameters in more
detail.

13.5 DELTA HEDGING

The delta of a derivative security, A, is defined as the rate of change of its price
with respect to the price of the underlying asset.> It is the slope of the curve that
relates the derivative security price to the underlying asset price.

Consider a call option on a stock. Figure 13.2 shows the relationship between
the call price and the underlying stock price. When the stock price corresponds to

“The precise hedging rule used was as follows. If the stock price moves from below X to above
X in a time interval of length At, it is bought at the end of the interval. If it moves from above X to
below X in the time interval, it is sold at the end of the interval. Otherwise, no action is taken.

SMore formally, A = 8 f/3S, where f is the price of the derivative security and § is the price
of the underlying asset.
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TABLE 13.1 Performance of Stop-Loss Strategy

At (weeks) 5 4 2 1 0.5 0.25

Hedge Performance 1.02 0.93 0.82 0.77 0.76 0.76

the option.* Each result is based on 1,000 sample paths for the stock price and
has a standard error of about 2 percent. It appears to be impossible to produce a
performance measure for the scheme which is below 0.70 regardless of how small
At is made.

13.4 MORE SOPHISTICATED HEDGING
SCHEMES

Most option traders use more sophisticated hedging schemes that those that have
been described so far. As a first step, they attempt to make their portfolio immune
to small changes in the price of the underlying asset in the next small interval
of time. This is known as delta hedging. They then look at what are known
as gamma and vega. Gamma is the rate of change of the value of the portfolio
with respect to delta; vega is the rate of change of the portfolio with respect to
the asset’s volatility. By keeping gamma close to zero, a portfolio can be made
relatively insensitive to fairly large changes in the price of the asset; by keeping
vega close to zero, it can be made insensitive to changes in its volatility. Option
traders may also look at theta and rho. Theta is the rate of change of the option
portfolio with the passage of time and rho is its rate of change with respect to the
risk-free interest rate.

In the next few sections we will discuss these hedge parameters in more
detail.

13.5 DELTA HEDGING

The delta of a derivative security, A, is defined as the rate of change of its price
with respect to the price of the underlying asset.” It is the slope of the curve that
relates the derivative security price to the underlying asset price.

Consider a call option on a stock. Figure 13.2 shows the relationship between
the call price and the underlying stock price. When the stock price corresponds to

4The precise hedging rule used was as follows. If the stock price moves from below X to above
X in a time interval of length At, it is bought at the end of the interval. If it moves from above X to
below X in the time interval, it is sold at the end of the interval. Otherwise, no action is taken.

SMore formally, A = 8 f/9S, where f is the price of the derivative security and § is the price
of the underlying asset.
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TABLE 13.1 Performance of Stop-Loss Strategy

At (weeks) 5 4 2 1 0.5 0.25

Hedge Performance 1.02 0.93 0.82 0.77 0.76 0.76

the option.* Each result is based on 1,000 sample paths for the stock price and
has a standard error of about 2 percent. It appears to be impossible to produce a
performance measure for the scheme which is below 0.70 regardless of how small
At is made.

13.4 MORE SOPHISTICATED HEDGING
SCHEMES

Most option traders use more sophisticated hedging schemes that those that have
been described so far. As a first step, they attempt to make their portfolio immune
to small changes in the price of the underlying asset in the next small interval
of time. This is known as delta hedging. They then look at what are known
as gamma and vega. Gamma is the rate of change of the value of the portfolio
with respect to delta; vega is the rate of change of the portfolio with respect to
the asset’s volatility. By keeping gamma close to zero, a portfolio can be made
relatively insensitive to fairly large changes in the price of the asset; by keeping
vega close to zero, it can be made insensitive to changes in its volatility. Option
traders may also look at theta and rho. Theta is the rate of change of the option
portfolio with the passage of time and rho is its rate of change with respect to the
risk-free interest rate.

In the next few sections we will discuss these hedge parameters in more
detail.

13.5 DELTA HEDGING

The delta of a derivative security, A, is defined as the rate of change of its price
with respect to the price of the underlying asset.”> It is the slope of the curve that
relates the derivative security price to the underlying asset price.

Consider a call option on a stock. Figure 13.2 shows the relationship between
the call price and the underlying stock price. When the stock price corresponds to

4The precise hedging rule used was as follows. If the stock price moves from below X to above
X in a time interval of length At, it is bought at the end of the interval. If it moves from above X to
below X in the time interval, it is sold at the end of the interval. Otherwise, no action is taken.

SMore formally, A = 3 f/9S, where f is the price of the derivative security and S is the price
of the underlying asset.
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A Option
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Slope = A
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Figore 13.2 Calculation of Delta

point A, the option price corresponds to point B and the A of the call is the slope
of the line indicated. As an approximation,

A___Ac
T AS

where AS is a small change in the stock price and Ac is the corresponding change
in the call price.

Assume the delta of the call option is 0.6. This means that when the stock
price changes by a small amount, the option price changes by about 60 percent
of that amount. Suppose that the option price is $10 and the stock price is $100.
Imagine an investor who has sold 20 option contracts, that is, options to buy 2,000
shares. The investor’s position could be hedged by buying 0.6 x 2,000 = 1,200
shares. The gain (loss) on the option position would tend to be offset by the
loss (gain) on the stock position. For example, if the stock price goes up by $1
(producing a gain of $1,200 on the shares purchased), the option price will tend
to go up by 0.6 x $1 = $0.60 (producing a loss of $1,200 on the options written);
if the stock price goes down by $1 (producing a loss of $1,200 on the shares
purchased), the option price will tend to go down by $0.60 (producing a gain of
$1,200 on the options written).

In this example, the delta of the investor’s option position is 0.6 x (—2,000) =
—1,200. In other words, the investor loses 1,200A S on the options when the stock
price increases by AS. The delta of the stock is by definition 1.0 and the long
position in 1,200 shares has a delta of +1,200. The delta of the investor’s hedged
position is therefore zero. The delta of the asset position offsets the delta of the
option position. A position with a delta of zero is referred to as being delta neutral.

It is important to realize that the investor’s position only remains delta hedged
(or delta neutral) for a relatively short period of time. This is because delta changes
with both changes in the stock price and the passage of time. In practice when delta
hedging is implemented, the hedge has to be adjusted periodically. This is known
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as rebalancing. In our example, at the end of 3 days the stock price might increase
to $110. As indicated by Figure 13.2, an increase in the stock price leads to an
increase in delta. Suppose that delta rises from 0.60 to 0.65. This would mean that
an extra 0.05 x 2,000 = 100 shares would have to be purchased to maintain the
hedge. Hedging schemes such as this that involve frequent adjustments are known
as dynamic hedging schemes.

Delta is closely related to the Black—Scholes analysis. Black and Scholes
showed that it is possible to set up a riskless portfolio consisting of a position in
a derivative security on a stock and a position in the stock. Expressed in terms of
A, their portfolio was

—1: Derivative security
+A: Shares of the stock

Using our new terminology, we can say that Black and Scholes valued options by
setting up a delta-neutral position and arguing that the return on the position in a
short period of time equals the risk-free interest rate.

DELTA OF FORWARD CONTRACTS

Equation (3.6) shows that when the price of a non-dividend-paying stock
changes by AS, with all else remaining the same, the value of a forward contract
on the stock also changes by AS. The delta of a forward contract on one share
of a non-dividend-paying stock is therefore 1.0. This means that a short forward
contract on one share can be hedged by purchasing one share, while a long forward
contract on one share can be hedged by shorting one share. These two hedging
schemes are “hedge and forget” schemes in the sense that no changes need to
be made to the position in the stock during the life of the contract. As already
mentioned, when an option or other more complicated derivative security is being
hedged, delta hedging is not a hedge-and-forget scheme. If the hedge is to be
effective, the position in the stock must be rebalanced frequently.

Dertas oF EuroPEAN CALLS AND Puts

For a European call option on a non-dividend-paying stock, it can be shown
that

A = N(dy)

where d; is defined in Equation 10.27. Using delta hedging for a short position in
a European call option therefore involves keeping a long position of N(d;) shares
at any given time. Similarly, using delta hedging for a long position in a European
call option involves maintaining a short position of N(d;) shares at any given time.
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For a European put option on a non-dividend-paying stock, delta is given by
A=N@d)—1

where d, is defined as in Equation (10.28). This is negative, which means that a
long position in a put option should be hedged with a continuously changing long
position in the underlying stock, and a short position in a put option should be
hedged with a continuously changing short position in the underlying stock. The
variation of the delta of a call option and a put option with the stock price is shown
in Figure 13.3. Figure 13.4 shows the variation in delta with time to maturity for
an at-the-money, in-the-money, and out-of-the-money option.

? Delta A Delta

10 Stock price
0.0 >

Stock price

0.0

(a) (b}

Figure 13.3 Variation of Delta with the Stock Price for (a) a Call Option and (b) a Put
Option on a Non-Dividend-Paying Stock

{u Delta

In the money

At the money

Out of the money

Time to expiration

Figure 13.4 Variation of Delta with the Time to Maturity for a Call Option
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SIMULATIONS

Tables 13.2 and 13.3 provide two simulations of the operation of delta hedg-
ing for the example in Section 13.2. The hedge is assumed to be adjusted or
rebalanced weekly. In Table 13.2, delta is initially calculated as 0.522. This means
that as soon as the option is written, $2,557,800 must be borrowed to buy 52,200

TABLE 13.2 Simulation of Delta Hedging; Option
Closes in the Money; Cost of Hedging = $263,400

Cost of Cumulative
Shares Cost (incl.
Purchased interest in  Interest Cost
Stock Shares (thousands thousands (thousands
Week Price Delta  Purchased of dollars) of dollars) of dollars)
0 49 0.522 52,200 2,557.8 2,557.8 2.5
1 48% 0.458  (6,400) (308.0) 2,252.3 2.2
2 47% 0.400 (5,800) (274.8) 1,979.7 1.9
3 50% 0.596 19,600 984.9 2,966.5 2.9
4 51 43 0.693 9,700 502.0 3,471.3 3.3
5 53% 0.774 8,100 430.3 3,904.9 3.8
6 53 0.771 (300) (15.9) 3,892.8 3.7
7 51 % 0.706  (6,500) (337.2) 3,559.3 34
8 51 % 0.674  (3,200) (164.4) 3,398.4 33
9 53 0.787 11,300 598.9 4,000.5 3.8
10 49% 0.550 (23,700) (1,182.0) 2,822.3 2.7
11 48% 0.413 (13,700) (664.4) 2,160.6 2.1
12 49% 0.542 12,900 643.4 2,806.1 2.7
13 503 0591 4,900 246.8 3,055.6 29
14 52% 0.768 17,700 922.6 3,981.2 3.8
15 51 % 0.759 (900) (46.7) 3,938.3 38
16 52% 0.865 10,600 560.5 4,502.6 43
17 54% 0.978 11,300 620.1 5,127.0 4.9
18 54% 0.990 1,200 65.6 5,197.5 5.0
19 55% 1.000 1,000 55.9 5,258.3 5.1
20 571 1.000 0 0.0 5,263.4

4
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TABLE 13.3 Simulation of Delta Hedging; Option
Closes out-of-the-Money; Cost of Hedging = $256,600

Cost of Cumulative
Shares Cost (incl.
Purchased interest in  Interest Cost
Stock Shares (thousands thousands (thousands
Week -  Price Delta Purchased of dollars) of dollars)  of dollars)
0 49 0522 52,200 2,557.8 2,557.8 2.5
1 493 0.568 4,600 2289 2,789.1 2.7
2 52 0.705 13,700 7124 3,504.2 34
3 50 0.579 (12,600) (630.0) 2,877.6 2.8
4 48% 0.459 (12,000) (580.5) 2,299.8 2.2
5 48% 0.443  (1,600) 71.2) 2,2248 2.1
6 483 0475 3200 156.0 2,383.0 2.3
7 49% 0.540 6,500 322.6 2,707.8 2.6
8 48% 0.420 (12,000) (579.0) 2,131.4 2.0
9 484 0410  (1,000) (48.2) 2,085.2 2.0
10 5 1% 0.658 24,800 1,267.9 3,355.1 32
i1 51% 0.692 3,400 175.1 3,533.5 34
12 49% 0.542 (15,000) (748.1) 2,788.7 2.7
13 49% 0.538 (400) (20.0) 2,771.5 2.7
14 48% 0.400 (13,800) 672.7) 2,101.4 2.0
15 47% 0.236 (16,400) (779.0) 1,324.4 1.3
16 48 0.261 2,500 120.0 1,445.7 14
17 46% 0.062 (19,900) (920.4) 526.7 0.5
i8 48% 0.183 12,100 582.3 1,109.5 1.1
19 46% 0.007 (17,600) (820.6) 290.0 0.3
20 48% 0.000  (700) (33.7) 256.6

shares at a price of $49. An interest cost of $2,500 is incurred in the first week.
The stock price falls by the end of the first week to $48§. This reduces the
delta to 0.458, and 6,400 of shares are sold to maintain the hedge. This realizes
$308,000 in cash and the cumulative borrowings at the end of week 1 are reduced
to $2,252,300. During the second week the stock price reduces to $47-§- and delta
declines again; and so on. Toward the end of the life of the option it becomes
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apparent that the option will be exercised and delta approaches 1.0. By week 20,
therefore, the hedger has a fully covered position. The hedger receives $5,000,000
for the stock held, so that the total cost of writing the option and hedging it is
$263,400.

Table 13.3 illustrates an alternative sequence of events which are such that
the option closes out of the money. As it becomes progressively clearer that the
option will not be exercised, delta approaches zero. By week 20 the hedger has a
naked position and has incurred costs totaling $256,600.

In tables 13.2 and 13.3 the costs of hedging the option, when dlscounted to
the beginning of the period, are close to but not exactly the same as the Black—
Scholes price of $240,000. If the hedging scheme worked perfectly, the cost of
hedging would, after discounting, be exactly $240,000 on every simulation. The
reason that there is a variation in the cost of delta hedging is that the hedge is
rebalanced only once a week. As rebalancing takes place more frequently, the
variation in the cost of hedging is reduced.

Table 13.4 shows statistics on the performance of delta hedging from 1,000
simulations of stock price movements for our example. As in Table 13.1, the
performance measure is the ratio of the standard deviation of the cost of hedging
the option to the Black—Scholes price of the option. It is clear that delta hedging is
a great improvement over the stop-loss strategy. Unlike the stop-loss strategy, the
performance of delta hedging gets steadily better as the hedge is monitored more
frequently.

Delta hedging aims to keep the total wealth of the financial institution as close
to unchanged as possible. Initially, the value of the written option is $240,000. In
the situation depicted in Table 13.2, the value of the option can be calculated as
$414,500 on week 9. Thus, the financial institution has lost $174,500 on its option
position. Its cash position, as measured by the cumulative cost, is $1,442,700 worse
in week 9 than in week 0. However, the value of the shares held has increased
from $2,557,800 to $4,171,100. The net effect of all this is that the overall wealth
of the financial institution has changed by only $3,900.

.

WHERE THE Cost CoMEs From

The delta-hedging scheme in tables 13.2 and 13.3 in effect creates a long
position in the option synthetically. This neutralizes the short position arising from
the option that has been written. The scheme generally involves selling stock just

TABLE 13.4 Performance of Delta Hedging

Time Between Hedge
Rebalancing (weeks) 5 4 2 1 0.5 0.25

Performance Measure 0.43 0.39 0.26 0.19 0.14 0.09
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after the price has gone down and buying stock just after the price has gone up. It
might be termed a buy high, sell low scheme! The cost of $240,000 comes from
the average difference between the price paid for the stock and the price realized
for it. Of course, the simulations in tables 13.2 and 13.3 are idealized in that they
assume that the volatility is constant, and that there are no transactions costs.
DeLtA oF OTHER EUROPEAN OPTIONS
For European call options on a stock index paying a dividend yield g,
A=e"TON@d)

where d, is defined in Equation (11.1). For European put options on the stock
index,

A =e TN ~ 1]
For European call options on a currency,
A=e"TON@)
where 7y is the foreign risk-free interest rate and d; is defined as in Equation (11.3).
For European put options on a Currency,
A=e"TON@) - 1]
For European futures call options,
A=e"TIN@)
where d; is defined as in Equation (11.8), and for European futures put options,
A=e"TPNE) - 1]
Example 13.1

A bank has written a 6-month European option to sell £ 1,000,000 at an exchange rate of
1.6000. Suppose that the current exchange rate is 1.6200, the risk-free interest rate in the
United Kingdom is 13% per annum, the risk-free interest rate in the United States is 10%
per annum, and the volatility of sterling is 15%. In this case § = 1.6200, X = 1.6000,
r=010,rf =013, 0 = 0.15, and T — ¢ = 0.5. The delta of a put option on a currency is

[N(dy) — 11e™7T™D
where d; is given by Equation (11.3).
d, = 0.0287
N(dy) =0.5115

and the delta of the put option is —0.458. This is the delta of a long position in one put
option. The delta of the bank’s total short position is +458, 000. Delta hedging therefore
requires a short sterling position of £458,000 be set up initially. This short sterling position
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has a delta of —458,000 and neutralizes the delta of the option position. As time passes,
the short position must be changed.

UsINg FUTURES

In practice, delta hedging is often carried out using a position in futures rather
than one in the underlying asset. The contract that is used does not have to mature
at the same time as the derivative security. For ease of exposition we assume that
a futures contract is on one unit of the underlying asset.

Define:

T*: Maturity of futures contract
H 4: Required position in asset at time ¢ for delta hedging
Hp: Alternative required position in futures contracts at time ¢ for delta hedging

If the underlying asset is a non-dividend-paying stock, the futures price, F,
is from Equation (3.5) given by

F=S er(T'—l)
When the stock price increases by AS, the futures price increases by ASe” T =9,

The delta of the futures contract is therefore &7 =9, Thus e~ futures con-
tracts have the same sensitivity to stock price movements as one stock. Hence

Hp = e—r(T‘_t)HA

When the underlying asset is a stock or stock index paying a dividend yield ¢, a
similar argument shows that

Hp = e 0T -0y, (13.2)
When it is a currency

HF — e—(r—r/)(T'-—f)HA
Example 13.2

Consider again the option in Example 13.1. Suppose that the bank. decides to hedge using
9-month currency futures contracts. In this case T* —t = 0.75 and

e~ =T =0 _ 10228

so that the short position in currency futures required for delta hedging is 1.0228 x 458,000 =
£468,442. Since each futures contract is for the purchase or sale of £62,500, this means
that (to the nearest whole number) 7 contracts should be shorted.

It is interesting to note that the delta of a futures contract is different from
the delta of the corresponding forward. This is true even when interest rates are
constant and the forward price equals the futures price. Consider the situation
where the underlying asset is a non-dividend-paying stock. The delta of a futures
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contract on one unit of the asset is "7~ whereas the delta of a forward contract
on one unit of the asset is as discussed earlier 1.0.

DELTA OF A PORTFOLIO

When a portfolio of options and other derivative securities on an asset are
held, the delta of the portfolio is simply the sum of the deltas of the individual
derivative securities in the portfolio. If a portfolio, IT, consists of an amount, w;,
of derivative security i (1 <i < n), the delta of the portfolio is given by

A= i wiA,-
i=1

where A; is the delta of ith derivative security. This can be used to calculate
the position in the underlying asset, or in futures contract on the underlying asset,
necessary to carry out delta hedging. When this position has been taken, the delta
of the portfolio is zero and the portfolio is referred to as being delta neutral.

Example 13.3

Consider a financial institution that has the following three positions in options to buy or
sell German marks:

1. A long position in 100,000 call options with exercise price 0.55 and exercise date in
3 months. The delta of each option is 0.533.

2. A short position in 200,000 call options with exercise price 0.56 and exercise date in
5 months. The delta of each option is 0.468.

3. A short position in 50,000 put options with exercise price 0.56 and exercise date in
2 months. The delta of each option is —0.508.

The delta of the whole portfolio is
0.533 x 100,000 — 200,000 x 0.468 — 50,000 x (—0.508) = —14, 900

This means that the portfolio can be made delta neutral with a long position of 14,900
marks.

A 6-month forward contract could also be used to achieve delta neutrality in this
example. Suppose that the risk-free rate of interest is 8% per annum in the United States
and 4% per annum in Germany. The number of marks that must be sold forward for delta

neutrality is
14,900~ (00800903 — 14,605

13.6 THETA

The theta of a portfolio of derivative securities, ®, is the rate of change of the
value of the portfolio with respect to time with all else remaining the same.® It

6More formally, © = 8T1/dt, where I1 is the value of the portfolio.
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is sometimes referred to as the time decay of the portfolio. For a European call

option on a non-dividend-paying stock,
SN'(dy)o
2JT —t

where d; and d; are defined as in Equation (10.27) and

6= rXe "T-YN(d,)

-x2/2

N'(x) = e

1
V2n
For a European put option on the stock,

SN'(d\)o
VTt
For a European call option on a stock index paying a dividend at rate ¢,

SN'(d))oe1T-D
T 2JT—1
where d; and d; are defined as in Equation 11.1. The formula for N’(x) is given
in Section 10.10. For a European put option on the stock index

SN'(dy)oe1T-0 (T (Tt -
- —gSN(—d)e T 4+ rXe T TN (—dy)
24T =1t

With g equal to ry, these last two equations give thetas for European call and put
options on currencies. With ¢ equal to r and S equal to F, they give thetas for
European futures options.

+rXe T ON(=dy)

® =

+gSNd)e 979 — rXe " TON(d,)

®=

Example 13.4

Consider a 4-month put option on a stock index. The current value of the index is 305, the
strike price is 300, the dividend yield is 3% per annum, the risk-free interest rate is 8% per
annum, and the volatility of the index is 25% per annum. In this case, § = 305, X = 300,
q=10.03,r =0.08, 0 =0.25, and T — ¢t = 0.3333. The option’s theta is

SN'(d)ge 9T~
2JT —¢

This means, if 0.01 year (or 2.5 trading days) passes with no changes to the value of the
index or its volatility, the value of the option declines by 0.1815.

—gSN(=d))e 9T 4 rxe " TIN(—dy) = —18.15

Theta is almost always negative for an option.” This is because, as the time
to maturity decreases, the option tends to become less valuable. The variation of
© with the stock price for a call option on a stock is shown in Figure 13.5. When

7An exception to this could be an in-the-money European put option on a non-dividend-paying
stock or an in-the-money European call option on a currency with a very high interest rate.
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Stock price

Figure 13.5 Variation of Theta of a European Call Option with Stock Price

the stock price is very low, theta is close to zero. For an at-the-money option, theta
is relatively large and negative. As the stock price becomes larger, theta tends to
_rXe—"T—D_ Figure 13.6 shows the variation of ® with the time to maturity for
an in-the-money, at-the-money, and out-of-the-money option.

Theta is not the same type of hedge parameter as delta and gamma. This is
because, although there is some uncertainty about the future stock price, there is
no uncertainty about the passage of time. It does not make sense to hedge against

ﬂ Theta
Time to maturity

Out of the money

in the money

At the money

Figure 13.6 Variation of Theta of a European Call Option with Time to Maturity
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the effect of the passage of time on an option portfolio. As we will see in Section
13.7, if theta is large in absolute terms, either delta or gamma must be large. If
both the delta and gamma of an option position are zero, theta indicates that the
value of the position will grow at the risk-free rate.

13.7 GAMMA

The gamma, T, of a portfolio of derivative securities on an underlying asset is the
rate of change of the portfolio’s delta with respect to the price of the underlying
asset.® If gamma is small, delta changes only slowly and adjustments to keep
a portfolio delta neutral need only be made relatively infrequently. However, if
gamma is large in absolute terms, delta is highly sensitive to the price of the
underlying asset. It is then quite risky to leave a delta-neutral portfolio unchanged
for any length of time. Figure 13.7 illustrates this point. When the stock price
moves from S to §’, delta hedging assumes that the option price moves from C to
C’ when in actual fact it moves from C to C”. The difference between C’ and C”
leads to a hedging error. The error depends on the curvature of the relationship
between the option price and the stock price. Gamma measures this curvature.’

Suppose that AS is the change in the price of an underlying asset in a small
interval of time, Ar, and AIl is the corresponding change in the price of the
portfolio. If terms such as A¢2, which are of higher order than At, are ignored,
Appendix 13A shows that for a delta-neutral portfolio,

1
ATl = © At + 51‘ AS? (13.3)
A Call
price
c” [ S T T T I T T T T T T T
¢ !
C ————————= [
i |
| |
| ! Stock price
s s o

Figure 13.7 Illustration of Error in Delta Hedging

8More formally, I" = 3211/3582, where I1 is the value of the portfolio.
9Indeed the gamma of an option is sometimes referred to by practitioners as its curvature.
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All all
i
<5 AS AS
Slightly Positive Gamma Large Positive Gamma
AIl ATl
i
AS —» AS
Slightly Negative Gamma Large Negative Gamma

Figure 13.8 Alternative Relationships between ATl and AS for a Delta-neutral Portfolio

where © is the theta of the portfolio. Figure 13.8 shows the nature of this rela-
tionship between ATl and AS 10 Jt can be seen that, when gamma is positive, the
portfolio declines in value if there is no change in the S, but increases in vaiue
if there is a large positive or negative change in S. When gamma is negative
the reverse is true; the portfolio increases in value if there is no change in S, but
decreases in value if there is a large positive or negative change in S. As the
absolute value of gamma increases, the sensitivity of the value of the portfolio to
S increases.

10Fjgure 13.4 assumes that © has the opposite sign to T'. This is usually, but not always, the case.
It will be shown in Section 13.8 that

1
o+ Eazszr =rfl

for a delta-neutral portfolio.
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Making A PorTroLI0 Gamma NEUTRAL

A position in the underlying asset or in a futures contract on the underlying
asset has zero gamma. The only way a financial institution can change the gamma
of its portfolio is by taking a position in a traded option. Suppose that a delta-
neutral portfolio has gamma equal to I and a traded option has a gamma equal to
I'r. If the number of traded options added to the portfolio is wr, the gamma of
the portfolio is

wrl'r +T

Hence the position in the traded option necessary to make the portfolio gamma
neutral is —I"/I"7. Of course, including the traded option is liable to change the
delta of the portfolio, so the position in the underlying asset (or futures contract
on the underlying asset) then has to be changed to maintain delta neutrality. Note
that the portfolio is only gamma neutral instantaneously. As time passes, gamma
neutrality can be maintained only if the position in the traded option is adjusted so
that it is always equal to —I"/I'r. .

Example 13.5

Suppose that a portfolio is delta neutral and has a gamma of —3,000. The delta and gamma
of a particular traded call option are 0.62 and 1.50, respectively. The portfolio can be made
gamma neutral by including a long position of

3,000 _ 5 000
1.5

traded call options in the portfolio. However, the delta of the portfolio will then change
from zero to 2,000 x 0.62 = 1,240. A quantity, 1,240, of the underlying asset must therefore
be sold from the portfolio to keep it delta neutral.

Making a delta-neutral portfolio gamma neutral can be regarded as a first
correction for the fact that the position in the underlying asset (or futures contracts
on the underlying asset) cannot be changed continuously when delta hedging is
used.

CALcULATION OF GAMMA

For a European call or put option on a non-dividend-paying stock, the gamma
is given by
N
"~ SaNT—1

where d; is defined as in Equation (10.27) and N’'(x) is given in Section 10.10.
This is always positive and varies with S in the way indicated in Figure 13.9.
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4 Gamma

X Stock price

Figure 13.9 Variation of Gamma with Stock Price for an Option

The variation of gamma with time to maturity for out-of-the-money, at-the-money,
and in-the-money options is shown in Figure 13.10. For an at-the-money option,
gamma increases as the time to maturity decreases. Short-life at-the-money options
have very high gammas—which means that the value of the option holder’s position
is highly sensitive to jumps in the stock price.

For a European call or put option on a stock index paying a continuous

dividend at rate ¢,
B N/(dl)e-—q(T—t)

r=

SoJT —t
A Gamma

Out of the money

At the money
In the money
Time to maturity

0 >

Figure 13.10 Variation of Gamma with Time to Maturity for a Stock Option
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where d; is defined as in Equation (11.1). This formula gives the gamma for a
European option on a currency when ¢ is put equal to the foreign risk-free rate
and gives the gamma for a European futures option with g =r and § = F.

Example 13.6

Consider a 4-month put option on a stock index. Suppose that the current value of the index
is 305, the exercise price is 300, the dividend yield is 3% per annum, the risk-free interest
rate is 8% per annum, and volatility of the index is 25% per annum. In this case, S = 305,
X =300,9 =003, r =0.08, c =0.25, and T — ¢ = 0.3333. The gamma of the index
option is given by

N/(d] )e—q(T—I)

= 0.00857 .
So T —t

Thus an increase of 1 in the index increases the delta of the option by approximately
0.00857.

13.8 THE RELATIONSHIP BETWEEN DELTA,
THETA, AND GAMMA

The Black—Scholes equation (10.20) which must be satisfied by the price, f, of
any derivative security on a non-dividend-paying stock is

aof 3f 1 ,,9%f
- S — S — =
ar T 20 S g =Y
Since
of of 3% f
@ = — A = —, _ ——
at as 382
it follows that
1
O+rSA+ 502521“ =rf (13.4)

This is true for portfolios of derivative securities on a non-dividend-paying security
as well as for individual derivative securities.
For a delta-neutral portfolio, A = 0 and

1
e+ zazszr =rf

This shows that when @ is large and positive, gamma tends to be large and negative,
and vice versa. This is consistent with the way in which Figure 13.8 has been
drawn.
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13.9 VEGA

Up to now we have implicitly assumed that the volatility of the asset underlying a
derivative security is constant. In practice, volatilities change over time. It means
that the value of a derivative security is liable to change because of movements in
volatility as well as because of changes in the asset price and the passage of time.

The vega of a portfolio of derivative securities, A, is the rate of change of
the value of the portfolio with respect to the volatility of the underlying asset.!!
If vega is high in absolute terms, the portfolio’s value is very sensitive to small
changes in volatility. If vega is low in absolute terms, volatility changes have
relatively little impact on the value of the portfolio.

A position in the underlying asset or in a futures contract has zero vega.
However, the vega of a portfolio can be changed by adding a position in a traded
option. If A is the vega of the portfolio and Ar is the vega of a traded option, a
position of —A/Ar in the traded option makes the portfolio instantaneously vega
neutral. Unfortunately, a portfolio that is gamma neutral will not in general be
vega neutral, and vice versa. If a hedger requires a portfolio to be both gamma and
vega neutral, at least two traded derivative securities dependent on the underlying
asset must usually be used.

Example 13.7

Consider a portfolio that is delta neutral, has a gamma of —5,000 and a vega of —8,000.
Suppose that a traded option has a gamma of 0.5, a vega of 2.0, and a delta of 0.6. The
portfolio can be made vega neutral by including a long position in 4,000 traded options. This
would increase delta to 2,400 and require that 2,400 units of the asset be sold to maintain
delta neutrality. The gamma of the portfolio would change from —5,000 to —3,000.

To make the portfolio gamma and vega neutral, we suppose that there is a second
traded option with a gamma of 0.8, a vega of 1.2, and a delta of 0.5. If w; and wy are the
amounts of the two traded options included in the portfolio, we require that

5,000 + 0.5w; + 0.8w; =0

—8,000 +2.0w; +1.2w2 =0

The solution to these equations is wy = 400, wy = 6,000. The portfolio can therefore be
made gamma and vega neutral by including 400 of the first traded option and 6,000 of the
second traded option. The delta of the portfolio after the addition of the positions in the two
traded options is 400 x 0.6 + 6,000 x 0.5 = 3,240. Hence 3,240 units of the asset would
have to be sold to maintain delta neutrality.

For a European call or put option on a non-dividend-paying stock, vega is
given by
A=S8ST—tN'(d)

1iMore formally, A = 3T1/3c, where IT is the value of the portfolio. Vega is also sometimes
referred to as lambda, kappa, or sigma.
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where d; is defined as in Equation (10.27). The formula for N’(x) is given in
Section 10.10. For a European call or put option on a stock or stock index paying
a continuous dividend yield at rate ¢,

A=S8~T —tN'(d)e 9T

where d; is defined as in Equation (11.1). This equation gives the vega for a
European currency option with g replaced by ry. It also gives the vega for a
European futures option with ¢ replaced by r, and S replaced by F. Using these
formulas implicitly assumes that the price of an option with a variable volatility
is the same as the price of an option with constant volatility. To a reasonable
approximation this appears to be the case.!?> The vega of an option is always
positive. The general way in which it varies with S is shown in Figure 13.11.

Gamma neutrality corrects for the fact that time elapses between hedge rebal-
ancing. Vega neutrality corrects for a variable o. As might be expected, whether
it is best to use an available traded option for vega or gamma hedging depends on
the time between hedge rebalancing and the volatility of the volatility. This issue
is discussed in some detail by Hull and White.!?

Example 13.8
Consider again the put option in Example 13.5. Its vega is given by

SVT =t N (d)e 9T = 66.44

A Vega

. Stock price

X

Figure 13.11 Variation of Vega with Stock Price for an Option

12See J. Hull and A. White, “The Pricing of Options on Assets with Stochastic Volatilities,”
Journal of Finance, 42 (June 1987) 281-300.

13See J. Hull and A. White, “Hedging the Risks from Writing Foreign Currency Options,” Journal
of International Money and Finance, 6 (June 1987), 131-52.
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Thus a 1% or 0.01 increase in volatility (from 25% to 26%) increases the value of the option
by approximately 0.6644.

13.10 RHO

The rho of a portfolio of derivative securities is the rate of change of the value of
the portfolio with respect to the interest rate.!4 It measures the sensitivity of the
value of a portfolio to interest rates. For a European call option on a non-dividend-
paying stock,

tho = X(T — e "7~ N(dp)
and for a European put option on the stock,
tho = =X (T — t)e " TN (~d2)

where d, is defined as in Equation (10.27). These same formulas apply to European
call and put options on stocks and stock indices paying a dividend yield at rate
g, and to European call and put options on futures contracts, when appropriate
changes are made to the definition of d>.

Example 13.9

Consider again the 4-month put option on a stock index. The current value of the index is
305, the strike price is 300, the dividend yield is 3% per annum, the risk-free interest rate
is 8% per annum, and the volatility of the index is 25% per annum. In this case, § = 305,
X =300, =003, r=008,0=025T-t= 0.333. The option’s rho is

—X(T = e~ " T"IN(~dp) = —42.57

This means that for a one-percentage-point or 0.01 change in the risk-free interest rate (from
8% to 9%), the value of the option decreases by 0.4257.

In the case of currency options, there are two rhos corresponding to the two
interest rates. The rho corresponding to the domestic interest rate is given by
the previous formulas. The rho corresponding to the foreign interest rate for a
European call on a currency is given by

tho = —(T — t)e "7 SN(d))
while for a European put it is

tho = (T — e " TDSN(—dy)

14More formally, tho equals 8T1/3r, where TT is the value of the portfolio.
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13.11 HEDGING OPTION PORTFOLIOS
IN PRACTICE

It would be wrong to give the impression that option traders are continually re-
balancing their portfolios to maintain delta neutrality, gamma neutrality, vega neu-
trality, and so on. In practice, transaction costs make frequent rebalancing very
expensive. Rather than trying to eliminate all risks, an option trader therefore
usually concentrates on assessing risks and deciding whether they are acceptable.

Option traders tend to use delta, gamma, and vega measures to quantify the
different aspects of the risk inherent in their option portfolios. They then consider
different possible future scenarios for movements in the stock price and the stock
price volatility. If the downside risk is acceptable, no adjustment is made to
the portfolio; if it is unacceptable, they take an appropriate position in either the
underlying security or a traded portfolio.

13.12 PORTFOLIO INSURANCE

Portfolio managers holding a well-diversified stock portfolio are sometimes inter-
ested in insuring themselves against the value of the portfolio dropping below a
certain level. One way of doing this is by holding, in conjunction with the stock
portfolio, put options on a stock index. This strategy was discussed in Chapter 11.

Consider, for example, a fund manager with a $30 million portfolio whose
value mirrors the value of the S&P 500. Suppose that the S&P 500 is standing at
300 and the manager wishes to insure against the value of the portfolio dropping
below $29 million in the next 6 months. One approach is to buy 1,000 6-month
put option contracts on the S&P 500 with an exercise price of 290 and a maturity
in 6 months. If the index drops below 290, the put options will become in the
money and provide the manager with compensation for the decline in the value
of the portfolio. Suppose, for example, that the index drops to 270 at the end of
6 months. The value of the manager’s stock portfolio is likely to be about $27
million. Since each option contract is on 100 times the index, the total value of
the put options is $2 million. This brings the value of the entire holding back up
to $29 million. Of course, insurance is not free. In this example the put options
could cost the portfolio manager as much as $1 million.

CREATING OPTIONS SYNTHETICALLY

An alternative approach open to the portfolio manager involves creating the
put options synthetically. This involves taking a position in the underlying asset
(or futures on the underlying asset) so that the delta of the position is maintained
equal to the delta of the required option. If more accuracy is required, the next step
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is to use traded options to match the gamma and vega of the required option. The
position necessary to create an option synthetically is the reverse of that necessary
to hedge it. This is simply a reflection of the fact that a procedure for hedging an
option involves the creation of an equal and opposite option synthetically.

There are two reasons why it may be more attractive for the portfolio manager
to create the required put option synthetically than to buy it in the market. The first
is that options markets do not always have the liquidity to absorb the trades that
managers of large funds would like to carry out. The second is that fund managers
often require strike prices and exercise dates that are different from those available
in traded options markets.

The synthetic option can be created from trades in stocks themselves or from
trades in index futures contracts. We will first examine the creation of a put option
by trades in the stocks themselves. Consider again the fund manager with a well-
diversified portfolio worth $30 million who wishes to buy a European put on the
portfolio with a strike price of $29 million and an exercise date in 6 months. Recall
that the delta of a European put on an index is given by

A =e 9T DO[N(dy) — 1] (13.5)
where, with the usual notation,
g In(S/X) + (r —q +02/2)(T = 1)
! oT —t
Since, in this case, the fund manager’s portfolio mirrors the index, this is also the
delta of a put on the portfolio when it is regarded as a single security. The delta

is negative. Accordingly, in order to create the put option synthetically, the fund
manager should ensure that at any given time a proportion

e 1 T=D[1 — N(d))]

of the stocks in the original $30 million portfolio have been sold and the proceeds
invested in riskless assets. As the value of the original portfolio declines, the delta
of the put becomes more negative and the proportion of the portfolio sold must
be increased. As the value of the original portfolio increases, the delta of the put
becomes less negative and the proportion of the portfolio sold must be decreased
(i.e., some of the original portfolio must be repurchased).

Using this strategy to create portfolio insurance means that at any given
time funds are divided between the stock portfolio on which insurance is required
and riskless assets. As the value of the stock portfolio increases, riskless assets
are sold and the position in the stock portfolio is increased. As the value of the
stock portfolio declines, the position in the stock portfolio is decreased and riskless
assets are purchased. The cost of the insurance arises from the fact that the portfolio
manager is always selling after a decline in the market and buying after a rise in
the market.
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Usk orF INDEx FUTURES

Using index futures to create portfolio insurance can be preferable to using
the underlying stocks, as the transactions costs associated with trades in index
futures are generally less than those associated with the corresponding trades in
the -.underlying stocks. The portfolio manager considered earlier would keep the
$30 million stock portfolio intact and short index futures contracts. The dollar
amount of futures contracts shorted as a proportion of the value of the portfolio
should from equations (13.2) and (13.5) be

e—q(T—t)e—(r—q)(T‘—l)[l - N@)] = eq(T‘—T)e-r(T‘-!)[l —~ N(@d)]

where T* is the maturity date of the futures contract. If the portfolio is worth
K, times the index and each index futures contract is on K, times the index, this
means that the number of futures contracts shorted at any given time should be

AT DT Nt
K>

Example 13.10

In the example given at the beginning of this section, suppose that the volatility of the
market is 25% per annum, the risk-free interest rate is 9% per annum, and the dividend
yield on the market is 3% per annum. In this case, § = 300, X = 290, r = 0.09, ¢ = 0.03,
0 =0.25,and T —t = 0.5. The delta of the option that is required is

eI T-YN@E) — 1] = —0.322

Hence if trades in the portfolio are used to create the option, 32.2% of the portfolio should
be sold initially. If 9-month futures contracts on the S&P 500 are used, T* — T = 0.25,
T* —t = 0.75, K| = 100,000, K, = 500, so that the number of futures contracts shorted
should be

* * K
AT =TT =011 _ N(d)]= = 61.6
K>

An important issue when put options are created synthetically for portfolio
insurance is the frequency with which the portfolio manager’s position should be
adjusted or rebalanced. With no transaction costs, continuous rebalancing is opti-
mal. However, as transactions costs increase, the optimal frequency of rebalancing
declines. This issue is discussed by Leland.!

Up to now we have assumed that the portfolio mirrors the index. As discussed
in Chapter 11, the hedging scheme can be adjusted to deal with other situations.
The strike price for the options used should be the expected level of the market
index when the portfolio’s value reaches its insured value. The number of index

15See Hayne E. Leland, “Option Pricing and Replication with Transactions Costs,” Journal of
Finance, 40 (December 1985), 1283-1301.
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options used should be B times the number of options that would be required if
the portfolio had a beta of 1.0.

Example 13.11

Suppose that the risk-free rate of interest is 5% per annum, the S&P 500 stands at 500, and
the value of a portfolio with a beta of 2.0 is $10 million. Suppose that the dividend yield
on the S&P 500 is 3%, the dividend yield on the portfolio is 2%, and that the portfolio
manager wishes to insure against a decline in the value of the portfolio to below $9.3 million
in the next year. If the value of the portfolio declines to $9.3 million at the end of the year,
the total return (after taking account of the 2% dividend yield) is approximately —5% per
annum. This is 10% per annum, worse than the risk-free rate. We expect the market to
perform 5% worse than the risk-free rate (i.e., to provide zero return) in these circumstances.
Hence we expect a 3% decline in the S&P 500 since this index does not take any account
of dividends. The correct exercise price for the put options which are created is therefore
485. The number of put options required is beta times the value of the portfolio divided by
the value of the index or 40,000 (i.e., 400 contracts).

To illustrate that this answer is at least approximately correct, suppose that the port-
folio’s value drops to $8.3 million. With dividends it provides a return of approximately
—15% per annum. This is approximately 20% per annum, worse than the risk-free rate. The
S&P 500 plus dividends on the S&P 500 can be expected to provide a return that is 10% per
annum worse than the risk-free rate. This means that the index will reduce by 8%, to 460.
The 40,000 put options with an exercise price of 485 will pay off $1 million, as required.

When B is not equal to 1.0 and the fund manager wishes to use trades in the
portfolio to create the option, the portfolio can be regarded as a single security. As
an approximation, the volatility of the portfolio can be assumed to be equal to B
times the volatility of the market index.!®

Ocroser 19, 1987 aND STOCK MARKET VOLATILITY

Creating put options on the index synthetically does not work well if the
volatility of the index changes rapidly or if the index exhibits large jumps. On
Monday, October 19, 1987, the Dow Jones Industrial Average dropped by over
500 points. Portfolio managers who had insured themselves by buying traded put
options survived this crash well. Those who had chosen to create put options
synthetically found that they were unable to sell either stocks or index futures fast
enough to protect their position.

We have already raised the issue of whether volatility is caused solely by
the arrival of new information or whether trading itself generates volatility. Port-
folio insurance schemes such as those just described have the potential to increase

16This is only exactly true if beta is calculated on the basis of the returns in very small time
intervals. By contrast, the argument in Example 13.11 is only exactly true if beta is calculated on the
basis of returns in time intervals of length equal to the life of the option being created.
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volatility. When the market declines, they cause portfolio managers either to sell
stock or to sell index futures contracts. This may accentuate the decline. The sale
of stock is liable to drive down the market index further in a direct way. The
sale of index futures contracts is liable to drive down futures prices. This creates
selling pressure on stocks via the mechanism of index arbitrage (see Chapter 3) so
that the market index is liable to be driven down in this case as well. Similarly,
when the market rises, the portfolio insurance schemes cause portfolio managers
either to buy stock or to buy futures contracts. This may accentuate the rise.

In addition to formal portfolio insurance schemes, we can speculate that
many investors consciously or subconsciously follow portfolio insurance schemes
of their own. For example, an investor may be inclined to enter the market when
it is rising, but will sell when it is falling, to limit his or her downside risk.

Whether portfolio insurance schemes (formal or informal) affect volatility
depends on how easily the market can absorb the trades that are generated by
portfolio insurance. If portfolio insurance trades are a very small fraction of all
trades, there is likely to be no effect. But, as portfolio insurance becomes more
widespread, it is liable to have a destabilizing effect on the market.

Brapy CommMissiON REPORT

The report of the Brady commission on the October 19, 1987 crash provides
some interesting insights into the effect of portfolio insurance on the market at that
time.!” The Brady commission estimates that $60 billion to $90 billion of equity
assets were under portfolio insurance administration in October 1987. During the
period Wednesday, October 14, 1987, to Friday, October 16, 1987, the market
declined by about 10 percent with much of this decline taking place on the Friday
afternoon. This should have generated at least $12 billion of equity or index futures
sales as a result of portfolio insurance schemes.!® In fact, less than $4 billion were
sold, which means that portfolio insurers approached the following week with
huge amounts of selling already dictated by their models. The Brady commission
estimated that on Monday, October 19, sell programs by three portfolio insurers
accounted for almost 10 percent of the sales on the New York Stock Exchange, and
that portfolio insurance sales amount to 21.3 percent of all sales in index futures
markets. It seems likely that portfolio insurance caused some downward pressure
on the market. It is significant that in aggregate, portfolio insurers executed only a
relatively small proportion of the total trades generated by their models. Needless
to say, the popularity of portfolio insurance schemes that are based on dynamic
trading in stocks and futures has declined considerably since October 1987.

17See “Report of the Presidential Task Force on Market Mechanisms,” January 1988.

135 put this in perspective, on Monday, October 19, all previous records were broken when 604
million shares worth $21 billion were traded on the New York Stock Exchange. Approximately $20
billion of S&P 500 futures contracts were traded on that day.
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13.13 SUMMARY

Financial institutions offer a variety of option products to their clients. Often
the options do not correspond to the standardized products traded by exchanges.
This presents the financial institutions with the problem of hedging their exposure.
Naked and covered positions leave them subject to an unacceptable level of risk.
One strategy that is sometimes proposed is a stop-loss strategy that involves holding
a naked position when an option is out of the money and converting it to a covered
position as soon as the option moves in the money. Surprisingly, the strategy does
not work at all well.

The delta, A, of an option is the rate of change of its price with respect to
the price of the underlying asset. Delta hedging involves creating a position with
zero delta (sometimes referred to as a delta-neutral position). Since the delta of
the underlying asset is 1.0, one way of doing this is to take a position of —A in
the underlying asset for each long option being hedged. The delta of an option
changes over time. This means that the position in the underlying asset has to be
frequently adjusted. :

Once an option position has been made delta neutral, the next stage is often
to look at its gamma. The gamma of an option is the rate of change of its delta
with respect to the price of the underlying asset. It is a measure of the curvature
of the relationship between the option price and the asset price. The impact of
this curvature on the performance of delta hedging can be reduced by making an
option position gamma neutral. If T is the gamma of the position being hedged,
this is usually achieved by taking a position in a traded option that has a gamma
of —T. ’

Delta and gamma hedging are both based on the assumption that the volatility
of the underlying asset is constant. In practice, volatilities do change over time.
The vega of an option, or an option portfolio, measures the rate of change of its
value with respect to volatility. If a trader wishes to hedge an option position
against volatility changes, he or she can make the position vega neutral. Like the
procedure for creating gamma neutrality, this usually involves taking an offsetting
position in a traded option. If the trader wishes to achieve both gamma and vega
neutrality, two traded options are usually required.

Two other measures of the risk of an option position are theta and rho.
Theta measures the rate of change of the value of the position with respect to the
passage of time with all else remaining constant, tho measures the rate of change
of the value of the position with respect to the short-term interest rate with all else
remaining constant.

Portfolio managers are sometimes interested in creating put options synthet-
ically for the purposes of insuring an equity portfolio. They can do this either
by trading the portfolio or by trading index futures on the portfolio. Trading the
portfolio involves splitting the portfolio between equities and risk-free securities.
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As the market declines, more is invested in risk-free securities. As the market
ncreases, more is invested in equities. Trading index futures involves keeping
he equity portfolio intact and selling index futures. As the market declines, more
ndex futures are sold; as it rises fewer are sold. This works well in normal market
sonditions. However, on Monday October 19, 1987, when the Dow Jones Indus-
rial Average dropped by over 500 points, it worked badly. Portfolio insurers were
mable to sell either stocks or index futures fast enough to protect their positions.
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QUESTIONS AND PROBLEMS

13.1. What does it mean to assert that the delta of a call option is 0.77 How can 2 short

position in 1,000 call options be made delta neutral when the delta of each option is
0.7?

13.2. Calculate the delta of an at-the-money 6-month European call option on 2 non-
dividend-paying stock when the risk-free interest rate is 10% per annum and the
stock price volatility is 25% per annum.

13.3. What does it mean to assert that the theta of an option position is —0.1 when time is
measured in years? If a trader feels that neither 2 stock price nor its implied volatility
will change, what type of option position is appropriate?

13.4. What is meant by the gamma of an option position? Consider the situation of an
option writer when the gamina of his or her position is large and negative and the
delta is zero. ‘What are the risks?

13.5. “The procedure for creating an option position synthetically is the reverse of the

procedure for hedging the option pos'mon.” Explain this statement.
13.6. Why did portfolio insurance not work well on October 19, 19877

*13.7. A deposit instrument offered by 2 pank guarantecs that investors will receive a retrm
during 2 6-month period that is the greater of (a) zero; and (b) 40% of the returnt
provided by a market index. An individual is planning 0 invest $100,000 in the
jnstrument. Describe the payoff as an option on the index. Assuming that the risk-

free rate of interest is 8% per annum, the dividend yield on the index iS 3% per
annum, and the volatility of the index is 23% per annum, is the product a good deal
for the individual?

13.8. The Black-Scholes price of an out-of-the-money call option with an exercise price of
$40 is $4.00. A trader who has written the option plans to use the stop-loss strategy
in Section 13.3. The trader’s plan is to buy at $40% and to sell at $39%. Estimate
the expected number of times the stock will be bought or sold.

*13.9. Use the put—call parity relationship t0 derive for 2 non-dividend—paying stock the
relationship between:

(a) The delta of a European call and the delta of a European put;
(b) The gamma of a European call and the gamma of a European put;
(c) The vega of a European call and the vega of a European put;
(@) The theta of a European call and the theta of a European put.

13.10. Suppose that a stock price is currently $20 and that a call option with exercise
price $25 is created synthetically using 2 continually changing position in the stock.
Consider the following two scenarios:

(a) Stock price increases steadily from $20 to $35 during the life of the option;
(b) Stock price oscillates wildly ending up at $35.
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13.11.

13.12.

13.13.

13.14.

13.15.

13.16.

13.17.
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Which scenario would make the synthetically created option more expensive? Ex-
plain your answer.

What is the delta of a short position in 1,000 European call options on silver futures?
The options mature in 8 months and the futures contract underlying the option matures
in 9 months. The current 9-month futures price is $8.00 per ounce, the exercise price
of the options is $8.00, the risk-free interest rate is 12% per annum, and the volatility
of silver is 18% per annum.

In Problem 13.11, what initial position in 9-month silver futures is necessary for
delta hedging? If silver itself is used, what is the initial position? If 1-year silver
futures are used, what is the initial position? Assume no storage costs for silver.

A company uses delta hedging to hedge a portfolio of long positions in put and call
options on a currency. Which of the following would give the most favorable result?
(a) A virtually constant spot rate;

(b) Wild movements in the spot rate.

Explain your answer.

Repeat Problem 13.13 for a financial institution with a portfolio of short positions in
put and call options on a currency.

A financial institution has just sold some 7-month European call options on the
Japanese yen. Suppose that the spot exchange rate is 0.80 cent per yen, the exercise
price is 0.81 cent per yen, the risk-free interest rate in the United States is 8% per
annum, the risk-free interest rate in Japan is 5% per annum, and the volatility of
the yen is 15% per annum. Calculate the delta, gamma, vega, theta, and rho of the
option. Interpret each number.

A financial institution has the following portfolio of over-the-counter options on
sterling:

Delta of Gamma of Vega of

Type Position Option Option Option
Call —1,000 0.50 2.2 1.8
Call ~500 0.80 0.6 0.2
Put -2,000 —0.40 13 0.7
Call —-500 0.70 1.8 14

A traded option is available which has a delta of 0.6, a gamma of 1.5, and a vega

of 0.8.

(a) What position in the traded option and in sterling would make the portfolio both
gamma neutral and delta neutral?

(b) What position in the traded option and in sterling would make the portfolio both
vega neutral and delta neutral?

Consider again the situation in Problem 13.16. Suppose that a second traded option

with a delta of 0.1, a gamma of 0.5, and a vega of 0.6 is available. How could the

portfolio be made delta, gamma, and vega neutral?
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*13.18.

13.19.

13.20.

13.21.

13.22.

13.23.

Under what circumstances is it possible to make a position in an over-the-cow

Furopean option on a stock index both gamma neutral and vega neutral by introduc

a single traded European option into the portfolio?

A fund manager has a well-diversified portfolio that mirrors the performance of

S&P 500 and is worth $90 million. The value of the S&P 500 is 300 and the portfi

manager would like to buy insurance against a reduction of more than 5% in

value of the portfolio over the next 6 months. The risk-free interest rate is 6%

annum. The dividend yield on both the portfolio and the S&P 500 is 3%, and

volatility of the index is 30% per annum.

(a) If the fund manager buys traded European put options, how much would
insurance cost?

(b) Explain carefully alternative strategies open to the fund manager involving tra
European call options, and show that they lead to the same result.

(¢) If the fund manager decides to provide insurance by keeping part of the portf
in risk-free securities, what shouid the initial position be?

(d) If the fund manager decides to provide insurance by using 9-month index futu
what should the initial position be?

Repeat Problem 13.19 on the assumption that the portfolio has a beta of 1.5. Assi

that the dividend yield on the portfolio is 4% per annum.

Show by substituting for ©, A, I, and f that the relationship in Equation (13.¢

true for:

(a) A single European call option on a non-dividend-paying stock;

(b) A single European put option on a non-dividend-paying stock;

(¢) Any portfolio of European put and call options on a non-dividend-pa;
stock.

What is the equation corresponding to Equation (13.4) for a portfolio of deriva

securities on a currency?

Suppose that $70 billion of equity assets are the subject of portfolio insur:

schemes. Assume that the schemes are designed to insure that the value of

assets do not decline by more than 5% within one year. Making whatever estim

you find necessary, calculate the value of the stock or futures contracts that the

ministrators of the portfolio insurance schemes will attempt to sell if the market

by 23% in a single day.

APPENDIX 13A: TAYLOR SERIES EXPANSIONS
AND HEDGE PARAMETERS

The various hedging alternatives open to the manager of a portfolio of deriva
securities can be illustrated using a Taylor series expansion of the change in

value

of the portfolio in a short period of time.
If the volatility of the underlying asset is assumed to be constant, the v

of the portfolio, I, is a function of the asset price, S, and time ¢. The Taylor s¢
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higher order than A¢,
For a delta-neutra] portfolio, the first term on the right-hand side of Equation
(13A.1) is zero, so that
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When the volatility of the underlying asset is assumed to be variable, I7 js a
function of o, S, and ¢. Equation ( 13A.1) then becomes
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where Ao is the change in o in time At. In this case, delta hedging eliminates
the first term on the right-hand side. The second term is eliminated by making
the portfolio Vega neutral. The third term s nonstochastic. The fourth term is
eliminated by making the portfolio gamma neutral. Other terms are generally
fairly small,



Numerical
Procedures

In this chapter we discuss three numerical procedures that can be used to valt
derivative securities when exact formulas are not available. The first of thes
procedures involves Monte Carlo simulation and is useful for derivative securitic
where the payoff is dependent on the history of the underlying variable or whei
there are several underlying variables. The last two procedures involve the us
of trees and finite difference methods. Unlike Monte Carlo simulation, they ca
be used for derivative securities where the holder has early exercise decisions ¢
other types of decisions to make prior to maturity. The chapter shows how all th
procedures can be used to calculate hedge parameters such as delta, gamma, an
vega. It also presents some approximate valuation formulas for American option:

Up to now we have denoted the current time by 1. When presenting the thre
numerical procedures we will, for ease of exposition, assume that the current tim
is zero.

14.1 MONTE CARLO SIMULATION

We will use the term European-style derivative security to describe a derivativ
security where the holder has no decisions to make during its life, and the tern

32¢



330 Numerical Procedures Chapter 14

American-style derivative security to refer to a derivative security where there are
early exercise or other decisions that may have to be made. Consider a European-
style derivative security that pays off fr at time T. From Equation (12.135), its
value at time zero is given by

f=Elfre™ (14.1)

where E denotes expectations in a risk-neutral world and 7 is the average instanta-
neous risk-free interest rate between time zero and time T'. If the risk-free interest
rate is assumed to be known with certainty, Equation (14.1) simplifies to

f=e"TE(fr) (14.2)

and 7 equals the yield on a zero-coupon bond maturing at time 7.

ONE UNDERLYING VARIABLE

Monte Carlo simulation is a procedure for estimating the value of a European-
style derivative security from either Equation (14.1) or (14.2). Consider first the
situation where there is only one underlying stochastic variable and suppose that
this is not an interest rate, so that Equation (14.2) can be used. One possible path
“for the variable is simulated in a risk-neutral world using a method similar to that
described in Section 9.4 for simulating a stock price. This enables a terminal value
of the derivative security to be calculated. This terminal value can be regarded as a
random sample from the set of all possible terminal values. A second path for the
variable is sampled and a second sample terminal value obtained. Further sample
paths give further sample terminal values. After a large number, say 10,000,
terminal values have been calculated, E (fr) can be estimated as the arithmetic
average of them. The current value of the derivative security can then be calculated
using Equation (14.2). The calculation of a single terminal value or discounted
terminal value will be referred to as a simulation run. Thus the simulation just
described consists of 10,000 simulation runs.

The sample paths for the underlying variable must correspond to the stochas-
tic process that the state variable would follow in a risk-neutral world. From
Section 12.3 this means that, for the purposes of the simulation, the proportional
drift rate of each variable must be reduced by Ao, where A is the market price of
risk of the variable and o is the volatility of the variable. If the variable is the
price of a traded security, the effect of this adjustment is to set the drift rate equal
to the risk-free interest rate less the instantaneous dividend yield.

If there is only one variable and this is the short-term risk-free interest rate,
r, or some variable related to r, the Monte Carlo simulation procedure is similar
to that just described except that the discount rate is different for each run. Paths
for r in a risk-neutral world are simulated. On each simulation run, the average
value of r during the life of the derivative security must be calculated. Before
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proceeding to the next simulation run, the terminal value of the derivative security
must be discounted at this average rate and the result stored. After a large number
of simulation runs, the arithmetic average of the discounted terminal values is
calculated. This, from Equation (14.1), provides an estimate of f.

To describe Monte Carlo simulation more formally when there is one under-
lying variable, we suppose that the variable is §. Define s as the volatility of 6
and m as its growth rate in a risk-neutral world. For the purposes of carrying out
the simulation, the life of the derivative security is divided into N subintervals of
length At. As discussed in Section 9.4, the discrete version of the process for 8
in a risk-neutral world is

AB = mb At + s8¢ vV At (14.3)

where A8 is the change in 6 in time At and € is a random sample from a standard-
ized normal distribution.! To carry out one simulation run, N independent random
samples must be drawn from a standardized normal distribution. When these are
substituted into Equation (14.3), the values of A@ at times 0, Ar, 2 A¢, ..., T are
calculated. These provide a simulated path for # and enable a sample terminal
value of the derivative security to be calculated.

SEVERAL UNDERLYING VARIABLES

When there are several variables, the paths of each one must be sampled on
each simulation run. The terminal value of the derivative security is calculated on
each simulation run from the sample paths. If the instantaneous risk-free interest
rate, r, is a function of the state variables, the average value of r, 7, must also be
calculated on each simulation run. The terminal value is discounted at 7 before the
next simulation run is begun. Again it should be emphasized that the stochastic
processes for all variables, including r, must, for the purposes of the simulation,
- be the processes that the variables would follow in a risk-neutral world.

Suppose there are n variables, 8; (1 < i < n). Define s; as the volatility
of 8;, m; as the expected growth rate of §; in a risk-neutral world, and p;; as the
instantaneous correlation between 6; and 6. As in the single-variable case, the life
of the derivative security must be divided into N subintervals of length At. The
discrete version of the process for 6; is then

AG; = 1;1[9[ At + 5;60;€; vV At (14.4)

IWhen 6 follows geometric Brownian motion, it is slightly more accurate to assume that (6 +
AB)/6 is lognormally distributed. Using the results in Section 10.2, it can be shown that Equation (14.3)
becomes

2

0+ A6 =9€xp|:<r?1 - %) At+seVAt]
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where A#; is the change in 6; in time At and ¢; is a random sample from a
standardized normal distribution. The coefficient of correlation between ¢; and €,
is pix for 1 < i, k < n. One simulation run involves obtaining N samples of the
€ (1 <i < n) from a multivariate standardized normal distribution. These are
substituted into Equation (14.4) to produce simulated paths for each 6; and enable
a sample value for the derivative security to be calculated.

GENERATING THE RANDOM SAMPLES

Most programming languages incorporate routines for sampling a random
number between 0 and 1. An approximate sample from a univariate standardized
normal distribution can be obtained from the formula

12
€ = Z R —6 (14.5)
i=1

where the R; are independent random numbers between 0 and 1 (1 <i < 12) and
€ is the required sample from ¢ (0, 1). This approximation is satisfactory for most
purposes.

If samples from a standardized bivariate normal distribution are required, an
appropriate procedure is as follows. Independent samples x; and x, are drawn
from a univariate standardized normal distribution as previously described. The
required samples €, and €, are then calculated as follows:

€1 = X1
€ = px;+xv1 - p?

where p is the correlation between the variables in the bivariate distribution.

For an n-variate normal distribution where the coefficient of correlation be-
tween variable ; and variable j is p;;, we first sample n independent variables
xi(1 < i < n) from univariate standardized normal distributions. The required
samples are €;(1 <i < n) where

k=i
€ = E ik Xk
k=1

For ¢; to have the correct variance and the correct correlation with the ¢; (1 < j <
i) we must have

Za,-zk =1
k
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and
z Ak ik = Pij
k

The first sample, €, is set equal to x;. These equations enable €; to be obtained
from €, €3 to be obtained from ¢, and ¢, and so on.

The number of simulation runs carried out depends on the accuracy required.
If M is the number of independent runs and w is the standard deviation of the
values of the derivative security calculated from the simulation runs, the standard
error of the estimate of f is w/v/M.

VARIANCE REDUCTION PROCEDURES

If no adjustments are made to the sampling procedures, a very large value
of M is usually necessary to estimate f with reasonable accuracy. However, two
variance reduction procedures, known as the antithetic variable technique and the
control variate technique, can be used to produce a significant reduction in the
required value of M.

In the antithetic variable technique, a simulation run involves calculating two
values of the derivative security. The first value, fj, is calculated in the usual
way; the second value, f; is calculated by changing the sign of all the samples
from standard normal distributions. (If x is the sample used to calculate the first
value, —x is used to calculate the second value.) The estimate of the value of
the derivative security calculated from the simulation run is the average of the
two calculated values. This works well because when one value is above the true
value, the other tends to be below and vice versa. Denote f as the average of f)
and f>

? _ f 1+ f 2
T2
The final estimate of the value of the derivative security is the average of the f’s.
If w is the standard deviation of the 7’5, and M is the number of simulation runs
(that is, the number of pairs of values calculated), then the standard error of the
estimate is, as before, w/ VM.

The control variate technique is applicable when there are two similar deriva-
tive securities, A and B. Security A is the security under consideration; security
B is a security that is similar to security A and for which an analytic solution is
available. Two simulations using the same random number streams and the same
At are carried out in parallel. The first is used to obtain an estimate, f3, of the
value of A; the second is used to obtain an estimate, f7, of the value of B. A better
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estimate of the value of A, fa, is then obtained using the formula

fa=fi—fe+fs (14.6)

where fg is the known true value of B.?

APPLICATIONS

Compared to other procedures, Monte Carlo simulation is numerically effi-
cient when there are several variables. This is because the time taken to carry
out a Monte Carlo simulation increases approximately linearly with the number of
variables, whereas the time taken for most other procedures increases exponentially
with the number of variables. It alsg has the advantage that it provides a standard
error for the estimates that are made #One limitation of the Monte Carlo simulation
approach is that it can be used only for European-style derivative securities. But
it is an approach that can accommodate complex payoffs and complex functional
forms for the ; and s;. In particular, it can be used when the payoff depends
on some function of the whole path followed by a variable, not just its terminal
value.

Monte Carlo simulation has been used to analyze options where the volatility
of the underlying stock is stochastic.> Paths for both the stock price and the volatil-
ity are jointly simulated. The value of the volatility at any given time determines
the probability distribution from which the stock price is sampled.

edge parameters can be calculated using Monte Carlo simulation. Suppose
that we are interested in the rate of change of f with g, where f is the value of
the derivative security and ¢ is the value of an underlying variable or a parameter.
First, Monte Carlo simulation is used in the usual way to calculate an estimate, f,
for the value of the security. A small increase, Ag, is then made in the value of ¢,
and a new value for the security, f*, is calculated using the same random number
streams as for f. An estimate for the hedge parameter is given by

ff=rf
Ag

The number of intervals, N, shonld be kept the same for estimating both f and f*.

ZFor a further discussion of variance reduction procedures, see J. M. Hammersley and D. C.
Handscomb, Monte Carlo Methods (London: Methuen, 1964); P. P. Boyle, “Options: A Monte Carlo
Approach,” Journal of Financial Economics, 4 (1977), 323-38; J. Hull and A. White, “The Pricing of
Options on Assets with Stochastic Volatilities,” Journal of Finance, 42 (June 1987), 281-300.

3See H. E. Johnson and D. Shanno, “Option Pricing When the Variance is Changing,” Journal
of Financial and Quantitative Analysis, 22 (July 1987), 143-51; J. Hull and A. White, “The Pricing of
Options on Assets with Stochastic Volatilities,” Journal of Finance 42 (June 1987), 281-300.

L
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14.2 BINOMIAL TREES

In Chapter 10 we used a simple binomial model when explaining the nature of
the arguments underlying the Black—Scholes model. In the model it was assumed
that only two stock prices were possible at the end of the life of the option. This
model is clearly unrealistic and was used only for illustrative purposes. A more
realistic assumption is that stock price movements are binomial in a short period of
time of length Ar. This is the assumption that underlies a widely used numerical
procedure that was first proposed by Cox, Ross, and Rubinstein.*

Consider the evaluation of an option on a non-dividend-paying stock. We
start by dividing the life of the option into a large number of small time intervals
of length Ar. We assume that in each time interval the stock price moves from its
initial value of S to one of two new values, Su and Sd. This model is illustrated in
Figure 14.1. In general, u > 1 and d < 1. The movement from S to Su is therefore
an “up” movement and the movement from S to Sd is a “down” movement. The
probability of an up movement is assumed to be p and the probability of a down
movement is assumed to be 1 — p.

Su

Figure 14.1 Stock Price Movements in
Sd  Time Ar under the Binomial Model

Risk-NEUTRAL VALUATION

In Chapter 10 we introduced what is known as the risk-neutral valuation
principle. This states that any security dependent on a stock price can be val-
ued on the assumption that the world is risk neutral. It means that for the pur-
poses of valuing an option (or any other derivative security), we can assume
that

1. The expected return from all traded securities is the risk-free interest rate;
2. Future cash flows can be valued by discounting their expected values at the
risk-free interest rate.

4See J. C. Cox, S. A. Ross, and M. Rubinstein, “Option Pricing: A Simplified Approach,” Journal
of Financial Economics, 7 (October 1979), 229-63.
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When using the binomial model we will make use of the risk neutral valuation
principle and assume that the world is risk neutral.

DETERMINATION OF p, U, AND d

The parameters p, u, and d must give correct values for the mean and
variance of stock price changes during a time interval At. Since we are working
in a risk-neutral world, the expected return from a stock is the risk-free interest
rate, .5 Hence the expected value of the stock price at the end of a time interval
At is Se"®, where §is the stock price at the beginning of the time interval. It

follows that

Se™™ = pSu+ (1 — p)Sd (14.7)
or
e =pu+ (1 —p)d (14.8)

It will be recalled from the stock price model assumed in Chapter 10 that the
variance of the change in the stock price in a small time interval At is S%02At.
Since the variance of a variable Q is defined as E(Q?%)—[E (Q))?, where E denotes
expected value, it follows that

$20%At = pS*u® + (1 — p)§%d® — S [pu + (1 — p)d}?
or .
o?At = pu® + (1 — p)d* — [pu + (1 — p)d)? (14.9)

Equations (14.8) and (14.9) impose two conditions on p, u, and d. A third
condition that is usually used is

1

u=-

d

It can be shown that the three conditions imply®
a—d

= 14.10
| (14.10)
u=e VA (14.11)
d=eV™ (14.12)

3In practice, r is usually chosen as a constant equal to the zero-coupon yield on a bond maturing
at the same time as the option.

6See footnote 5 in Chapter 9 with u = r.
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where
a=e™ (14.13)

provided At is small.
THE TREE OF StOCK PRICES

The complete tree of stock prices that is considered when the binomial model
is used is illustrated in Figure 14.2. At time zero, the stock price, S, is known. At
time At, there are two possible stock prices, Su and Sd; at time 2At¢, there are
three possible stock prices, Su?, S, and Sd?; and so on. In general, at time i At,
i + 1 stock prices are considered. These are

Suld=l  j=0,1...,i
Note that the relationship # = 1/d is used in computing the stock price at each
node of the tree in Figure 14.2. For example, Su?d = Su. Note also that the tree
recombines in the sense that an up movement followed by a down movement leads

to the same stock price as a down movement followed by an up movement. This
considerably reduces the number of nodes on the tree.

WORKING BACKWARD THROUGH THE TREE

Options are evaluated by starting at the end of the tree (time T') and working
backward. The value of the option is known at time 7. For example, a put option

"This approximation is reasonable for most purposes. However, these values of p, u, and d are
only correct in the limit as A+ — 0. It is slightly more accurate to solve

pu+(l-pd=a
pu2+(1—p)dz-az=b2

1
u=-
d

where a and b are the mean and variance of the (lognormal) distribution of S(r + Ar)/S(t) in a
risk-neutral world. This gives

(@ + b+ 1) + /(a2 + b2+ 1)? — 442
0=

2a

_a- d
p= u—d
From equations (10.8) and (10.9),
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Su*

Su?

Sd?

Sa*

Figure 14.2 Tree Used to Value a Stock Option

is worth max (X — Sr, 0) and a call option is worth max (St — X, 0), where St
is the stock price at time T and X is the strike price. Since a risk-neutral world
is being assumed, the value at each node at time T — At can be calculated as the
expected value at time T discounted at rate r for a time period Az. Similarly, the
value at each node at time T — 2A¢ can be calculated as the expected value at
time T — At discounted for a time period At at rate r, and so on. If the option
is American, it is necessary to check at each node to see whether early exercise
is preferable to holding the option for a further time period Ar. Eventually, by
working back through all the nodes, the value of the option at time zero is obtained.

Example 14.1

Consider a 5-month American put option on a non-dividend-paying stock when the stock
price is $50, the strike price is $50, the risk-free interest rate is 10% per annum, and the
volatility is 40% per annum. With our usual notation, this means that S = 50, X = 50,
r =0.10, 0 = 0.40, and T = 0.4167. Suppose that we divide the life of the option into
five intervals of length 1 month (= 0.0833 year) for the purposes of constructing a binomial
tree. Then At = 0.0833 and using equations (14.10) to (14.13)

w=eVA 211224,  d=e"VD =0.8909

—d i
a=e™ 1008, p= "——d = 0.5076
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1— p=04924

Figure 14.3 shows the binomial tree. At each node there are two numbers. The top one
shows the stock price at the node; the lower one shows the vaiue of the option at the node.
The probability of an up movement is always 0.5076; the probability of a down movement
is always 0.4924.

The stock price at the jthnode (j =0, 1 ..., i) attime i At is calculated as Su/d’ /.
For example, the stock price at the node labeled A (i = 4, j = 1) is 50x 1.1224 x 0.8909% =
$39.69. The option prices at the final nodes are calculated as max (X —St, 0). For example, s
the option price at node G is 50 — 35.36 = 14.64.

The option prices at the penultimate nodes are calculated from the option prices at
the final nodes. First, we assume no exercise of the option at the nodes. This means that
the option price is calculated as the present value of expected option price in time At. For
example, at node E the option price is calculated as

(0.5076 x 0 + 0.4924 x 5.45)¢~010x00833 — 5 66

Figure 14.3 Binomial Tree for American Put on Non-Dividend-Paying Stock (Exam-
ple 14.1)
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while at node A it is calculated as
(0.5076 x 5.45 + 0.4924 x 14.64)¢0-10x0.0833 _ g g

We then check to see if early exercise is preferable to waiting. At node E, early exercise
would give a value for the option of zero since both the stock price and strike price are
$50. Clearly it is best to wait. The correct value for the option at node E is therefore $2.66.
At node A it is a different story. If the option is exercised it is worth $50.00 — $39.69
or $10.31. This is more than $9.90. If node A is reached, the option should therefore be
exercised and the correct value for the option at node A is $10.31.

Option prices at earlier nodes are calculated in a similar way. Note that it is not
always best to exercise an option early when it is in the money. Consider node B. If the
option is exercised, it is worth $50.00 — $39.69 or $10.31. However, if it is held, it is worth

(0.5076 x 6.37 + 0.4924 x 14.64)e=0-10x0.0833 _ 10 35

The option should therefore not be exercised at this node, and the correct option value at
the node is $10.35.

Working back through the tree, we find the value of the option at the initial node
to be $4.48. This is our numerical estimate for the option’s current value. In practice, a
smaller value of At, and many more nodes, would be used. The true value of the option,
obtained using a very small value of At, is $4.29.

EXPRESSING THE APPROACH ALGEBRAICALLY

Suppose that the life of an American put option on a non-dividend-paying
stock is divided into N subintervals of length At. Define f;; as the value of an
American option at time i At when the stock price is Su/d'~/ for 0 < i < N,
0 < j <i. We will refer to this as the value of the option at the (i, j) node. Since
the value of an American put at its expiration date is max (X — Sy, 0), we know
that

fnj =max (X — Su/d¥~/, 0] J=01..., N

There is a probability, p, of moving from the (i, j) node at time i{ At to the
(i +1, j + 1) node at time (i + 1)A¢, and a probability 1 — p of moving from the
(i, j) node at time i Az to the (i + 1, j) node at time (i + 1)A¢. Assuming no early
exercise, risk-neutral valuation gives

fij = e ™ pfiv1jmr + A = D) fivr)]

for 0 <i <N —1and 0 < j <i. When early exercise is taken into account, this
value for f;; must be compared with the option’s intrinsic value, and we obtain

fij =max{X — Su/d"/, e [pfis1 1 + (1 — P) fisr;1}

Note that because the calculations start at time 7 and work backward, the value
at time i Ar captures not only the effect of early exercise possibilities at time i Az,



Sec. 14.2 Binomial Trees 341

but also the effect of early exercise at subsequent times. In the limit as At tends to
zero, an exact value for the American put is obtained. In practice, N = 30 usually
gives reasonable results.

EstiMaTing DELTA AND OTHER HEDGE PARAMETERS

It will be recalled that the delta, A, of an option is the rate of change of its
price with respect to the underlying stock price. In other words,
A= —A—f-
AS
where AS is a small change in the stock price and Af is the corresponding small
change in the option price. At time At we have an estimate, f11, for the option
price when the stock price is Su; and an estimate, fig, for the option price when
the stock price is Sd. In other words, when AS = Su — 8d, Af = fu — fi0. An
estimate of A at time At is therefore:

S — fio
i
To determine gamma, I', we note that we have two estimates of A at time
2At. When S = (Su? + S)/2 (half way between the second and third node), delta
is (f22 — f21)/(Su? — §); when S = (S + Sd?)/2 (half way between the first and
second node) delta is (f21 — f20)/(S — Sd?). The difference between the two values
of S is h where

h = 0.5(Su* — Sd*)
and gamma is the change in delta divided by the change in &

_ [(fa2 — f21)/(Su? — 8)] = [(fa1 — f20)/(S — Sd*)]
h

These procedures provide estimates of delta at time Az and of gamma at time
2At. In practice, these are often used as estimates of delta and gamma at time
zero as well. If slightly more accuracy is required for delta, it makes sense to start
the binomial tree at time —2A¢ and assume that the stock price is S at this time.
The required estimate of the price of the option is then f, (rather than fyg). More
nodes have to be evaluated, but three different values of S are considered at time
zero: Sd2, S, and Su?. An estimate of delta is

_ fa—fo
© Su? — Sd?
and Equation (14.14) provides the estimate of gamma.

A further hedge parameter that can be obtained directly from the tree is theta,
©. This is the rate of change of the option price with time when all else is kept

r

(14.14)

(14.15)
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constant. If the tree starts at time zero, an estimate of theta is

fa1 = foo

O= "

2At
If the tree starts at time —2A¢, a symmetrical estimate of theta can be obtained
o= 2= Ju (14.16)
4At

Vega can be calculated by making a small change, Ao, in the volatility and
constructing a new tree to obtain a new value of the option (Ar should be kept the
same). The estimate of vega is

i
Ao

vega =

where f and f* are the estimates of the option price from the original and the new
tree, respectively. Rho can be calculated similarly.

Example 14.2

Consider a 3-month American put option on a non-dividend-paying stock when the stock
price is $50, the strike price is $50, the risk-free interest rate is 10% per annum, and the
volatility is 40% per annum. In this case, § = 50, X = 50, r = 0.10, 0 = 0.4, and
T = 0.25. The option is exactly the same as the option considered in Example 14.1 except
that it lasts for 3 months instead of 5 months. Choosing At equal to 1 month (= 0.0833
year), an estimate of the value of the option is the value of being at point C in Figure 14.3,
that is, $3.76.

In the context of our new example, Figure 14.3 starts at time —2A¢. From Equa-
tion (14.15), an estimate of delta can be obtained from the values at nodes B and F as

- 0.63 —10.35

6299 _39.60 ~ 042

From Equation (14.16), an estimate of the gamma of the option can be obtained from the
values at nodes B, C, and F as

[(0.63 — 3.76)/(62.99 — 50.00)] — [(3.76 — 10.35)/(50.00 — 39.69)]
11.65

From Equation (14.10), an estimate of the theta of the option can be obtained from the
values at nodes D and E as

2.66 —4.48

0.333 =33

These are of course only rough estimates. They would be improved if a tree with a smaller
At were constructed.



Sec. 144  Using the Binomial Tree for Options 343

14.3 USING THE BINOMIAL TREE FOR OPTIONS
ON INDICES, CURRENCIES, AND FUTURES
CONTRACTS

The binomial tree approach to valuing options on non-dividend-paying stocks can
easily be adapted to valuing American calls and puts on a stock paying a continuous
dividend yield at rate g.

Since the dividends provide a return of ¢, the stock price itself must on
average in a risk-neutral world provide a return of r — ¢. Hence Equation (14.7)
becomes:

Se" =P8 = pSu + (1 — p)Sd
so that (14.8) becomes
e P = pu + (1 - p)d
It turns out that equations (14.10), (14.11), and (14.12) are still correct but with
a =N (14.17)

The binomial tree numerical procedure can therefore be used exactly as before with
this new value of a.

It will be recalled from Chapter 11 that stock indices, currencies, and futures
contracts can, for the purposes of option evaluation, be considered as stocks paying
continuous dividend yields. In the case of a stock index, the relevant dividend yield
is the dividend yield on the stock portfolio underlying the index; in the case of a
currency, it is the foreign risk-free interest rate; in the case of a futures contract,
it is the domestic risk-free interest rate. The binomial tree approach can therefore
be used to value options on stock indices, currencies, and futures contracts.

Example 14.3

Consider a 4-month American call option on index futures where the current futures price is
300, the exercise price is 300, the risk-free interest rate is 8% per annum, and the volatility
of the index is 40% per annum. We divide the life of the option into four 1-month periods
for the purposes of constructing the tree. In this case, F = 300, X = 300, r = 0.08,
o =04, T =0.3333, and Ar = 0.0833. Since a futures contract is analogous to a stock
paying dividends at a continuous rate r, g should be set equal to r in Equation (14.17). This
gives a = 1. The other parameters necessary to construct the tree are

. 1
u=e"var = 11224, d = — = 0.8909
U

—d
a S =04713,  1-p=05287

p:
u —

The tree is shown in Figure 14.4. (The upper number is the futures price; the lower number
is the option price.) The estimated value of the option is 25.54.
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476.12
176.12

377.93
77.93

300
0

238.11

Figure 14.4 Binomial Tree for American Call Option on an Index Futures Contract
(Example 14.3)

Example 14.4

Consider a 1-year American put option on the British pound. The current exchange rate
is 1.6100, the strike price is 1.6000, the U.S. risk-free interest rate is 8% per annum, the
sterling risk-free interest rate is 10% per annum, and the volatility of the sterling exchange
rate is 12% per annum. In this case, § = 1.61, X = 1.60, r = 0.08, rr =0.10, 0 = 0.12,
and T = 1.0. We divide the life of the option into four 3-month periods for the purposes
of constructing the tree so that Ar = 0.25. In this case, ¢ = rs and Equation (14.17) gives

a= e(0,0S—O.lO)XO.ZS = 0.9950
The other parameters necessary 10 construct the tree are

u=e’VA = 10618, d=>=009418

8=

—d
2 ~=04433,  1-p=05567

p:

The tree is shown in Figure 14.5. (The upper number is the exchange rate; the lower number
is the option price.) The estimated value of the option is $0.0782.
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1.6100
0.0782

1.4278
0.1721

1.2665
0.3335

Figure 14.5 Binomial Model for American Put Option on a Currency (Example 14.4)

14.4 THE BINOMIAL MODEL FOR A
DIVIDEND-PAYING STOCK

We now move on to the more tricky issue of how the binomial model can be used
for a dividend-paying stock. As in Chapter 10, the word “dividend” will, for the
purposes of our discussion, be used to refer to the reduction in the stock price on
the ex-dividend date as a result of the dividend.

K~nowN DviDEND YIELD

If it is assumed that a known dividend yield, §, is to be paid at a certain time
in the future, the tree takes the form shown in Figure 14.6 and can be analyzed in
a way that is analogous to that just described. If the time i At is prior to the stock
going ex-dividend, the nodes on the tree correspond to stock prices

Suld'—i j=0,1,...,i

where u and d are defined as in equations (14.11) and (14.12). If the time i At is
after the stock goes ex-dividend, the nodes correspond to stock prices

S —-&uld~)  j=0,1,..., i
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Su(1-48)

Su?(1-8)

S(1-8)

Sd*(1-45)

Sd*{1-8)
Ex-dividend date

Figure 14.6 Tree when Stock Pays a Known Dividend Yield at One Particular Time

Several known dividend yields during the life of an option can be dealt with
similarly. If &; is the total dividend yield associated with all ex-dividend dates
between time zero and time i A¢, the nodes at time i At correspond to stock prices

S(1 - &)uld—i

Known DoLLAR DIviDEND

In some situations, the most realistic assumption is that the dollar amount of
the dividend rather than the dividend yield is known in advance. If the volatility of
the stock, o, is assumed constant, the tree then takes the form shown in Figure 14.7.
It does not recombine, which means that the number of nodes that have to be
evaluated, particularly if there are several dividends, is liable to become very large.
Suppose that there is only one dividend; that the ex-dividend date, 7, is between
kAt and (k + 1)At; and that the dollar amount of the dividend is D. When i <k,
the nodes on the tree are as in Figure 14.2. When i = k + 1 the nodes at time i At
correspond to stock prices

Swd=—-D  j=0,1,2,..., i
as before. When i = k + 2, the nodes on the tree correspond to stock prices

(Su/d =7 — Dyu and (Su/d~'"7 - D)d
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Ex-dividend
date

Figure 14.7 Tree when Dollar Amount of Dividend Is Assumed Known and Volatility
Is Assumed Constant

for j =0, 1, 2, ..., i — 1, so that there are 2i rather than i + 1 nodes. At time
(k + m)At there are m(k + 1) rather than k 4+ m + 1 nodes.

The problem can be simplified by assuming, as in the analysis of European
options in Chapter 10, that the stock price has two components: a part that is
uncertain and a part that is the present value of all future dividends during the life
of the option. Suppose, as before, that there is only one ex-dividend date, 7, during
the life of the option and that kAr < v < (k + 1)At. The value of the uncertain
component, S*, at time x is given by

S*(x) = Sx) when x > 1
and
§*(x) = S(x) — De " when x <7t

where D is the dividend. Define o* as the volatility of S* and assume that o*
rather than o is constant. (In general c* > o). The parameters p, u, and d can be
calculated from equations (14.10), (14.11), (14.12), and (14.13) with ¢ replaced
by o* and a tree can be constructed in the usual way to model S$*. By adding to
the stock price at each node the present value of future dividends (if any), the tree
can be converted into another tree that models S. At time i At, the nodes on this
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tree correspond to the stock prices
S*(Ou/d'~ + DeTIAD j=0,1, ..., i

when i At < T and o
S*Ou!d~/ j=0,1, ..., i

when iAr > 1. This approach, which involves a perfectly reasonable assumption
about the stock price volatility, succeeds in achieving a situation where the tree
recombines so that there are i + 1 nodes at time i A¢. It can be generalized in a
straightforward way to deal with the situation where there are several dividends.

Example 14.5

Consider a 5-month put option on a stock that is expected to pay a single dividend of $2.06
during the life of the option. The initial stock price is $52, the strike price is $50, the risk-
free interest rate is 10% per annum, the volatility is 40% per annum, and the ex-dividend
date is in 3% months.

We first construct a tree to model S*, the stock price less the present value of future
dividends during the life of the option. Initially, the present value of the dividend is

2.06e0217x01 — 5 g0

The initial value of §* is therefore 50.0. Assuming that the 40% per annum volatility refers
to S*, Figure 14.3 provides a binomial tree for S*. (S* has the same initial value and
volatility as the stock price upon which Figure 14.3 was based.) Adding the present value
of the dividend at each node leads to Figure 14.8, which is a binomial model for S. The
probabilities at each node are, as in Figure 14.3, 0.5076 for an up movement and 0.4924 for
a down movement. Working back through the tree in the usual way gives the option price
as $4.43.

14.5 EXTENSIONS TO THE BASIC TREE
APPROACH

Unlike Monte Carlo simulation, tree approaches can be used for an American-style
as well as for a European-style derivative security. However, the approach as it
has been outlined here is appropriate only when the value of the derivative security
depends on the current values of the underlying variables, not when it depends on
their past history.

The tree approach can be used for a wide range of underlying variables. The
parameters u, d, and p are calculated from equations (14.10), (14.11), and (14.12)
with

where /1 is the growth rate of the variable in a risk-neutral world. Situations
where there are modest changes in /1 can be accommodated by the tree approach.
Equations (14.10), (14.11), and (14.12) show that # and d do not change, while p
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44.55
5.46

|

Ex-dividend
date

Figure 14.8 Tree for Example 14.5

becomes a function of time. The value of / for a commodity can be calculated in
the way described in Section 12.4.

Tree approaches can be used when there is more than one underlying variable.
The tree then unfolds in several dimensions. The probabilities at each node must
be chosen so that each variable has the correct expected growth rate and standard
deviation in a risk-neutral world, and so that the coefficient of correlation between
any two variables is correct.?

When there is only one underlying variable, a binomial tree may not give the
best numerical procedure. Boyle considers a trinomial tree where there are three pos-
sible price movements during each time interval At to be potentially more efficient.’

8See P. P. Boyle, “A Lattice Framework for Options Pricing with Two State Variables,” Journal
of Financial and Quantitative Analysis, 23 (March 1988), 1-12; J. C. Hull and A. White, “The Use of
the Control Variate Technique in Option Pricing,” Journal of Financial and Quantitative Analysis, 23
(September 1988), 237-51.

9See P. P. Boyle, “Option Valuation Using a Three Jump Process,” International Options
Journal, 3 (1986), 7-12. :
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In Chapter 15 we will describe how trinomial trees can be used to model interest
rates.

THE ConTrROL VARIATE TECHNIQUE

It is worth noting that the control variate technique mentioned in Section 14.2
can be used in conjunction with the tree approach. This point has been made by
Hull and White.!® The same tree is used to evaluate two similar derivative securities
A and B. Security A is the derivative security under consideration; security B is a
similar security whose value is known analytically. Equation (14.6) is then used.
An example of a situation where this technique is appropriate is the evaluation of
an American put option. Security B can be chosen as the corresponding European
put option.

To illustrate the use of the control variate technique, Figure 14.9 values the
option in Figure 14.3 on the assumption that it is European. The price obtained
is $4.31. From the Black-Scholes formula, the true European price is $4.08. The

89.07

4.31
44.55
5.45

35.36
14.64

28.07
21.93

Figure 14.9 Tree for European Version of Option in Figure 14.3. At Each Node, Upper
Number [s Stock Price, and Lower Number Is Option Price

10See J. C. Hull and A. White, “The Use of the Control Variate Technique in Option Pricing,”
Journal of Financial and Quantitative Analysis, 23 (September 1988), 237-51.
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10See J. C. Hull and A. White, “The Use of the Control Variate Technique in Option Pricing,”
Journal of Financial and Quantitative Analysis, 23 (September 1988), 237-51.
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10See J. C. Hull and A. White, “The Use of the Control Variate Technique in Option Pricing,”
Journal of Financial and Quantitative Analysis, 23 (September 1988), 237-51.
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estimate of the American price in Figure 14.3 is $4.48. The control variate estimate
of the American price is therefore

4.48 +4.08 —4.31 =4.25

The true American price, as mentioned earlier, is 4.29. The control variate approach
does therefore produce a considerable improvement over the original estimate of
4.48 in this case.

The calculation of the delta, gamma, and theta of the derivative security was
discussed at the end of Section 14.4 and in Example 14.2. Other hedge parameters
are obtained by first calculating the price of the derivative security, f, using the
tree in the usual way. A small change, Ag, is then made to the parameter in
question and the same tree is used to reevaluate the price of the derivative security.
Suppose that the new price of the derivative security is f*. The required partial
derivative can be estimated as

fr-f
Aq

14.6 AVOIDING NEGATIVE PROBABILITIES

The procedures that have been described so far produce a satisfactory tree in most
circumstances. However, when o is very small, they sometimes lead to one of the
two probabilities being either very small or negative. For example, if r is 12% per
annum, o is 1% per annum, and At = 0.1, equations (14.10) to (14.12) give:

a = %1¥012 = 10121

U= eO.lem = 1.0032

d=1_ 09968
u

_ 1.0121 — 0.9968

A A W T
P = 10032 - 09963

1—-p=-139

The probabilities are in this case meaningless!

Define S as the spot price of the asset underlying the option and F as the
asset’s futures price for a contract expiring at the same time as the option. When
the tree is used to model F, the procedures that have been described in this chapter
never give rise to negative probabilities. (This is because the parameter a always
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equals 1.0.) This suggests a way of overcoming the negative probabilities problem.
Regardless of whether the option is on F, we construct the tree to model F. At
each node we can calculate S from F using

§ = Fe r—{T-0 (14.18)

where 7 is the time to which the node corresponds and T is the expiration of the
option and futures contract. {See Equation (3.10).]

Example 14.6

Consider a 1-year American call option on the Canadian dollar. The current exchange rate
is 0.7900, the strike price is 0.8000, the U.S. risk-free interest rate is 6% per annum, the
Canadian risk-free interest rate is 10% per annum, and the volatility of the exchange rate
is 4% per annum. In this case, § = 0.79, X = 0.80, r = 0.06, ry = 0.10, o = 0.04,
and T = 1. We divide the life of the option into 3-month periods for the purposes of
constructing the tree so that Ar = 0.25. When using the tree to model the futures price for
a contract maturing in 1 year
a=1 @

U= 20‘04)(\/0'25 =1.0202

d= l = (0.9802
u
a—d
= = 0.495
4 — 0 0

The initial futures price is, from Equation (3.10)
0.79¢0-06-010x1 _ ¢ 7590

The tree for the futures price is shown in Figure 14.10. At each node, the middle number
shows the futures exchange rate, the upper number shows the spot exchange rate [calculated
using Equation (14.18)] and the lower number shows the option price. The tree gives the
value of the option as $0.0016.

14.7 FINITE DIFFERENCE METHODS

Finite difference methods value a derivative security by solving numerically the
differential equation that the derivative security satisfies. The differential equation
is converted into a set of difference equations and the difference equations are
solved iteratively.

To illustrate the approach, we consider how it might be used to value an
American put option on a non-dividend-paying stock. The differential equation
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0.8220
0.8220
0.0220

0.7900
0.7900

0.7590
0.7690

0.7900
0.7590
0.0016

0.7292
0.7292

0.7006
© 0.7008
0

Figure 14.10 Binomial Tree for American Call Option on a Low Volatility Currency;
at Each Node, Uppermost Number Is Spot Exchange rate, Middle Number Is Futures
Exchange Rate, and Lower Number Is Option Price

that the option must satisfy is

af Af 1 ,,9%f
8f LG 1 a0df 14.19
e TS3s 130 S 352 =77 (14.19)

A finite number of different, equally spaced times between the current time, zero,
and the maturity of the option, T, are chosen. We suppose that At = T/N and
that total of N + 1 times are considered:

0, At,2At, ..., T

A finite number of different, equally spaced stock prices are also chosen. We
suppose that Spay is a stock price which is sufficiently high that, when it is reached,
the put has virtually no value. We define AS = Sy /M and consider a total of
M + 1 stock prices:

0, AS, 2AS, ..., Smax

One of these is assumed to be the current stock price.
This general approach is represented diagrammatically in Figure 14.11. A
grid consisting of a total of (M + 1)(N + 1) points is constructed. The (i, j) point
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Figure 14.11  Grid for Finite Difference Approach.

on the grid is the point that corresponds to time i At and stock price j AS. We
will use the variable, f; j» to denote the value of the option at the (i, j) point.

ImpuciT FINITE DIFFERENCE METHOD

For an interior point (i, j) on the grid, 3 f/3S can be approximated as

of _ fim—fij (14.20)
as AS '

or as
of _ fij— fij-1
oF _ Ji = Jijn1 14.21
3s AS (14.21)

Equation (14.20) is known as the forward difference approximation; equation (14.21)
is known as the backward difference approximation. In the implicit Sinite difference
method we use a more symmetrical approximation by averaging the two:

of _ fijr1— fuin (14.22)
as 2AS '
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on the grid is the point that corresponds to time i At and stock price j AS. We
will use the variable, f;;, to denote the value of the option at the (i, j) point.

Impricrr FINITE DIFFERENCE METHOD

For an interior point (i, j) on the grid, 3 f/8S can be approximated as

or as

3f fl/+1 fu (14 20)
3s AS ’
3 _ Sy~ fuin (14.21)
s~ AS :

Equation (14.20) is known as the forward difference approximation; equation (14.21)
is known as the backward difference approximation. In the implicit finite difference
method we use a more symmetrical approximation by averaging the two:

af _ fiini— fij
as

(14.22)

2AS
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Figure 14.11 Grid for Finite Difference Approach.

on the grid is the point that corresponds to time i At and stock price j AS. We
will use the variable, f;;, to denote the value of the option at the (i, ) point.

ImpLiciT Finrre DiFFeRENCE METHOD

For an interior point (i, j) on the grid, 3 f/3S can be approximated as

of _ fuin— fij

14.2
as AS ( 0
or as

of  fij— fij—1

—_— == 14.21

as AS ( )

Equation (14.20) is known as the forward difference approximation; equation (14.21)
is known as the backward difference approximation. In the implicit finite difference
method we use a more symmetrical approximation by averaging the two:

0f  fij+1— fij-1
— el NI 14.22
aS 2AS ( )
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For 8 f /3t we will use a forward difference approximation so that the value at time
i At is related to the value at time (i + 1) At:

8f fl+l j fl]
B At

The backward difference approximation for 3 f/3S at the (i, j) point is given by
Equation (14.21). The backward difference at the (i, j + 1) point is

fij+1 = fij
AS
Hence a finite difference approximation for 82 /352 at the (i, j) point is

2f _ (fi,j+1 —fij _ i —fi,j—l) /AS
as2 AS AS

(14.23)

or
Pf _ funt fij-1=2fy
982 AS?
Substituting equations (14.22), (14.23), and (14.24) into the differential equa-
tion (14.19) and noting that § = jAS gives

ft+1 Ji+l,j ™ Jij ij fi,j+1 fx Jj—1

(14.24)

. i +fx 1= 2f|
AS 2 ZASZf Jj+1 Jj= A y
N 2as 2‘J J AS? =rfi
forj=1,2...,M—landi=0,1..., N—-1. Rearranging terms, we obtain

a;j fij—1 +bj fij +¢j fij+1 = firr (14.25)
where

1 1
i = —rj At — —02j At
a; 2rJ 20 J

b =1+0%j> At +r At
1 1
¢j = —5rj At - 5021'2 At
We now use the boundary conditions for an American put. The value of the
put at time T is max [X — S7, 0] where St is the stock price at time T. Hence
fvj =max[X — j AS, 0] j=0,1.... M (14.26)
The value of the put option when the stock price is zero is X. Hence
fio=X i=0,1...,N (14.27)

The value of the option tends to zero as the stock price tends to infinity. We
therefore use the approximation

fim=0 i=01...,N (14.28)
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Equations (14.26), (14.27), and (14.28) define the value of the put option
along the three edges of the grid in Figure 14.11, where § = 0, § = Sp.x and
t = T. It remains to use Equation (14.25) to arrive at the value of f along the
left edge of the grid. First the points corresponding to time T — At are tackled.
Equation (14.25) with i = N — 1 gives M — 1 simultaneous equations:

aj fn-1,j-1 +bj fn-1,j + ¢ fv-r,j+1 = fnj (14.29)
for j =1, 2..., M — 1. The right-hand sides of these equations are known from
Equation (14.26). Furthermore, from equations (14.27) and (14.28),

fn-10=X (14.30)
fu-m =0 (14.31)

Thus equations (14.29) are M — 1 equations which can be solved for the M — 1
unknowns: fy_1,1, fx-12 - - fN—l,M—l-“ After this has been done, each value
of fy_1,; is compared with X — jAS. If fy_; ; < X — jAS, early exercise at time
T — At is optimal and fy_;,; is set equal to X — jAS. The nodes corresponding
to time 7 — 2 At are handled in a similar way, and so on. Eventually, fy, fo2,
Jo3» - .., fom—1 are obtained. One of these is the option price of interest.

The control variate technique can be used in conjunction with finite difference
methods. The same grid is used to value an option that is similar to the one under
consideration but for which an analytic valuation is available. Equation (14.6) is
then used.

Example 14.7

Table 14.1 shows the result of using the implicit finite difference method as just described
for pricing the option in Example 14.1. Values of 20, 10, and 5 were chosen for M, N, and
AS, respectively. Thus the option price is evaluated at $5 stock price intervals between $0
and $100, and at half-month time intervals throughout the life of the option. The option price
given by the grid is $4.07. The same grid gives the price of the corresponding European
option as $3.91. The true European price given by the Black—Scholes formula is $4.08. The
control variate estimate of the American price is therefore

4.07+4.08 -391 =$4.24

This is reasonably close to the true value of $4.29.

THE ExpLicrr Finrre DirFereNcE METHOD W

The implicit finite difference method has the advantage that it is very robust.
It always converges to the solution of the differential equation as AS and Ar

'This does not involve inverting a matrix. The first equation in (14.29) can be used to express
fn-1.2 in terms of fy_j 1; the second equation can be used to express fy-1,3 in terms of fy_;,; and
so on. The final equation provides a value for fy_;; which can then be used to determine the other
IN-1, -
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approach zero.!2 One of the disadvantages of the implicit finite difference method
is that M — 1 simultaneous equations have to be solved in order to calculate the
fij’s from the fiy; ;’s. The method can be simplified if the values of 8f/8S
and 3%f/35? at point (i, j) on the grid are assumed to be the same as at point
(i + 1, j). Equations (14.22) and (14.24) then become

3f _ Sfirr i1 = firr,j—1

s 2AS
a’f _ S+ firnjor = 2fin,
352 AS?
and Equation (14.25) becomes:
fij = &} fisrj—1 + b} firr,j + ¢ firr (14.32)
where
a’ = ——1—(—l i At + 102 2 Ar)
i T 1xrac 27 27/
1
b= —— (1-0%j% At
IS Ty a0 oA
1 1 1
Y= (=rj At + —0%j% At
G Trrarg Aot An

This creates what is known as the explicit finite difference method. Fig-
ure 14.12 shows the difference between the two methods. The implicit method leads

';',j+ 1 f;‘+ 1j+1
fii ﬂ‘u,j fi/‘ ﬂn,/
ﬁ;/-1 fin,/-i
Implicit Finite Explicit Finite
Difference Method Difference Method

Figure 14.12 Difference between Implicit and Explicit Finite Difference Methods

12A useful rule of thumb for finite difference methods is that AS should be kept proportional to
+/ At as they approach a zero.
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is that M — 1 simultaneous equations have to be solved in order to calculate the
fij’s from the fi1;’s. The method can be simplified if the values of 9 f/3S
and 3%f/35? at point (i, j) on the grid are assumed to be the same as at point
(i + 1, j). Equations (14.22) and (14.24) then become

g[ _ Jirr 41 = fitr,j-1

as 2AS
Bf _ fingn+ firrj1 = 2fin
952 AS?
and Equation (14.25) becomes:
fij = affi+1.j—1 + bffi+1,,' + Cffi+1,j+1 (14.32)
where
* ! ( ! 'At+1 22 AD)
a; = ————~——(—=F -0
i = T+rar 27 277
1
b= ——(1—0?j2 At
4 1+rAt( o )
1 1 1
Y= (crj At + =02 At
G Trrarg At Ro A

This creates what is known as the explicit finite difference method. Fig-
ure 14.12 shows the difference between the two methods. The implicit method leads

fi.i +1 fi+ 1,741
fi/‘ £ 1.J ﬂ'j £, 1/

fiov . @ Lo
Implicit Finite Explicit Finite

Difference Method Difference Method

Figure 14.12 Difference between Implicit and Explicit Finite Difference Methods

12A useful rule of thumb for finite difference methods is that AS should be kept proportional to
+/ At as they approach a zero.
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12A useful rule of thumb for finite difference methods is that AS should be kept proportional to
+/ At as they approach a zero.
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to Equation (14.25), which gives a relationship between three different values of
the option at time i At (i.e., fi j-1, fij» and f; j+1) and one value of the option
at time (i + 1) At (i.e., fis1,j)- The explicit method leads to Equation (14.32),
which gives a relationship between one value of the option at time i At (i.e., fij)
and three difference values of the option at time (i + 1) At (.e., fit1,j-1> Ji+1,js
fit1,j+1)-

Example 14.8

Table 14.2 shows the result of using the explicit version of the finite difference method for

pricing the option in Example 14.1. As in Example 14.7, values of 20, 10, and 5 were
chosen for M, N, and AS, respectively. The option price given by the grid is $4.26.13

Finite difference methods are often used with InS rather than § being the
underlying variable.!* The grid then evaluates the derivative security for equally
spaced values of In S rather than for equally spaced values of S. This is slightly
more efficient computationally. Also, it has the advantage that a;, bj, and ¢; in
Equation (14.29), as well as aj’-", b}‘, and c}‘ in Equation (14.32) are independent
of j.

REeLATION TO TREE APPROACHES

The explicit finite difference method is very similar to the tree approach. In
the expressions for a7, b}, and ¢; in Equation (14.32), we can interpret terms as
follows:

—irj At + 30?j* At @ probability of stock price decreasing
from j AS to (j — 1) AS in time At

1—02j2 At :  probability of stock price remaining
unchanged at j AS in time At

1rj At +30?j> At probability of stock price increasing

from j AS to (j + 1) AS in time At
This interpretation is illustrated in Figure 14.13. The three probabilities sum to
unity. They give the expected increase in the stock price in time At as rj AS Ar =
rS At. This is the expected increase in a risk-neutral world. For small values of
At, they also give the variance of the change in the stock price in time At as
022 AS? At = ¢S? At. This corresponds to the stochastic process followed by

13The negative numbers and other inconsistencies in the top left-hand part of the grid will be
explained later.
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Yerj At + Yao?2At

0 i1t
1-0%At
t; >0 fi1j
Figure 14.13 Interpretation of Explicit
- Y%rj At + Yao%2At Finite Difference Method as a Trinomial
@ fis1j-1 Tree.

S. Equation (14.32) in effect moves from time (i + 1) At to time i At using a
trinomial tree. The value of f at time i At is calculated as the expected value of
f at time (i + 1) At in a risk-neutral world discounted at the risk-free rate.

For the explicit version of the finite difference method to work well, the three
“probabilities”

! 'At+1 2;2 Ar
—=r o
27 277

1—0%j2 At

1 . 1 5.,

2r j At + 20 Jjo At

should all be positive. In Example 14.8, 1—o?j2 At is negative when j > 13 (ie.,
when S > 65). This explains the negative option prices and other inconsistencies
in the top left-hand part of the grid. This example illustrates the main problem
associated with the explicit finite difference method: because the probabilities in
the associated tree may be negative, it does not necessarily produce results which
converge to the solution of the differential equation.’’

AppLICATIONS OF FInrme DIFFERENCE METHODS

Finite difference methods can be used for the same types of derivative security
pricing problems as tree approaches. They can handle American-style as well as
European-style derivative securities but cannot easily be used in situations where
the payoff from a derivative security depends on the past history of state variable.
Finite difference methods can, at the expense of a considerable increase in computer

157 Hull, and A. White, “Valuing Derivative Securities Using the Explicit Finite Difference
Method”, Journal of Financial and Quantitative Analysis, 25 (March 1990), 87-100, show how this
problem can be overcome. In the situation considered here it is sufficient to construct the grid in In §
rather than S.
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time, be used when there are several state variables. The grid in Figure 14.11 then
becomes multidimensional.

Geske and Shastri'® provide a careful comparison of finite difference methods
and tree approaches. They conclude that “researchers computing a smaller number
of option values may prefer binomial approximation, while practitioners in the
business of computing a larger number of option values will generally find that
finite difference methods are more efficient.”

The method for calculating hedge statistics is similar to that used for trees.
Delta, gamma, and theta can be calculated directly from the f;; values on the grid.
For vega, it is necessary to make a small change to volatility and recalculate the
value of the derivative security using the same grid.

14.8 ANALYTIC APPROXIMATIONS IN OPTION
PRICING

As an alternative to the numerical procedures described so far in this chapter, a
number of analytic approximations to the valuation of American options have been
suggested. The best known of these is a quadratic approximation approach orig-
inally suggested by Macmillan, and extended by Barone-Adesi and Whaley.!” It
can be used to value American calls and puts on stocks, stock indices, curren-
cies, and futures contracts. It involves estimating the difference, v, between the
European option price and the American option price. Since both the European
and American option satisfy the same differential equation, v must also satisfy the
differential equation. Macmillan, and Barone-Adesi and Whaley, show that when
an approximation is made, the differential equation can be solved using standard
methods. More details on the approach are presented in Appendix 14A.

14.9 SUMMARY

In this chapter we have presented three different numerical procedures for valuing
derivative securities when no analytic solution is available. These involve Monte
Carlo simulation, binomial trees, and finite difference methods.

16See R. Geske and K. Shastri, “Valuation by Approximation: A Comparison of Alternative Option
Valuation Techniques,” Journal of Financial and Quantitative Analysis, 20 (March 1985), 45-71.

17 .. W. Macmillan, “Analytic Approximation for the American Put Option,” Advances in Futures
and Options Research, Vol. 1 (1986), 119-39; G. Barone-Adesi and R. E. Whaley, “Efficient Analytic
Approximation of American Option Values,” Journal of Finance, 42 (June 1987), 301-20).
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Monte Carlo simulation involves using random numbers to sample many
different paths that the variables underlying the security could follow in a risk-
neutral world. For each path the payoff is calculated and discounted at the risk-free
interest rate. The arithmetic average of the discounted payoffs is the estimate of
the value of the security.

Binomial trees assume that in each short interval of time, At, a stock price
either moves up by a proportional amount, u, or down by a proportional amount,
d. The sizes of u and d and their associated probabilities are chosen so that the
change in the stock price has the correct mean and standard deviation in a risk-
neutral world. Option prices are calculated by starting at the end of the tree and
working backwards. For an American option, the value at a node is the greater of
the value if it is exercised immediately and the discounted expected value if it is
held for a further period of time At.

Finite difference methods solve the underlying differential equation by con-
verting it to a difference equation. They are similar to tree approaches in that the
computations work back from the end of the life of the option to the beginning.
The implicit finite diffence method is more complicated than the explicit method,
but has the advantage that the user does not have to take any special precautions
to ensure convergence.

The method that is chosen in practice is likely to depend on the characteristics
of the derivative security being evaluated and the accuracy required. Monte Carlo
simulation, which works forward from_the beginning to the end of the life of a
sem only be used for "European-style options but can cope with a great

deal oF complexity as far as the payoffs are concerned. It becomes relatively more
efficient as the mumber of underlying variables increasés. Tree mches and

finite difference methods, which work from the end of the life of a security to the
bg@wccommoq@ "American-style as well as European-style derivative
securities. However, they are very difficult to apply when the payoffs depend on
the past history of the state variables as well as on their current values. Also,
they are liable to become computationally quite time consuming when three or
more variables are involved. As an alternative to numerical procedures a number
of analytic approximations have been suggested. The most well known of these
was suggested by Macmillan and extended by Barone-Adesi and Whaley. It is
described in Appendix 14A.
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QUESTIONS AND PROBLEMS

14.1. Which of the following can be estimated for an American option by constructing a
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Explain how the control variate technique is implemented when a tree is used to
value American options.

Calculate the price of a 9-month American call option on com futures when the
current futures price is 198 cents, the strike price is 200 cents, the risk-free interest
rate is 8% per annum, and the volatility is 30% per annum. Use a binomial tree with
a time interval of 3 months.

Consider an option that pays off the amount by which the final stock price exceeds
the minimum stock price achieved during the life of the option. Can this be valued
using the binomial tree approach? Explain your answer.

“For a dividend-paying stock, the tree for the stock price does not recombine; but the
tree for the stock price less the present value of future dividends does recombine.”
Explain this statement.

Under what circumstances are the probabilities in a binomial tree negative? How
can this problem be overcome?

How would you use the binomial tree approach to value an American option on a
stock index when the dividend yield on the index is a function of time?

Explain why the Monte Carlo simulation approach cannot be used for American-style
derivative securities.

A 1-year American put option on a non-dividend-paying stock has an exercise price
of $18. The current stock price is $20, the risk-free interest rate is 15% per annum,
and the volatility of the stock price is 40% per annum. Divide the year into four
3.month time intervals and use the tree approach to estimate the value of the option.
Use the control variate technique to improve this estimate.

A 1-year American call option on silver futures has an exercise price of $9. The
current futures price is $8.50, the risk-free rate of interest is 12% per annum, and the
volatility of the futures price is 25% per annum. Divide the year into four 3-month
time intervals and use the tree approach to estimate the value of the option. Use the
control variate technique to improve this estimate. Extend the tree to estimate the
delta of the option.

A 2-month American put option on the Major Market Index has an exercise price
of 480. The current level of the index is 484, the risk-free interest rate is 10% per
annum, the dividend yield on the index is 3% per annum, and the volatility of the
index is 25% per annum. Divide the life of the option into four half-month periods
and use the tree approach to estimate the value of the option.

A 6-month American call option on a stock is expected to pay dividends of $1 per
share at the end of the second month and the fifth month. The current stock price
is $30, the exercise price is $34, the risk-free interest rate is 10% per annum, and
the volatility of the part of the stock price that will not be used to pay the dividends
is 30% per annum. Divide the life of the option into six 1-month periods and use
the tree approach to estimate the value of the option. Compare your answer to that
given by Black’s approximation (see Section 10.12). Estimate the delta and theta of
the option from your tree.
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How can the control variate approach improve the estimate of the delta of an Amer-
ican option when the tree approach is used?

Suppose that Monte Carlo simulation is being used to evaluate a European call
option on a non-dividend-paying stock when the volatility is stochastic. How could
the control variate and antithetic variable technique be used to improve numerical
efficiency?
Explain how Equation (14.19) and equations (14.25) to (14.28) change when the
finite difference method is being used to evaluate an American call option on a
currency.
Suppose that the explicit version of the finite difference method is used to value an
American put option on a non-dividend-paying stock, with In S being used instead of
§ as the underlying variable. Derive a relationship between fi;, fi11,j—1, fi+1,j, and
fi+1,j+1 where the notation is as in sections 14.7 and 14.8. (Hint: See footnote 14)
An American put option on a non-dividend-paying stock has 4 months to maturity.
The exercise price is $21, the stock price is $20, the risk-free rate of interest is 10%
per annum, and the volatility is 30% per annum. Use the explicit version of the
finite difference approach to value the option. Use stock price intervals of $4 and
time intervals of 1 month.
The current value of the British pound is $1.60 and the volatility of the pound—dollar
exchange rate is 15% per annum. An American call option has an exercise price of
$1.62 and a time to maturity of 1 year. The risk-free rates of interest in the United
States and the United Kingdom are 6% per annum and 9% per annum, respectively.
Use the explicit finite difference method to value the option. Consider exchange
rate interm::: intervals of 3 months. (Hint: Only exchange rates
between 0.80 and 2.40 need to be considered).
Suppose that, as an approximation, it is assumed that the term structure of interest
rates is flat for 1 year and that

dr = (a—r)bdt +rcdz
where a, b, and ¢ are known constants; r is the interest rates for maturities up to 1
year; and dz is a Wiener process. Discuss the problems in using the binomial tree
approach to value a 6-month European option on a T-bill.
The spot price of copper is $0.60 per pound. Suppose that the futures prices (dollars
per pound) are as follows:

3 months 0.59
6 months 0.57
9 months 0.54
12 months 0.50

The volatility of the price of copper is 40% per annum and the risk-free rate is 6%
per annum. Use a binomial tree to value an American call option on copper with
an exercise price of $0.60 and a time to maturity of 1 year. Divide the life of the
option into four 3-month periods for the purposes of constructing the tree. (Hint: As
explained in Chapter 12, futures prices can be used to estimate the process followed
by a commodity price in a risk-neutral world.)
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14.22.

*14.23.

*14.24.
*14.25.

14.26.

Use the binomial tree in Problem 14.21 to value a security that pays off x2 in 1 year
where x is the price of copper.

When do the boundary: conditions for § =0 and § — © affect the estimates of
derivative security prices in the explicit finite difference method?

How can finite difference methods be used when there are known dividends?

A company has issued a 3-year convertible bond that has a face value of $25 and
can be exchanged for 2 of the company’s shares at any time. The company can
call the issue forcing conversion when the share price is greater than or equal to
$18. Assuming that the company will force conversion at the earliest opportunity,
what are the boundary conditions for the price of the convertible? Decribe how
you would use finite difference methods to value the convertible assuming constant
interest rates.

Provide formulas that can be used for obtaining three random samples from standard
normal distributions when the correlation between sample i and sample j is p;;.

APPENDIX 14A: THE ANALYTIC APPROXIMATION
TO AMERICAN OPTION PRICES OF
MACMILLAN, AND BARONE-ADESI AND
WHALEY

Consider an option on a stock paying a continuous dividend yield at rate g. We
will denote the difference between the American and European option price by v.
Since both the American and the European option prices satisfy the Black—Scholes
differential equation, v also does so. Hence

dv v 1 3%v
i _ S— - 2S2___ —
U Ly T

For convenience we define

t=T—1t
h(n)y=1—¢"
2r
(Z=;—2
2(r — q)
ﬂ— 0_2

We also write, without loss of generality,

v = h(r)g(S, h)
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With appropriate substitutions and variable changes, this gives

d’g g « ag
2 e (1-mall =
S a5z TAS5s g~ (—hag, =0

The approximation which is used involves assuming that the final term on
the left-hand side is zero, so that

28 s 2,0 (14A.1)

The term that is ignored is generally fairly small. When 7 is large, 1 — & is close
to zero; when t is small, dg/8h is close to zero.

The American call and put prices will, as usual, be denoted by C(S) and
P(S), where § is the stock price, and the corresponding European call and put
prices will be denoted by ¢(S) and p(S). Equation (14A.1) can be solved using
standard techniques. After boundary conditions have been applied, it is found that

c(S) + A, (-sg;)y2 when S < §*
C(S) =
S—-X when § > §*

The variable $* is the critical price of the stock above which the option should be
exercised. It is estimated by solving the equation

§*~ X = (8" + {1 - e T ON[d,(5")]) i—*
2

iteratively. For a put option, the valuation formula is

pS) + A (&) when § > §**
P(S) =
X-S when § < §**

The variable $** is the critical price of the stock below which the option should
be exercised. It is estimated by solving the equation

S**

X ~ 8% = p(§™) — {1 - e 1T N[—d\(5*)]} >
1
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iteratively. The other variables that have been used here are

y1=[—(ﬂ—1)—,/(ﬂ—1)2+4—:-]/2
4a
yz=[—(ﬂ—1)+,/(ﬂ—1)2+7]/2

A =— <__> {1 - e ?TON[-di(S™)]}
¢!

A = (f-) [1-e 7T ON[di($)]})
V2

4,(5) = In(S/X) + (r —q + /(T — 1)
: oNT —t
As pointed out in chapters 11 and 12, options on stock indices, currencies,
and futures contracts can be regarded as analogous to options on a stock pay-
ing a continuous dividend with the dividend yield constant. Hence the quadratic
approximation approach can easily be applied to all of these types of options.




Interest Rate
Derivative
Securities

Interest rate derivative securities are securities whose payoffs are dependent in some
way on the level of interest rates. In recent years they have become increasingly
popular. This chapter starts by describing the range of different products that are
traded over the counter and on exchanges. It then moves on to discuss valuation
issues. The models that are considered can be divided into three categories. Those
in the first category are extensions of Black—Scholes. Those in the second category
are the equilibrium models that have been traditionally favored by researchers.
Those in the third category are no-arbitrage models, designed in such a way that
they are exactly consistent with the term structure observed in the market at the
time the model is built,

15.1 EXCHANGE-TRADED BOND OPTIONS

The most popular exchange-traded interest rate options are those on Treasury bond
futures, Treasury note futures, and Eurodollar futures. Table 11.4 in Chapter 11
shows the closing prices for these securities on February 3, 1992. The prices are
quoted as a percentage of the principal amount of the underlying debt security. For

370
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options on Eurodollar futures, the price is quoted to two decimal places and one
contract is for the delivery of futures contracts with a face value of $1 million.
For options on Treasury bond and Treasury note futures, the price is quoted to the
nearest ;‘13 of 1 percent and one contract is for the delivery of futures contracts with
a face value of $100,000. Thus Table 11.4 gives the price of the IMM September
call futures option on Eurodollars as 0.14 percent of the debt principal when the
strike price is 95.75 (implying that one contract would cost $1,400). It also gives
the price of the September call futures option on Treasury bonds as 466—4 percent
of the debt principal when the strike price is 96 (implying that one contract would
cost $4,093.75).

When interest rates rise, bond prices fall; when interest rates fall, bond prices
rise. An investor who thinks that short-term interest rates will rise can speculate by
buying put options on Eurodollar futures, while an investor who thinks that they
will fall can speculate by buying call options on Eurodollar futures. An investor
who thinks that long-term interest rates will rise can speculate by buying put options
on Treasury notes or Treasury bonds, while an investor who thinks they will fall
can speculate by buying call options on these instruments.

Suppose that it is August and the futures price for the December Treasury
bond contract traded on the CBOT is 96-09 (or 9639—2 = 96.28125). The yield on
long term government bonds is about 8.4 percent per annum. An investor who feels
that this yield will fall by December might choose to buy December calls with a
strike price of 98. Assume that the price of these calls is 1-04 (or 1654; = 1.0625%
of the principal). If long-term rates fall to 8 percent per annum, the Treasury bond
futures price will rise to 100-00 and the investor will make a net profit per $100
of bond futures of

100.00 — 98.00 — 1.0625 = 0.9375

Since one option contract is for the purchase or sale of instruments with a face
value of $100,000, the investor would make a profit of $937.50 per option contract
bought.

15.2 EMBEDDED BOND OPTIONS

Some bonds contain embedded call and put options. For example, a callable
bond contains provisions that allow the issuing firm to buy back the bond at a
predetermined price at certain times in the future. The holder of such a bond has
sold a call option to the issuer. The value of the call option is reflected in the
yields on bonds so that bonds with call features provide an investor with a higher
yield than bonds with no call features. A puttable bond contains provisions that
allow the holder to demand early redemption at a predetermined price at certain
times in the future. The holder of such a bond has purchased a put option on the
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bond as well as the bond itself. Since the put option increases the value of the
bond to the holder, bonds with put features provide lower yields than bonds with
no put features.

A number of other instruments have embedded bond options. For example,
early redemption privileges on fixed rate deposits are analogous to the put features
of a bond. Prepayment privileges on fixed rate loans are analogous to the call
features of a bond. Also, mortgage commitments made by a bank or other financial
institution are put options. Consider, for example, the situation where a bank quotes
a 5-year mortgage rate of interest of 12 percent per annum to a client and states
that the rate is good for the next 2 months. The client has in effect obtained the
right to sell a 5-year bond with a 12 percent coupon to the financial institution for
its face value any time within the next 2 months.

15.3 MORTGAGE-BACKED SECURITIES

A type of interest rate option is embedded in what is known as a mortgage-backed
security (MBS). This security has become very popular in recent years. It is created
when a financial institution decides to sell part of its residential mortgage portfolio
to investors. The mortgages sold are put into a pool and investors acquire a stake
in the pool by buying units. The units are known as mortgage-backed securities.
A secondary market is usually created for the units so that investors can sell them
to other investors as desired. An investor who owns units representing X percent
of a certain pool is entitled to X percent of the principal and interest cash flows
received from the mortgages in the pool.

The mortgages in a pool are generally insured so that investors are protected
against defaults. This makes an MBS sound like a regular fixed income security.
But there is one important complicating feature. The mortgages in an MBS pool
have certain prepayment privileges. This means that the holder of an MBS has
granted a series of interest rate options to the borrowers of the mortgage funds.! In
general, investors require a higher rate of interest on an MBS than on other fixed"
income securities to compensate for these prepayment options.

15.4 SWAPTIONS

Swaptions or swap options are options on interest rate swaps and are another
increasingly popular type of interest rate option. They give the holder the right to
enter into a certain interest rate swap at a certain time in the future. (The holder

!These options are not pure interest rate options in the sense that the decision to exercise may
depend on more than just the level of interest rates. For example, a family might prepay a mortgage
when rates are relatively high simply because it is moving house—not because it can refinance more
cheaply.
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does not, of course, have to exercise this right.) Many large financial institutions
that offer interest rate swap contracts to their corporate clients are also prepared to
sell them swaptions or buy swaptions from them.

To give an example of how a swaption might be used, consider a company
that knows it will enter into a 5-year floating rate loan agreement in 6 months and
knows that it will wish to swap the floating interest payments for fixed interest
payments in order to convert the loan into a fixed rate loan. (See Chapter 5 for a
discussion of how swaps can be used in this way.) At a cost the company could
enter into a swaption and obtain the right to swap the floating interest payments
for a certain fixed interest payment, say 12 percent per annum, for a 5-year period
starting in 6 months. If the fixed rate on a regular 5-year swap in 6 months turns
out to be less than 12 percent per annum, the company will choose not to exercise
the swaption and will enter into a swap agreement in the usual way. However, if
it turns out to be greater than 12 percent per annum, the company will choose to
exercise the swaption and will obtain a swap at more favorable terms than those
available in the market.

Swaptions provide companies such as the one just considered with an al-
ternative to forward swaps (sometimes called deferred swaps). Forward swaps
involve no up-front cost but have the disadvantage that they obligate the company
to enter into a certain swap agreement. With a swaption, the company is able
to benefit from favorable interest rate movements while acquiring protection from
unfavorable movements. The difference between a swaption and a forward swap is
analogous to the difference between an option on foreign exchange and a forward
contract on foreign exchange.

REeLaTION TO BOND OPTIONS

It will be recalled from Chapter 5 that an interest rate swap can be regarded
as an agreement to exchange a fixed rate bond for a floating rate bond. At the start
of a swap, the value of the floating rate bond always equals the principal amount of
the swap. A swaption can therefore be regarded as an option to exchange a fixed
rate bond for the principal amount of the swap. If a swaption gives the holder the
right to pay fixed and receive floating, it is a put option on the fixed rate bond with
strike price equal to the principal. If a swaption gives the holder the right to pay
floating and receive fixed, it is a call option on the fixed rate bond with a strike
price equal to the principal.

15.5 INTEREST RATE CAPS

Another type of over-the-counter interest rate option offered by financial institutions
is an interest rate cap. Caps are designed to provide insurance against the rate of
interest on a floating rate loan rising above a certain level. This level is known
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as the cap rate. When a cap on a loan and the loan itself are both provided by
the same financial institution, the cost of the options underlying the cap is often
incorporated into the interest rate charged. When they are provided by different
financial institutions, an up-front payment for the cap is likely to be required.

The operation of a cap is illustrated in Figure 15.1. A cap guarantees that
the rate charged on a loan at any given time will be the lesser of the prevailing rate
and the cap rate. Suppose that the rate on a loan, where the principal amount is
$10 million, is reset every 3 months equal to 3-month LIBOR, and that a financial
institution has provided an interest rate cap of 10 percent per annum. To fulfill
its obligations under the cap agreement, the financial institution must pay to the
borrower at the end of each quarter (in millions of dollars),

0.25 x 10 x max (R — 0.1, 0)

where R is the 3-month LIBOR rate at the beginning of the quarter. For example,
when the 3-month LIBOR rate at the beginning of the quarter is 11 percent per
annum, the financial institution must pay 0.25 x 10, 000, 000 x 0.01 = $25,000 at
the end of the quarter. When it is 9 percent per annum, the financial institution is
not required to pay anything. The expression max (R —0.1, 0) is the payoff from a
call option on R. The cap can therefore be viewed as a portfolio of call options on
R with the payoffs from the options occurring 3 months in arrears. The individual
options comprising a cap are sometimes referred to as caplets.

In general if the cap rate is Ry, the principal is L, and interest payments are
made at times t, 27, ..., nt from the beginning of the life of the cap, the writer
of the cap is required to make a payment at time (k + 1)t given by

tL max (R, — Ry, 0) (15.1)

Interest ~ ______ _ _ LIBOR
rate

Cap
rate

Time

Figure 15.1 Borrower’s Effective Interest Rate with a Floating Rate Loan and an
Interest Rate Cap
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where R, is the value at time k7 of the rate being capped. Suppose that F is
the forward interest rate for the time period between kt and (k + 1)t and that the
rates Ry, R, and Fy are all expressed with a compounding frequency of . As an
approximation, we can use Fy. as the discount rate between times kT and (kK + D)t
so that the payment in (15.1), which is made at time (k + 1)z, becomes equivalent

to a payment of
L
—_— Ry — Rx, 0 2
1+1kaaX(k x> 0) (15.2)

at time k7. The advantage of doing this is that it enables us to regard each caplet
as a European call option on a t-period interest rate with the payoff occurring at
the maturity of the option rather than one period later. The principal amount for
each option is TL/(1 + tFy).

A SiMpLE MODEL FOR VALUING CAPS

Equation (15.2) leads to a commonly used valuation model. At time kt,

F; = Ri. We can therefore regard the caplet corresponding to the period between

kt and (k + 1)T as a European call option on Fj rather than R;. If we assume

that the forward interest rate, Fy, has a constant volatility, o, Black’s model,
introduced in Section 11.4, gives the price of the option as

L RN @) - RN (@) (15.3)

1+1F;

where
g In(F/Ryx) + o2kt /2
e O'FVkT
In(Fi/Rx) — o2kt/2
dy = =d, —ovVkt
2 UFVk‘L' !

and r is the risk-free interest rate for an instrument that matures at time kt. If r is
defined as the risk-free rate for an instrument maturing at (k + 1), an expression
equivalent to (15.3) for the value of a caplet is

tLe "* DT [F N(dy) — RxN(d2) (15.3)

Example 15.1

Consider a contract that caps the interest on a $10,000 loan at 8% per annum (with guarterly
compounding) for 3 months starting in 1 year. This could be one element of a cap. Suppose
that the forward interest rate for a 3-month period starting in 1 year is 7% per annum (with
quarterly compounding); the current 1-year interest rate is 6.5% per annum (with continuous
compounding); and the volatility of the 90-day forward rate is 20% per annum. In Equation
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(15.3), Fx =0.07, 7 = 0.25, L = 10,000, Rx = 0.08, r = 0.065, o = 0.20, and kt = 1.0.
L 0.25x 10,000

= = 2,457
1+7F  140.25x%x0.07 >
Since
In0.875 4+ 0.02

dy =d; —0.20 = ~0.7677
the cap price is
2457¢9950.07N (=0.5677) — 0.08N (=0.7677)] = 5.19

or $5.19.

Black’s model involves the assumption that o is constant. This assumption
is at best only a rough approximation to the truth. When the time to the maturity
of the forward contract is long, F; is relatively insensitive to current interest rate
movements and has a low volatility. However, as the time to maturity becomes
smaller, F is more affected by changes in the current level of interest rates and its
volatility increases. Figure 15.2 shows the general way in which the appropriate
o varies with the maturity of the option being considered. Black’s model when
applied to valuing caps can also be criticized for being inconsistent in its treatment
of interest rates. The rate, r, which is used for discounting is assumed to be
constant. But the forward rates, F, are assumed to be stochastic.

In practice, the following procedure is sometimes adopted to overcome the
weaknesses in Black’s model. First, the model is used to calculate implied volatili-
ties for forward interest rates from traded Eurodollar futures options. These implied

A Forward rate
volatility

Maturity

Figure 15.2 Variation of Forward Rate Volatility with Maturity of Caplet when Black’s
Model Is Used
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volatilities are then used to value the options underlying interest rate caps. A 3-
month option is valued on the basis of the volatility implied by the price of a Euro-
dollar futures option with approximately 3 months to maturity; a 6-month option
is valued on the basis of the volatility implied by the price of a Eurodollar futures
option with approximately 6 months to maturity; and so on. This twofold use of the
model (to calculate implied volatilities for exchange-traded options and to calculate
prices of over-the-counter options from the implied volatilities of exchange-traded
options) tends to reduce errors caused by the use of an imperfect model and to
ensure that calculated option prices are reasonably consistent with exchange-traded
option prices. The interest rate volatilities implied by the market prices of Euro-
dollar futures options of different maturities are regularly quoted by traders and
published by investment houses. Since most caps last beyond the longest maturity
of traded Eurodollar options, the relationship between volatility and maturity which
is observed for traded Eurodollar options must be exirapolated in some way.

Traders applying Black’s model using the approach just discussed would
change the volatility, o, according to the caplet considered. The volatilities are
then referred to as forward forward volatilities. An alternative approach is to use
the same volatility for all the caplets comprising any particular cap, but to vary this
volatility according to the life of the cap. The volatilities used are then referred to
as forward volatilities.

A Capr as A PortroLio oF BoND OPTIONS

An more precise characterization of a cap is as a portfolio of put options on
discount bonds. The payoff in (15.1) at time (k + 1)7 is equivalent to
tL
1+ TRk

(Rx — Rx, 0)

at time kt. A few lines of algebra shows that this reduces to

L+ Rx1)
L ————— 4
max [ TR, 0] (15.4)

The expression

L1+ RxT)
1+ tR;

is the value at time kt of a discount bond that pays off L(1+ Rx 1) at time (k+1)t.
The expression in (15.4) is therefore the payoff from a put option with maturity
k7 on a discount bond with maturity (k + 1) when the face value of the bond is
L(1 + Rxt) and the strike price is L. This proves the assertion that an interest
rate cap is a portfolio of European put options on discount bonds.
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FLoors AND COLLARS

Interest rate floors and interest rate collars (which are sometimes called floor-
ceiling agreements) can be defined analogously to caps. A floor places a lower
limit on the interest rate that will be charged. Collars specify both the upper and
lower limits for the rate that will be charged. Similarly to an interest rate cap, an
interest rate floor is a portfolio of put options on interest rates or a portfolio of call
options on discount bonds. It can be valued in an analogous way to an interest
rate cap. It is often written by the borrower of floating rate funds. A collar is a
combination of a long position in a cap and a short position in a floor. It is usually
constructed so that the price of the cap equals the price of the floor. The net cost
of the collar is then zero.

15.6 SIMPLE APPROACHES TO VALUING BOND
OPTIONS

We now move on to valuing bond options. The simplest model is the Black—Scholes
model described in Chapter 10. Define

Current bond price

Maturity date of option

Volatility of bond price

Strike price of option

Current interest rate applicable to a risk-free investment maturing at time T2

DRI

In the case of a zero-coupon bond, the Black—Scholes model gives the Eu-
ropean call and put prices, ¢ and p, at time ¢ as

c=BN(d) — e RT-9XN(d) (15.5)
and
p =e RT-DXN(—dy) — BN(—d}) (15.6)
where
g In(B/X)+ (R+02/2)(T — 1)
b oT —t
In(B/X) + (R - o?/2)(T —1)
dy = —d —oJT =1
2 o'm di—oT —t

2As mentioned in Chapter 10, when Black—Scholes and similar models are implemented, the
risk-free interest rate is usually chosen to correspond to an investment maturing at the end of the life
of the option.
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An argument similar to that in Chapter 7 shows that an American call on a bond
that pays no coupons should never be exercised early and can be treated as a
European option.

If coupon payments are due to be received during the life of the option, they
can be treated like the dividends on a stock (see Section 10.14). The present value
of the coupons should be subtracted from B before equations (15.5) and (15.6) are
used. The volatility parameter, o, should be the volatility of the bond price net of
the present value of these coupons.

The precise terms of the option are important when the bond pays coupons.
If the strike price is the cash amount that is exchanged for the bond when the
option is exercised, X should be put equal to this strike price in equations (15.5)
and (15.6). If the strike price is the quoted price applicable when the option is
exercised (as it is in exchange-traded bond options), X should be set equal to the
strike price plus accrued interest at the expiration date of the option in equations
(15.5) and (15.6).

Example 15.2

Consider a 10-month European call option on a 9.75-year bond with a face value of $1,000.
Suppose that the current bond price is $960, the strike price is $1,000, the 1-year risk-free
interest rate is 10% per annum, and the volatility of the bond price is 9% per annum. The
bond pays a semiannual coupon of 10% and coupon payments of $50 are expected in 3
months and 9 months. The 3-month and 9-month risk-free interest rates are 9.0% and 9.5%
per annum, respectively. The present value of the coupon payments is

Soe—0.25X0.09 + 508_0'75)(0'095 = 9545

or $95.45.

(a) If the strike price is the cash price that would be paid for the bond on exercise, the
parameters for Equation (15.5) are B = 960 — 95.45 = 864.55, X = 1000, R = 0.1,
o = 0.09, and T — ¢ = 0.8333. The price of the call option is $9.49.

(b) If the strike price is the quoted price that would be paid for the bond on exercise, one
month’s accrued interest must be added to X. This produces a value for X of
1,000 + 50 x 0.16667 = 1, 008.33

The values for the other parameters in Equation (15.5) are unchanged (ie., B =
864.55, R = 0.1, ¢ = 0.09, and T — ¢ = 0.8333). The price of the option is $7.97.

PROBLEMS IN APPLYING THE BLACK—SCHOLES MODEL TO BOND \/
PricES

The Black-Scholes model that has just been described assumes that the
volatility of a bond’s price is constant. In practice, a bond’s price volatility is
dependent on its time to maturity. The longer the time to maturity, the greater a
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bond’s price volatility. Schaefer and Schwartz argue that a bond’s price volatility is
roughly proportional to its duration.> This means that the volatility of a bond with
a duration of 10 years is twice the volatility of a bond with a duration of 5 years,
and so on. This idea seems to be reasonably well supported by empirical studies.

When the life of the option is short in relation to the life of the underlying
bond (as it is in the case of most exchange-traded bond options), it can be assumed
that the volatility of the bond is constant during the life of the option. The duration
argument can then be used as an approximation. For example, suppose we wish to
value a 3-month option on a bond with a duration of 4 years and a 1-month option
on a bond with a duration of 8 years. The volatility used in Black—Scholes when
the first option is valued should be roughly half that used when the second option
is valued.

For longer-term options, the assumption that the volatility of a bond is con-
stant during the life of the option is no longer reasonable. A natural suggestion
is to make the bond’s price volatility proportional to the average duration of the
bond during the life of the option. However, this approach overstates the values
of -long-dated options because it does not capture one key aspect of the behavior
of bond prices. This is that the price of a bond must equal its face value at its
maturity. This is sometimes referred to as the pull-to-par phenomenon. Figure 15.3
illustrates the phenomenon by showing how the standard deviation of the future
price of a bond and a stock change as we look further ahead. The stock’s price
becomes progressively more uncertain, but our uncertainty about the bond’s price
first increases and then decreases.
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3See S. M. Schaefer and E. S. Schwartz, “Time-Dependent Variance and the Pricing of Bond
Options,” Journal of Finance, 42 (December 1987), 1113-28.
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bond’s price volatility. Schaefer and Schwartz argue that a bond’s price volatility is
roughly proportional to its duration.> This means that the volatility of a bond with
a duration of 10 years is twice the volatility of a bond with a duration of 5 years,
and so on. This idea seems to be reasonably well supported by empirical studies.

When the life of the option is short in relation to the life of the underlying
bond (as it is in the case of most exchange-traded bond options), it can be assumed
that the volatility of the bond is constant during the life of the option. The duration
argument can then be used as an approximation. For example, suppose we wish to
value a 3-month option on a bond with a duration of 4 years and a 1-month option
on a bond with a duration of 8 years. The volatility used in Black-Scholes when
the first option is valued should be roughly half that used when the second option
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Using ForwarRD BonD PRICES

One approach to valuing European options when the life of the option is
significant in relation to the life of the underlying bond is to regard the option as
being written on the forward price of the bond that will be delivered if the option
is exercised. This is the forward price of a bond lasting between the end of the life
of the option and the end of the life of the bond. When the option matures, the
forward bond price equals the price of the underlying bond—which means that the
forward bond option being considered is the same as the spot bond option whose
value is required. This approach enables Black’s model, which was discussed in
Section 11.4, to be used. The correct volatility to use for the forward bond price
will depend on the time between the end of the life of the option and the end of
the life of the bond. It also tends to depend on the life of the option itself. The
longer the option lasts, the lower the volatility. The valuation formulas are

c=e RTDFN()) — XN(dp)] (15.7)
and
p =e RTD[XN(~dy) — FN(—d1)) (15.8)
where
4= In(F/X) +0*(T —t)/2
oNT —1
iy = 1n(F/x()“—/_T¢z2_LTt ~1/2 _ b — T

F is the forward bond price; o is its volatility, and other variables are defined as
before.
The forward bond price can be calculated using Equation (3.7)

F = (B— DT

where I is equal to the present value of the coupons during the life of the option.
Substituting for F into Equations (15.7) and (15.8) shows that there is in essence no
difference between the forward bond approach and the Black—Scholes approach just
mentioned. Like the Black-Scholes approach the forward bond approach therefore
has the drawback of not modeling the pull to par. A point in favor of both
approaches is that they give results that satisfy the put-call parity condition for
bond option prices:

c+Xe"T D =p4 Fe"T™0 (15.9)
Example 15.3

Consider a 3-year European call option on a 5-year bond with a face value of $100 and a
coupon of 10% per annum. We suppose that the forward price of the bond that would be
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delivered if the option were exercised is $95. We also suppose that the strike price is $98,
the 3-year risk-free interest rate is 11% per annum, and the volatility of the forward bond
price is 2.5% per annum. This means that F =95, X =98, R =0.11, 0 =0.025,and T =
3.0. Equation (15.7) gives the call price as $0.42.

MobpeLing ForwarD Bonp YiELDS

One attempt to overcome the pull-to-par problem in modeling bond prices
is to regard a bond option as a yield option. We define the strike yield, Yy, as
equal to the continuously compounded yield on the bond at the option’s maturity
if the bond’s price equals the strike price. From Equation (4.8) in Section 4.5,
an approximate relationship between the bond price, Br, and its yield, Yr, at the
option’s maturity is

Br — X
X
where D is the bond’s duration at the maturity of the option. Using this formula

= —D(Yr — Yy)

Br — X =DX(Yx —Yr)
The payoff on a call option can be written as
max[DX (Yx — Y7), 0]
and the payoff from a put option on the bond can be written as
max[DX (Yr — Yx), 0]

These equations convert a call option on a bond price into a put option on a bond
yield and a put option on a bond price into a call option on a bond yield. If forward
bond yield volatilities are assumed constant, Black’s model can be used to value
the option.

This approach, although simple, has a weakness. As explained in Section
4.5, the duration of a bond measures the sensitivity of the bond’s price to bond
yields for only very small changes in the yield. The expressions just given for
the payoffs in terms of yields are therefore approximations. A problem related to .
this weakness is that the option prices produced using the approach do not satisfy
put-call parity. ‘

The assumption that the forward yield on the bond underlying an option is
attractive to many practitioners. To overcome the weakness just mentioned, some
practitioners use numerical procedures to convert the lognormal yield disribution
into a price distribution. The center of the distribution is chosen so that it represents
a possible behavior for bond prices in a risk-neutral world. Option prices are then
obtained numerically.
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15.7 LIMITATIONS OF SIMPLE MODELS

The models for pricing interest rate options that have been presented so far have
been versions of the Black and Black—Scholes models. They have provided ways
of valuing caps and European bond options, but have the disadvantage that the
volatility used must in general be different for different deals. It is not easy to
find a way of relating the volatility used for one option to that used for another. A
further serious drawback of the models is that they can only be used for European
options. American bond options and other types of interest rate derivative securities
cannot be valued.

The reason why the models cannot be used for American options is as fol-
lows. If we are valuing a European bond option, we are interested in the standard
deviation of the bond’s price at just one time in the future (the maturity of the
option). There is always some volatility for a stock that would cause it to have
the same standard deviation as the bond at this time. Once this volatility has been
identified, we can treat the bond option as though it were an option on the stock
and use Black—Scholes. If we are interested in valuing an American bond option
this approach does not work because the possibility of early exercise means that
we must represent bond price uncertainty at all times during the life of the option,
not just at the end. As Figure 15.3 shows, the evolution of uncertainty for a bond’s
price is quite different to that for a stock’s price.

YieLp CurRvE MODELS

A more sophisticated approach to valuing interest rate derivative securities
involves constructing what is known as a yield curve model or term structure model.
This is a model that describes the probabilistic behavior of the yield curve over
time. Yield curve models are more complicated than the models used to describe
the movements of a stock price or currency exchange rate. This is because they
are concerned with movements in a whole curve—not with changes to a single
variable. As time passes, the individual interest rates in the term structure change.
In addition, the shape of the curve itself is liable to change.

15.8 TRADITIONAL APPROACH USED BY
RESEARCHERS TO MODEL THE TERM
STRUCTURE

The traditional approach used by researchers to model the term structure involves
starting with a plausible stochastic process for the short-term rate, r, in a risk-
neutral world and exploring what the process implies for bond prices and option
prices. It is important to emphasize that it is not the process for r in the real
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world that matters. As discussed in Chapter 12, bond prices, option prices, and
other derivative security prices depend only on the process followed by r in a
risk-neutral world.

In a number of the models that have been developed by researchers there
is assumed to be only one underlying stochastic variable (or factor), so that the
risk-neutral process for r is of the form

dr =m(r)dt +s(r)dz (15.10)

The instantaneous drift, m, and instantaneous standard deviation, s, are assumed
to be functions of r, but independent of time. The assumption of a single factor
is not as restrictive as it might at first sight appear. It does not, as is sometimes
supposed, imply that the term structure always has the same shape. A fairly rich
pattern of term structures can occur under a one-factor model. The essence of a
one-factor model is that it implies that all rates move in the same direction in any
short time interval; it does not imply that all rates move by the same amount.

From the analysis in Chapter 12, the value of an interest-rate derivative
security is

E [e"”‘” fT] (15.11)

where 7 is the average value of r in the time interval between ¢ and T, and E
denotes expected value in a risk-neutral world.

Define P(t, T) as the price at time ¢ of discount bond that pays off $1 at
time T. From Equation (15.11),

P, T)=E[e7T0] (15.12)
If R(¢, T) is the continually compounded interest rate at time ¢ for a term of T —¢,
P(t, T) = ¢ RO:DIT-0 (15.13)
so that
Rt, Ty= o InP@, T) (15.14)
and from Equation (15.12),
R( T)=—= 1_ -In £ [e—m*”] (15.15)

This equation enables the term structure of interest rates to be obtained from the
risk-neutral process for r in Equation (15.10).

The functions m(r) and s(r) typically involve several parameters. In practice,
the trial-and-error procedure indicated in Figure 15.4 must be used to choose these
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parameters so that the values of bonds and options calculated from the model are
as close as possible to those observed in the market. The procedure is similar to
that used to calculate implied volatilities from option prices. The only difference
is that more than one parameter is being estimated.

15.9 THE RENDLEMAN AND BARTTER MODEL

Rendleman and Bartter make particularly simple assumptions about m(r) and s(r)
in Equation (15.10).* They assume that m(r) = Mr and s(r) = Sr where M and
S are constants. This means that r follows geometric Brownian motion. It has a
constant expected growth rate of M and a constant volatility of S in a risk-neutral
world. It can be modeled using a binomial tree similar to the one used for stocks
in Chapter 14. The parameters u, d, and p chosen are as follows:

u =SV
d=eSVA
_a—d
P u—d
where
a = eMBt

4See R. Rendleman and B. Bartter, “The Pricing of Options on Debt Securities,” Journal of
Financial and Quantitative Analysis, 15 (March 1980), 11-24.
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To illustrate the approach, suppose that At = 1 year, M = 0.05, S = 0.15,
and we wish to model interest rates over a S-year period. It follows that u =
1.1618, d = 0.8607, a = 1.0513, and p = 0.6329. Since the time step on the
tree is 1 year, we define the short-term interest rate, r, as the 1-year rate. If the
initial value of r is 10 percent per annum, the tree that is obtained is shown in
Figure 15.5. It should be emphasized that this is a tree representing interest rate
movements in a risk-neutral world rather in the real world. In this respect it is
analogous to the trees for stock prices in Chapter 14.

Assume that we wish to value a 4-year American call option on a bond
maturing in 5 years that pays an 8 percent coupon at the end of each year and has
a face value of $1,000. Suppose that the exercise price of the option is $1,000. The
first step in the analysis is to calculate the bond’s price at each node of the tree.
The bond is worth $1,000 at the end of year 5. The value of the bond at earlier
times can be obtained by working backward through the tree. Define r;; = ru/di=J

21.17

10.00

8.61

Year 0 Year 1 Year 2 Yeor 3 Year 4 Year5

Figure 15.5 Binomial Tree of Interest Rate Movements in a Risk-Neutral World Using
Rendleman and Bartter Model
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and P;; as the value of the bond at time ¢ + i At when the interest rate is r;;. It
follows that

P = e~ [pPip1,j+1 + (1 — P)Pir1j + ] (15.16)

where c is the coupon paid at the end of each year. Figure 15.6 shows the results

of these calculations. :
The next stage is to use the tree to calculate the option price. If f;; denotes
the value of the option at time ¢ + i At when the interest rate is rij,

f4j = max [P4j ot 1000, 0]
and when i < 4,

fij = max [Pi; — 1000, e (pfisrja + (1 — P fi+1))]

Year 0 Year 1 Year 2 Year 3 Year 4 Year §

Figure 15.6 Bond Values in the Rendleman and Bartter Model
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Figure 15.7 Using the Rendleman and Bartter Tree to Determine the Values of a Call
Option on the Bond.

The results of these calculations are shown in Figure 15.7. The value of the option
is $1.05.

It will be noted that the way of rolling back through an interest rate tree is
similar to that for a stock price tree. The chief difference is that in the interest rate
tree, the interest rate used for discounting varies from node to node.

15.10 MEAN REVERSION \/

Rendleman and Bartter assume that the short-term interest rate behaves like a stock
price. One important difference between the interest rates and stock prices is that
interest rates appear over time to be pulled back to some long-run average level.
This phenomenon known as mean reversion and is not captured by the Rendleman
and Bartter model. When r is high, mean reversion tends to cause it to have a
negative drift; when r is low, mean reversion tends to cause it to have a positive
drift. Mean reversion is illustrated in Figure 15.8.

There are compelling economic arguments in favor of mean reversion. When
rates are high the economy tends to slow down and there is less requirement for
funds on the part of borrowers. As a result, rates decline. When rates are low,
there tends to be a high demand for funds on the part of borrowers. As a result,
rates tend to rise.
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Figure 15.8 Mean Reversion

One effect of mean reversion is to make the volatility of interest rates a
decreasing function of maturity. The 10-year spot interest rate tends to have a
lower volatility than the S-year spot interest rate, the 5-year spot interest rate tends
to have a lower volatility than the 1-year spot interest rate, and so on.

Mean reversion can be shown to be responsible for the fact that a forward rate
volatility tends to decline as the maturity of the forward contract increases. The
volatility of the 3-month forward interest rate starting in 3 months is greater than
the volatility of the 3-month forward interest rate starting in 2 years; this in turn
is greater than the volatility of the 3-month forward rate starting in 5 years; and
so on. Finally, mean reversion has some impact on bond price volatilities. It can
be shown that when there is mean reversion, the relationship between volatility
and a discount bond maturity has the curvature shown in Figure 15.9. This is
not consistent with the hypothesis presented earlier that bond price volatility is
proportional to duration.

A Bond price
volatility

Figure 159 Relationship between
Maturity Volatility of Discount Bond and Maturity
»  When There Is Mean Reversion
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15.11 THE VASICEK MODEL

Vasicek has proposed a model where m(r) = a(b —r) and s(r) = o in Equation
(15.10) when a, b, and o are constants.’ This model incorporates mean reversion.
The risk-neutral process for the short rate, r, is

dr=a(b—r)dt+odz (15.17)

The short rate is pulled to a level b at rate a. Superimposed upon this “pull” is a
normally distributed stochastic term o dz.

Vasicek solves Equation (15.12) to obtain the following analytic expression
for the price of a discount bond paying $1 at maturity in terms of r

P, T)= A(t, T)e B¢ Tr (15.18)
where, when a # 0
1 —e—aT-0
B(t, T) = — (15.19)

and
(B(t,T) =T +1t)(@’b—0%/2) o*B(, T)?
a? 4a
Whena =0, B(t,T) =T — ¢ and A(t, T) = explo®(T — 1)3/6]
Using Equation (15.14), the whole term structure can be determined as a

function of r once a, b, and o have been chosen. The shape can be upward
sloping, downward sloping, or slightly “humped” (See Figure 15.10).

A, T)= exp[ ] (15.20)

VaLuing EuroPEAN OPTIONS ON Discount Bonps

Jamshidian has shown that the prices of options on discount bonds can be
obtained using Vasicek’s model.® The price at time ¢ of a European call option
maturing at time 7 on a discount bond with principal $1 and maturing at time s is

P(t,s)N(h) — XP@, T)N(h —op) (15.21)

where

1 P(t,s) op
h=-——In—05_ 4 0P
or "PG.DX T2

op=v(t, T)B(T,s)

3See O. A. Vasicek, “An Equilibrium Characterization of the Term Structure,” Journal of Finan-
cial Economics, 5 (1977), 177-88.

6See F. Jamshidian, “An Exact Bond Option Pricing Formula,” Journal of Finance, 44 (March
1989), 205-9.
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obtained using Vasicek’s model.® The price at time ¢ of a European call option
maturing at time T on a discount bond with principal $1 and maturing at time s is

P(t,s)N(h) ~ XP(t, T)N(h — op) (15.21)

where

P
h— 1 In @,s) + op
op P, T)X 2

op =v(t, T)B(T, s)

3See O. A. Vasicek, “An Equilibrium Characterization of the Term Structure,” Journal of Finan-
cial Economics, 5 (1977), 177-88.

$See F. Jamshidian, “An Exact Bond Option Pricing Formula,” Journal of Finance, 44 (March
1989), 205-9.
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Figure 15.10 Possible Shapes of Term Structure When Vasicek’s Model Is Used
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and X is the strike price. The price of a European put option on the bond is
XP(t, TYN(—h +0p) — P(t,s)N(=h) (15.22)

Whena =0, v(t,T) = o~/T —t and 0p = o(s — T)/T — 1.

Varuine European OprioNs oN CoUuPON-BEARING BONDs:

JAMSHIDIAN'S APPROACH

In the same paper, Jamshidian shows that the prices of options on coupon-
bearing bonds can be obtained from the prices of options on discount bonds in a
model such as Vasicek’s where there is only one stochastic variable. Consider a
European call option with exercise price X and maturity T on a coupon-bearing
bond. Suppose that the bond provides a total of n cash flows after the option
matures. Let the ith cash flow be ¢; and occur at s; (1 <i < n;s; > T). Define

r*: Value of r at time T that causes the coupon-bearing bond price to equal the

strike price

X;: Value at time T of a discount bond paying off $1 at time s; when r = r*
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When bond prices are known analytically as a function of 7 (as they are in Vasicek’s
model), r* can be obtained by trial and error.
The payoff from the option is

max [0, Zc,-P(T, 5i) — X]

i=1

Since there is only one stochastic variable, all bond prices are decreasing functions
of r. This means that the coupon-bearing bond is worth more than X at time T
and should be exercised if and only if r < r*. Furthermore, the discount bond
maturing at time s; that underlies the coupon-bearing bond is worth more than ¢; X;
at time T if and only if » < r*. It follows that the payoff from the option is

n
D cimax[0, P(r, T, 5;) — X;]
i=1
This shows that the option on the coupon-bearing bond is the sum of »n options on
the underlying discount bonds. A similar argument applies to European put options
on coupon-bearing bonds.

Example 15.4

Suppose that @ = 0.1, b = 0.1, and ¢ = 0.02 in Vasicek’s model. Consider a 3-year
European put option with a strike price of $98 on a bond that will mature in 5 years.
Suppose that the bond has a face value of $100 and pays a coupon of $5 every 6 months.
At the end of 3 years the bond can be regarded as the sum of four discount bonds. If
the short-term interest rate is r at the end of the 3 years, the value of the bond is from
Equation (15.18)

5A(3,3.5)e B35 L 54(3,4)e BT 1 54(3,4.5)e~ BG4 | 1054(3, 5)e~ BG5S
Using the expressions for A(¢, T) and B(¢, T) in equations (15.19) and (15.20), this becomes:
5 x 0.9988¢ 048771 | 5 5 0.9952¢0-9516r 4 5 (.9895¢71-3929" 4 105 x 0.9819¢— 18127

To apply Jamshidian’s procedure, we must find, r*, the value of r for which this bond price
equals the strike price of 98. Trial and error shows that r* = 0.10952. When r has this
value, the values of the four discount bonds underlying the coupon-bearing bond are 4.734,
4.484, 4.248, and 84.535. The option on the coupon-bearing bond is therefore the sum of
four options on discount bonds:

1. A 3-year option with strike price 4.734 on a 3.5-year discount bond with a face value
of 5

2. A 3-year option with strike price 4.484 on a 4-year discount bond with a face value
of 5

3. A 3-year option with strike price 4.248 on a 4.5-year discount bond with a face value
of 5



Sec. 15.11 The Vasicek Model 393

4. A 3-year option with strike price 84.535 on a 5-year discount bond with a face value
of 105

Using equation (15.22), the prices of these options are, respectively, 0.0125, 0.0228,
0.0314, and 0.8085. The price of the option under consideration is therefore $0.8752.

THE Usk oF TRINOMIAL TREES

Hull and White have shown how trinomial trees can be used to value Amer-
jcan bond options and other interest rate contingent claims in Vasicek’s model.”

The value of r on the tree at time zero is the initial short rate, ro. The values
of r considered at other nodes have the form rq + kAr where k is a positive or
negative integer. The relationship between Ar and the time step, A, is

Ar = o+ 3At

The trinomial tree is constructed so that the change in r has the correct mean and
standard deviation over each time interval At. The tree is more complicated than
the binomial tree considered in Chapter 14 in three ways:

1. There are three branches emanating from each node, not two
2. The probabilities on the branches are different in different parts of the tree
3. A branching process is liable to vary from node to node

The alternative branching processes are illustrated in Figure 15.11. Figure 15.11(a)
is the normal branching process. The alternative changes in r are: move up by Ar,
stay the same, and move down by Ar. When r is high, it is sometimes necessary
to use the branching process in Figure 15.11(c). The alternative changes in r are:

(@) (b) © @ &

Figure 15.11 Alternative branching processes in trinomial tree

7See J. Hull and A. White, “Valuing Derivative Securities Using the Explicit Finite Difference
Method,” Journal of Financial and Quantitative Analysis, 25 (March 1990), 87-100.
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stay the same, move down by Ar, and move down by 2Ar. When r is low,
it is sometimes necessary to use the branching process in Figure 15.11(b). The
alternative changes in » are then: move up by 2A¢, move up by At, and stay the
same. Other branching processes that are occasionally necessary in applications of
the trinomial tree approach are indicated in Figure 15.11(d) and 15.11(e).

Consider the node at time i At where r = rg + jAr. To choose a branching
process, we first calculate the expected value of r at time (i + 1)A¢ given that we
start at this node. We then choose the value of & which makes ry + kAr as close
as possible to this expected value of r and draw the tree so that the three possible
values of r that can be reached at time (i + 1)At are ro+ (k— 1)Ar, ro+kAr, and
ro + (k + 1)Ar. If the drift in r is such that the expected change in r in time At
is between —Ar/2 and +Ar /2, the normal branching process in Figure 15.11(a)
is appropriate; if the expected change is between Ar/2 and 3Ar /2, the branching
process in Figure 15.11(b) is appropriate; and so on.

Bond prices are known analytically at each node of the tree. When an
American bond option is being valued, it is therefore necessary for the tree to
extend only to the end of the life of the option (not to the end of the life of the
bond as in the Rendleman and Bartter model).?

AN [LLUSTRATION

To illustrate the construction of the tree, suppose that a = 0.2, b = 0.125,
and o = 0.01 so that ‘

dr =0.2(0.125 - r)dt + 0.014dz

and we wish to build a tree with Ar = 0.25 years. We suppose g, the initial value
of r, is 0.05.

In this case Ar = 0.014/3 x 0.25 = 0.0087. Figure 15.12 shows the tree
that is constructed for the first three time steps. At the initial node A, r = 0.05.
The expected change in r in the next time interval Ar is

a(b —r)At = 0.00375

and the standard deviation is 0.01+/0.25 = 0.005. Since the expected change is
between —Ar /2 and +Ar /2 , the normal branching process is appropriate and the
three possible changes in the value of r in time At¢ are —-0.0087, 0, and +0.0087.
The probabilities are chosen on the branches to give the correct mean and standard
deviation for the changes. Define p,, p,, and p,; as the probabilities associated

8There are two types of American bond options. The underlying bond can have a fixed life
measured from today or a fixed life measured from the time the option is exercised. Both types can be
valued using the tree.



Sec. 15.11 The Vasicek Model 395

Node A B C D E F G H I

r% 500 413 500 587 326 413 500 587 674

Pu 0474 0521 0474 0428 0039 0521 0474 0428 0.385
Pm 0483 0439 0483 0525 0453 0439 0483 0525 0.561
P4 0.043 0040 0043 0.047 0508 0040 0.043 0.047 0.054

Figure 15.12 Trinomial Tree for Vasicek’s Model

with the upper, middle, and lower branches, respectively. They must satisfy

Pa+Pm+pu=1
0.0087p, — 0.0087p;s = 0.00375

0.00872p, + (—0.0087) ps = 0.005 + 0.00375>

The solution to these equations is ps = 0.043, p, = 0.483, and p, = 0.474. The
probabilities at all other nodes are calculated similarly.

At node E, the branching process proves to be nonstandard. The value of r
at this node is 0.0326 and the expected change in r in the next time interval At is

a(b — ryAt = 0.00462

As at other nodes, the standard deviation of the change is 0.005. Since the value
of the expected change is between Ar/2 and 3Ar/2, the branching process used
is the one shown in Figure 15.11(b). The three possible changes in the value of r
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in the next time interval At are 0, +0.0087, +0.0174. The probabilities, p,, pm,
and p,; must satisfy the equations

Pd+ Pm+ pu=1
0.0174p, + 0.0087 p,, = 0.00462

0.0174%p, + 0.0087% p,, = 0.0052 + 0.00462>
The solution is p, = 0.039, p, = 0.453, and p; = 0.508.

RoLLING BACK THROUGH THE TREE

Once the tree has been constructed, the prices of all bonds at each node can
be calculated using Equation (15.18). The procedure for rolling back through the
tree is similar to that used for the binomial tree in the Rendleman and Bartter
model. The difference is that the discounted expected value at each node has to
be calculated over three possible branches rather than two. When we roll back
through the tree we assume that the interest rate at a node applies for the whole
of the following time step. Thus, if fg, fu, and f; are the value of a derivative
security at nodes G, H, and I, respectively, then assuming no early exercise, the
value at node D is

e~ 00587x0.2510 428 f; + 0.525 fy + 0.047 f]
With a similar notation, the value at node E, assuming no early exercise, is
¢~00326x02510,039 f; + 0.453 fx + 0.508 ;]

Checks for the desirability of early exercise must be made as in binomial trees.

15.12 THE COX, INGERSOLL, AND ROSS MODEL J

One of the theoretical disadvantages of Vasicek’s model is that interest rates can
become negative. Cox, Ingersoll, and Ross have proposed an alternative model
that overcomes this problem.” The risk-neutral process for r in their model is

dr=ab—r)dt +ordz

This has the same mean-reverting drift as Vasicek, but the stochastic term has a
standard deviation proportional to /7. This means that as the short-term interest
rate increases its standard deviation increases.

9See J. C. Cox, J. E. Ingersoll, and S. A. Ross, “A Theory of the Term Structure of Interest
Rates,” Econometrica, 53 (1985), 385-407.
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Cox, Ingersoll, and Ross show that, in their model, bond prices have the
same general form as in Vasicek’s model:
P(t, T) = A(t, T)e B¢
but the functions B(¢, T) and A(¢, T) are different:
2(e? T — 1)

B, T)=
D= et - D12y
and 2ab/o?
2y @t T =0/ o
AG,T) = ve
¥ +a) @70 1) +2y

where y = va? +202%.  As in the case of Vasicek’s model, upward-sloping,
downward-sloping, and slightly humped yield curves are possible.

Cox, Ingersoll, and Ross provide formulas for European call and put options
on discount bonds. These involve integrals of the noncentral chi-square distribu-
tion. European options on coupon-bearing bonds can be valued using Jamshidian’s
approach in a similar way to that described for Vasicek’s model. American options
can be valued using the trinomial tree approach described for European options.
The trick is to use the tree to model x = 2./7 rather than r itself. From Ito’s
lemma, the process followed by x is

2 2
dx = [a_(b_—_xl - i—] dt+odz
X 4x
At each node of the tree, r is calculated using the inverse transformation r = (x /2)2.
The procedure works in circumstances where 4ab > o? so that the drift in x is
positive as x approaches zero.

15.13 TWO-FACTOR MODELS \/

The models considered assume that the whole term structure depends on a single
stochastic variable or factor. A number of researchers have investigated the prop-
erties of two-factor models. For example, Brennan and Schwartz have developed
a model where the process for the short rate reverts to a long rate which in turn
follows a stochastic process.® The long rate is chosen as the yield on a perpetual
consol bond. Since the yield on a consol bond is the reciprocal of the price of the
bond, the two variables in the model can therefore be regarded as the short-term

10gee M. J. Brennan and E. S. Schwartz, “A Continuous Time Approach to Pricing Bonds,” Journal
of Banking and Finance, 3 (July 1979), 133-55; M. J. Brennan and E. S. Schwartz, “An Equilibrium
Model of Bond Pricing and a Test of Market Efficiency,” Journal of Financial and Quantitative Analysis,
17, 3 (September 1982), 301-29.
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rate r and the price of a consol bond. The fact that a consol bond is a traded
security simplifies the analysis since we know that its drift in a risk-neutral world
must be the risk-free interest rate less the yield on the bond.

Another two-factor model has been proposed by Longstaff and Schwartz.!!
These authors start with a general equilibrium model of the economy and derive a
term structure model in which there is a stochastic volatility. The model proves to
be analytically quite tractable.

15.14 NO-ARBITRAGE MODELS

The disadvantage of the term structure models presented in the the previous few
sections is that they do not automatically fit today’s term structure. By choosing
the parameters judiciously in the way indicated in Figure 15.4, they can be made
to provide an approximate fit to many of the term structures that are encountered
in practice. But the fit is not usually an exact one and in some cases there are
significant errors. Most traders find this unsatisfactory. Not unreasonably, they
argue that they can have very little confidence in the price of a derivative security
when the model does not price the underlying correctly. A 1 percent error in the
price of the underlying can lead to a 50 percent error in an option price.

In this section, we present some general theoretical background material on
what are known as no-arbitrage models. These are models which are designed so
that they are exactly consistent with today’s term structure. We will assume that
the term structure depends on only one factor, but the results can be extended to
accommodate several factors.

We will adopt the following notation:

P(t,T): Price at time ¢ of a discount bond with principal $1 maturing
at time T
v(t, T): Volatility of P(t, T)
f(t,Tq, T): Forward rate as seen at time ¢ for the period between time T,
and time T,

F(t,T): Instantaneous forward rate as seen at time ¢ for a contract ma-
turing at time T

r(t): Short-term risk-free interest rate at time ¢
dz(t): Wiener process driving term structure movements

The variable F(t, T) is the limit of f(¢t, T, T + Ar) as At¢ tends to zero.
"See F. A. Longstaff and E. S. Schwartz, “Interest Rate Volatility and the Term Structure: A

Two Factor General Equilibrium Model,” Working Paper, November 1990, Ohio State University and
UCLA.
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Tue ProcessEs FOR Discount BoND PRrICES AND FORWARD RATES

We start with the risk-neutral process for P(¢, T):
dP@, T) =r(t)P(t, T)dt +v(t, T)P(t, T)dz(r) (15.23)

This equation reflects the fact that, since a discount bond is a traded security
providing no income, its expected return in a risk-neutral world must be r(t). The
volatility, v(¢, T), can in the most general form of the model be any well-behaved
function of past and present P’s, but, since a bond’s price volatility declines to
zero at maturity, we must have!

v, 1) =0

The forward rate, f(t, Ty, T>), can be related to discount bond prices as
follows
In[P(z, T1)] — In[P (¢, T3)]

f@&, T, T2) = T, (15.24)
From (15.23)
[P, T)] = [r(r) - 3%?3] dt + v(t, Tydz(0)
and
din[P(t, T2)] = [r(f) - B(t’zl)z:l dt +v(t, T)dz(r)
so that
df@. T, Ty = 2 ZZ();Z__”T(:) Ty g 4 0 T}z - ;f’ D) 42y (15.29)

Equation (15.25) shows that the risk-neutral process for f depends only on the v’s.
It depends on r and the P’s only to the extent that the v’s themselves depend on
these variables.

When we put 7} = T and T, = T + AT in (15.26) and then take limits as
AT tends to zero, f(t, T;, T») becomes F(z, T), the coefficient of dz(r) becomes
vr(t, T), and the coefficient of dt becomes

19 [v(r, T)?
2 aT
where subscripts denote partial derivatives. It follows that

dF (@, T) = v(t, T)vr(t, T)dt —vr(t, T)dz(t)

=@, T)vr(, T)

12y(¢, ¢) = O is equivalent to the assumption that all discount bonds have finite drifts at all times.
This is because, if the volatility of the bond does not decline to zero at maturity, an infinite drift may
be necessary to ensure that the bond’s price equals its face value at maturity.
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Since we may without loss of generality change the sign of dz(¢), we can write
this
dF@, T) =v(t, T)vr(t, T)dt 4+ vr(t, T)dz(¢) (15.26)
* Once v(t, T) has been specified for all ¢+ and T, the risk-neutral processes for
the F(¢, T)’s are known. The v(¢, T)’s are therefore sufficient to fully. define a
one-factor interest rate model.
Equation (15.26) shows that there is a link between the drift and standard

deviation of an instantaneous forward rate. Heath, Jarrow, and Morton were the
first to point this out.!> Integrating vy (¢, T) between T =t and T = T we obtain

T
v(t, Ty —v(,t) = / vr(t, T)drt
t
Since v(¢, t) = 0, this becomes
T
v(t, T) =f vr(t, t)dt
¢

If m(¢t, T) and s(¢, T) are the instantaneous drift and standard deviation of F (¢, T),
it follows from (15.26) that '

T
m(, T)=s(, T)/ s(t, )dr (15.27)

A similar result holds where there is more than one factor.

THE PROCESS FOR THE SHORT RATE

We now move on to derive the risk-neutral process for r(¢) from bond price
volatilities and the initial term structure. Since

F(t,t)=F(O,t)+/ dF(t,t)
0

and r(t) = F(z, t) it follows from (15.26) that'*

4

r(t) = F(O, t)+/ v(t,t)v,(r,t)d1:+/ v (1, )dz () (15.28)
0 0

13gee D. Heath, R. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of Interest
Rates; A New Methodology,” Econometrica, 60, 1 (1992), 77-105.

14The stochastic calculus in equations (15.28) and (15.29) may be unfamiliar to some readers. To
interpret what is going on we can replace integral signs with summation signs and d’s with A’s. For
example, j; v(t, v (1, t)dt becomes Z:’=1 v(i At, v, (i At, t)At where At =t/n.
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Since we may without loss of generality change the sign of dz(¢), we can write
this

dF (@, T) = v(¢t, T)vr(t, T)dt + vr(t, T)dz(t) (15.26)

Once v(t, T) has been specified for all + and T, the risk-neutral processes for
the F(¢, T)’s are known. The v(¢, T)’s are therefore sufficient to fully define a
one-factor interest rate model.

Equation (15.26) shows that there is a link between the drift and standard
deviation of an instantaneous forward rate. Heath, Jarrow, and Morton were the
first to point this out.!> Integrating vr(f, T) between t =¢ and T = T we obtain

T
v(t, T)—v(t, 1) = f vr(t, T)drt
t

Since v(z, t) = 0, this becomes

T
v(t, T) =/ vr(t, 1)dt

If m(¢, T) and s(z, T) are the instantaneous drift and standard deviation of F (¢, T),
it follows from (15.26) that

T
m(, T)=s(t, T)f s(t, T)dt (15.27)

A similar result holds where there is more than one factor.

THE PROCESS FOR THE SHORT RATE

We now move on to derive the risk-neutral process for r(¢) from bond price
volatilities and the initial term structure. Since

F(, 1) = F(Q, t)+f dF(z,t)
0

and r(¢) = F(t,1) it follows from (15.26) that!*

1

r(t) = F@0,t) +/ v(t, v (t, t)dt +f v (1, t)dz(t) (15.28)
0 0

13See D. Heath, R. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of Interest
Rates; A New Methodology,” Econometrica, 60, 1 (1992), 77-105.

14The stochastic calculus in equations (15.28) and (15.29) may be unfamiliar to some readers. To
interpret what is going on we can replace integral signs with summation signs and d’s with A’s. For
example, j; v(t, t)vi (7, t)dT becomes Z?:l v(i At, )y, (i At, t)At where At =t/n.
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Since we may without loss of generality change the sign of dz(¢), we can write
this

dF (@, T) =v(t, Tvr(t, T)dt + vy (¢, T)dz(t) (15.26)

Once v(t, T) has been specified for all + and T, the risk-neutral processes for
the F(t, T)’s are known. The v(¢, T)’s are therefore sufficient to fully define a
one-factor interest rate model.

Equation (15.26) shows that there is a link between the drift and standard
deviation of an instantaneous forward rate. Heath, Jarrow, and Morton were the
first to point this out.!* Integrating vr (¢, T) between T =t and T = T we obtain

T
v(t, T)—v(t, t) = / vr(t, 1)dt

Since v(t, t) = 0, this becomes

T
v(t, T) =/ vr(t, t)dt

If m(¢, T) and s(¢, T) are the instantaneous drift and standard deviation of F (¢, T'),
it follows from (15.26) that

T
m(t, T) = s(t, T)/ s(t, T)dt (15.27)
t

A similar result holds where there is more than one factor.

THE PROCESS FOR THE SHORT RATE

We now move on to derive the risk-neutral process for 7 (t) from bond price
volatilities and the initial term structure. Since

t
F(t,t)=F(0,t)+f dF(t,t)
0

and r(t) = F(t, 1) it follows from (15.26) that'*

t

t
r(ty=F(©O,1) +/ v(t, v (z, t)dt +/ v (T, )dz(T) (15.28)
0 0

13See D. Heath, R. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of Interest
Rates; A New Methodology,” Econometrica, 60, 1 (1992), 77-105.

14The stochastic calculus in equations (15.28) and (15.29) may be unfamiliar to some readers. To
interpret what is going on we can replace integral signs with summation signs and d’s with A’s. For
example, f(; v(t, v (t, 1)dt becomes ZLI v(i At, 1), (i Az, t) At where At =t /n.
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Differentiating with respect to ¢ and using the result that v(¢,1) =0

t
dr(t) = F,(0,t)dt + [/ [v(z, DHv, (T, t) + v (T, t)2]dr} dt
0 (15.29)

+ {/ Utr(f,t)dz(f)] dt + [v (7, t)|c=1dz(t)
0

It is interesting to examine the terms on the right hand side of (15.29). The
first and fourth terms are straightforward. The first term shows that one component
of the drift in r is the slope of the initial forward rate curve. The fourth term shows
that the instantaneous standard deviation of r is v, (t, t)|;=,. The second and third
terms are more complicated, particularly when v is stochastic. The second term
depends on the history of v because it involves v(z, f) when t < t. The third term
depends on the history of both v and dz. The two terms are therefore liable to
cause the process for r to be non-Markov.

15.15 THE HEATH, JARROW, AND MORTON
APPROACH

The Heath, Jarrow, and Morton (HIM) approach is to specify the volatilities of all
instantaneous forward rates at all future times. This is sometimes referred to as
the volatility structure. Equation (15.27) is then used to calculate the drift of each
instantaneous forward rate and a binomial tree describing the evolution of the term
structure of forward rates is constructed.

Unfortunately, the HIM tree is, in general, nonrecombining in the sense that
an up movement followed by a down movement does not lead to the same term
structure as a down movement followed by an up movement. Figure 15.13 shows
a typical HIM tree for one factor and three time steps. In general, after n time
steps there are 2" nodes. This severely limits the number of time steps that can be
used and makes computations extremely slow.

Since a complete knowledge of the behavior of the short rate is sufficient to
determine the initial term structure and how it can evolve, we can regard the HIM
tree as a tree in the short rate. Our discussion of the process for the short rate, r,
in the previous section explains why the HIM tree does not necessarily recombine.
In the general HIM model, the process for r is non-Markov. In order to know the
stochastic behavior of r over a short period of time in the future, we need to know
not only the value of r at the beginning of the period but also the path it followed
in reaching that value.'”

A numerical procedure that can be used fairly easily in conjunction with
the general HIM model is Monte Carlo simulation. This can be used to test the

15Note that this does not lead to a market inefficiency since r is not the price of a traded security.
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Figure 15.13 A Nonrecombining Tree

effect of different volatility structures on European option prices. Unfortunately,
American-style options cannot be priced with Monte Carlo simulation.

MAaRrkov VERSIONS oF THE MODEL

Markov models of the short rate can be represented using recombining trees
and have the advantage that they use far less computer time than non-Markov
models. As a practical matter, it makes sense to try to find particular cases of
the general HIM model where r is Markov. Note that when we are developing a
no-arbitrage model, we cannot simply write down a process for r such as the one
in Equation (15.10). This is because there is no guarantee that the model will fit
the initial term structure.

This shows that there is a key difference between modeling r and model-
ing either bond prices or instantaneous forwards. When we model bond prices or
instantaneous forwards, the initial values of the variables ensure that we are con-
sistent with the initial term structure, but we have no easy way of knowing whether
the process for r is Markov. When we model r directly, we know immediately
whether the process is Markov, but the initial value of the variable only ensures
that we are consistent with the short end of the term structure.

We now examine in some detail two no-arbitrage Markov models of the short
rate.



Sec. 15.16 The Ho and Lee Model 403
15.16 THE HO AND LEE MODEL

Ho and Lee proposed the first no-arbitrage model of the term structure in a paper
in 1986.% They presented the model in the form of a binomial tree where there
were two parameters, one concernerned with volatility the other concerned with
the market price of risk. It has since been shown that the continuous time limit of
the model is

dr =0)dt +odz

where o, the instantaneous standard deviation of the short rate, is constant and 6 (¢)
is a function of time chosen to ensure that the model fits the initial term structure.
The equation for 8(¢) is

6@t) = F,(0,1) + ot

It is interesting note that Ho and Lee’s parameter concerned with the market price
of risk is a redundant variable. This is analogous to risk preferences being irrelevant
in the pricing of stock options.

In the Ho and Lee model, discount bonds and European options on discount
bonds can be valued analytically. The expression for the price of a discount bond
at time ¢ in terms of the short rate is

P, T)=A(t, T)e 7T

where

PO, T) almP@O,1) 1, 5
- (T —-t)y—————— — 0 t(T —1t

ron T 01T =n

The price of a European call and put options on a discount bond is given by

equations (15.21) and (15.22) where

op=0(@s—T)VT —t

European options on coupon-bearing bonds can be valued by decomposing them
into a portfolio of European options on discount bonds using the approach suggested
by Jamshidian that was described in Section 15.11. American options can be valued
by drawing a tree in either the way described by Ho and Lee or by using trinomial
trees as will be described later in this chapter.

The Ho and Lee model has the advantage that it is a Markov analytically
tractable model. It easy to apply and provides an exact fit to the current term
structure of interest rates. One disadvantage of the model is that it gives the user
very little flexibility in choosing the volatility structure. All spot and forward rates
have the same instantanous standard deviation, o. Another related disadvantage

InA(¢, T)=1In

16See T. S. Y. Ho and S.-B. Lee, “Term Structure Movements and Pricing Interest Rate Contingent
Claims,” Journal of Finance, 41 (December 1986), 1011-29.
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of the model is that it has no mean reversion. This means that regardless of how
high or low interest rates are at a particular point in time, the average direction in
which interest rates move over the next short period of time is always the same.

15.17 THE HULL AND WHITE MODEL

In a paper published in 1990, Hull and White explored extensions of the Vasicek
and Cox, Ingersoll, and Ross models that provide an exact fit to the initial term
structure.'” One version of the extended Vasicek’s model is

dr = (0(t) —ar)dt + o dz (15.30)

where a and o are constants. We will refer to this as the Hull-White model.
It can be characterized as the Ho and Lee model with mean reversion at rate a.
Alternatively it can be characterized as the Vasicek model with a time-dependent
reversion level. The Ho and Lee model is a particular case of this Hull-White
model with a = 0.

The model has the same amount of analytic tractability as Ho and Lee. The
bond price at time ¢ can be determined analytically as a function of the short rate.

P(t,T) = A(t, T)e 20T

where
1_—-a(T—1)
B4, T) = —%
and
P(0,T) AMPO,) 1, o o
InA(, T) =1 B, )R L (el _ pmary2(g2ar _ g
nAl Ty =InFoy ~ B D—F 27 e e )

The formulas for European option prices on discount bonds are the same as those
given for the Vasicek model in equations (15.21) and (15.22). European options
on coupon-bearing bonds can be valued using the Jamshidian decomposition into
options on discount bonds described in Section 15.11.

The volatility structure in the Hull-White model is determined by both o
and a. The model can represent a wider range of volatility structures than Ho and
Lee. The volatility at time ¢ of a bond of maturing at time T is

%“ _ T

7See J. Hull and A. White, “Pricing Interest Rate Derivative Securities,” Review of Financial
Studies, 3, 4 (1990), 573-92.
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(@ ®)

Forward Rate S.D.
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©

Figure 15.14 The Volatility Structure in the Hull-White Model

The instantaneous standard deviation at time ¢ of the zero-coupon interest rate
maturing at time T is

o [1 . e—a(T—t)]
a(T —1)
and the instantaneous standard deviation of the T-maturity instantaneous forward
rate is oe~*7 =D These functions are shown in Figure 15.14. The parameter o

determines the short rate’s instantaneous standard deviation. The reversion rate
parameter, a, determines the curvature in Figure 15.14(a) and the rate at which
standard deviations decline with maturity in Figure 15.14(b) and 15.14(c). The
higher a, the greater the curvature and the greater the decline. When a = 0, dis-
count bond price volatilities are a linear function of maturity and the instantaneous
standard deviations of both zeroes and forward rates are constant.

UsiNne TrinomiaL TREes |77

A trinomial tree can be used to value American options and other more
complicated derivative securities in the Hull and White model. The details are
explained in a paper by Hull and White.!® The geometry of the tree is similar to

18Gee J. Hull and A. White, “One-Factor Interest Rate Models and the Valuation of Interest Rate
Derivative Securities,” forthcoming, Journal of Financial and Quantitative Analysis.



406 Interest Rate Derivative Securities Chapter 15

the geometry of the tree used for Vasicek’s model in Section 15.11. However, there
is one important difference. When implementing Vasicek’s model, the process for
r is known and the tree is chosen so that it matches the process as closely as
possible. Here there is an unknown function 6(¢) and part of the objective of the
process used to construct the tree is to determine €(¢) so that all discount bonds
are priced correctly.

The short rate, r, on the tree is defined as the continuously compounded yield
on a discount bond maturing in time Af. The values of » on the tree are equally
spaced and have the form ro+ jAr for some Ar where ry is the current value of r
and j is a positive or negative integer. The time values considered by the tree are
also equally spaced having the form iAr for some At where i is a non-negative
integer. The variable Ar is related to Ar using Ar = g+/3At.

For convenience, the node on the tree where ¢t = iAt and r = ro + jAr
(i > 2) will be referred to as the (i, j) node. We use the following notation:

R(2) : Yield at time zero on a discount bond maturing at time i At
Tt ro+ jAr
1, ¢+ Drift rate of r at node (i, j)

We suppose that the tree has already been constructed up to time nA¢t (n > 0)
so that it is consistent with the R(i) and show how it can be extended one step
further. Since the interest rate, r, at time i At is assumed to apply to the time
period between i At and (i + 1)At, a tree constructed up to time nAt reflects the
values of R(i) for i < n + 1. In constructing the branches comprising the tree
between times nAt and (n + 1) A¢, we must choose a value of 8(nAt) so that the
tree is consistent with R(n + 2). The equation for doing this is

o%At
2

1 1
6(nAN = =+ DR+ +——+ 10 Y O(n, e 44" (15.31)
j .

where Q(i, j) is the value of a security that pays off $1 if node (i, j) is reached
and zero otherwise. The Q(i, j)’s can be calculated as the tree is constructed using

QG, j)=)_ 06 -1,jqG", e (15.32)
jlt

where g(j*, j) is the probability of moving from node (i — 1, j*) to node (i, j)
(For any given j*, this is zero for all except three of the j’s.)

Once 6(nAt) has been determined, the drift rates w1, ; for r at the nodes at
time nAt are calculated using

Un,j = 60(nAt) —a(ro + jAr) (15.33)
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The branches emanating from the nodes at time n At and their associated probabil-

ities are then chosen to be consistent with the u, ;’s and with o in a similar way

to that described for Vasicek’s model in Section 15.11.

Example 15.5

Figure 15.15 shows the tree that is constructed for the Hull-White model in Equation (15.30)
when a = 0.1, o = 0.014, and A¢ = 1. The term structure is assumed to be upward sloping
with the yields on 1-, 2-, 3-, 4-, and 5-year discount bonds being 10 percent, 10.5 percent,
11.0 percent, 11.25 percent, and 11.5 percent, respectively.

The first step in constructing the tree is to calculate 6(0). Since Q(0,0) = 1,ro = 0.1,
and R(2) = 0.105, Equation (15.31) gives 8(0) = 0.0201. From Equation (15.33) calculate

Table of rates and probabilities

Node A B C D E F G
Rate 10.00 7.58 10.00 1242 7.58 10.00 1242
P 0.456 0.044 0.512 0.420 0.288 0.223 0.167
P2 0.498 0.482 0.446 0.530 0.626 0.656 0.667
D3 0.046 0.474 0.042 0.050 0.086 0.121 0.166
Node H 1 J K L M N
Rate 14.85 5.15 7.58 10.00 12.42 14.85 17.27
Py 0.122 0.042 0.453 0.368 0.292 0.226 0.170
D2 0.657 0.424 0.501 0.572 0.624 0.655 0.667
D3 0.221 0.534 0.046 0.060 0.084 0.119 0.163

Figure 15.15 Tree for Hull-White Model
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the drift of r at the (0,0) node is 0.0101. The mean and standard deviation of » on the
nodes that can be reached from node (0,0) is therefore 0.0101 and 0.014. This leads to the
probabilities, 0.046, 0.498, and 0.456, for the first three branches in Figure 15.15. Equation
(15.32) shows that Q(1, 0), Q(1, 1), and Q(1,2) are 0.413, 0.451, and 0.042 respectively.
This completes calculations for the first time step. Equation (15.31) can now be used
again to calculate 6(At) as 0.0214. This leads to the probabilities shown on the branches
corresponding to the second time step in Figure 15.15; and so on. For accurate calculations
a computer should be used as rounding errors build up fast when only a 3 or 4 decimal
places are stored.

OTHER MARKOV MODELS

The tree procedure that has just been described can be used to construct other
one-factor Markov models of the term structure that are consistent with the initial
term structure. Consider, for example, the model

dinr =[6(t) ~alnrldt + o dz (15.31)

This is similar to models proposed by Black, Derman, and Toy, and Black and
Karasinski.!” A trinomial tree is constructed in Inr rather than r. At each step,
0(¢) is chosen so that the tree prices discount bonds correctly. The procedure that
must be followed is explained by Hull and White.20

The advantage of the Hull-White model over alternatives is its analytic
tractability. Bond prices and European option prices are known analytically. By
contrast, other models such as the one in Equation (15.31) have no analytic tractabil-
ity. This means that trees for r must be constructed out to the end of the life of
the underlying asset—not just to the end of the life of the option. This can be
computationally quite time consuming.

15.18 HEDGING

The hedge statistics calculated for a portfolio of interest rate derivative securities
are generally more extensive from those calculated for a portfolio of derivative
securities dependent on a stock or a currency. Often practitioners choose to divide
the yield curve into sections or “buckets.” They make a small parallel shift in one
section keeping the rest of the yield curve unchanged and observe the effect on the

19See F. Black, E. Derman, and W. Toy, “A One-Factor Model of Interest Rates and its Application
to Treasury Bond Options,” Financial Analysts Journal, (January-February, 1990), 33-39; F. Black and
P. Karasinski, “Bond and Option Pricing When Short Rates are Lognormal,” Financial Analysts Journal,
(July—August, 1991), 52-59.

2See J. Hull and A. White, “One-Factor Interest Rate Models and the Valuation of Interest Rate
Derivative Securities,” forthcoming, Journal of Financial and Quantitative Analysis.
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value of their portfolio. A well-hedged portfolio is not unduly sensitive to changes
in any of the buckets. If the hedge statistics indicate an unacceptable exposure,
trades are done to reduce the exposure.

This approach corresponds to the GAP management approach that is often
used by financial institutions to manage their assets and liabilities. Note that in
any model for r that we use, there are only certain ways that the term struc-
ture can evolve. Purists might argue that we should hedge against only these
particular movements rather than all possible movements. In practice, however,
the approach previously described is usually adopted even though it is somewhat
inconsistent with the model being used. We can draw an analogy with the Black—
Scholes model as far as this is concerned. When pricing equity options, analysts
usually assume that volatility is constant, but, when hedging, they recognize that
this model is imperfect and hedge against volatility changes by calculating vega
measures.?!

15.19 SUMMARY

Interest rate options arise in practice in many different ways. For example, options
on Treasury bond futures, Treasury note futures, and Eurodollar futures are actively
traded by exchanges. Many traded bonds include features that are options. The
loans and deposit instruments offered by financial institutions often contain hid-
den options. Mortgage-backed securities contain embedded interest rate options.
Options on swaps (swaptions) and interest rate caps are actively traded over the
counter.

Interest rate options are more difficult to value than stock options, currency
options, index options, and most futures options. This is partly because we are
dealing with a whole term structure—not a single variable. It is also partly because
the behavior of interest rates is relatively complicated. For example, interest rates
appear to exhibit a phenomenon known as mean reversion. This means that they
have a drift rate that always tends to pull them back towards some central value.
Superimposed upon this mean reversion is a volatility.

Caps are frequently valued by assuming that each element of the cap is an
option on a forward interest rate and by using Black’s model. The appropriate
forward rate volatility to use in the model tends to decline as the maturity of the
forward contract increases.

European bond options are frequently valued by assuming that either bond
prices or bond yields are lognormal at the time when the option matures. This
approach cannot be extended to American bond options and other interest rate

21For a fuller discussion of hedging issues, see J. Hull and A. White, “Modern Greek,” RISK,
(December 1990), 65-67.
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derivative securities because the pattern of our uncertainty about a bond’s price
during its life has features that are not well represented by the Black—Scholes
model. To overcome this problem, a yield curve model is required.

Many of the yield curve models that have been proposed have the disad-
vantage that they are not consistent with the term structure of interest rates at the
time the model is built. This has led Ho and Lee; Heath, Jarrow, and Morton;
Hull and White; and others to suggest ways in which yield curve models can be
constructed so that they are automatically consistent with the initial yield curve.
The Heath, Jarrow, and Morton model has the advantage that it can fit all forward
rate volatilities at all times. But this advantage is achieved at considerable cost.
The process for the short rate, r, is in general non-Markov. This means that the
tree for r is nonrecombining and, even with only one factor, there are 2" nodes
at the nth time step, making the model very slow computationally. A number of
Markov no-arbitrage models of the short rate have been suggested to overcome
this problem. Amongst these are the Ho and Lee model; the Hull-White model:
the Black, Derman, and Toy model; and the Black and Karasinski model. The Ho
and Lee model has the advantage that it is analytically tractable. Its disadvantage
is that it implies that all rates are equally variable at all times. The Hull-White
model is a version of the Ho and Lee model that includes mean reversion. This
allows a richer description of the volatility environment while preserving the an-
alytic tractability of Ho and Lee. The Black, Derman, and Toy model and Black
and Karasinski model avoid the possibility of negative interest rates, but have no
analytic tractability.

SUGGESTIONS FOR FURTHER READING

Traditional Approaches to Modeling the Term Structure

Brennan, M. J. and E. S. Scuwarrz, “An Equilibrium Model of Bond Pricing and a Test
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Courtapon, G., “The Pricing of Options on Default-free Bonds,” Journal of Financial and
Quantitative Analysis, 17 (March 1982), pp. 75-100.
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QUESTIONS AND PROBLEMS

15.1. A company caps 3-month LIBOR at 10% per annum. The principal amount is $20
million. On a reset date, 3-month LIBOR is 12% per annum. What payment would
this lead to under the cap? When would the payment be made?

15.2. Explain what mortgage-backed securities are. Explain why mortgage-backed se-
curities are more risky than regular fixed income instruments such as government
bonds.

15.3. Explain why a swaption can be regarded as a type of bond option.

15.4. Use the Black~Scholes model to value a 1-year European put option on a 10-year
bond. Assume that the current value of the bond is $125, the strike price is $110, the
1-year interest rate is 10% per annum, the bond’s price volatility is 8% per annum,
and the present value of the coupons that will be paid during the life of the option
is $10.

15.5. Explain carefully why the Black—Scholes approach is inappropriate for valuing Eu-
ropean bond options when the life of the option is a significant proportion of the life
of the bond. What other approaches can be used?

15.6. Calculate the price of an option that caps the 3-month rate starting in 18 months
time at 13% (quoted with quarterly compounding) on a principal amount of $1,000.
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The relevant forward interest rate for the period in question is 12% per annum
(quoted with quarterly compounding), the 18-month risk-free interest rate (contin-
uously compounded) is 11.5% per annum, and the volatility of the forward rate is
12% per annum.

What are the advantages of yield curve models over the use of the Black and Black-
Scholes models for valuing caps and bond options?

Suppose that an implied volatility for a 9-month Eurodollar futures option is calcu-
lated using Black’s model and that this volatility is then used to value an 18-month
Eurodollar futures option. Would you expect the resultant price to be too high or
too low? Explain.

Consider an 8-month European put option on a Treasury bond that currently has
14.25 years to maturity. The current bond price is $910, the exercise price is $900,
and the volatility of the bond price is 10% per annum. A coupon of $35 will be paid
by the bond in 3 months. The risk-free interest rate is 8% for all maturities up to 1
year. Use the Black—Scholes model to determine the price of the option. Consider
both the case where the strike price corresponds to the cash price of the bond and
the case where it corresponds to the quoted price.

Calculate delta, gamma, and vega in Problem 15.9 when the strike price corresponds
to the quoted price. Explain how they can be interpreted.

Calculate the price of a cap on the 3-month LIBOR rate in 9 months’ time when the
principal amount is $1,000. Use Black’s model and the following information:

Quoted 9-month Eurodollar futures price = 92

Interest-rate volatility implied by a 9-month Eurodollar option = 15% per annum
Current 9-month interest rate with continuous compounding = 7.5% per annum
Cap rate = 8% per annum

Calculate delta, gamma, and vega in Problem 15.11. Explain how they can be
interpreted.

Calculate the value of a 4-year European call option on a 5-year bond using Black’s
model. The 5-year bond price is $105, the price of a 4-year bond with the same
coupon is $102, the strike price is $100, the 4-year risk-free interest rate is 10%
per annum with continuous compounding, and the volatility of the forward price of
1-year bond whose life starts in 4 years is 2% per annum.

Does a European interest rate option always increase in value as the time to maturity
increases, with all else being held constant? Explain your answer.

What other instrument is the same as a 5-year zero-cost collar where the strike price
of the cap equals the strike price of the floor? What does the common strike price
equal?

Can Jamshidian’s approach for converting an option on a coupon-bearing bond into
a portfolio of options on discount bonds be used in conjunction with a two-factor
model? Explain your answer.

“The lognormal bond price model allows negative interest rates.” Discuss.

Suppose that the yield, R, on a discount bond follows the process
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The relevant forward interest rate for the period in question is 12% per annum
(quoted with quarterly compounding), the 18-month risk-free interest rate (contin-
uously compounded) is 11.5% per annum, and the volatility of the forward rate is
12% per annum.

What are the advantages of yield curve models over the use of the Black and Black—
Scholes models for valuing caps and bond options?

Suppose that an implied volatility for a 9-month Eurodollar futures option is calcu-
lated using Black’s model and that this volatility is then used to value an 18-month
Eurodollar futures option. Would you expect the resultant price to be too high or
too low? Explain.

Consider an 8-month European put option on a Treasury bond that currently has
14.25 years to maturity. The current bond price is $910, the exercise price is $900,
and the volatility of the bond price is 10% per annum. A coupon of $35 will be paid
by the bond in 3 months. The risk-free interest rate is 8% for all maturities up to 1
year. Use the Black—Scholes model to determine the price of the option. Consider
both the case where the strike price corresponds to the cash price of the bond and
the case where it corresponds to the quoted price.

Calculate delta, gamma, and vega in Problem 15.9 when the strike price corresponds
to the quoted price. Explain how they can be interpreted.

Calculate the price of a cap on the 3-month LIBOR rate in 9 months’ time when the
principal amount is $1,000. Use Black’s model and the following information:

Quoted 9-month Eurodollar futures price = 92

Interest-rate volatility implied by a 9-month Eurodollar option = 15% per annum
Current 9-month interest rate with continuous compounding = 7.5% per annum
Cap rate = 8% per annum

Calculate delta, gamma, and vega in Problem 15.11. Explain how they can be
interpreted.

Calculate the value of a 4-year European call option on a 5-year bond using Black’s
model. The 5-year bond price is $105, the price of a 4-year bond with the same
coupon is $102, the strike price is $100, the 4-year risk-free interest rate is 10%
per annum with continuous compounding, and the volatility of the forward price of
1-year bond whose life starts in 4 years is 2% per annum.

Does a European interest rate option always increase in value as the time to maturity
increases, with all else being held constant? Explain your answer.

What other instrument is the same as a 5-year zero-cost collar where the strike price
of the cap equals the strike price of the floor? What does the common strike price
equal?

Can Jamshidian’s approach for converting an option on a coupon-bearing bond into
a portfolio of options on discount bonds be used in conjunction with a two-factor
model? Explain your answer.

“The lognormal bond price model allows negative interest rates.” Discuss.

Suppose that the yield, R, on a discount bond follows the process
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The relevant forward interest rate for the period in question is 12% per annum
(quoted with quarterly compounding), the 18-month risk-free interest rate (contin-
uously compounded) is 11.5% per annum, and the volatility of the forward rate is
12% per annum.

What are the advantages of yield curve models over the use of the Black and Black—
Scholes models for valuing caps and bond options?

Suppose that an implied volatility for a 9-month Eurodollar futures option is calcu-
lated using Black’s model and that this volatility is then used to value an 18-month
Eurodollar futures option. Would you expect the resultant price to be too high or
too low? Explain.

Consider an 8-month European put option on a Treasury bond that currently has
14.25 years to maturity. The current bond price is $910, the exercise price is $900,
and the volatility of the bond price is 10% per annum. A coupon of $35 will be paid
by the bond in 3 months. The risk-free interest rate is 8% for all maturities up to 1
year. Use the Black—Scholes model to determine the price of the option. Consider
both the case where the strike price corresponds to the cash price of the bond and
the case where it corresponds to the quoted price.

Calculate delta, gamma, and vega in Problem 15.9 when the strike price corresponds
to the quoted price. Explain how they can be interpreted.

Calculate the price of a cap on the 3-month LIBOR rate in 9 months’ time when the
principal amount is $1,000. Use Black’s model and the following information:
Quoted 9-month Eurodollar futures price = 92

Interest-rate volatility implied by a 9-month Eurodollar option = 15% per annum
Current 9-month interest rate with continuous compounding = 7.5% per annum
Cap rate = 8% per annum

Calculate delta, gamma, and vega in Problem 15.11. Explain how they can be
interpreted.

Calculate the value of a 4-year European call option on a 5-year bond using Black’s
model. The 5-year bond price is $105, the price of a 4-year bond with the same
coupon is $102, the strike price is $100, the 4-year risk-free interest rate is 10%
per annum with continuous compounding, and the volatility of the forward price of
1-year bond whose life starts in 4 years is 2% per annum.

Does a European interest rate option always increase in value as the time to maturity
increases, with all else being held constant? Explain your answer.

What other instrument is the same as a 5-year zero-cost collar where the strike price
of the cap equals the strike price of the floor? What does the common strike price
equal?

Can Jamshidian’s approach for converting an option on a coupon-bearing bond into
a portfolio of options on discount bonds be used in conjunction with a two-factor
model? Explain your answer.

“The lognormal bond price model allows negative interest rates.” Discuss.

Suppose that the yield, R, on a discount bond follows the process
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dR = udt +odz

where ¢ and o are functions of R and ¢, and dz is a Wiener process. Show that the
volatility of the discount bond declines to zero as it approaches maturity.

Use a binomial tree as in Section 15.9 to evaluate a put option on a 6% coupon
bond with a face value of $1,000 that matures at the end of year 6. The option is
American and expires at the end of year 4. Assume that coupons are paid at the end
of each year, the exercise price is $900, the initial short-term interest rate is 8%, the
volatility of interest rates is 20%, the real-world drift in interest rates is zero, and
the market price of interest rate risk is ~0.4. Use a time interval of 1 year.

In the Hull-White model @ = 0.08 and ¢ = 0.01. Calculate the price of a 1-year
European call option on a discount bond that will mature in 5 years when the term
structure is flat at 10%, the face value of the bond is $100, and the strike price $60.
In the Hull-White model @ = 0.1 and o = 0.015. Calculate the price of a 3-month
European put option on a 15-month bond with a 12% (semiannual) coupon. Assume
that the bond principal is $100, the cash strike price is $100, and the yield curve is

y() = 0.09 + 0.02¢



Exotic Options

Derivative securities with more complicated payoffs than the standard European or
American calls and puts are sometimes referred to as exotic options. Most exotic
options trade over the counter. They are designed by a financial institution to meet
a particular need in the market. Sometimes they are added to a bond issue to make
it more attractive in the market.! Some financial institutions market exotic options
very aggressively and are prepared to quote a price for almost any deal proposed
by a client. In this chapter, we describe some of the different exotics that exist in
the market and present one or two new valuation techniques.

Unless otherwise stated we consider options on stocks paying a continuous
dividend yield at rate g. As discussed in Chapter 11, for an option on a currency
we set g equal to the foreign risk-free rate; for an option on a futures contract we
set g equal to the domestic risk-free rate. The arguments in Chapter 12 show that
for an option on a commodity we can set ¢ equal to the convenience yield net
of storage costs; equivalently we can set r — g equal to the rate at which futures
prices grow as we look at longer and longer maturity contracts.

'Examples of bond issues incorporating options are given in Section i.4.
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16.1 TYPES OF EXOTIC OPTIONS

In an excellent series of articles that appeared in RISK magazine in 1991 and 1992,
Mark Rubinstein divides exotics into a number of categories. The categorization
in this section is similar to his.

PACKAGES

A package is a portfolio consisting of standard European calls, standard Eu-
ropean puts, forward contracts, cash, and the underlying asset itself.> We discussed
a number of different types of packages in Chapter 8: bull spreads, bear spreads,
butterfly spreads, straddles, strangles, and so on.

Often financial institutions like to design a package so that it has zero initial
cost. The product is then similar to a forward contract or a swap in that it can lead
to a positive or negative payoff. One example of a zero-cost package is a range
forward contract.® This was mentioned in Chapter 1. It consists of a long forward
contract combined with a long position in a put and a short position in a call (see
Figure 16.1). The strike prices are chosen so that the value of the call equals the
value of the put. Since the value of the forward contract is zero, the value of the
whole package is also zero. A range forward contract has a similar type of payoff
pattern to a bull spread, which was discussed in Chapter 8.

A regular option can be converted into a zero-cost product by deferring
payment for the option until maturity. If ¢ is the cost of the option when payment
is made up front, then A = ce’"~" is the cost when payment is made at maturity
of the option. The payoff is then max(§ — X, 0) — A or max(§ — X — A, —A).
When the strike price, X, equals the forward price, other names for a deferred
payment option are break forward, Boston option, forward with optional exit, and
cancellable forward.

NONSTANDARD AMERICAN OPTIONS

In a standard American option, exercise can take place at any time during
the life of the option and the exercise price is always the same. In practice, the
American options that trade do not always have these standard features.

One type of nonstandard American option is known as a Bermudan option.
In this, early exercise is restricted to certain dates during the life®f the option.

2We could omit standard European puts from the list of securities in a package since put—call
parity shows that a standard European put can always be created from a standard European call, cash,
and the underlying asset. Similarly, we could omit forward contracts since they can be created from a
position in the underlying asset.

30Other names used for a range forward contract are zero-cost collar, flexible forward, cylinder
option, option fence, min-max, and forward band.
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4 Profit

Short Call

Figure 16.1 Construction of a Range Forward Contract

An example of a Bermudan option would be an American swap option that can be
exercised only on reset dates.

Other types of nonstandard American options sometimes occur in the warrants
issued by a company on its own stock. It is often the case that early exercise is
possible during part of the life of the option, but not during all of its life. Sometimes
the strike price increases with the passage of time. For example, in a 5-year warrant
the strike price might be $30 during the first 2 years, $32 during the next 2 years,
and $33 during the final year.

ForwARD START OPTIONS

Forward start options are options that are paid for now but will start at some
time in the future. They are sometimes used in employee incentive schemes. The
terms of the option are usually chosen so that the options will be at the money at
the time they start.

Consider a forward start call option that will start at the money at time f,
and mature at time #, when the underlying asset is a non-dividend-paying stock .
Suppose that the current time is 7, the current stock price is S, and the stock price
at time t; is ;. To value the option, we note from the Black—Scholes formula that
the value of an at-the-money call option is proportional to the stock price. The
value of the forward start option at time #; is therefore ¢S;/S where c is the value
today of an at-the-money option that lasts for #, — #;. Using risk-neutral valuation,

o
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the value of the forward start option today is
~ [ S
PR o o
S

where £ denotes expectations in a risk-neutral world. Since ¢ and § are known
and E[S;] = Se"™, it follows that the value of the forward start option is c.
In other words, the value of the forward start option is exactly the same as the
value of a regular at-the-money option with the same life as the forward start
option.

If the stock is expected to pay dividends at rate g, then E[S;] = Se¢~90=0

and the previous analysis shows that the value of the forward start option is
Ce_q(tl_').

Compounp OPTIONS

Compound options are options on options. There are four main types of
compound options: a call on a call, a put on a call, a call on a put, and a put on a
put. Compound options have two strike prices and two exercise dates. Consider,
for example, a call on a call. On the first exercise date, 7}, the holder of the
compound option is entitled to pay the first strike price, X; and receive a call
option. The call option gives the holder the right to buy the underlying asset for
the second strike price, X, on the second exercise date, T,. The compound option
will only be exercised on the first exercise date if the value of the option on that
date is greater than the first strike price.

When the usual geometric Brownian motion assumption is made, European-
style compound options can be valued analytically in terms of integrals of the
bivariate normal distribution.* With our usual notation the value at time zero of a
European call option on a call option is

Se= T M(ay, by; VTi/T2) — X262 M (a2, b2; /T1/T2) — e "' X1 N(a2)
where
_In(S/8*) + (r —q +0%/2)T, |

a o IT, ; ay=a;—o+T;
In(S/X - 20T
by = n(S/Xy) + (- 11+0/)2; by = by — VT
ovT,

The function M is the cumulative bivariate normal distribution function; S* is the
stock price at time 77 for which the option price at time 7T equals X;. If the actual

4See R. Geske, “The Valuation of Compound Options,” Journal of Financial Economics, 7 (1979),
63-81; M. Rubinstein, “Double Trouble,” RISK, December 1991-January 1992.
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stock price is above S* at time T), the first option will be exercised; if it is not
above S*, the option expires worthless.
With similar notation the value of a European put on a call is

X2~ M(=az, by; —/T\ /T, — Se™ """ M(=ay, by; —/Ti/Ty) + " X, N(~ay)
The value of a European call on a put is
X2e "M (=ay, ~by; T/ T2) — Se = M(~ay, =b1; VTi/T2) — e "1 XN (—ay)
The value of a European put on a put is

Se™"M(ay, —b1; —/Ti/T) ~ X2¢" M (@, —bs; —/Ti/T) + e """ X N (a2)
A procedure for computing M is in Appendix 10B.

“As You Like IT” OpTIONS

An “as you like it” option has the feature that, after a specified period of
time, the holder can choose whether the option is a call or a put. Suppose that the
time at which the choice is made is ¢;. The value of the “as you like it” option at
this time is

max(c, p)
where c is the value of the call underlying the option and p is the value of the put
underlying the option.

If the options underlying the “as you like it” option are both European and
have the same strike price, put—call parity can be used to provide a valuation formula.
Suppose that S; is the stock price at time #;, X is the strike price, #, is the maturity
of the options, and r is the risk-free interest rate. Put—call parity implies that

max(c, p) = max(c, ¢ + Xe "7 . § 791
=c+ PR ACRiY max(0, Xe r—D-n) _ S
This shows that the “as you like it” is a package consisting of
1. A call option with strike price X and maturity #,; and
2. ¢77®=1) put options with strike price Xe~¢~9®~%) and maturity 1,.

As such it can be readily valued.

More complex “as you like it” options can be defined where the call and
the put do not have the same strike price and time to maturity. They are then not
packages, but have the same types of features as compound options:

BARRIER OPTIONS

Barrier options are options where the payoff depends on whether the un-
derlying asset’s price reaches a certain level during a certain period of time. In



Sec. 16.1 Types of Exotic Options 419

Chapter 11 we met one particular type of barrier option: the CAPS that trade on
the CBOT. These are options designed so that the payoff cannot exceed $30. A
call CAP is automatically exercised on a day when the index closes more than $30
above the strike price. A put CAP is automatically exercised on a day when the
index closes more than $30 below the strike price. Capped European and capped
American options similar to those traded by the CBOT are regularly traded over
the counter.

Another type of barrier option is a knockout option. This is similar to a
regular option except that, when the underlying asset’s price reaches a certain
barrier, H, the option ceases to exist. In the case of a call knockout, the barrier is
generally below the strike price (H < X). The option is then sometimes referred
to as a down-and-out option. In the case of a put knockout, H > X and option
is sometimes referred to as an up-and-out option. A down-and-in option is a call
that comes into existence only when the barrier, H (H < X)), is reached. Similarly
an up-and-in option is a put that comes into existence only when the barrier H
(H > X) is reached.

When the usual geometric Brownian motion assumption is made and our
usual notation is used, the value of a European down-and-in call option at time
Zero is

Se™ T (H/S)PN(y) — Xe™ ' T(H/S)P2N(y — o /T)
and the value of a European up-and-in put option is

Xe " T(H/S)P2N(=y + 6/T) — Se™ 9T (H/S)*N(—y)

where
s\ = r—rr+ 02/2
o2
ln[HZ/(SX)]
= ———— }\.O'ﬁ
oT

A regular call option is the sum of the price of a corresponding down-and-out
and down-and-in options. A price of a European down-and-out call is therefore
the price of a regular European call less the price of the corresponding down-and-
in call. Similarly the price of a European up-and-out put option is the price of
a regular European put option less the price of the corresponding up-and-in put
option.

A convertible bond usually contains a type of barrier option. This is because
there is generally a clause which allows the issuing company to call the bond,
thereby forcing conversion, if the stock price crosses some barrier.
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A important issue for barrier options is the frequency with which the as-
set price, S, is observed for the purposes of testing whether the barrier has been
reached. The analytic formulas given above assume that S is observed continu-
ously. Often the terms of a contract state that S is observed once a day. For
example in S&P CAPS, § is observed at the close of trading each day.

Bmvary OPTIONS

Binary options are options with discontinuous payoffs. A simple example of
a binary option is cash or nothing call. This pays off nothing if the stock price
ends up below the strike price and pays a fixed amount, Q, if it ends up above the
strike price. In a risk-neutral world, the probability of the stock price being above
the strike price at the maturity of an option is, with our usual notation, N (d,). The
value of a cash or nothing call is therefore Qe 79N (d,).

Another type of binary option is an asset or nothing call. This pays off
nothing if the underlying stock price price ends up below the strike price and pays
an amount equal to the stock price itself if it ends up above the strike price. With
our usual notation, the value of an asset or nothing call is SN (d;). A regular option
is equivalent to a long position in an asset or nothing call, and a short position in
a cash or nothing call where the cash payoff equals the strike price.

LookBack OPTIONS

The payoffs from lookback options depend on the maximum or minimum
price reached during the life of the option. If S; is the minimum price reached, S
is the maximum price reached, and St is the final price reached, the payoff from
a lookback call is

max(0, St — §1)
or simply Sy — Si, and the payoff from a lookback put is
max(O, Sz - ST)

or simply S — St
Valuation formulas have been produced for European lookbacks.> The value
of a European lookback call at time zero is

2 2

Se T N(ay) - Se_"TU—N(—al) — Suine”"T [N(az) -3 d

— NN _
20— - ™M 03)]

3See B. Goldman, H. Sosin, and M. A. Gatto, “Path-Dependent Options: Buy at the Low,
Sell at the High,” Journal of Finance, 34 (December 1979), 1111-27.; M. Garman, “Recollection in
Tranquility,” RISK, March 1989.
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where S is the minimum value achieved to date and
In(S/Smin) + (r — g +*/2)T
a =
oNT
a =da; — 0’\/7:
o= I0C5/Smin) + (=r +q +0%/DT

3 0’\/7
2(r —q — 0%/2) In(S/Smin)
Y = - )

The value of a European lookback put is

2 2

—rT _ o )63 _ —qT g _ _ ¢,—qT
Smax€ [N(bl) —Z(r—-q)e N( bg)}-}-Se 2(r—q)N( by)—Se™ " N(b2)

where Spax is the maximum price achieved to date and

_ In(Smax/S) + (=r +q +*/)T

b, T
by =b; —oT
by = NSmex/S) + & — g = /DT
oJT
2(r —q — 02/2) In(Spax/S)
Y, =

o2

A call lookback is, in essence, a way in which the holder can buy the un-
derlying asset at the lowest price achieved during the life of the option. Similarly,
a put lookback is a way in which the holder can sell the underlying asset at the
highest price achieved during the life of the option. The underlying asset in a
lookback option is often a commodity. As with barrier options, the value of a
lookback is liable to be sensitive to the frequency with which the asset price is
observed for the purposes of computing the maximum or minimum. The above
formulas assume that the asset price is observed continuously.

AsiaN OPTIONS 0/

Asian options are options where the payoff depends on the average price of
the underlying asset during at least some part of the life of the option. The payoff
from an average price call is max(0, Suve — X), and that from an average price
put is max(0, X — S,e) where S, is the average value of the underlying asset
calculated over some predetermined averaging period. Average price options are



422 Exotic Options Chapter 16

less expensive than regular options and are arguably more appropriate than regular
options for meeting some of the needs of corporate treasurers. Suppose that a U.S.
corporate treasurer expects to receive from the company’s German subsidiary a
cash flow of 100 million deutschemarks spread evenly over the next year. The
treasurer is likely to be interested in an option that guarantees that the average
exchange rate realized during the year is above some level. An average price put
option can achieve this more effectively than regular put options.

Another type of Asian option is an average strike option. An average strike
put pays off max(0, S— S,.) while an average strike call pays off max(0, Sae—39).
Average strike options can guarantee that the average price paid for an asset in
frequent trading over a period of time is less than the final price. Alternatively, it
can guarantee that the average price received for an asset in frequent trading over
a period of time is greater than the final price.

If the underlying asset price, S, is assumed to be lognormally distributed, and
Save is @ geometric average of the §’s, analytic formulas are available for valuing
European average price options.® This is because the geometric average of a set of
lognormally distributed variables is also lognormal. In a risk-neutral world it can
be shown that the probability distribution of the geometric average over a certain
period is the same as that of a stock at the end of the period when the stock’s
expected growth rate is (r — g — 02/6)/2 and its volatility is o/+/3. A geometric
average price option can therefore be treated like a regular option with the volatility
set equal to o/+/3 and the dividend yield equal to

1 02_1++02
TTa\lTiT g )T \htat g

When, as it more common, Asian options are defined in terms of arithmetic
averages, analytic pricing formulas are not available. This is because the distri-
bution of the arithmetic average of a set of lognormal distributions does not have
analytically tractable properties. However, there is an analytic approximation for
valuing options on the arithmetic average. This involves calculating the first two
moments of the probability distribution of the arithmetic average exactly and then
assuming that distribution of the arithmetic average is lognormal with same first
two moments.’

6See A. Kemna and A. Vorst, “A Pricing Method for Options Based on Average Asset Values,”
Journal of Banking and Finance, 14 (March 1990), 113-29.

"See S. M. Turnbull and L. M. Wakeman, “A Quick Algorithm for Pricing European Average
Options,” Journal of Financial and Quantitative Analysis, 26 (September 1991), 377-89.; Levy E., “A
Note on Pricing European Average Options,” Working Paper, Nomura Bank International plc, 1991;
P. Ritchken, L. Sankarasubramanian, A. M. Vijh, “The Valuation of Path Dependent Contracts on the
Average,” Working Paper, Case Western Reserve University and University of Southern California,
1989.
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Define
=T _ 1
M=
(r—qT
and
2e[20r=)+o’IT
M;

T r—q+0?)@r—2g +0)T?

2 1 er—aT
+ (r—q)T? |:2(r—q)+(f2 B r—q+02]
The first and second moments of the arithmetic average as seen at time zero for a
period of time T are SM; and S?M, It follows from equations (10.8) and (10.9)
that if we make the lognormal approximation we should treat an average price
option like a regular option with dividend yield g4 and volatility o4 where

QrINT = pp. QRO—aHINIT

These two equations can be solved to yield
InM 1,
T ’

In Mz
T

ga=r— aﬁ: —2(r — q4)

Ormions To0 ExCHANGE ONE ASSET FOR ANOTHER

Options to exchange one asset for another arise in various contexts. An
option to buy deutschemarks with Swiss francs is, from the point of view of a
U.S. investor, an option to exchange one foreign currency asset for another foreign
currency asset. A stock tender offer is an option to exchange shares in one stock
for shares in another stock.

A formula for valuing a European option to give up an asset worth S; and
receive in return an asset worth S, were first produced by Margrabe.® Suppose
Sy and S, both follow geometric Brownian motion with volatilities o, and o3.
Suppose further that the instantaneous correlation between S; and S; is p, and the
yields provided by S, and S, are ¢; and g,. The value of the option is:

$e”2TON(dy) — 517" TN (dy)

where
di = log($2/81) + (g1 — g2 + 02 /2)(T — 1)
! oT —1t
dy=dy—o~T —t

8See W. Margrabe, “The Value of an Option to Exchange One Asset for Another,” Journal of
Finance, 33 (March 1978), 177-86.
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and

— |52 2
0 =,/o{ + 05 —2poi07

It is interesting to note that these formulas are independent of the risk-free
rate r. This is because, as r increases, the growth rate of both asset prices in a risk-
neutral world increases, but this is offset by an increase in the discount rate. The
variable ¢ is the volatility of S,/S;. Comparisons with the formulas in Chapter 11
show that this option price is the same as the price of S; European call options on
an asset worth S;/S; when the strike price is 1, thé risk-free interest rate is g;, and
the dividend yield on the asset is g,. Mark Rubinstein shows that the American
version of this option can be characterized similarly for valuation purposes.® It can
be regarded as §; American options to buy an asset worth S,/S; for 1 when the
risk-free interest rate is g; and the dividend yield on the asset is ¢;. The option
can therefore be valued as described in Chapter 14 using a binomial tree.

It is worth noting that an option to obtain the better or worse of two assets
can be regarded as a position in one of the assets combined with an option to
exchange it for the other asset:

min(Sl, S2) = S2 — max(Sz - S], 0)
max (S, $) =51 + max(S, — Sy, 0)

OrrioNs INVOLVING SEVERAL ASSETS

Sometimes options involving two or more risky assets are traded. One ex-
ample is the bond futures contract traded on the CBOT that was described in
Chapter 4. The party with the short position is allowed to choose between a large
number of different bonds when making delivery. Another example arises in some
of the models that are used to take credit into account in the valuation of a regular
option. The valuation of the option depends not only on the value of the assets
on which the option is written, but also on the value of the assets of the option
writer. !0

Most options involving several underlying assets cannot be valued analyti-
cally. An exception is a European option on the maximum or minimum of two
assets. Stulz has provided valuation formulas involving integrals of the bivariate
normal distribution for this particular case.!!

9See M. Rubinstein, “One for Another,” RISK, July-August 1991,

10See H. Johnson and R. Stulz, “The Pricing of Options Under Default Risk,” Journal of Finance,
42 (1987), 267-280, and J. Hull and A. White, “The Impact of Default Risk on the Prices of Options
and Other Derivative Securities,” Working Paper, University of Toronto, 1991.

NSee R. Stulz, “Options on the Minimum or Maximum of Two Assets,” Journal of Financial
Economics, 10 (1982), 161-85.
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16.2 BASIC VALUATION TOOLS

In Chapter 14 we introduced a number of numerical procedures for valuing deriva-
tive securities. We now discuss how some of these can be adapted to cope with
exotics.

Monte CARLO SIMULATION

Monte Carlo simulation is the natural tool to use for lookback options and
Asian options when analytic results are not available. This is because the payoff
received from the option at the end of its life depends on the whole path followed
by the price of the underlying asset. The basic procedure is described in Chapter 14.
We simulate many paths followed by the underlying asset in a risk-neutral world.
The estimate of value of the option is the average of the payoffs, discounted from
the end of the life of the option to the beginning at the risk-free interest rate. To
make the approach computationally feasible, it is important to use it in conjunction
with antithetic variable and (where possible) control variate procedures.

In the case of average price or average strike European options, where the
average is an arithmetic average, the natural option to use as the control variate
option is the corresponding option on a geometric average since analytic formulas
exist for this case. The procedure is as follows:

1. Use Monte Carlo simulation to estimate the value of both the arithmetic
average option and the corresponding geometric average option. (Use the
antithetic variable technique and the same random numbers in obtaining each
estimate.) ‘

2. Calculate the difference between the simulated price of the geometric average
option and its analytic price.

3. Modify the estimate of the price of the arithmetic average option by adding to
the simulation estimate the amount by which the analytic geometric average
price exceeds the simulation estimate of the geometric average option.

This is an alternative to the analytic approximation mentioned when Asian
options were considered earlier in this chapter.

TREES

A binomial or trinomial tree can be used in a straightforward way to value all
the options discussed in Section 16.1 except for Asian options, lookback options,
and options involving several risky assets. The nature of the option governs the
rules that should be used when we roll back through the tree. For example, in a
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knockout option the rules are as for a regular option except that the value of the
option is set equal to zero when underlying asset’s price is below the knockout
barrier; in a Bermudan option we only test for early exercise at time ¢ when the
time interval between ¢ and ¢ + At includes a date where early exercise is allowed;
and so on. An “as you like it” option where the underlying options are American
has the complication that, when rolling back through the tree, we must value both
a call and a put. For the nodes which correspond to the date where the choice is
made, the value of the security is set equal to the greater of the value of the call and
the value of the put. We roll back from these nodes to the present in the usual way.

The accurate valuation of barrier options tends to require many more time
steps than regular options. This is because it is important to know with some
degree of precision whether the barrier has been hit. Often the terms of a option
are such that the parties check whether the barrier has been passed only at the end
of each trading day—not during the day. The tree calculations should reflect this.

7
16.3 AMERICAN PATH-DEPENDENT OPTIONS ‘,7/

American options where the payoff depends on the path followed by the underlying
asset as well as its current value present a real challenge to analysts. We cannot
use Monte Carlo simulation because when a simulation run has reached a certain
point we have no way of knowing whether early exercise is optimal. Also, we
cannot use trees in the usual way because the payoff at a node depends on more
than just the price of the underlying asset at the node.

Suppose that the payoff from an American option depends on a function, F,
of the path followed by the underlying asset. Suppose further that when a tree is
drawn, the value of F at time 7 + At can be calculated from the value of F at time
t and the value of the underlying asset at time T + At. One valuation approach
is to draw a tree for the underlying asset in the usual way and keep track at each
node of all the different values of F that might occur. Associated with each value
of F is a different value of the security.

To illustrate the approach, we suppose we are interested in valuing an Amer-
ican lookback put option on a non-dividend-paying stock which, if exercised at
time 7, pays off the amount by which the maximum stock price between time 0
and time t exceeds the current stock price. We suppose that the initial stock price
is $50, the stock price volatility is 40 percent per annum, the risk-free interest rate
is 10 percent per annum, and the total life of the option is 3 months. We consider
a three time step tree. Using the notation in Chapter 14, this means that § = 50,
o =04, r =0.10, Ar = 0.08333, u = 1.1224, d = 0.8909, a = 1.0084, and
p = 0.5076 and leads to the tree shown in Figure 16.2. (The parameters used in
constructing the tree are the same as those used to construct the tree for Example
14.1.) The top number at each node is the stock price. The next level of numbers
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70.70
70.70
0.00
56.12
62.99 56.12
6.87 0.00
50.00
5.46

56.12  50.00

6.12 2.66 44.55
56.12 50.00
11.57 545
35.36
50.00
14.64

Figure 16.2 Tree for Valuing an American Lookback Option

at each node shows the possible maximum stock prices achievable on paths leading
to the node. The final level of numbers show the values of the derivative security -
corresponding to each of the possible maximum stock prices.

The values of the derivative security at the final nodes of the tree are calcu-
lated as the maximum stock price less the actual stock price. To illustrate the roll
back procedure, suppose we are at node A where the stock price is $50. The max-
imum stock price achieved so far is either 56.12 or 50. Consider first the situation
where it is 50. If there is an up movement, the maximum stock price becomes
56.12 and the value of the derivative security becomes zero. If there is a down
movement, the maximum stock price stays at 50 and the value of the derivative
security becomes 5.45. Assuming no early exercise, the value of the derivative
security at A when the maximum achieved so far is 50 is therefore

(0 x 0.5076 + 5.45 x 0.4924)~0-1x0.08333 _ 5 g¢

Clearly it is not worth exercising at node A in these circumstances since the
payoff from doing so is zero. A similar calculation for the situation where the maxi-
mum value at node A is 56.12 gives the value of the derivative security at node A,
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without early exercise, to be

(0 x 0.5076 + 11.57 x 0.4924)¢~01x00833 — 5 65

In this case, early exercise is optimal since it gives a value of 6.12 and is the
optimal strategy. Rolling back through the tree in this way gives the value of the
derivative security as $5.46.

In our example, the F-values considered at each node are the alternative
maximum values of the stock price achievable between time zero and the node.
With n time steps, the total number of different possible maximum values at a
node is always less than n + 1. This makes the approach computationally feasible
for large values of n. By contrast, consider the possibility of using the approach
to value American options on the arithmetic average. The number of different
arithmetic averages that can exist at a node increases exponentially as we advance
through a tree making it computationally infeasible to use trees of any size. It
can be applied to American options on the geometric average since the number
of alternative geometric averages after n time steps is quite manageable (< n*/6).
This has led Ritchken, Sankarasubramanian, and Vijh to propose that American
options on the arithmetic average can be valued by assuming that the difference
between the values of American and European options on the arithmetic average is
the same as the difference between the values of American and European options
on the geometric average.!? Their value for an American option on the arithmetic

average is
& Cea + Cag — Leg

where C,; is the value of a European option on the arithmetic average, C,, is
the value of an American option on the geometric average, and C,, is the value
of a European option on the geometric average. C,, is calculated using the tree
technology just described, C,, and C,, are calculated using Monte Carlo simulation
or the analytic approximation described earlier in this chapter. An alternative to
this, which involves an extension of the approach in Figure 16.2, is suggested by
Hull and White. '3

16.4 OPTIONS ON TWO CORRELATED ASSETS

Another tricky numerical problem is that of valuing American options on two
or more assets. A general approach for handling this type of problem was suggested
by Hull and White."* Their approach involves defining new uncorrelated variables.

128ee P. Ritchken, L. Sankarasubramanian, A. M. Vijh, “The Valuation of Path Dependent Con-
tracts on the Average,” Working Paper, Case Western Reserve University and University of Southern
California, 1989.

13See 1. Hull, and A. White, “Extensions of the Binomial Tree Approach for Valuing Path-
Dependent Options,” Working Paper, University of Toronto, 1992.

14See J. Hull and A. White, “Valuing Derivative Securities Using the Explicit Finite Difference
Method,” Journal of Financial and Quantitative Analysis, 25 (1990), 87-100.
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Consider two assets, S| and S,, with the following processes in a risk-neutral world
dS; =rSidt +0,51dz
dS; =rSdt +0,5dzy

where the instantaneous correlation between the Wiener processes, dz; and dz;, is
p. This means that
dInS, = (r — 02/2)dt + 0, dz,

dInS, = (r —02/2)dt + 02 dz,

We define two new uncorrelated variables:

X1 =021]'lSl +011nS2
X2 =0’2111S1 —0’111’152

These variables follow the processes

dx) = [02(r — 02/2) + 0,(r — 62/2)1dt + 01023/2(1 + p) dz4
dx; = [op(r — 052/2) — o (r — 022/2)]dt + 0102/ 2(1 — p)dzp

where dz, and dzp are uncorrelated Wiener processes. The variables can be
modeled using two separate binomial trees where, in time At, x; has a probability
pi of increasing by 4; and a probability 1 — p; of decreasing by h;. The variables
h; and p; are chosen so that the tree gives correct values for the first two moments
of the distribution of x; and x,. Since the variables are uncorrelated, the two
binomial trees can be combined together to form a three-dimensional tree where
the probabilities of movements in x; and x; in time At are as follows:

p1p2: x) increases by k) and x, increases by h;
p1(1 — p2): x; increases by k| and x, decreases by A
(1 — p1)p2: x; decreases by h; and x, increases by h;
(1 — p1)(1 — p2): x; decreases by k) and x, decreases by h;.

At each node of the tree, §; and S, can be calculated from x; and x, using
the inverse relationships:

X1 + X2
S| =exp 20,

Sz = exXp [XI2; Xz]
1

To value a derivative security we roll back through the tree in three dimensions.
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16.5 HEDGING ISSUES

Before trading an exotic option it is important for a financial institution to assess
not only how it should be priced, but also the difficulties that are likely to be
experienced in hedging it.

Some exotics are easier to hedge using the underlying than the corresponding
plain vanilla option. An example is an average price option where the averaging
period is the whole life of the option and the underlying asset is a stock price.
As time passes, we observe more of the stock prices that will constitute the final
average upon which the payoff is based. This means that our uncertainty about
the payoff decreases with the passage of time. As a result, the option becomes
progressively easier to hedge. In the final few days, the delta of the option always
approaches zero since price movements in the final few days have very little impact
on the payoff.

Barrier options can in certain circumstances be significantly more difficult to
hedge than regular options. Consider a knockout call option on a currency when
the exchange rate is 0.0005 above the barrier. If the barrier is hit, the option is
worth nothing. If the barrier is not hit, the option may prove to be quite valuable.
The gamma of the option is very high and delta hedging is difficult.

16.6 SUMMARY

Exotic options are options with rules governing the payoff that are more compli-
cated than standard options. We have discussed 11 different categories of exotic
options: packages, nonstandard American options, forward start options, compound
options, “as you like it” options, barrier options, binary options, lookback options,
Asian options, options to exchange one asset for another, and options involving
several assets. Some can be valued using straightforward extensions of the proce-
dures we have developed for European and American calls and puts. Some can
be valued analytically, but using much more complicated formulas than those for
regular European calls and puts. Some require special numerical procedures.

American-style options where the payoff depends on the whole path followed
by the underlying asset as well as its final value are particularly challenging for the
analyst. If the payoff depends on one particular function of the path followed by
the underlying asset and the number of alternative values for this function at each
node of the tree does not grow too quickly, it is possible to adapt the binomial tree
approach presented in Chapter 14 to cope with the problem. American lookback
options and American options on the geometric average price of an asset can be
valued in this way.

A convenient way of valuing options dependent on the prices of two cor-
related asset prices, is to apply a transformation and create two new uncorrelated
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start variables. These two variables are each modeled with binomial trees. The
binomial trees are then combined together to form a three-dimensional tree. At
each node of the tree, the inverse of the transformation gives the asset prices.

Some exotic options are easier to hedge than the corresponding regular op-
tions; others are more difficult. In general, Asian options are easier to hedge
because the payoff becomes progressively more certain as we approach maturity.
Barrier options are liable to be more difficult to hedge because gamma close to the
barrier is liable to be very high.
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QUESTIONS AND PROBLEMS

16.1.
16.2.
16.3.
16.4.

16.5.

16.6.

16.7.

16.8.

16.9.

Explain the difference between a forward start option and an “as you like it” option.
Describe the payoff from a combination of a lookback call and a lookback put.
Explain the purpose of the call feature in convertible bonds. ‘

Consider an “as you like it” option where the holder has the right to choose between
a European call and a European put at any time during a 2-year period. The maturity
dates and strike prices for the calls and puts are the same regardless of when the
choice is made. Is it ever optimal to make the choice before the end of the 2-year
period? Explain your answer.

Suppose ¢) and p; are the prices of a European average price call and a European
average price put with strike X and maturity T; ¢y and p; are the prices of a
European average strike call and European average strike put with maturity T'; and
3 and p3 are the prices of a regular European call and a regular European put with
strike price X and maturity 7. Show that

cit+ca—a=pi+pr—p3

The text derives a decomposition of a particular type of “as you like it” option
into a call maturing at time f, and a put maturing at time ¢;. Derive an alternative
decomposition into a call maturing at time #; and a put maturing at time .

Use a three time step tree to value an American lookback call option on a currency
when the initial exchange rate is 1.6, the domestic risk-free rate is 5% per annum,
the foreign risk-free interest rate is 8% per annum, the exchange rate volatility is
15%, and the time to maturity is 18 months.-

Use a three time step tree to value an American put option on the geometric average
of the price of a non-dividend-paying stock when the stock price is $40, the strike
price is $40, the risk-free interest rate is 10% per annum, the volatility is 35% per
annum, and the time to maturity is 3 months. The geometric average is measured
from today until the option matures.

Suppose that the strike price of an American call option on a non-dividend paying
stock grows at rate g. Show that if g is less than the risk-free rate, r, it is never
optimal to exercise the call early.
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*16.11.

16.12,

16.13.

16.14.

*16.15.

16.16.

16.17.

16.18.

16.19.

16 Questions and Problems 433

How can the value of a forward start put option on a non-dividend paying stock be
calculated if it is agreed that the strike price will be 10% greater than the stock price
at the time the option starts?

If a stock price follows geometric Brownian motion, what process does A(¢) follow
where A(¢) is the arithmetic average stock price between time zero and time ¢?
Explain why Asian options are much easier to hedge using the underlying than barrier
options.

Calculate the price of a 1-year European option to give up 100 ounces of silver in
exchange for 1 ounce of gold. The current prices of gold and silver are $380 and
$4 respectively; the risk-free interest rate is 10% per annum; the volatility of each
commodity price is 20%; and the correlation between the two prices is 0.7. Ignore
storage costs.

Is a European down-and-out option on an asset worth the same as a European down-
and-out option on the asset’s futures price for a futures contract maturing at the same
time as the option?

(a) What put—call parity relationship exists between the price of a European call on
a call and a European put on a call? Show that the formulas given in the text satisfy
the relationship.

(b) What put—call parity relationship exists between the price of a European call on
a put and a European put on a put? Show that the formulas given in the text satisfy
the relationship.

Does a lookback call become more valuable or less valuable as we increase the
frequency with which we observe the asset price in calculating the minimum?
Does a down-and-out call become more valuable or less valuable as we increase the
frequency with which we observe the asset price in determining whether the barrier
has been crossed? What is the answer to the same question for a down-and-in call?
Explain why a regular European call option is the sum of a down-and-out European
call and a down-and-in European call.

How can the formulas in the text be used to value an arithmetic average option when
part of the average has already been seen?



Alternatives to
Black—Scholes for
Option Pricing

In this chapter we consider a number of alternatives to the usual assumption of
geometric Brownian motion for stock prices. We start by considering the adjust-
ments that must be made to the Black—Scholes model when the volatility and the
interest rate are known functions of time. We then move on to consider a variety
of other models. These include models where the underlying variable follows a
jump process rather than a continuous process and models where the volatility is
stochastic. We discuss the pricing biases that will be observed if the Black—Scholes
formula is used when, in reality, stock price movements correspond to one of these
other models. The chapter concludes with a brief review of some of the empirical
research on option pricing and a brief discussion of the way in which practitioners
allow for model imperfections in the way they use Black-Scholes. For ease of
exposition, most of the results in this chapter are presented in the context of valu-
ing options on non-dividend-paying stocks, but much of the discussion of pricing
biases is equally applicable to options on stock indices, currencies, and futures
contracts.

434
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17.1 KNOWN CHANGES IN THE INTEREST RATE
AND VOLATILITY

When the risk-free interest rate is a known function of time, the Black—Scholes
formulas for valuing European call and put options on a stock are correct with 7
replaced by the average instantaneous risk-free rate during the remaining life of
the option. Similarly, when the volatility is a known function of time, the Black-
Scholes formulas are true with the variance rate, o2, replaced by its average value
during the remaining life of the option.

These results can be derived using risk-neutral valuation. They are useful in
some situations. If the volatility of a stock is expected to rise steadily from 20% to
30% during the life of an option (perhaps because of uncertainties associated with
a forthcoming presidential election), it would be appropriate to use a volatility of
about 25% when valuing the option.! Also, if the term structure of interest rates
indicates that interest rates are likely to change during the life of an option, this
can be taken into account when choosing r. Usually r is, as a matter of course, set
equal to the rate of interest on a risk-free security that matures at the same time as
the option, rather than as the current instantaneous interest rate.

17.2 MERTON’S STOCHASTIC INTEREST RATE
MODEL

The valuation of options when the interest rate is stochastic has been considered
by Merton.2 Define B(¢) as the value of a discount bond that matures at the same
time as the option and pays $1 to the holder at maturity. Merton assumes that B
follows the process

P dB

-_—_= dt ogd
B updt +opdzp

The variable pp is the growth rate in the bond price, which is stochastic; op is
the volatility of B, which is assumed to be a known function of time; dzp is a
Wiener process. The model is consistent with the Vasicek, Ho-Lee, and Hull-
White interest rate models in Chapter 15. Merton shows that the European call
and put prices are given by

c=S8N(d)— BXN(d)

p = BXN(—d;) — SN(~d})

ISetting o2 equal to the average variance rate during the life of an option is not quite the same
as setting o equal to the average volatility, but in practice there is very little difference between the
two. I, in this example, the volatility increases linearly from 20% per annum to 30% per annum, the
correct value to use for o can be shown to be 25.17% per annum.

2Gee R. C. Merton, “Theory of Rational Option Pricing,” Bell Journal of Economics and Man-
agement Science, 4 (Spring 1973), 141-83.
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where
g = In(S/X) — In B + (62/20(T — 1)
' 6T =t
d=d —aJT -t
T
63T —1) = / (0% + 0} —2poag)dt (17.1)
t

The parameter, o, is the volatility of the stock and p is the instantaneous correlation
between the stock and bond prices.
The variable B(¢) is given by

B(t) - e—R(T—t)

where R is the rate of interest on a riskless bond that matures at time 7. Merton’s
model is therefore the same as the Black—Scholes model with:

1. The instantaneous interest rate, r, replaced by the rate of interest, R, on a
riskless bond maturing at the same time as the option

2. The stock price volatility, o, replaced by & [see Equation (17.1)]

Merton’s model provides support for using R rather than r in the Black—Scholes
model. For most traded options it can be shown that & is close to o-.> The volatility
adjustment therefore has little effect on the option price.*

Merton’s model has one theoretical drawback. It requires the volatility of a
discount bond to be a known function of time. Under many of the models that
have been proposed for interest rates (e.g., the Cox, Ingersoll, and Ross model
presented in Chapter 15), the volatility of bond prices is a function of both the
bond price itself and time.

17.3 PRICING BIASES

The critical determinant of the price of a European stock option is the terminal
stock price distribution. Up to now we have assumed that this is lognormal. In

3This is because o is always very much smaller than o. For a l-year option on a stock, a
high initial value for o5 would be 2% per annum, and this would decline to zero during the life of the
option. Typically, o is about 30%.

4Stock and bond prices are generally positively correlated so that p > 0. If o5 < 2p0, it follows
from Equation (17.1) that & < o. The effect of the volatility adjustment is then to reduce the price of
the option.
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this section we consider the effects of departures from lognormality. The general
approach is similar to that taken by Jarrow and Rudd.’

Figure 17.1 shows four ways in which the true terminal distribution can
be different from a lognormal distribution while still giving the same mean and
standard deviation for the stock price return. In Figure 17.1(a), both tails are
thinner than the lognormal distribution; in Figure 17.1(d), both tails are fatter; in
Figure 17.1(b) and (c), one tail is thinner and the other is fatter.

It is instructive to consider the biases that would be observed if the Black—
Scholes model were used to price options in the four situations. Consider first
a call option that is significantly out of the money. It has a positive value only
if there is a large increase in the stock price. Its value therefore depends only
on the right tail of the terminal stock price distribution. The fatter this tail, the
more valuable the option is. Consequently, Black—~Scholes will tend to underprice
out-of-the-money calls in Figure 17.1(c) and (d), and overprice out-of-the-money
calls in Figure 17.1(a) and (b). Consider next a put option that is significantly out
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Figure 17.1 Ailternative Terminal Stock Price Distributions. Dashed Line, Lognormal
Distribution; Solid Line, True Distribution

SR. Jarrow and A. Rudd, “Approximate Option Valuation for Arbitrary Stochastic Processes,”
Journal of Financial Economics, 10 (November 1982), 347-69.
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of the money. It has a positive value only if there is a large decrease in the stock
price. Its value therefore depends only on the left tail of the terminal stock price
distribution. The fatter this tail, the more valuable the option is. Black—-Scholes
will therefore tend to underprice out-of-the-money puts in Figure 17.1(b) and (d),
and overprice out-of-the-money puts in Figure 17.1(2) and (c).

To obtain the biases for in-the-money options, we can use put—call parity.
With the usual notation, put—call parity (see Section 7.6) gives

p+S=c+XeT

This relationship is independent of the shape of the terminal stock price distribution.
If the European call with price c is out of the money, the corresponding European
put with price p is in the money, and vice versa. Consequently, an in-the-money
European put must exhibit the same pricing biases as an out-of-the-money European
call. Similarly, an in-the-money European call must exhibit the same pricing biases
as an out-of-the-money European put. The biases are therefore as indicated in
Table 17.1.

TABLE 17.1 Biases Corresponding to Alternative
Stock Price Distributions in Figure 17.1

Distribution Characteristics Biases

Figure 17.1(a) Both tails thinner Black—-Scholes overprices
out-of-the-money and
in-the-money calls and

puts.
Figure 17.1(b) Left tail fatter, Black—Scholes overprices
right tail thinner out-of-the-money calis

and in-the-money puts. It
underprices out-of-the-money
puts and in-the-money calls.

Figure 17.1(c) Left tail thinner, Black-Scholes overprices
right tail fatter out-of-the-money puts and
in-the-money calls. It
underprices in-the-money
puts and out-of-the-money
calls.

Figure 17.1(d) Both tails fatter Black—Scholes underprices
out-of-the-money and
in-the-money calls and
puts.
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17.4 ALTERNATIVE MODELS

In this section we discuss a number of alternatives to the Black—Scholes model and
explain how they can give rise to some of the biases mentioned in the previous
section.

SrocHasTiC VOLATILITY

Practitioners change the volatility frequently when they use Black-Scholes
to value options. It is natural therefore to attempt to develop models which allow
the stock price volatility to be stochastic. Hull and White consider this problem.®
They show that, when the volatility is uncorrelated with the stock price, the Euro-
pean option price is the Black—Scholes price integrated over the distribution of the
average variance rate during the life of the option. Thus the European call price is

f c(V)g(V)dVvV

where V is the average value of the variance rate, o2, ¢ is the Black—Scholes price
expressed as a function of V; and g is the probability density function of V. They
show that the Black—Scholes formula overprices options that are at the money or
close to the money, and underprices options that are deep in or deep out of the
money.

In the case where the stock price and volatility are instantaneously correlated,
Hull and White show how either Monte Carlo simulation or a series expansion can
be used to obtain option prices.” When the correlation is positive, the situation is
as in Figure 17.1(c). The Black—Scholes model tends to underestimate the price for
out-of-the-money call options and overestimate the price for out-of-the-money put
options. The reason is as follows: When the stock price increases, volatility tends
to increase. This means that very high stock prices are more likely than under
geometric Brownian motion. When the stock price decreases, volatility tends to
decrease. This means that very low stock price are less likely than under geometric
Brownian motion. ‘

When the correlation is negative, the situation is as in Figure 17.1(b). Black-
Scholes tends to overestimate the price of out-of-the-money call options and un-
derestimate the price of out-of-the-money put options. This is because, when the
stock price increases, volatility tends to decrease, making it less likely that really
high stock prices will be achieved. When the stock price decreases, volatility tends
to increase, making it more likely that really low stock prices will be achieved.

6See J. C. Hull and A. White, “The Pricing of Options on Assets with Stochastic Volatilities,”
Journal of Finance, 42 (June 1987), 281-300.

For this series expansion, see J. C. Hull and A. White, “An Analysis of the Bias in Option
Pricing Caused by a Stochastic Volatility,” Advances in Futures and Options Research, 3 (1988) 27-61.
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For options which last less than a year the biases caused by a stochastic
volatility are fairly small in absolute terms. In percentage terms the biases can be
quite large for deep-out-of-the-money options. The biases become progressively
larger as the life of the option increases.

Compounp OPTION MODEL

The equity in a levered firm can be viewed as a call option on the value of
the firm. To see this, suppose that the value of the firm is V and the face value of
outstanding debt is A. Suppose further that all the debt matures at a single time,
T*. If V < A at time T*, the value of the equity at this time is zero since all the
company’s assets go to the bondholders. If V > A at time T*, the value of the
equity at this time is V — A. Thus the equity is a European call option on V with
maturity 7* and exercise price A.

An option on stock of the firm that expires earlier than T* can be regarded
as an option on an option on V or a compound option model (see Chapter 16).
This model has been analyzed by Geske.® The state variable underlying the value
of the stock option is the firm value, V, rather than the stock price, S. Geske
assumes that oy, the volatility of V, is constant and that the amount of debt,
A, is also constant. The volatility of S is then negatively correlated with V.
When V decreases, leverage increases and the volatility of § increases. When V
increases, leverage decreases and the volatility of S decreases. From the arguments
concerning stochastic volatility, this means that the pricing biases correspond to
Figure 17.1(b). Relative to Black—Scholes, the compound option model overprices
out-of-the-money calls and in-the-money puts. It also underprices in-the-money
calls and out-of-the-money puts.

Under Geske’s model, the Black—Scholes formula gives S as a function of V:

S=VNd) — Ae " T IN(dy) (17.2)
where
_In(v/A)+(+ o2 /2(T* —1)
ovJT* =1t
d=d —oyJT*—1

The formula for pricing a European call option using the compound option model
is given in Appendix 17A. It is more complicated than the Black—-Scholes formula
in that it requires a knowledge of the face value of the debt and the maturity of
the debt.

d;

8See R. Geske, “The Valuation of Compound Options,” Journal of Financial Economics, 7 (1979),
63-81.
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DispLacep DirrusioNn MODEL

Rubinstein has proposed what is known as a displaced diffusion model for
stock option pricing.® In this model, the firm is assumed to hold two categories
of assets: risky assets, which have a constant volatility, and riskless assets, which
provide a return, r. There is also assumed to be a certain fixed amount of default-
free debt. If « is the initial proportion of the total assets of the firm which are
risky and B is the initial debt-to-equity ratio, a key parameter, a, in the model is
defined by

a=a(l+8)

If @ > 1, the amount of debt in the displaced diffusion model exceeds the
riskless assets. Netting the riskless assets off against the debt, the model becomes
very similar to the compound option model and leads to biases that correspond to
Figure 17.1(b). Unlike the compound option model, the displaced diffusion model
does not take into account the possibility of default on the debt. In a situation
where the value of the assets is less than the face value of the debt, the model
assumes that the value of the equity is negative.

If a < 1, the amount of debt is less than the amount of riskless assets. The
model then has properties that are markedly different from the properties of the
compound option model. Netting off the debt against the riskless assets, we can
write

S=3S84+ S8

where S is the stock price, S, is the value of the risky assets, and Sp is the value
of net riskless assets. When S, increases quickly, S increases and the volatility
of S also increases. This is because risky assets have become a proportionately
larger part of S. Similarly, when S4 decreases quickly, both S and the volatility of
S decrease. It follows that the volatility and stock price are positively correlated.
From the arguments concerning stochastic volatility, this means that the biases
correspond to Figure 17.1(c).

The formula for pricing a European call under the displaced diffusion model
is given in Appendix 17A. It will be recalled that in valuing options on stocks
paying known dividends, we assumed that the stock price can be divided into a
riskless component which is used to pay the dividends and a risky component with
a constant volatility. This is a version of the displaced diffusion model with zero
debt.

9See M. Rubinstein, “Displaced Diffusion Option Pricing,” Journal of Finance, 38 (March 1983),
213-17.
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Constant ELasticrry oF VARIANCE MODEL

The constant elasticity of variance model was proposed by Cox and Ross.!?
In this model the stock price has a volatility of o S~ for some o where 0 < @ < 1.1!
Thus the volatility decreases as the stock price increases.

The rationale for the constant elasticity of variance model is that all firms
have fixed costs that have to be met regardless of the firm’s operating performance.
When the stock price declines, we can presume that the firm’s operating perfor-
mance has declined and the fixed costs have the effect of increasing volatility.
When the stock price increases, the reverse happens and the fixed costs have the
effect of decreasing volatility. One type of fixed cost is that arising from financial
leverage. In general concept, the constant elasticity of variance model is therefore
similar to the compound option model. The formulas for pricing options under the
general constant elasticity of variance model are relatively complicated and are not
reproduced in this book. Since the volatility is negatively related to the stock price,
the arguments in Section 17.3 show that the biases correspond to Figure 17.1(b).

When a = 1, the stock price volatility is inversely proportional to the stock
price. This gives rise to a simple version of the constant elasticity of variance
model known as the absolute diffusion model. The formula for pricing a European
call under the absolute diffusion model is given in Appendix 17A. The model is
easy to apply. Unfortunately, it has a weakness in that it allows stock prices to
become negative.

THE Pure Jump MODEL

The models in the preceding three sections have involved the stock price
changing continuously. We now consider a model where the stock price follows
a jump process. This was first suggested by Cox and Ross and elaborated on in a
later paper by Cox, Ross, and Rubinstein.!? The model is illustrated in Figure 17.2.
In each small interval of time, Az, the stock price has a probability A At of moving
from S to Su and a probability of 1 — A A of moving from § to Se~*!, Most
of the time, the stock price declines at rate w. However, occasionally it exhibits
Jjumps equal to u — 1 times the current stock price.

10See J. C. Cox and S. A. Ross, “The Valuation of Options for Alternative Stochastic Processes,”
Journal of Financial Economics, 3 (March 1976), 145-66.

"More formally, the model for the stock price is
dS =uSdt +05'%dz

'2See J. C. Cox and S. A. Ross, “The Pricing of Options for Jump Processes,” Working Paper no.
2-75, Rodney L. White Center for Financial Research, University of Pennsylvania, April 1975; 1. C.
Cox, S. A. Ross, and M. Rubinstein, “Option Pricing: A Simplified Approach,” Journal of Financial
Economics, 7 (September 1979), 229-63.
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Su

A At

S Figure 17.2 Stock Price Changes Under
1-)\ At Se~"4  the Pure Jump Model

In the limit as Az —> 0, jumps occur according to a Poisson process at rate
A. The terminal stock price distribution is log-Poisson and the price of a call is
as given in Appendix 17A. It is easy to see that the pure jump model leads to the
situation in Figure 17.1(c). Arguably, the model is unrealistic in that jumps can
only be positive.

THE Jump DiFrFusioN MoDEL

Merton has suggested a model in which the stock price has jumps superim-
posed upon a geometric Brownian motion.!> Define

f: Expected return from stock
A: Rate at which jumps happen
k: Average jump size measured as a proportional increase in the stock price

The proportional jump size is assumed to be drawn from a probability distri-
bution in the model. The average growth rate from the jumps is Ak. This means that
the expected growth rate provided by the geometric Brownian motion is u — k.14

The key assumption made by Merton is that the jump component of the
stock’s return represents nonsystematic risk (i.e., risk not priced in the economy).!’
This means that a Black—Scholes type of portfolio, which eliminates the uncertainty

13Gee R. C. Merton, “Option Pricing When Underlying Stock Returns are Discontinuous,” Journal
of Financial Economics, 3 (March 1976), 125-44.
14More formally, the model is
das

< =W —Ark)dt+odz+dg

where dz is a Wiener process, dq is the Poisson process generating the jumps, and o is the volatility
of the geometric Brownian motion. The processes dz and dq are assumed to be independent.

13This assumption is important because it turns out that we cannot apply risk-neutral valuation to
situations where the size of the jump is systematic. For a discussion of this point, see E. Naik and M.
Lee, “General Equilibrium Pricing of Options on the Market Portfolios with Discontinuous Returns,”
Review of Financial Studies, 3 (1990), 493-521.
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arising from the geometric Brownian motion, must earn the riskless rate. This leads
to the pricing formula in Appendix 17A.

As one might expect jump processes give rise to fatter tails than do con-
tinuous processes. In Merton’s model, jumps can be either positive or negative.
The model therefore leads to the situation in Figure 17.1(d). Black—Scholes for-
mulas underprice calls and puts when they are either significantly in the money or
significantly out of the money.

17.5 OVERVIEW OF PRICING BIASES

Table 17.2 summarizes the results from the last few sections. In addition to being
categorized according to the terminal stock price distribution, the various mod-
els can be categorized according to whether the bias increases or decreases as
the time to maturity increases. The biases caused by a stochastic volatility be-
come a larger percentage of the option price as the time to maturity increases.
The reason for this is easy to understand. Just as the effect of volatility on
the standard deviation of the stock price distribution increases as we look far-
ther ahead, so the distortions to that distribution caused by uncertainties in the
volatility become greater as we look farther ahead. For a similar reason, the biases
in the compound option model become more pronounced as the time to maturity
increases.

Jumps are different in that they produce proportionately greater effects when
the time to maturity of the option is small. When we look sufficiently far into

TABLE 17.2 Categorization of Models According
to Shape of Terminal Stock Price Distribution

Figure 17.1(b) Figure 17.1(c) Figure 17.1(d)
Compound option model Displaced diffusion Jump diffusion model
model when a < 1
Displaced diffusion Stochastic volatility
model when g > 1 Pure jump model model when stock
price and volatility
Constant elasticity of Stochastic volatility have zero correlation
variance model model when stock
price and volatility
Stochastic volatility : are positively correlated

model when stock price
and volatility are
negatively correlated
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the future, jumps tend to get “averaged out” so that the stock price distribution
arising from jumps is almost indistinguishable from that arising from continuous
changes.

17.6 EMPIRICAL RESEARCH

There are a number of problems in carrying out empirical research to test the Black—
Scholes and other option pricing models. The first problem is that any statistical
hypothesis about how options are priced has to be a joint hypothesis to the effect
that (1) the option pricing formula is correct; and (2) markets are efficient. If the
hypothesis is rejected, it may be the case that (1) is untrue; (2) is untrue; or both
(1) and (2) are untrue. A second problem is that the stock price volatility is an
unobservable variable. One approach is to estimate the volatility from historical
stock price data. Alternatively, implied volatilities can be used in some way. A
third problem for the researcher is to make sure that data on the stock price and
option price are synchronous. For example, if the option is thinly traded, it is not
likely to be acceptable to compare closing option prices with closing stock prices.
This is because the closing option price might correspond to a trade at 1:00 pM,
while the closing stock price corresponds to a trade at 4:00 p.m.

Black and Scholes and Galai have tested whether it is possible to make excess
returns above the risk-free rate of interest by buying options that are undervalued by
the market (relative to the theoretical price) and selling options that are overvalued
by the market (relative to the theoretical price).!6 A riskless delta-neutral portfolio
is assumed to be maintained at all times by trading the underlying stocks on a
regular basis as described in Section 13.5. Black and Scholes used data from the
over-the-counter options market where options are dividend protected. Galai used
data from the Chicago Board Options Exchange (CBOE) where options are not
protected against the effects of cash dividends. Galai used Black’s approximation
as.described in Section 10.14 to incorporate the effect of anticipated dividends into
the option price. Both of the studies showed that, in the absence of transactions
costs, significant excess returns over the risk-free rate could be obtained by buying
undervalued options and selling overvalued options. It is possible that these excess
returns were available only to market makers, and that when transactions costs are
considered, they vanish.

A number of researchers have chosen to make no assumptions about the
process followed by stock prices and have tested whether arbitrage strategies can
be used to make a riskless profit in options markets. Garman provides a very

18gee F. Black and M. Scholes, “The Valuation of Option Contracts and a Test of Market Effi-
ciency,” Journal of Finance, 27 (May 1972), 399-418; D. Galai, “Tests of Market Efficiency and the
Chicago Board Options Exchange,” Journal of Business, 50 (April 1977), 167-97.
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efficient computational procedure for finding any arbitrage possibilities that exist
in a given situation.!” One study by Klemkosky and Resnick which is frequently
cited tests whether the relationship in Equation (7.9) is ever violated.'® It concludes
that some small arbitrage profits were possible from using the relationship. These
were due mainly to the overpricing of American calls.

Chiras and Manaster have carried out a study using CBOE data which com-
pares the weighted implied standard deviation from options on a stock at a point in
time with the standard deviation calculated from historical data.!” They found that
the former provides a much better forecast of the volatility of the stock price during
the life of the option. The study has been repeated by other authors using other
data and has always given similar results. We can conclude that option traders are
using more than just historical data when determining future volatilities. Chiras
and Manaster also tested to see whether it was possible to make above-average
returns by buying options with low implied standard deviations and selling options
with high implied standard deviations. This strategy showed a profit of 10 percent
per month. The Chiras and Manaster study can be interpreted as providing good
support for the Black—-Scholes model while showing that the CBOE was inefficient
in some respects.

MacBeth and Merville have tested the Black—Scholes model using a different
approach.?? They looked at different call options on the same stock at the same time
and compared the volatilities implied by the option prices. The stocks chosen were
AT&T, Avon, Kodak, Exxon, IBM, and Xerox, and the time period considered was

.the year 1976. They found that implied volatilities tended to be relatively high for
in-the-money options and relatively low for out-of-the-money options. A relatively
high implied volatility is indicative of a relatively high option price and a relatively
low implied volatility is indicative of a relatively low option price. Therefore, if
it is assumed that Black—Scholes prices at-the-money options correctly, it can be
concluded that out-of-the-money call options are overpriced by Black—Scholes and
in-the-money call options are underpriced by Black-Scholes. These effects become
more pronounced as the time to maturity increases and the degree to which the
option is in or out of the money increases. MacBeth and Merville’s results are
consistent with the displaced diffusion model when a > 1, the compound option
model, the absolute diffusion model, and the stochastic volatility model when the
stock price and volatility are negatively correlated.

7Garman, M. B., “An Algebra for Evaluating Hedge Portfolios,” Journal of Financial Economics,
3 (October 1976), 403-27.

18R, C. Klemkosky and B. G. Resnick, “Put-call Parity and Market Efficiency,” Journal of Finance,
34 (December 1979), 1141-55.

9D. Chiras and S. Manaster, “The Information Content of Stock Prices and Test of Market
Efficiency,” Journal of Financial Economics, 6 (September 1978), 213-34.

203ee J. D. MacBeth and L. J. Merville, “An Empirical Examination of the Black—Scholes Call
Option Pricing Model,” Journal of Finance, 34 (December 1979), 1173-86.
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Rubinstein has carried out a study similar to the MacBeth and Merville study,
but using a far larger data set and a different time period.?! He looked at all
reported trades on the 30 most active Chicago Board Option Exchange options
classes between August 23, 1976 and August 31, 1978. Special care was taken
to incorporate the effects of dividends and early exercise. Rubinstein compared
implied volatilities of matched pairs of call options which differed either only as far
as exercise price was concerned or only as far as maturity was concerned. He found
that his time period could be conveniently divided into two subperiods: August 23,
1976 to October 21, 1977 and October 22, 1977 to August 31, 1978. For the first
period, his results were consistent with those of MacBeth and Merville. However,
for the second period, the opposite result from MacBeth and Merville was obtained:
that is, implied volatilities were relatively high for out-of-the-money options and
relatively low for in-the-money options. Throughout the entire period Rubinstein
found that for out-of-the-money options, short-maturity options had significantly
higher implied volatilities than long-maturity options. The results for at-the-money
and in-the-money options were less clear cut.

No single alternative to the Black—Scholes model seems superior for both of
Rubinstein’s time periods. Indeed, it is difficult to imagine a model that leads to
the changes in the biases that were observed between the first time period and the
second time period. Possibly macroeconomic variables affect option prices in a
way that is as yet not fully understood. At present, there does not seem to be any
really compelling arguments for using any of the models introduced earlier in this
chapter in preference to Black—Scholes.

A number of authors have researched the pricing of options on assets other
than stocks. For example, Shastri and Tandon, and Bodurtha and Courtadon have
examined the market prices of currency options;?? Shastri and Tandon in another
paper have examined the market prices of futures options;?> Chance has examined
the market prices of index options.2* The authors find that the Black—Scholes model
and its extensions misprice some options. There appears to be some evidence, for
example, that currencies follow jump processes. However, the mispricing was
not sufficient in most cases to present profitable opportunities to investors when

2'See M. Rubinstein, “Nonparametric Tests of Alternative Options Pricing Models Using All
Reported Trades and Quotes on the 30 Most Active CBOE Options Classes from August 23, 1976
through August 31, 1978,” Journal of Finance, 40 (June 1985), 455-80.

22See K. Shastri and K. Tandon, “Valuation of Foreign Currency Options: Some Empirical Tests,”
Journal of Financial and Quantitative Analysis, 21, (June 1986), 145-60; J. N. Bodurtha and G. R.
Courtadon, “Tests of an American Option Pricing Model on the Foreign Currency Options Market,”
Journal of Financial and Quantitative Analysis, 22 (June 1987), 153-68.

2 See K. Shastri and K. Tandon, “An Empirical Test of a Valuation Model for American Options
on Futures Contracts,” Journal of Financial and Quantitative Analysis, 21 (December 1986), 377-92.

*See D. M. Chance, “Empirical Tests of the Pricing of Index Call Options,” Advances in Futures
and Options Research, 1, pt. A (1986), 141-66.
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transactions costs and bid—ask spreads were taken into account. In their two papers,
Shastri and Tandon point out that even for a market maker, some time must elapse
between a profitable opportunity being identified and action being taken. This
delay, even if it is only to the next trade, can be sufficient to eliminate the profitable
opportunity.

In an interesting study, Lauterbach and Schultz investigated the pricing of
warrants.2> They conclude that the biases are consistent with Figure 17.1(b). The
constant elasticity of variance model with @ = 0.5 gave a better fit to the data
than did the Black—Scholes model. From Table 17.2 we see that Lauterbach and
Schultz’s results are also consistent with the the compound option pricing model,
the displaced diffusion model where @ > 1, and the stochastic volatility model
where the stock price and interest rate are negatively correlated. Their results were
found to persist throughout a 10-year time period.

17.7 HOW THE MODELS ARE USED IN
PRACTICE

Practitioners when using Black-Scholes recognize that it is a less than perfect
model. A common approach is to construct a matrix of volatilities, one dimension
of the matrix being strike price, the other being time to maturity. For actively
traded options, volatilities are implied from market prices. This provides some
of the points in the matrix. The rest of the matrix is then determined using an
interpolation procedure.

When the matrix shows that biases corresponding to Figure 17.1(d) are ob-
served, practitioners sometimes refer to the phenomenon as the volarility smile.
The reason for this will be clear from Figure 17.3, which plots implied volatility
against strike price.

How important is the pricing model being used if practitioners are prepared
to use a different volatility for every deal? It can be argued that the model is
simply a tool for understanding the volatility environment and for pricing illiquid
securities consistently with the market prices of actively traded securities. If practi-
tioners stopped using Black—Scholes and switched to the constant elasticity of vari-
ance model, the matrix of volatilities would change and the shape of the smile would
change—but arguably the prices quoted in the market would not change appreciably.

17.8 SUMMARY

The Black-Scholes model and its extensions assume that the probability distribution
of the stock price at any given future time is lognormal. If this assumption is

258ee B. Lauterbach and P. Schultz, “Pricing Warrants: An Empirical Study of the Black—Scholes
Model and its Alternatives,” Journal of Finance, 4 no. 4 (Sepember 1990), 1181-1210.
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incorrect, there are liable to be biases in the prices produced by the model. If
the right tail of the true distribution is fatter than the right tail of the lognormal
distribution, there will be a tendency for the Black—Scholes model to underprice
out-of-the-money calls and in-the-money puts. If the left tail of the true distribution
is fatter than the left tail of the lognormal distribution, there will be a tendency for
the Black—Scholes model to underprice out-of-the-money puts and in-the-money
calls. When either tail is too thin relative to the lognormal distribution, the opposite
biases are observed.

A number of alternatives to the Black—Scholes model have been suggested.
These include models where the future volatility of a stock price is uncertain,
models where the company’s equity is assumed to be an option on its assets, and
models where the stock price experiences occasional jumps rather than continuous
changes. The models can be categorized according to the biases they give rise to. It
is interesting to note that biases arising from jumps become less pronounced as an
option’s life increases, while biases arising in other ways become more pronounced
as the option life increases.

Generally, the empirical research that has been done is supportive of the
Black—Scholes model. It is a model that has stood the test of time. Differences
between market prices and the Black—Scholes prices have been observed. However,
these differences have usually been small when compared to transactions costs.
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QUESTIONS AND PROBLEMS

17.1.

17.2.

17.3.

17.4.

17.5.

17.6.

17.7.
*17.8.

17.9.

What option pricing biases are likely to be observed when

(a) both tails of the stock price distribution are thinner than those of the lognormal
distribution?

(b) the right tail is thinner, and the left tail is fatter, than that of a lognormal
distribution?

What biases are caused by an uncertain volatility when the stock price is positively

correlated with volatility?

What biases are caused by jumps in the movements of a stock price? Are these biases

likely to be more pronounced for a 6-month option than for a 3-month option?

Assume that a stock price follows the compound option model. The Black—Scholes
model is used to calculate implied volatilities for call and put options with different
exercise prices and different times to maturity. What patterns would you expect to
observe in the implied volatilities?

Why are the biases (relative to Black—Scholes) for the market prices of in-the-money
call options usually the same as the biases for the market prices of out-of-the-money
put options?

A stock price is currently $20. Tomorrow, news is expected to be announced that will
either increase the price by $5 or decrease the price by $5. What are the problems
in using Black—Scholes to value options on the stock?

What are the major problems in testing a stock option pricing model empirically?

At time ¢ a stock price is S. Suppose that the time interval between ¢ and T is

divided into two subintervals of length #; and #;. During the first subinterval, the

risk-free interest rate and volatility are r; and o, respectively. During the second
subinterval, they are r, and o7, respectively. Assume that the world is risk neutral.

(a) Use the results in Chapter 10 to determine the stock price distribution at time T
in terms of ry, r, o1, 02, f1, t2, and S.

(b) Suppose that 7 is the average interest rate between time ¢ and T, and that V
is the average variance rate between times ¢ and 7. What is the stock price
distribution at time T in terms of 7, V, T — ¢, and S?

(c) What are the results corresponding to (a) and (b) when there are three subintervals
with different interest rates and volatilities?

(d) Show that if the risk-free rate, r, and the volatility, o, are known functions
of time, the stock price distribution at time T in a risk-neutral world can be
calculated using Equation (10.7) on the assumption that (1) the risk-free rate is
constant and equal to the average value of r; and (2) the variance rate is constant
and equal to the average value of 2.

(e) Prove the result in Section 17.1.

A company has two classes of stock, one voting and one nonvoting. Both pay

the same dividends and the voting stock always sells for a 10% premium over the

nonvoting stock. If the volatility of the total equity is constant, is the Black—Scholes
formula correct for valuing European options on the voting stock? Explain your
answer.
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17.10.

17.11.

17.12.

17.13.

17.14.
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Assume that a stock price follows the jump diffusion model. The Black-Scholes
model is used to calculate implied volatilities for call and put options with different
exercise prices and different times to maturity. What patterns would you expect to
observe in the implied volatilities?

Repeat Problem 17.10 assuming that the stock price follows a stochastic volatility
model with the stock price and its volatility positively correlated.

Suppose that a foreign currency exchange rate follows a jump process and has a
stochastic volatility that is uncorrelated with the exchange rate. What sort of biases
would you expect in the option prices observed in the market relative to those given
by the Black—Scholes formulas? Assume that implied volatilities are calculated on
the basis of at-the-money options.

Consider a firm with no riskless assets and a certain amount of debt. Does the
displaced diffusion model or the compound option model give a higher value for
a call option? Which model gives a higher value for a put option? Explain your
answer.

Option traders sometimes refer to deep out-of-the-money options as being options
on volatility. Why do you think they do this?

APPENDIX 17A: PRICING FORMULAS FOR
ALTERNATIVE MODELS

In this appendix, we present for reference European call option pricing formulas
- for some of the models considered in the chapter. European put option prices can
be obtained from the call prices using put—call parity.

Comrounp OprrioN MODEL

The value of a European call on a non-dividend-paying stock is given by

c=VM (al, bi; I—T-l ) — Ae7 "M (az, b; /ﬂ ’ ~Xe " N(ap)
19 T2

where

_ In(V/V) 4 (r + jo))m

= —

by = In(V/A) + (r + 302
ov/T2

aj

a) =4a) —oy4/T)
by =b —oyJn2
nu=T-1¢

nL=T"—¢
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The function M (a, b; p) is the cumulative probability in the standardized bivariate
normal distribution that the first variable is less than a and the second variable is
less than b when the coefficient of correlation between the variables is p. A
procedure for evaluating it numerically is given in Appendix 10B. The variable
V* is the value of V at time T, which gives § = X. This can be determined
numerically from Equation (17.2). Other notation is defined in Section 17.4.

DispLacep DiFrusion MoODEL

The price of a European call option on a stock using the displaced diffusion
model is
c=aSN(d) — (X —bS)e " TN (dy)

where
g InfaS/(X —bS)]1+ (r —03/2) (T — 1)
b orT —1t
dy=dy —op T —t
a=ca(l+8)
b=(Q1-a)y"?

In this formula, ¢ is the initial proportion of the total assets that are risky, B is the
initial debt-to-equity ratio, and oy is the volatility of the risky assets. If there are
known dividends, their value compounded to time T at the risk-free rate should be
subtracted from b.

AssoLute DiFrusioN MODEL

The price of a European call option on a stock using the absolute diffusion
model is

c=(S—Xe " T NN + (S — Xe " TN (y) + vin(y1) — n(32)]

1— e—2r(T—1)
V= 0’,/ _—
2r

where
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Pure Jump MoODEL

Using the pure jump model the European call option price is given by
c=S¥(x; y) — Xe Ty (x, Z)
u

where

o0 e—ﬁﬂl
Vs =) —

=a
r+w)(T —1t)u

Y=

u-—-1
and x is the smallest nonnegative integer which is greater than
In(X/S) +w(T —¢)

Inu

Jump DirrusioN MoODEL

The simplest form of Merton’s jump diffusion model is when the logarithm
of the size of the proportional jump has a normal distribution. Assume that the
standard deviation of the normal distribution is §. The European call option price
can then be written

X e M T (A T)"
L
n—

where T =T — ¢ and A’ = A(1 + k). The variable f, is the Black—Scholes option
price when the instantaneous variance rate is

2 né?
o+ —
T
and the risk-free rate is

n
r—Ak+—y
T

where y = In(1 + k).
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The simplest form of Merton’s jump diffusion model is when the logarithm
of the size of the proportional jump has a normal distribution. Assume that the
standard deviation of the normal distribution is §. The European call option price
can then be written
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Using the pure jump model the European call option price is given by
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The simplest form of Merton’s jump diffusion model is when the logarithm
of the size of the proportional jump has a normal distribution. Assume that the
standard deviation of the normal distribution is . The European call option price
can then be written
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Credit Risk

When valuing a derivative security, it is customary to assume that there is no risk
of default. For an exchange-traded option, this assumption is usually a reasonable
one since most exchanges have been very successful in organizing trading to ensure
that their contracts are always honored. Unfortunately, the no-default assumption
is far less defensible in the over-the-counter market. In recent years, this market
has become increasingly important. Dealing with credit risk issues has become a
major activity for both banks and bank regulators.

The main overall concern of bank regulators is to ensure that a bank’s capital
reflects the risks it is bearing. The traditional approach they have adopted has been
to specify minimum levels for balance sheet ratios such as equity:total assets.
This has become inappropriate in recent years because derivative securities such
as swaps and options, which do not appear on the balance sheet, have begun to
account for a significant proportion of the total risk. A new scheme, proposed by
the Bank for International Settlements (BIS), has achieved widespread acceptance
by central banks throughout the world.! In this scheme, each on- and off-balance

Bank for International Settlements, “Proposals for International Convergence of Capital Ade-
quacy Standards,” July 1988.
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sheet item is assigned a weight reflecting its relative credit risk and minimum levels
are set for the ratio of bank capital to total risk-weighted exposure.

In addition to ensuring that they satisfy the new capital requirements, financial
institutions are faced with the problem of adjusting the prices of off-balance sheet
items to reflect credit risk. They must ensure that their bid-offer spreads are
large enough to provide compensation for possible defaults. In many financial
institutions there has been a tendency to categorize credit risks as either acceptable
or unacceptable and then to price all acceptable credit risks in much the same way.
It seems likely that this will change as methods for quantifying the impact of credit
risk become more widely accepted.

This chapter discusses the impact of credit risk on the pricing of derivative
securities and provides some details concerning the BIS regulatory requirements.

18.1 THE NATURE OF THE EXPOSURE

For a financial institution to make a credit loss on a derivative security, two con-
ditions must be satisfied:

1. The counterparty must default; and
2. The no-default value of the contract to the financial institution must be
positive.

There is no ambiguity about whether the second condition is satisfied when we
are considering the possibility of a credit loss on an option since this is always an
asset to one party (the purchaser) and a liability to the other party (the writer). The
second condition is relevant for contracts such as swaps and forward contracts that
can become either assets or liabilities to a financial institution. If a counterparty gets
into financial difficulties when a contract has a positive value to the counterparty
and a negative value to the financial institution, it is reasonable to assume that
the contract will be sold to another party or taken over by the liquidator in such
a way that there is no real change in the financial institution’s position. On the
other hand, if the counterparty gets into financial difficulties when the contract has
a negative value to the counterparty and a positive value to the financial institution,
the financial institution is liable to make a loss equal to the positive value it has in
the contract. This situation is illustrated in Figure 18.1. The financial institution’s
possible loss (i.e., exposure) at any given time is an option-like function of the
value of the contract. Expressed algebraically the exposure is

max(V, 0)

where V is no-default value of the contract to the financial institution.
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Exposure

Contract Value

Figure 18.1 Exposure as a Function of Contract Value

THE INDEPENDENCE ASSUMPTION

When defaults are possible, there are two groups of variables affecting the
value of a derivative security to a financial institution:

1. The variables affecting its value in a no-default world; and

2. The variables affecting the occurrence of defaults by the counterparty and the
proportional recovery made by the financial institution in the event of a
default.

Hull and White examine a general model for pricing the option in terms of these
two sets of variables.”? The results in this chapter are largely based on their
analysis.

The most general case of the model is quite cumbersomie and requires a full
specification of the relationships between the two sets of variables. An assumption
that considerably simplifies the analysis is that the variables in 1 are independent of
the variables in 2. Unless otherwise mentioned we make this assumption throughout
the rest of this chapter. We will refer to the assumption as the independence
assumption.

How realistic is the independence assumption? Underlying the assumption is
the requirement that the value of the contract under consideration has a negligible
bearing on the ability of the counterparty to meet its liabilities as they become due.
This means that the contract must be a very small part of the counterparty’s port
folio of assets and liabilities or that the contract’s risk must entirely hedged by

2See J. Hull and A. White, “The Impact of Default Risk on the Prices of Options and Other
Derivative Securities,” Working Paper, University of Toronto, 1991, and “The Price of Default,” Risk,
September 1992.
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the counterparty. The variables which actually cause defaults are also assumed to
be uncorrelated with the variables affecting the no-default value of the derivative
security.

The independence assumption is defensible when the counterparty is a large
financial institution. The variables underlying a typical over-the-counter derivative
are interest rates, exchange rates, stock prices, and commodity prices. Most large
financial institutions have sophisticated systems for ensuring that they are not un-
duly exposed to movements in the values of any of these variables. If they run
into financial difficulties, these are likely to arise from other factors such as their
third world debt exposure, their real estate exposure or their exposure to some
other sector of the world economy. Market variables, particularly interest rates,
do of course affect the performance of particular sectors of the world economy.
But a great deal of time generally elapses between a problem being caused and
any resultant difficulties being experienced by financial institutions. Defaults by a
financial institution can therefore be expected to be only very weakly related to the
values of market variables at the time when the default occurs. (An example may
help to illustrate the point being made here. High interest rates in the early 1980s
caused problems in many sectors, but they did not lead to serious difficulties for
financial institutions until a few years later — when rates were much lower.)

In the case where the counterparty is a corporate, the reasonableness of the
independence assumption is likely to depend on the particular circumstances. If
the fortunes of the corporate are closely tied to the price of a commodity and the
derivative is also contingent on the commodity’s price the assumption is question-
able. For a routine interest rate swap, it is likely to be quite reasonable.

Arguably the independence assumption provides a good robust starting point
for an evaluation of the impact of credit risk and to provide a basis for incorporating
credit risk into the systems used by financial institutions. In particular cases where
the assumption is clearly inappropriate a trader can use judgement to adjust the
assessment of the credit risk upwards or downwards.

EQuAL-RANKING BONDS

Hull and White define a bond as ranking equally with a derivative security
if the recovery made in the event of a default, as a proportion of the exposure, is
always the same for both the derivative security and the bond. They assume that
the yields are known or can be estimated on a wide range of bonds that rank equally
with the derivative security. In fact, a necessary preliminary to the analysis is that
a zero-coupon yield curve for bonds with different credit ratings be constructed.

It is sometimes argued that yields on corporate bonds reflect more than just
the term structure or interest rates and default risk. Altman’s research, for example,
shows that the excess yields of corporate bonds over Treasuries are higher than
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can be justified by their default experience.’ This may be because of market
inefficiency, illiquidity or some other factor that we do not wish to reflect in the
way we adjust the prices of derivatives for credit risk. To overcome this problem,
the analysis can be based on notional bond prices, calculated from the actual default
experience on bonds with a credit rating similar to that of the counterparty, rather
than on bond prices in the market.

18.2 CONTRACTS THAT ARE UNAMBIGUOUSLY
ASSETS

In this section we consider the impact of credit risk on the value of a contract that
is always an asset to the financial institution. For convenience we will assume that
the contract under consideration is a long position in an option, but the arguments
we use can be extended to other contracts that are unambiguously assets, both
those on the balance sheet and those off the balance sheet. We will use the term
vulnerable to describe an option or other security that is subject to default risk.

A Rure For EuropEAN OPTIONS

Consider first European options. Define

f: Price of vulnerable European option
J*: Price of similar no-default option

B: Price of a zero-coupon bond issued by the option writer maturing at the
same time as the option and ranking equally with the option in the event of
a default

B*: Price of a similar riskless bond

The pricing rule is
f=r 5
=&

If y and y* are the yields on B and B*, respectively, this reduces to
f= f*e—(y—y*)(T—t)

where T is the option maturity date. The yield y can be estimated either from the
yields on bonds issued by the option writer or from the yields on bonds issued by
companies that have a similar credit risk to the option writer. '

3See E. I. Altman, “Measuring Corporate Bond Mortality and Performance,” Journal of Finance
(1989) 44, 902-22.
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As an example of the pricing rule, consider a 2-year OTC option with a
default-free value of $3. Suppose that a 2-year bond issued by the option writer
that would rank equally with the option in the event of a default yields 150 basis
points over similar Treasury issues. Default risk has the effect of reducing the
option price to

3,-0015x2 _ 5 911
or by about 3 percent.

This simple adjustment for credit risk is appropriate for all European-style
derivative securities that provide a payoff at one particular point in time. Thus, in
our example, default risk has the effect of reducing the price of any security that
promises a payoff in 2 years by about 3 percent.

ALTERNATIVE INTERPRETATIONS OF THE RULE

One interpretation of the adjustment rule is that we should use the “risky”
discount rate, y, instead of the risk-free discount rate, y*, when discounting payoffs
from the derivative security. Some care must be taken here. The risk-free interest
rate enters into the calculation of a Black—Scholes option price in two ways: It is
used to define the expected return from the underlying asset in a risk-neutral world
and it is used to discount the expected payoff. We should change the risk-free rate
to a risky rate for discounting purposes, but not when determining expected returns
in a risk-neutral world.

For another interpretation of the adjustment rule, define

w*(t, r): The instantaneous forward rate at time 7, as seen at time z, calculated
from the risk-free yield curve
w(t, 7): The instantaneous forward rate at time t, as seen at time ¢, calculated
from the yield curve corresponding to bonds that have the same default
risk as the option

a(t, 7): The forward rate differential, w(t, v) — w*(t, )

It can be shown that a vulnerable European option is equivalent to a similar
no-default option where the holder is required to make payments at rate a(f, T)
times the option value at time t (f < T < T). The forward rate differential is
therefore an important indicator of the expected cost of future defaults.

AMERICAN OPTIONS

The impact of default risk on American options is more complicated than on
European options. This is because the option holder’s decision on early exercise
may be influenced by new information, received during the life of the option, on
the fortunes of the option writer. An example may help to illustrate the point here.
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Suppose that bank X sells a 1-year call option on a non-dividend-paying stock
to bank Y and that during the following 6 months bank X experiences a series
of well-publicized large loan losses. Normally the option would not be exercised
early. But, if the option is somewhat in the money at the end of the 6 months,
bank Y might choose to exercise the option at this time rather than wait and risk
bank X being liquidated before the option matures.

The proportional impact of default risk on the price of an American option is
less than that for a similar European option. This is because early exercise shortens
the life of an American option, making a loss from defaults less likely. Another
general result is that American options subject to default risk are always exercised
earlier than similar no-default options. It is interesting to note that options, such as
calls on non-dividend-paying stocks, that are never exercised early in a no-default
world, should sometimes be exercised early when there is default risk. When the
independence assumption is made, a lower bound to the value of a vulnerable
American option can be obtained by using the binomial tree in the usual way, but
with the discount rate at time t being increased by (¢, 7).

18.3 CONTRACTS THAT CAN BE ASSETS OR
LIABILITIES

Contracts such as swaps that can become either assets or liabilities are more com-
plicated to analyze than those considered in the previous section. One popular
approach for swaps that has been used by regulatory authorities is to compare the
average expected exposure on a swap with the average expected exposure on a
loan that has the same principal as the swap. If the average expected exposure
on the swap is, say, 5 percent of that on the loan, this is an indication that the
financial institution should require the swap to contribute about 5 percent as much
as towards profits as a loan with the same counterparty.

The average expected exposure on a swap during its life can be calculated
using Monte Carlo simulation. Consider first an interest rate swap where the
financial institution is receiving fixed and paying floating. The exposure at a future
time is equal to

max(Bfixea — Bﬂoatingy 0)

where Bgyeq is the price of the fixed bond underlying the swap, and Bpoating is the
price of the floating rate bond underlying the swap. Since Bpoaing is relatively
constant, this is similar to the payoff from a call option on the fixed-rate bond.
Consider next a currency swap when the financial institution is receiving the do-
mestic interest and principal while paying the foreign interest and principal. The
exposure at a future time is equal to

max(BD - BFS, 0)



482 Credit Risk Chapter 18

or

Br max [ﬁ - S, 0] (18.1)
Br

where Bp is the price of the foreign bond underlying the swap and B), is the price

of the domestic bond underlying the swap. If interest rates are assumed constant,

Bp and Br are relatively constant and this is similar to the payoff from a put

option on the currency.

Figure 18.2 compares the expected exposure on a matched pair of interest
rate swaps with the expected exposure on a matched pair of currency swaps. The
expected exposure on a matched pair of interest rate swaps starts at zero, increases,
and then decreases to zero. By contrast, the expected exposure on a matched pair
of currency swaps increases steadily with the passage of time.

Currency
Swap

Expected Exposure

Interest Rate
Swap

Time

Figure 18.2 Expected Exposure on Matched Pairs of Interest Rate Swaps and Currency
Swaps

A MORE PRECISE APPROACH

There are theoretical problems in assessing the impact of credit risk on a
contract by looking at the average expected exposure during the life of the contract.
For a start, it is difficult to know whether we should evaluate exposures in a risk-
neutral world or the real world. A risk-neutral world is easier, but the real world
is arguably more relevant. It is also difficult to know whether we should take a
straight average of the exposures or weight them in some way. Arguably more
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weight should be given to later exposures because some time must elapse for the
fortunes of the company to decline sufficiently for default to occur.*

A more precise approach to the problem of quantifying the impact of default
risk can be developed by extending the results in the previous section. Hull and
White show that when the independence assumption is made®

T
fr—f= / v(t)e 0Ny (¢ 1)dT (18.2)

where
() = E[e7 ) max(f?, 0)],

y: and y} are the yields on vulnerable and riskless bonds maturing at time t, 7
is the average interest rate between ¢ and 7, and f* is the no-default value of the
security at time t. The term v(t) is the present value of a claim that pays off the
exposure at time t.

The function v(t) can be valued by using Monte Carlo simulation or one
of the other derivative security pricing procedures that have been discussed in this
book. The value of f* — f can then be calculated from Equation (18.2) using
numerical integration.

AN EXAMPLE

Consider a fixed-for-fixed foreign currency swap in which interest in sterling
at the sterling risk-free rate is exchanged for interest in dollars at the dollar risk-free
rate. Principals are also exchanged at the end of the life of the swap. Suppose that
the swap details are as follows

Life of swap: 5 years

Frequency of payments: Annual

Sterling Principal: £100 million

Dollar Principal: $100 million

Initial exchange rate: 1.0000

Dollar riskless rate: 5% per annum (assumed constant)

4Figure 18.2 shows that the exposure on a matched pair of currency swaps increases with time
whereas the exposure on an interest rate swap first increases and then decreases. Moving to a scheme
where more weight is given to later exposures therefore increases the credit risk of a currency swap
relative to that of an interest rate swap.

3See J. Hull and A. White, “The Impact of Default Risk on the Prices of Options and Other
Derivative Securities,” Working Paper, University of Toronto, 1991. We are here assuming that the
‘counterparty may default, but that the company from whose viewpoint the derivative security is being
valued will not default.
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Sterling riskless rate: 10% per annum (assumed constant)
Volatility of exchange rate: 15%

We suppose that 1-, 2-, 3-, 4-, and 5-year zero coupon bonds issued by the
counterparty would have yields that are 25, 50, 75, 85, and 95 basis points above
the corresponding riskless rate.

When the company is receiving domestic and paying fixed, Equation (18.2)
shows that the cost of defaults is $0.73 million; when it is receiving foreign and
paying domestic the cost of defaults is $0.13 million.% In total, the impact of
credit risk on the value of a matched pair of swaps is 0.73+0.13=$0.86 million.
The financial institution should therefore require a spread that has a present value
equal to at least $0.86 million. Using a discount rate of 5 percent per annum, an
annuity of $0.198 million for 5 years has a present value of $0.86 million. Since
the principal is $100 million, this indicates that a total spread of at least 19.8 basis
points is required on the matched pair of swaps.

The impact of default risk on interest rate swaps is generally considerably
less than that on currency swaps. Using the similar data to that for the currency
swap, the required total spread for a matched pair of interest rate swaps is only 2
to 3 basis points.

18.4 THE BIS CAPITAL REQUIREMENTS

Regulatory authorities require that the following BIS requirements be satisfied:

Tier One Capital

: : > 4%
Risk-adjusted Exposure

Tier One plus Tier Two Capital
>
Risk-adjusted Exposure

8%

Tier One capital is shareholder’s equity not including goodwill. Tier Two capital
consists of subordinated debt, loan reserves, and other sorts of long term capital.

Risk-adjusted exposure equals the total of risk-adjusted on-balance exposure
and risk-adjusted off-balance exposure. Risk-adjusted on-balance sheet exposure
equals to the sum of

Principal x Risk Weight
6In general, a financial institution has more credit risk when it is receiving a low-interest currency

and paying a high-interest currency. This is because the low-interest currency is expected to appreciate
over time.
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for each asset. The risk weight for a commercial loan is 1.0, the risk weight for
some other types of assets is less than 1.0. For example, residential mortgages have
a risk weight of 0.5; Treasury bills have a risk weight of 0.0; loans to banks have
a risk weight of 0.2; and so on. Consider a bank with the following on-balance
sheet assets

Commercial Loans  $10 million

Residential Mortgages $30 million

The risk-adjusted exposure is 10 + 0.5 x 30 = $25 million. The Tier One (equity)
capital required to support the assets would be 0.04 x 25 = $1 million. In addition,
Tier One plus Tier Two capital would have to be greater that 0.08 x 25 = $2 million.

For off-balance sheet contracts there are a variety of rules. Consider interest
rate swaps. The first step is to calculate

Current Exposure + Add-on Factor

The current exposure is the greater of the current value of the swap and zero
(see Figure 18.1). The add-on factor, as a percentage of the notional principal,
is calculated as indicated in Table- 18.1. The current exposure + add-on factor is
multiplied by the risk weight of the counterparty to give the risk-adjusted exposure.
For this purpose corporate counterparties are given a risk weight of 0.5 rather
than 1.0. As an example, consider a 3-year interest rate swap with a corporate
counterparty that has a current value of $10,000 and a notional principal of $1
million. The add-on factor is $5,000 and the risk-adjusted exposure would be
calculated as 15,000 x 0.5 = $7,500. If the swap were with a bank (risk weight
= 0.2), the risk-adjusted exposure would be 15,000 x 0.2 = $3,000.

When a swap or other derivative security is being negotiated, it is important to
realize that it is not only the capital requirement at the time the contract is negotiated
that is important. We must also calculate the average of the expected capital
requirements during the life of the derivative security. Many financial institutions
carry out Monte Carlo simulations to determine how the capital requirements on
their derivatives book are likely to change over time.

TABLE 18.1 Percent of Notional Principal Added to
Current Exposure to Obtain Capital Requirements for Swaps

Interest-Rate Single Currency Exchange-Rate
Residual Maturity Contracts Floating/Floating Contracts
Swaps
<1lyr nil nil 1.0%

>1yr 0.5% nil 5.0%
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INTERNAL CAPITAL ALLOCATION

The BIS capital requirements do not distinguish between different corporate
counterparties. A counterparty with a AAA rating is treated the same as one with
a BBB rating. For internal use, some financial institutions have developed more
sophisticated capital allocation procedures. An amount of capital is allocated to
each deal entered into by the financial institution and traders are evaluated on the
basis of their return on capital employed. This has the advantage that it motivates
traders to take credit risk into account when quoting prices. One way of allocating
capital internally is to charge a trader an amount of capital proportional to f* — f.
The constant of proportionality should be chosen so that the total capital allocated
equals or exceeds the BIS requirements.

NErmive

A contentious issue in the evaluation of credit risk concerns what is known as
netting. Most swap contracts state that if a counterparty defaults on one contract it
must default on all contracts. This has led banks to argue that, when exposures and
capital requirements are calculated, a swap with a negative value should be allowed
to offset a swap with a positive value when the counterparty is the same in the
two cases. Consider all the swaps that a bank has with a particular counterparty.
Without netting the bank’s exposure at a future time is the payoff from a portfolio
of options. With netting it is the payoff from an option on a portfolio. The latter
is never greater than, and is often considerably less than, the former.

18.5 REDUCING DEFAULT RISK

If a financial institution is unwilling to accept the default risk in a contract, it may
propose an arrangement where the counterparty provides collateral. The amount
of the collateral required changes as the financial institution’s exposure changes.
This arrangement is similar to that used for futures contracts traded on exchanges
(see Chapter 2) and has the effect of eliminating virtually all credit risk.

Sometimes default risk can be reduced by the way in which a contract is
designed. Consider for example a financial institution wishing to buy an option
from a counterparty with a lower credit risk. It might insist on a zero-cost package
that involved the option premium being paid in arrears (see Chapter 16).

AAA-rated companies are in a strong negotiating position in derivatives mar-
kets. This has led some financial institutions, which do not themselves have AAA
ratings, to set up subsidiaries with AAA ratings for the purposes of trading deriva-
tive securities. The parent company guarantees the subsidiary, but the subsidiary
does not guarantee the parent company.
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18.6 SUMMARY

As the volume of trading in the over-the-counter markets has increased, it has
become important to assess the effect of default risk on derivative security prices.
This chapter has presented some of the ways in which this can be done. If we are
prepared to assume that the variables concerned with defaults are independent of
the variables determining the value of the security in a no-default world, analytic
results comparing the impact of defaults on derivatives to the impact of defaults on
bonds are available. For example, in the case of contracts that are unambiguously
assets, credit risk is taken into account by increasing the interest rate that is used
for discounting.

Capital requirements for banks throughout the world are determined using the
Bank for International Settlements proposals. In these, each on- and off-balance
sheet item is assigned a weight reflecting its relative credit risk. This weight
depends on both the nature of the contact and the counterparty. Minimum levels
are set for the ratio of capital to risk-weighted exposure.
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QUESTIONS AND PROBLEMS

18.1.

18.2.

18.3.

18.4.

18.5.

18.6.

*18.7.

18.8.

Suppose that the spread between the yield on a 3-year zero-coupon riskless bond
and a 3-year zero-coupon bond issued by a corporation is 1%. By how much does
Black—Scholes overstate the value of a 3-year option sold by a corporation?

“A vulnerable long forward contract is a combination of a short position in a no-
default put and a long position in a vulnerable call.” Discuss this statement.
Explain why the credit exposure on a matched pair of forward contracts resembles
a straddle.

Explain why the impact of credit risk on a matched pair of interest rate swaps tends
to be less than that on a matched pair of currency swaps.

A bank has the following assets: $200 million of Treasury bills; $100 milllion of
loans to corporations; $50 million of residential mortgages; $150 million of loans to
other banks. What are the capital requirements?

“When a bank is negotiating currency swaps, it should try to ensure that it is receiving
the lower interest rate currency from a company with a low credit risk.” Explain.
Show that the expression f = f*¢~0O~Y)T—9 for options in Section 18.2 is a
particular case of Equation 18.2.

Does put—call parity hold when there is default risk? Explain your answer.



Review of
Key Concepts

Although much of this book has focussed on options, the reader should by now
have realized that there are certain key concepts that are important in the analysis
of all derivative securities. In this final chapter we review some of these concepts.

19.1 RISKLESS HEDGES

The pricing of derivative securities involves the construction of riskless hedges
from traded securities. For a hedge to be riskless, it must be totally independent
of any stochastic variables. If the prices of two traded securities depend on one
underlying stochastic variable, it is possible to set up a hedge, consisting of a
position in the two securities, which is riskless. More generally, if the prices of
N + 1 traded securities depend on N underlying stochastic variables, it is possible
to set up a hedge, consisting of a position in the N + 1 traded securities, which is
independent of all N stochastic variables and is therefore riskless.

A riskless hedge must earn the risk-free rate of interest. This fact can be
used to obtain a differential equation that derivative securities must satisfy. In the
situation where all the stochastic variables underlying a derivative security are the
prices of traded securities, a riskless hedge can be set up using these securities
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together with the derivative security. In the situation where some or all of the
underlying state variables are not the prices of traded securities, the riskless hedge
must consist of a position in several different derivative securities.

It is important to realize that a differential equation which is derived by
setting up riskless hedges does not have a unique solution. Indeed, any security
that is contingent on the stochastic variables under consideration must satisfy the
same differential equation. The particular security that is obtained is determined
by the specification of the boundary conditions.

Derivative securities can be classified according to whether the riskless hedges
that are set up are permanently riskless or only instantaneously riskless. For for-
ward contracts on a traded security, a permanently riskless hedge can be set up
consisting of the forward contract and the underlying security. In the case of op-
tions and other more complicated derivative securities, the hedge that is set up
is only instantaneously riskless. To remain riskless it must be continuously re-
balanced. It is interesting to note that a futures contract can in this context be
viewed as being intermediate between forward contracts and options. A hedge that
is set up between a futures contract and the underlying security is not permanently
riskless, but it needs to be rebalanced only once per day to remain riskless.

19.2 TRADED SECURITIES VERSUS OTHER
UNDERLYING VARIABLES

In the context. of pricing derivative securities, a traded security can be defined as
any asset that is held solely for investment purposes by a significant number of
investors. Silver is a traded security according to this definition, while copper is
not. There is an important difference between the situation where a derivative
security depends only on the prices of traded securities and the situation where it
depends on the values of other variables. When an underlying variable is a traded
security, the price of an option is independent of the expected drift rate of the
underlying variable and the market price of its risk. When the underlying variable
is not a traded security, these parameters become important. This difference arises
from the fact that only traded securities can be included in the construction of a
riskless hedge.

19.3 RISK-NEUTRAL VALUATION

The risk-neutral valuation argument is a very simple argument that is at the heart of
much of the analysis of derivative securities. If a derivative security depends only
on the prices of traded securities, the differential equation for its price does not
involve parameters that are affected by risk preferences. It follows that the price
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of the derivative security in a world where all investors are risk neutral must be
the same as its price in the real world. For the purposes of valuing the derivative
security, it is therefore permissible to assume that all investors are risk neutral.

This assumption considerably simplifies the analysis. In a risk-neutral world,
the expected return from any traded security is the risk-free rate. Furthermore, the
expected payoffs from any derivative security are discounted at the risk-free rate to
get its present value. It should be emphasized that the risk-neutrality assumption
does not mean that the derivative security is being valued only for the case of a
risk-neutral world. Its value in a risk-neutral world happens to be the same as its
value in other worlds where investors are risk averse.

It turns out that when some or all of the variables underlying a derivative
security are not the prices of traded securities, an extension of the risk-neutral
valuation argument can be used. It is still permissible to assume that the world is
risk neutral. However, the expected growth rate in each variable must be reduced
by the product of the market price of its risk and its volatility for the purposes
of the analysis. If the variable happens to be the price of a traded security, this
adjustment changes the drift rate to a level where the variable’s expected return is
the risk-free rate.

19.4 A FINAL WORD

I hope that this book has stimulated the reader’s interest in derivative securities. I
have certainly found the task of organizing my own knowledge of the subject to
write this book a rewarding one.

What does the future hold for the analysis of derivative securities? It is
always tempting to answer a question such as this by saying that all the important
discoveries have already been made. I do not think this is true for the analysis of
derivative securities. A great deal of research—both theoretical and empirical—is
carried out each year by financial institutions and by academics. New derivative
securities are being developed at an exciting pace. There can be little doubt that
important new ideas and new results will continue to emerge.






Table For N (x) Whenx <0

This table shows values of N(x) for x < 0. The table should be used with

interpolation. For example

N(-0.1234) = N(-0.12) — 0.34[N (—0.12) — N(-0.13)]
= 0.4522 — 0.34 x (0.4522 — (.4483)

= 0.4509
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0.4641
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0.1379
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0.0559
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0.0294
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Table For N (x) When x > 0

This table shows values of N(x) for x > 0. The table should be used with
interpolation. For example

N(0.6278) = N (0.62) + 0.78[N (0.63) — N(0.62)]
= 0.7324 4+ 0.78 x (0.7357 — 0.7324)
= 0.7350

x .00 .01 .02 .03 04 .05 .06 .07 .08 09

00 05000 05040 05080 05120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 05398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
02 05793 05832 05871 05910 05948 05987 0.6026 06064 0.6103 0.6141
03 06179 0.6217 06255 0.6293 06331 0.6368 0.6406 0.6443 0.6480 0.6517
04 06554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

05 06915 0.6950 0.6985 07019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
06 07257 07291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 07580 0.7611 07642 0.7673 07704 0.7734 07764 0.7794 0.7823 0.7852
0.8 07881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 08078 0.8106 0.8133
09 08159 08186 08212 0.8238 0.8264 0.8289 08315 0.8340 0.8365 0.8389

1.0 08413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 08643 0.8665 0.8686 0.8708 0.8729 0.8749 08770 0.8790 0.8810 0.8830
12 08849 08869 0.8888 0.8907 0.8925 0.8944 08962 0.8980 0.8997 0.9015
1.3 09032 09049 09066 09082 09099 09115 09131 09147 09162 09177
14 09192 09207 09222 09236 09251 09265 09279 09292 09306 09319

1.5 09332 09345 09357 09370 09382 09394 09406 09418 09429 0.9441
1.6 09452 09463 09474 009484 09495 09505 09515 09525 09535 0.9545
L7 09554 009564 0.9573 09582 09591 0.9599 09608 09616 09625 0.9633
1.8 09641 009649 0.9656 09664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 09713 09719 09726 09732 09738 09744 09750 09756 09761 0.9767

20 09772 09778 09783 09788 09793 0.9798 0.9803 09808 0.9812 0.9817
21 09821 09826 009830 09834 0.9838 0.9842 0.9846 0.9850 09854 0.9857
22 09861 09864 09868 09871 09875 0.9878 09881 0.9884 09887 0.9890
23 09893 098% 0.9898 09901 0.9904 0.9906 09909 09911 09913 0.9916
24 09918 09920 09922 09925 09927 0.9929 09931 0.9932 09934 0.9936

25 09938 09940 0.9941 09943 0.9945 0.9946 09948 0.9949 0.9951 0.9952
26 09953 09955 09956 0.9957 0.9959 0.9960 09961 09962 09963 0.9964
27 0995 09966 0.9967 09968 0.9969 09970 09971 09972 09973 0.9974
28 09974 09975 09976 09977 09977 0.9978 0.9979 09979 0.9980 0.9981
29 09981 09982 09982 09983 0.9984 0.9984 09985 09985 09986 0.9986

3.0 09986 09987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 09990 0.9990
3.1 09990 09991 0.9991 09991 0.9992 09992 0.9992 09992 0.9993 0.9993
3.2 09993 09993 09994 09994 09994 09994 09994 09995 09995 09995
33 09995 09995 0.9995 09996 09996 0.9996 0.9996° 0.9996 0.9996 0.9997
34 09997 09997 0.9997 0.9997 09997 09997 0.9997 09997 09997 0.9998

3.5 09998 09998 0.9998 0.9998 0.9998 0.9998 09998 09998 0.9998 0.9998
3.6 09998 09998 0.9999 09999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 09999 0.9999 09999 09999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
38 09999 09999 09999 09999 09999 0.9999 09999 0.9999 0.9999 0.9999
3.9 10000 1.0000 1.0000 1.0000 10000 1.0000 1.0000 1.0000 1.0000 1.0000
40 10000 10000 10000 10000 1.0000 10000 10000 1.0000 1.0000 1.0000
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World Exchanges

Major Exchanges Throughout the World Trading Futures
and Options and the Average Number of Contracts
Traded Daily Between January and August 1990

Chicago Board of Trade CBOT 609,139
Chicago Board Options Exchange CBOE 523,098
Chicago Mercantile Exchange CME 403,455
San Paulo Mercantile & Futures Exchange BOVESPA 196,364
New York Mercantile Exchange NYMEX 175,069
American Stock Exchange AMEX 169,822
London International Financial Futures Exchange LIFFE 139,538
Marché a Terme International de France MATIF 114,599
Tokyo International Financial Futures Exchange TIFFE 91,837
Philadelphia Stock Exchange PHLX 89,540
Osaka Securities Exchange OSA 85,461
Commodity Exchange, New York COMEX 82,469
Pacific Stock Exchange PSE 57,025
Coffee, Sugar & Cocoa Exchange CSCE 53,205
London Metal Exchange LME 49,593
Sydney Futures Exchange SFE 46,950
European Options Exchange EOE 42,979
Australian Stock Exchange Sydney AUS 41,870
Swiss Options and Financial Futures Exchange SOFFEX 35,438
London Traded Options Market LTOM 33,018
San Paulo Mercantile & Futures Exchange BM&F 31,714
Stockholm Options Market OM 29,425
Deutsche Termin Borse DTB 26,810
International Petroleum Exchange IPE 24,095
Singapore Mercantile Exchange SIMEX 21,543
London Futures and Options Exchange FOX 19,257
Marché de Options Négociables de Paris MONEP 18,478
Rio Janeiro Stock Exchange BVRIJ 14,147
New York Stock Exchange NYSE 12,587
Toronto Stock Exchange TSE 9,137
New York Cotton Exchange NYCE 9,021
New York Futures Exchange NYFE 6,681
Montreal Exchange ME 5,639
Winnipeg Commodity Exchange WCE 4,848
Financial Instruments Exchange FINEX 3,714
Finnish Options Market FOM 3,070

Source: European Options Exchange Bulletin, September 1990
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Glossary of Notation

A guide to the main ways in which symbols are used in this book is given
below. Symbols which appear in only one small part of the book may not be listed
here, but are always defined at the time they are first used.

a:

T B

Qe o W

dl, dz:

s

476

Growth rate of underlying variable in a risk-neutral world in bi-
nomial model during time Az. For example, when the underlying
variable is a non-dividend paying stock @ = e"®*; when it is a
currency a = e"~"7%%; and so on. The variable a is also used in
chapters 9 and 10 as the drift rate in a generalized Wiener process.
In Chapter 15, it is the reversion rate in an interest rate process.

Principal amount of bond.

: In Chapter 9, b? is the variance rate in a generalized Wiener process.

In Chapter 15, b is the reversion level in an interest rate process.
Value of a bond.
Price of European call option.

: ith cash payment on a bond.
: Price of American call option.

Parameters in option pricing formulas. See, for example, equations
(10.27) and (11.3).

: Proportional down movement in binomial model. If d = 0.9, value

of variable moves to 90% of its previous value when there is a
down movement.

: In chapters 7 and 8, D is the present value of dividends on a stock.

In Chapter 10, D is the cash dividend and D; is used for the ith
cash dividend payment. In chapters 4 and 15, D is used to denote
duration.

-): Expected value of variable.

Expected value of variable in a risk-neutral world.

: Value of derivative security. The symbol, f;, is the value of the ith

derivative security. The symbol, fr, is the value of the derivative
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H

%

R,

M(z, y, p):

N(zx):

s O a

security at time T. The symbol f;; is the jth price of the derivative
security at time i At in binomial models.

: Forward or futures price. The symbol Fr is the forward or futures

price at time 7. In Appendix 3A, F; is the futures price at the end
of day i.

: G; is used in Appendix 3A for the forward price at the end of day

i. Also, G is used as an arbitrary function of a stochastic variable
in Chapter 10.

: Hedge ratio

Position in asset for delta hedging.
Position in forward or futures contracts for delta hedging.

: Present value of income on a security.
: Delivery price in forward contract.

Principal amount in interest-rate cap contract.

Expected growth rate of stochastic variable, 6. The symbol m; is
the expected growth rate of 6;; m is the expected growth rate of 6
in a risk-neutral world; and so on. In chapter 15, m is the expected
growth rate of r.

Cumulative probability in a bivariate normal distribution that the
first variable is less than x and the second variable is less than y
when the coefficient of correlation between the variables is p.

Cumulative probability that a variable with a standardized normal
distribution is less than x. A standardized normal distribution is a
normal distribution with a mean of zero and standard deviation of
1.0. Thus N(0) = 0.5.

This is used in two major ways: (1) value of European put op-
tion (see Chapter 10); and (2) probability of an up movement in
binomial models (see Chapter 14).

The meaning will be clear from the context.

: Value of American put option. Also P(z, T) is used as the price at

time ¢ of a discount bond maturing at time 7.

: Dividend yield rate.
: Notional principal in interest rate swap in Chapter 5.
: Risk-free interest rate. Note that in chapters 3, 4, 7, and 8, r is

the risk-free rate between times ¢ and T. Elsewhere in the book,
it should be interpreted as the instantaneous (i.e., very short term)
risk-free interest rate.

7y Instantaneous risk-free interest rate in foreign country.
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Average instantaneous risk-free rate of interest during life of deriva-
tive security.

Risk-free interest rate between times ¢ and T*.

Forward interest rate between times T and T*.

Interest rate between time k7 and (k + 1)7 on a LIBOR-based loan
(Chapter 15).

Cap rate in an interest-rate cap agreement.

Risk-free interest rate at time ¢ for an investment maturing at time
T.

Forward interest rate at time, ¢, for period between T and T*.
Volatility of 6.

Volatility of 6;.

Price of asset underlying derivative security. In different parts of

the book § is used to refer to the price of a currency, the price of
a stock, the price of a stock index, and the price of a commodity.

Value of § at time T.
Current time.
Time at maturity of derivative security.

: Time at maturity of futures contract or bond underlying derivative

security.

Proportional up movement in binomial model. For example, u =
1.2 indicates that the variable increases by 20% when an up move-
ment occurs. The symbol u is also used to denote the storage costs
per unit time as a proportion of the price of an asset.

Present value of storage costs.

Variance

: Value of swap
: Number owned of ith security.

Number owned of traded security.

: Strike price of option.

Convenience yield. Also used for yield on a bond.
Variable following a Wiener process.

Beta. This is the slope of the line obtained when returns from a
portfolio (or from an individual stock) are plotted against returns
from the market.

Gamma of derivative security or portfolio of derivative securities.
Delta of derivative security or portfolio of derivative securities.
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Ax:

2

Fex0

=
L)

oF:

é(m, s):

Small change in x for any variable x.
Random sample from standardized normal distribution.

: Continuously compounded return on a stock.
: Stochastic variable underlying a derivative security; 6; is the ith

stochastic variable underlying a derivative security.
Theta of derivative security or portfolio of derivative securities.
Market price of risk; A; is market price of risk of variable i.

: Vega of derivative security or portfolio of derivative securities.

Expected growth rate in price of asset (for a non-dividend-paying
stock, u is expected return).

Expected growth in F.
Value of portfolio.

Coefficient of correlation; p;; is coefficient of correlation between
9,' and 9].

: Volatility of asset. In Chapter 2, o5 and of are standard deviations.

Volatility of F.
Normal distribution with mean m and standard deviation s.
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currency options, 257-58
effect of dividends, 232-35
futures options, 259
stock index options, 253-54
stock paying known dividend yields, 24749
two underlying assets, 428
using a simple binomial model, 217-18,
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Order Book Official, 144
Orders, 144
Out-the-money options, 140
Overnight repo, 50
Over-the-counter market, 1
Over-the-counter options, 138
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Pacific Stock Exchange, 137
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Par yield bond, 119
Payoff, 7-8, 176, 178, 180, 184, 416
Perfect hedge, 33
Philadelphia Board of Trade, 137
Philadelphia Stock Exchange, 137
Plain vanilla interest-rate swap, 111
Portfolio insurance, 25153, 318-21
creating options synthetically, 318-19
using index futures, 32021
using index options, 25153
Position limits, 22, 141
Prepayment privilege, 372
Price sensitivity hedge ratio, 102
Pricing biases, 436-38
Pricing schedule, 117
Program trading, 60
Protective put, 175
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Pure jump model, 442, 454
Put-call parity, 163, 167, 264, 438
Put option
definition, 5
early exercise on nondividend paying stock,
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Puttable bonds, 371
Puttable swap, 128
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Quadratic approximation, 362
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Random samples, 332
Range forward contracts, 11, 415
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distribution of, 212-14
expected, 213-14
Rebalancing hedges, 300
Regulators, 455, 464
Relationship between American call and put
prices, 164-66
Rendleman and Bartter model, 385-88
Repo agreement, 50
Repo rate, 50
Repurchase agreement, 50
Reverse calendar spread, 182
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Risk adjusted exposure, 464
Risk and return, 70
Risk-free interest rate, 153
Riskless hedge, 469
Riskless portfolio, 218
Risk neutral valuation, 221-23, 277, 281, 335,
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Settlement price, 27
Short hedge, 33
Short position, 2, 7
Short rate process, 400
Short selling, 48
Short squeeze, 49
Simulation run, 330
Specialist system, 145
Speculators, 13
Spot interest rate, 81
Spread on swap, 116
Spreads (options), 175-83
bear spread, 178
bull spread, 175
butterfly spread, 179
calendar spread, 181
diagonal spread, 183
Spread transaction (futures), 25
Standard and Poor’s 100 Index, 137, 249
Standard and Poor’s 500 Index, 58, 137, 249
Standard Oil, 10
Step-up swap, 128
Stochastic calculus, 191
Stochastic interest rates, 435
Stochastic process, 190
Stochastic volatility, 439
Stock dividend, 140, 153, 232-37
Stock index, 57
futures price of, 59-60
index arbitrage, 60
options on, 137, 249-54
option valuation, 253-54
Stock options
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margins, 145
newspaper quotes, 142
specifications of, 138—42
trading, 144
valuation, 245
Stock option price, 151-69
factors affecting, 151-52
upper and lower bounds, 154-58
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lognormal property, 21012
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parameters, 200-201
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Stock split, 140
Stop-loss strategy, 296-98
Storage cost, 69
Straddle, 183
Straddle purchase, 184
Straddle write, 184
Strangle, 185
Strap, 185
Strengthening of the basis, 34
Strike price, 139
Strip, 185
Swaps, 111-31
amortizing, 128
credit risk, 129-30, 461-66
currency, 122
default on, 129
deferred, 128
definition, 111
examples, 112-14
exchange of payments, 115-16
extendable, 128
forward, 128
indication pricing schedule, 117
interest rate, 111
offsetting, 129
options on, 372-73
pricing schedule, 117
puttable, 128
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Term structure theory, 87-88
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Tier one capital, 464
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Time decay, 308
Time to expiration, 152
Time value of option, 140
Top straddle, 184
Top vertical combination, 186
Tokyo Stock Exchange, 58
Traders, 12-14
arbitrageurs, 13-14
hedgers, 12
speculators, 13
Traded security, 274, 470
Trading strategies using options, 173
Trading volume, 31
Treasury bill futures, 94-98
Treasury bill price quotes, 97
Treasury bond, 88
Treasury bond futures, 88-94
cheapest-to-deliver bond, 91
conversion factors, 90
futures price of, 93-94
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wild card play, 93
Treasury note futures contract, 88
Trinomial trees, 349, 393-96, 405-408
Triple witching hour, 33
Two-factor interest rate models, 397-98
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Uncertain volatility, 379
Up-and-in option, 419
Up-and-out option, 419
Uptick, 49

Utilities index, 249
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Value Line index, 249
Variance rate, 197
Variance reduction procedures, 333
Variation margin, 23
Vasicek model, 390-96
Vega, 298, 342
Vega-neutral portfolio, 315
Volatility 153, 198, 200, 201,
bond price, 379-80
causes, 230-32
estimation from historical data, 214-17
forward rate, 377
implied, 229-30
smile, 448
stock market, 321-22
Volume of trading, 31
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